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Abstract

Sleep Dynamics and Seizure Control in a Mesoscale Cortical Model

by

Beth Ann Lopour

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Andrew Szeri, Chair

Using a mean-field, mesoscale model of the human cortex, we examine both feedback
control for the suppression of seizures and the continuous mapping of sleep states to aid
in seizure prediction. First, we verify the strong convergence of numerical solutions to the
model, which consists of coupled stochastic partial differential equations. In doing this, we
pay special attention to the sharp spatial changes that occur at electrode edges. This allows
us to choose appropriate step sizes for our simulations; because the spatial step size must
be small relative to the size of an electrode in order to resolve its electrical behavior, we are
able to include a more detailed electrode profile in the simulation. We then develop a new
model for the measurement of a cortical surface electrode based on extracellular currents
flowing in the cortex. This model is used to simulate feedback with a new control algorithm
that utilizes a charge-balanced signal. Not only does this succeed in suppressing the seizure
oscillations, but it guarantees that the applied signal will be charge-balanced and therefore
unlikely to cause cortical damage.

Next, we turn to a representation of the human sleep cycle contained within the mesoscale
cortical model. We show that it can be used to obtain a detailed description of electroen-
cephalogram (EEG) sleep stages, and we discuss how this analysis may aid in the prediction
and prevention of seizures during sleep. The association between EEG data and the cortical
model is found via locally linear embedding (LLE), a method of nonlinear dimensionality
reduction. We first show that LLE can distinguish between traditional sleep stages when
applied to EEG data. It reliably separates rapid eye movement (REM) and non-REM sleep
and maps the EEG data to a low-dimensional output space where the sleep state changes
smoothly over time. We also incorporate the concept of strongly connected components and
use this as a method of automatic outlier rejection for EEG data. Then, by using LLE on a
hybrid data set containing both sleep EEG and signals generated from the mesoscale cortical
model, we quantify the relationship between the data and the mathematical model. This
enables us to take any sample of sleep EEG data and associate it with a position among the
continuous range of sleep states provided by the model; we can thus infer a trajectory of
states as the subject sleeps. Because current sleep scoring consists of only five discrete stages,
this technique may allow for tracking of sleep dynamics and a greater ability to predict the
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onset of seizures. We show that this method gives consistent results for various subjects over
a full night of sleep and can be done in real time.
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Chapter 1

Introduction

1.1 Seizures and epilepsy

1.1.1 Clinical presentation and diagnosis

Epilepsy is a neurological disorder that has been the subject of widespread research, but
its varying etiologies and clinical presentations make it a challenging subject. A patient is
given a diagnosis of epilepsy when he or she experiences recurrent, unprovoked seizures [18],
where a seizure is broadly defined as a “brief, strong surge of electrical activity [that] affects
part or all of the brain” [60]. The resulting symptoms and their severity vary widely from
patient to patient and can often be mistaken for other conditions. Thus, epileptic seizures
are often difficult to identify, even by experienced clinicians. When considering a diagnosis
of epilepsy, doctors must account for a large number of factors, including the underlying
cause of the abnormal electrical activity, age of onset, family history, and genetics [18].

In many cases, the cause is easily identifiable and the abnormalities are localized in one
area of the brain. This is often true for seizures stemming from physical trauma, tumors,
stroke, lead poisoning, infection, or problems with prenatal development [18]. However, in
70% of people with epilepsy, no cause can be found [60]. These cases are defined as idiopathic
and are not accompanied by a local brain abnormality; in these situations, physicians must
rely on clinical observation for the classification and diagnosis upon which treatment is based.

Based on these observations, seizures can be divided into two categories: partial and
generalized. Partial seizures begin in a small group of neurons called a focus, and the
symptoms experienced by the patient depend on the location of that focus, e.g. abnormal
electrical activity in the motor area of the cortex can lead to twitching or jerking of the
limbs. These seizures may or may not be accompanied by an alteration of consciousness.
Shortly before partial seizures begin, the patient often experiences symptoms associated with
an aura; for example, he or she may perceive a specific smell, have a sudden feeling of fear,
or experience a sinking feeling in the pit of the stomach [18].

In contrast, generalized seizures involve both hemispheres of the brain. They are not
preceded by an aura, and they do not begin at a localized focus. Generalized seizures can be
either convulsive or nonconvulsive based on the physical movements (or lack thereof) during
the seizure. Convulsive generalized seizures are perhaps most familiar to the general public;
they last several minutes and are often characterized by a tonic phase (where the muscles



2

are rigid) followed by a clonic phase characterized by jerking of the extremities [18]. The
most common example of a nonconvulsive generalized seizure is the absence seizure, often
seen in children. These seizures are short, generally lasting less than 10 seconds, and cause
a loss of consciousness while retaining muscle tone [18].

1.1.2 Seizure onset during sleep and waking

One of the most troubling aspects of generalized seizures is their unpredictability; in
addition to the physical trauma, this leads to social implications including the impairment of
a person’s ability to drive or work. Stress, lack of sleep, or flashing lights at certain intensities
and frequencies can sometimes increase the likelihood of seizures, but many epileptic patients
are unable to identify a specific trigger [60].

Patterns of seizure onset have also been found in relation to the sleep/wake cycle, al-
though this connection has yet to be fully understood. The analysis of human sleep generally
involves categorization of EEG measurements into five groups: rapid eye movement (REM)
sleep and stages 1-4 (also called non-REM stages) [36]. The probability of seizure occurrence
during sleep appears to depend not only on sleep stage, but also on the type of seizure, the
location of seizure onset, and the presence of arousals or interictal epileptiform discharges
(IEDs). For example, some epileptic syndromes have a tendency to produce seizures during
sleep (e.g. frontal lobe epilepsy), while others are associated with seizures during waking
(e.g. absence epilepsy) [44, 8]. Seizures during sleep occur primarily in non-REM (NREM)
sleep stages, while rapid eye movement (REM) sleep inhibits epileptic activity [44, 16, 8].
Within NREM sleep, IEDs are prevalent during deep sleep (stages 3 and 4), whereas most
seizures arise out of the lighter stages 1 and 2 [32, 44]. It has been hypothesized that the
transitions between these sleep stages are critical points in seizure generation, especially dur-
ing the descent to deep sleep after an arousal [32]. However, the knowledge of these patterns
has not yet led to the ability to anticipate the onset of a seizure during sleep.

The standard method of dividing sleep stages into five discrete groups adds to the dif-
ficulty of quantifying the precise relationship between seizure onset and sleep state. For
example, if a seizure occurs during stage 2 sleep, exactly how long was the subject in stage
2 before seizure onset? Was the subject descending to deeper stages of sleep or arising from
them? Was a transition imminent when the seizure occurred?

The use of a mathematical model of the human sleep cycle may allow such questions to
be answered by providing a continuous spectrum of sleep states, ranging from REM to the
deepest slow-wave sleep. If the model can be directly associated with human sleep EEG
data, it would be possible to track the subject’s state to identify the stage as well as changes
in sleep depth and proximity to transitions. Ideally, this would be done in real-time, where
the state (and likelihood of seizure onset) is continuously determined as the subject sleeps.
Assuming this process is consistent over various subjects and robust to non-standard sleep
cycles and periods of waking, it could represent a significant step toward seizure prediction
and suppression during sleep.
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1.1.3 Treatment

Due to the unpredictable nature of seizures, the best treatments are often preventative.
The most common method is medication; it is estimated that over 50% of epileptic patients
are able to completely control their seizures with antiepileptic drugs, and another 20-30%
see a reduction in the number of seizures [60]. The remaining 20% have intractable epilepsy
that does not respond to medication. These patients often seek out alternative treatments,
which tend to be much more invasive. For example, he or she may elect to have surgery to
resect the seizing portion of the brain. Success for this type of procedure, defined as “no
seizures with loss of consciousness,” is reported in 30-70% of cases [60]. However, it can only
be performed when the seizures occur in a part of the brain unrelated to basic functions such
as speech, memory, or eyesight. Another treatment option for partial seizures is vagus nerve
stimulation. This involves the implantation of a small device to deliver periodic electrical
pulses to the brain via the vagus nerve in the neck; the stimulation is generally delivered in
an open-loop manner, but it is sometimes possible for the patient to activate the device with
a magnet if they feel a seizure coming on. This type of treatment is unlikely to stop seizures
completely, but roughly one third of patients will see a great improvement in seizure control
[60].

Cortical stimulation is a new form of treatment that is currently the subject of much
research. It utilizes subdural cortical surface electrodes and/or depth electrodes to detect
seizures and then to apply an electrical signal to disrupt the abnormal electrocorticogram
(ECoG) activity. As opposed to vagal nerve stimulation or medication, the electrical signal
is directed locally to the site of the seizure and can be applied as needed with great temporal
specificity [57]. Most importantly, it does not require removal of any part of the brain.
With this treatment method, stimulation parameters can be tailored to the needs of each
patient, and the device can be switched off very quickly if adverse side effects occur [57]. The
stimulation can be an applied in an open-loop manner, where electrical pulses are delivered
at predetermined intervals with set intensities, or in a closed loop manner, where the stimulus
is calculated based on continuous measurements of the brain’s electrical activity. A third
protocol, termed “responsive cortical stimulation,” is a hybrid of these two methods. It
calls for stimulation only when a seizure has been detected (in this sense, it is a closed loop
system), but the applied signals are predetermined (as they are for open loop stimulation)
[57].

A limited set of related experiments has been done on humans. The first use of cortical
stimulation on a human subject was published in 1954; it was reported that an applied stim-
ulus could locally depress electrical activity and, in some cases, cause a complete flattening
of the ECoG signal in distant cortical regions [40]. This was also seen later by physicians
performing resective surgery for epilepsy. In an attempt to map regions of the cortex used
for critical functions such as speech and memory, surgeons apply a small electrical signal to
different areas of the cortex and observe the response. If the amplitude of the applied signal
is large enough, an after-discharge will be produced. This electrical phenomenon mimics
the spontaneous epileptiform activity at the beginning of a focal seizure and may evolve
into a full-blown seizure [57]. It was empirically found that additional electrical stimulation
could terminate these after-discharges once they had begun, and studies were performed to
quantify the characteristics of the signal needed to do this [25, 33]. Others used interictal
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epileptiform discharges as a measure of seizure activity; they studied the reduction in IEDs
due to applied electrical signals of varying frequencies [20]. Most recently, clinical trials were
initiated on a fully integrated implantable device that uses responsive cortical stimulation
for seizure suppression. [57].

To our knowledge, closed loop control has not yet been implemented in humans, but it is
currently being studied in animal models of epilepsy. It has been shown that the application
of electric fields to rat cortex in vitro can modulate the behavior of seizure-like waves [42].
In vivo experiments on rats demonstrated that stimulation via proportional feedback can
temporarily suppress seizure activity [13]. A subsequent set of experiments showed that an
increase in the amplitude of the proportional control feedback gain corresponds to decreases
in both seizure amplitude (measured as a reduction in the amplitude variance) and Teager
energy [5]. The Teager energy can be reduced by a decrease in the amplitude of a signal or
a lowering of the frequencies in its power spectrum.

1.2 Computational Neuroscience, Epilepsy, and Sleep

While animal experiments offer greater freedom over human studies, mathematical mod-
els provide the most flexibility of all. They present an opportunity to study many different
aspects of epilepsy, from the contributions of a single type of ion channel to the combined
oscillatory behavior of a thousand networked neurons. The type of model must be chosen to
suit the research goal. For example, small-world networks of simple integrate-and-fire neu-
rons have been shown to exhibit self-sustained oscillations similar to a seizure [35]. While
this may provide insight into the network topologies that facilitate seizure behavior, it does
not contain enough details to study the physiological generation of the seizure. On the other
end of the spectrum, the NEURON simulation package has the ability to model neurons in
extreme detail based on experimental data. Researchers have used this to study the actions
of anti-convulsant medications at the single cell level, the effect of specific ion channels on
neuronal excitability and bursting, and much more [4].

One type of model that falls in between these two extremes is the mean-field model. Its
variables, representing quantities that are averaged over the millimeter scale, are compara-
ble to the mesoscale measurements of the electroencephalogram (EEG) or ECoG electrodes.
Therefore, this mathematical representation of cortical tissue is well-suited to the study of
brain states described by EEG signals, including seizures, anesthesia, and sleep. However,
because the contributions of individual neurons are lost due to the assumption of spatial av-
eraging, these models are not useful for studying seizure-related mechanisms at the cellular
level (or below). They can be used to simulate the action of many thousands of neurons, but
unlike the small-world network example above, individual synapses and connection strengths
are not represented. Instead, the model characterizes the connection between an averaged
excitatory population and an averaged inhibitory population. While this rules out the pos-
sibility of studying network topologies, it provides a great advantage in terms of efficiency.
A mean-field model has mathematical equations relating to a neuronal population, whereas
a large-scale network model must use several equations for each neuron. Thus, mean-field
models are orders of magnitude smaller in terms of the number of differential equations that
must be solved.
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Mathematically, the cortical model used in this manuscript is a 12th order set of stochastic
partial differential equations (SPDEs) with one spatial dimension. It can support seizure-like
oscillations that are qualitatively and quantitatively similar in frequency of maximum power
and propagation speed to those seen in humans with epilepsy [21]. Also, by adding two
parameters to represent neurotransmitters important for the regulation of sleep, this cortical
model contains a mathematical representation of the human sleep cycle. In what follows,
we take advantage of these two properties by using the mean-field, mesoscale model of the
cortex to study both seizure control and sleep dynamics.

1.2.1 Feedback control of epileptic seizures

The experiments on closed loop feedback control of epileptic seizures in animals have
provided promising results, but they could benefit from the application of a mathematical
model, such as the one used here. We previously demonstrated that various methods of closed
loop feedback control can suppress simulated seizures [22], and we added the capability of
looking at spatial properties of feedback control, such as electrode size and spacing [29].

Our goal in the present work is to make this model of feedback control more biologically
relevant. This will facilitate future comparison with experimental data. There are four key
improvements in our approach:

1. We verify the strong convergence of the numerical solution to the SPDE model.

2. Based on the studies of convergence, we utilize a smaller step size in our simulations,
thereby allowing the inclusion of a more detailed electrode profile.

3. We develop a better motivated model of the signal measured by an electrode on the
cortical surface. This model is used to calculate the applied electrical signal for feedback
control.

4. Feedback control is performed with a new algorithm incorporating an integral com-
ponent. This ensures that the applied signal is charge-balanced, which is thought to
minimize damage of cortical tissue.

Then, using this new formulation of feedback control, we study the relationship between
the cortical length scale in the model and the size of the electrode needed to effectively sup-
press a seizure. This allows us to make recommendations for electrode design in experimental
implementations of feedback control.

1.2.2 A continuous mapping of human sleep states

As was previously discussed, the relationship between sleep and epileptic seizures is com-
plex and not fully understood. The description of sleep stages in a continuous manner may
aid in the understanding of this subject. Here we are able to find a continuous mapping
of EEG sleep states by direct comparison to the model of the sleep cycle contained within
the mesoscale cortical model. Basic descriptions of NREM and REM sleep were previously
identified in the model, and these sleep states were qualitatively compared to EEG data [52].
However, we aim to quantify this relationship.
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First, we introduce a method of nonlinear dimensionality reduction called locally linear
embedding, and we show that it provides the ability to distinguish between sleep stages
when applied to EEG data. These results demonstrate reliable separation between REM
and NREM sleep data and provide a smooth temporal progression through the various
stages of sleep. We also present the concept of strongly connected components as a method
of outlier rejection for EEG data and introduce a method for automatic selection of LLE
parameters. Then, by performing LLE on a hybrid data set containing both sleep EEG
and signals generated from the mathematical model, we are able to integrate the EEG and
the model. This allows us to take any sample of sleep EEG data and determine its position
within the continuous range of sleep states provided by the model. We show that this method
provides consistent results for various subjects over a full night of sleep, and it could be done
in real time as the subject sleeps.

1.3 Summary of Original Contributions

Using a mean-field, mesoscale model of the human cortex, we are able to make novel
contributions relating to both feedback control of seizures and the continuous mapping of
sleep states to aid in seizure prediction.

The simulations of feedback control presented here are an improvement over previous
work in several ways. First, we provide recommendations for the maximum simulation
step sizes based on mathematical analysis of convergence, and we include the capability to
define a detailed electrode profile. Next, we introduce a new model for the measurement of
a cortical surface electrode based on extracellular currents in the tissue. All previous work
was based on the simplifying assumption that the intracellular soma potential of the neurons
would be reflected in the sensor measurement. Lastly, we present a new control law that
guarantees seizure suppression with a charge-balanced signal. This is of great importance for
implementation of feedback control because this type of signal is thought to cause the least
amount of damage when applied to cortical tissue.

The continuous mapping of EEG sleep states represents the combination of three com-
ponents (LLE, sleep EEG data, and a mesoscale model of the sleep cycle) in a way that has
never been seen before. To our knowledge, this is the first time LLE has been applied to sleep
EEG data, the first time LLE has been used as a bridge between experimental data and a
mathematical model, and the first time EEG data has been quantitatively compared to this
mean-field model of the sleep cycle. We show that LLE has the ability to roughly separate
sleep EEG by stage, and we demonstrate that the resulting embedding changes smoothly
over time. Then, by jointly analyzing EEG data and model data using LLE, we quantify
the mapping between these two data types. The results are consistent over multiple subjects
with varying sleep cycles, and the analysis can be implemented in real-time. Because it
results in a more detailed description of sleep states, this work may have implications for
seizure detection and suppression during sleep.



7

Chapter 2

Mesoscale Cortical Model

2.1 Description of the model

To model the electrical activity of the human cortex, we choose a set of stochastic PDEs
that has been developed and adapted over the past decade [27, 26, 54, 55]. The mesoscale
nature of this model makes it well-suited to EEG-based applications such as seizure waves
associated with epilepsy [21], sleep dynamics [61], and cortical transitions due to the appli-
cation of anesthesia [53] because it is based on length scales similar to commercial electrode
arrays. It is a mean-field model, implying that all of its variables represent spatially averaged
properties of populations of neurons. This is similar to the manner in which an electrode
provides a measurement based on the collective behavior of many neurons. We choose to im-
plement the model in only one spatial dimension because this will be sufficient to capture the
plane waves associated with epileptic seizures. A two-dimensional model would be needed
to simulate more complex wave patterns (e.g. spiral waves), which have been observed in
laboratory preparations [49].

In 2006, the equations were restated in a dimensionless form by Kramer et al. [23]. This
is the formulation of the model we will use here; it is a system of eight coupled nonlinear
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PDEs with stochastic inputs:
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All variables are dimensionless and are functions of time (t̃) and one spatial dimension (x̃).
The h̃ state variable is the mean soma potential for a neuronal population, while Ĩ represents
postsynaptic activation due to local, long-range, and subcortical inputs, and φ̃ is a long-
range (corticocortical) input. The subscripts e and i denote the excitatory and inhibitory
neuron populations, respectively; variables with two subscripts represent the transmission
of information from one population to another, e.g. Ĩie is the postsynaptic activation of the
excitatory population due to inputs from the inhibitory population. For descriptions of all
model variables and parameters, please refer to Table 2.1 (for parameters to produce seizure
waves) or Table 2.2 (for parameters to model the sleep cycle).

Note that two small changes have been made to the model in comparison to [23]. In
equation (2.1) we have added the variable u to represent the signal applied by a cortical
surface electrode for feedback control. This will be discussed further in Section 4.1.3. Also,
in equations (2.1) and (2.2) the parameters L and ∆hrest

e have been added to mimic neuro-
modulators present during human sleep [52]. Changes in these parameters will allow us to
model the sleep cycle, as discussed in Section 2.2.2; for simulations of seizure behavior, we
will always choose L = 1 and ∆hrest

e = 0.
To appreciate the model as a whole, let us first look at the equations governing the

excitatory neuron population, depicted graphically in Figure 2.1. Equation (2.1) for h̃e

is reminiscent of the leaky integrate-and-fire model of a neuron, where the derivative of
the membrane potential equals the resting potential minus the membrane potential plus
any existing current inputs [7]. Here, the resting potential is “1” due to the dimensionless
nature of the system. The inputs are Ĩee and Ĩie, which evolve according to (2.3) and (2.5),
respectively, based on three types of synaptic input: local, long-range, and subcortical.

• Local inputs, such as those from within the same macrocolumn, are represented by
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• subcortical, Pee,ie + Γ̃1,3

• long-range corticocortical, φ̃e

• local, Nβ
e S̃e and Nβ

i S̃i

h̃i

Ĩee,ieh̃e

Soma

potential

Postsynaptic

activation

Synaptic
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Activity of nearby columns
∂2φ̃e
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e S̃e

(1) (3, 5) (7)

Figure 2.1: Flow chart representation of model equations (2.1), (2.3), (2.5), and (2.7), which
govern the excitatory population. The boxes describe the physiological significance of the
model variables and parameters listed beneath them. Note that feedback occurs through
the sigmoid function S̃e, which is a function of h̃e. This population is also coupled to the
inhibitory population through local inputs described by S̃i[h̃i]. For a cell-based depiction of
the model, see [54].

terms of the form Nβ
e S̃e[h̃e], where S̃e is a dimensionless sigmoid function:

S̃e[h̃e] =
1

1 + exp[−g̃e(h̃e − θ̃e)]
(2.9)

This associates the mean soma potential of the excitatory population with its mean
firing rate.

• Long-range inputs represent signals from other cortical macrocolumns and are de-
fined by φ̃e. The behavior of this variable is governed by (2.7). Note the similarity of
this equation to the standard PDE wave equation. It has been experimentally veri-
fied that cortical tissue can support wave propagation [49]; this idea is central to our
simulation of epileptic seizures.

• Subcortical inputs are predominantly from the thalamus and contain both constant
(Pee) and stochastic (Γ̃1) parameters. We define the stochastic term by

Γ̃1 = αee

√
Pee ξ1[x̃, t̃] , (2.10)

where αee is a constant and ξ1 is zero mean, Gaussian white noise in time and one
spatial dimension. When the SPDEs are solved numerically, the cumulative effect of
this stochastic process will be Brownian motion. To ensure that the properties of this
signal remain constant regardless of step size, we scale the discrete randomly generated
numbers R(m, n) by the simulation time step:

ξ1[x̃, t̃] =
R(m,n)√

∆t̃
. (2.11)
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The variables m and n are indices of space and time, so a single point is represented
by spatial position x̃ = m∆x̃ at time t̃ = n∆t̃. Note that the discrete update form of
(2.11) is

ξ1[x̃, t̃]∆t̃ =
√

∆t̃ R(m,n) , (2.12)

which will be used in all numerical experiments.

Thus, equations (2.1), (2.3), (2.5), and (2.7) govern the excitatory population, while the
remaining equations represent the inhibitory population and have exactly the same form.
Together they compose the full cortical model.

2.2 Representations of cortical states in the model

2.2.1 Seizure waves

The full set of parameters used to study seizure-like behavior in the model are listed
in Table 2.1, but several are especially relevant to the following numerical studies. The
parameter Pee represents input from the population of subcortical excitatory neurons (such
as those in the thalamus), and Γe denotes the influence of synaptic input on the mean
soma potential. Changes in these parameters allow for transition between normal cortical
function and the hyperexcited “seizure” state of the SPDE model. At low levels of excitation,
corresponding to low levels of Pee, the mean soma potential of the excitatory neurons h̃e

produces low amplitude random fluctuations similar to those seen in an ECoG measurement
on the cortical surface. An example of this is shown in Figure 2.2 for a one-dimensional strip
of cortex evolving in time; here we used Pee = 11.0 and Γe = 1.42 × 10−3, and the value of
he [mV] is represented by grayscale.

On the other hand, at increased levels of subcortical excitation, the simulated cortex
develops large amplitude seizure-like oscillations. This is depicted in Figure 2.3, where the
behavior is again represented by the mean soma potential of the excitatory population he as
it varies in space and time. The seizure waves occur due to our choice of Γe = 0.8 × 10−3

and a Gaussian Pee distribution with a maximum value of 548.0. They spontaneously arise
in locations with sufficiently high Pee (here, this “hot spot” is at x = 100mm) and travel
outward until the level of excitation is too low to support them. This is why the waves
terminate before they reach the edges of the simulation space.

These large-amplitude oscillations were found to be quantitatively and qualitatively sim-
ilar to seizure waves seen in epileptic subjects, with respect to the frequency of peak power
and wave propagation speed [21]. It was also shown that an increase in Pee and decrease
in Γe is not the only route to seizure activity in the model; these oscillations can develop
through a variety of other parameter changes [23]. Our goal in Chapter 4 will be to suppress
this pathological behavior via feedback control consisting of measurements from the cortical
surface and the application of a potential based on those measurements. The variable u will
represent this control input.
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Figure 2.2: (a) Typical behavior of the cortical model, with parameters Pee = 11.0 and
Γe = 1.42 × 10−3. Here we simulate a 200mm strip of cortex over a period of 0.5 seconds,
and the value of he is represented by grayscale. For these parameters, the model exhibits
low amplitude stochastic behavior. (b) Plot of he versus time extracted from Figure 2.2(a)
at 100.8mm.

2.2.2 Sleep states

To simulate sleep states, we again adopt the dimensionless formulation of the model as
described in [23]; however, here we use parameters ∆hrest

e and L to equations (2.1) and (2.2)
represent neuromodulators that regulate the natural sleep cycle, as was done in [52]. More
specifically, they mimic the actions of adenosine and acetylcholine (ACh). First, adenosine
acts to reduce the resting potential of excitatory cells, thus making them less likely to fire;
ACh does the opposite by raising the resting potential. These actions are represented in the
model by ∆hrest

e , which adds directly to the resting potential of the excitatory population
(disguised as a “1” in the dimensionless equations). Second, ACh decreases the amplitude of
the excitatory postsynaptic potential, effectively reducing the synaptic gain. In the model,
this corresponds to a reduction in the effect of synaptic currents Ĩee and Ĩei; therefore, the
parameter L is multiplied by these quantities to simulate a change in synaptic gain. Lastly,
as was done in [52], we take the mean excitatory soma potential h̃e to be representative
of cortical activity; we will compare this variable to EEG measurements in the analysis of
Chapter 5.

In order to visualize the model of the sleep cycle based on these new parameters, we look
at steady-state solutions of he (without stochastic input) as L and ∆hrest

e are varied. These
solutions create what we will refer to as the “sleep manifold” (Figure 2.4). Notice that, for
most parameter values, there is only one steady state solution. However, in certain cases,
there are three solutions (two stable and one unstable), causing the manifold to fold over
on itself. This fold is seen on the left side of Figure 2.4. In this model, the top branch of
solutions on the manifold is intended to be representative of REM sleep. Starting at this
point, we can imagine that during sleep, there is a gradual descent to deep slow-wave sleep
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Figure 2.3: (a) Seizure waves traveling on the simulated cortex, with parameters Pee = 548.0
and Γe = 0.8 × 10−3. The characteristics of the wave are determined by the distribution of
Pee; here it is a Gaussian curve, so the wave starts in the center where Pee is at its maximum
(548.0) and propagates outward until the level of excitation is too low to support it. In this
case, no feedback control is applied, so the waves will reoccur indefinitely. (b) Plot of he in
time extracted from Figure 2.3(a) at 100.8mm.

by following a trajectory down the right side of the manifold where there is only one steady
state solution. This happens in a smooth continuous manner. Then the quick transition from
slow-wave sleep to REM is simulated by a jump across the fold from the bottom branch of
solutions to the top branch. This mimics the rapid transition from deep sleep to REM that is
observed in human EEG recordings. This process of gradually moving from REM to NREM
sleep and then quickly jumping back to REM represents one sleep cycle in the model.

This model has been previously studied. Steyn-Ross et al. calculated the EEG total
power, fractions of high and low power, and correlation time exhibited by the model at the
transition from slow-wave sleep to REM; it was found that they qualitatively matched both
human clinical sleep recordings and cortical measurements from a cat [52]. The model was
also studied in two spatial dimensions to investigate stable oscillatory states similar to slow-
wave sleep, and it was shown that a transition from one state to another can occur due to
stochastic fluctuations [62]. Lastly, Wilson et al. interpreted the k-complex as a transient
shift from a stable low-firing state to an unstable high-firing state and used this model to
demonstrate the mechanism by which the transition may occur [61]. In Chapter 5, we will
quantitatively compare this model to sleep EEG data; for any given sample of EEG, our aim
will be to find its associated position on the sleep manifold.
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Figure 2.4: The manifold of steady states in he from the mesoscale cortical model, hereafter
referred to as the “sleep manifold.” The parameters L and ∆hrest

e represent the actions
of adenosine and acetylcholine, neuromodulators that vary over the course of the human
sleep cycle. The manifold has two stable solutions on its left side; a jump from the bottom
solution to the top solution represents the fast transition between NREM and REM sleep.
However, the slow transition from REM to NREM occurs smoothly down the right side of
the manifold, where there is only one set of solutions.
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Symbol Definition Description Typical value

h̃e,i he,i/h
rest Spatially averaged soma potential for

neuron populations
–

Ĩee,ei
Iee,eiγe

Ge exp(1)Smax Postsynaptic activation due to excita-
tory inputs

–

Ĩie,ii
Iie,iiγi

Gi exp(1)Smax Postsynaptic activation due to in-
hibitory inputs

–

φ̃e,i φe,i/S
max Long-range (corticocortical) input to e

and i populations
–

t̃ t/τ Time (dimensionless) –
x̃ x/(τ ṽ) Space (dimensionless) –

Γe,i
Ge,i exp(1)Smax

γe,i|hrev
e,i − hrest| Influence of synaptic input on mean

soma potential
1.42× 10−3, 0.0774

h0
e,i hrev

e,i /hrest Reversal potential −0.643, 1.29
Te,i τγe,i Neurotransmitter rate constant 12.0, 2.6
λe,i τ ṽΛee,ei Inverse length scale for corticocortical

connections
11.2, 18.2

Pee,ei pee,ei/S
max Subcortical input from excitatory pop-

ulation
11.0, 16.0

Pie,ii pie,ii/S
max Subcortical input from inhibitory pop-

ulation
16.0, 11.0

Nα
e,i – Number of distant (corticocortical)

connections from excitatory popula-
tions to e and i populations

4000, 2000

Nβ
e,i – Number of local synaptic connections

from e and i populations
3034, 536

g̃e,i ge,ih
rest Slope at inflection point of sigmoid

function S̃e

−19.6, −9.8

θ̃e,i θe,i/h
rest Inflection point for sigmoid function S̃e 0.857, 0.857

L – Synaptic gain due to the action of Ach
during sleep

1

∆hrest
e – Change in resting potential during

sleep due to adenosine and Ach
0

Table 2.1: Dimensionless variables and parameters of the SPDE cortical model used for
simulations of seizure waves. Values were taken from Kramer et al. [23]. For descriptions
and values of the dimensional variables please refer to [55]. Note that L and ∆hrest

e are varied
only for simulations of the sleep cycle; in studies of seizure behavior, they will always take
the values 1 and 0, respectively.
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Symbol Definition Description Typical value

h̃e,i Ve,i/V
rest
e,i Spatially averaged soma potential for

neuron populations
–

Ĩee,ei Φee,ei/Q
max
e Postsynaptic activation due to excita-

tory inputs
–

Ĩie,ii Φie,ii/Q
max
i Postsynaptic activation due to in-

hibitory inputs
–

φ̃e,i Nα
ee,eiΦee,ei/Q

max
e,i Long-range (corticocortical) input to e

and i populations
–

t̃ t/τe,i Time (dimensionless) –
x̃ x/(τe,i v) Space (dimensionless) –

Γe,i

exp(1)Qmax
e,i

γea,ia

(
V rev

e,i − V rest
e,i

) Influence of synaptic input on mean
soma potential

4.6875× 10−4, 0.0105

h0
e,i V rev

e,i /V rest
e,i Reversal potential 0, 1.0938

Te,i τe,i γea,ia Neurotransmitter rate constant 12.0, 3.6
λe,i τe,i v Λea Inverse length scale for corticocortical

connections
11.2, 11.2

Pee,ei 〈φsc
ea〉/Qmax

e Subcortical input from excitatory pop-
ulation

25.0, 25.0

Pie,ii 〈φsc
ia〉/Qmax

i Subcortical input from inhibitory pop-
ulation

25.0, 25.0

Nα
e,i Nα

ee,ei Number of distant (corticocortical)
connections from excitatory popula-
tions to e and i populations

3710, 3710

Nβ
e,i Nβ

ea,ia Number of local synaptic connections
from e and i populations

410, 800

g̃e,i πV rest
e,i /

(√
3 σe,i

)
Slope at inflection point of sigmoid
function S̃e

−29.021, −19.347

θ̃e,i θe,i/V
rest
e,i Inflection point for sigmoid function S̃e 0.91406, 0.91406

Table 2.2: Dimensionless variables and parameters of the SPDE cortical model used for sim-
ulation of the sleep cycle. The second column lists the definition in terms of the dimensional
quantities in [61]. Values for the dimensional parameters were taken from that reference,
with the exception of γia which was chosen to be 90s−1.
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Chapter 3

Mathematical methods

This chapter provides an introduction to several techniques that will be used later in
the manuscript. Tests of strong convergence provide step size recommendations that will
be incorporated into the simulations in chapter 4. The statistical measurements described
below will be used in Section 5.2 as a means of analyzing sleep EEG data. Then, later in
chapter 5, locally linear embedding and the concept of strongly connected components will
be used to map the EEG data to a mathematical model of the sleep cycle.

3.1 Strong convergence of numerical solutions

Before performing simulations of feedback control, we must ensure that we can obtain
accurate numerical solutions to this system of SPDEs. We will use a predictor-corrector
algorithm written in MATLAB, so the accuracy of the solution will be determined by our
choice of step sizes in space and time. In addition to considering the system of equations
and solution method, we shall assume that a typical cortical surface electrode is of order
1cm in diameter. While the previously used step size of 7mm [29, 22] may have accurately
solved the differential equations, it was not small enough for sufficient spatial resolution of
the behavior of the cortical tissue underneath the electrodes. We will use much smaller step
sizes in order to achieve both of these objectives.

3.1.1 Method

To determine the magnitude of these step sizes, we will examine the strong convergence of
solutions to the cortical model. This will be accomplished by generating equivalent Brownian
paths at several step sizes and demonstrating that the solutions converge as the step size
decreases (note that this differs from weak convergence, which looks at the expected value
of the solution over all possible Brownian paths) [15]. This task will be complicated by the
fact that both the stochastic inputs and the numerical solutions vary in space and time.

Recall from (2.12) that the grid of stochastic inputs is defined by R, which consists of M
independent Brownian paths, each of length N . This corresponds to M points in space at a
reference step size of ∆x = ∆x0 and N points in time at a reference step size of ∆t = ∆t0.
Therefore, we denote individual points by R(m,n), ∀m = 1, . . . , M and ∀n = 1, . . . , N . Then
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we can represent an equivalent Brownian path at a coarser step size 2∆t0 by adding together
every two adjacent elements in time:

R̃(m,n) = R(m, 2n− 1) + R(m, 2n) , (3.1)

where n = 1, . . . , N/2 [10]. We do not need any special scaling factors here because this
combination of neighboring terms is consistent with the definition of a Brownian path. Sim-
ilarly, we can represent the stochastic input at step size 2∆x0 by adding together adjacent
elements in space and scaling to keep the variance constant [11]:

R̃(m, n) =
1√
2

(R(2m− 1, n) + R(2m,n)) , (3.2)

where m = 1, . . . , M/2. The factor 1/
√

2 is necessary because the stochastic inputs are
independent in the spatial direction; it will be used for the relative scaling of the inputs at
different step sizes for the purpose of determining convergence, but will not be present in a
typical simulation of feedback control.

We can do a simple simulation in Matlab to verify that equations (3.1) and (3.2) allow us
to generate equivalent Brownian paths at relative step sizes. Code for this purpose is provided
in Appendix A.1, along with plots of the results. For a mathematical proof that equation
(3.2) preserves the variance of the stochastic signal, please see Appendix A.2. Similarly, a
Matlab simulation to illustrate the generation of Brownian inputs at absolute step sizes is
given in Appendix B.

We are now in a position to directly compare numerical solutions at decreasing step sizes
(e.g. ∆x = 4∆x0, 2∆x0, ∆x0) under equivalent stochastic inputs. We want to verify that
the solution converges as we approach ∆x0.

3.1.2 Results

First, we look at the convergence in time using the method described above. We remove
the spatial terms from the cortical model to reduce it to an ODE and then perform simu-
lations with decreasing values of the time step. These indicate that the solution converges
around ∆t = 5×10−4s (Figure 3.1). The two smallest time steps in the figure, ∆t = 5×10−4s
and 2.5× 10−4s give very similar results for he.

Next, we study the convergence in space. We begin with a ∆x that is smaller than 1cm
because we desire to resolve the solution across an electrode. As ∆x decreases, we see more
detail present in the solution; however, this does not give us a clear indication of which
step size to choose. The amount of improvement seems to be the same for each reduction
in ∆x. We solve this problem by looking at the numerical worst-case scenario – a sharp
transition between uncontrolled cortex and a single electrode with proportional feedback.
We then choose ∆x based on its ability to resolve this sharp spatial change (Figure 3.2).
While this figure shows that the differences between the step sizes are still subtle, it seems
that the largest one, ∆x = 0.448mm, does not provide enough detail to show the sharp
transition between cortex and electrode. The smaller step sizes appear to be more accurate
and provide very similar solutions. Because it will be less computationally intensive to use
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Figure 3.1: Convergence of numerical solutions as the time step is decreased using the
method described in section 3.1.1. Here the spatial terms in the model have been removed
to reduce it to an ODE. We used ∆t0 = 2.5 × 10−4 seconds, and we plotted the solutions
for ∆t = 8∆t0, 4∆t0, 2∆t0, and ∆t0. The data is represented by open circles, x markers,
solid dots, and a solid line, respectively. The two smallest time steps (the solid line and
solid dots) give overlapping results, indicating that the solution has converged. Note that,
although the points at 8∆t0 do not accurately capture the peaks and troughs in the data,
their absolute position is accurate. This study was done with typical excitation Pee = 11.0
and Γe = 1.42× 10−3.

∆x = 0.224mm (or ∆x̃ = 0.0008 dimensionless), we choose this as the step size for our
simulations.

In order to verify this in the typical case with no feedback control, we plot numerical
solutions with ∆x = 0.448mm, 0.224mm, and 0.112mm (Figure 3.3). Because the spatial
solution appears to have converged at these step sizes, our choice of ∆x = 0.224mm is valid.
The last task is to choose a value of ∆t. We would like to use the largest time step for
which the solution converges because this will result in the shortest computation time; this
value is ∆t̃ = 0.0001 (dimensionless) or ∆t = 4× 10−6 seconds. Because we already showed
that accurate solutions can be obtained with much larger values of ∆t, this is an acceptable
choice.

Therefore, the step sizes used in all of the following cortical simulations will be ∆x =
0.224mm and ∆t = 4× 10−6 seconds, based on adequate spatial resolution and stable time
integration, respectively.
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Figure 3.2: Convergence of numerical solutions over an electrode nonlinearity as the spatial
step size is decreased using the method from section 3.1.1. The full simulation spanned
22.4mm, but here we show only 3mm of uncontrolled cortex and 2mm of cortex underneath an
electrode while proportional feedback is applied. This figure shows solutions for ∆x = 4∆x0

(dashed), 2∆x0 (solid), and ∆x0 (solid), where ∆x0 = 0.112mm. Note that the two smallest
time steps give very similar, overlapping solutions for h̃e, while 4∆x0 gives an inaccurate
result. Therefore, we choose the step size ∆x = 2∆x0 = 0.224mm as a balance between
accuracy and simulation cost. Other relevant parameters were ∆t = 2× 10−6s, N = 80000,
Pee = 548.0, and Γe = 0.8× 10−3.

3.2 Data analysis techniques

3.2.1 Statistical analysis of EEG data

In chapter 5, our goal will be to identify a continuous range of sleep states by associating
EEG data with a mathematical model of the human sleep cycle. To do this, it is necessary
to characterize the EEG data using a set of features – this is similar to the way in which a
sample of data points can be described by its mean and variance. For our analysis, we use a
group of 17 different features. They are described below and implemented in Section 5.2.1.

Power in different frequency bands This group of five features consists of total power
in the delta (up to 4 Hz), theta (4-7.5 Hz), alpha (7.5-12 Hz), beta (12-26 Hz), and
gamma ranges (above 26 Hz).

Total power This is the total power in all five frequency bands.

Statistical measures These include variance, skewness, and kurtosis. Whereas the vari-
ance captures the spread of the data and is always positive, skewness is a measure of
the asymmetry around the sample mean, i.e. negative skewness indicates that more
data points lie below the mean than above. Kurtosis is a measure of how prone the
distribution is to outliers; a signal with high kurtosis has infrequent large deviations
from the mean.
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Figure 3.3: Convergence of numerical solutions as the spatial step size is decreased using
the method described in section 3.1.1. Here we used ∆x0 = 0.112mm, and we plotted the
solutions for ∆x = 4∆x0 (dashed), 2∆x0 (solid), and ∆x0 (solid). The two smallest time
steps give very similar results, indicating that the solution has converged; this justifies our
choice of step size, ∆x = 0.224mm. This figure was created with typical excitation Pee = 11.0
and Γe = 1.42× 10−3, and N = 80000 time steps were used at ∆t = 2× 10−6s.

Spindle score The spindle detector identifies segments of the EEG signal where the dif-
ference between consecutive points changes from positive to negative five times in a
row, thereby creating two peaks and two troughs. The lag parameter τL defines the
number of sample points spanned by each rise or fall within the sought-for spindle, so
it can be adjusted to search for these motifs at lower frequencies. We set τL = 5, which
allows for detection of 8-12Hz spindles in data sampled at 100Hz (with the maximum
response occurring for spindles at 10Hz), and we used a minimum threshold of zero.
The overall spindle score indicates the percentage of the signal that was classified as
spindle activity. Matlab code for this function is provided in [31].

Permutation entropy Similar to the spindle score, the permutation entropy (PE) iden-
tifies motifs in the EEG data, such as peaks, troughs, and slopes. The PE has its
maximum value when there is an equal distribution of all motifs and its minimum
value when only a single motif is present. In this way, it is a measure of the “flatness”
or “uncertainty” of the signal. Here we use the composite permutation entropy index
(CPEI), which combines the PE with τL = 1 and τL = 2 with a minimum threshold
level. The CPEI has been found to be a good measure of anesthetic depth [39]. In our
study, we set the threshold at 1% of the inter-quartile range of the EEG data. Further
descriptions of this measure and an associated MATLAB function can be found in [39].

Properties of log power These four features are based on the log of the power spectral
density (PSD), as obtained by Welch’s method. First, we omit the delta and alpha
peaks and calculate the slope and offset of a linear fit. We then determine the maximum
value of the PSD above the linear estimate in the alpha range (8-17 Hz) and the
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maximum value of the PSD in the delta range (0.5-4 Hz). These values will generally
be large when a prominent peak is present. The code for generating these features was
based on a Matlab function found in [24].

Power fractions The low power fraction is obtained by summing the power in the delta
and theta ranges and dividing by total power. Similarly, the high power fraction is
calculated by summation of the power in the beta and gamma ranges and dividing by
total power.

3.2.2 Locally Linear Embedding (LLE)

Locally linear embedding is a method of nonlinear dimensionality reduction that was
originally introduced in [45]. It is useful for visualizing high-dimensional data sets as they
would be embedded in a low-dimensional space, and it can often uncover relationships and
patterns that are masked by the complexity of the original data set. It has been used to
obtain maps of facial expressions and classify handwritten digits [48], as well as discriminate
between normal and pre-seizure EEG measurements [2]. In this dissertation, we use LLE to
characterize sleep EEG data and the numerical solutions of the cortical model. By embedding
both in a two-dimensional space, we will be able to associate traditional EEG sleep stages
with the continuous spectrum of states provided by the model.

The algorithm

Let us begin with a high-dimensional data set stored in a matrix ~X of size D×N , where
each column ~Xi represents one of the N D-dimensional data points. Then the LLE algorithm
consists of three steps:

1. Calculate the nearest neighbors of each data point ~Xi in the D-dimensional
space. This can be done in several ways; for example, we might choose the k closest
points based on Euclidian distance, or we may choose only the points within a sphere
of a given radius.

2. Determine the best reconstruction of each point using only its nearest neigh-
bors. Mathematically, this takes the form of a least squares minimization problem:

min
W

N∑
i=1

| ~Xi −
k∑

j=1

Wij
~Xj |2 , (3.3)

where k represents the number of nearest neighbors. Our goal is to choose the weights
W that best reconstruct the original data points in the D-dimensional space, based on
the criteria of least-squared error. Because we use only the nearest neighbors, we must
have Wij = 0 if ~Xj is not a neighbor of ~Xi. In addition, we guarantee invariance to
translations by enforcing

∑
j Wij = 1. Note that the minimization can be calculated

individually for every i.
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3. Compute the low-dimensional output vectors ~Yi. These are chosen to provide
the best global reconstruction using the weights W from the previous step. Again, this
can be formulated as a least squares minimization:

min
~Y

N∑
i=1

| ~Yi −
k∑

j=1

Wij
~Yj |2 . (3.4)

Here we are making the assumption that the weights that give the best reconstruction
in D dimensions will also be the optimal weights in the lower-dimensional space. In
this case, the N minimization problems are coupled by the elements of ~Y , so they must
be solved simultaneously.

A detailed description of the algorithm and several examples are provided in [48]. In
addition, a Matlab implementation of LLE is available on the authors’ website [46]; it was
used to generate all results presented here.

As a simple example, consider using LLE on a known 3D manifold (Figure 3.4). In this
toy example, the underlying manifold is known (although normally this would not be the
case), and we recognize that it has only two dimensions, despite living in 3-dimensional space

as shown in Subfigure 3.4(a). The data set ~X consists of a random sampling of points from
the manifold, as in Subfigure 3.4(b), and the LLE output for a reduction to two dimensions
is displayed in Subfigure 3.4(c). Here we see that LLE successfully unravels the manifold
and uncovers its true 2D nature.

(a) (b) (c)

Y
1

Y
2

Figure 3.4: A simple example of LLE, where three dimensions are reduced to two. (a) The
underlying manifold, which lives in 3D space but has only two dimensions. In a typical LLE
problem, the shape of this manifold is unknown and has too many dimensions to visualize
easily. (b) A sampling of points from the manifold, which serves as the input to the LLE
algorithm. (c) The result of applying LLE to the data set in (b). Note that in the Y1 − Y2

output space, the manifold has been flattened to reveal its two principal dimensions. This
figure was generated using the “scurve.m” code from the LLE website [46].

A possible source of confusion with locally linear embedding is the interpretation of
output dimensions such as Y1 and Y2. Unlike linear methods such as principal component
analysis, LLE does not provide a description of the output vectors in terms of the original
D dimensions. The elements of ~Y are chosen to give the best local reconstructions based on
a global minimization problem; this means that the interpretation of ~Y is different for every
data point, and it cannot be described by a simple combination of the original dimensions.
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3.2.3 Identification of strongly connected components

The use of the LLE algorithm is based on the assumption that the entire data set lies
on the same manifold in high-dimensional space. If more than one manifold is present, the
locally linear reconstructions will no longer be accurate (imagine, for example, a point with
nearest neighbors located on two separate manifolds). Therefore, before using LLE on a
data set, we must verify this assumption.

The mathematics and terminology of directed graphs allows us to accomplish this task
[59]. Note that when we calculate the nearest neighbors in the first step of the LLE algorithm,
we create a directed graph based on the data points. For example, suppose there is a data
set of seven points, and we have determined that point 2 is a neighbor of point 1, point 5
is a neighbor of point 2, etc. This can be depicted by arrows drawn from each point to its
neighbors (Figure 3.5). Then we can define a strongly connected component as a group of
points where the arrows created by nearest neighbor associations allow for travel from every
point in the group to every other point in the group [59]. When a group of data points is
strongly connected, this indicates that they lie on the same manifold [48].

1

5

2

6

3

4

7

Figure 3.5: An example of a directed graph generated by nearest neighbor associations.
Here point 2 is a neighbor of point 1, point 3 is a neighbor of point 7, etc. In this case, the
directed graph forms two strongly connected components: points 1, 2, 5, and points 3, 4, 6.
In analyzing this data set, we would use LLE separately on each of these components and
would remove point 7, which is not strongly connected to any other point.

The example in Figure 3.5 has two strongly connected components: points 1, 2, 5, and
points 3, 4, 6. However, the two groups are not strongly connected together; one can move
from the first group to the second through the connection between 4 and 5, but there is no
way to get from the second group to the first. Point 7 is not strongly connected to any other
point. Therefore, to use LLE on this sample data set, we would remove point 7 and use the
algorithm separately on each strongly connected component.

There are several ways to identify the strongly connected components of a data set. The
most traditional method involves an algorithm based on depth-first search of the directed
graph [59]. An alternative method relies on analysis of the eigenspace that results from the
LLE calculations [41]. It is also true that choosing the nearest neighbors in a different manner
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or increasing the value of k can change the structure of the strongly connected components.
However, for the purposes of this study, we used the MATLAB function dmperm on a matrix
containing the nearest neighbor associations for the data set. This function, based on the
Dulmage-Mendelsohn decomposition, permutes the rows and columns of a matrix to put it
into block diagonal form; by including the fact that every point is a neighbor with itself,
we can guarantee that this permutation will be symmetric. As output, dmperm provides the
new order of rows and columns and identifies the blocks of the permuted matrix, where each
block represents one strongly connected component within the data.
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Chapter 4

Feedback control for the suppression
of epileptic seizures

We previously used the mathematical model of the cortex presented in Chapter 2 to study
feedback control of epileptic seizures. We first showed that linear (proportional) feedback,
differential control, and feedback based on a filtered version of he could suppress the seizure-
like waves in the model [22]. This was done by measuring and controlling at every single
point in space, with the assumption that the measurement of a cortical surface electrode was
proportional to the mean soma potential, he. We later added the capability to define the
number, size, and spacing of the electrodes used in the simulation [29]. We assumed that
the potential at every point was proportional to he and that the single measurement of an
electrode was equal to the mean of the potential for all points lying below it.

In this chapter, we incorporate the new step sizes discussed in chapter 3 and present
three additional improvements: the ability to incorporate a detailed profile for electrode
effectiveness, a new model for the measurement of a cortical surface electrode, and a method
for performing charge-balanced feedback control. We use the formulation of the model from
Section 2.2.1 with the parameters listed in Table 2.1.

4.1 Refinements to the model of feedback control

4.1.1 Electrode profile

The use of smaller increments in space (resulting from our study of numerical convergence
in Section 3.1.1) allows us to make a further improvement to the simulations of feedback
control: the addition of a more detailed electrode profile. We previously assumed that the
electrodes maintained a constant profile across their surface while measuring or applying the
stimulus (i.e. every point on the electrode sensed or provided the same value) and that no
tissue beyond the edge of the electrode was affected by its activity. However it has been
shown experimentally that this is not the case [56]. Here, we take the first step towards a
realistic electrode model by including a smooth falloff at the electrode edges. The falloff is
incorporated into the function a(x, t), so that the gain varies between zero (over uncontrolled
cortex) and amax (under the electrodes) via a hyperbolic tangent function. This gain function
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is used in the application of control to indicate that the influence of the electrode decreases
with distance, and it is also applied during sensing with amax = 1 to indicate that the cortical
tissue has less impact on the electrode measurement as distance increases. We have not yet
included any variation over the surface of the electrode, but this is certainly an adjustment
that can be considered in the future.

4.1.2 Model of electrode measurements

Our previous simulations of feedback control [22, 29] utilized two key assumptions: 1)
the signal measured by an electrode on the cortical surface is proportional to he, the mean
soma potential of the excitatory neuron population, and 2) a voltage applied to the surface
of the cortex via electrode directly affects the average soma voltage in that region. The first
assumption allows us to define the control effort u in terms of h̃e (in this case, h̃e would
represent the measured voltage), and the second assumption implies that the expression for
u can be added directly to the SPDE model in equation (2.1). While the latter assumption
appears to be valid, there is evidence that we cannot write u as an explicit function of h̃e as
the first assumption suggests. It is likely that the voltage sensed by a surface electrode is
different than the averaged soma voltage, h̃e.

First, it is important to realize that the signal measured by an electrode is a function
of the extracellular currents in the tissue, rather than the intracellular somatic potential
[38]. We define the signal sensed at a point on the cortical surface to be h̃m. Then, to
understand the difference between h̃e and h̃m, we consider a pyramidal neuron in the cortex
with one excitatory synapse as shown in Figure 4.1. Suppose that the pyramidal neuron
receives excitatory input due to a proximal synapse in layer 4 (Figure 4.1a); this will cause
intracellular flow of ions that will induce a current dipole with sources (+) on the apical
dendrite near the surface and sinks (-) near the soma. The surface electrode h̃m will sense
the extracellular current source near the surface and will thus depolarize. The soma potential
h̃e will also depolarize due to the excitatory input; therefore, in this case, both h̃e and the
surface electrode show a depolarization. On the other hand, suppose that the pyramidal
neuron receives excitatory input due to a distal synapse in layer 1 (Figure 4.1b). Because
the input is still excitatory, the neuron will depolarize, and this will be reflected in the soma
potential h̃e. However, this input will cause an extracellular current dipole with reverse
polarity; there will be a source (+) near the soma and current sinks (-) near the surface.
This means that the voltage sensed by the surface electrode will show a hyperpolarization.
Therefore, in this case, the deflection of h̃e and the signal seen by the surface electrode are
different [18].

This implies that we should no longer use h̃e as the measured electrical potential in
our expression for the control effort u. Instead, the measurement will be a function of the
currents in the cortex due to synaptic inputs, denoted as h̃m. We will refer to this as the
sensed signal. Then, for the purposes of feedback control, the applied effort u will be a
function of h̃m.
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Figure 4.1: Relationship of the sensed signal h̃m to the mean soma potential h̃e. In (a), an
excitatory input synapses near the soma, causing a depolarization in h̃e. Similarly, the dipole
current generated by this synaptic event involves current sources near the cortical surface,
which are manifested as a depolarization in the electrode measurement h̃m. However, when
the excitatory input occurs near the surface as in (b), the current dipole is reversed, causing
opposite deflections in h̃e and h̃m. This figure is modeled after Box 46-1 in [18].

Basic form of model

To determine the composition of the sensed signal, we must consider the extracellular
current flows due to three types of synaptic input (local intracortical input, long-range
corticocortical input, and subcortical input). To do this, we need to know whether the inputs
are excitatory or inhibitory and whether they synapse near the surface or near the soma. In
what follows, we take care to distinguish depolarization in the electrode measurement from
depolarization of the soma.

• Local intracortical inputs, Nβ
e S̃e and Nβ

i S̃i. Within a cortical macrocolumn, exci-
tatory synapses tend to occur close to the surface, while inhibitory synapses are located
near the soma [38, 51]. Thus, the excitatory inputs are as depicted in Figure 4.1b, and
the inhibitory inputs have the geometry of Figure 4.1a but with the opposite sign (be-
cause Figure 4.1 depicts excitatory inputs). Each of these configurations will cause a
hyperpolarization in the electrode measurement; therefore, both terms will have nega-
tive signs in the measurement model: −ANβ

e S̃e −BNβ
i S̃i, where A and B are positive

constant weights to be determined.

• Long-range corticocortical input, φ̃e. Corticocortical inputs are exclusively ex-
citatory [55, 26, 38] and tend to synapse near the surface [38, 51]. More specifically,
layers 2 and 3 of the cortex seem to have a higher density of corticocortical inputs
[18, 37]. As shown in Figure 4.1b, this input type will cause a hyperpolarization in the
electrode signal and will thus have a negative sign in the measurement model: −Cφ̃e,
where C is a positive constant weighting factor to be determined.
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• Subcortical inputs, (Pee + Γ̃1) and (Pie + Γ̃3). While the distribution of these
synapses is not clear-cut, it seems that subcortical inputs terminate most densely in
layer 4 near the soma [18, 37]. Because Pee is an excitatory input of the type shown in
Figure 4.1a, it will have a depolarizing effect on the electrode measurement; therefore,
we give it a positive sign: +D(Pee +Γ̃1), where D is a positive constant weight. On the
other hand, Pie is inhibitory and will thus have a hyperpolarizing effect: −E(Pie +Γ̃3),
where E is a constant weighting factor. The values of D and E are to be determined.

Incorporating all three types of synaptic input gives us this basic expression:

measured current ∼ −ANβ
e S̃e −BNβ

i S̃i − Cφ̃e + D(Pee + Γ̃1)− E(Pie + Γ̃3), (4.1)

with A, B, C, D, E of positive sign but (so far) unknown magnitude. The consequence
of these inputs is only evident after synaptic transmission. Therefore, we include a rate
constant for this process by using an equation similar to that of Ĩee in the SPDE model. Let
Ĩm represent the current measured at the cortical surface and Tm represent a rate constant.
Then

(
1

Tm

∂

∂t̃
+ 1

)2

Ĩm = F
(
− ANβ

e S̃e −BNβ
i S̃i − Cφ̃e + D(Pee + Γ̃1)− E(Pie + Γ̃3)

)
, (4.2)

where A, B, C, D, E, and F are positive constant weights. We choose Tm = 12.0 to match
the rate constant of the excitatory population Te. The values of A through E will depend
on the number of synapses of each type and the average distance of the synapse from the
soma. The coefficient F is a gain parameter that will scale the magnitude of all the synaptic
inputs; this ensures that they have the appropriate amount of influence over the electrode
measurement Ĩm. In addition, we can think of F as containing the effective resistance of
the cortex. Recall that the electrode measurement is determined by currents in the cortex,
yet the components on the right side of (4.2) are based on voltages. Because the currents
produced by these voltages can be calculated with Ohm’s Law [18], the gain parameter F
provides the necessary conversion.

To complete the model of the electrode measurement h̃m, we must account for the reversal
potential of the cortical neurons. This determines the direction of current flow associated
with the inputs described above (we previously assumed that the neurons were at resting
potential). We once again take our cue from the SPDE model and define

h̃m ≡ (he
0 − h̃e)Ĩm =

(
45− he

−70

)
Ĩm . (4.3)

Thus, (4.2) and (4.3) comprise a complete model of the potential sensed by a cortical surface
electrode, h̃m. In our simulations of feedback control, the applied electric field u will be a
function of this variable.

Estimation of coefficients

We have not yet assigned numerical values to the coefficients A through E. To do this,
we think of them as the percentage of pyramidal neuron synapses due to each source. For
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Coefficient Input type Lopour/Szeri value Liley/Wright value

A local excitatory 0.413 0.324
B local inhibitory 0.092 0.088
C long-range excitatory 0.458 0.583
D thalamocortical excitatory 0.034 0.006
E subcortical inhibitory 0.004 0.000

Table 4.1: Values of the coefficients for equation (4.2). The first column of values was
estimated as described here, while the second column was derived using probabilistic methods
in [28].

example, A will represent the percentage of synapses on any given pyramidal neuron that
come from other excitatory neurons in the same macrocolumn. There are three physiological
relationships that allow us to determine these values:

1. The number of synapses on pyramidal cells due to local cortical neurons is roughly
equal to the number of synapses due to cortical neurons in other macrocolumns or in
the contralateral hemisphere [1]. This implies that A + B = C.

2. Approximately 98 percent of synapses on pyramidal cells are corticocortical, while 2
percent are thalamocortical [1, 38]. This implies that A+B+C = .98 and D+E = .02.

3. Roughly 90 percent of all cortical synapses are excitatory and 10 percent are inhibitory
[1, 3]. This implies that A = 9B and D = 9E.

After solving the above equations, we account for the fact that synapses near the soma will
have a greater influence on the electrode measurement [38] by multiplying B, D, and E by
a factor of two.

While this method of estimation may seem unsophisticated, others have achieved similar
results through more detailed probabilistic analysis [28]. Both are listed in Table 4.1 for
comparison; note that each set of coefficients has been scaled to add to 1. In simulation,
when comparing the two sets of coefficients A through E, the only difference in the result-
ing h̃m appears to be an offset. Because offsets are not reflected in EEG measurements,
this difference is inconsequential. Hence, two completely independent approaches provide
essentially equivalent coefficients for the sensed signal.

Verification of full model

We can verify our model by returning to the hypothetical pyramidal neuron described
at the beginning of Section 4.1.2 and based on Box 46-1 in [18]. As before, suppose that
we are modeling the electrode measurement of a pyramidal neuron with excitatory inputs
in both cortical layers 1 and 4. If a majority of the inputs occur in layer 1 near the cortical
surface as in Figure 4.1(b), h̃e and h̃m will have similar dynamics, but a hyperpolarization
in one signal will be a depolarization in the other; the signals will be negatively correlated.
This behavior is seen in our model for h̃m. If we run a simulation with the typical set of
parameters (where local and corticocortical connections dominate because Pee is low), we
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Figure 4.2: Comparison of h̃m (solid) and h̃e (dashed) with two sets of parameters. At typi-
cal levels of excitation where Pee = 11.0 and Γe = 1.42× 10−3, the two signals are negatively
correlated (top subfigure), as predicted by our physiological analysis. This negative corre-
lation is especially noticeable if the synaptic time delay is taken into account by shifting
h̃e slightly to the left. However, when we simulate a strong excitatory input near the soma
by setting Pee = 1000.0, the signals become positively correlated (bottom subfigure). This
was also predicted by the physiology of the cortex, and thus helps justify our model of h̃m.
Note that for both sets of parameters, the signal offsets (means) were removed to facilitate
a direct comparison.

see that h̃e and h̃m are negatively correlated (top of Figure 4.2). On the other hand, when
the strongest input is near the soma in layer 4 as in Figure 4.1(a), it will have the same
effect on both signals, and they will be positively correlated. This, too, is demonstrated
by the measurement model. We can simulate a large excitatory input near the soma by
increasing the value of Pee; when we run the simulation with this change, we see that h̃e

and h̃m become positively correlated (bottom of Figure 4.2). Thus, the measurement model
accurately reproduces the physiological effects of varying cortical inputs, and we will use it
in subsequent simulations of feedback control. The applied electric field u will be a function
of h̃m as opposed to h̃e.

For reference, we compare h̃e and h̃m at seizure parameters (Γe = 0.8 × 10−3 and Pee =
548.0) in Figure 4.3. In this case, the signals have a large negative correlation, but very
similar dynamics. This suggests that it will be possible to suppress seizures with feedback
control based on h̃m (as it was with h̃e in [22]), although we may need to use a gain of the
opposite sign.

4.1.3 Charge-balanced control

In choosing a function to represent the applied electric field u, we start with the concept
of proportional feedback control. This is the simplest and most common type of control
– intuitively, the applied effort should be proportional to the error between the measured
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Figure 4.3: Comparison of the electrode measurement hm (mV, solid) and the mean soma
potential he (mV, dashed) at levels of subcortical excitation that cause seizure-like oscilla-
tions, Pee = 548.0 and Γe = 0.8 × 10−3. Here we see that the two signals are negatively
correlated, but have very similar dynamics. This indicates that it should be possible to
perform feedback control using our new measurement model h̃m (as we did previously with
h̃e in [22]), although a positive gain may be necessary.

signal and its desired value. In this case, we can define proportional control as

u = a(x, t)(h̄m + b) , (4.4)

where a(x, t) is the control gain and h̄m is the measured electrode potential; it is calculated
by taking the spatial average of h̃m (4.3) under each electrode. The parameter b is a constant
offset that can be tuned to achieve the desired equilibrium value of h̃e. While this control
algorithm is able to suppress the seizure-like oscillations of the model, it would be difficult to
implement safely. Whenever stimulation is applied, it is important that the process be both
charge-balanced and chemically reversible in order to prevent damage due to the production
of new chemical species. There is a threshold for reversibility called the “reversible charge
injection limit,” which signifies the maximum allowable charge injection before the polarity
is reversed [43]. Because a proportional controller does not penalize the amount of effort
used (i.e. the magnitude of the applied electric field), it relies on large signals of only one
sign, which would exceed this threshold over time. The chemical processes associated with
this type of stimulation would therefore be irreversible and damaging to cortical tissue.

To improve on this method, we may consider adding a derivative or integral component
to the controller, or even using all three terms to create a proportional-integral-differential
(PID) controller [9]. The derivative term increases or decreases the control effort based on
the rate of change of the error. This can reduce the response time of the controller because
the derivative term “anticipates” the behavior of the system. For example, a control law
incorporating both proportional and differential control might take the form

u = a(x, t)
(
h̄m(t)− h̄m(t− τd)

)
, (4.5)
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so the applied signal is proportional to the difference between the electrode measurement
now and the electrode measurement at a previous time [22]. The time delay is set by the
parameter τd.

Because this differential controller utilizes the same harmful voltages mentioned previ-
ously, we choose to implement a controller with an integral term:

u = a(x, t)(h̄m + b) + c(x, t)

∫
u dt . (4.6)

Here, c(x, t) is another gain term. It will be negative, meaning that this new term will
oppose the total integral of the applied voltage u. If the integral of u is positive, it will
add a negative component to the applied voltage, and vice versa; in this way, it pushes the
integral of u to zero. In other words, it forces the applied signal to be charge-balanced and
thus safe for cortical tissue. Because we have also included the proportional control term,
this feedback setup will still suppress the seizure oscillations. Note that this is different than
traditional integral control, which is based on the integral of the error between the desired
value of the signal and its actual value.

4.2 Simulations of feedback control

We are now in a position to simulate the suppression of seizure waves using various control
methods: proportional control with or without offset, differential control, and total integral
feedback control. We include all the improvements discussed in the previous section. The
results shown here were generated using an Intel Core 2 Duo 2.13 GHz processer, and the
calculations took roughly 5-15 minutes at the highest spatial and temporal resolutions (de-
pending on the method of control, the magnitude of the gain, and the number of electrodes).
The code was written and executed in MATLAB.

4.2.1 Proportional control

Figure 4.4 shows the result of applying proportional control from equation (4.4) to a
simulated seizing cortex. In the first half of the time interval, we see a seizure wave emanating
from the center of the space, just as in Figure 2.3; then, at 0.25s the control is switched
on, and the pathological seizure activity quickly disappears. In this case, the feedback
stimulation is applied via five electrodes that are 11.2mm across, with gain amax = 2 and
b = 0. The geometry of these electrodes can be clearly seen in Figure 4.4(b), which shows
the value of the applied signal u [mV] for the same simulation. Here, we see that the control
effort is zero for the first half of the time interval, but when the control is turned on, each
electrode applies a negative potential. The signal with the largest magnitude comes from
the electrode at the center of the simulation space, where Pee is highest. Note that it is not
necessary to have electrodes covering the entire length of the seizure wave. When we place
the electrodes at the center of the “hot spot,” they are able to halt the outward motion of
the wave. For more information on the parameters used to create the figures, please refer to
the figure captions.
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Figure 4.4: Results for proportional control. (a) Plot of he [mV] in space and time. In the
first 0.25 seconds, we see a seizure wave traveling on the simulated cortex because we have
set the excitation parameters to Pee = 548.0 and Γe = 0.8× 10−3. At 0.25 seconds (dashed
line), the proportional controller (4.4) is turned on, and we see that the seizure-like waves are
immediately suppressed. For this simulation, we used h̃m as the electrode measurement, and
control was applied via five independent electrodes of width 11.2mm with a profile defined
by the hyperbolic tangent function. The controller gains were amax = 2 and b = 0. (b) Plot
of the control effort u [mV] associated with the simulation in (a). This shows the geometry
of the five electrodes; in this case, they apply only negative signals. Note that, for clarity,
the grayscale in (b) is the opposite of the one used in (a).
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Figure 4.5: Results for a proportional controller with non-zero offset. (a) Plot of he [mV] in
space and time. All parameters and settings are the same as in Figure 4.4, except b = −0.3.
Again, the seizure-like waves are suppressed. In this case, the remaining fluctuations of he

are larger than they were for proportional control (Figure 4.4), but now the controller is
applying both positive and negative potentials. (b) Plot of applied voltage u [mV] for the
five electrodes used in the simulation.

We can alter these results by using a non-zero offset b. Figure 4.5 shows a simulation of
proportional feedback control with amax = 2 and b = −0.3. This change in offset causes the
controller to push toward a different equilibrium point, as is evidenced by the darker color
underneath each of the electrodes as compared to Figure 4.4. With the control turned on, the
fluctuations of he are larger than they were with b = 0, but this can be optimized by jointly
tuning the values of amax and b. Here we have used the same amax to facilitate comparison
between b = 0 and b 6= 0. The most important change is that, for b = −0.3, the electrodes
apply both positive and negative signals. This is shown in Figure 4.5(b). While these signals
are not truly charge-balanced, they do present an improvement over those resulting from
traditional proportional control.

4.2.2 Differential control

Another strategy for feedback control is differential control, where the applied signal is
proportional to the difference between a measurement at the current time and a measurement
at a previous time. This is stated mathematically in equation (4.5). Results of applying this
control law are shown in Figure 4.6. Again, the application of feedback control is successful
in counteracting the seizure-like oscillations. As with offset proportional control, the applied
signals oscillate between positive and negative values; however, they are not explicitly charge-
balanced. Another interesting feature of this control strategy is that each electrode applies
a signal with a frequency greater than that of the seizure wave. This is most likely due to
our choice of τd and the uncontrolled frequency of the seizure oscillation.
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Figure 4.6: Results for differential control. (a) Plot of he [mV] in space and time. Excitation
parameters and electrode geometry are the same as those used in Figure 4.4. At 0.25 seconds
(dashed line), the differential controller (4.5) is turned on, and the seizure-like oscillations
are suppressed. Again, the controller applies both positive and negative potentials; however,
in this case, the frequency is higher than that of the seizure waves. The controller gains
were amax = 5, b = 0, and τd = 20ms. (b) Plot of applied effort u [mV] for the simulation of
differential control.
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Figure 4.7: Results for total integral feedback control. (a) Plot of he [mV] in space and
time. Simulation parameters and electrode geometry are the same as those in Figure 4.4.
The controller gains were amax = 8, b = −0.1, and c = −8. (b) Plot of applied effort u [mV]
in space and time, corresponding to the simulation of feedback control in (a). The potential
applied by the electrodes is zero until t = 0.25 seconds, when the controller is turned on
(dashed line). Then each electrode oscillates between positive and negative signals, indicative
of the “charge-balanced” nature of the control. For this simulation, the average magnitude
of net applied effort over all five electrodes was 0.23mV. This value will approach zero as t
increases, and it can also be reduced by increasing the integral control gain, c.

4.2.3 Total integral feedback control

Figures 4.7 and 4.8 show the effect of total integral feedback control from equation (4.6)
on the seizure-like behavior of the model. Again, each electrode varies between positive
and negative voltages once the controller is turned on. However, in this case, the total
signal applied by each electrode is very close to zero. This is the desired result because it
indicates that each electrode applies a balanced signal. In addition, Figure 4.8 indicates that,
with the exception of the initial spike in control effort to −60mV at t = 0.25s, the applied
potentials are very small. The overall magnitude is roughly 20mV, compared to 90−100mV
for differential control or offset proportional control. With appropriate timing for the start
of the control relative to the seizure wave, it may be possible to reduce this initial spike in
effort.

Thus, in Figures 4.4 through 4.8 we have demonstrated that the new model for electrode
measurements h̃m can be used to suppress seizure waves via feedback control. Further, if the
controller u contains the integral of the total applied effort, then control can be applied in a
manner that is thought to be safe for cortical tissue.
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Figure 4.8: Results for total integral feedback control at a single point in space. (a) Plot
of he in time extracted from Figure 4.7(a) at 100.8mm. (b) Plot of control effort u in time
extracted from Figure 4.7(b) at 100.8mm. Here we see that the control effort oscillates
between positive and negative values in a charge-balanced manner.

4.3 Spatial properties of the feedback control model

The specifications for successful seizure suppression via feedback control are inherently
dependent on the physiological characteristics of the cortex. We have already mentioned
the need for charge-balanced signals to avoid damaging the tissue, and extracellular elec-
trochemical changes must be taken into account during electrode design. Another cortical
property that has implications for feedback control is the length scale for falloff of connec-
tions between neurons. This parameter tells us how electrical signals are dispersed through
the cortex. Here we discuss how it relates to the spread of seizure waves and to the electrode
size necessary to stop their propagation. This can be regarded as an illustration of the utility
of having a mathematical model; basic design tradeoffs can be explored.

4.3.1 The cortical length scale

In the current mesoscale cortical model, the parameter λe represents the inverse length
scale for corticocortical connections. Therefore, an increase in λe corresponds to shorter,
denser connections between neurons. A decrease in λe means that a neuron will have synapses
over a greater distance, but its connections will be weaker. For all simulations up to this
point, we have used λe = 11.2 (dimensionless), which corresponds to a length scale of 25mm.
The role of λe can be understood by examining its effect on the oscillations in the model.
Figure 4.9 shows seizure waves for three different spatial length scales. Subfigure 4.9(b)
uses the default value. When we divide this by two (thereby increasing the length scale),
the seizure waves spread further along the model cortex, but have a smaller amplitude;
conversely, when we double the typical value of λe, the waves have a slightly higher amplitude
and cover a shorter length of cortex. These two cases are depicted in Subfigures 4.9(a) and
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Figure 4.9: Seizure waves for three values of the inverse corticocortical length scale λe: (a)
5.6, (b) 11.2, and (c) 22.4. An increase in λe corresponds to shorter, denser connections
between neurons; this results in slower, higher amplitude waves over a shorter length of
cortex. As with previous simulations, we used Γe = 0.8 × 10−4, α = 1.6, and a gaussian
distribution of Pee with a maximum value of 548.0 at the center of the interval.

(c), respectively. We also notice that the wave speed decreases with λe.

4.3.2 Implications for electrode design

Based on Figure 4.9, it is reasonable to assume that the electrode size needed to control
seizure waves may be related to the value of λe. For example, we might expect that dense,
compact oscillations with a low wave speed might require smaller electrodes with closer
spacing than waves that are diffuse and travel quickly.

We can examine this hypothesis using the mesoscale cortical model and our formulation
of feedback control. For spatial uniformity and ease of interpretation, we will use a constant
Pee across the whole interval. This creates continuous traveling waves, such as those depicted
in Subfigure 4.10(a). This simulation used λe = 11.2 and produced waves with a frequency
of approximately 9Hz and a wave speed of roughly 3m/s. These properties vary slightly
with λe; for example, λe = 5.6 leads to 11Hz waves that travel at slightly more than 3m/s,
and λe = 22.4 creates 8.5Hz waves with a speed of approximately 2.6m/s. For each value
of the spatial length scale, we will add a single electrode to the center of the interval and
perform proportional feedback control; an example of this is shown in Subfigure 4.10(b).
By comparing simulations with different values of λe and varying electrode sizes, we can
characterize their relationship to control effectiveness.

First, however, we must define what we mean by “effective” control. In some simulations
of feedback control, it is clear that the applied signal is successfully counteracting the seizure
waves (for example, Figures 4.4 and 4.7). In other cases, such as those in Figures 4.5 and
4.6, the controller seems to perform in a non-optimal way. How can we characterize the
difference between these results? Measures such as the amplitude histogram and the Teager
energy have previously been used for comparing controlled and uncontrolled seizures in rats
[5]. In this case, we use the standard deviation as a simple way of quantifying the effect of
the control. We have seen that uncontrolled seizure waves have a standard deviation on the
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Figure 4.10: (a) Traveling waves in he for λe = 11.2, with no feedback control. This simu-
lation used Γe = 0.001, Pee = 548.0 and α = 5.0. The waves travel from right to left with
an approximate frequency of 9Hz and speed of 3m/s. (b) Traveling waves from (a), with
the addition of one electrode performing proportional feedback control as described in (4.4).
Here amax = 2, b = −0.1, and the electrode width is 20.16 mm.

order of 15mV; when the control is turned on, this number will decrease. The amount that
it decreases will depend on the gain of the controller and its ability to suppress the seizure
waves.

For our analysis, we choose electrode sizes of 3.36mm, 10.08mm, and 20.16mm; the length
of the hyperbolic tangent falloff is 5.6mm in every case. Before each simulation, we set the
state of the random number generator in Matlab. This allows us to make direct comparisons
between simulations because it assures that the cortical model receives the same stochastic
input every time. As a baseline experiment, we run a simulation of uncontrolled cortex
(u = 0) for each set of parameters.

First, we vary the size of the electrode at a constant value of λe. Figure 4.11 shows the
the standard deviation at each point in space minus the uncontrolled standard deviation at
that point for (a) λe = 5.6, (b) λe = 11.2, and (c) λe = 22.4. We can therefore think of these
traces as the change in standard deviation due to the application of feedback control. After
subtraction, the signals were smoothed with a 10-point moving average. Each subfigure
shows the results for three electrode sizes.

For all three length scales, we see a “bump” in standard deviation at the front (right)
edge of the electrode, analogous to the build-up of a physical wave as it meets resistance;
recall that the electrical waves are traveling right to left. This increase in standard deviation
is greater for larger electrodes. On the other hand, we see a decrease in standard deviation
on the trailing (left) side of the electrode, and this decrease in wave amplitude is greater
for longer electrodes. There are differences in standard deviation underneath the electrodes,
as well. Figure 4.12 shows a close-up view of the results in Figure 4.11. These pictures
demonstrate that the most effective control (i.e. the greatest decrease in standard deviation)
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Figure 4.11: Change in standard deviation of he relative to uncontrolled seizure waves, for
(a) λe = 5.6, (b) λe = 11.2 (typical value), and (c) λe = 22.4. After subtraction, the signals
were smoothed with a 10-point moving average for ease of presentation. Each subfigure has
traces for three different electrode sizes: 3.36mm, 10.08mm, and 20.16mm; the electrodes
applied proportional control with amax = 2 and b = −0.1. Here we see that larger electrodes
provide a greater reduction in standard deviation underneath the electrode. They also lead
to a greater increase in standard deviation in front of the electrode and a greater decrease
after the trailing edge. Note that the waves travel from right to left.

generally occurs on the trailing end of the electrode. We can also see that larger electrodes
provide a greater decrease in standard deviation for the same control gain. Therefore, there is
a tradeoff in the choice of electrode size. Larger electrodes have a greater build-up of electrical
activity on their leading edge, but can provide better control underneath the electrode for
the same control gain. Smaller electrodes generally have less effect on the surrounding tissue,
but may require a higher gain for the same decrease in standard deviation.

Next, we compare the standard deviation measurements for a constant electrode size
and a variation in λe. Figure 4.13 shows the results for an electrode of width 3.36mm and
three different values of λe all plotted on the same axis; these traces were taken directly
from Figure 4.11. In Subfigure 4.13(a), we see the results for the entire simulation range; a
close-up view under the electrodes has been provided in Subfigure 4.13(b). Here we see that
the spatial extent of the control is independent of λe underneath the electrode. Despite a
quadrupling of the spatial length scale, the falloff of control at the electrode edges occurs at
approximately the same position. This is also true for the activity leading up to the electrode;
although the highest value of λe leads to the greatest increase in standard deviation, the
return to uncontrolled levels happens at roughly 400mm for every value of λe. The only
exception to this appears to be λe = 22.4 in the section of cortex following the electrode.
The combination of parameters for that simulation results in an overshoot of the change in
standard deviation before it returns to zero. Therefore, application of control with λe = 22.4
affects the traveling waves until a position of 200mm, whereas the waves for λe = 5.6 and
11.2 return to uncontrolled levels very quickly and with no overshoot.
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Figure 4.12: Close-up views of the results in Figure 4.11 showing the variation beneath
the electrode. Note that the degree of control is greater at the trailing (left) edge of the
electrode, as evidenced by the larger decrease in standard deviation. In addition, larger
electrodes provide a greater overall decrease in standard deviation while using the same
control gain.

These results appear to contradict the hypothesis stated at the beginning of this section,
that the electrode size needed for successful control would be related to the length scale of the
cortex. However, it seems that the electrode lengths feasible for feedback control are not big
enough to have problems related to the cortical length scale. For example, at λe = 11.2, the
seizure oscillations have a wave length of roughly 30cm. Any electrode over this length would
sense more than one wave at a time and therefore provide inaccurate feedback. Because this
electrode length is much too large for implementation, it is not a cause for concern.

Analysis of this kind can suggest strategies of electrode design for feedback control ex-
periments. For example, a large electrode will require a low gain and therefore may be the
safest option with regards to the cortical tissue. However, larger electrodes also lead to an
increase in the magnitude of the electrical activity leading up to the controlled area, and this
could potentially be a harmful effect. Moreover, a large electrode may span a sulcus or other
structure, which may change the conclusions reached by exercising a homogeneous cortical
model. Studies of these competing factors could produce a range of acceptable electrode
sizes from which the experimentalists could choose. It would also be worthwhile to simulate
the effect of two electrodes placed in close proximity to one another. Perhaps with this
configuration, the second electrode could apply control to reduce the build-up of activity on
the leading edge.
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Figure 4.13: (a) Change in standard deviation for three different values of λe, all with an
electrode size of 3.36mm. As in previous figures, λe = 5.6, 11.2, and 22.4. The data was
taken directly from Figure 4.11. (b) A close-up view of the results in (a). These plots show
that the spatial spread of the applied signal beyond the edges of the electrode is essentially
independent of λe. The only exception to this is the trailing (left) edge of the electrode with
λe = 22.4, which shows an overshoot in standard deviation before returning to uncontrolled
levels. The pictures for other electrode sizes are qualitatively similar.
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Chapter 5

A continuous mapping of EEG sleep
states

The model of the sleep cycle presented in Section 2.2.2 provides an opportunity to explore
human sleep stages in more detail. This refined characterization of states may provide insight
into the point within the sleep cycle at which seizures are most likely to occur. For example,
it could tell us not only that the subject is in stage 2 sleep, but also that the sleep is getting
deeper and that a transition to stage 3 is near.

To obtain a continuous mapping of sleep states, we must compare the cortical model
directly to human EEG recordings. This is done by using the sleep manifold as a way to
generate model “EEG-like” signals. We will choose values of L and ∆hrest

e , find the numerical
solution of the model for a given length of time, convert the dimensionless h̃e to mV, and
downsample it to match the EEG recordings. By doing this for many different values of L
and ∆hrest

e we can obtain representative signals of every sleep stage.
We then calculate a set of features (Section 3.2.1) for both the EEG and model data

and apply the LLE algorithm (Section 3.2.2) after identifying the largest strongly connected
component (Section 3.2.3). For background and details on each of these concepts, please
refer to the associated section.

5.1 Sleep EEG

5.1.1 Traditional EEG sleep stages

As was mentioned in Chapter 1, human sleep is traditionally divided into five categories:
rapid eye movement (REM) sleep plus four stages of non-REM sleep (called stages 1-4).
Stages 3 and 4 are often grouped together and called slow-wave sleep because they are
dominated by low frequency delta waves. As a person moves from light sleep (stage 1) to
deep sleep (stage 4), there is generally an increase in EEG amplitude and a decrease in the
frequency. However, each stage has its own characteristics [18, 36]:

• Awake: The EEG of an awake person is characterized by low amplitude EEG signals,
generally 10-30 µV and 16-25 Hz. However, this activity can often be obscured by
motion artifacts.
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Figure 5.1: Examples of traditional EEG sleep stages, taken from PhysioBank data set
sc4002e0: (a) awake, (b) Stage 1, (c) Stage 2, (d) Stage 3, (e) Stage 4, and (f) REM. Here,
movement of the subject and EEG electrode appear to mask the typical awake behavior.
As sleep deepens from stage 1 to stage 4, there is generally an increase in amplitude and a
decrease in frequency. REM sleep, characterized by rapid eye movements, has a very low
amplitude and resembles stage 1.

• Stage 1: The transitional stage between waking and sleeping is called stage 1; it is
often thought of as the state of drowsiness. The EEG signal has a small amplitude and
mixed-frequencies, and it is characterized by “alpha dropout,” a decrease in the alpha
waves present when the subject is relaxing with closed eyes.

• Stage 2: Stage 2 sleep is defined by several unique components: bursts of activity
in the 12-14 Hz range called sleep spindles and high amplitude biphasic waves named
K complexes. The background activity is low in amplitude and in a lower frequency
range.

• Stage 3: Compared to stage 2 sleep, stage 3 is higher in amplitude and contains
periods of prominent delta waves in the range of 0.5-2 Hz. Sleep spindles may still be
present in this stage, but are less prominent.

• Stage 4: Stage 4 is similar to stage 3, but it is more strongly dominated by low
frequency delta activity. Spindles are rare in this stage.

• REM: As its name implies, REM sleep is characterized by rapid movement of the eyes,
but otherwise looks very similar to stage 1 sleep. It has a low amplitude and a pattern
of mixed frequencies. This is also the stage where most dreaming occurs.

A sample EEG trace for each of these stages is shown in Figure 5.1.

5.1.2 PhysioBank data sets

The EEG data used in the following analysis was obtained from the Sleep-EDF database
[19], which is part of the PhysioBank online resource of physiologic signals for biomedical
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research [14]. We used four data sets (sc4002e0, sc4012e0, sc4102e0, and sc4112e0), each one
consisting of a European data format (EDF) file and a file containing the hypnogram data.
They were converted to ASCII format and then imported into Matlab.

The data was gathered in 1989 from healthy Caucasian males and females between the
ages of 21 and 35. Recordings were obtained over the course of one full day and include
horizontal electrooculogram (EOG), two channels of EEG (Fpz-Cz and Pz-Oz sampled at
100 Hz), submental-electromyogram (EMG) envelope, oro-nasal airflow, and rectal body
temperature. However, we used only the data from the Fpz-Cz EEG electrode pair in our
analysis. The hypnogram data was generated via manual scoring according to Rechtschaffen
& Kales using the two channels of EEG. For more details on the subjects, recording methods,
and sleep staging, please see the full description in [34].

5.2 LLE applied to sleep EEG data

Before examining the connection between EEG data and the mathematical model of
the sleep cycle, we will first discuss the results of applying LLE to sleep EEG only. After
introducing the data sets and our methods, we show that LLE can separate EEG data by
sleep stage and provide a continuous representation of sleep depth.

5.2.1 LLE input based on EEG features

In order to use the EEG as an input to the LLE function, we need to define our high-
dimensional data set. We do this by dividing the signal into non-overlapping windows and
calculating both statistical and frequency-based features for each one. Therefore each window
becomes one high-dimensional data point, where the dimension equals the number of features.
Because the data was scored using 30-second epochs, this was a natural choice for the window
length. Thus, if we have 100 minutes of EEG data and we calculate six features, we will
input 200 six-dimensional points into LLE and seek the embedding in two dimensions.

We start with a pool of 17 features and use various subsets to perform the LLE analysis;
after the initial calculation of the features, each one was scaled by its root mean square
(RMS) value. An algorithm for the automated selection of feature combinations is discussed
in Section 5.2.2. The features are as follows:

1-5. Power in the delta (up to 4 Hz), theta (4-7.5 Hz), alpha (7.5-12
Hz), beta (12-26 Hz), and gamma ranges (above 26 Hz)

6. Total power
7-9. Variance, skewness, and kurtosis
10. Spindle score
11. Permutation entropy

12-13. Slope and offset of a linear fit to the power spectral density
(PSD)

14-15. Peak height of the PSD above the linear estimate in the delta
and alpha ranges

16-17. Fraction of power in the low (delta and theta) and high (beta
and gamma) ranges
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Full descriptions of these features are listed in Section 3.2.1.
The selection of a subset of features from this list may seem like a difficult task. It is

certainly an important one – the use of all 17 features or a “nonsensical” subset will give
poor results. However, it is worth noting that there are many combinations that result in a
satisfactory separation between sleep stages in the LLE embedding. While each one may be
slightly different, there will be a large number of high quality with respect to discrimination.

5.2.2 Automated ranking of feature sets

When we apply LLE to the EEG data, there are essentially only three choices that we
must make:

1. How many nearest neighbors should we include? In other words, what is the value of
k? The LLE embedding will be stable over a range of values; we generally expect that
k will be greater than the number of output dimensions and smaller than the original
number of dimensions D [48].

2. What should be the dimensionality of the LLE output space? A nice property of the
LLE algorithm is that each dimension is preserved as additional dimensions are added.
Therefore, if we look at the results in two dimensions and do not achieve the desired
mapping, we can add a third dimension without affecting the first two.

3. Which combination of features should we use? Employing all 17 features in our LLE
analysis does not guarantee good separation between sleep stages because some of the
features may not show consistent variation as the sleep depth changes. In addition,
some features, such as the variance and the power in the delta band, show similar
trends; we may achieve better results by eliminating these redundancies.

In this section, we focus on the last of these questions.
While we were able to identify many effective feature combinations through educated

guesswork, we wanted to evaluate the utility of LLE as a method of sleep staging by iden-
tifying the best possible results. In this case, the “best” results are those that provide a
large separation between sleep stages, especially between REM and deep slow-wave sleep.
Because testing each combination of the features is an onerous task, e.g. choosing six fea-
tures from a pool of 17 results in 12376 combinations, we developed an algorithm to evaluate
the results automatically. It first identifies two groups of points: those marked as REM in
the hypnogram and those determined to be stage 4. It then tracks two parameters based on
the separation between those two groups of data points as they are embedded in the LLE
output space.

We first measure the percent separation between REM and stage 4, calculated as

ai = 100 · erf
(√

0.5
µ4 − µREM

σ4 + σREM

)
, (5.1)

where µ and σ are the mean and standard deviation, respectively. This is based on the
assumption that the best separation occurs when the distance between the means is large



47

and the total standard deviation is small. We perform this calculation in both the Y1 and Y2

directions and combine those measurements using the 2-norm to obtain the first parameter:

A =
√

a2
Y1

+ a2
Y2

. (5.2)

The second parameter B uses the concept of nearest neighbors to evaluate separation;
for example, if the stage 4 data points have only other stage 4 points as nearest neighbors,
then we can infer that they are completely separated from the other sleep stages. More
specifically, it measures the number of stage 4 points with REM points as nearest neighbors
and divides that by the total number of stage 4 points. If the stage 4 group is isolated, we
will have B = 0.

We determined the values of A and B for all possible combinations of six features. There
were 267 feature sets where A exceeded a threshold of 90% separation in each direction:
A >

√
902 + 902. We then identified the 267 feature sets with the lowest values of B. By

finding the combinations that were common to both groups, we identified the 11 best feature
sets. Visual inspection of the LLE results for these combinations confirmed the desired
separation between REM and stage 4 sleep. Note that all 11 of these feature combinations
provided results with B = 0.

5.2.3 Separation of sleep stages via LLE

Having described the EEG data set using frequency-based and statistical measures and
having identified the most effective subsets of those features, we are now ready to apply the
LLE algorithm. As a representative result, we choose one of the 11 feature sets from the
previous section; the six features are power in the delta and theta bands, variance, spindle
score, maximum height of the PSD above a linear estimate in the alpha band, and high power
fraction. These are plotted in Figure 5.2 for 178 epochs from the sc4002e0 data set. The
corresponding hypnogram is included for reference. Note that the features were calculated
in 30-second non-overlapping windows to match the sleep scoring of the hypnogram.

We then use these features as the high-dimensional input to the LLE algorithm. The 2D
results for 13 nearest neighbors (k = 13) are displayed in Figure 5.3(a). Every point in this
figure represents a 30-second window of EEG data, and the color and symbol represent the
sleep stage as determined by manual scoring. Here we see a very clear separation between
the REM points (red circles) and those from stage 4 (blue stars), as required by our criteria
for the automatic selection of the feature set. Stages 1 through 3 are located between those
two groups and are arranged by sleep depth. In this example, we see a general trend of
increasing sleep depth as we move to the upper right corner of the space. In addition, this
low-dimensional embedding provides results with a smooth temporal progression. This is
demonstrated by Subfigure 5.3(b), where the LLE results from Subfigure 5.3(a) are plotted
versus time. In this example, the gradual transition to deep stage 4 sleep and the quick
transition to REM are visible in the plot of Y1.

We would like to emphasize the importance of identifying strongly connected components
when using LLE. Subfigure 5.4(a) shows an example of the Y1-Y2 output space when LLE is
performed on all 178 data points. Here, the feature set consisted of power in the delta, theta,
and gamma bands, total power, maximum value of the PSD in the alpha band, and the low
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Figure 5.2: Scaled features of EEG data set sc4002e0, as described in Section 5.2.1. The
subfigures show power in the (a) delta and (b) theta bands, (c) variance, (d) spindle score,
(e) maximum height of the power spectrum in the alpha band after subtraction of a linear
estimate, and (f) high power fraction. Subfigure (g) shows the hypnogram of the EEG data,
where the number and color indicate the sleep stage: awake (0, black), stage 1 (1, yellow),
stage 2 (2, green), stage 3 (3, cyan), stage 4 (4, blue), and REM (5, red). The features were
calculated for the data from epochs 1597-1774 in 30-second windows with no overlap.

power fraction. Again, each point represents 30-seconds of EEG data, and the symbol (and
color) are assigned based on its designated sleep stage. While there is some visible separation
between the stages, the overall trend is unclear. On the other hand, Subfigure 5.4(b) shows
the results when LLE is applied to the largest strongly connected component within the
data. This component was identified as described in Section 3.2.3, and all other points were
removed before using LLE. This greatly improves the results; the data points are spread
further apart, and we see a grouping of sleep stages similar to Figure 5.3. Sometimes the
removal of weakly connected points has a very small impact on the results, but situations
like this make it a necessity. The significant improvement for this feature set allowed it to
be counted as one of the “best” 11 results discovered by the automatic algorithm.

In this case, analysis of the strongly connected components resulted in the removal of
eight data points:

• 3 points from waking (epochs 1620, 1717, and 1718)

• 2 points from stage 2 (epochs 1619 and 1624)

• 2 points from stage 3 (epochs 1712 and 1713)

• 1 point from stage 4 (epoch 1665)

Based on Subfigure 5.4(a), we can see why some of these were removed; there are four points
that are clearly isolated from the rest of the data. However, the removal of points from
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Figure 5.3: (a) Results of applying LLE to EEG data using the six features in Figure 5.2. The
features were calculated for 30-second non-overlapping windows of data and the resulting
6-dimensional points were embedded in 2D space using LLE with k = 13; therefore, each
point in this figure represents 30 seconds of EEG that has been characterized by the six
features. The color and shape indicate sleep stage based on manual scoring: awake (black
+), stage 1 (yellow ¤), stage 2 (green ?), stage 3 (cyan 4), stage 4 (blue ∗), and REM (red
◦). (b) LLE output dimensions Y1 and Y2 versus time, for the results shown in (a). This
demonstrates that LLE provides a low-dimensional output where the sleep state changes
smoothly over time.

stages 3 and 4 are much less obvious. It is important to realize that, by using the concept
of strongly connected components, this decision is automatic – it allows us to avoid the
subjective selection of outlier points.

5.3 Integration of EEG data and the model sleep cycle

Thus far, we have shown that LLE is capable of distinguishing between sleep stages using
only one channel of EEG and that the embedding exhibits a smooth progression over time.
However, remember that our original goal was to find the relationship between EEG data
and the mathematical model of the sleep cycle. Here we accomplish this by applying LLE
simultaneously to EEG data and simulated data based on the model variable h̃e.

It was previously argued that h̃e cannot be directly compared to measurements from
cortical surface or scalp electrodes because those measurements are based on extracellular
current flow, as opposed to the soma potential. This is important for the modeling of
certain cortical phenomena; for example, in performing simulations of feedback control for
the suppression of epileptic seizures, the value of the electrode measurement is fed directly
back to the cortex to affect h̃e, with little or no time delay [30]. In that case, the relationship
between h̃e and the electrode measurement at any given time is very important. However,
in the present analysis of EEG data using LLE, we are only interested in matching scaled
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Figure 5.4: LLE results on sleep EEG data before (a) and after (b) removal of eight weakly
connected points. The six features were power in the delta, theta, and gamma bands, total
power, maximum height of PSD above a linear estimate in the alpha band, and low power
fraction, and we used k = 13. As before, the color and symbol indicate sleep stage: awake
(black +), stage 1 (yellow ¤), stage 2 (green ?), stage 3 (cyan 4), stage 4 (blue ∗), and
REM (red ◦). Note the dramatic improvement in separation between sleep stages when LLE
is done on only one strongly connected component in (b).

features of the data that are calculated over 30-second intervals. We will not attempt to
compare the temporal progression of h̃e directly to the EEG data. The previous work
mentioned above has demonstrated a correspondence between h̃e and sleep EEG data with
regard to these general features, so we feel confident in using it in the following analysis
without the addition of a scalp electrode model.

A remark about principal component analysis (PCA) is in order. This is perhaps the
most common mode of dimensionality reduction, and it has also been used in the analysis of
sleep EEG data [12, 17, 6]. However, PCA places the greatest importance on the directions of
largest variance and relies on the assumption that the data is best reconstructed by a linear
combination of the original measurements. While we tried PCA and achieved reasonable
results, the nonlinear nature of the sleep manifold suggests that a more sophisticated solution
is necessary. In addition, the concept of nearest neighbors on which the LLE algorithm is
based enabled improvement in the separation of different sleep stages (see Section 5.2.3),
and it will play a crucial role in defining the quantitative relationship between the EEG data
and mathematical model, as is discussed in Section 5.3.2.

5.3.1 Model data set

To generate the model data set, we place a grid of points on the sleep manifold (Figure
2.4) and obtain the numerical solution of the cortical model at each one. We vary L over
the interval [0.5, 2] in increments of 0.1 and ∆hrest

e over [-5, 5] in increments of 0.5. This
gives us a total of 336 model signals for analysis; we then remove the initial transients and
characterize each signal based on a subset of the features described in Section 5.2.1. In this
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way, the nonlinear sleep manifold is turned into “EEG-like” signals which are converted to
high-dimensional data points for use with LLE.

For the model data set, the length of each signal is 10 seconds (as opposed to the 30-
second windows used for the EEG data). We are able to use this shorter time because we
can choose parameters in the model to simulate a stationary brain state, i.e. we can use
constant values of L and ∆hrest

e . A test of the feature calculations for various window lengths
indicated that, in many cases, the signal properties were stationary for windows greater than
five seconds. Certain parts of the sleep manifold had transients lasting roughly 10 seconds.

In order to compare this model data set directly to EEG measurements, it is important
that all of the basic properties match. For example, just as REM EEG signals have a
much lower variance than those from stages 3 and 4, we expect that the signals from the
topmost REM portion of the sleep manifold will have a smaller variance than those on the
lower NREM section. However, we found that the use of a constant α, which defines the
variance of the stochastic input to the model cortex in equation (2.10), does not reproduce
this behavior. Therefore, we varied the value of α as we moved in the L-∆hrest

e space. More
specifically, we based it on the sleep manifold. Define ~µe to be a matrix of the steady-state
values of he after they have been shifted and scaled to have a range of [0, 1]. Then we define
a matrix of α values:

~α = α · (−7~µe + 8) . (5.3)

Therefore, the REM portion of the model sleep cycle (where µe ∼ 1)) will have stochastic
inputs of α, while the lower NREM section (where µe ∼ 0) will have inputs of variance 8α.
This stochastic input allowed us to successfully reproduce the desired range of variances in
the model signals.

In addition to the variance, other features of the model data set mimic characteristics of
sleep EEG. This can be verified by plotting the features as we traverse the sleep manifold.
For example, power in the delta band, composite permutation entropy index (CPEI), “peak”
height of the power spectral density in the alpha band, low power fraction, and high power
fraction are shown in Figure 5.5. The values of each feature are displayed for the grid of
points in L and ∆hrest

e that covers the sleep manifold. For reference, the steady state values
of he on the sleep manifold are shown in Subfigure 5.5(a); note that this is similar to viewing
Figure 2.4 from the top and coloring the points based on their height. The lowest value is
plotted in white and the highest value in black.

As desired, Subfigure 5.5(b) indicates that the power in the delta band increases as
the depth of sleep increases, with the largest values occurring near the quick transition to
REM sleep. Similarly, Subfigures 5.5(e) and (f) show that the fraction of power in the low
frequencies is greater during NREM sleep, while the fraction of power at high frequencies is
greater during REM sleep. Consistent with previous reports that the CPEI decreases with
depth of anesthesia [39], we see in Subfigure 5.5(c) that the CPEI decreases with sleep depth
in the model. Subfigure 5.5(d) shows that the region of greatest alpha power is located in the
upper left corner, for small values of L and large values of ∆hrest

e . As a means of comparison,
the same five features were applied to a sample of EEG data and are displayed in Figure 5.6.
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Figure 5.5: Variation of five features as the surface of the sleep manifold is traversed in
L-∆hrest

e space. Each feature has been scaled by its RMS value and depicted in grayscale,
with white indicating the lowest values and black representing the highest values. (a) The
steady state values of he from the sleep manifold in Figure 2.4. The black points represent
the upper REM branch, the white points represent NREM, and the fold is located at roughly
L = 1.2. The other subfigures show (b) power in the delta band, (c) permutation entropy, (d)
maximum height of PSD above a linear estimate in the alpha band, (e) low power fraction,
and (f) high power fraction. These five features use α as defined in (5.3). They show that
the representation of REM and NREM in the model is consistent with the characteristics of
sleep EEG.

5.3.2 Application of LLE to a hybrid data set

We now join the EEG measurements and the model data into one hybrid data set and
use it as an input to the LLE algorithm. This simultaneously finds the low-dimensional
embedding for both data types and allows us to infer a correspondence between them. For
example, Figure 5.7(a) shows the result of applying LLE to the grid of 336 model points and
a full night’s sleep from EEG data set sc4002e0 (epochs 800 to 2000). The input data was
composed of the five features from Figure 5.5: power in the delta band, CPEI, maximum
height of the PSD in the alpha band (relative to a linear estimate), and the low and high
power fractions. We used k = 14, and only three points were removed by analysis of the
strongly connected components.

In Figure 5.7(a), the model data is represented by dots, where the color denotes the
steady-state value of he associated with that point; in general, the red points represent the
REM portion of the manifold, while the blue points represent NREM. On the other hand,
the sleep EEG data points are rings, where the color is chosen based on sleep stage. Note
that, for clarity, only the first 500 EEG data points were included in the figure.

The most important aspect of this result is that the EEG data points and model points
overlap each other in the Y1-Y2 output space. This implies that model points have EEG data
points as nearest neighbors (and vice versa) and verifies that LLE has associated the two data
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Figure 5.6: Variation of the features from Figure 5.5 when they are applied to sleep EEG
data, rather than model data. The sample of EEG data was taken from sc4002e0, and each
feature has been scaled by its RMS value. The subfigures show (a) power in the delta band,
(b) permutation entropy, (c) maximum height of PSD above a linear estimate in the alpha
band, (d) low power fraction, (e) high power fraction, and (f) hypnogram of the EEG data.
The colors and numbering for the hypnogram are the same as those used for Figure 5.2.
Note that the values of these features (relative to sleep stage) are consistent with the model
results in Figure 5.5.

types with one another. Without fidelity of the model and careful choice of EEG features,
we would have likely obtained a result with one cluster of EEG points and a completely
separate cluster of model points. Further, LLE appears to have matched the sleep stages
between the two data types – the deepest sleep (blue for both EEG and model) appears in
the lower left corner, and REM (red) is embedded in a vertical band where Y1 is in the range
[−1, 0]. The separation between sleep stages can be seen more clearly in Subfigure 5.7(b),
which displays only the EEG data points from Subfigure 5.7(a). Here we see that the stages
are grouped; even the REM points and the awake points are separated, despite the fact that
their EEG traces are characterized by very similar features. If we were to plot the Y1 and
Y2 values of the EEG data points as they evolve in time, we would see a very similar result
to the one in Figure 5.3(b). Here, the Y1 direction appears to be an approximate indicator
of sleep depth.

5.3.3 Connection to the theoretical sleep manifold

So far, we have seen that LLE provides a qualitatively similar embedding for REM and
NREM points in both EEG measurements and simulated model data. However, we would
like to quantify this relationship. In other words, we would like to associate each EEG data
point with a position on the sleep manifold in the L-∆hrest

e space. This will allow us to infer
the model trajectory of a subject’s actual brain state as it moves along the manifold.

To do this, we use the results in Figure 5.7(a) and again turn to the concept of nearest
neighbors. Using k = 14, we calculate the nearest neighbors of every point in the Y1-Y2
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Figure 5.7: (a) LLE results for a hybrid data set containing both sleep EEG data and
numerical solutions of the cortical model. We used the five features from Figure 5.5 and set
k = 14. The rings represent EEG data and are colored by sleep stage. While the analysis
included 1200 windows of EEG data, only 500 are displayed here for clarity. The solid dots
represent data from the model; they are colored based on the mean value of he at that point,
where red represents the highest (REM) values, and dark blue marks the lowest (NREM)
values. Note that the data and model points overlap in the output space and that the
arrangement of sleep stages is very similar. (b) LLE results showing the EEG data only,
using the same colors and symbols as Figure 5.4. This allows us to see that the data has
been roughly separated by sleep stage.

space. We then identify model points that are nearest neighbors of EEG data points. Each
one of those model points has an associated position on the sleep manifold; we assume that
the L-∆hrest

e positions of the model nearest neighbors will be the most closely associated
positions for the EEG data point.

We can visualize this concept by creating histograms of the model nearest neighbors
and separating them by sleep stage (Figure 5.8(a)). Every time a model point is a nearest
neighbor of an EEG point, we increment the count at the model point’s associated location
in L-∆hrest

e for the sleep stage of the EEG point. We then create grayscale plots of the total
counts, where white indicates that a location was never a nearest neighbor of that sleep stage
and black indicates that it was a nearest neighbor many times.

For example, (i)-(vi) in Subfigure 5.8(a) correspond to awake, REM, and stages 1-4,
respectively. The thick vertical line at L = 1.2 marks the approximate location of the fold. As
we move from REM to the deeper stages of sleep, we can see a continuous progression along
the sleep manifold. In this example, REM and stage 1 sleep generally associate themselves
with locations on the right half of the manifold (and a small piece of the lower left corner).
Then in stage 2 sleep, we move to the left half of the manifold; here, we see two distinct
groups of points, with a majority landing in the group that borders the area associated with
REM and Stage 1. Stage 3 is associated with a cluster of points starting in the upper left-
hand corner and approaching the fold. Stage 4 continues this progression and is located in
a band of points leading up to the fold.
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Figure 5.8: Association between EEG data set sc4002e0 and the sleep manifold. Each picture
shows the sleep manifold in L-∆hrest

e space, with a heavy black line to indicate the location
of the fold. (a) Histograms of nearest neighbors for (i) waking, (ii) REM, (iii) stage 1, (iv)
stage 2, (v) stage 3, and (vi) stage 4 sleep. The shading of each square indicates the number
of times that location on the sleep manifold was a nearest neighbor of EEG data in that
stage. For example, (vi) shows that stage 4 sleep most often associates itself with the lower
NREM branch of solutions leading up to the fold. (b) A composite picture of the results
in (a), where each location is colored based on the sleep stage with the most neighbors at
that point, relative to the total number of neighbors associated with that stage. Again, we
use stage 1 (yellow), stage 2 (green), stage 3 (cyan), stage 4 (blue), and REM (red). The
intensity of color is scaled based on the percentage of neighbors that come from that stage;
the more saturated the color, the greater the percentage. Waking points were excluded.

We can then create a composite plot that combines all five sleep stages (we neglect the
waking points for this task because the awake state was not included in the sleep cycle
model). For every location on the manifold, we determine which sleep stage it was most
closely associated with and color it accordingly. To do this, we scale the number of nearest
neighbors for each stage by the total number for that stage; then, for every position on the
manifold, we choose the stage with the highest value. This accounts for the fact that the
subjects do not spend an equal amount of time in each sleep stage (otherwise, more time
spent in a certain stage would lead to more nearest neighbors and a greater likelihood of
dominating this composite plot). As in previous figures, we use red for REM, yellow for
stage 1, green for stage 2, cyan for stage 3, and blue for stage 4. The intensity of the color is
assigned based on the percentage of times it was associated with that sleep stage. Suppose
a certain point on the manifold was a neighbor of stage 2 twelve times, a neighbor of stage 1
five times, and a neighbor of REM three times. We would color that point green to indicate
stage 2 sleep, and its saturation value would be 12/(12 + 5 + 3) = 0.6. In other words,
the intensity of the color is a “confidence” measure; the more saturated the color, the more
closely it is associated with that sleep stage. The composite figure for the data in Subfigure
5.8(a) is shown in Subfigure 5.8(b).
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5.3.4 Inclusion of additional data sets

It is important that this method of analysis works consistently for different subjects with
a variety of sleeping patterns. We tested this capability using the full night of sleep from
each of the remaining three data sets: sc4012e0, sc4102e0, and sc4112e0. Rather than start
from scratch and re-run the LLE algorithm, we projected the new data onto the existing
embedding. For a new input ~x, this is a three-step process [48]:

1. Find the k nearest neighbors of each new data point among the points in the existing
embedding.

2. Compute the best linear reconstruction wj of each new point using only its nearest
neighbors. Again, we enforce the constraint that the weights used in the reconstruction
sum to one:

∑
j wj = 1.

3. Calculate the output for the new data points: ~y =
∑

j wj
~Yj, where ~Y contains the

original embedding coordinates and j cycles through the neighbors of ~x.

This is more computationally efficient than running the entire algorithm again, and it guar-
antees that the output embedding will not change as we add new data. Most importantly,
this makes it possible to do continuous real-time monitoring of EEG data; a new point could
be projected onto the results every 30 seconds (or less) as the subject sleeps.

When we project the sleep data from files sc4012e0, sc4102e0, and sc4112e0 onto the
embedding derived from sc4002e0, we obtain the composite pictures in Subfigures 5.9(a)-(c),
respectively. All three results are consistent with one another, despite coming from different
subjects and containing a minimal amount of stage 3 and 4 deep sleep. The only exception
to this is stage 4 sleep in Subfigure 5.9(c); however, it is important to note that only 21
points out of 1100 were denoted as stage 4 sleep for this subject, and those points were not
all consecutive. Therefore, the subject had only transient movements into stage 4 from stage
3, and it is perhaps not surprising that the results show the stage 4 EEG points mixed in
with those from stage 3. Also note that the placement of the sleep stages in Figure 5.9 is
consistent with the results in Figure 5.8.

Lastly, we combine the results from all four data sets (the original embedding with
sc4002e0 plus three projected data sets) to produce Figure 5.10. The histograms in Subfigure
5.10(a) were created by a simple summation of the nearest neighbor histograms for all four
data sets. The composite plot in Subfigure 5.10(b) was then generated according to the
logic described in Section 5.3.3 using the combined histogram data. In all, these results
are based on almost 40 hours of EEG data from four different subjects. Again, they are
consistent with the individual results and they show a clear picture of the sleep manifold
regions associated with each sleep stage. It is also noteworthy that only a handful of points
on the sleep manifold (colored white in the composite picture) were never nearest neighbors
of an EEG data point.

This picture may be very useful in the analysis of seizures during sleep. Imagine taking
another new sleep EEG data set, this time from an epileptic subject, and projecting it onto
these results. By following the location in L-∆hrest

e as the subject sleeps, we can get an
idea of the sleep stage as it is traditionally defined, and we can also identify that stage in
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Figure 5.9: Composite plots for EEG data sets (a) sc4012e0, (b) sc4102e0, and (c) sc4112e0,
when they are projected onto the LLE results from Figure 5.4(b), as described in Section
5.3.4. These pictures are analogous to Figure 5.8(b) and use the same color scheme. Note
that the results are consistent with those for sc4002e0 in Figure 5.8(b); over various subjects,
the sleep stages are generally associated with the same positions on the sleep manifold.

more detail and detect nearness to transitions between stages. The grid of points on the
sleep manifold essentially gives us descriptions of 336 different brain states associated with
sleep. We expect that future research will identify the locations on the sleep manifold where
seizures are most likely to occur. With that knowledge, if the sleep state characterization
is done continuously while the subject is sleeping, this may allow for the prediction (and
possibly prevention) of seizures.

We emphasize the fact that the coloring in the composite pictures (Figures 5.8(b), 5.9,
and 5.10(b)) is based on the subjective scoring of sleep data. It is well known that interscorer
variability can be quite high, and this certainly affects our results. For example, imagine
if some of the points scored as REM that landed in the range 1.6 < L < 2 on the sleep
manifold were instead scored as stage 1. Then the right side of the composite picture would
be completely yellow and the region associated with stage 1 would be more clear. Therefore,
the composite pictures should be seen as “guides” to tie the analysis back to the traditional
definitions of the sleep stages, not as the ultimate truth. As mentioned in the previous
paragraph, we are most interested in the position on the sleep manifold, the trajectory that
results as the subject sleeps, and the relationship of this trajectory to the regions where
seizures may be most likely to occur.
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Figure 5.10: Combined association between all four EEG data sets and the sleep manifold.
The data set sc4002e0 was directly compared to the cortical model using LLE, and the
remaining three data sets were projected onto those results as described in Section 5.3.4.
(a) Total histograms of nearest neighbors, separated by sleep stage; these were calculated
by summing the histograms from all four EEG data sets. The pictures show awake, REM,
and stages 1-4 in (i) through (vi), respectively. (b) The total composite picture for all four
data sets. This was generated from the histogram data in (a) and is analogous to Figures
5.8(b) and 5.9. Again, this is consistent with previous results and shows the regions of the
sleep manifold most closely associated with each sleep stage.
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Chapter 6

Discussion

6.1 Summary of contributions

Mathematical models represent an opportunity for exploration and prediction. In this
case, a mean-field, mesoscale model of the human cortex allows investigation into epileptic
seizures, sleep, and the connection between them. The ability of this model to mimic the
seizure waves seen in humans lets us simulate suppression via feedback control and make
experimental recommendations. The representation of the sleep cycle contained within this
cortical model creates the possibility for a more detailed description of sleep states, with
application to the analysis and prediction of seizures during sleep.

First, we presented several novel approaches to the modeling of feedback control for
epileptic seizures in humans. We verified the strong convergence of numerical solutions to the
model of the cortex, paying special attention to discontinuities that may occur at electrode
edges. This allowed us to choose appropriate step sizes for our simulations; because the
spatial step size ∆x was small relative to the size of the electrode, we were able to incorporate
a more detailed electrode profile into the simulation. Then, based on evidence that the mean
soma potential h̃e cannot be used as the measurement for feedback control, we developed
a new model h̃m to represent the measurement of cortical surface electrodes. This model
was based on the currents flowing in the cortex and was used for all simulations of feedback
control. Those simulations utilized a new control algorithm containing the total integral of
the applied potential u. Not only did this succeed in suppressing the seizure-like oscillations,
but it guaranteed that the applied signal would be charge-balanced and therefore safe for
cortical tissue.

Next, we used locally linear embedding to directly associate human sleep EEG data with
the same mesoscale cortical model. We first showed that LLE has the ability to distinguish
between sleep stages when applied to EEG data alone. This analysis can reliably separate
REM and NREM sleep data and provide a smooth temporal progression through the various
stages of sleep. We also presented the concept of strongly connected components as a method
of automatic outlier rejection for EEG data and discussed a method for the selection of EEG
features used in the analysis. Then, by using LLE on a hybrid data set containing both sleep
EEG and signals generated from the mathematical sleep cycle, we were able to quantify
the relationship between the model and the data. This enabled us to take any sample
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of sleep EEG data and associate it with a position among the continuous range of sleep
states provided by the model. In addition, this approach yields consistent results for various
subjects over a full night of sleep and can be done in real time as the subject sleeps. This
suggests a wide range of possibilities for future investigation, especially with regards to the
prediction of seizures during sleep.

6.2 Future Work

While we have made several significant steps toward comparison of our seizure control
model with experimental data, there is still much work to be done. In the analysis presented
here, we have assumed that each electrode can be simultaneously sensing and applying the
control signal. This is not realistic; ideally, we would model separate electrodes for these two
tasks, with the geometric properties chosen to match existing experimental setups. Also, as
mentioned previously, it would be possible for us to improve the electrode profile used in
simulation. Here, we incorporated a simple profile to demonstrate our capability to do so, but
it would be more accurate to base our choice on existing theories of the potential difference
across an electrode surface [47]. It may also be possible to account for electrochemical
changes that occur in the vicinity. Lastly, we note that our use of the phrase “charge-
balanced” should be taken lightly. Our controller measures and applies a voltage, so the
integral term pushes the total voltage (over time) towards zero. Although, in concept, this
is similar to having a charge-balanced signal, it does not guarantee that the applied charges
will be balanced and safe. This could be remedied by utilizing a controller that measures
cortical potential and applies a current. Not only would this be more accurate, but it would
facilitate future comparisons with experiments, most of which are done in this manner [5, 58].

Validation via experimentation is only one of the many possible future directions of this
work. For example, we could extend our model to two dimensions and use it to study seizure
waves, or we could simulate experimental phenomena such as irregular, spiral, and plane
cortical waves [49]. Related theoretical work has suggested that pre-processing of data using
a Kalman filter can provide greater flexibility in the control of waves while minimizing the
amount of energy needed to do so [50]. This concept could be readily applied to the simula-
tions discussed here. Another possible avenue of future work is the further investigation of
spatial properties of our feedback model. Here we have analyzed the performance of single
electrodes applying proportional control. However, we have the capability to do simulations
with any number of electrodes at any size and spacing, with any type of control. This is
a luxury not afforded to experimentalists. Continuing theoretical work in this area may
provide insight into questions such as: if two electrodes are used in tandem, is it possible
to prevent the build-up of activity that occurs as the seizure wave approaches? What is
the best control strategy and spacing distance for this task? Can we achieve better results
by using a different control strategy for each electrode? Where should these electrodes be
placed, relative to the seizure focus, for maximum effectiveness? In general, what are the
necessary resolutions for sensing and actuation?

Our analysis of sleep states in the EEG suggests many future projects, as well. The
most direct path would be to use the same LLE analysis on sleep EEG data from epileptic
subjects. By following the trajectory of their brain state on the sleep manifold during the
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preictal period, perhaps a pattern of seizure onset could be discerned. It may be that seizures
always occur in the same location on the manifold or that the trajectory leading up to the
seizure has a characteristic trait. The analysis could be improved in several ways. First,
it may be beneficial to use electrocorticogram (ECoG) data from the surface of the cortex,
rather than EEG data. While there are no predefined notions of sleep stages for this data
type, that is not a requirement for the algorithm presented here. However, it would be crucial
to choose a set of features that accurately capture the characteristics of the ECoG; because
it comes from under the skull (which acts as a low-pass filter), ECoG signals have larger
amplitudes and contain more high frequency information. Second, it may be possible to
devise a form of “fuzzy” LLE. Our analysis utilized a stochastic cortical model, but we took
single numerical solutions and used them as representative of positions on the sleep manifold.
We may obtain a more accurate mapping of EEG data to the model if we incorporated a
sampling of numerical solutions from each point in L-∆hrest

e space.
Perhaps this work will eventually lead to the feedback control of epileptic seizures during

wakefulness or during sleep, thus linking the ideas from Chapters 4 and 5. The framework
discussed here would allow us to study the electrode geometry and control methods necessary
for seizures that arise out of sleep. We could examine the effect of different types of control
on the subject’s sleep state relative to the mathematical model; maybe it would be possible
to steer the sleeping subject away from a dangerous state where seizures are likely to occur.
It is our hope that this work will act as a stepping stone to such intriguing investigations.
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Appendix A

Stochastic signals at relative step sizes

A.1 Generation of two-dimensional stochastic signals

To create the Brownian paths for a strip of cortex, we simply generate a matrix of
Gaussian-distributed random numbers. The size of the matrix will depend on the desired
number of space and time steps; for N time steps and M space steps, we can use the MAT-
LAB command ee = randn(N,M). In order to generate the same paths for each simulation,
we reset the state of the random number generator using randn(’state’,0). Note that
each number in the ee matrix represents an increment of the Brownian path, as is needed
for numerical integration with the Euler-Maruyama method (see equation 4.3 in [15]). To
visualize the paths in time, we would need to look at the cumulative sum of the increments
with a command like plot(cumsum(ee)). Another important distinction is that the paths
represent Brownian motion in time, but each path is independent from its spatial neighbors
(so each column of ee is an independent Brownian path, and each row contains indepen-
dently generated random numbers). This means that we will need to treat space and time
differently when scaling the signals.

Using equations (3.1) and (3.2) we can then generate two-dimensional stochastic inputs
at relative step sizes. Here we verify these choices with a Matlab script:

% Generate matrix of random numbers

N = 60;

M = 40;

ee = randn(N,M);

% Plot 30th Brownian path vs. time; dt = 1

plot(1:N, cumsum(ee(:,30)));

% Generate path with dt = 2; plot again

ee2 = ee(1:2:end,:) + ee(2:2:end,:);

hold on

plot(1.5:2:N, cumsum(ee2(:,30)), ’:’);

% Generate path with dt = 4; plot again
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Figure A.1: Plot of the same Brownian path in time at three different step sizes.

ee3 = ee2(1:2:end,:) + ee2(2:2:end,:);

plot(2.5:4:N, cumsum(ee3(:,30)), ’-.’);

xlabel(’Time’)

ylabel(’Value of Brownian path’)

legend(’dt = 1’, ’dt = 2’, ’dt = 4’)

% Plot the stochastic input at 10th time step; dx = 1

figure

plot(1:M, ee3(10,:));

% Generate signal at dx = 2; plot again

ee4 = (ee3(:,1:2:end) + ee3(:,2:2:end))./sqrt(2);

hold on

plot(1.5:2:M, ee4(10,:), ’:’);

% Generate signal at dx = 4; plot again

ee5 = (ee4(:,1:2:end) + ee4(:,2:2:end))./sqrt(2);

plot(2.5:4:M, ee5(10,:), ’-.’);

xlabel(’Space’)

ylabel(’Value’)

legend(’dx = 1’, ’dx = 2’, ’dx = 4’)

This code generates equivalent stochastic inputs in space and time for three different step
sizes. Figure A.1 shows the same Brownian path generated at three different values of ∆t
using this method, and Figure A.2 shows the stochastic signal over space at three different
values of ∆x.
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Figure A.2: Plot of the same stochastic input over a strip of cortex at three different step
sizes.

A.2 Scaling preserves signal variance

In the spatial dimension, we will not scale the increments by
√

∆x because each point
in space is independent of all others. (Another way to think about this: if we did include
this term the total scaling would be

√
∆t ∆x, so reducing ∆x would affect the variance of

the signals in time even if ∆t remained constant.) However, we will include a term for the
relative scaling of the signal. We multiply by 1/

√
2 every time we double the step size, as

stated in equation (3.2); this ensures that the variance of the spatial signal is preserved as
we increase ∆x (relative to the base step size). We can verify this mathematically. Suppose
we have M points in space, x1, x2, . . . , xM with mean

m =
1

M

M∑
i=1

xi, (A.1)

and variance

m2 =
1

M

M∑
i=1

(xi −m)2. (A.2)

Now say that we generate the same signal over half as many points using the previously
defined formula:

x̃i ≡ 1√
2

(x2i−1 + x2i) , i = 1, . . . , M/2. (A.3)
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The mean of this new set of points is

m̃ =
1

M/2

M/2∑
i=1

x̃i (A.4)

=
2√
2M

M∑
i=1

xi (A.5)

=
2√
2
m . (A.6)

And calculating the variance, we find

m̃2 =
1

M/2

M/2∑
i=1

(x̃i − m̃)2 (A.7)

=
2

M

M/2∑
i=1

(
1√
2

(x2i−1 + x2i)− 2√
2
m

)2

(A.8)

=
1

M

M/2∑
i=1

(x2i−1 −m + x2i −m)2 (A.9)

=
1

M

M/2∑
i=1

(x2i−1 −m)2 + (x2i −m)2 + (x2i−1 −m) (x2i −m) (A.10)

=
1

M

M∑
i=1

(xi −m)2 +
1

M

M/2∑
i=1

(x2i−1 −m) (x2i −m) (A.11)

= m2 +
1

M

M/2∑
i=1

(x2i−1 −m) (x2i −m) (A.12)

Noting that m = 0 and that the independence of the xi values causes the sum of the
cross terms x2i−1x2i to approach zero as M → ∞, we obtain the desired result: m̃2 = m2.
Therefore, the scaling term preserves the variance of the signal.

Another way to verify this is to use a large value of M in the MATLAB code from Ap-
pendix A.1 and compare the variances of the signals. With M = 50, 000 we get var(ee3(10,:))
= 3.9864, var(ee4(10,:)) = 3.9870, var(ee5(10,:)) = 4.0192.
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Appendix B

Stochastic signals at absolute step
sizes

Although it is necessary to add the 1/
√

2 scaling term in order to compare various values
of ∆x and verify strong convergence, this will not be necessary once adequate values of ∆t
and ∆x have been chosen. In a typical simulation of the cortical SPDE’s, the stochastic
increments will only be scaled by

√
∆t; this means that the variance of the increments will

be σ2 = ∆t. Although this variance changes with the step size, the mean variance of the
Brownian paths will remain constant. This can be verified with a MATLAB script:

n = 50000; % number of points

dt = .05; % smallest time step

dx = .1; % spatial step

% Generate 400 paths at different dt values and calculate the variance

for i = 1:400

x1 = randn(1,n)*sqrt(dt); % generate random path with proper scaling

x2 = randn(1,n/2)*sqrt(2*dt);

x3 = randn(1,n/4)*sqrt(4*dt);

x4 = randn(1,n/8)*sqrt(8*dt);

var1(i) = var(cumsum(x1)); % find the variance of the Brownian paths

var2(i) = var(cumsum(x2));

var3(i) = var(cumsum(x3));

var4(i) = var(cumsum(x4));

end

% Calculate the average variance for each step size

mvar1 = mean(var1);

mvar2 = mean(var2);

mvar3 = mean(var3);

mvar4 = mean(var4);

This script calculates 400 Brownian paths at 4 different step sizes, calculates the variance
of each path, and then determines the mean variance for each step size. For example, one
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execution of the script produced the results mvar1 = 37.5368, mvar2 = 37.7847, mvar3 =

38.4455, mvar4 = 40.8610. These numbers appear to converge as we increase the number
of paths included in the mean.




