
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
An Evaluation of Shortcutting Strategies for Parallel Bellman-Ford and Other Parallel Single-
Source Shortest Path Algorithms

Permalink
https://escholarship.org/uc/item/6r89p3pw

Author
Li, Daniel Thomas

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6r89p3pw
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

An Evaluation of Shortcutting Strategies for Parallel Bellman-Ford and Other
Parallel Single-Source Shortest Path Algorithms

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Daniel Thomas Li

September 2023

Thesis Committee:

Dr. Yihan Sun, Chairperson
Dr. Zhijia Zhao
Dr. Elaheh Sadredini

Copyright by
Daniel Thomas Li

2023

The Thesis of Daniel Thomas Li is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am incredibly grateful towards my advisor Professor Sun. She has been incredibly patient,

supportive, and understanding. Whenever we ran into a problem, she always had many ideas

on how to test our assumptions and figure out the root causes. I would not have been able

to complete this without her.

iv

To my parents for their love and encouragement.

To my sister for providing an endless supply of snacks.

To the ISPC gang for making my time at UCR memorable.

To my friends for their support.

v

ABSTRACT OF THE THESIS

An Evaluation of Shortcutting Strategies for Parallel Bellman-Ford and Other Parallel
Single-Source Shortest Path Algorithms

by

Daniel Thomas Li

Master of Science, Graduate Program in Computer Science
University of California, Riverside, September 2023

Dr. Yihan Sun, Chairperson

A fundamental question in graph theory is the Single-Source Shortest Path (SSSP) problem.

This is well-studied in classical algorithm literature, but is only more recently studied in

the parallel setting. A relatively simple way to solve SSSP in parallel is with a Parallel

Bellman-Ford(BF). BF shows strong performance on dense graphs, when m >> n. But

due to its frontier-based approached, BF is bounded by the diameter of the graph. This

thesis proposes 2 different preprocessing strategies to alleviate this. The first strategy is to

generate shortcuts such that each vertex attempts to have at most degree k. The second

approach is graph contraction, which removes specific vertices and replaces them with a

single shortcut. We show that both preprocessing strategies reduce the overall rounds

required to complete all testing algorithms. Additionally, we evaluate both preprocessing

strategies with our own implementation of BF and state of the art parallel SSSP algorithms.

In general, δ-stepping and ρ-stepping show improved times after contraction.

vi

Contents

List of Figures ix

List of Tables x

1 Introduction 1

2 Related Work 4
2.1 Single-Source Shortest Path Algorithms . 4
2.2 Parallel Algorithms for the Binary Fork Join Model 5
2.3 Graph Frameworks . 5
2.4 Parallel SSSP . 5
2.5 Parallelism beyond Multicore Shared Memory 6

3 Preliminaries 7
3.1 Graph Notation . 7
3.2 Definitions . 7
3.3 Computational Model . 8
3.4 Parallel Primitives . 9

3.4.1 Scan . 9
3.4.2 Pack . 10
3.4.3 Flatten . 10
3.4.4 WriteMin . 10

4 Graph Traversal Algorithms 11
4.1 Dijkstra . 11
4.2 Parallel Bellman-Ford . 12

4.2.1 Main Method . 12
4.2.2 Sparse Frontier . 14
4.2.3 Dense Frontier . 15
4.2.4 A Note on Bellman-Ford vs BFS . 17

4.3 Delta-Stepping . 17
4.4 Rho-Stepping . 17

vii

5 Preprocessing Algorithms 19
5.1 K-nearest Edges . 19

5.1.1 Correctness . 21
5.1.2 Cost Analysis . 23

5.2 Contraction . 23
5.2.1 Correctness . 26
5.2.2 Cost Analysis . 28

5.3 Recover Dists . 28
5.3.1 Correctness . 29
5.3.2 Cost Analysis . 31

6 Implementation and Optimizations 33
6.1 Bellman-Ford . 33

6.1.1 Local Updates First . 33
6.1.2 No Visited Array . 34

6.2 Container Choice . 34
6.3 Coarsening . 34
6.4 Delayed Sequencing . 35
6.5 Contraction . 35

7 Experimental Results 36
7.1 Experimental Setup . 36

7.1.1 3rd-Party Algorithm Utilization . 37
7.1.2 Input Graphs . 37

7.2 K-nearest Edges Results . 38
7.3 Analysis of Contracted Graph Results . 44

7.3.1 Contracted Graph metadata . 44
7.3.2 Runtime Performance of Parallel Bellman-Ford 45
7.3.3 Runtime Performance of the State of the Art Algorithms 46

8 Conclusions 52

Bibliography 54

viii

List of Figures

5.1 Illustrated Example of KNE. Solid lines have weight 1, dotted lines are new
shortcuts. (a): Original Graph. (b): Add shortcuts with k = 3. 20

5.2 Illustrated Example of Contraction. Solid lines have weight 1, dotted lines
are shortcuts. (a): Original graph. (b): Contracted graph. 24

7.1 Shortcut Construction Time vs Edges . 40
7.2 Execution Time vs k for Road Networks . 41
7.3 Total Rounds vs k for Road Networks . 42
7.4 Frontier Size each Round for GE . 43
7.5 Execution Time vs Threads for BF on Road Networks 45
7.6 Execution Time vs Threads for Selected Algorithms 46
7.7 Frontier Size each Round in RoadUSA . 48
7.8 Runtime vs Expected Work . 49

ix

List of Tables

7.1 Overview of Parallel SSSP Algorithms used in Testing 37
7.2 Original Dataset Metadata . 38
7.3 Metadata for Input Graphs when k = 2 and k = 10 39
7.4 Contracted Dataset Metadata . 44
7.5 Runtime Data for Road Networks with 64 Threads 50

x

Chapter 1

Introduction

Graphs are incredibly useful abstractions that model natural and synthetic data

across many domains. For example, graphs are commonly used to represent social networks,

the structure of the internet, data dependencies for compiler analysis, and protein-protein

interaction networks. [1, 27, 23, 31].

One of the most fundamental questions for a graph is the Single-Source Shortest

Path (SSSP) problem: Given a source node s, compute the minimum-weighted (shortest)

path to all other nodes within the graph. The weight of a path p is the summation of the

weight of each edge that constructs p.

There are many well-studied sequential algorithms to solve this problem, including

Dijkstra’s Algorithm and Bellman-Ford. But computer hardware has been advancing at a

rapid pace for the past several decades. DRAM is now accessible and multicore processors

are the norm. A newer branch of algorithms have evolved to fully utilize these advanced

hardware capabilities - parallel algorithms.

1

A parallel algorithm can be loosely defined as an algorithm that does multiple

things in a single step [12]. A simple example is a reduction. Given an array of n numbers,

we want to reduce all elements into a single element. Here we assume the reduction function

is the sum. One way to do this sequentially is to iterate through each element one at a

time, adding that to the current sum. To do this in parallel, we can simply add every 2

neighbors together (like A[1] + A[2], A[3] + A[4]) until the number of elements are halved.

Using multiple processors, we can do this in a single step. Then repeat this until the final

sum is computed. It’s easy to see that this does as much work as the sequential version,

but finishes in exactly log n steps.

Surprisingly, there are inherently some algorithms that do not scale well depending

on the structure of the input data. Parallel Bellman-Ford is one such example of this. When

the span of the graph is large with relatively small frontiers, the performance of a parallel

Bellman-Ford can be worse than the sequential version. There are several reasons for this.

Many parallel SSSP algorithms are not as work-efficient as there sequential counterparts.

Additionally, a parallel Bellman-Ford has frontier-based parallelism, which means that only

vertices within the same frontier can be processed simultaneously to ensure correctness.

Between every frontier is a forced barrier to synchronize any threads spawned in that round.

The sequential version has no such restriction and can simply process its queue until empty.

The goal of this thesis is to explore several preprocessing algorithms and the ef-

fect they have upon subsequent traversals. These preprocessing algorithms transform the

graph by adding or deleting vertices and edges. We then evaluate the impact of these

transformations by running a suite of Parallel SSSP algorithms.

2

The remainder of the paper is outlined as follows. Previous research in related

topics is discussed. Then we discuss a preliminary background on graphs and parallel

algorithms. We then give an overview of the testing algorithms. Next, we do an in-depth

discussion about each preprocessing algorithm. Afterwards, we discuss implementation and

optimization details. We then discuss the experimental results. Lastly, we summarize key

findings in the conclusion and present further ideas to explore in later research.

3

Chapter 2

Related Work

There is a rich literature related to SSSP algorithms, parallel algorithms, graph-

based frameworks, parallel SSSP algorithms, and parallelism outside of shared-memory

multicore systems. These are a selected few works to discuss.

2.1 Single-Source Shortest Path Algorithms

Arguably the most famous SSSP algorithm is Dijkstra’s algorithm, which has

bounds of O(m log n) if a binary heap is used as the priority queue[17]. Fredman and Tarjan

improve Dijkstra’s algorithm with a Fibonacci heap, achieving a time of O(n log n + m)

[19]. If all weights are positive integers, then Thorup shows a bucket-based approach to

achieve linear time bounds[35]. If a graph has negative weight edges, then Bellman-Ford is

another classic solution to SSSP, achieving bounds of O(mn)[6]. Constraining edge weights

to integers, recent work by Bernstein et. al. show a randomized algorithm that achieves

bounds of O(m log8(n) logW) [7].

4

2.2 Parallel Algorithms for the Binary Fork Join Model

Blelloch et. al. do an in-depth overview of many algorithms with the binary-

forking model, providing cost analysis, proofs, and detailed algorithms. They include list

ranking, sorting, and balanced tree operations, to name a few[10]. Dhulipala et. al. also

present many parallel algorithms, including SSSP, BFS, k-core, low-diameter decomposition,

strongly connected components, maximal independent set, and triangle counting [16].

2.3 Graph Frameworks

There has been keen interest in developing general, high performance frameworks

to operate on graphs. Shun et. al. developed Ligra, a framework for shared memory

algorithms that only requires the user to define 2 functions, a vertex map and edge map

function. They implemented a simple parallel BFS with this framework, but only with

unweighted graphs[33]. Dhulipala et. al. shows a work-efficient parallel weighted BFS using

a bucket-based graph framework Julienne, which outperforms Ligra for the same task [15].

Zhang et. al. show a general graph framework called GraphIT, which has high performance

for Domain Specific Languages. The key detail is that algorithms are separated from the

scheduling, which can lead to better performance depending on the input[36].

2.4 Parallel SSSP

Meyers and Sanders invented the δ-stepping algorithm, which shows strong prac-

tical parallel performance[28]. Madduri et. al. validated this claim by showing fast perfor-

5

mance of δ-stepping on low diameter, sparse graphs [26]. Blelloch et. al. build on top of

delta stepping with radius stepping, relaxing all edges within a variable distance, enabling

tight bounds [11]. Dong et. al. abstract these previous algorithms by developing a general

framework for parallel stepping algorithms, which they applied to δ-stepping, Bellman-Ford,

and a new algorithm called ρ-stepping [18]. Key to their implementation is a new Abstract

Data Type, the Lazy Batched Priority Queue. Andoni et. al. developed an parallel (1+ ϵ)-

approximate algorithm to compute SSSP for undirected graphs. They do so with m poly

log n work and poly log n span. They develop the notion of a low hop emulator, which is a

graph in which every path has at most O(log log n) edges. [2]

2.5 Parallelism beyond Multicore Shared Memory

Parallelism is not just for multicore systems. There are many levels of parallelism,

from distributed systems to HPC workloads to GPUs and FPGAs. Davidson et. al. show

several SSSP implementations designed for GPUs, noting several challenges considering the

architectural differences[14]. Harish et. al. also show a SSSP algorithm for GPUs, but give

a detailed analysis of Parallel BFS and connected components [20].

6

Chapter 3

Preliminaries

3.1 Graph Notation

Graphs will be represented as G = (V,E,w), where V represents the vertices,

E represents the edges, and w is a function that maps an edge to a non-negative real

number w : E → R+. It is noted as w(e), where e ∈ E. Unweighted graphs are shown as

G = (V,E). Unless otherwise specified, graphs depicted here are simple and undirected. n

and m represent the number of vertices and edges in the graph respectively. Additionally,

the neighbor set of a vertex v will be noted as N(v). We define N(v) = {u|(v, u) ∈ E}. The

degree of a vertex v is deg(v).

3.2 Definitions

We use several common and uncommon definitions later in this paper. We define

them here as they may be referenced in later proofs.

7

Definition 1 Shortcut: A shortcut from node x to node y in G is a edge from x→ y with

distance > 1 that contains the minimum-weighted path between x→ y.

Definition 2 Chain vertex: A vertex with a degree of 2.

Definition 3 Endpoint: An endpoint is a vertex v where deg(v) ̸= 2 and at least one of

N(v) is a chain vertex.

Definition 4 With High Probability (w.h.p.): A bound O(f(n)) happens with high proba-

bility if the bound is O(kf(n)) with probability at least 1− 1/nk, for any k > 1.

3.3 Computational Model

All analysis on parallel algorithms in this paper follow the binary-forking model

with Compare and Swap (CAS) [10, 32]. In this model, a multiprocessor system shares

a pool of threads with access to shared memory. Each thread has the typical capabilities

and behavior under the standard RAM model (such as a limited number of registers and

a program counter), but also has an additional fork instruction. When fork is invoked,

the parent thread spawns two child threads and suspends until both child threads finish

execution (i.e. they join), and then the parent resumes resumes. Under this model, a

parallel for-loop with n elements has a work of O(n) and span of O(log n).

We also augment the binary-fork model with the atomic instruction Compare and

Swap (CAS). CAS is an atomic instruction that takes 3 parameters: address, oldValue,

newValue. If the value stored at address matches oldValue, the value at address will atom-

ically update to newV alue and the instruction succeeds. Otherwise, no updates are made

8

to address and the instruction fails. CAS has an expected time of O(1). CAS is a realistic

capability to add to the binary-fork model since many Instruction Set Architectures support

this (e.g. x86, ARM64)[21, 3].

This model also assumes a randomized work-stealing scheduler is used, which has

been shown to have strong theoretical bounds and good performance in practice [4, 13].

Work

Work is the total number of instructions executed. Let p denote the number of

processors available and let T1 be the total time to execute instructions on a single processor.

The Work Law can summarized as: Tp ≥ T1/p.

Span

Span is longest dependency chain within the DAG. The span indicates the mini-

mum time required to execute a program even with infinite processors.

3.4 Parallel Primitives

This set of parallel algorithms and instructions (referred to as primitives) is used

as the building blocks for more interesting algorithms shown in the paper.

3.4.1 Scan

Given an input sequence A of size n and an output sequence B of size n, scan

computes B[i] ← A[i] + B[i − 1]. Scan can be computed in parallel with O(n) work and

O(log n) span using the upsweep-downsweep method proposed by Blelloch[8]. Although

9

scan works with any associative binary operation, it is assumed to only do addition within

this paper. By default, scan is inclusive. An exclusive scan will be labelled explicitly as

ScanExclusive.

3.4.2 Pack

Given an input sequence A and a boolean array flag of the same size, pack

returns a new sequence B where each element in B maps to a true value in flag. There’s

an alternative version called packindex that only takes in a boolean array flag and returns

the indices such that each index corresponds to a true value in flag. The latter is useful

when data is represented as a bit vector. Both Pack and PackIndex have O(n) work and

O(log n) span.

3.4.3 Flatten

Given a nested sequence of k arrays with the head pointer called A, writes a

single contiguous sequence into an output B, maintaining ordering of all elements in k and

between indices 1 . . . k. In other words, it ”flattens” a 2D array into a single contiguous

array, maintaining its order. This can be done in parallel in O(n) work and O(log n) span.

3.4.4 WriteMin

Given a address and newV al, writeMin writes newV al to address only if newV al

is strictly less than the current value stored in address. Internally, this uses CAS in a while

loop which guarantees the minimum value even among competing threads. It has O(1) time

in expectation and has been shown to have good performance in practice [34].

10

Chapter 4

Graph Traversal Algorithms

This section describes the algorithms used before and after the preprocessing done

in Section 5 to test performance and correctness. There are 4 primary algorithms here:

Dijkstra’s Algorithm, Parallel Bellman-Ford, δ-stepping, and ρ-stepping.

4.1 Dijkstra

Since all graphs in this work are assumed to be positively weighted, Dijkstra’s

algorithm is used as a the sequential baseline for performance. If implemented with a

binary-heap, it has a work of O(m log n). This algorithm was chosen because it is simple

to implement and quite fast in practice. The algorithm is described below.

11

Algorithm 1 Dijkstra

Input: G = (V,E,w), s

Output: dist contains SSSP distances rooted at s

1: dist← {∞...}

2: dist[s]← 0

3: q ← {(0, s)}

4: while q do

5: [d, u]← q.extractMin

6: q.pop

7: if dist[u] < d then

8: continue

9: for v ∈ N(u) do

10: if dist[v] > dist[u] + w(v) then

11: dist[v]← dist[u] + w(v)

12: q.push((dist[v], v))

4.2 Parallel Bellman-Ford

Here will cover all portions of our Bellman-Ford implementation.

4.2.1 Main Method

Algorithm 2 describes the full Bellman-Ford algorithm. Note that we implement

it as the hybrid approach first described by [5].

12

Algorithm 2 Parallel Bellman-Ford

Input: frontier, frontierSize,G = (V,E,w)

Output: Write SSSP distances from s into dist

1: sparseMode← true

2: frontier ← {s}

3: inFrontier, outFrontier, visited← empty array of size n

4: size← 1

5: while size > 0 do

6: if size ≤ SparseThreshold then

7: if not sparseMode then frontier ←denseToSparse(frontier)

8: size← nextFrontier(G = (V,E,w), frontier, frontierSize, dist, visited)

9: else

10: if sparseMode then frontier ← sparseToDense(frontier)

11: size← nextFrontierDense(G = (V,E,w), frontier, dist, inFrontier, outFrontier)

Algorithm 2 is described here. In lines 1 and 2, we set sparseMode to true and

frontier initially contains only the source s. sparseMode is boolean that indicates if the

current iteration of Bellman-Ford has sparse frontiers or dense frontiers. The remaining lines

3 - 9 are in the same while loop. We run either Algorithm 3 if frontier size < predetermined

threshold, or we run Algorithm 4. We switch frontier modes sparse↔ dense as necessary.

The work of this algorithm is O(diam(G)m) and the span is O(diam(G) log n) [16].

13

4.2.2 Sparse Frontier

This algorithm describes the sparse frontier generation given a sparse frontier.

Algorithm 3 Sparse next frontier

Input: G = (V,E,w), frontier, frontierSize, dist, visited

Output: next sparse frontier as a single array

1: ranges← frontierSize nested arrays

2: parallel for u ∈ frontier do

3: flag ← boolean array of size deg(u), initialized to false

4: parallel for v ∈ N(u) do

5: if WriteMin(&dist[v], dist[u]+W (v)) and CAS(&visited[v], false, true) then

6: flag[v]← true

7: ranges[k]← pack(N(u), f lag)

8: clear visited

9: frontier ← flatten(ranges)

10: return size of frontier

We describe Algorithm 3 here. In line 1, we allocate space for ranges, which

contains n nested arrays. Each range[i] indicates is an array to indicate which vertices i

visited this round. Then in line 2, we have the main parallel for loop over each frontier

node. We temporarily allocate space for a local flag array called flag of length deg(u).

Each index in flag corresponds indicates a successful visit for vertex u. Initially, flag is

cleared since nothing has been visited yet. In lines 4-6, we have another loop that iterates

over N(u). If u successfully visits v, we set the flag[v] to true. A successful visit indicates

14

that v now has the minimum distance possible from the all frontier nodes and it is only

added to the next frontier one time. In line 7, we finish the inner for loop and Pack the

neighbors of u based of the flag array. Doing this causes each inner array in ranges to only

contain the vertices that were successfully visited. In line 8 we clear the visited array. This

is unnecessary for unweighted graphs, but required for weighted graphs since it’s possible

to revisit the same node multiple times in different frontiers. Note that to clear the visited

array, only
∑frontierSize

i=0 deg(frontier[i]) vertices must be written to clear the array, not

necessarily n of them. The last step is to Flatten(ranges) in line 9. This collects each

range into a contiguous array, which contains the frontier for the next round. All elements

are guaranteed to be unique.

4.2.3 Dense Frontier

Algorithm 4 shows the generation of the next frontier in dense-mode.

15

Algorithm 4 Dense next frontier

Input: G = (V,E,w), dist, inFrontier, outFrontier

Output: inFrontier holds the next dense frontier

1: parallel for v ∈ V do

2: if inFrontier[v] then

3: inFrontier[v]← false

4: for u ∈ N(v) do

5: if WriteMin(&dist[u], dist[v] + w(u)) then

6: outFrontier[u]← true

7: Swap(inFrontier, outFrontier)

8: return Count(inFrontier, true)

We describe Algorithm 4 here. Nearly all of it is done within a single parallel for

loop in lines 1 - 6. First we iterate over all vertices in V in line 1. This is because inFrontier

is a dense flag array, so all elements have to be visited to know which are the current frontier

nodes. In lines 2 and 3, if we detect that the current vertex v is a frontier node, we clear that

index in inFrontier[v] and proceed. In lines 4-6, we look at all neighbors of v and attempt

to visit each one. When we successfully visit a node u, we relax dist[u] with dist[v] +w(u)

and update outFrontier[u] to true. Finally, we Swap(inFrontier, outFrontier) so that

inFrontier holds the next dense frontier and outFrontier is now a cleared array. Lastly

we count the number of visited elements in inFrontier and return this value.

16

4.2.4 A Note on Bellman-Ford vs BFS

If the visited array and related CAS calls are removed, actually the behavior of

Algorithm 2 matches the behavior of a Parallel BFS for unweighted graphs. Every vertex

is visited only a single time, and all vertices within a frontier are 1-hop further than their

predecessors. We know this because WriteMin functions as a CAS since each node in

the same frontier is the same distance away from its neighbors. However, looking at other

literature, a positive integral-weighted BFS is commonly implemented with a bucket based

approach (similar to δ-stepping) [33, 15]. So we mainly refer to Algorithm 2 as Bellman-

Ford, although its bounds on unweighted graphs are actually tighter than a weighted graph.

4.3 Delta-Stepping

The high level idea in δ-stepping is to relax vertices close to the source (within

a certain δ). All of these ”close” vertices can be relaxed in parallel using Bellman-Ford.

It achieves this by distinguishing edges between light edges (w(e) ≤ δ) and heavy edges

(w(e) > δ). The idea is that after relaxing a light edge, it may get reinserted into another

bucket, thus potentially requiring another relaxation. Once all light edges are processed,

relaxing a heavy edge is guaranteed to not cause a reinsertion into the same bucket. For

more detail on δ-stepping, consult [28].

4.4 Rho-Stepping

ρ-stepping is similar to δ-stepping since it also follows the same stepping frame-

work. For ρ-stepping, the key idea is to extract the ρ nearest vertices in the current frontier.

17

Once these vertices are found, they can be relaxed in parallel and successful visitors are

pushed to the next frontier. For more detail, see [18].

18

Chapter 5

Preprocessing Algorithms

Since the span of a parallel Bellman-Ford is bounded as O(diam(G) log n), the

main proposal of this work is to simply decrease diam(G) to achieve better performance

in practice. To do this, we explore two different preprocessing techniques. A high level

description and diagram is provided for both, then detailed analysis is discussed.

5.1 K-nearest Edges

The first approach is to increase the level of parallelism available by potentially

adding shortcuts to each vertex. There is a tradeoff - we’re explicitly adding more work,

which can take longer to execute, but we also are shortening total rounds required due to

increased parallelism.

Figure 5.1 depicts the transformation of an input graph when k=3 after running

Algorithm 5.

19

A

B

C

D E

F

G H I J K

(a) Original graph.

A

B

C

2 D

2

2

E

F
2

G

H
2

I

K

3

2

J2

2

(b) After running KNE with k=3

Figure 5.1: Illustrated Example of KNE. Solid lines have weight 1, dotted lines are new shortcuts.
(a): Original Graph. (b): Add shortcuts with k = 3.

Algorithm 5 K-nearest edges

Input: G = (V,E,w), k

Output: G′ with shortcuts

1: E′ ← n nested arrays

2: parallel for v ∈ V do

3: kDist← Run BFS from v, but stop when there is k total edges.

4: for each (node, weight) ∈ kDist do

5: if weight > 1 then

6: Append (v, node, weight) to E′[v]

7: E′ ← Flatten(E′)

8: Add duplicate edges to E′ such that there is a (v, u, d) for each (u, v, d)

9: Combine E′ with E and remove redundant edges, adjust V ′, E′, w′ as needed.

10: return G′ = (V ′, E′, w′)

20

We describe Algorithm 5 here. We initialize n nested arrays to hold future short-

cuts in line 1. In line 2, we iterate over each vertex in parallel. In line 3, we run BFS to find

the up to k nearest neighbors. We return a map where the key is the node and the value is

distance to that node from the source v. Note that we consider any immediate neighbors of

v as part of the k count, so any vertices that already have ≥ k neighbors return an empty

map. Additionally, we only store distances > 1. We store the result in kDist. In lines 4 - 6

we update E′[v] with a new shortcut if the distance is > 0. In line 7, we flatten our nested

shortcuts into a single contiguous array. Then in line 8 we duplicate each edge in E′ such

that there is a (v, u, d)|(u, v, d) ∈ E′. Lastly in line 9 we combine E′ with E and remove

any redundant edges.

5.1.1 Correctness

To show this algorithm is correct we need to show 2 things:

1. We must show that the shortcuts generated are valid shortcuts, i.e. that each

edge (u, v, d) ∈ E′ contains the minimum weighted-path from u to v in E.

2. We must show that running SSSP with the same source s in G′ leads to the

equivalent distances in G.

Lemma 5 After the completion of Algorithm 5, any d|(u, v, d) ∈ E′ is the minimum

weighted path between u→ v ∈ E.

Proof. Pick an arbitrary pair of vertices in G, say they are u and v. Let k be

a sufficiently large integer. Let d(u, v) be the minimum path distance between u and v

in G. Consider the distance between u → v in G′, denoted as d′(u, v). We will show that

21

d(u, v) = d′(u, v). Assume to the contrary that d(u, v) ̸= d′(u, v). Any edges in G′ are either

of weight 1 or weight > 1. Then let’s go thorugh each scenario, d(u, v) = 1, d′(u, v) > 1.

But this is not possible, since d′(u, v) > 1 implies a shortcut was constructed. But if such a

shortcut did exist, it would have been removed in line 9. d(u, v) > 1, d′(u, v) = 1. But this

is also not possible. if d(u, v) = 1 after the call to remove redundant edges, that can only

mean that there was not shortcut generated at all and d′(u, v) is from the original E. Since

we know k is sufficiently large, then the BFS would have generated the correct distance.

And the last case if d(u, v) > 1, d′(u, v) > 1. We know that for sure this will got to line 6,

where the distances originate from the BFS. Since BFS is valid on unweighted graphs, the

distance values generated must be correct. Since all cases are impossible, we know that the

assumption is false. Therefore, ∀d|(u, v, d) ∈ E′ are equivalent to minimum path distances

from u→ v.

Theorem 6 Running a SSSP algorithm in G′ from source s has equivalent distance values

to running SSSP in G from source s.

Proof. Pick any source s ∈ V from G. Let the SSSP distances tree rooted at s

be dist for G and dist′ for G′. Pick any non-source node x ∈ V where x ̸= s. SSSP will

calculate the shortest path distance from s to all other nodes in G′, including x. We proved

in Lemma 5 that each (u, v, d) ∈ E′ consists of the minimum-weighted path distances from

u→ v. Thus, by the validity of a SSSP algorithm, the calculated shortest path distance to

from s→ x in G′ must be equal to the shortest path distance from s→ x in G.

22

5.1.2 Cost Analysis

Theorem 7 The KNE algorithm can be executed with O(nk+m) work in expectation and

O(log n) span w.h.p.

Proof. Within the parallel for loop (lines 3 to 12), we operate over each vertex

in parallel. Within a vertex we look for process up to k nodes, making that individual BFS

with a work of O(k). The rest of the operations from lines 6 - 12 have k work since they

operate with that many elements in a single pass. In total, that parallel loop has a work

of O(nk) and a span of O(log n). Both Flatten calls have a work of O(nk) and span of

O(log n). Adding duplicate edges is also linear work and log n span. Removing redundant

edges can be done by filtering empty values and then inserting values into a parallel hash

table, only keeping minimum weights when updating the same key entry of (u, v). It costs

O(m) work in expectation and O(log n) span w.h.p. to insert m elements into a parallel

hash table.

5.2 Contraction

In the previous section, we showed a purely additive approach - we only ever

increased m. However, this approach may not always yield a better performance than

the original graph. Essentially, there is a tradeoff between parallelism and work: larger

frontiers enable greater parallelism, at the cost of more work (we show this in-depth in the

Experimental Results). To account for this extra work, we want a method to achieve similar

results in terms of parallelism, but does not necessarily create more edges. And thus, we

have the next method, contraction.

23

The idea behind graph contraction is to replace G = (V,E,w) with a G′ =

(V ′, E′, w′) such that ∥V ′∥ + ∥E′∥ < ∥V ∥ + ∥E∥. In our case, we have a simple con-

traction scheme. We remove chain vertices and add a shortcut between the endpoints of

that chain. Refer to Figure 5.2 for a visual depiction.

A

B

C

D E

F

G H I J K

(a) Original graph

A

B E
2

C

F

G K
4

(b) Contracted graph

Figure 5.2: Illustrated Example of Contraction. Solid lines have weight 1, dotted lines are shortcuts.
(a): Original graph. (b): Contracted graph.

Algorithm 6 contracts the given graph by replacing chain vertices with a single

weighted edge between them and storing necessary information for later postprocessing. In

line 1, we allocate empty arrays of size n for removed, recovery, and newEdge. removed

will hold vertices that are removed by contraction. recovery holds a pair of pairs, each

contains an endpoint and distance to that endpoint. And newEdge contains the newly

computed edge to add. Lines 2 - 10 contain the main parallel for loop over each vertex

in V . We skip any vertex v that has already been processed. Otherwise, we continue if v

is a chain vertex in line 4. In line 5 we look for endpoints of v. This can be done simply

24

Algorithm 6 Contraction

Input: G = (V,E,w)

Output: G′ = {V ′, E′, w′}

1: removed, recovery, newEdge← [n]

2: parallel for v ∈ V do

3: if v ∈ removed then continue

4: if deg(v) == 2 then

5: let u1, u2 be the nearest endpoints of v

6: add each node with degree = 2 in path between u1, u2 to removed

7: let d1, d2 contain the nearest distance from v to u1, u2 respectively

8: recovery[v]← ((u1, d1), (u2, d2))

9: Traverse to the endpoints, setting end1,d1 and end2,d2 for all vertices in path

10: newEdge[v]← (u1, u2, d1 + d2)

11: Duplicate newEdge such that each u, v, d ∈ newEdge has a v, u, d

12: Remove empty and redundant edges from newEdge

13: Filter E such that are no longer any edges that belong to a vertex in removed

14: E′ ← Combine E and newEdges then remove duplicates

15: Adjust V ′, w′ as necessary

16: return removed, recovery,G′ = (V ′, E′, w′)

25

with a BFS that only enqueues nodes that have not been visited and have a degree of 2.

When processing a node that does not have a degree of 2, that is an endpoint for v. In this

same traversal, we can keep track of all vertices visited in this path, later adding these to

removed in line 6. We also set recovery[v] to hold endpoint,distance for each endpoint pair

in line 7. We do one final traversal to the same endpoints, this time setting the endpoint

pairs for each node in the path (if not already set). In line 10, we set newEdge[v] to contain

this shortcut, which is from one endpoint to another, with the weight equal to the distance

from e1 + the distance to e2. In line 11 we filter out any empty or redundant edges from

the shortcuts we just made. In line 12, we filter out the original E such that there are no

longer any (u, v, d) ∈ E where u ∈ removed or v ∈ removed. Then we combine the newly

filtered E with the shortcuts generated newEdges, remove any redundant edges, and store

in E′ in 13. When removing redundant edges, we only keep the smallest possible weight for

for any given (u, v, d). The last step is to adjust other parts of the graph as necessary, then

return this new result as G′ in line 15. An example of an adjustment would be updating

offsets with new the vertex degrees if the graph is in CSR format.

5.2.1 Correctness

To prove the overall correctness of Algorithm 6, we need to show 3 things:

1. We only remove chain vertices.

2. There exists a shortcut in G’ between the endpoints of all removed vertices.

3. recovery maintains the shortest path distance between endpoints for all vertices

in removed.

26

Lemma 8 After the completion of Algorithm 6, any shortcuts added to G′ contain the

minimum weighted path distance between its two vertices.

Proof. Algorithm 6 only generates shortcuts in line 10, where we set newEdge[v]

to be (u, v, d1 + d2). Since d1 and d2 are defined to be the nearest distance from v to the

endpoints (line 7), we must be setting newEdge[v] to the minimum weighted path distance

since it is the sum of minimum weighted path from v → u1 with the minimum weighted

path from v → u2.

Lemma 9 For all v ∈ removed, there must be a valid shortcut in G′ between the endpoints

e1→ e2, where e1, e2 are endpoints of v.

Proof. For a vertex v to be in removed, it must have been added in line 6 of

Algorithm 6. We know e1, e2 are the endpoints of v from line 5. Then in line 10 we create

a shortcut from e1→ e2. We proved earlier in Lemma 8 that any shortcut created is valid.

Thus, we have proved all v ∈ removed contain a valid shortcut between their respective

endpoints.

Lemma 10 For every vertex v ∈ removed, recovery[v] contains the minimum weighted

path distances to its endpoints.

Proof. We add a node to removed only in line 6 of Algorithm 6. Note that we

remove all vertices in that chain (line 6). In line 9, we set the endpoints and minimum

weighted path distances to all vertices in that same chain. Therefore, after completion of

the algorithm, all vertices in removed also contain the appropriate endpoint and minimum

path data.

27

5.2.2 Cost Analysis

Theorem 11 The work of the contraction algorithm is O(nm) in expectation and the span

is O(logm) w.h.p.

Proof. First, we look at each vertex once, causing a parallel for loop with that

much work. Within an iteration: we run BFS, but only for a limited chain length. We

also try to not to repeat these by updating removed (although its actually possible to have

multiple BFSs throughout a chain). In the worst case, we have a graph that looks something

like a singular long chain of length n. In this case, the inner loop work is O(nm). Duplicate

the edge in line 11 is O(m) work and O(logm) span. One way to remove redundant edges is

to use a parallel hashtable, where inserting m elements has a work of O(m) in expectation

and span of O(logm) with high probability. In line 13, we filter m elements in E, which

has linear work and O(log n) span. Thus the total work is O(nm) in expectation and the

total span is O(logm) w.h.p.

5.3 Recover Dists

After running contraction, certain vertices will be deleted and associated edges are

removed. Thus, running any SSSP algorithm on this G′ will not fully settle all distances,

but only the ones reachable from the source that are not part of the removed set. However,

recall that the contraction algorithm also stores the distances from a vertex to each of its

endpoints in a format like ((e1, d1), (e2, e2)), where e1/e2 are endpoints and d1/d2 are their

respective distances. Using this information, we can settle all distances with Algorithm 7.

Given a contracted graph G′, s, removed, recovery, recover dists settles all tenta-

28

tive distances in dist.

Algorithm 7 Recover Dists

Input: G′ = (V ′, E′, w′), dists, recovery, removed, s

Output: All values in dists are settled

1: if s ∈ removed then

2: Run SSSP on G’ with source s and initial frontier of two vertices, {e1, e2}. e1, e2

are equal to recovery[s].end1, recovery[s].end2 respectively. Set dist[e1], dist[e2] to

recovery[s].dist1, recovery[s].dist2 respectively.

3: else

4: Run SSSP on G’ with source s. The initial frontier is s with dist[s]← 0.

5: parallel for v ∈ removed do

6: d1← dist[recovery[v].end1] + recovery[v].dist1

7: d2← dist[recovery[v].end2] + recovery[v].dist2

8: dist[v]← min(d1, d2)

5.3.1 Correctness

To show correctness of Algorithm 7, we must show 3 things:

1. Running SSSP with a source in removed will settle all non-removed vertices.

2. Running SSSP with a source not in removed will settle all non-removed vertices.

3. After the completion of Recover Dists, the final distance array is settled.

Lemma 12 Any vertex not in removed only has neighbors that are also not removed.

Proof. Start with a node x not in removed. Assume to the contrary, that there exists a

29

y ∈ N(x) that is removed. We know from Lemma 9 that there must be a valid shortcut

between x → y with distance greater than 1. However, it’s not possible for y to have a

distance greater than 1 because a removed vertex is cut and has a degree of 0. Thus by

contradiction we have proved all neighbors of vertex not in removed are also not in removed.

Lemma 13 Running SSSP on any source vertex s /∈ removed will settle all other vertices

not removed.

Proof. Given a source node s not in removed, we want to prove SSSP will settle

all other vertices not removed. This proof proceeds by induction. The base case is true

since we know that the source is not removed and the SSSP distance from the source is

always 0. Assume there is a node x that is also not removed and is settled. We want to

show all N(x) are not removed and can be settled from SSSP. From Lemma 12, we know

all y ∈ N(x) must not be removed. Then by definition, deg(y) > 0. We know dist[x] is

settled. Due to the correctness of SSSP algorithms, we know SSSP from the source x must

also settle all N(x) since they are reachable from x. Thus, the claim holds for N(x) and we

have proved that all non-removed vertices can be settled with SSSP with induction.

Lemma 14 Given a source node s that is in removed, we can SSSP on s and settle s and the

non-removed nodes by first setting the initial frontier equal to recovery[s].end1, recovery[s].end2

and setting distances to the endpoints with recovery[s].dist1 and recovery[s].dist2 respec-

tively.

Proof. We begin with a removed source vertex s. Assume we initialize the

first frontier within the SSSP algorithm to have 2 endpoints for s, denoted as e1 and

30

e2, found in recovery[s].end1 and recovery[s].end2. Also assume we set dist[end1] to

recovery[s].dist1 and dist[end2] to recovery[s].dist2. We will denote recover[s].dist1 as

d1 and recovery[s].dist2 as d2 from now on. end1 and end2 are not in removed because

because we only remove vertices with degree 2, and by definition an endpoint can not have

a degree of 2. Furthermore, dist[end1] and dist[end2] must be settled. From Lemma 10 we

know that d1 and d2 are the minimum path distances from s. Then, setting dist[end1]← d1

and dist[end2]← d2 are obviously the final distances, since the source starts with a distance

of 0 and there are no smaller paths to end1 and end2. Since each vertex in this frontier of

end1, end2 is not-removed and settled, we know that the remaining not-removed vertices

can be settled with Lemma 13.

Lemma 15 Any removed vertices are settled after running Algorithm 7.

Proof. From Lemma 10, we know that any vertex v ∈ removed contains a

corresponding index in recovery with endpoints e1, e2 and the minimum distances from

v to e1, e2 as d1, d2 respectively. Additionally, we know that both dist[e1] and dist[e2]

must be settled according to Lemma 13 and Lemma 14. Then setting dist[v] to be the

minimum between dist[recovery[v].end1] + recovery[v].dist1 and dist[recovery[v].end2] +

recovery[v].dist2 must settle v.

5.3.2 Cost Analysis

Theorem 16 Settling removed vertices has a work of O(n) and a span of O(log n).

Proof. There is a single parallel for loop iterating over at most n elements. Each

statement inside this loop (lines 6-8) are all constant time operations. Therefore, the total

31

work and span are simply based off the time to process the for loop in parallel, which is

O(n) work and O(log n) span.

32

Chapter 6

Implementation and Optimizations

This chapter outlines how several key algorithms were implemented, tested, and

optimized.

6.1 Bellman-Ford

This section describes key implementation details for the BF algorithm.

6.1.1 Local Updates First

In both sparse and dense relaxation, we actually do a local update to the frontier

node with its minimum tentative neighbor distances. We found that this has a definite

impact on the total number of rounds required, since it reduces contention for WriteMin

later on.

33

6.1.2 No Visited Array

We originally maintained a visited array (as described in Algorithm 3), but after

further experimentation, we found that maintaining this visited array is actually expensive

in terms of runtime. This is because we have to clear portions of the visited array after each

frontier is generated. Overall the time adds up since there are many rounds of execution

in sparse graphs. We ended up implementing that algorithm without the visited array, but

of course we end up having slightly larger frontiers as they may have redundant vertices

in them. After looking into it, there is typically < 100 repeated vertices, even with large

frontier sizes.

6.2 Container Choice

We actually spent some time to determine what container choices have the best

performance for out datasets. We tested with raw C-style arrays, Parlay sequences of

integer types different integer types, and also atomic arrays and sequences. Because of

the convenience of many functions and primitives provided by ParlayLib, we mainly utilize

Sequences.

6.3 Coarsening

Coarsening is definitely something we experimented with since it can have pretty

drastic results. If the parallelism is too fine, there is not sufficient work to do per thread,

and there ends up being excess overhead due to scheduling and synchronization. However, if

the parallelism is too coarse, then there may not be sufficient parallelism to achieve optimal

34

results. In reality, we simple experimented by setting several parameters and seeing the

performance result after tuning them one at a time. For coarsening, we have this in several

forms. Within sparse relax, we let the inner loop be a sequential for loop if the number of

neighbors is less than some parameter, which we set to 10000.

6.4 Delayed Sequencing

Whenever possible, we implemented delayed sequencing to reduce the memory

overhead of large arrays. Delayed sequencing is passing a function that returns a value

instead of passing an actual array that returns the value.

6.5 Contraction

We actually experimented with 2 versions of the contraction algorithm. One is

more aggressive - any possible chain vertex was cut. The other is less aggressive - only chains

with length ≥ 5 were cut. After some testing, we found that the less aggressive version

has a better performance on sparse graphs. We think it’s because with very aggressive

shortcutting, it’s somehow possible to prematurely relax a vertex. By only focusing on

certain chain lengths, it helps limit the amount of redundant work. Unfortunately, there is

still a lot of revisited vertices in Bellman-Ford, as can be seen in the next chapter.

35

Chapter 7

Experimental Results

This chapter covers experimental setup, input data, and the analysis of prepro-

cessing metadata and runtime performance.

7.1 Experimental Setup

The machine used for all of the experiments is a 2.4 GHz 64-bit Intel Xeon machine

with 32 cores and 64 hyperthreads. It has 125 GB of RAM and a L3 cache size of 24MB.

Both sequential and parallel programs were compiled using G++ 8.5.0, with the flags -Ofast

and -std=C++17. The program was implemented with ParlayLib [9] and uses their built-in

scheduler and many of their primitives, such as Pack, WriteMin, and Sort. Note that any

parallel framework that also follows the binary-fork join model should be able to attain

comparable results. This includes OpenMP and Cilk+[24, 29].

Times reported are the median result from 10 runs. These times do not include

memory allocation time, unless that is done within the sparse relax or dense relax function.

36

Time to convert frontiers (ie. sparse ↔ dense) is also included, although this typically has

a negligible impact on time. Lastly, all contracted graphs include the RecoverDist time

since it is required to settle all distances. This is more or less a negligible time increase.

7.1.1 3rd-Party Algorithm Utilization

To show more robust results, we utilize several different Parallel SSSP algorithm

implementations. Table 7.1 shows the algorithm name, what we denote the implementation

as in the data, and where this implementation comes from.

Algorithm Denoted As Source

Bellman-Ford BF Ours

Bellman-Ford BF* Parallel-SSSP

Delta-Stepping DELTA* Parallel-SSSP

Rho-Stepping RHO* Parallel-SSSP

Table 7.1: Overview of Parallel SSSP Algorithms used in Testing

We use them as-is with no attempt to meaningfully alter the code. We only add

a way to extract metrics such as frontier size and runtime. But that is not included in the

reported time, so it is a faithful implementation of their work and results should definitely

be comparable. The source code for all Parallel-SSSP algorithms can be found here.

7.1.2 Input Graphs

We use four input graphs for testing. Orkut (OK) and LiveJournal (LJ) are both

social media networks and thus are quite dense. The other two graphs are RoadUSA (US)

and RoadGermany (GE), both of which have a small average degree of 2. We picked

these 4 graphs because they all have sufficiently large n and m while maintaining different

37

https://github.com/ucrparlay/Parallel-SSSP

properties, enabling a greater range of testing. Note that we explicitly ignore any given

edge weights since we apply our own transformations later. We obtained both US and GE

datasets from the Network Repository [30] and obtained OK and LJ from SNAP [25]. We

show the following table depicting some key metrics for these datasets.

Dataset n m Average Degree Max Degree

US 23947347 5770862 2.4098 9

GE 12277375 32266600 2.6281 13

LJ 4846609 85702474 17.6795 20333

OK 3072441 234370166 76.2768 33313

Table 7.2: Original Dataset Metadata

The leftmost column identifies the dataset. Columns n and m show the number

of vertices and edges respectively. Average Degree shows the average degree of a vertex.

And Max Degree shows the largest degree of any vertex in that dataset.

7.2 K-nearest Edges Results

In this section we analyze data obtained for KNE. We start with how varying

values of k affect the datasets themselves and then look into performance metrics.

Table 7.3 shows metadata information of the input graphs after running KNE

when k = 2 and k = 10. The remaining data values for k are skipped for brevity here.

We can see that increasing k leads to an increase in m and the average degree. For sparse

graphs like the US and GE datasets, there is a dramatic increase in edges (4.36x and 4.12x

respectively). On the other hand, there is almost no increase to edges in the OK dataset.

Since that dataset has a high average degree initially, only setting the k up to 10 will have

38

a limited effect. If we set k higher, we would see similar results.

graph k n m avg degree max degree time

US 2 23947347 67023442 2.7988 12 2.819

US 10 23947347 292800584 12.2268 52 15.7446

GE 2 12277375 36065736 2.9376 14 1.7574

GE 10 12277375 148840202 12.1231 59 8.089

LJ 2 4846609 87815562 18.1154 25242 4.0469

LJ 10 4846609 127024250 26.2037 54295 5.8278

OK 2 3072441 234505700 76.3209 33313 13.6461

OK 10 3072441 238376554 77.5807 51927 14.0851

Table 7.3: Metadata for Input Graphs when k = 2 and k = 10

Figure 7.1 shows the total number of edges after running Algorithm 5 with specific

values of k. We can see a strong correlation between the the total number of edges in the

graph and construction time. We can note that the US dataset has the most aggressive

growth. GE also grows consistently, but just not at the rate that US does. We can also

see LJ has a consistently small growth compared to the road networks. Notice that there is

almost no growth in the OK dataset. This is because the values of k chosen were not large

enough to cause major changes in m, since KNE will not attempt to generate shortcuts

on a vertex that it determines to be dense. Recall from Table 7.3 that the average degree

increased only by about 1 for the OK dataset, which is far lower than all other graphs.

Figure 7.2 depicts how increasing values of k affects runtime for road networks. We

can see that there are not many consistent patterns, so it is hard to draw conclusions from

the figure alone. For example, if we focus on the bottom row (US), we can see that increasing

k has a consistent increase in time for the BF* and DELTA* algorithms. However, those

39

Figure 7.1: Shortcut Construction Time vs Edges

40

Figure 7.2: Execution Time vs k for Road Networks

41

same algorithms show minimal change for GE dataset, which is the most similar dataset to

US in terms of density. BF also has a very different pattern between GE and US. In US,

BF has something like a normal curve in terms of timing. Having a small k has a small

time, and then having a large k also has a small time. but values in the middle increase the

time. On the other hand, the same algorithm shows not the same pattern on GE. In GE,

we can see there’s not a clear shape of timing execution.

Figure 7.3: Total Rounds vs k for Road Networks

We can see from Figure 7.3 that in both graphs, we can see a clear reduction in

total number of rounds. The pattern is stronger in US compared GE dataset, but it is still

there. BF and ρ-stepping show the largest overall reduction in rounds for both graphs.

42

While BF* does not show much change in terms of rounds, all other algorithms show a

clear progression as k increases.

Figure 7.4: Frontier Size each Round for GE

Figure 7.4 shows the frontier size during each round of execution for each value for

k for the GE dataset. Only GE is shown for brevity. The top value in each column shows

the value of k picked in that run. In this case it varies from 1 to 10 (1 effectively means

the original graph). Each row shows a different algorithm, labelled in the legend on the

right. The most important thing is if we look across a single row, we can see how the overall

frontiers shape transforms over k. BF is a great example of this. We can clearly see the

43

initial pattern is many small frontiers, which is a large number of rounds but with shallow

depth. As we increase k, we can see the frontier curve consistently becomes sharper and the

overall rounds decrease. ρ-stepping shows the same kind of pattern. It’s not as noticeable

for BF∗ and δ-stepping. This is primarily because both BF∗ and δ-stepping already show

a frontier pattern that has minimal rounds with large frontiers. After increasing k, both of

those algorithms maintain the same pattern.

7.3 Analysis of Contracted Graph Results

In this section we will look at results after running Algorithm 6. We begin with

the metadata and then analyze the runtime statistics.

7.3.1 Contracted Graph metadata

Table 7.4 contains the metadata after contraction is executed.

Dataset n m Average Degree Max Degree

US 22710198 55208022 2.3054 9

GE 12065194 31800762 2.5902 13

LJ 4815184 85609014 17.6602 20333

OK 3071883 234368492 76.2763 33313

Table 7.4: Contracted Dataset Metadata

We can see from the above tables that after running contraction, all datasets have

a reduction in the average degree. While there is little change in the number of edges for

LJ and OK, about 2.5M edges are cut from US and about 450K edges are cut from GE.

44

7.3.2 Runtime Performance of Parallel Bellman-Ford

Figure 7.5: Execution Time vs Threads for BF on Road Networks

Figure 7.5 shows Time vs Thread Count for Bellman-Ford on the US and GE

datasets. We directly compare the performance before and after contraction. We can see

that in both datasets, the contracted graph never shows a better time than the original for

BF. We can also see that the US dataset has very good parallelism after contraction - as

we double the number of threads, we can see a time decrease by nearly half.

45

7.3.3 Runtime Performance of the State of the Art Algorithms

Non-trivial optimizations are required to see the benefits of the contraction algo-

rithm on sparse graphs, such as road networks. As previously mentioned, Dong et. al.

developed a stepping framework for parallel SSSP algorithms and opensourced their imple-

mentations of δ-stepping, ρ-stepping, and Bellman-Ford [18]. These are highly optimized

implementations that rely on a novel abstract data type called a Lazy Batched Priority

Queue(LaB-PQ). The LaB-PQ is a priority queue that can batch multiple updates and

queries in parallel. They also utilize the idea of bucket fusion introduced by [15], where

they fuse multiple frontiers into a single frontier. We will see soon that it shows strong

performance in practice.

Figure 7.6: Execution Time vs Threads for Selected Algorithms

46

Figure 7.6 shows the the execution time in seconds compared to threads utilized

for the BF*, DELTA*, and RHO* on all datasets. We directly compare the performance of

the contracted graph vs the original as we overlay them in each sub-chart. If we look at the

middle column for DELTA*, we can see overall the greatest amount of improvement after

applying contraction. For both the GE and US datasets, DELTA* has better performance

with every measured thread count. If we look at the column for RHO*, we can also see

improvement for all datasets except GE. Surprisingly, RHO* shows the greatest overall

improvement for LJ and OK, both of which are still quite dense after running contraction.

In a similar fashion, BF* shows the most improvement for LJ and OK. With the exception of

BF*, all algorithms are not worse after running contraction as evidenced by their runtimes.

Figure 7.7 shows the frontier size each round when run with 64 threads. Only

the US dataset is shown here for simplicity, although GE behaves similarly. We can see

DELTA* and RHO* both obtain a different structure after contraction. Instead of many

small frontiers, they end up having a very short spike. For reference, RHO* goes from 2906

rounds to 489 rounds after contraction, and the max frontier size increases from 11408 to

19060. Similarly DELTA* goes from 22719 rounds to 73 rounds after contraction, and its

max frontier size increases from 10470 to 68118. Interestingly, BF* is the only algorithm to

show almost no change in frontier shape after contraction. Somehow, BF ends up doing lots

of additional work after contraction. After contraction, BF goes from 6142 to 5558 rounds.

But the max frontier size increases from 9410 to 244091. For BF, we can also see that the

average frontier size balloons as well to 100383, compared to 3898. Despite a reduction in

rounds, there is a far larger increase in work for BF, causing worse times overall.

47

Figure 7.7: Frontier Size each Round in RoadUSA

48

Figure 7.8: Runtime vs Expected Work

49

Figure 7.8 shows the execution time of all algorithms vs their expected works.

We define expected work simply as the ∥averagefrontier∥ ∗ rounds. Each row represents

a different graph, and each column indicates if the graph is contracted or not. We can

see from the middle rows that LJ and OK show no real difference after contraction. This

is expected behavior since contraction does not cut many vertices and edges from these

graphs. We can see 2 major patterns with regards to GE and US. First, the expected work

for both DELTA* and RHO* decrease after contraction (although it is hard to see RHO*

decrease). Conversely, the expected work for BF increases after contraction.

graph status algo rounds Average Frontier Max Frontier time threads

GE original BF 1714 7162 14985 0.2947 64

GE original RHO* 837 7951 15944 0.175348 64

GE original DELTA* 6500 7264 14477 0.678846 64

GE original BF* 45 38743 76115 0.215973 64

GE contracted BF 1215 54673 147608 0.9981 64

GE contracted RHO* 179 8464 34416 0.208306 64

GE contracted DELTA* 33 40403 96912 0.267993 64

GE contracted BF* 35 34701 73212 0.262457 64

US original BF 6142 3898 9410 0.6306 64

US original RHO* 2906 4356 11408 0.348895 64

US original DELTA* 22719 4099 10470 1.70606 64

US original BF* 74 39246 84135 0.224052 64

US contracted BF 5558 100383 244091 5.6795 64

US contracted RHO* 489 4904 19060 0.237733 64

US contracted DELTA* 66 33641 68118 0.271372 64

US contracted BF* 66 34055 77662 0.26895 64

Table 7.5: Runtime Data for Road Networks with 64 Threads

Table 7.5 shows the raw performance metrics before and after contraction. Only

data for the US and GE datasets with 64 threads is shown to conserve space. We can note

several interesting observations. After contraction, all algorithms decrease in total rounds.

DELTA* shows an increase in average frontier size after contraction by about 5.6x and

8.2x for GE and US respectively. RHO* shows different results, only increasing the average

50

frontier size by 1.06x and 1.12x for GE and US respectively. And BF* actually shows a

reduction in average frontier size by 10.4% and 13.2% after contraction. Even though each

of those 3 algorithms show a different pattern in average frontier size after contraction, it’s

not exactly indicative of runtime performance.

51

Chapter 8

Conclusions

SSSP is a fundamental question of interest within the network community. While

sequential algorithms are well-studied with strong bounds, deterministic parallel algorithms

often make a trade-off between work and span to achieve strong theoretical and practical

performance. In particular, Parallel SSSP is a notoriously difficult problem, especially on

certain input topologies like road networks. We noticed that while Parallel Bellman-Ford has

strong performance on low-diameter dense graphs, it struggles to perform well with sparser

networks. We theorized this is due to the span bound of O(diam(g) log n). To combat this,

we proposed 2 different preprocessing algorithms. The first is k-nearest edges, which guar-

antees each vertex to have degree ≥ k after completion. The second is contraction, which

removes specific chain vertices and replaces them with a shortcut from endpoint to endpoint.

We implemented these preprocessing algorithms and benchmarked them by comparing the

performance of various parallel SSSP algorithms, including δ-stepping, ρ-stepping, and 2

differing implementations of Bellman-Ford. We show for both preprocessing algorithms,

52

the shape of the frontiers drastically change for sparse graphs like road networks, especially

for Bellman-Ford and ρ-stepping. For contraction in particular, we show improved time

for δ-stepping and ρ-stepping. Future work could be trying different contraction strategies

and comparing the runtime results. For example, we could maintain contraction chains of

length at most k to see if this graph has interesting properties to explore. Additionally,

another future work possibility is to be more selective with KNE and only attempt to add

shortcuts to vertices that seem relatively sparse.

53

Bibliography

[1] Md Altaf-Ul-Amin, Yoko Shinbo, Kenji Mihara, Ken Kurokawa, and Shigehiko Kanaya.
Development and implementation of an algorithm for detection of protein complexes
in large interaction networks. BMC Bioinformatics, 7(1), 2006.

[2] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected
shortest paths via low hop emulators. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, page 322–335, New York, NY, USA,
2020. Association for Computing Machinery.

[3] ARM. Arm a64 instruction set architecture. https://developer.

arm.com/documentation/ddi0596/2020-12/Base-Instructions/

CAS--CASA--CASAL--CASL--Compare-and-Swap-word-or-doubleword-in-memory-l,
2020. Online; accessed 1 June 2023.

[4] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for mul-
tiprogrammed multiprocessors. In Proceedings of the Tenth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA ’98, page 119–129, New York, NY,
USA, 1998. Association for Computing Machinery.

[5] Scott Beamer, Krste Asanovic, and David Patterson. Direction-optimizing breadth-first
search. In SC ’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–10, 2012.

[6] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90,
1958.

[7] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight
single-source shortest paths in near-linear time, 2022.

[8] Guy E. Blelloch. Prefix sums and their applications. 1990.

[9] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. Parlaylib - a toolkit for
parallel algorithms on shared-memory multicore machines. In Proceedings of the 32nd
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’20, page
507–509, New York, NY, USA, 2020. Association for Computing Machinery.

54

https://developer.arm.com/documentation/ddi0596/2020-12/Base-Instructions/CAS--CASA--CASAL--CASL--Compare-and-Swap-word-or-doubleword-in-memory-l
https://developer.arm.com/documentation/ddi0596/2020-12/Base-Instructions/CAS--CASA--CASAL--CASL--Compare-and-Swap-word-or-doubleword-in-memory-l
https://developer.arm.com/documentation/ddi0596/2020-12/Base-Instructions/CAS--CASA--CASAL--CASL--Compare-and-Swap-word-or-doubleword-in-memory-l

[10] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. Optimal parallel
algorithms in the binary-forking model. In Proceedings of the 32nd ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’20, page 89–102, New York,
NY, USA, 2020. Association for Computing Machinery.

[11] Guy E. Blelloch, Yan Gu, Yihan Sun, and Kanat Tangwongsan. Parallel shortest-paths
using radius stepping, 2016.

[12] Guy E. Blelloch and Bruce M. Maggs. Parallel algorithms. ACM Comput. Surv.,
28(1):51–54, mar 1996.

[13] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. J. ACM, 46(5):720–748, sep 1999.

[14] Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens. Work-efficient
parallel gpu methods for single-source shortest paths. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 349–359, 2014.

[15] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A framework for paral-
lel graph algorithms using work-efficient bucketing. In Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’17, page 293–304,
New York, NY, USA, 2017. Association for Computing Machinery.

[16] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient parallel
graph algorithms can be fast and scalable. ACM Trans. Parallel Comput., 8(1), apr
2021.

[17] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
1(1):269–271, dec 1959.

[18] Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. Efficient stepping algorithms
and implementations for parallel shortest paths. In Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’21, page 184–197,
New York, NY, USA, 2021. Association for Computing Machinery.

[19] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM, 34(3):596–615, jul 1987.

[20] Pawan Harish, Vibhav Vineet, and P Narayanan. Large graph algorithms for massively
multithreaded architectures. 03 2009.

[21] Intel. Intel® 64 and ia-32 architectures software developer’s manual.
https://www.intel.com/content/www/us/en/developer/articles/technical/

intel-sdm.html, 2023. Online; accessed 1 June 2023.

[22] Kevin Kelley and Tao B. Schardl. Parallel single-source shortest paths. 2010.

[23] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar, Andrew
Tompkins, and Eli Upfal. The web as a graph. In Proceedings of the Nineteenth ACM

55

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
’00, page 1–10, New York, NY, USA, 2000. Association for Computing Machinery.

[24] Charles E. Leiserson. The cilk++ concurrency platform. In Proceedings of the 46th
Annual Design Automation Conference, DAC ’09, page 522–527, New York, NY, USA,
2009. Association for Computing Machinery.

[25] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[26] Kamesh Madduri, David A. Bader, Jonathan W. Berry, and Joseph R. Crobak. An
experimental study of a parallel shortest path algorithm for solving large-scale graph
instances. In Proceedings of the Meeting on Algorithm Engineering & Expermiments,
page 23–35, USA, 2007. Society for Industrial and Applied Mathematics.

[27] Julian Mcauley and Jure Leskovec. Discovering social circles in ego networks. ACM
Trans. Knowl. Discov. Data, 8(1), feb 2014.

[28] Ulrich Meyer and Prashanthan Sanders. Delta-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms, 49:114–152, 10 2003.

[29] OpenMP. Openmp homepage. https://www.openmp.org/, 2023. Online; accessed 1
June 2023.

[30] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive
graph analytics and visualization. In AAAI, 2015.

[31] G. Sander. Graph layout for applications in compiler construction. Theoretical Com-
puter Science, 217(2):175–214, 1999. ORDAL’96.

[32] Zheqi Shen, Zijin Wan, Yan Gu, and Yihan Sun. Many sequential iterative algorithms
can be parallel and (nearly) work-efficient. In Proceedings of the 34th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’22, page 273–286, New York,
NY, USA, 2022. Association for Computing Machinery.

[33] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework for
shared memory. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’13, page 135–146, New York, NY, USA,
2013. Association for Computing Machinery.

[34] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. Reducing
contention through priority updates. In Proceedings of the Twenty-Fifth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’13, page 152–163,
New York, NY, USA, 2013. Association for Computing Machinery.

[35] Mikkel Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. J. ACM, 46(3):362–394, may 1999.

56

http://snap.stanford.edu/data
https://www.openmp.org/

[36] Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib
Kamil, Saman Amarasinghe, and Julian Shun. Optimizing ordered graph algorithms
with graphit. In Proceedings of the 18th ACM/IEEE International Symposium on Code
Generation and Optimization, CGO 2020, page 158–170, New York, NY, USA, 2020.
Association for Computing Machinery.

57

	List of Figures
	List of Tables
	Introduction
	Related Work
	Single-Source Shortest Path Algorithms
	Parallel Algorithms for the Binary Fork Join Model
	Graph Frameworks
	Parallel SSSP
	Parallelism beyond Multicore Shared Memory

	Preliminaries
	Graph Notation
	Definitions
	Computational Model
	Parallel Primitives
	Scan
	Pack
	Flatten
	WriteMin

	Graph Traversal Algorithms
	Dijkstra
	Parallel Bellman-Ford
	Main Method
	Sparse Frontier
	Dense Frontier
	A Note on Bellman-Ford vs BFS

	Delta-Stepping
	Rho-Stepping

	Preprocessing Algorithms
	K-nearest Edges
	Correctness
	Cost Analysis

	Contraction
	Correctness
	Cost Analysis

	Recover Dists
	Correctness
	Cost Analysis

	Implementation and Optimizations
	Bellman-Ford
	Local Updates First
	No Visited Array

	Container Choice
	Coarsening
	Delayed Sequencing
	Contraction

	Experimental Results
	Experimental Setup
	3rd-Party Algorithm Utilization
	Input Graphs

	K-nearest Edges Results
	Analysis of Contracted Graph Results
	Contracted Graph metadata
	Runtime Performance of Parallel Bellman-Ford
	Runtime Performance of the State of the Art Algorithms

	Conclusions
	Bibliography

