
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Exploiting Time Series Primitives to Solve Realistic Data Mining Problems

Permalink
https://escholarship.org/uc/item/6r725821

Author
Begum, Nurjahan

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6r725821
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

 Exploiting Time Series Primitives to Solve Realistic Data Mining Problems

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Nurjahan Begum

June 2016

Dissertation Committee:

Dr. Eamonn Keogh, Chairperson

Dr. Vassilis Tsotras

Dr. Stefano Lonardi

Dr. Tamar Shinar

Copyright by

Nurjahan Begum

2016

The Dissertation of Nurjahan Begum is approved:

 Committee Chairperson

University of California, Riverside

 iv

 ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my advisor Dr. Eamonn Keogh for his

great mentorship, generous support and brilliant guidance throughout my PhD life.

Getting the opportunity to work with such an awesome advisor is indeed a precious gift,

and I deeply appreciate his brilliant advice, continuous support and invaluable inspiration

which have helped me reaching this milestone of my life. He was always there whenever

I needed help, and I am humbly thankful for this. I graciously thank Dr. Vassilis Tsotras,

Dr. Stefano Lonardi and Dr. Tamar Shinar for their generous advice in compiling this

thesis.

This is the best place to express my gratitude to my parents, Abdul Motaleb and

Nurun Nahar Begum, my siblings Moinul Hossain and Nusrat Jahan for their precious

support and inspiration that have boosted my motivation to work harder. I would like to

thank my super supportive husband, Mahbub Hasan, without whose constant inspiration

and support, I cannot imagine a success of my life. Thank you very much for motivating

me, and teaching me to dream big!

Last but not least, I am thankful to the wonderful colleagues I came across during

my PhD journey. My sincere thanks to all the data mining labmates and colleagues

(names in random order) for their invaluable support and friendship: Liudmila Ulanova,

Mohammad Shokoohi-Yekta, Reza Rawassizadeh, Yanping Chen, Yan Zhu, Bing Hu,

Yuan Hao, Thanawin Rakthanmanon, Abdullah Mueen, Jesin Zakaria, Dau Hoang Anh,

Michael Yeh and Yifei Ding. Finally I would like to thank Ms. Amy Ricks and Ms.

Vanda Yamaguchi for their generous help whenever I needed them.

 v

ABSTRACT OF THE DISSERTATION

Exploiting Time Series Primitives to Solve Realistic Data Mining Problems

by

Nurjahan Begum

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, June 2016

Dr. Eamonn Keogh, Chairperson

Given the ubiquity of time series data in scientific, medical and financial domains,

data miners have made substantial efforts to design efficient algorithms for classification,

clustering, rule discovery and anomaly detection for this data type. In particular, all these

well-known problems are important as exploratory techniques, and as sub-modules for

answering higher level data mining questions. In essence, this means designing simple

but efficient algorithms for these primitive modules is a critical part to solve highly

complex data mining problems. In real-life scenarios, where the time series data is noisy

and high-scale, it is important that the algorithms are invariant to irrelevant data and are

amiable to optimizations. In addition, the algorithms should be parameter-lite and should

involve least possible human intervention. Developing efficient algorithms to solve

realistic data mining problems with these design criteria has been a challenging task to

researchers over the last few decades. In this dissertation, we propose techniques to

design such robust algorithms in classification, clustering and motif discovery context. In

particular, the core contribution of this dissertation is as follows:

 vi

First, we propose techniques for the previously unsolved problem of finding the

stopping criterion of semi-supervised time series classification. The core assumption of

most of the time series classification algorithms per se is the availability of copious

amount of labeled instances. However, this assumption is often unrealistic, and requires

careful attention of data experts, which is a critical bottleneck in data analysis. Semi-

supervised learning is an obvious way to mitigate the need for human labor, however,

most such algorithms are designed for intrinsically discrete objects, and do not work well

in time series domain, which requires the ability to deal with real-valued objects arriving

in streaming fashion. In this work, we demonstrate that in many cases, just a handful of

human annotated examples are sufficient to perform accurate classification. Also, we

devise a novel parameter-free stopping criterion for semi-supervised time series

classification.

Second, we propose an algorithm for robustly clustering large time series datasets

with invariance to irrelevant data. In this work, we show that for similarity search, even

though there is the general superiority of Dynamic Time Warping (DTW) distance

measure over Euclidean distance (ED), the same is not true for clustering. Thus,

clustering time series under DTW remains a computationally challenging task. We

propose a novel pruning strategy that exploits both the upper and lower bounds to prune

off a large fraction of the expensive distance calculations. For datasets where even this

level of speedup is inadequate, we show that we can use a simple heuristic to order the

unavoidable calculations in a most-useful-first ordering, thus casting the clustering as an

anytime algorithm.

 vii

Finally in the last part of the dissertation, we investigate algorithms to find time

series motifs which have been shown to have great utility as a subroutine in many higher-

level data mining algorithms. As we show, this detection becomes much harder in cases

where the motifs of interest are vanishingly rare or when faced with a never-ending

stream of data. We demonstrate that under reasonable assumptions, we must abandon any

hope of an exact solution to the motif problem as it is normally defined; however we

introduce algorithms that allow us to solve the underlying problem with high probability.

 viii

Table of Contents

List of Figures..xi

List of Tables..xvii

Chapter 1: Introduction ... 1

1.1 Semi-supervised time series classification .. 1

1.2 Generalized density based clustering .. 3

1.3 Rare Motif Discovery .. 5

Chapter 2: A Minimum Description Length Based Stopping Criterion for Semi-supervised Time

Series Classification..7

2.1 Introduction ... 8

2.2 Related Work ... 11

2.3 Background and Notation .. 14

2.4 Algorithms ... 21

2.4.1 Semi-supervised Time Series Classification .. 21

2.4.2 Stopping Criterion .. 24

2.5 Experimental Results .. 29

2.5.1 MIT-BIH Supraventricular Arrhythmia Database .. 29

2.5.2 St. Petersburg Arrhythmia Database .. 31

2.5.3 Sudden Cardiac Death Holter Database .. 32

2.5.4 Additional Examples ... 34

2.5.5 Comparison with Rival Approaches ... 35

2.5.6 ROC Curve ... 36

2.5.7 When does the Algorithm Fail? ... 37

2.6 Conclusions and Future Work .. 38

2.7 Acknowledgement ... 39

 ix

Chapter 3: A General Framework for Density Based Time Series Clustering Exploiting a Novel

Admissible Pruning Strategy..40

3.1 Introduction .. 41

3.1.1 Why This Problem is Hard .. 43

3.1.2 Why Existing Work is NOT the Answer ... 46

3.2 Related Work ... 48

3.3 Background .. 51

3.3.1 Anytime Algorithms .. 51

3.4 Algorithm ... 53

3.4.1 Density Peaks Algorithm Overview ... 53

3.4.2 TADPole: Our Proposed Algorithm ... 57

3.4.2.1 Pruning During Local Density Calculation .. 59

3.4.2.2 Pruning During NN Distance Calculation from Higher Density List 62

3.4.2.3 Multidimensional Time Series Clustering .. 66

3.4.2.4 How Effective is Our Pruning? .. 68

3.4.2.5 Distance Computation-Ordering Heuristic ... 71

3.5 Experimental Evaluation .. 74

3.5.1 Comparison with State-of-the-Art Clustering Algorithms 74

3.5.2 Parameter Sensitivity Experiments ... 78

3.5.3 Heuristics for Setting Parameters .. 79

3.6 Case Studies ... 83

3.6.1 Electromagnetic Articulograph Dataset ... 83

3.6.2 Pulsus Dataset ... 85

3.6.3 Person Re-Identification Dataset ... 87

3.6.4 Clustering Multidimensional Data .. 88

3.6.4.1 Cricket Dataset .. 88

3.6.4.2 uWaveGestureLibrary Dataset ... 89

3.6.5 Generalizing TADPole to Cluster Discrete Data .. 90

3.6.5.1 Clustering of Protein Sequences with Edit Distance ... 91

 x

3.7 Conclusions .. 96

3.8 Acknowledgements ... 96

3.9 Appendix .. 96

Chapter 4: Rare Time Series Motif Discovery from Unbounded Streams...................................100

4.1 Introduction .. 100

4.2 Definitions and Notation .. 102

4.3 Problem Definition .. 105

4.3.1 A Brute Force Algorithm ... 109

4.3.2 Brute Force with Limited Memory ... 109

4.3.2.1 Derivation of the Success Metric... 110

4.3.3 Analysis of Cache Replacement Policies .. 114

4.3.4 A Magic Sticky Cache .. 116

4.4 Data Representation Policy ... 118

4.4.1 Initial Observation ... 118

4.4.2 Cost Model ... 120

4.4.2.1 Cost Calculation ... 121

4.4.3 Dimensionality Reduction ... 125

4.4.4 Cardinality Reduction ... 126

4.5 Sticky Cache Algorithm ... 128

4.5.1 Setting Appropriate Bloom Filter Size .. 130

4.5.2 Algorithms ... 133

4.5.2.1 Detection of Potential Target Instances ... 133

4.5.2.2 Cache Maintenance.. 135

4.6 Experimental Evaluation .. 138

4.6.1 Rate of Detection .. 138

4.6.2 Worst-Case Time Complexity .. 141

4.6.3 Case Studies ... 141

4.6.3.1 Wildlife Monitoring .. 141

 xi

4.6.3.2 Energy Disaggregation ... 143

4.7 Related Work ... 144

4.8 Conclusions .. 146

Chapter 5: Conclusion and Directions to Future Extension..147

Bibliography..151

 xii

List of Figures

Fig. 1. left) The initial positive instance (blue/square) along with unlabeled positive

(grey/circle) and negative (grey/small triangle) instances. center) A too liberal stopping

criterion produces lots of false positives (blue/small square). right) A too conservative

stopping criterion produces lots of false negatives (grey/large triangles). 10

Fig. 2. A long time series T (grey/dashed) with a subsequence Ti (purple/thin) extracted

and compared to a query Q (red/bold) under the Euclidean distance 15

Fig. 3. A complete linkage clustering of time series incartdb I70 [11]. left) Original 32-bit

data. right) the same data with cardinality reduced to eight values (3-bits). 16

Fig. 4. Critical difference diagram representing the ranked error rates of the 1-NN

classifier for the two cardinality representations of the data (Table 1). 18

Fig. 5. : Time series A (maroon/dashed) is represented by the sum of hypothesis H

(solid/black) and the difference vector A’(green/bold). .. 21

Fig. 6. left) The initial positive instance (blue/square) selects its nearest positive instance

(green/circle). middle and right) As we continue iterating, more unlabeled instances are

labeled as positive and added to the training set. .. 22

Fig. 7. Inner circles (black/thicker) correspond to the earlier iterations. left) The initial

positive instance (blue/square) selects its nearest neighbor as a positive instance

(green/circle). middle and right) False Positives (red/triangle) are added........................ 24

Fig. 8. An original time series is shown in blue and its discretized version is shown in

purple. ... 25

Fig. 9. top) The initial seed chosen as a hypothesis. bottom) The six instances (of length

100 each) of the dataset with their class labels (from ground truth) 26

Fig. 10. The instances (cyan/thin) in the training set are encoded. The mismatches are

colored as brown *. ... 27

Fig. 11. After correctly encoding the three ‘V’ instances, attempts to encode the ‘N’

instances require more bits than the raw data representation. .. 28

Fig. 12. top) Reduced Description Length curve after encoding the instances shown in

bottom) .. 28

 xiii

Fig. 13. Reduced Description Length vs. no. of encoded instances plot for the SVDB

dataset. Green/thick and red/thin points denote TP and TN instances respectively. 31

Fig. 14. Reduced Description Length of the labeled set vs. no. of encoded time series plot

for the INCARTDB dataset. ... 32

Fig. 15. Reduced Description Length of the labeled set vs. no. of encoded time series plot

for the SDDB dataset. ... 33

Fig. 16. Reduced description length of the labeled set vs. no. of encoded time series plots.

left) SwedishLeaf_TEST Dataset. center) Fish_TEST Dataset. right) FaceAll_TEST

Dataset... 34

Fig. 17. Comparison of our algorithm (bottom) with the state-of-the-art algorithm (top)

[41] for the Fish_TEST dataset [19]. Results show that the state-of-the-art algorithm

stops too early, whereas our algorithm suggests better stopping point............................. 35

Fig. 18. Comparison of our algorithm (bottom) with the state-of-the-art algorithm (top)

[41] for SVDB (left), INCARTDB (center) and SDDB (right) datasets. 36

Fig. 19. ROC curve for the SVDB dataset. The stopping point denotes a point with

majority of the TP instances identified, with almost no FP instances selected. 37

Fig. 20. Reduced description length of the labeled set vs. number of encoded time series

plot for the TwoLeadECG_TEST dataset. The positive/green and negative/red instances

are very similar looking, and therefore the MDL based approach does not work well. ... 38

Fig. 21. A cluster of four Twitter hashtag usage time series (normalized for volume) over

~6 days starting from June 12, 2009 [103]. (Best viewed in color) 42

Fig. 22. Single-linkage hierarchical clusterings of DNA using DTW (left) and Euclidean

distance (right). ... 43

Fig. 23. top) The classification error rates of DTW and ED tend to converge as we see

more training data. bottom) In contrast, for clustering, DTW retains its great superiority

over ED for increasingly large datasets. ... 45

Fig. 24.: top.left) Leaf 18V of a 15
th

-century book, Treatises on Heraldry [107]. top.right)

The colorful heraldic shields can be converted to 3D RGB “time series” of color

distribution. bottom.left) Even the insertion of a single outlier can confuse k-means.

bottom.right) In contrast, the performance of the DP algorithm is not sensitive to outliers.

... 47

 xiv

Fig. 25.: An abstract illustration of an anytime algorithm. The three curves show a

comparison of the possible performances of three hypothetical anytime algorithms. The

bottommost curve (pink) is only improving linearly over time, but the topmost curve

(green) demonstrates diminishing returns, making most of its improvements early on. ... 52

Fig. 26.: The four mutually exclusive and exhaustive cases of distance computation

pruning during local density calculation. Note that the cutoff distance dc, represented by

the purple line at the top, applies to all four cases below it. Case A is difficult to visually

represent, as i and j coincide. .. 60

Fig. 27.: An illustration of the distance pruning during the NN distance calculation from a

higher density list of an object. From object i, the elements in the higher density list are j1

– j4. After Phase 1, ubi will be UBMatrix(i,j4). In Phase 2, the distance computations of Dij2

and Dij3 are pruned. ... 63

Fig. 28.: A comparison of the CPU time spent by TADPole against an oracle and the

brute force algorithm to cluster the StarLightCurves dataset. As before, the performance

of TADPole is very close to the oracle algorithm... 69

Fig. 29.: A comparison of the CPU time spent by TADPole against an oracle and the

brute force algorithm to cluster the StarLightCurves dataset. As before, the performance

of TADPole is very close to the oracle algorithm... 70

Fig. 30.: top) A comparison of different distance computation-order heuristics on the

Insect dataset [69]. An oracle ordering (green) converges stunningly quickly. The random

ordering (pink) converges very slowly. Our proposed ordering (blue) is very close to the

oracle. bottom) A zoomed-in view of the figure shown at the top). 73

Fig. 31.: Cluster quality comparison experiment of TADPole against k-Shape in terms of

Rand Index. For most of the datasets, TADPole gives significantly better clusters than k-

Shape. .. 76

Fig. 32.: left and right) Two sample individual gaits of the two classes in the

SonyAIBORobotSurface dataset. The intra-class variability is poorly captured by DTW

because of the great difference of the first and last endpoints of two time series under

question (marked with arrows). .. 77

Fig. 33.: left and right) The individual heartbeats of the two classes in the ECGFiveDays

dataset. left)The heartbeats are not perfectly aligned because of an imperfect beat

extractor. right)Like the SonyAIBORobotSurface dataset, this data also has the

disagreement of the first and last endpoints (shown with arrows).................................... 78

Fig. 34. (a) and (b): A parameter sensitivity test of TADPole shows stability of clustering

over a very wide range of parameters. .. 79

 xv

Fig. 35.: Warping window width vs. Rand Index (blue) and vs. score (red) plots for Trace

(a), FaceAll (b), FaceFour (c) and SwedishLeaf (d) datasets [69]. The shapes of the red

and blue curves agree closely, indicating good correlation. For a fixed dc , the regions of

the red curve with relatively high values are indicative of good parameter (here warping

window width) values. .. 82

Fig. 36.: left) One of our volunteers wearing the articulograph apparatus. right) Two

examples of the 3D time series produced by enunciating the word “fate” show inter-

subject warping. The X axis is omitted here, as it only has useful information for patients

with facial asymmetry. .. 84

Fig. 37.: The amount of distance pruning achieved by TADPole is ~94% for the

Articulographs [99]. Moreover, the ordering heuristic is almost as good as the oracle

ordering. .. 85

Fig. 38.: top) PPG and Power Spectral Density (PSD) signal of a patient with non-severe

Pulsus (top.left)) and severe Pulsus (top.right)). bottom) Four PSDs of four patients

forming four different clusters within the non-Pulsus objects. From these four clusters,

we can see the objects are clearly warped. ... 86

Fig. 39.: left) A PPG apparatus. right) The Pulsus dataset projected into two dimensions

using multidimensional scaling, and color coded by the output of TADPole. 87

Fig. 40.: Representative images from the dataset [64] with their corresponding color

histograms. .. 88

Fig. 41.: The seven cricket game gestures we used for our experiment. A) Last Hour, B)

Leg Bye C) No Ball, D) One Short, E) Out, F) Penalty Runs and G) Six. 89

Fig. 42.: The gesture vocabulary adopted from [75][82] .. 90

Fig. 43.: The fast convergence of TADPole ordering (blue) to the oracle ordering (green)

shows that the quality of the clusters in the earlier iterations is quite good. The cluster

quality given by the random ordering (pink), however, is not as good as TADPole. 95

Fig. 44.: A never-ending time series stream from a weather station’s solar panel [110],

only a fraction of which we can buffer. A pattern we are observing now seems to have

also occurred about four months ago. ... 101

Fig. 45.: A never-ending time series stream S produces mostly patternless data in R, and

with very low probability, instances in G. .. 105

 xvi

Fig. 46.: DG and DR represent the all-pair distance distributions of the patterns in G and R,

respectively. The distance threshold T represents the boundary that separates the decision

whether the two patterns in question belong to G or not. ... 107

Fig. 47.: The number of objects that must be seen to find a pattern in G, for different

cache sizes w, with a desired probability of success. The 0.99 probability is highlighted

with a horizontal dashed line. ... 113

Fig. 48.: The experimentally-determined success metric for FIFO and RR policies closely

agrees with the theoretically-derived metric for a wide range of values of w. 116

Fig. 49.: The red/bold line here is identical to the w = 20 line in Fig. 47. If we could

somehow increase the probability of discarding an element from R we would obtain a

significant improvement ... 117

Fig. 50.: top) DG and DR are identical to the all-pair distance distributions of the patterns

in G and R, respectively, in Fig. 46. bottom) After downsampling the data, the new

distance distributions (DGN and DRN) and the new threshold TN shift left. 119

Fig. 51.: left) When downsampling, the probability of falsely dismissing two instances in

G tends to increase if we fix the probability that two cache patterns are claimed to be in G

by mistake. right) Consequently, the probability that two patterns in the cache are

believed to be from G tends to decrease. .. 121

Fig. 52.: left) The help factor: A larger cache allows faster detection of instances in G.

center) The hurt factor: The greater the downsampling, the slower the detection. right)

The performance of the overall system is based on the influence of these two factors, with

downsample factors of 2 to 4 performing best.. 123

Fig. 53.: top) The all-pair distance distributions of the patterns in G and R in the raw

space. bottom) After reducing the dimensionality by an integer factor of 5, the new

distance distributions shift left. ... 125

Fig. 54.: help factor vs. hurt factor using PAA. The tradeoff between both factors

suggests that a dimensionality reduction factor of about 10 is best here. 126

Fig. 55.: top) The all-pair distance distributions of the patterns in G and R in the raw

space. bottom) After reducing only the cardinality of the data by a factor of 5 (6 bits), the

new distance distributions shift left (assuming the original data points are 32 bits). 127

Fig. 56.: The tradeoff between the help and hurt factors using SAX suggests that a

cardinality reduction factor of about 8 is best. .. 127

 xvii

Fig. 57.: Of the three data reduction techniques, cardinality reduction dominates the other

two over the entire range of virtual cache sizes. ... 128

Fig. 58.: For a fixed w = 38,400 bytes (32 patterns of length 150), ∑ = 64, and p = 1/100,

a cache allocation of 9,600 to 14,400 bytes (i.e., 8 to 12 patterns) performs best. 131

Fig. 59.: Out of all optimization techniques we discuss, the Sticky cache approach with a

cardinality reduction factor of eight performs best. See also Fig. 57, which shows a subset

of this data. .. 132

Fig. 60.: top) For the sticky cache algorithm, the average number of objects seen before

the first true positive is expressed with respect to the results for RR policy at different

rareness factors. bottom) The parameter robustness of our algorithm offers a wide range

of possible values that have no significant impact on performance (from left to right ω, a

and T). ... 140

Fig. 61.: top) A snippet of the ten-hour-long audio trace in the MFCC space. The injected

bird calls are shown in green/bold. bottom) A) The detected motif pairs occurring at 37

minutes and 2.3 hours, respectively. B – D) Three examples of unknown bird calls

discovered. .. 143

Fig. 62.: top) An excerpt of the electricity usage of a refrigerator and dishwasher. The

dishwasher patterns have been marked in green/bold. bottom) The ground truth locations

(dishwasher usage occurrences) are shown as green lines. The locations identified by our

algorithm are shown as blue arcs. ... 144

 xviii

List of Tables

Table 1. Classification error rates and ranks of 1-NN classifier for raw data (32 bit) and

cardinality reduced data (4 bits). The best result for each dataset has been shown in

bold/green ... 17

Table 2. Semi-supervised time series classification algorithm with only one labeled

instance ... 23

Table 3. Stopping Criterion for Self-Training Time Series Classification Algorithm 29

Table 4: Local Density Calculation Algorithm ... 55

Table 5:Distance to Higher Density Points Algorithm ... 55

Table 6: Cluster Center Selection Algorithm.. 56

Table 7: Cluster Assignment Algorithm ... 56

Table 8: Pruning Algorithm during Local Density Calculation.. 61

Table 9: Upper Bound Calculation Algorithm for NN Distance Computation from Higher

Density List ... 64

Table 10: Pruning Algorithm during the Computation of the NN Distances from the

Higher Density Lists of All Objects.. 66

Table 11: Pruning Algorithm during Local Density Calculation for Multidimensional

Data (see Table 8) ... 67

Table 12: Pruning Algorithm during NN Distance Computation from Higher Density List,

Multidimensional Case (see Table 10) ... 67

Table 13: Clustering Quality (in Terms of Rand Index) of TADPole vs. Some State-of-the-

Art ... 75

Table 14: Best Value of dc for Reasonably Good Warping Window Width 83

Table 15: Symbol Table ... 92

Table 16: SAX Parameter Selection Algorithm .. 134

Table 17: Potential Target Instance Selection Algorithm .. 135

 xix

Table 18: Cache Maintenance Algorithm ... 136

Table 19: Cache Discard Location Calculation Algorithm .. 137

 1

Chapter 1: Introduction

The increasing prevalence of cheap sensors has created the urgency for mining time

series data over the last few decades. As the data gets bigger, big data issues come into

play. For mining real-life noisy time series data, researchers have made substantial efforts

to design simple and efficient algorithms. However, designing simple and parameter-lite

algorithms for time series domain is typically plagued by limited data. For example, it is

unrealistic to assume a user will provide thousands of examples for a single object to

ensure the data is ‘perfect’ in favor of the algorithm we will design. In addition, given

that our data is large, using the entire dataset to derive useful insights might hurt in a lot

of cases. The algorithms for mining time series data therefore, should be agnostic to

outliers and should keep human intervention at the very least. In essence, this means

designing simple but efficient algorithms for the primitive modules to mine time series

data is a critical task.

In this dissertation, we address the mentioned problems from the perspective of

three exploratory techniques of time series data mining: classification, clustering, and

motif discovery. To be concrete, our core contributions in this dissertation are as follows:

1.1 Semi-supervised time series classification

Dozens of time series classification algorithms have been proposed in the past

decade [10][29][32]. Most of these algorithms assume the availability of copious amount

of labeled instances. However, this assumption is often unrealistic, particularly in the

 2

medical community, as it is expensive and time consuming to manually annotate large

medical datasets [9]. Nevertheless, huge amount of unlabeled data is readily available.

For example, the PhysioBank archive contains over 700 GB of data [11].

Because of the intra-patient variability of cardiological signals such as

electrocardiograms (ECGs), it is difficult to consider classification problems independent

of patients. Given such challenges, we would like to be able to build accurate classifiers

in the face of very scarce knowledge, as little as a single labeled instance.

In such circumstances, Semi-supervised Learning (SSL) is a suitable paradigm,

because it can leverage the knowledge of both labeled and unlabeled instances. Although

many SSL models have been studied in the literature, the critical subroutine of finding a

robust stopping point for these models has not been widely explored.

Most of the literature [24][25][33][41] addressing this problem possess some

weaknesses that have limited their widespread adoption. For example, the approach

proposed in [41] suffers from the problem of early stopping. That is, it is overly

conservative and may refuse to label examples that are (at least subjectively) obvious

enough to be labeled. The approach introduced in [33] fails to identify class boundaries

accurately, because it tends to produce too many false negatives.

The key observation that motivates our work is the critical importance of the

stopping criteria. If an otherwise useful algorithm is too conservative (or too liberal) in its

stopping criteria, it is doomed to produce many false negatives (or false positives).

In this work we make two contributions. First, we demonstrate that in many cases

just a handful of human annotated examples are sufficient to perform accurate

 3

classification. Second, we devise a novel parameter-free stopping criterion for semi-

supervised learning.

In particular, given the limitations of the state-of-the-art stopping criteria for SSL,

we propose a semi-supervised learning framework with a novel stopping criterion using

Minimum Description Length (MDL). MDL has been widely used in bioinformatics, text

mining, etc., yet it is still under explored in time series domain. This is mainly because

MDL is defined in discrete space. Some recent publications [17][30] provide an in-depth

analysis of the potential of applying MDL technique to real-valued time series data. In

this work, we propose a parameter-free algorithm for finding a stopping criterion for SSL

using the MDL technique. We evaluate our work with a comprehensive set of

experiments on diverse medical data sources including electrocardiograms. Our

experimental results show that our approach can construct accurate classifiers even if

given only a single annotated instance.

1.2 Generalized density based clustering

Clustering time series is a useful operation in its own right, and an important

subroutine in many higher-level data mining analyses, including data editing for

classifiers, summarization, and outlier detection. While it has been noted that the general

superiority of Dynamic Time Warping (DTW) over Euclidean Distance for similarity

search diminishes as we consider ever larger datasets, as we shall show, the same is not

true for clustering. Thus, clustering time series under DTW remains a computationally

challenging task. In this work, we address this lethargy in two ways. We propose a novel

 4

pruning strategy that exploits both upper and lower bounds to prune off a large fraction of

the expensive distance calculations. This pruning strategy is admissible; giving us

provably identical results to the brute force algorithm, but is at least an order of

magnitude faster. For datasets where even this level of speedup is inadequate, we show

that we can use a simple heuristic to order the unavoidable calculations in a most-useful-

first ordering, thus casting the clustering as an anytime algorithm. We demonstrate the

utility of our ideas with both single and multidimensional case studies in the domains of

astronomy, speech physiology, medicine and entomology.

Given the ubiquity of time series data in various human endeavors, the research

community has made substantial efforts to create efficient algorithms for classification,

clustering, rule discovery, and anomaly detection for this data type. In particular, time

series clustering is useful for solving higher-level data mining problems. For example,

clustering the keyword occurrence frequency might give us useful insights on synonyms,

association discovery, etc. The dissimilarity among objects can be computed by cheap

Euclidean distance as long as there is no significant time lag in these objects. However, in

cases when there exist causal relationships (rather than just associations) between events,

Dynamic Time Warping (DTW) is an ideal way to capture/be invariant to such out-of-

sync relationships.

In this work we propose a fast density based clustering algorithm which we call

TADPole (Time Series Anytime DP). For this, we adapt DP (Density Peaks), a relatively

new clustering framework that is able to ignore outlying data points [89]. While robust to

outliers, DP is relatively slow, as it requires quadratic number of DTW calculations. We

 5

augment DP such that it can exploit both the DTW upper and lower bounds, to compute

only the absolutely necessary DTW calculations, and do so in a best-first manner, giving

our algorithm the desirable anytime algorithm behavior [48][105]. Besides exploiting

both the upper and lower bounds to accelerate the clustering process, we demonstrate that

the TADPole framework can be generalized to cluster objects the distances of which have

concrete upper and lower bound defined.

1.3 Rare Motif Discovery

Time series motifs are approximately repeated subsequences in a time series, which

appear to be very similar to each other. This conserved structure in these patterns is

interesting because it is representative of useful insights of the data. Since the motifs

were defined in 2002, researchers have used them in many domains like medicine,

biology, medicine, industry, etc.

The brute force algorithm to compute motifs is quadratic, and therefore researchers

have proposed tractable algorithms for time series motif discovery [79]. In spite of the

recent progress in motif discovery, there are situations when there is no easy solution. If

the motifs are extremely rare, then with a comparatively small buffer, it is extremely hard

to detect the motifs occurring simultaneously in the cache. The problem becomes even

harder in streaming setting, where we assume that the data will be generating in a never-

ending fashion. Had we assumed the storage of all data points in the main memory, the

algorithm would still be bounded by the computational complexity of the fastest

 6

algorithm known so far. For some of the datasets we wish to find the rare motifs from,

this would require years of CPU time.

In this work we investigate algorithms to find such rare motifs. We demonstrate

that under reasonable assumptions rather than computing the exact motifs, it is better to

have approximate algorithms that allow us to solve the underlying problem with high

probability. We show that for our purposes it suffices to find any two of the n repeated

patterns; we do not really care about the smallest distance pair, or any specified pair. We

show that this slightly relaxed assumption allows us to solve problems that are otherwise

intractable, and to discover repeated patterns in never-ending streams. The patterns

discovered by our algorithm can serve as an input to higher-order algorithms that do

semi-supervised learning [119], or look for changes in the frequencies of the discovered

patterns that may signal anomalous behavior [126], or can be pipelined to higher level

data mining algorithms.

 7

Chapter 2: A Minimum Description Length
Based Stopping Criterion for Semi-
supervised Time Series Classification

In recent years the plunging costs of sensors/storage have made it possible to obtain

vast amounts of medical telemetry, both in clinical settings and more recently, even in

patient’s own homes. However for this data to be useful, it must be annotated. This

annotation, requiring the attention of medical experts is very expensive and time

consuming, and remains the critical bottleneck in medical analysis. The technique of

Semi-supervised learning is the obvious way to reduce the need for human labor,

however, most such algorithms are designed for intrinsically discrete objects such as

graphs or strings, and do not work well in this domain, which requires the ability to deal

with real-valued objects arriving in a streaming fashion.

In this chapter we make two contributions. First, we demonstrate that in many cases

a surprisingly small set of human annotated examples are sufficient to perform accurate

classification. Second, we devise a novel parameter-free stopping criterion for semi-

supervised learning. We evaluate our work with a comprehensive set of experiments on

diverse medical data sources including electrocardiograms. Our experimental results

suggest that our approach can typically construct accurate classifiers even if given only a

single annotated instance.

Keywords: MDL; Semi-Supervised Learning; Stopping Criterion; Time Series

 8

2.1 Introduction

Over the past decade, the data mining community has turned a significant fraction

of its attention to time series data. Such data is available in almost all aspects of human

endeavor, including motion capture [3], medical science [38], finance [27], aerospace,

meteorology [18], entertainment, etc. Given such ubiquity of time series data, it is not

surprising that a plethora of algorithms for time series classification have been proposed

in recent years [10][29][32]. Virtually all these algorithms assume the availability of

plentiful labeled instances [31][37]. However, this assumption is often unrealistic,

particularly in the medical community, as it is expensive and time consuming to manually

annotate large medical datasets [5][9]. Nevertheless, huge amounts of unlabeled data are

readily available. For example, the PhysioBank archive contains over seven hundred GB

of data [11], only a tiny fraction of which are labeled. Similarly, Google’s Total Library

[15] contains millions of digitized books available, which could be mined after

conversion to time series space, given that plentiful labeled data is available.

Given the enormous intra-patient variability of cardiological signals such as

electrocardiograms (ECGs), it is difficult to consider classification problems independent

of patients. For example [35] notes that “...age, sex, relative body weight, chest

configuration, and various other factors make ECG variant among persons with same

cardiological conditions”. Thus we cannot easily generalize labeled ECG data from one

patient to another. Therefore, constructing a classifier in order to detect some medical

phenomena, (e.g., ECG arrhythmia) is a non-trivial problem.

 9

In spite of all these challenges, we would like to be able to build accurate classifiers

in the face of very scarce knowledge, as little as a single labeled instance.

Given such circumstances, Semi-supervised Learning (SSL) seems like an ideal

paradigm, because it can leverage the knowledge of both labeled and unlabeled instances.

Although many SSL models have been studied in the literature, the critical subroutine of

finding a robust stopping point for these models has not been widely explored.

The vast majority of the literature [24][25][33][41] addressing this problem possess

some flaws that have limited their widespread adoption. For example, the approach

proposed in [41] suffers from the problem of early stopping. That is, it is overly

conservative and may refuse to label examples that are (at least subjectively) obvious

enough to be labeled. The approach introduced in [33] fails to identify class boundaries

accurately, because it tends to produce too many false negatives.

Our work is motivated by the observation of the critical and underappreciated

importance of the stopping criteria. If an otherwise useful algorithm is too conservative

(or too liberal) in its stopping criteria, it is doomed to produce many false negatives (or

false positives), and thus it is almost certainly never going to be deployed in the real

world. We illustrate this observation in Fig. 1.

 10

Fig. 1. left) The initial positive instance (blue/square) along with unlabeled positive (grey/circle) and

negative (grey/small triangle) instances. center) A too liberal stopping criterion produces lots of false

positives (blue/small square). right) A too conservative stopping criterion produces lots of false

negatives (grey/large triangles).

From Fig. 1.left, we can see that in a dataset with a training set size as small as a

single instance, we cannot avoid an unwanted production of lots of false positives with a

too liberal stopping criterion (Fig. 1.center). Similarly, if we have a too conservative

stopping criterion, we must invariably encounter lots of false negatives (Fig. 1.right).

In response to the noted limitations of the state-of-the-art stopping criteria for SSL,

we propose a semi-supervised learning framework with a novel stopping criterion using

Minimum Description Length (MDL). MDL has been widely used in bioinformatics, text

mining, etc., yet it is still under explored in time series domain. This is mainly because

MDL is defined in discrete space. Some recent publications [17][30] provide an in-depth

analysis of the potential of applying MDL technique to real-valued time series data. In

this work, we propose a parameter-free algorithm for finding a stopping criterion for SSL

using the MDL technique. Its simplicity will allow adoption by experts in the medical

community.

 11

The rest of the chapter is organized as follows. In Section 2.2, we discuss related

work. We give definitions and the notations in Section 2.3. We demonstrate how our

semi-supervised learning algorithm works and then propose our stopping criterion using

MDL in Section 2.4. In Section 2.5, we provide a detailed empirical evaluation of our

ideas. Finally, we discuss conclusions and directions for future work in Section 2.6.

2.2 Related Work

Semi-supervised Learning (SSL) can be seen as intermediate between the

techniques of Supervised Learning and Unsupervised Learning. SSL is generally

provided with some supervision information in addition to unlabeled instances [4].

Labeled data is often hard to obtain, expensive, and may require human intervention. For

example, there is often no replacement of a dedicated domain expert observing and

labeling medical phenomena [26], human activities [28], insect behaviors [39], etc. for

constructing annotated datasets. In contrast, unlabeled data is abundant and easy to

collect. SSL exploits the use of unlabeled data in addition to labeled data for building

more accurate classifiers [44]. Because of this, SSL is of great interest in both theory and

practice. There have been many SSL techniques studied in the literature. These can be

classified into five major classes: SSL with generative models, SSL with low density

separation, graph based techniques, co-training techniques and self-training techniques

[2][4][41][44].

 12

Among all these classes of SSL, Self-training is the most common method used

[1][22][34]. The idea is to first train the classifier with a small amount of data, and then

use the classifier to classify unlabeled data. The most confidently classified unlabeled

points, along with their predicted labels, are added to the training set. The classifier is

then re-trained and the procedure repeats, i.e. the classifier uses its own predictions to

teach itself [44]. Self-training approaches have been used for natural language processing

tasks [21][43] and object detection systems [34]. Because of their generality and

simplicity, we use self-training as the foundation of our research efforts.

In our work, we focus on the question of finding the correct stopping point for our

self-training classifier. The question of finding a good stopping criterion has tentative

solutions based on MDL, Bayesian Information Criterion, bootstrapping [36][44], etc.

For time series domain, this question has been surprisingly under explored; to the best of

our knowledge, only [24][25][33][41] have considered it. In [41], a stopping criterion

based on the minimal nearest neighbor distance was introduced. However, this

conservative approach suffers from the shortcoming that it can result in an expansion of

only a small number of positives.

In order to improve the algorithm of [41], the work in [33] proposed a stopping

criterion by using the previously observed distances between candidate examples from

the unlabeled set to the initial positive examples. Although this refinement can add more

positive examples to the labeled set, it is unable to identify accurate positive and negative

instances from the unlabeled set, because it produces too many false negatives, and

therefore not accurate enough in most real life applications [6].

 13

A recently proposed method [24] is called LCLC (Learning from Common Local

Cluster), which is a cluster-based approach rather than an instance-based approach.

Although this method more accurately identifies the decision boundaries, it has two

drawbacks. First, it assumed that “All the instances belonging to a local cluster have the

same class label”. The same examples within the same cluster received the same class

label, and therefore, LCLC can misclassify some examples if the clustering subroutine

does not produce pure clusters. Second, the LCLC algorithm uses K-means algorithm,

and therefore inherits K-means lack of determinism and its assumption that the data can

be represented by Gaussian “balls”.

To overcome the drawbacks of the LCLC approach, the same research group

proposed an ensemble-based approach called En-LCLC (Ensemble based Learning from

Common Local Clusters) [25]. This algorithm performs the clustering process multiple

times with different settings to obtain diverse classifiers. Each instance is assigned a

“soft” probabilistic confidence score and based on these scores, potential noisy instances,

which can confuse the classifier, are eliminated. An Adaptive Fuzzy Nearest Neighbor

(AFNN) classifier is then constructed based on the “softly labeled” set of positive and

negative instances. However, this approach is extremely complicated and requires many

unintuitive parameters to be set. It is not clear how sensitive the settings of these

parameters are.

A recent work on time series SSL [6] has somewhat an ad-hoc stopping criterion, in

which the classification continues until the unlabeled dataset is exhausted of true

positives.

 14

In this chapter, we propose a general Minimum Description Length (MDL) based

stopping criterion, which works at the instance level, is parameter free and leverages the

intrinsic nature of the data to find the stopping point. In time series domain, MDL has

been the cornerstone of several recent efforts to solve classification and clustering

problems [17][30]. However, to the best of our knowledge, this is the first work to

address time series SSL using MDL.

2.3 Background and Notation

We begin by defining the data type of interest, Time Series:

Definition 1 Time Series: A time series T = t1,…,tm is an ordered set of m real-

valued variables.

We are only interested in the local properties of a time series, thus we confine our

interest to subsequences:

Definition 2 Subsequence: Given a time series T of length m, a subsequence Cp of T

is a sampling of length w ≤ m of contiguous positions from T with starting position

at p, Cp = tp,…,tp+w-1 for 1 ≤ p ≤ m – w + 1.

The extraction of subsequences from a time series is achieved by the use of a Sliding

Window.

Definition 3 Sliding Window: Given a time series T of length m, and a user-defined

subsequence length of w, all possible subsequences can be extracted by sliding a

window of size w across T and extracting each subsequence Cp.

 15

The most common distance measure for time series is the Euclidean distance.

Definition 4 Euclidean Distance: Given two time series (or time series

subsequences) Q and C both of length m, the Euclidean distance between them is the

square root of the sum of the squared differences between each pair of the

corresponding data points:

We illustrate these definitions in Fig. 2.

Fig. 2. A long time series T (grey/dashed) with a subsequence Ti (purple/thin) extracted and

compared to a query Q (red/bold) under the Euclidean distance

Note that our use of Euclidean distance in this work does not preclude other

distance measures; however, it has recently been forcefully shown that Euclidean

distance is a very competitive distance measure [40].

Minimum Description Length (MDL) can be regarded as a formalization of

Occam’s Razor, which states that the best hypothesis for a given set of data is the one that

leads to the best compression of the data [14]. Note that MDL is defined in the discrete

space, but most time series are real-valued. To use MDL in time series domain, we need

to cast the original real-valued data to discrete values. The reader may imagine that a

drastic reduction in the precision of the data could sacrifice accuracy. However, recent

T

C = Ti
Q

 16

empirical work suggests that this is not the case. For example, [17][30] have performed

extensive experiments comparing the effect of using the original real-valued data vs. its

quantized version. The results showed that even drastically reduced cardinality does not

result in reduced accuracy. To see this in our domain we performed a simple time series

clustering experiment, as shown in Fig. 3.

Fig. 3. A complete linkage clustering of time series incartdb I70 [11]. left) Original 32-bit data. right)

the same data with cardinality reduced to eight values (3-bits).

Fig. 3 suggests that even significantly reducing the cardinality of time series has

minimal effect.

To further test the claim that reducing the cardinality of the data has no statistically

significant effect on classification accuracy, we show the error rates and ranks of the 1-

NN classifier on six ECG datasets both in raw and reduced cardinality format from the

UCR archive [19] in Table 1. For each dataset, we assign the best algorithm the lowest

rank.

From Table 1 we can see that for the six datasets shown, classification using the

raw data yields slightly better average rank. However, we cannot claim that the difference

 17

in average ranks of the 1-NN classifier for the two different cardinality representations is

statistically significant, given of the following analysis.

Table 1. Classification error rates and ranks of 1-NN classifier for raw data (32 bit) and cardinality

reduced data (4 bits). The best result for each dataset has been shown in bold/green

Datasets Error Rate

(Raw Data)

Error Rate

(Cardinality 16)

ECG200 0.12 (1) 0.13 (2)

ECGFiveDays 0.2 (2) 0.15 (1)

TwoLeadECG 0.25 (1) 0.27 (2)

CinCECG_Torso 0.1 (2) 0.07 (1)

NonInvasiveFatalECG

_Thorax1
0.17 (1) 0.24 (2)

NonInvasiveFatalECG

_Thorax2
0.12 (1) 0.21 (2)

Average Rank 1.33 1.67

The null hypothesis we test is, “The performances of a classifier for different

cardinality representations of the data are the same and the observed differences are

merely random”. In order to compare the performances of the classifier as shown in

Table 1, we denote the number of datasets and the number of different cardinality

representations by N and k respectively. In our case, N = 6 and k = 2. We employ the

two-tailed Nemenyi test [23] to test the null hypothesis. According to this test, the

performances of a classifier for different cardinality representations are significantly

different if the corresponding average ranks differ by at least the critical difference (CD):

where critical values qα are based on the Studentized range statistic divided by √2

[6].

 18

For a significance level α of 0.05, qα = 1.96, yielding a CD of 0.8. From Table 1,

the difference in average ranks between the two different cardinality representations is

0.34, which is less than CD. Therefore, according to the Nemenyi test, we fail to reject

the null hypothesis.

In Fig. 4, we show a critical difference diagram [6][16] of the ranked error rates

from Table 1.

Fig. 4. Critical difference diagram representing the ranked error rates of the 1-NN classifier for the

two cardinality representations of the data (Table 1).

From Fig. 4 we see that both variants of the 1-NN classifier for different cardinality

representations are connected by a single clique, which means they are not significantly

different from each other.

 Based on the above and more extensive empirical work in [17][30], we reduce

time series data to its 16-value (4-bit) cardinality version, using a discrete normalization

function:

Definition 5 Discrete Normalization Function: A discrete function Dis_Norm is the

function to normalize a real-valued subsequence T into b-bit discrete value of range

[1,2
b
]. It is defined as below:

CD

12

Raw DataCardinality 16 Data

 19

where min and max are the minimum and maximum value in T respectively.

As we previously noted, MDL works in discrete space, therefore we are interested

in determining how many bits are required to store a particular time series T. We call it

the Description Length of T.

Definition 6 Description Length: A description length DL of a time series T is the

total number of bits required to represent it.

where w is the length of T, c is the cardinality.

One of the key steps of designing our stopping criterion using the MDL technique

is to find a representation or model of our data, and use this model to compress the data

in a lossless fashion. We call this representation, a hypothesis:

Definition 7 Hypothesis: A hypothesis H is a subsequence used to encode one or

more subsequences of the same length.

Naively, the number of bits required to store a time series depends only on the data

format and its length. However, we are interested in knowing the minimum number of

bits to exactly represent the data. This depends on the intrinsic structure of the data. In

general case, this number is not calculable, as it is equivalent to the Kolmogorov

complexity of the time series [20], however, there are many ways to approximate this,

e.g. Huffman encoding, Shanon-Fano coding, etc.

Ultimately, we interest in how many bits are required to encode T given H. We call

this the Reduced Description Length of T.

 20

Definition 8 Reduced Description Length: A reduced description length of a time

series T given hypothesis H is the sum of the number of bits required in order to

encode T exploiting the information in H, i.e. DL(T | H), and the number of bits

required for H itself, i.e. DL(H). Thus, the reduced description length is defined as:

We can encode T using H in many ways. One simple approach of this encoding is

to store a difference vector between T and H, and we can easily generate the whole time

series T from the hypothesis. Therefore, we use,

Given the definitions above, let us consider a toy example of our MDL based

encoding. In Fig. 5, A is a sample time series of length 20:

A = 1 2 4 4 5 6 8 8 9 10 11 13 13 14 17 16 17 18 19 19

H is another time series, which is a straight line of length 20:

H = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Without encoding, the naive bit requirement to store A and H is, =

173 bits. In contrast, using H as the model of the data, we can encode A as A’, which is

simply the difference vector obtained by subtracting H from A. We can see that,

 | = 0 0 1 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 0 1. From Fig. 5, the reader can see that A is

a slightly corrupted version of H and that in the difference vector, there are 5 mismatches.

The bit requirement is now just 134 bits,

which is significantly less than the naive bit requirement.

 21

Fig. 5. : Time series A (maroon/dashed) is represented by the sum of hypothesis H (solid/black) and

the difference vector A’(green/bold).

We are now in a position to demonstrate how our semi-supervised learning

approach works with the novel MDL based stopping criterion in the next section.

2.4 Algorithms

2.4.1 Semi-supervised Time Series Classification

Semi-supervised learning technique can help build better classifiers in situations

where we have a small set of labeled data, in addition to abundant unlabeled data [8]. We

refer the interested reader to [4] and [44] for a more detailed treatment.

We use the self-training technique to build our classifier for the reasons noted in

Section 2.2. In this work, we require only a single positive instance as the initial training

set. During the training process, the training set will be augmented iteratively by labeling

more unlabeled instances as positive.

Below are the two steps by which the classifier trains itself iteratively:

A

0 4 8 12 16 20
0

4

8

12

16

20

H

A’ = A-H

 22

Step 1: We find the nearest neighbor of any instance of our training set from the

unlabeled instances.

Step 2: This nearest neighbor instance, along with its newly acquired positive

label, will be added into the training set.

The intuition of this idea is straightforward. The labeled positive example serves as

a model which characterizes what a positive example should “look like”. If an unlabeled

instance is very similar to a positive example, its probability to have the positive class

label is also assumed to be high. By adding such an example to the training set, the

description of the positive class is generalized.

We give an illustrative example of the training procedure of our algorithm in Fig. 6.

Each ellipse corresponds to labeling one unlabeled instance as positive. As we can see,

there is a “chaining effect” of the semi-supervised learning: a set of positive examples

helps labeling more positive examples.

Fig. 6. left) The initial positive instance (blue/square) selects its nearest positive instance

(green/circle). middle and right) As we continue iterating, more unlabeled instances are labeled as

positive and added to the training set.

 23

For concreteness, we give the algorithm for self-training time series classification

using just a single labeled instance in Table 2.

In order to demonstrate the benefit of our approach, we compare our method with

the naive one-nearest-neighbor straw man. The naive approach also starts with one initial

seed. Instead of finding the nearest neighbor of any instance of the updated training set,

the algorithm only considers the nearest neighbors of this sole seed. Thus the algorithm

can be imagined as expanding concentric circles around the initial seed.

Table 2. Semi-supervised time series classification algorithm with only one labeled instance

 O
u

tp
u

t

In
p

u
t

pos_Obj = Self_Training_Classifier (P,N)

P,set of labeled/positive instances.

//initially |P| = 1

N, set of unlabeled/negative instances

pos_Obj,set of labeled objects

1

2

3

4

5

6

while (the stopping criterion)

 new_pos_obj = find the nearest neighbor for P

P = P ∪ {new_pos_obj}

N = N - {new_pos_obj}

end while
pos_Obj = P

However, this approach possesses a representational flaw as shown in Fig. 7. As

the iteration continues, the probability of mistakenly labeling a negative instance

(red/triangle) as positive also increases.

 24

Fig. 7. Inner circles (black/thicker) correspond to the earlier iterations. left) The initial positive

instance (blue/square) selects its nearest neighbor as a positive instance (green/circle). middle and

right) False Positives (red/triangle) are added.

In contrast, Fig. 6 shows that the selection of an instance with the smallest distance

from the current labeled positive set reduces this probability of misclassifying the

instances too early. This example suggests that the expressiveness of our approach is

greater than the naive nearest neighbor straw man. Note however that this greater

representation power is all for naught unless it is coupled with the ability to stop adding

instances at the correct time. We consider this issue next.

2.4.2 Stopping Criterion

In this section, we demonstrate how our algorithm finds the correct stopping point

using an MDL based technique. As shown in Fig. 8, we consider a contrived, but real

ECG dataset from [11]. Inspired by the compression-based approach of [30], our stopping

criterion algorithm attempts to losslessly compress the data by finding repeated patterns,

and it signals termination when further compression is not possible.

 25

 Fig. 8. An original time series is shown in blue and its discretized version is shown in purple.

In the toy example in Section 2.3, we used a straight line hypothesis to explain the

data. Here we use the seed heartbeat as the hypothesis instead. Our algorithm will attempt

to compress the purple time series by expressing all its instances in terms of this

hypothesis H and the (hopefully small) residual error A’. After compression, our original

time series is supposed to have shorter length, which we call its Reduced Description

Length.

For clarity, we show the instances of the purple time series separately with their

class labels (‘V’ and ‘N’) in Fig. 9.bottom. Note that these instances are not labeled by

the algorithm; these labels come from the ground truth and are given for the reader’s

introspection only.

As the first step, we randomly give an instance as the seed to our SSL module,

which is the only member of the training set. According to the algorithm in Section 2.4.1,

this module will augment the training set. Let us imagine we do not have a stopping

criterion for this module. In that case, the algorithm will eventually ingest all the

instances of the dataset in the training set.

original time series

0 100 200 300 400 500 600

discretized time series

 26

Given this, let us see how we find a stopping criterion for our SSL module using

MDL. As hypothesis, we take the same initial seed we gave to our SSL module (Fig.

9.top). We use this hypothesis to encode the remaining five instances of our purple time

series.

 H =

Fig. 9. top) The initial seed chosen as a hypothesis. bottom) The six instances (of length 100 each) of

the dataset with their class labels (from ground truth)

Without any encoding, the description length for this time series is

 .

Our SSL module will select the nearest neighbor of any of the instance(s) in the

training set from the dataset. We will encode this instance in terms of our heartbeat

hypothesis and keep the rest of the dataset uncompressed. We find a total of 22

mismatches of the encoded instance with the hypothesis (Fig. 10.top). The reduced

description length of the dataset becomes:

DL(T,H) = DL(H) + DL(T|H) + DL(uncompressed)

 = 5*400 + 22 (4 + ()) = 2242 bits.

This means we achieved data compression, which our algorithm interprets as an

indication that the heartbeat in question really is a true positive.

V V V N N N

 27

We simply continue to test to see if unlabeled instances can be added to the positive

pool by this “reduces the number of bits required” criteria. After the module adds the

third instance in the training set, the cumulative mismatch count in terms of the

hypothesis increases to 37, resulting in a reduced description length of 2007 bits, which

means we are still achieving some compression (Fig. 10.bottom).

Fig. 10. The instances (cyan/thin) in the training set are encoded. The mismatches are colored as

brown *.

The compression indicates that the two instances encoded are very similar to the

hypothesis. By visual inspection, the reader will notice that the last three instances in

Fig. 9 are dissimilar to the initial seed. Without a stopping criterion, the SSL module will

eventually include these instances in the labeled set. This means our labeled set now

starts including true negatives. However, our MDL criteria can save us, at least in this toy

example. If we encode the last three instances using our hypothesis, the overhead to store

the mismatches will not allow further compression. This means adding the true positives,

and only the true positives, is the best we can do in terms of achieving compression for

this example.

The effect of encoding the last three ‘N’ instances is shown in Fig. 11. The

cumulative mismatch count jumps to 115, 192 and 273, respectively for these instances.

The resulting increase of the reduced description lengths to 2465, 2912 and 3403 bits

V V V N N N

V V V N N N

 28

respectively reinforces the observation that attempting to compress data which is unlike

the hypotheses is not fruitful, and this signals an appropriate stopping criterion.

Fig. 11. After correctly encoding the three ‘V’ instances, attempts to encode the ‘N’ instances require

more bits than the raw data representation.

We illustrate this observation in Fig. 12. As long as the SSL module selects

instances similar to our hypothesis, we achieve data compression (shown in green). Once

this module starts including instances dissimilar to the hypothesis, we can no longer

achieve compression (shown in red). Therefore, this first occurrence of a subsequence

that cannot be compressed with the hypotheses is the point where the SSL module should

stop.

Fig. 12. top) Reduced Description Length curve after encoding the instances shown in bottom)

In Table 3, we modify the algorithm shown in Table 2 to allow this MDL based

stopping criterion.

V V V N N N

0 100 200 300 400 500 600

Number of Instances Encoded

The reduced description length

decreases with true positives

The reduced description length

increases with false positives

original time series

1 2 3 4 5 6

2000

3500

R
e
d

u
c
e
d

D
e
s
c
ri

p
ti

o
n

 L
en

g
th

 29

Table 3. Stopping Criterion for Self-Training Time Series Classification Algorithm

O
u

tp
u

t
In

p
u

t stop_flag = find_stop_point (P, N)

P, set of labeled/positive instances.

// initially |P| = 1

N, set of unlabeled/negative instances

stop_flag, a Boolean flag indicating the stopping point

initialized to false

1

2

3

4

5

6

7

8

9

10

11

12

hypothesis = P; // the initial seed is hypothesis

DL_old = inf ;

while (N is not empty)

pos_Obj = Self_Training_Classifier (P, N);

DL_cur = description length of pos_Obj;

if DL_cur < DL_old

DL_old = DL_current;

else

stop_flag = true ;

break;

 end if

end while

2.5 Experimental Results

We begin by stating our experimental philosophy. In order to ensure that our

experiments are reproducible, we have built a website which contains all data and code

[44]. In addition, this website contains additional experiments that are omitted here for

brevity.

2.5.1 MIT-BIH Supraventricular Arrhythmia Database

We consider an ECG dataset from the MIT-BIH Supraventricular Arrhythmia

Database (SVDB) [12]. Each recording in this database includes one or more ECG

 30

signals and a set of beat annotations by cardiologists. Out of the 78 half-hour ECG

recordings in this database beat annotations by cardiologists, we randomly chose record

801 and signal ECG1 for our experiment. Here we formulate the problem of classifying

heartbeats as a 2-class problem and because identifying abnormal heartbeats are of more

interest to cardiologists, our target class (i.e. the positive class) consists of only abnormal

heartbeats. This dataset contains 268 abnormal heartbeats (Premature Ventricular

Contraction or PVC, in this case) and our self-training classifier classifies 266 of them

correctly.

Starting with a labeled set S with only one initial positive instance, our self-training

classifier augments S by adding one instance at a time. As our algorithm iterates, we

calculate the reduced description length DLS of our labeled set. As expected, with the

augmenting of the labeled set with more and more true positive (TP) instances, DLS

continues decreasing in our experiment. However, from the point we start adding true

negatives (TN) in S, DLS continues increasing. As a sanity check, we augmented the size

of our labeled set up to 700, and found no change in the curve pattern of our DLS vs.

number of time series encoded. The results are shown in Fig. 13. From this figure, we can

see that we still allow a tiny number of TP instances beyond the stopping point suggested

by our algorithm. Nevertheless, this does not significantly hurt the performance of our

classifier in terms of accuracy.

 31

Fig. 13. Reduced Description Length vs. no. of encoded instances plot for the SVDB dataset.

Green/thick and red/thin points denote TP and TN instances respectively.

2.5.2 St. Petersburg Arrhythmia Database

Next we consider classifying the heartbeats from the St. Petersburg Institute of

Cardiological Technics 12-lead Arrhythmia Database (INCARTDB) [11] using our self-

training classifier. This database has 75 annotated readings extracted from 32 Holter

records. Each record, sampled at 257 Hz, contains 12 standard leads. Over 175,000 beat

annotations are stored in the reference annotation files. An automatic algorithm produced

the annotations and then corrections were made manually. We randomly chose record I70

and signal II for our experiment. This dataset contains 126 Atrial Premature Beat, and our

self-training classifier classifies 120 of them correctly.

Fig. 14 shows that we obtained similar results to the last experiment.

100 300 500 700

2.4

2.8

3.2

3.6 105

R
ed

u
ce

d

D
es

cr
ip

ti
o

n
 L

en
g

th

Number of instances encoded

Stopping Point

 32

Fig. 14. Reduced Description Length of the labeled set vs. no. of encoded time series plot for the

INCARTDB dataset.

As we augment our labeled set with TP instances, we obtain a decreasing trend of

DLS. The moment we exhaust the TP data and start ingesting TN instances, DLS starts

increasing. The result is obvious; the inclusion of similar patterns to the hypothesis

pattern in the labeled set helps achieving further compression of the data, and we find

decreasing DLS. However, when we start including the TN instances in our labeled set,

DLS keep on increasing, because of the overhead associated with the encoding of the

mismatched portions. From Fig. 14, we stop exactly at the instant where the TN instances

start being included in the labeled set.

2.5.3 Sudden Cardiac Death Holter Database

This experiment classifies the heartbeats of the Sudden Cardiac Death Holter

Database (SDDB) [13], which is archived by Physionet [11] to support research on a

wide variety of substrates responsible for sudden cardiac death syndromes. Such sudden

100 300 500 700

2.55

2.65

2.75

2.85 10
5

Number of instances encoded

R
ed

u
ce

d

D
es

cr
ip

ti
o

n
 L

en
g

th

Stopping Point

 33

deaths happen to 400,000 Americans and millions more worldwide each year and

therefore, is of great importance.

The Sudden Cardiac Death Holter Database [13] includes 18 patients with

underlying sinus rhythm. All these patients had a sustained ventricular tachyarrhythmia,

and most had an actual cardiac arrest. Out of the twenty three records, we randomly

chose record number 52 and signal ECG (1
st
) for our experiment. This dataset contains

216 R-on-T Premature Ventricular Contraction, and our self-training classifier classifies

193 of them correctly.

We show the experimental results for this dataset in Fig. 15. We obtain similar

results to the two datasets described before. However for this dataset, the stopping point

is not exactly at the point where the TN instances start. Beyond the stopping point, we

obtain some TP instances, nevertheless, these are few in number, and the overall accuracy

is not affected significantly.

Fig. 15. Reduced Description Length of the labeled set vs. no. of encoded time series plot for the

SDDB dataset.

0 100 200 300 400

1.8

2

2.2

2.4

2.6 10
5

Number of instances encoded

R
ed

u
ce

d

D
es

cr
ip

ti
o

n
 L

en
g

th

Stopping Point

 34

2.5.4 Additional Examples

We conclude our experimental results for three additional datasets in Fig. 16. This

datasets are not from a medical domain, and are designed to hint at the generality of our

ideas.

 The result in Fig. 16.left corresponds to the SwedishLeaf_TEST dataset [19]. For

this dataset, beyond the stopping point, we obtain a tiny number of TP instances. For the

Fish_TEST dataset [19], we stop exactly at the moment when the TN instances begin to

be included in the labeled set (Fig. 16.center). However, beyond this point, we obtain

very few TP instances, which do not hurt our classifier performance significantly.

Fig. 16. Reduced description length of the labeled set vs. no. of encoded time series plots. left)

SwedishLeaf_TEST Dataset. center) Fish_TEST Dataset. right) FaceAll_TEST Dataset.

For the FaceAll_TEST dataset [19], we obtain some TP instances beyond our

stopping point (Fig. 16.right). This is because we started with a single instance to seed in

our training set, and this dataset is known to be polymorphic. Given just a single

example, it is hard for the classifier to distinguish between the faces of the same person,

let us say, with and without glasses. Nevertheless, our algorithm could still identify the

0 100 200 300
5.5

5.8

6.1

6.4 105

Stopping

Point

0 20 40 60 80 100

1.7

1.8

1.9

2 105

Stopping

Point

0 100 200 300

1.6

1.7

1.8

1.9 105

Stopping

Point

R
ed

u
ce

d

D
es

cr
ip

ti
o

n
 L

en
g
th

No. of instances encoded

 35

point where the vast majority TP instances were classified already, and the TN instances

started to be included in the training set.

2.5.5 Comparison with Rival Approaches

We perform a comparison between our algorithm and the state-of-the-art algorithm

[41] on the Fish_TEST dataset [19]. From Fig. 17, the readers can easily observe that our

algorithm suggests a better stopping point (Fig. 17.bottom) compared to the too

conservative stopping point (Fig. 17.top) suggested by the state-of-the-art algorithm.

Fig. 17. Comparison of our algorithm (bottom) with the state-of-the-art algorithm (top) [41] for the

Fish_TEST dataset [19]. Results show that the state-of-the-art algorithm stops too early, whereas our

algorithm suggests better stopping point.

Experiments on other datasets yielded similar results. In Fig. 18, we show the

results for SVDB, INCARTDB and SDDB datasets respectively.

Number of instances classified
10 30 50 70

1.2

M
in

im
a
l

D
is

ta
n

c
e

0.6

Too Early Stopping

10 30 50 70

1.7

1.8

1.9

2 10
5

R
e
d

u
c
e
d

D
e
sc

ri
p

ti
o

n
 L

e
n

g
th

Number of instances encoded

Stopping Point

 36

Fig. 18. Comparison of our algorithm (bottom) with the state-of-the-art algorithm (top) [41] for SVDB

(left), INCARTDB (center) and SDDB (right) datasets.

From Fig. 18.top, we can see that for all the three datasets, the state-of-the-art

algorithm [41] is too conservative and therefore, missed too many true positives. In

contrast, our algorithm suggested a better stopping point (Fig. 18.bottom) with almost no

prohibitive expansion of false positives or false negatives.

2.5.6 ROC Curve

We measure the performance of our self-training classifier by varying the

discrimination threshold, which is the stopping point. We consider all instances before

the stopping point as positive instances and all instances after the point as negative

instances. Out of some potential stopping points, we look for the point where our

algorithm actually suggests stopping the classification process. Experimental results show

that our classifier stops at a point with majority of the TP instances identified with almost

no FP instances selected (Fig. 19).

Number of Instances Classified

M
in

im
al

 D
is

ta
n
ce

100 300 500 700

2.4

2.8

3.2

3.6 10
5

Number of instances encoded

Stopping Point

R
ed

u
ce

d

D
es

cr
ip

ti
o

n
 L

en
g

th

100 300 500 700

0

1

2

Early Stopping

100 300 500 700

0.05

0.15

0.25

0.35 Early Stopping

100 300 500 700

2.55

2.65

2.75

2.85 10
5

Stopping Point

0 100 200 300 400

0.1

0.3

0.5

Early Stopping

0 100 200 300 400

1.8

2

2.2

2.4

2.6 10
5

Stopping Point

 37

Fig. 19. ROC curve for the SVDB dataset. The stopping point denotes a point with majority of the TP

instances identified, with almost no FP instances selected.

2.5.7 When does the Algorithm Fail?

Our MDL based algorithm for finding the stopping criterion of a self-training

classifier does not perform well when the patterns of the two classes under consideration

look very similar. As an example, we show the results for the TwoLeadECG_TEST

dataset [19] in Fig. 20.

From Fig. 20, we can see that because the positive and negative instances are

visually very similar, therefore, the expected increase in the Reduced Description Length

separating the two class boundaries is not obvious in this case.

The reader may believe that there must be some difference that allowed the original

annotator of the data to make class distinctions in the first place. However, it must be

noted that the original annotator has access to additional information, including other

telemetry recorded in parallel, which is not available to our algorithm. It is not clear if

0 20 40 60 80 100
0

20

40

60

80

100

Stopping Point

False Positive Rate

T
ru

e
P

o
si

ti
v
e

R
at

e

 38

even an expert human could do better than our algorithm, given the same view of the

data.

Fig. 20. Reduced description length of the labeled set vs. number of encoded time series plot for the

TwoLeadECG_TEST dataset. The positive/green and negative/red instances are very similar looking,

and therefore the MDL based approach does not work well.

2.6 Conclusions and Future Work

In this chapter, we proposed a novel method of semi-supervised classification of

time series with as few as a single labeled instance. Previous approaches for stopping the

classification process required extensive parameter tuning, and hence remain something

of a black art. We devised a stopping criterion for the semi-supervised classification

based on MDL, which is parameter free, and leverages the intrinsic structure of the data.

To our knowledge, this is the first work addressing time series SSL using MDL.

Extensive experiments demonstrate that our method allows us to classify real-world

medical datasets with near perfect accuracy.

100 300 500 700

5.5

5.6

5.7

5.8

5.9 105

R
ed

u
ce

d

D
es

cr
ip

ti
o

n
 L

en
g

th

Number of Instances Encoded

 39

Our current approach works only on offline time series data; we plan extending it

to perform online semi-supervised time series classification. We also plan to generalize

our algorithm to the setting of multiple classes.

2.7 Acknowledgement

This research was funded by NSF grant IIS – 1161997.

 40

Chapter 3: A General Framework for Density
Based Time Series Clustering Exploiting a
Novel Admissible Pruning Strategy

Time Series Clustering is an important subroutine in many higher-level data mining

analyses, including data editing for classifiers, summarization, and outlier detection. It is

well known that for similarity search the superiority of Dynamic Time Warping (DTW)

over Euclidean distance gradually diminishes as we consider ever larger datasets.

However, as we shall show, the same is not true for clustering. Clustering time series

under DTW remains a computationally expensive operation. In this work, we address this

issue in two ways. We propose a novel pruning strategy that exploits both the upper and

lower bounds to prune off a very large fraction of the expensive distance calculations.

This pruning strategy is admissible and gives us provably identical results to the brute

force algorithm, but is at least an order of magnitude faster. For datasets where even this

level of speedup is inadequate, we show that we can use a simple heuristic to order the

unavoidable calculations in a most-useful-first ordering, thus casting the clustering into an

anytime framework. We demonstrate the utility of our ideas with both single and

multidimensional case studies in the domains of astronomy, speech physiology, medicine

and entomology. In addition, we show the generality of our clustering framework to

other domains by efficiently obtaining semantically significant clusters in protein

sequences using the Edit Distance, the discrete data analogue of DTW.

Keywords: Clustering; Time Series; Anytime Algorithms

 41

3.1 Introduction

Because of the prevalence of time series data in human endeavors, the research

community has made substantial efforts to create efficient algorithms for classification,

clustering, rule discovery, and anomaly detection for this data type [46][49][67][79][93].

In particular, time series clustering is very useful, both as an exploratory technique and as

a sub-module for solving higher-level data mining problems. As a motivating example,

consider Fig. 21, which illustrates a subset of a cluster we discovered in a social media

dataset [103]. This clustering allows us to at least partly address two problems:

 Synonym Discovery: In this example, we have a time series containing the

volume of the hashtag #Michael over time. It is not clear to whom this refers: Michael

Phelps? Michael Caine? However, by noting that this cluster also contains

#MichaelJackson, this ambiguity is resolved.

 Association Discovery: Here we see that #kanyewest and #taylorswift have

highly similar time series representations, but are clearly not synonyms. If we test to see

whether this relationship existed prior to the illustrated timeframe, we find it does not.

This suggests the existence of an event that caused this temporary association, and with a

little work we can discover that the famous “I'mma let you finish” event at the 2009

Video Music Awards produced this relationship [106].

 42

Fig. 21. A cluster of four Twitter hashtag usage time series (normalized for volume) over ~6 days
starting from June 12, 2009 [103]. (Best viewed in color)

In this example, the knowledge gleaned is clearly trivial; however, similar ideas

have been used to track the levels of disease activity and public concern during the recent

influenza A H1N1 pandemic [92]. Note that while we discovered this example using

Dynamic Time Warping (DTW), it might have been discovered more efficiently with the

Euclidean distance (ED). However, in cases where there is a causal relationship (rather

than just an association) between events, a local lag can result between peaks. It has been

extensively shown in the literature that the 40-year old distance DTW is an ideal

similarity measure to capture/be invariant to such out-of-sync relationships [91].

We argue that the problem we wish to solve, robustly clustering large time series

datasets with invariance to irrelevant data, has not been solved before.

For most time series data mining algorithms, the quality of the output depends

almost exclusively on the distance measure used [93]. In the last decade, a consensus has

emerged that the DTW distance measure is the best measure in most domains, almost

always outperforming the Euclidean Distance (ED) and other purported rivals [93]. As a

concrete example, consider the two clusterings of three randomly chosen mammals

shown in Fig. 22. The input data is the mitochondrial DNA after it was converted to a

#kanyewest

#Michael

#MichaelJackson

#taylorswift
0 40 80 120

hours

 43

time series representation (converting DNA to time series is a commonly used operation

[84][85]). Two types of DNA mutations, insertions and deletions, have the effect of

“warping” the time series. At least in this case, we can see that DTW is invariant to these

mutations and correctly unites Bos taurus (cattle) and Hyperoodon ampullatus

(bottlenose whale), with Talpa europaea (mole) as the out-group.

Fig. 22. Single-linkage hierarchical clusterings of DNA using DTW (left) and Euclidean distance
(right).

While this example
1
 is on a small and somewhat specialized dataset in the domain

of bioinformatics, in Section 3.6 we will show that the superiority of DTW extends to

large datasets in many domains including discrete protein data.

3.1.1 Why This Problem is Hard

Because DTW is intrinsically slow due to its quadratic time complexity, there are

two ideas that are commonly used to mitigate the problem of using such a sluggish

1 We defer a discussion of our experimental philosophy until Section 3.5, but we note that all experiments in this work are made

reproducible by our unrestricted sharing of code/data.

Bos taurus

Hyperoodon
ampullatus

Talpa
europaea

Bos taurus

Hyperoodon
ampullatus

Talpa
europaea

Cetartiodactyla

 44

distance measure [85]. We briefly discuss them here only to dismiss them as possible

solutions.

 The convergence of DTW and Euclidean distance results for increasing data

sizes. It has been noted that for many problems, including motif discovery [79] and

classification [93], the results returned by DTW and Euclidean distance tend to become

increasingly similar as the dataset sizes increase. This suggests that it is more efficient to

use Euclidean distance to cluster large datasets.

 The increasing effectiveness of lower-bounding pruning for increasing data sizes.

For some problems, notably similarity search, the lower-bounding pruning of

unnecessary calculations is the main technique used to produce speedup. The

effectiveness of this lower-bounding tends to improve dramatically as the datasets get

larger [85].

Unfortunately, neither of these observations helps us for clustering under DTW. To

demonstrate why the first observation does not help, we performed a simple experiment

in which we measured the leave-one-out training error of 1-NN classification using both

DTW and ED, for various numbers (50 to 2000) of exemplars from the CBF dataset [69].

With 50 objects, the error rates differ by a factor of 4.6 (7% and 1.75%, respectively), but

as shown in Fig. 23.top, by the time we consider the 2,000 object dataset, this difference

is essentially zero.

This effect is well known for time series classification [88][93], and it might be

imagined that this also applies to clustering. To show that this is not the case, we

performed a parallel experiment in which we clustered the same objects and measured

 45

the performance using the Rand Index [87]. As shown in Fig. 23.bottom, DTW clustering

maintains its superiority over Euclidean distance as the datasets get larger.

Fig. 23. top) The classification error rates of DTW and ED tend to converge as we see more training
data. bottom) In contrast, for clustering, DTW retains its great superiority over ED for increasingly
large datasets.

Similarly, the second observation above does not help significantly to prune DTW

distance computation for clustering. It is true that lower bounds are increasingly effective

for larger datasets when attempting a similarity search. This is because for larger

datasets, we can expect to have a smaller best-so-far early on, which allows more

effective pruning [85][88][93]. However, in clustering, we need to know the distance

between all pairs [67], or at least all distances within a certain range, which renders the

typical use of lower-bounding pruning ineffective.

0 1000 2000

0.01

0.03

0.05

0.07

1
-N

N
 e

rr
o

r
ra

te

Size of training set

Euclidean

DTW

0 1000 2000

0.6

0.7

0.8

0.9

Dataset Size

R
a
n

d
 I

n
d

e
x

DTW

Euclidean

 46

3.1.2 Why Existing Work is NOT the Answer

More generally, many clustering algorithms achieve scalability by exploiting a

spatial access method. For example, the scalable version of the ubiquitous DBSCAN uses

an R*tree [56]. However, because DTW is not a metric, it is very difficult to index,

especially for long (i.e., high-dimensional) time series objects.

Beyond the need to scalably support DTW, we note the need for a clustering

algorithm that supports invariance to outliers. That is to say, unlike some clustering

methods such as k-means, which attempt to explain all the data, we believe it is

especially important to allow a time series clustering algorithm the freedom to ignore

some data.

Consider the example in Fig. 24. We took twelve objects from a heraldic shield

dataset [107] and clustered these using k-means and DP, the algorithm we propose to

augment (described in detailed in Section 3.4.1). Because we are using the (non-metric)

DTW measure, which may prevent k-means from converging, we used the variant in [65]

which performs k-means clustering using the all-pair distance matrix. Note that for the

ease of visualization, we used multidimensional scaling to cast high-dimensional time

series objects to two dimensions. After we ran the algorithms, both of them gave a perfect

Rand Index score of 1.0. We then inserted a single outlier object (object 12) from this

dataset and reran the algorithms. As we can see from Fig. 24.bottom.left), k-means

assigned objects 6-11 to the cluster of the outlier object. In addition, k-means falsely

identified objects 1 and 2 as a separate cluster from the cluster of objects 3-5. In contrast,

 47

from Fig. 24.bottom.right) we can see that DP only clustered object 7 in the cluster of the

outlier object, but did not change the cluster labels of the rest of the dataset.

This toy example is contrived and anecdotal, but conformed by more rigorous and

wide-reaching experiments on real data [108].

Fig. 24.: top.left) Leaf 18V of a 15
th

-century book, Treatises on Heraldry [107]. top.right) The colorful
heraldic shields can be converted to 3D RGB “time series” of color distribution. bottom.left) Even the
insertion of a single outlier can confuse k-means. bottom.right) In contrast, the performance of the DP
algorithm is not sensitive to outliers.

In this work, we address all the considerations above. We adapt DP (Density

Peaks), a relatively new clustering framework that is able to ignore outlying data points

[89]. While DP is insensitive to outliers, it is relatively slow, as it requires O(N
2
) DTW

calculations. We augment DP such that it can exploit both DTW upper and lower bounds

to compute only the absolutely necessary DTW calculations, and do so in a best-first

manner, giving our algorithm the desirable anytime algorithm behavior [48][105].

6

7

8
9

10

11

Mislabeled

by k-means

Outlier

1

24

5

12

6

8
9

10

11

1

24

5

712

33

 48

3.2 Related Work

The field of clustering is vast, and even the subfield of clustering time series has an

enormous literature [46][67][101][104]. Much of the works on time series clustering are

concerned with clustering based on time series features [101], which are at best

tangentially related to our goals. Here, we are only interested in clustering based on time

series shapes. In the latter case, there are two important and interrelated choices that

define most of the literature: the choice of distance measure and the choice of clustering

algorithm.

Most of the literature on time series shape-based clustering uses metric measures

such as Euclidean distance [54][101]. The ubiquity of Euclidean distance seems to derive

more from its familiarity and ease of indexing than any data-driven assessment of its

effectiveness. As Fig. 23.top illustrates with a single representative example, the general

superiority of DTW over ED is well understood in the community (cf. [93]), at least for

classification. As Fig. 23.bottom suggests, and as we later empirically confirm on many

diverse datasets, the dominance of DTW over ED for clustering is, if anything, much

greater.

The plethora of shape-based clustering algorithms [67][86][104] can be divided at

the highest level into those that insist on explaining (i.e., clustering) all the data [104] vs.

those that have the representational power to leave some data unclustered (a small

minority) [86]. We believe that this distinction is underappreciated and critical to the

success of most efforts. For clarity, consider the following analogy: if we were clustering

people, surely every person in our database would belong to some group, even if (due to

 49

the small size of our sample) the size of some groups were just one. In contrast, if we

were clustering subsequences from a speech articulation database (see Section 3.6), we

would hope that the subsequences would cluster into well-defined words or phrases.

However, it is highly likely that we would have some examples of coughing, sneezing or

harrumphing. Such sequences are likely to be very dissimilar to the rest of the database.

Not only do we not want/need them to be clustered, but also we do not want them to

affect the clustering of the clusterable words or phrases (recall Fig. 24). However k-

means and its variants insist on explaining these instances and because of k-means’s sum

of squares objective function, these highly dissimilar items have a huge effect on the

quality of the overall clustering.

One of the basic questions in clustering problems is the notion of a ‘cluster’ itself.

There exist partitional clustering algorithms such as k-means which typically assume data

has balanced Gaussian “ball-shaped” clusters. Whereas some other algorithms (e.g.

DBSCAN [56]) take the density of objects into consideration regardless of the shape the

clusters may have. The intuition behind DBSCAN algorithm is that, each object in a

cluster must have at least some number of other objects (MinPts) in its vicinity (ε). If two

objects are density-reachable from each other, then they are assigned in the same cluster.

However, DBSCAN is not deterministic in its assignment of the cluster border points,

because the result specifically depends on the order of the objects considered. Besides,

DBSCAN has two parameters, MinPts and ε, and there is no concrete strategy for setting

these parameters.

 50

There exist works [77] in the literature that perform clustering on top of DBSCAN

[56]. The problems with such approaches are the inheritance of the non-determinism of

DBSCAN and the use of only lower bounds to prune expensive distance calculations. A

variant of DBSCAN called IncrementalDBSCAN [57] has been demonstrated to perform

much better than the brute-force re-clustering of newly added/removed objects which is

mostly appropriate for datasets changing incrementally. DBCLASD [102] is a non-

parametric grid-based clustering algorithm which considers the density of objects like

DBSCAN to define clusters. It exploits a grid-based approach to find polygons of

clusters. However, this algorithm cannot be applied to high-dimensional time series

domains. DENCLUE [62] is an algorithm which combines both density-based and grid-

based approaches to define cluster centers that has the local maximum of some density

function. The cluster assignment of other objects in the datasets is done by a hill-climbing

approach. There exist other types of clustering algorithms like hierarchical and model-

based [61]. However, such algorithms are known to be quite slow and not appropriate for

our context.

A handful of research efforts [104] have attempted to mitigate the slow

performance of DTW clustering by casting it to an anytime framework. Most such efforts

reduce to the following: until there is a user interrupt, these frameworks keep replacing

the (fast to compute) approximate DTW distances with true (slow to compute) DTW

distances. If there is no user interrupt, such frameworks will calculate the full distance

matrix (generally in some “most-likely-to-be-useful” order) and return the exact

 51

clustering. We refer readers interested in time series clustering to the detailed surveys

[70][74].

Our proposed algorithm goes beyond this literature in several ways. Most

importantly, we show that calculating the full distance matrix is unnecessary in the

general case. By exploiting both upper and lower bounds to DTW, and, more critically,

by exploiting the relationship between these bounds, we can compute the exact clustering

while only calculating a tiny fraction of the full distance matrix.

3.3 Background

There has been significant research on clustering datasets that are too large to fit in

main memory [50][51]. This problem setting typically assumes inexpensive distance

measures, but costly disk accesses [51]. However, the problem we wish to solve exploits

DTW, which itself is a very expensive distance measure. Therefore, in situations when

even the data can be stored in main memory, the time needed to do the clustering may be

on the order of days/weeks. The problem we are interested in is therefore, CPU

constrained, not I/O constrained.

3.3.1 Anytime Algorithms

For most clustering algorithms, it is well known that not all distance measurements

contribute equally to the final clustering assignments. For example, a recent paper on

hierarchical clustering demonstrates (under some mild assumptions) that it is possible to

 52

capture the true structure of the clustering with just carefully chosen O(n log
2
 n) distance

computations [72]. The fact that some distance computations are more important than

others, immediately suggests that we should use anytime algorithms, assuming only that

we can find an efficient and (even somewhat) effective test to identify these influential

distance computations.

Recall that anytime algorithms are algorithms that can return a valid solution to a

problem, even if interrupted before ending [104][105]. Starting with a negligibly small

amount of setup time, these algorithms always have a best-so-far answer available and

the quality of the answer improves with the increase of execution time. The desirable

properties of anytime algorithms are interruptibility, monotonicity, measurable quality,

diminishing returns, preemptibility, and low overhead [105]. Note that this is a very brief

introduction to anytime algorithms; we refer the interested reader to [105], which

contains an excellent survey. As Fig. 25 shows, anytime algorithms, in essence, optimize

the tradeoff between execution time and quality of the solution.

Fig. 25.: An abstract illustration of an anytime algorithm. The three curves show a comparison of the
possible performances of three hypothetical anytime algorithms. The bottommost curve (pink) is only
improving linearly over time, but the topmost curve (green) demonstrates diminishing returns, making
most of its improvements early on.

Time

Q
u

al
it

y
 o

f
S

o
lu

ti
o

n

Setup Time

0% 100%

 53

For clarity, we reiterate that the anytime algorithm approach is just one of the two

contributions of this work. We propose to make the clustering absolutely faster by

admissible pruning. This is in addition to rearranging the order in which the non-prunable

calculations are considered to produce the best possible diminishing returns anytime

algorithm behavior.

3.4 Algorithm

We begin by reviewing the basic algorithm that we will augment and specialize to

handle DTW.

3.4.1 Density Peaks Algorithm Overview

Our proposed solution is inspired by DP, the density-based clustering algorithm

recently proposed in [89]. We chose to augment the DP framework for solving large time

series clustering problems because of the following:

 Recent literature [86] and our own experience on real datasets (cf. Section 3.6)

suggest that the successful clustering of time series requires the ability to ignore some

data objects. The issue is not merely that anomalous objects themselves are unclusterable;

but that the presence of these objects can affect the labels of objects that are clusterable

in unpredictable ways. The DP algorithm has been shown to be able to ignore anomalous

data points.

 The DP algorithm is able to handle datasets whose clusters can form arbitrary

shapes. This is in contrast to k-means and related algorithms, which assume the clusters

 54

are “balls” in space. This observation is particularly important for DTW, which is not a

metric. While we cannot exactly visualize DTW clusters in a metric space, it is clear that

some classes of objects under DTW form complex manifolds in DTW “space.”

 Many clustering algorithms require the user to set many parameters. In contrast,

the DP algorithm requires only two. These parameters are relatively intuitive and not

particularly sensitive to user choice.

 Finally, it happens to be the case that the DP algorithm is amiable to optimization

and conversion to an anytime algorithm.

To make our argument more concrete, we will take the time to explain the

clustering algorithm [89] we adapt and augment. The DP algorithm assumes that the

cluster centers are surrounded by lower local density neighbors and are at a relatively

higher distance from any point with a higher local density. Therefore, for each point i in

the dataset, the DP algorithm computes two quantities:

 Local density (ρi)

 Distance from points with higher local density (δi).

We can formally define these two quantities:

Definition 9 The Local Density ρi of point i is the number of points that are closer to

it than some cutoff distance dc.

Definition 10 The Distance from Points of Higher Density is the minimum distance

δi from point i to all the points of higher density. For the special case of the highest

density point, this distance is the maximum of the distances of all the points from

their higher density points.

 55

We give the algorithm to compute ρi in Table 4 and δi in Table 5.

Table 4: Local Density Calculation Algorithm

Input: D,all-pair distance matrix

 dc, cutoff distance

Output: ρ,the local density vector for all n points in the dataset

1

2

3

for i = 1:n

 ρ(i) = count(D(i,otherObjects)<dc)

end

Given the all-pair distance matrix D and a cutoff distance dc, for each point i in the

dataset, ρi is calculated in lines 1-3 of Table 4. In Table 5, using the local densities ρ from

Table 4, for each point i, the list of the points with higher densities is calculated (line 2).

In line 4, this list is sorted in descending order. From lines 5 – 7, for each point in the

sorted order, the distances from their higher density points are calculated. For the special

case of the highest density point (which by definition has no higher density neighbor),

this distance is calculated in line 8.

Given the ρi and δi for each object i¸ the DP algorithm calculates the cluster centers

χ, and performs the cluster assignments based on these centers.

Table 5:Distance to Higher Density Points Algorithm

Input: D,all-pair distance matrix

 ρ,the local density vector

Output: δ,NN distance vector of higher density points

1

2

3

4

5

6

7

8

for i = 1:n

 δ_list(i) = findHigherDensityItems(i,ρ)

end

[sorted_δ_list, sortIndex] = sort(δ_list,’descend’)

for j = 2:n

 δ(sortIndex(j)) = NNDist(sorted_δ_list(j))

end

δ(sortIndex(1)) = max(δ(2:n))

 56

The cluster centers are selected using a simple heuristic: points with higher values

of (ρi×δi) are more likely to be centers. We give the cluster center selection algorithm in

Table 6.

Table 6: Cluster Center Selection Algorithm

Input: δ,NN distance vector of higher density points

 ρ,the local density vector

 k, number of clusters

Output: χ, cluster centers

1 χ = topK(sort(ρ*.δ, ‘descend’),k)

Given the sorted values of (ρi×δi) in descending order, the top k items are selected

as cluster centers (line 1). The value of k can be specified by the user, or found

automatically using a “knee-finding” type of algorithm [89].

The final step of the DP algorithm is the cluster assignment. Each data item gets the

cluster label of its nearest neighbor (NN) from the list of points with higher local

densities than it has. We give the cluster assignment algorithm in Table 7.

Table 7: Cluster Assignment Algorithm

Input: χ, cluster centers

 δ,NN distance vector of higher density points

 sortIndex, sorted index of items based on descending ρ

Output: C, clusters

1

2

3

4

5

6

7

8

for i = 1:size(χ)

 C(χ(i)) = i //assign cluster labels for centers

end

for j = 1:n

 if C(sortIndex(j)) == empty //no cluster label yet

 C(sortIndex(j)) = C(NN(sortIndex(j)))

 end if

end

 57

In lines 1-3 the cluster labels of the centers are assigned. After this initialization,

each of the points in the dataset (other than the centers themselves) gets the cluster label

of its nearest neighbor from the higher density list in the descending order of local

density (lines 4-8). It is important to note that this algorithm allows the clusters to have

arbitrary, possibly non-convex shapes, unlike k-means and its variants, which are

restricted to a Voronoi partitioning of the input space. We are now in a position to

describe our augmented version of the DP framework.

3.4.2 TADPole: Our Proposed Algorithm

We call our algorithm, TADPole (Time-series Anytime DP). As stated in Section

3.1, in order for the original DP algorithm to cluster a dataset, we need to know the

distances between all pairs. The time needed to compute these all-pair distances becomes

untenable for a quadratic time distance measure such as DTW. In order to mitigate this

undesirable time complexity, our thoughts naturally turn to attempts to speed up other

(non-clustering) algorithms that need to compute DTW frequently. Most such algorithms

exploit linear time lower bounds like LB_Keogh [68], LB_Kim, LB_Yi [101], etc.

Moreover, some algorithms exploit the fact that ED is an upper bound to DTW, and can

also be computed in O(n) time.

In our TADPole algorithm, we augment the DP clustering framework and exploit

the upper and lower bounds of DTW to prune unnecessary distance computations, which

results in at least an order of magnitude speedup. For datasets where even this level of

 58

speedup is inadequate, we show that we can use a simple heuristic to order the

unavoidable calculations in a most-useful-first ordering. As a result, our algorithm can be

cast to an anytime clustering framework, which quickly produces a good answer and

rapidly refines it until it converges to the exact answer (for proof, c.f. Section 3.9).

The inputs to the TADPole algorithm are the lower bound and upper bound

matrices for the true DTW distances of all the objects of the dataset. Note that the time

needed to compute these is inconsequential (<1%) relative to the overall clustering time.

The only parameters we need are the cutoff distance (dc) and optionally, the

number of clusters (k), if the user wishes to specify this value rather than use the knee-

finding heuristic suggested in [89]. Because we use DTW as the underlying distance

measure, the warping window size is another parameter for TADPole. We discuss the

heuristic to set these parameters in Section 3.5.3. Note that our use of two additional

upper bound and lower bound matrices increases the space complexity of the algorithm

by 200%. However, this is not an issue because:

 The DP algorithm (especially when using DTW or another expensive measure) is

CPU bound, not space bound.

 If really necessary, we could greatly mitigate this space overhead. The lower

bound matrix will have many elements that are zeros, and thus would be amiable to be

encoded as a sparse matrix.

 If needed, both the upper and lower bound matrix’s could be computed in a just-

in-time fashion [85]. This would greatly reduce the memory footprint, at the expense of a

more complicated implementation.

 59

For clarity of presentation, we present our contributions in two different sections,

although the final algorithm incorporates both ideas. In Sections 3.4.2.1 to 3.4.2.4, we

show how to accelerate the TADPole algorithm by admissibly pruning the distance

computations during the calculation of local densities (ρ) and NN distances (δ) from a

higher density list for each item. In Section 3.4.2.5, we show how to reorder these

computations to give us the diminishing returns property of anytime algorithms

[48][105].

3.4.2.1 Pruning During Local Density Calculation

Consider the four cases shown in Fig. 26.

In this step of the TADPole algorithm, the inputs are the fully computed lower

(LBMatrix) and upper bound (UBMatrix) matrix. For each object pair (i,j), while calculating

their local densities (lines 1 to 3 in Table 4), we prune their distance (Dij) computation

according to the following four cases shown in Fig. 26.

Case A: Objects i and j are identical

The DTW distance of two identical objects, i and j, is equal to their ED distance. It

is a simple lookup in the upper bound distance matrix, and requires no actual DTW

distance computation. This case is logically possible but very rare (Fig. 26.A)).

 60

Fig. 26.: The four mutually exclusive and exhaustive cases of distance computation pruning during
local density calculation. Note that the cutoff distance dc, represented by the purple line at the top,
applies to all four cases below it. Case A is difficult to visually represent, as i and j coincide.

Case B: UBMatrix(i,j) < dc

If the upper bound distance between objects i and j is less than the cutoff distance

(dc), then i and j are definitely within dc distance to each other (Fig. 26.B)). Therefore, we

can prune the DTW distance computation of these two objects.

Case C: LBMatrix(i,j) > dc

If the lower bound distance of i and j is greater than the cutoff distance, then these

two objects are definitely not within dc distance to each other (Fig. 26.C)). We can

therefore admissibly prune their DTW distance computation.

Case D: LBMatrix(i,j) < dc and UBMatrix(i,j) > dc

j

LBMatrix(i,j)

Dij

UBMatrix(i,j)

LBMatrix(i,j)
Dij

UBMatrix(i,j)

dc

LBMatrix(i,j)
Dij

UBMatrix(i,j)

B)

C)

D)

i j

i

i

j

j

i Dij = 0A)

 61

In this case, we cannot tell whether or not the actual DTW distance between i and j

is within dc. Therefore, only in this case do we need to compute Dij (Fig. 26.D)).

With this intuition in mind, we specify the formal distance pruning algorithm

during the local density calculation in Table 8.

Table 8: Pruning Algorithm during Local Density Calculation

Input: LBMatrix, full computed lower bound matrix

 UBMatrix, full computed upper bound matrix

 Data, the dataset

 dc, cutoff distance

Output: ρ,local density vector for all points in dataset

 DSparse, partially filled distance matrix

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

DSparse = empty

for i = 1:size(Data)

 objectsWithin_dc = empty

 for j = 1: size(Data)

 if i == j

 continue;

 else

 if LBMatrix(i,j) == UBMatrix(i,j) //case A)

 continue
 elseif UBMatrix(i,j) < dc //case B)

 objectsWithin_dc = [objectsWithin_dc j]

 elseif LBMatrix(i,j) > dc // case C)

 continue

 //case D)

 elseif LBMatrix(i,j) < dc and UBMatrix(i,j) > dc

 DSparse(i,j) = calculateDist(Data(i),Data(j))

 if DSparse(i,j) < dc

 objectsWithin_dc = [objectsWithin_dc j]

 end if

 end if

 end if

 end for

 ρ(i) = length(objectsWithin_dc)

end for

As we can see from Table 8, in lines 5 - 21, for all the object pairs in the data, the

TADPole algorithm checks which of the four cases applies in order to determine whether

or not these objects are within the cutoff distance.

 62

The occurrence of case B tells us that the object pair in question is definitely within

dc (lines 10 -11) without having to calculate the expensive true DTW distance. Cases A

(lines 8 -9) and C (lines 12 -13) specify that the object pair is not within dc. It is only the

occurrence of case D that forces the algorithm to calculate the true DTW distance of the

object pair in question (lines 14 -19).

At the end of this section of TADPole, for each object i, we have all the local

densities (ρi) computed. Using lines 1 - 3 of Table 5, we can now find the δ list, the list of

the points with higher densities. Next we will describe our pruning strategy for this step.

3.4.2.2 Pruning During NN Distance Calculation from Higher Density List

Our pruning strategy for this step works in two phases. First, for each item we find

an upper bound of the NN distance from its higher density list. In the second phase we

perform the actual pruning based on these upper bounds. The distance computation of

TADPole terminates when for all objects in the dataset, we are done finding their actual

NN distance from their respective higher density lists.

Phase 1: Upper bound calculation

Given DSparse and ρi for each item i, we initialize the upper bound of its NN distance

from its higher density list, ubi, to inf. For each item j in the higher density list of i, we

either have the actual DTW distance (Dij) computed already or have access to the upper

bound (UBMatrix(i,j)) to this distance. We scan the higher density list of item i, and if the

current ubi > Dij or ubi > UBMatrix(i,j), we update the current ubi to Dij (if available

 63

already), or to UBMatrix(i,j) otherwise. Therefore, we can guarantee that the NN distance

from the higher density list for item i can be no larger than ubi. We give a visual

illustration of this upper bound calculation in Fig. 27.

Fig. 27.: An illustration of the distance pruning during the NN distance calculation from a higher
density list of an object. From object i, the elements in the higher density list are j1 – j4. After Phase
1, ubi will be UBMatrix(i,j4). In Phase 2, the distance computations of Dij2 and Dij3 are pruned.

In Fig. 27, the elements on object i’s higher density list are j1 – j4. Assume that we

only know the DTW distances from object i to objects j1 and j3, (D1 and D3 respectively,

shown in blue). Because we do not know D2 and D4, we have shown these distances in

gray in Fig. 27. When Phase 1 starts, ubi is initialized to inf. Now our TADPole algorithm

scans object j1 and updates ubi to D1. Because UBMatrix(i,j2) and D3 are both are greater

than ubi, we do not need to update ubi. In the last step, given that UBMatrix(i,j4) < ubi, we

LBMatrix(i,j1)

D1

UBMatrix(i,j1)

D2

UBMatrix(i,j2)

D3

UBMatrix(i,j3)

A)

B)

C)

i j1

i

i

j2

j3

D4

UBMatrix(i,j4)

i j4

D)

LBMatrix(i,j2)

LBMatrix(i,j4)

LBMatrix(i,j3)

 64

update ubi to UBMatrix(i,j4). This ubi is an upper bound of the NN distance from object i’s

higher density list.

We give the upper bound calculation algorithm for the NN distance computation

from a higher density list in Table 9. We initialize the upper bound vectors of NN

distances of objects from their higher density list, ub to inf (line 1). Next, considering

each of the item on the higher density list of an object i, δ_listi(j),we check whether i’s

current upper bound can be tightened (lines 5 -13). In lines 5 - 8 we see if the actual

distance between i and δ_listi(j) has been computed already, then whether or not this

distance can tighten ubi. If the distance has not been computed yet, then in lines 10 - 12

we check whether we can tighten ubi by replacing it with the upper bound distance

between i and δ_listi(j).

Table 9: Upper Bound Calculation Algorithm for NN Distance Computation from Higher Density List

Input UBMatrix, full computed upper bound matrix

 Data, the dataset

 DSparse, partially filled distance matrix

 δ_list, list of the points with higher densities

Output: ub, upper bound vector of NN distances from higher density points

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ub = inf(size(Data))

for i = 1:size(Data)

 for j = 1:size(δ_listi)

 highDensityItem = δ_listi(j)

 if DSparse(i, highDensityItem)≠ empty

 if ubi > DSparse(i, highDensityItem)

 ubi = DSparse(i, highDensityItem)

 end if

 else

 if ubi > UBMatrix(i,highDensityItem)

 ubi = UBMatrix(i,highDensityItem)

 end if

 end if

 end for

end for

 65

At the end of this phase of TADPole, we have ub, the upper bound vector of NN

distances from higher density points, computed. We now describe exploiting ub to prune

the distance calculations during the computation of the higher density list.

Phase 2: Pruning

We give the pruning algorithm during the computation of NN distances from the

higher density lists of all objects in Table 10.

We begin by scanning the higher density list of each of the objects again. In line 5 of

Table 10, for an object i, we test whether LBMatrix(i, δ_listi(j)) is greater than ubi we

calculated in Table 9 . If this is the case, we prune the distance computation (line 6) for

δ_listi(j). Otherwise, if the true distance between i and δ_listi(j) is already calculated, then

we consider this distance as one of the potential NN distances from i’s higher density list

(line 9). If the true distance is not yet known, only then do we compute it (line 11-12).

Finally, we compute the NN distance vector for all objects from their higher density lists

(line 17).

In Fig. 27, we see that both LBMatrix(i,j2) and LBMatrix(i,j3) are greater than ubi.

Therefore, we can prune D2 and D3. In this example, we assumed we know D1; therefore,

after the pruning done by Phase 2, we only need to calculate D4.

After this phase of TADPole, for each item i we have access to the NN distance

from points with higher local densities (δi). At this point, given ρi and δi for each object i¸

the TADPole algorithm calculates the cluster centers χ using the algorithm in Table 6,

and performs the cluster assignments based on these centers according to the algorithm in

Table 7.

 66

Table 10: Pruning Algorithm during the Computation of the NN Distances from the Higher Density
Lists of All Objects

Input: LBMatrix, full computed lower bound matrix

 Data, the dataset

 DSparse, partially filled distance matrix

 δ_list, list of the points with higher densities

 ub, upper bound vector of NN distances from higher density points

Output: δ, NN distance vector of higher density points

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

for i = 1:size(Data)

 temp_δ = empty

 for j = 1:size(δ_listi)

 highDensityItem = δ_listi(j)

 if LBMatrix(i,highDensityItem)> ubi

 continue //prune distance computation

 else

 if DSparse(i, highDensityItem)≠ empty

 temp_δ = [temp_δ DSparse(i, highDensityItem]

 else // calculate distance

 DSparse(i, highDensityItem) =

 calculateDist(Data(i),Data(highDensityItem))

 temp_δ = [temp_δ DSparse(i, highDensityItem]

 end if

 end if

 end for

 δ(i) = min(temp_δ)

end for

3.4.2.3 Multidimensional Time Series Clustering

While most of the research efforts on time series clustering have considered only

the single-dimensional case [67][86], the increasing prevalence of medical sensors (c.f.

Section 3.6.2) and wearable devices (c.f. Section 3.6) has given urgency to the need to

support multidimensional clustering [94]. Fortunately, our extension of TADPole to the

multidimensional case requires changing only a single line of code. For clarity, we

highlight these changes for multidimensional clustering for Table 8 and Table 10 in Table

11 and Table 12, respectively.

 67

Table 11: Pruning Algorithm during Local Density Calculation for Multidimensional Data (see Table 8)

Input: LBMatrix, full computed lower bound matrix along d dimensions

 UBMatrix, full computed upper bound matrix along d dimensions

 Data, the dataset

 dc, cutoff distance

Output: δ, NN distance vector of higher density points

16

...

DSparse(i,j) =

...

Table 12: Pruning Algorithm during NN Distance Computation from Higher Density List,
Multidimensional Case (see Table 10)

Recall that in Table 8, we gave the full lower bound and upper bound distance

matrices as inputs to the algorithm. To perform multidimensional clustering, for each

dimension we wish to consider, we calculate the corresponding lower/upper bound

distance matrices independently along those dimensions. We take the sum of all lower

bound matrices/upper bound matrices and give these cumulative matrices as inputs to our

algorithm described in Table 8. In addition, when we actually calculate the distances (line

16 in Table 8 and lines 10-12 in Table 10), we take the summation of the distances along

all the dimensions. All other components of TADPole will remain the unchanged. We

explicitly evaluate the utility of TADPole clustering for multidimensional clustering in

Section 3.6.4. More generally, as we shall show empirically in Section 3.5, by using the

methods described above, TADPole can obtain at least an order of magnitude speedup

over the original DP algorithm while producing identical results.

10

11

12

 else // calculate distance

 DSparse(i, highDensityItem) =

 68

3.4.2.4 How Effective is Our Pruning?

Here we will demonstrate just the utility of our pruning strategy, before

generalizing to allow anytime behavior in the next section. In order to intuitively calibrate

the effectiveness of our pruning, we compare TADPole to the best and worst possible

cases of DP:

 In order to perform clustering, the DP algorithm needs the all-pair distance matrix

computed [89]. Therefore, in terms of distance computation, the brute force DP algorithm

itself is the obvious worst-case straw man.

 The best possible variant of DP is the one that performs a distance computation

only when it is necessary. Therefore, during density computation, this variant of DP

considers only those distance computations that contribute to the actual density of an

object. In addition to this, during the computation of the NN distance from the higher

density list of an object, this variant considers only the actual NN distances. We call this

algorithm the oracle variant of DP. Note that we obviously cannot compute this in real-

time, but only by doing an expensive post-hoc study.

We compare the amount of distance pruning we achieve against these two variants

of the DP algorithm. For this experiment, we consider the StarLightCurves dataset [69].

We vary the number of objects in the dataset we need to cluster (by random sampling)

and record the number of true DTW distance computations. As we can see from Fig.

28.left), the number of distance computations increases quadratically using the brute

force algorithm. In contrast, the oracle algorithm requires very few distance

 69

computations; moreover, we can see that our TADPole algorithm performs almost as well

as the oracle algorithm.

Fig. 28.: A comparison of the CPU time spent by TADPole against an oracle and the brute force
algorithm to cluster the StarLightCurves dataset. As before, the performance of TADPole is very
close to the oracle algorithm.

This claim is reinforced in Fig. 28.right, in which we see that the percentage of

distance computations TADPole requires is very close to the oracle algorithm. As we can

see, as the datasets get larger, TADPole converges closer and closer to the oracle

algorithm.

Also note that a similar performance is observed in all datasets we considered

(archived in [108] for brevity). Moreover, we obtain similar results if we measure the

CPU time instead. As we can see from Fig. 29, to cluster the StarLightCurves data,

TADPole requires only 9 minutes, whereas the DP algorithm needs 9 hours.

To put these results into context we consider the results in a very recent research

effort. In [77], the authors discuss the scalability of their clustering algorithm saying that

“For a large time series dataset with 9,236 objects with the length of each object n =

8192, it costs only 2.1 seconds to transform the whole dataset and an hour for clustering

with DBSCAN”. Using this as a benchmark, we did the following experiment: we took

D
is

ta
n

c
e
 C

a
lc

u
la

ti
o

n
s

0 3500

1

3

5

7
x 10

6

TADPole

Number of objects

Absolute

Number

0 3500
0

100

Number of objects

Brute force

TADPole

Percentage

 70

9,236 random walks each of length 8,192, and clustered this dataset using DP algorithm.

DP took only 16 seconds to cluster this dataset. Of course the hardware settings of these

two experiments may not be exactly commensurate, but it is clear we have lost nothing in

terms of scalability by considering adopting the DP algorithm rather than the near

ubiquitous DBSCAN [77]. As we will later show, we have also lost nothing in terms of

accuracy.

Fig. 29.: A comparison of the CPU time spent by TADPole against an oracle and the brute force
algorithm to cluster the StarLightCurves dataset. As before, the performance of TADPole is very
close to the oracle algorithm.

In spite of these very promising results, which demonstrate a sixty-fold speedup,

there exist datasets where even this amount of speedup is not adequate. In order to

address similar scalability issues for other types of data mining analyses, including

classification [96] and outlier detection [48][49], researchers have attempted to create

anytime versions of their algorithms [48][104]. One significant advantage of the DP

algorithm (and our modifications to it) is that it is particularly amiable to casting as an

anytime framework. In essence, the computations discussed in this section can be

computed in any order. Thus far, we have simply computed them in a top-to-bottom, left-

to-right order. However, we should expect that not all such computations of the true

500 1500 2500 3500

0.5

1.5

2.5

3.5
x 104

Number of objects

Brute force

TADPole OracleC
P

U
 T

im
e

(s
ec

o
n
d

s)

 71

DTW are equally significant in terms of their impact on the final clustering, and that if

we could find even an approximate “most-significant-first” order, we could converge

more quickly. In the next section, we describe such an ordering heuristic.

3.4.2.5 Distance Computation-Ordering Heuristic

Recall from the above that the DP algorithm may be considered a two-step

algorithm; calculating the local densities (Table 4) first, and then finding the NN

distances from the higher density lists (Table 5) of the objects. Only the latter step is

amiable to anytime ordering; the former step may be regarded as the setup time

[48][96][104].

Before attempting to create an anytime ordering function, it will be instructive to

consider two baselines: what is the best we could possibly do, and what would we have to

do in order to claim we are beating the most obvious straw men?

 The best ordering heuristic we consider is an oracle ordering. We can

compute this by allowing the algorithm to cheat. In each step of the algorithm, this

order chooses the object that maximizes the current Rand Index. The algorithm is

cheating, because by definition, a clustering algorithm normally does not have access

to class labels.

 The most basic straw man is top-to-bottom, left-to-right ordering, but that

is brittle to “luck”. A random ordering is much less so, so we consider random

ordering as the baseline we would like to improve upon.

 72

To understand the performance of these two algorithms, we took the Insect dataset

from [69] and measured the Rand Index as the two algorithms above kept refining the

mixture of true DTW distances and upper bound distances that we have at the end of

phase 1 (i.e., Table 9), into the set of all necessary DTW computations needed (i.e., Table

10). The results are shown in Fig. 30 (for the moment, ignore the blue line). For

completeness, we also show the accuracy achieved using the Euclidean distance with the

DP algorithm. If the Euclidean distance was competitive, it would be fruitless to waste

time computing expensive DTW calculations. The results clearly show that in this

dataset, DTW is needed.

Being initially worse, the random ordering linearly (in a stepwise fashion)

converges on the true clustering. In contrast, the oracle algorithm achieves a perfect Rand

Index after calculating the true DTW distances for the NN list of just five objects.

As impressive as the oracle’s performance is, we can actually come very close to it,

as shown by the blue curve in Fig. 30. The ordering heuristic TADPole exploits is the

descending order of the local density (ρ) × the upper bound distance (ub) from the higher

density list of the objects.

With a little introspection, it is easy to see why our distance computation-ordering

heuristic is as close as the oracle ordering. Recall from Section 3.4 that points with

higher values of ρ×δ are more likely to become cluster centers. Until we calculate all the

NN from each object’s higher density list, we do not have access to their δ. However, we

can estimate δ by the tight upper bound ub to δ. Our distance computation-order heuristic

exploits ub to prioritize distance computations for items that are more likely to be centers.

 73

Because the centers are selected earlier, we achieve a higher Rand Index with very few

actual distance computations.

Fig. 30.: top) A comparison of different distance computation-order heuristics on the Insect dataset
[69]. An oracle ordering (green) converges stunningly quickly. The random ordering (pink)
converges very slowly. Our proposed ordering (blue) is very close to the oracle. bottom) A zoomed-
in view of the figure shown at the top).

From Fig. 30.top) we see that in conjunction with all the pruning strategies

described in Sections 3.4.2.1 and 3.4.2.2, TADPole achieves a perfect Rand Index after

doing only ~6% of all possible distance computations. Of course, it does not “realize”

this, and must compute ~10% of all possible distance computations before admissibly

terminating.

Distance Computation Percentage
100%

0.4

1

0

R
a
n

d
 I

n
d

e
x

Euclidean

Distance

Oracle

Order

TADPole

Order

0 10%

0.4

1

Oracle Order

Random Order

TADPole Order

Random

Order

R
an

d
 I

n
d

ex

Distance Computation Percentage

Zoom-In of Above Figure

This reflects the 90% of

DTW calculations that

were admissibly pruned

This reflects the 10% of

DTW calculations that

were calculated in anytime

ordering

10%

 74

3.5 Experimental Evaluation

All experiments in this chapter (including the ones “inline” in the above text) are

completely reproducible. We have archived all experimental code, parameter settings and

data at [108]. The goal of our experiments is to show that our algorithm is more efficient

and effective than current algorithms. We also show that our algorithm is not particularly

sensitive to the few parameter choices we have to make. In addition to this, we

demonstrate the utility of our approach on multiple real-world case studies.

We conducted our experiments on a Windows 8 machine with 3.5 GHz AMD A8-

6500 APU with Radeon(tm) HD Graphics processor and 16 GB RAM. All our

implementations are single threaded and were written in Matlab 7.9.0.529 (R2009b).

3.5.1 Comparison with State-of-the-Art Clustering Algorithms

The principle straw man we need to compare TADPole to is the brute force version

of DP with DTW. This comparison is explicitly encoded in Fig. 30 and the similar figures

below. In these experiments we also replace DTW with Euclidean distance to

demonstrate that DTW is really necessary. In Table 13, we show a comparison of the

clustering performance of TADPole to some well-known state-of-the-art clustering

algorithms (which we carefully tuned) under DTW in five randomly chosen datasets from

[69]. As we can see, the cluster quality returned by TADPole is usually better than the

best-performing clustering algorithm. Note that we are not claiming DP is always

superior, rather we chose DP because it is at least competitive with the state-of-the-art,

and amiable to acceleration as we have demonstrated.

 75

The greatly superior accuracy of TADPole makes the timing results somewhat

irrelevant, but TADPole is at least an order of magnitude faster than the rival methods

(exact numbers at [108]).

Table 13: Clustering Quality (in Terms of Rand Index) of TADPole vs. Some State-of-the-Art

Clustering Algorithms

Dataset TADPoleDTW

(TADPoleED)
k-means[65]

DTWversion

Hierarchical

DTWversion

DBSCAN [56]

DTWversion

Spectral [80]

DTWversion

CBF 1 (0.66) 0.78 0.73 0.77 0.76

FacesUCR 0.92 (0.86) 0.87 0.85 0.77 0.94

MedicalImages 0.66 (0.67) 0.67 0.62 0.65 0.69

Symbols 0.98 (0.81) 0.93 0.78 0.91 0.95

uWaveGesture_Z 0.86 (0.84) 0.85 0.83 0.8 0.86

In addition to the comparisons mentioned above, we compare against a recent

partitional clustering algorithm called k-Shape [81]. The k-Shape algorithm considers the

shapes of time series by using a normalized version of the cross-correlation measure.

Depending on the properties of the distance measure, this algorithm computes the cluster

centroids, which are used to update the assignment of objects to cluster centers in an

iterative fashion. In order to demonstrate the robustness of k-Shape, the authors compare

the clustering time and quality against a large number of state-of-the-art clustering

algorithms. According to these experiments, k-Shape outperforms its rivals in terms of

both clustering quality and time.

We compare the cluster quality and time of TADPole against k-Shape. We

exhaustively run experiments on all the datasets chosen by the k-Shape authors. To be

fair, we use the same data folds for both these algorithms. For TADPole, we use a fixed

5% warping window for consistency. We show the cluster quality result in Fig. 31.

 76

As we can see from Fig. 31, for the majority of the datasets, TADPole does much

better than k-Shape. It is only in the ECGFiveDays and SonyAIBORobotSurface

datasets, that k-Shape performs significantly better than TADPole.

Since these two datasets are outliers, it is worth considering why they seem to favor

k-Shape.

In the case of the SonyAIBORobotSurface dataset, the start and end time of the

gaits are not aligned well in terms of time, which means that the first and last points of

the two time series being compared may have very different values. In Fig. 32, we show

two example time series from the two classes of this dataset.

Fig. 31.: Cluster quality comparison experiment of TADPole against k-Shape in terms of Rand
Index. For most of the datasets, TADPole gives significantly better clusters than k-Shape.

0 1
0

1

TADPole Rand Index

k
-S

h
ap

e
R

an
d
 I

n
d
ex

In this region TADPole is better

In this region k-Shape is better

SonyAIBORobotSurface

ECGFiveDays

Trace

 77

As we can see in Fig. 32, the start points of these two time series are not aligned at

all, even though the end points almost agree. Because of DTW’s endpoint constraint

[68][88], these are forced to match, resulting in large, near random contribution to the

overall DTW distance calculation. This issue (and several solutions) has been known for

decades (see Section 3 of “Endpoint Variants of the DTW Algorithm” of [83]). Rather

than using one of the fixes in [83], we simply smoothed the data, which resulted in a

Rand Index of 0.91 by TADPole, moving it from the “in this region k-Shape is better”

firmly into the “in this region TADPole is better” camp.

Fig. 32.: left and right) Two sample individual gaits of the two classes in the
SonyAIBORobotSurface dataset. The intra-class variability is poorly captured by DTW because of
the great difference of the first and last endpoints of two time series under question (marked with
arrows).

A similar observation explains results with the ECGFiveDays dataset, because the

objects were extracted by an imperfect beat extractor, and therefore the data endpoints are

not perfectly aligned (cf. Fig. 33.left). In addition to this, the disagreement of the start and

last endpoints of the data is present (cf. Fig. 33.right) in this dataset. Once again, off-the-

shelf smoothing (Matlab’s smooth function with the default parameter) is enough to

10 30 50 70 10 30 50 700 0

 78

mitigate most of the problem. We ran TADPole on the smoothed data and the improved

Rand Index for this dataset was 0.84, which is very close the k-Shape clustering (0.85).

Fig. 33.: left and right) The individual heartbeats of the two classes in the ECGFiveDays dataset.
left)The heartbeats are not perfectly aligned because of an imperfect beat extractor. right)Like the
SonyAIBORobotSurface dataset, this data also has the disagreement of the first and last endpoints
(shown with arrows).

Finally, another recently published time series clustering technique

called YADING is shown to “provide theoretical proof which... ...guarantees YADING’s

high performance” [54]. However, these guarantees are only with respect to Euclidean

distance. The only publicly available real dataset the authors of [54] test on is

StarLightCurves, where they obtain a Normalized Mutual Information (NMI) score of

0.60. However, TADPole can achieve an NMI of 0.61, which is very slightly

better. Likewise, in an expanded tech report that augments the paper [55], the method

achieves an NMI of 0.61 on the CinC_ECG_torso dataset and 0.74 on MALLAT dataset,

whereas TADPole achieves NMIs of 0.76 and 0.84, which are significantly better.

3.5.2 Parameter Sensitivity Experiments

To demonstrate that TADPole is not sensitive to parameter choices, we took the

Symbols and Insect dataset [69] and performed TADPole on it with k = 6 and k = 11

20 60 100 140 20 60 100 1400 0

 79

respectively. We then varied the cutoff distance (dc) parameter and measured the Rand

Index obtained with the alternative settings. As we can see from Fig. 34. (a) and (b), there

is a very wide range of choices for the values of dc, which leads to high-quality

clustering. We did the same experiment for several other datasets, (details available in

[108]) and the results confirm our claim that TADPole is not sensitive to this cutoff

distance parameter.

Fig. 34. (a) and (b): A parameter sensitivity test of TADPole shows stability of clustering over a very
wide range of parameters.

In spite of this finding, it is clearly desirable to have some guidance in parameter

setting. In the next section we introduce such a heuristic.

3.5.3 Heuristics for Setting Parameters

Up to this point we have glossed over the issue of setting the values of the

threshold and the warping window width, we will now repair that omission.

First, we note that this problem is not unique to our setting; most unsupervised

algorithms have this challenge. Our first proposed solution is therefore the default idea in

the community. For any given problem, we can simply find the most similar dataset for

1 2 3 4 5

0.2

0.6

1

All-pair distance percentage of the objects

R
a

n
d

 I
n

d
e
x

(a)

1 2 3 4 5 6 7 80.4

0.6

0.8

1

All-pair distance percentage of the objects

R
a

n
d

 I
n

d
e
x

(b)

 80

which we do have labels, and hope that the best settings there (discovered by cross

validation) will generalize to the current setting.

However, beyond this we do have an idea which allows us to find good (not

necessarily optimal) parameter settings in most cases. The idea is very simple, we use our

unlabeled dataset at hand to build a new dataset for which we do have some labels, and

use this labeled dataset to do cross validation, to set the parameters.

This idea leaves open the question of where we can find some class labeled data,

our solution is to make it. Our basic idea is simple. Before we perform any clustering, we

randomly sample objects from the dataset, which we call set R. For each object O in R,

we create a copy of it that we denote as Ō. We add some warping to Ō, and place it into

the dataset with the same pseudo-class label as O. The intuition is that because we know

that object Ō is just a minor variant of O, we can safely assume that had Ō occurred

naturally, it would have been in the same cluster as O, and our must-be-in-same cluster

constraint was warranted. We denote the set containing all such warped version of

objects in R, .

At this point, for all object Ō in , we know a pseudo label. Given this, in addition

to the must-be-in-same-cluster constraint, we can say that if an object in R has a different

label than a pseudo label of a new object Ō, then for this pair, the must-not-be-in-same-

cluster constraint can be warranted.

This idea seems to have a tautological paradox to it. It seems that if we add w

amount of warping to the dataset, we will discover w warping in that dataset. However,

 81

this is not the case. A good setting for w depends not only on the intrinsic variability of

the time axis and on the size of the dataset, but on the time series shapes themselves.

Having these two constraints in hand, we design a scoring function that measures

the number of object pairs in <R, > satisfying these constraints for different warping

windows over all possible pairs. Therefore, our score function is:

 (1)

We note the following:

 This idea, of generating new data, by randomly perturbing real data, is not

novel [97] in general, but appears to be novel in the domain of time series.

 We are not claiming that this idea is the final or best solution to this issue.

We merely introduce it as an existence proof that it is possible to set the

parameters to reasonable settings, even in the absence of labeled data.

For some randomly chosen datasets, we compare the Rand Index obtained by

TADPole for different warping window sizes against the score from equation 1. Our

intuition is, if the shape of the score curve agrees closely with the Rand Index curve, then

this score function has good correlation with the Rand Index. Having set a reasonable

value of dc , for warping window sizes where this score is relatively ‘higher’, we assume

those warping window sizes as ‘reasonable’ parameter values. We illustrate our results in

Fig. 35.

 82

From Fig. 35 we can see that the score obtained corresponding to different warping

window widths matches closely with the associated Rand Index for a fixed dc. As long as

the warping window width stays in relatively high scoring region, we can consider the

parameter choice good.

Fig. 35.: Warping window width vs. Rand Index (blue) and vs. score (red) plots for Trace (a),

FaceAll (b), FaceFour (c) and SwedishLeaf (d) datasets [69]. The shapes of the red and blue curves

agree closely, indicating good correlation. For a fixed dc , the regions of the red curve with relatively

high values are indicative of good parameter (here warping window width) values.

At this point we are now able to address the following question: given a reasonably

well set warping window width, how to estimate dc? We take the same approach to set dc

as we did for setting the warping window size. First we set a reasonably well value of the

warping window size for a fixed dc according to the scoring function described above.

Now we fix the warping window width to any value in the ‘good parameter zone’ and

change the value of dc. To quantify how well our selection of dc is, we consider the same

0 10 200.7

0.8

0.9

1

Score (avg of 10 runs)

Rand Index on actual Data

Warping window width(%) Warping window width(%)

Score (avg of 10 runs)

Rand Index on actual Data

0 10 200.5

0.6

0.7

0.8

0.9

1

0 10 200.5

0.6

0.7

0.8

0.9

1

Warping window width(%)

Score (avg of 10 runs)

Rand Index on actual Data

0 10 200.5

0.6

0.7

0.8

0.9

1

Warping window width(%)

Score (avg of 10 runs)

Rand Index on actual Data

 83

scoring function we used for the warping window. Just like what we did for setting the

warping window, we vary dc and record the score associated. The range of values

resulting relatively high scores is the good parameter zone for dc. For the four datasets

shown in Fig. 35, by keeping the warping window size fixed, we find the best dc values

listed as in Table 14.

Table 14: Best Value of dc for Reasonably Good Warping Window Width

Dataset Warping Window Width dc

Trace 14% 1.7

FaceAll 2% 3.25

FaceFour 6% 4.8

SwedishLeaf 2% 0.65

3.6 Case Studies

3.6.1 Electromagnetic Articulograph Dataset

The Electromagnetic Articulograph (EMA) is a device that is increasingly used for

mouth movement studies [99]. The apparatus consists of a set of unobtrusive

accelerometers that are attached to multiple positions on the tongue, lips, jaw, nose and

forehead, and can record high-resolution 3D movement/position data in real-time. Recent

research has suggested that articulographs may eventually allow a “silent speech”

interface that translates non-audio articulatory data to speech output, an idea that has

significant potential for facilitating oral communication after a laryngectomy [99]. The

most common use of articulographs is in speech therapy for a plethora of speech

 84

disorders. However, there is a significant obstacle to EMA use: setting up the system can

take up to 30 minutes per session (this time is spent carefully gluing the sensors to the

participant’s face and tongue). Given this significant setup time, practitioners are anxious

to get the most from each session, yet the goals of the session are not typically fixed, but

rather change in reaction to the participant’s progress and areas of difficulty. Thus, there

is a need to cluster the utterances of speakers in an interactive fashion, so that sessions

can be adapted on the fly. We consider a dataset of lower-lip accelerometer time series

movement data of 18 words collected from multiple speakers, for a total of 414 objects

[100]. The duration of utterance of each of the words is ~0.7 seconds. In Fig. 36.left), we

show the data collection process for one of our subjects. In Fig. 36.right), we show two

examples of the utterances of the word “fate” by two different individuals. These

examples are clearly warped, suggesting this is an appropriate domain for TADPole.

Fig. 36.: left) One of our volunteers wearing the articulograph apparatus. right) Two examples of
the 3D time series produced by enunciating the word “fate” show inter-subject warping. The X axis
is omitted here, as it only has useful information for patients with facial asymmetry.

We tested the power set of combinations of axes, confirming that axis Z with axis

Y gives us the best clustering, with a Rand Index of 0.94 (the other results are archived at

0 150

0 150

Y

Z

Y

Z

 85

[108]). We can now ask how effective our pruning strategy is when performing this

clustering. We show the result in Fig. 37.

Fig. 37.: The amount of distance pruning achieved by TADPole is ~94% for the Articulographs

[99]. Moreover, the ordering heuristic is almost as good as the oracle ordering.

As we can see from Fig. 37, TADPole achieves ~94% pruning, converging almost

as quickly as the oracle algorithm. In wall clock terms, TADPole takes only 2.89 seconds,

which is fast enough to provide interactive analysis and feedback to the patient.

3.6.2 Pulsus Dataset

Pulsus Paradoxus is defined as a significant decline in the pulse with inspiration. It

is a symptom of Cardiac Tamponade, a life-threatening condition where high-pressure

fluid fills the sac surrounding the heart, impairing cardiac filling and causing 20,000

deaths per year in the USA alone. Of the several ways to detect Pulsus, the least invasive

and simplest uses the PPG (PhotoPlethysmoGram) shown in Fig. 38.top).

For this case study we consider a dataset of 500 PPGs from two sources: the

MIMIC II Waveform Database [60][90] and our collaborators. The latter dataset has the

advantage that our collaborators followed up on the patients (in some case, post-mortem);

thus, we have access to unusually rich annotations and external knowledge to evaluate

1 2 3 4 5 6 7

0.84

0.92

1

Distance Computation Percentage

R
an

d
 I

n
d

ex Euclidean Distance

Oracle Order

Random Order

TADPole Order

 86

our result. As shown in Fig. 38.top), the raw PPG data is very complex, and following the

suggestions of Dr. John Criley (UCLA School of Medicine), we converted the PPGs to

amplitude spectrums (Fig. 38.middle) and clustered in that space. Dr. Criley’s intuition is

that for Tamponade patients, the fluid that fills the sac surrounding the heart will cause a

“shadow” signal to show up during respiration.

Fig. 38.: top) PPG and Power Spectral Density (PSD) signal of a patient with non-severe Pulsus
(top.left)) and severe Pulsus (top.right)). bottom) Four PSDs of four patients forming four different
clusters within the non-Pulsus objects. From these four clusters, we can see the objects are clearly
warped.

For this dataset, TADPole produced a perfect clustering with a pruning rate of 88%,

making it an order of magnitude faster than brute-force. In Fig. 39.left), we show the

PPG measurement process. From Fig. 39.right), we can see that the Pulsus instances are

within a compact cluster and the non-Pulsus instances seem to form a number of sub-

clusters. Our medical collaborator suggests this reflects the fact that there is one way to

have Tamponade, but multiple ways to have a healthy heartbeat.

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Patient 639 Patient 523 Patient 618 Patient 2975918

0 10 20 30 40 50 600 10 20 30 40 50 60

Normalized Respiration Rate
Normalized Heart Rate

P
o

w
er

 S
p

ec
tr

al

D
en

si
ty

Frequency

A) B)

C) D) E) F)

200 600 1000 1400 1800200 600 1000 1400 1800

Non-Severe Pulsus Severe Pulsus

P
P

G

 87

Fig. 39.: left) A PPG apparatus. right) The Pulsus dataset projected into two dimensions using
multidimensional scaling, and color coded by the output of TADPole.

3.6.3 Person Re-Identification Dataset

Person re-identification is the task of recognizing individuals across spatially

disjointed cameras [59], and is an important problem for understanding human behavior

in areas covered by surveillance cameras. As shown in Fig. 40, we can extract color

histograms from the video, thus treating the problem as a multidimensional time series

problem. We considered the PRID dataset [64], randomly extracting 1,000 images of 12

different individuals. After we ran TADPole in this dataset to cluster the images of these

12 individuals, we achieved a Rand Index of 95.4% and distance pruning of 80%

(anytime plot at [108]). In contrast, Euclidean distance only achieves a Rand Index of

89%.

Suspected Pulsus

Severe

Pulsus

Healthy

Oximeter

Vein

Artery

Photo Detector

LED

 88

Fig. 40.: Representative images from the dataset [64] with their corresponding color histograms.

3.6.4 Clustering Multidimensional Data

In order to demonstrate TADPole’s suitability for multidimensional data, we

clustered two real-world datasets - Cricket and uWaveGesture.

3.6.4.1 Cricket Dataset

Cricket is a very popular game around the globe. As part of the refereeing, an

umpire uses a fixed set of gestures using his hands and (sometimes) legs to communicate

his decisions to a distant scorekeeper. The interested reader may find a list of complete

signals in [76].

In this case study, we analyze the utility of TADPole for gesture recognition

applications. For this, we use the dataset in [52], where 4 different umpires perform the

various signals. On average, each signal is performed 16 times. Two accelerometers were

attached to the wrists of the umpires and the data was sampled at 184 Hz. Considering

both the left and right hands, this data has 6 dimensions (each accelerometer has X, Y and

Z components).

Fig. 41. shows what each of the seven gestures Last Hour, Leg Bye, No Ball, One

Short, Out, Penalty Runs and Six look like.

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

 89

Fig. 41.: The seven cricket game gestures we used for our experiment. A) Last Hour, B) Leg Bye C)
No Ball, D) One Short, E) Out, F) Penalty Runs and G) Six.

In this data setting, we picked the tri-axial right hand signals as the three

dimensions we wish to cluster. The number of objects in this dataset is 258 with each of

the time series being of length 1,155. We used warping window = 5%.

In this dataset, TADPole gives a Rand Index of 0.92 with ~82% pruning. In wall

clock terms, TADPole takes only 52 seconds to cluster this 27 minutes long data. That is

to say, we can cluster the data about 30 times faster than real time.

3.6.4.2 uWaveGestureLibrary Dataset

For this experiment we consider the three dimensional uWaveGestureLibrary

dataset [69]. This data was collected to support efficient personalized gesture recognition

on a wide range of electronic and mobile devices. This dataset contains eight simple

gestures identified by a Nokia research study. The gestures were collected from eight

participants with the Wii remote-based prototype. Fig. 42 shows these gestures as the

paths of hand movement [75][82].

A) B) C) D) E) F) G)

 90

Fig. 42.: The gesture vocabulary adopted from [75][82]

In this experiment, as before, we are interested in the actionability of TADPole to

cluster human gestures. We use all eight gestures as input to TADPole. The number of

objects in this dataset is 896 with each of the time series being of length 315 and a

sampling rate of 100 Hz. After we run TADPole on this data, we achieve a Rand Index of

0.93 with ~88% pruning. In wall clock terms, TADPole needs only 56 seconds to cluster

this 47 minutes long data. As before, we can cluster the data much faster than real time.

3.6.5 Generalizing TADPole to Cluster Discrete Data

Until now, we have shown that our TADPole framework can efficiently perform

exact clustering of real-valued time series data. The interested reader might wonder

whether this framework is general enough to be extended for handling other types of

data. In this section we present a discussion of the generalization of this framework to

cluster very long discrete biological sequences. We note here that our experiments are not

claiming a novel discovery of any biological significance. We are merely demonstrating a

 91

“proof-of-concept,” that the TADPole framework can be extended to perform fast

clustering of long biological strings.

More generally, we believe that this example shows that the TADPole framework

may be useful in scaling up clustering for any distance measure for which one can

compute both upper and lower bounds. Beyond DTW, this would include most string

similarity measures (as we show below), the Earth Movers Distance, Graph Edit Distance

etc.

3.6.5.1 Clustering of Protein Sequences with Edit Distance

The identification of biological sequences with similar functionality requires

similarity search in large databases, and is a well-known problem in the Bioinformatics

community [58][63]. As an example, there exist diseases such as Maple Syrup Urine,

Propionic Acidemia, Hurler Syndrome [78], etc. which are caused by the lack of sections

of protein sequences in an organism, and can be life-threatening. In order to design drugs

for such diseases, biologists produce sequences with the same functionality, and insert

these sequences into the organisms to compensate the deficit.

Typically these protein strings are very long, therefore similarity search in such a

large sequence database can be computationally challenging [47]. For example, large

genomes are usually expressed using Expressed Sequence Tag (EST) databases. In such

databases, gene portions are represented by mature mRNA, which typically are 500-800

nucleotides long. Therefore, similarity-based algorithms in such biological databases

 92

require algorithms that can handle large strings efficiently. We see TADPole as a

potential general framework for efficiently clustering such biological data.

In order to measure the similarity between two sequences of biological strings,

researchers often use Edit Distance (EdD), or one of its many variants [73]. Given two

strings A and B, the EdD is defined as the minimum number of deletion(s), insertion(s),

and substitution(s) needed to transform A into B. We list the notation of EdD in Table 15:

Table 15: Symbol Table

Symbol Explanation

α Finite alphabet

α* Set of all finite sequences of symbols from α

a,b Variables presenting individual symbols

A,B Variables denoting sequences from α*

|A| Length of sequence A

A(i,j) Subsequence from the i
th

to the j
th

symbol in A

a[i] i
th

 symbol in sequence A

Given the notations above, a substitution operation S(a[i],b[j]) is defined as

replacing a[i] in A by b[j] in B. An insertion operation I(i, b[j]) is inserting b[j] in the i
th

location of A. Deleting the symbol a[i] in A is denoted by D(a[i],-). Each of these edit

operations is assigned a weight which represent the difference between two symbols or

the penalty for insertion/deletion operation. A transformation from A to B, T(A,B) is the

set of edit operations applied to A iteratively which transform A to B. The weight of this

transformation, w(T(A,B)) is defined as the sum of the weights of the operations in

 93

T(A,B). Given these definitions, the edit distance between A and B, EdD(A,B) is defined

as, EdD(A,B) = min(w(t)), ∀ t∈T(A,B).

As an example, for two strings A = ‘INDUSTRY’ and B = ‘INTEREST’, the

optimal set of editing operations for T(A,B) are:

Starting string = INDUSTRY, Goal String = INTEREST

 S(A[3],B[3]) = INT(D)USTRY

 S(A[4],B[4]) = INTE(U)STRY

 I(5,B[5]) = INTERSTRY

 I(6,B[6]) = INTERESTRY

 D(A[9],-) = INTEREST-(R)Y

 D(A[9],-) = INTEREST-(Y)

Therefore EdD(A,B) = 6.

Using dynamic programming, EdD(A,B) can be solved in O(nm) time and O(n+m)

space, where n and m are the lengths of A and B respectively. For very large biological

sequences, the computation of edit distance can therefore be very time consuming. We

propose to exploit our TADPole framework to accelerate edit distance based clustering of

long biological strings. Both edit distance and DTW are elastic distance measures [53]

and for both of these measures, tight lower and upper bounds are already defined.

Therefore, our TADPole framework is a suitable fit to perform fast and exact clustering

of long biological strings. For clarity however, we confine our discussion only to the

clustering of protein sequences.

 94

We use Edit Distance (EdD) to perform the clustering of long protein sequences

with TADPole framework. According to the framework structure, the inputs are the fully

computed lower and upper bound matrices of the edit distance of all the objects of the

dataset. As the lower bound of the edit distance, we use a notion of the distance that maps

the strings of the database onto a multidimensional integer space using a wavelet based

method [66]. We use the difference of the length of the strings in the dataset as the upper

bound of the edit distance. Tighter bounds are known, but we are only interested in the

general principle here.

In order to demonstrate the utility of TADPole in accelerating the clustering of

large protein sequences, we use a random chunk of
 in [71] of the UniProt

dataset [98]. It includes 178 strings defined over an alphabet of 21 letters. The protein

strings have variable lengths ranging from 1052 to 1597. We cluster this dataset using

TADPole and obtain distance pruning of 28%. Although the speedup we achieve does not

look impressive at the first sight, we believe that with the application of tighter upper and

lower bound of edit distance, TADPole would further improve.

Given the distance pruning we achieve, it is instructive to see the utility of the

clusters returned by TADPole. Out of the eight clusters returned by TADPole, one

represents the rpoB gene which encodes the beta subunit of bacterial RNA polymerase.

According to the STRING database, the DNA-dependent RNA polymerase “...catalyzes

the transcription of DNA into RNA using the four ribonucleoside triphosphates as

substrates.” [95] Another cluster corresponded to cell division protein mukB, which

 95

“...plays a central role in chromosome condensation, segregation and cell cycle

progression .”[95]

Considering the fact that the clusters returned by TADPole have some level of

biological significance, the readers might wonder how fast the algorithm converges to the

ground truth. We show the result in Fig. 43.

From Fig. 43 we can see that even if the amount of pruning achieved by TADPole

is not impressive at the very first sight, the quality of the clusters in the earlier stages of

the algorithm is very impressive, and it is almost as good as the oracle ordering.

Therefore, with very small amount of actual edit distance computation, TADPole can

produce very high quality cluster results.

Fig. 43.: The fast convergence of TADPole ordering (blue) to the oracle ordering (green) shows that
the quality of the clusters in the earlier iterations is quite good. The cluster quality given by the
random ordering (pink), however, is not as good as TADPole.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Random ordering

TADPole ordering

Oracle ordering

Distance Computation Percentage

R
a

n
d

 I
n

d
e
x

 96

3.7 Conclusions

By introducing novel pruning strategies that exploit both upper and lower bounds,

we have produced a robust DTW clustering algorithm that is both absolutely much faster

than the state-of-the-art algorithms, and able to compute the clustering in an anytime

fashion. We have demonstrated the utility of our algorithms on diverse domains,

including two in which our algorithm is currently actively deployed (EMA and Pulsus).

We have made all our code and data publicly available to allow the community to exploit

and extend our ideas.

3.8 Acknowledgements

We gratefully acknowledge the financial support for our research provided by NSF

IIS-1161997 II, NIH R03 DC013990, NIH R01 DC013547 and all the donors of the

datasets. We further acknowledge Dr. John Criley (UCLA School of Medicine) for

donating the PPG data and providing detailed explanations of the intricacies of Pulsus

Paradoxus.

3.9 Appendix

Proof of Exactness of the TADPole Algorithm

Theorem:

The cluster result obtained by TADPole is exactly the same as the one obtained by

DPDTW.

 97

Proof:

In order to prove this theorem, we must first consider the following two lemmas:

Lemma 1

The pruned distance computations by TADPole during the density calculation have

no effect on the local densities of the objects in the dataset.

Proof (by contradiction):

We prove this lemma in the context of the three cases of distance computation

pruning during the local density calculation.

Case A: Objects i and j are identical

When i and j are identical, then their actual distance Dij is zero, which means they

are definitely within dc. Therefore, we can safely prune their distance computation.

(Proved)

Case B: UBMatrix(i,j) < dc

In this case our claim is, Dij <= dc and we can safely prune the distance

computation. For the sake of the proof, let us assume that Dij > dc.

By definition, LBMatrix(i,j) <= Dij <= UBMatrix(i,j)

Therefore, because UBMatrix(i,j) < dc, and Dij <= UBMatrix(i,j), Dij ≯dc. Therefore,

our claim holds. (Proved)

Case C: LBMatrix(i,j) > dc

In this case our claim is, Dij > dc and we can safely prune the distance computation.

For the sake of the proof, let us assume that Dij <= dc.

By definition, LBMatrix(i,j) <= Dij <= UBMatrix(i,j)

 98

Therefore, because LBMatrix(i,j) > dc, and Dij >= LBMatrix(i,j), Dij ≰dc. Therefore, our

claim holds. (Proved)

TADPole only calculate the distances for the case when LBMatrix(i,j) < dc and

UBMatrix(i,j) > dc. Therefore, lemma 1 holds. (Proved)

Lemma 2

The pruned distance computations by TADPole do not affect the NN distance of

any object calculation from its higher density list.

Proof (by contradiction):

We prove this lemma in the context of the two phase pruning during NN distance

calculation of an object from its higher density list.

Phase 1: Upper bound calculation

For this phase we need to prove that the NN distance from its higher density list of

an object i, δi <= ubi, where ubi is the upper bound of this NN distance we intend to find.

For the sake of the proof, let us assume δi > ubi.

Assume that the higher density list of i consists of j1...jk.

Assume that the NN of i from its higher density list is jn, 1<= n <= k . Therefore,

 δi

By definition, ubi = or , ubi = UBMatrix(i,jp) ,where 1 <= p <= k

Therefore, δi = , when n = p or δi <= UBMatrix(i,jp), when n ≠ k.

From this, we can say that δi ≯ ubi. Therefore, our claim holds. (Proved)

Phase 2: Pruning

 99

For this phase we need to prove that ∀ j∈δ_listi(j)), if LBMatrix(i, j) > ubi , then j is

not the NN of i from its higher density list.

For the sake of the proof let us assume j is the NN of i from its higher density list.

From the proof in phase 1, Dij <= ubi. By definition, LBMatrix(i,j) <= Dij <=

UBMatrix(i,j)

But if LBMatrix(i, j) > ubi, then Dij > ubi. Therefore, Dij > ubi. It means that j cannot

be the NN of i. (Proved)

TADPole only prunes the computation of all Dij where j cannot be the NN of i from

its higher density list. Therefore, lemma 2 holds. (Proved)

The proof of lemma 1 and 2 states the exactness of our pruning strategy. Therefore,

theorem 1 holds. (Proved)

 100

Chapter 4: Rare Time Series Motif Discovery
from Unbounded Streams

The detection of time series motifs, which are approximately repeated subsequences

in time series streams, has been shown to have great utility as a subroutine in many

higher-level data mining algorithms. However, this detection becomes much harder in

cases where the motifs of interest are vanishingly rare or when faced with a never-ending

stream of data. In this work we investigate algorithms to find such rare motifs. We

demonstrate that under reasonable assumptions we must abandon any hope of an exact

solution to the motif problem as it is normally defined; however, we introduce algorithms

that allow us to solve the underlying problem with high probability.

Keywords: Motif Discovery; Time Series; Streaming Data

4.1 Introduction

Time series motifs are approximately repeated patterns found within a longer time

series. Since their definition a decade ago [126], dozens of researchers have used them to

support higher-level data mining tasks such as clustering, classification, dictionary

learning [113], visualization, rule discovery and anomaly detection [133]. While the

original time series motif discovery algorithm was an approximate algorithm, the recently

introduced MK algorithm provides a scalable exact solution [133]. For a user-defined

length of interest, the MK algorithm finds the pair of non-overlapping subsequences that

 101

have the minimal Euclidean distance to each other. The algorithm has been further

generalized to a limited streaming setting; it is now possible to find and maintain the

motif pair in a sliding window, say the last k minutes, of a continuous stream [132].

In spite of recent progress in motif discovery, there are two related situations for

which there are currently no tractable solutions. If the motifs are extremely rare, then it is

extremely unlikely that we will see two of them within k minutes of each other, as

assumed by [132]. Depending on data arrival rates and the hardware platform used, k

might be as large as 20 minutes. However, as shown in Fig. 44, we may be interested in

finding patterns that occur only once a month or less. If we ignore the streaming case and

assume that the m-datapoints are stored in memory, we are still limited by the scalability

of the current fastest known algorithm [131][133], which is O(mlog(m)) with high

constants. For some of the datasets we wish to consider (cf. Section 4.6.3), this would

require decades of CPU time.

In this work we introduce an efficient framework that allows us to solve such

problems with very high probability. Our key observation is based on an understanding of

how motif discovery is actually used in domains as diverse as electroencephalography

[133], entomology and nematology [113].

Fig. 44.: A never-ending time series stream from a weather station’s solar panel [110], only a
fraction of which we can buffer. A pattern we are observing now seems to have also occurred
about four months ago.

(Four months

omitted)

3 days ago 2 days ago now131 days ago 129 days ago 127 days ago : : : : :
0

20

40

Solar Panel

Current (mA)

 102

It is important to recognize that the narrowly defined time series motif pair

discovery problem as defined in [133] is really a proxy problem for the underlying task of

finding more generally repeating patterns. For example, suppose that there are ten

examples of an unknown repeated behavior in a dataset with ten million items, and we

wish to discover them. We could employ the MK algorithm, which would find the pair

from the ten patterns that are the minimum distance apart, and then use a quick linear scan

to find the other eight patterns. Indeed, this is suggested in [133]. Note, however, that it

would suffice for our purposes to find any two of the ten repeated patterns; we do not

really need the smallest distance pair, or any specified pair. This is a simple but important

observation, because it allows us to succeed if we find any one of 45 pairs, clearly a

much easier task. As we shall show, this slightly relaxed assumption allows us to solve

problems that are otherwise intractable, and to discover repeated patterns in unbounded

streams. The patterns discovered by our algorithm can serve as an input to higher-order

algorithms that do semi-supervised learning [119], or look for changes in the frequencies

of the discovered patterns that may signal anomalous behavior [126] etc.

4.2 Definitions and Notation

In order to concretely state the problem at hand, we will define the key terms used.

We begin with a definition of our data type of interest, time series:

Definition 11 Time Series: A time series TS = ts1, ts2, ...,tsm is an ordered set of m

real-valued variables, where tsm is the most recent value.

 103

We are only interested in the local properties of a time series; thus, we confine our

interest to subsections of the time series, which are called subsequences:

Definition 12 Subsequences: Given a time series TS of length m, a subsequence of

TS is a sampling of length l ≤ m of contiguous positions from TS starting from

position i. Formally, TSi,l = tsi, tsi+1...tsi+l-1 for 1 ≤ i ≤ m-l+1.

The subsequences from a time series are extracted by the use of a sliding window:

Definition 13 Sliding Window: For a time series TS of length m, and a user-defined

subsequence of length n, all possible subsequences of TS can be found by sliding a

window of size n across TS.

It is well understood in the literature that (with very rare and well-defined

exceptions) it is meaningless to compare time series unless they are z-normalized

[123][126] .

Definition 14 Z-normalized Subsequence: If the values of a time series subsequence

TSP have an approximately zero mean with standard deviation (and variance) in a

range close to one, then TSP is called a z-normalized subsequence.

A common task associated with subsequences is to determine if a given

subsequence is similar to other subsequences under some distance measure. This notion

is formalized in the definition of a match:

Definition 15 Match: Given a positive real number T (called threshold) and a time

series TS containing subsequences TSP and TSQ beginning at position P and Q,

respectively, if D(TSP, TSQ) ≤ T, then TSQ is called a matching subsequence of TSP.

 104

These notations are summarized in Fig. 45. The obvious definition of a match is

necessary to formally define a trivial match. Clearly, the best matches to a subsequence

tend to be located one or two points to the left or the right of the subsequence in question.

Almost all algorithms need to exclude such trivial solutions. The concrete definition is

given below:

Definition 16 Trivial Match: Given a time series TS containing subsequences TSP

and TSQ beginning at position P and Q, respectively, TSQ is a trivial match to TSP if

either P = Q or a subsequence TSQ
’
 beginning at Q’ such that D(TSP, TSQ

’
) > R and

either Q < Q’ < P or P < Q’ < Q does not exist.

We are now in a position to define objects, which are non-overlapping

subsequences from a time series stream:

Definition 17 Object: Given a time series TS = (ts1, ts2, ...,tsm) two objects of length

l are subsequences (TSi,l, TSj,l) of TS such that 1 ≤ i ≤ i + l-1 < j ≤ m-l.

The reason we consider only non-overlapping subsequences is to avoid trivial

matches, which must be excluded to define the success condition of our problem.

To measure the distance between objects, we use the ubiquitous Euclidean distance

measure [109][116]:

Definition 18 Euclidean Distance: Given two time series (or time series

subsequences) TSP and TSQ, both of length m, the Euclidean distance between them

is the square root of the sum of the squared differences between each pair of the

corresponding data points:

 105

The reader may imagine that using the Dynamic Time Warping (DTW) distance

measure could produce better results for the task at hand. However, this is not the case.

As shown in [133], for time series objects which are very similar (suggestive of these

being motifs), the values of Euclidean distance and DTW must be very tightly related.

Given this, we use the ubiquitous Euclidean distance measure for calculating the

similarity between the time series patterns [117][122][130][131]. We are now in a

position to give a concrete problem statement.

4.3 Problem Definition

Assume we are given a never-ending time series stream S that mostly produces

instances of patternless data in R, and with some low probability p, instances of an

unknown pattern in G (we will define patternless later). As shown in our running

example in Fig. 45, items in G appear visually similar to each other, but are not perfectly

similar. Our goal is simply to detect an instance in G as early as possible.

Fig. 45.: A never-ending time series stream S produces mostly patternless data in R, and with very
low probability, instances in G.

Note that our problem is to detect instances in G as early as possible; but we are not

interested in testing the significance of these instances. Our algorithm is designed to be a

10 days ago 8 days ago 6 days ago 4 days ago 2 days ago now

S
R

G

 106

subroutine for higher level algorithms, and the ranking of the patterns in G in terms of

significance can be done by these algorithms [114][115][121]. Further note that we are

assuming that we are given the lengths of the patterns-of-interest by domain experts, an

assumption which is typical in the data mining community [113][121][130][138].

However, recent work by [131] shows that this assumption can be relaxed with little

overhead.

Note that we assume there is no explicit test to check if a pattern is in G.

Concretely, patterns in G have statistical properties that are also typical of data in R.

Thus, the defining assumption of this work is that the only way we can tell if an item is in

G is to note that it is sufficiently similar to another item also suspected to be from G,

which we call a match (cf. Definition 15).

More formally, we assume a distance threshold T such that:

 Any two objects, where at least one is not in G, are unlikely to have a distance < T.

 Any two instances in G are likely to have a distance < T.

The former point is essentially an informal definition of patternless, but must come

with a caveat. As R approaches infinity (recall we have an unbounded stream) and given

that we are dealing with z-normalized objects, the space of possible shapes of a time

series will eventually be exhausted and R must eventually produce two instances that are

less than the threshold apart. Thus, the assumption of the existence of a distance threshold

T discussed above is relative to a sample size of S that is approximately w, the amount of

memory we can devote to this task (measured in the number of instances that can be

 107

stored). The threshold T may be given to us in the form of domain knowledge, or we may

have to learn it from the data (cf. [141]). This idea is illustrated in Fig. 46.

Fig. 46.: DG and DR represent the all-pair distance distributions of the patterns in G and R,
respectively. The distance threshold T represents the boundary that separates the decision
whether the two patterns in question belong to G or not.

Note that the two distributions here are Gaussian. This is often the case for real

data (cf. Fig. 53 and Fig. 55), and we adopt this assumption for ease of exposition. We

note, however, that generalizations to other distributions are trivial. We further note that

for illustration purposes, the DR distribution is only slightly larger than the distribution

DG; however, in the problems we wish to deal with, we expect the prior probability of the

patterns in R (i.e., 1-p) to be many orders of magnitude larger.

Finally, a critical observation from Fig. 46 is that the two distributions overlap.

Thus, no matter what value of T we have, we must deal with some probability of error. In

particular, two types of error can occur:

 The region marked C is proportional to the probability that we will falsely believe

that two patterns from R that happen to be similar are exemplars from G.

T

Raw space distances
P(false dismissals)P(false positives)

A
C

B

D

DG DR

0

 108

 The region denoted D is proportional to the probability that two exemplars that

are from G will not be identified as such because they happen to be farther apart than

average.

For real-world problems we expect the area of C + D to be much smaller than that

illustrated in Fig. 46. Obviously, we can adjust the threshold based on our relative

tolerance for each type of error. This relative tolerance itself may depend on the

application [121].

We are finally in a position to formally define the task at hand:

Problem Statement: Given an unbounded time series stream S that mostly

produces instances in R, but with some very low probability p, produces instances of an

unknown pattern in G, and a user-defined distance threshold T, detect and return an

instance in G such that the expected number of instances in S seen is minimized.

For example, recall our running example shown in Fig. 44 and Fig. 45. The

distinctive pattern (shown colored/bold) consisting of a smooth “dump” with a “dropout”

near the center, appears to have been caused by the shadow of a pole falling on the solar

panel during a rare cloudless day. Such patterns occur five or six times a year (at that

location), so if we wait long enough we will probably see two close together, perhaps

even on consecutive days. However our task is to discover such patterns as soon as

possible, independent of when/how often, they occur.

 109

4.3.1 A Brute Force Algorithm

Given the assumptions above, a trivial algorithm suggests itself. We can simply

keep the first k items of S in memory, and then, when the k
th

 + 1 item arrives, we

compare it to all k items currently stored and report “current item is a member

of G” if we find that D(k + 1, j) < T and j < k + 1.

Note that this algorithm has some probability of making a type I or type II error,

but this is intrinsic to our assumptions, and no algorithm can do better.

This brute force algorithm is clearly optimal, but also clearly untenable. We are

assuming that S is an infinite stream, and p is a very small number. Thus, we will

eventually run out of space to store items, or the time needed to make all the

comparisons.

We can at least mitigate the time complexity of the naïve algorithm using off-the-

shelf dynamic indexing techniques (recall that because we are dealing with real-valued

high dimensional objects, we cannot avail of the O(1) equality tests available to the

discrete analogue problems) [118]. Therefore, we concern ourselves here with the more

difficult resource limitation: space constraints.

4.3.2 Brute Force with Limited Memory

In our problem setting, we assume that we must work with C, a cache of a fixed

size w. Here, w is the number of instances that can be stored in main memory. Note that

while taking the distances of the cached patterns, we only consider patterns which are not

trivial matches (cf. Definition 16) to each other (cf. Section 4.2).

 110

It is clear that the performance of any cache-based algorithm depends critically on

the size of the cache. Consider the two following special cases. If w = ∞, then the cache-

based algorithm is as good as the trivial algorithm discussed above. If w = 2, then the

probability of an instance in G being in the cache as another instance in G arrives is just

p, and we will typically have to wait a very long time before reporting success.

Given this observation, our metric of success can be seen as the expected number

of objects seen from S before detecting an object in G. We are now in a position to give a

derivation of this metric, which we discuss in the next section.

4.3.2.1 Derivation of the Success Metric

In order to derive the theoretical model for the success metric, we denote the

number of objects that must be seen from S before reporting success, .

By definition, at each time step, S produces an instance in G with probability p. By

the time we detect an instance in G, the elements in C may or may not experience cache

replacement(s).

Case 1: No cache replacement

Consider the case when there has not been any cache replacement by the time we

report success. In order to find the probability of success, we denote the number of

objects observed from S until the first and second instances in G are in C by and

,respectively.

 111

Each i is a geometric random variable with success probability p. Because there

has not been any cache replacement when we report success, the probability of having the

first two instances in G be in C is:
 .

Case 2: Cache replacement

Now consider the case when there has been cache replacement at least once. After

discarding an element from the cache, the remaining w-1 elements in the cache can be in

either of the following two categories:

Category 1: All of the w-1 patterns in C are instances in R. The probability of this

event is: .

Category 2: All but one of the w-1 patterns in C are instances in R. The probability

of this event is: .

We can report success if and only if the w
th

 pattern to be inserted into C is in G, and

the previous w-1 patterns in C belong to Category 2. Therefore, the probability of the

success event is: .

If the patterns in C are such that no two of them are instances in G, then we call it a

failure event. We describe the probabilities of this event below:

If the w
th

 pattern to be inserted into C is in R, and the previous w-1 patterns in C

belong to Category 2, then the probability of the failure event is:

 .

If the w
th

 pattern to be inserted into C is in R, and the previous w-1 patterns in C

belong to Category 1, then the probability of the failure event is:

 .

 112

If the w
th

 pattern to be inserted into C is in G, and the previous w-1 patterns in C

belong to Category 1, then the probability of the failure event is:

 .

Given this analysis, the probability of having the first two instances in G be in C is:

Based on the analyses above,
 becomes:

 (1)

Therefore, after seeing n objects in S¸ the probability of failing to detect an instance

in G is:
 . Given this, the probability of success after observing n

instances in S is: .

More generally, Fig. 47 shows the relationship between cache size and the number

of items seen before detecting an instance in G, under the following concrete

assumptions. One in a hundred objects in S belongs to G; everything else belongs to R.

We further assume (just for this toy example) that the moment we have two instances in

G in the cache, we can unambiguously detect that fact.

From Fig. 47 we observe that if w = 20, then we have to see about 2,857 objects to

have a 0.99 probability of correctly identifying an instance in G. As w gets larger, the

number of objects needed to reach this 0.99 probability threshold decreases, but we can

clearly see diminishing returns. Using a cache size five times larger only reduces the

number of objects we need to see to about 918 objects, and moving to an arbitrarily large

 113

cache size (w = ∞) further improves this down to about 227. For comparison, with w = 2,

the 0.99 probability is not reached until we have seen 46,049 objects (this value is

truncated from Fig. 47 for clarity).

Note that our toy example considers the case when p = 0.01; however, we expect to

deal with real-world problems in which p may be several orders of magnitude smaller.

Such values of p will “stretch” the x-axis, but our core observations about the

diminishing returns properties remain.

Fig. 47.: The number of objects that must be seen to find a pattern in G, for different cache sizes
w, with a desired probability of success. The 0.99 probability is highlighted with a horizontal
dashed line.

Also note that we have not stated which cache replacement policy we used in Fig.

47. As we shall show below, the two most obvious candidates, First-In-First-Out (FIFO)

and Random Replacement (RR), both correspond to this analysis.

0 1000 2000 3000 4000 5000 6000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.991

w = 2

w = 20

w = 100
w = ∞

Number of objects seen before detecting an instance in G

P
ro

b
ab

il
it

y
 o

f
su

cc
es

s

 114

4.3.3 Analysis of Cache Replacement Policies

Two obvious cache replacement policies are First-In-First-Out (FIFO) and Random

Replacement (RR) [136]. As the names suggest, in FIFO, the oldest object in the cache is

discarded at each time step, whereas in RR, the object to be discarded is selected

randomly. Note that the FIFO replacement policy is vulnerable to an adversarial case

[111]. Imagine a version of our problem in which S produces instances in G at uniform

time instances. If the number of objects produced by S after an instance in G is greater

than or equal to w-1, then we can never detect an instance in G using the FIFO cache

replacement policy. The obvious solution to mitigate such a problem is to use

randomization, which is often used in algorithms to avoid such pathological cases [129].

It is important to note that this adversarial worst case is not pathologically unlikely. For

example, some manufacturing machines may produce a special pattern as the machine is

recalibrated during a shift change, every eight hours. A FIFO policy with a cache size of

seven hours would never discover this pattern.

Using the analysis in Section 4.3.2, we can more formally define the metric of

success for our problem. For the case without any cache replacement, the number of

objects observed from S until two instances in G are in C, i.e., is a negative binomial

random variable. We define as

 .

Because the expectation of a sum of random variables is the sum of their

expectations, we have:

 (Recall from

 115

Section 4.3.2, each i is a geometric random variable with success probability p).

Therefore, if w >= 2/p, we expect no cache replacement.

For the case with at least one cache replacement, E() depends on the number of

objects seen from S immediately before the cache replacement,replacement’, and after the

cache replacement(s),replacement, until we report finding a pattern in G. replacement’ is

simply w, and replacement is a geometric random variable with success probability
 as

in Equation 1. Therefore, for this case,

 . Similar to our observation

about the case without cache replacement, if w < 2/p, we expect cache replacement(s) to

occur.

In Fig. 48 we show that the expected number of elements seen from S before

detecting an instance in G (our success metric stated in Section 4.3.2) decreases with

increasing cache size. In addition to this, Fig. 48 shows how closely the success metric

agrees with the empirical results for both of our candidate cache replacement policies.

As Fig. 48 suggests, the larger the cache is, the fewer objects in S we can expect to

see before detecting a pattern in G. This observation does not seem directly exploitable,

as the cache size is a domain constraint. However, as we will show in Section 4.4, we can

“virtually” increase the cache size by changing the representation of the data.

 116

Fig. 48.: The experimentally-determined success metric for FIFO and RR policies closely agrees with
the theoretically-derived metric for a wide range of values of w.

4.3.4 A Magic Sticky Cache

The analysis in Section 4.3.3 shows that for a fixed w, the more objects we see, the

higher the probability is of detecting an instance in G. Given w and p, we can predict the

performance using the analysis in Section 4.3.3. The results show that a larger cache size

helps improve the performance. Beyond making the cache size larger, is there any other

way we could improve the performance?

To answer this question, we can perform a gedankenexperiment. Imagine for a

moment that we could “magically” control the discard probabilities of the patterns in G

and R from the cache, such that patterns from G tend to “stick” in the cache for longer.

In particular, imagine we somehow can discard items in R with, say, a 50 or 100

times greater probability than items in G. This would improve the chances of an item

from G remaining in the cache as a new G exemplar arrives, and thus improve . This

intuition is illustrated with an experiment shown in Fig. 49.

22
0

1000

2000

3000

4000

23
24

25 26 27 28 29

Cache size

E
x
p
ec

te
d
 n

u
m

b
er

 o
f

el
em

en
ts

p
ro

ce
ss

ed
 b

ef
o

re
 d

et
ec

ti
n
g
 a

p
at

te
rn

 i
n
 G

Random Replacement

FIFO

Analytical

(It is nearly impossible to discern

any difference in the three lines

in this plot. This is, of course, the

point of this figure)

 117

Fig. 49.: The red/bold line here is identical to the w = 20 line in Fig. 47. If we could somehow
increase the probability of discarding an element from R we would obtain a significant
improvement

As we can see, making the cache “stickier” for items that might be in G

significantly improves our chance of detecting an instance in G. However, it is not clear

yet how we could imbue the cache with this ability.

To summarize: The ideas in this section suggest two possible approaches (which

are not necessarily exhaustive or mutually exclusive) that we can consider for improving

the performance in our problem:

 Find a cache replacement policy that minimizes the probability of discarding

instances in G as opposed to instances in R= S - G (cf. Fig. 49);

 Change the representation of the data, such that we can fit more objects into C.

This implicitly improves the probability of keeping an instance of G in the cache (cf. Fig.

47 and Fig. 48).

0 300 600 900 1200 1500

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.991

P100 = Probability of discarding an element

from R is 100 times greater

P50 = Probability of discarding an element

from R is 50 times greater

P1 = Probability of discarding an element

from R is equal to the probability of

discarding an element from G

P100
P50

P1

P
ro

b
ab

il
it
y
 o

f
su

cc
es

s

Number of objects seen before detecting an instance in G

 118

In the next section, we explore the latter idea, and in Section 4.5 we discuss the

former idea.

4.4 Data Representation Policy

4.4.1 Initial Observation

Recall from Fig. 48 that the larger the cache is, the higher the probability is of

detecting an instance in G. We can emulate the effect of a larger cache by changing the

representation of the data. Compressing or downsampling the data allows more objects to

fit in the cache; we can thus expect to detect an instance in G sooner than in the raw

space.

This idea requires some careful consideration. While time series data is typically

amiable to lossless compression techniques such as delta encoding or Lempel Ziv, such

methods require decompression before the Euclidean distance calculations, and are thus

more suited to archiving data. They would clearly introduce an intractable overhead for a

fast-moving stream, where we would have to (re)decompress each instance at every

cache insertion.

Downsampling (or equivalently, lossy compression) avoids this problem, but

introduces a new issue we must deal with. From Fig. 50, we can see that changing the

representation of the data inevitably changes the distances between objects.

 119

Fig. 50.: top) DG and DR are identical to the all-pair distance distributions of the patterns in G and
R, respectively, in Fig. 46. bottom) After downsampling the data, the new distance distributions
(DGN and DRN) and the new threshold TN shift left.

If we consider only orthonormal transformations (DFT, DWT, SVD, etc.), the

distances between any pairs of objects can only be reduced [109]. Because of this lower-

bounding property, the distributions in Fig. 50.top) can only shift to the left (Fig.

50.bottom). As a consequence, the distance threshold T can also only shift left in the

approximate space (TN).

Note, however, that we cannot say how the overlapping area of the distance

distributions will change – because either of the distribution’s standard deviations could

increase, decrease, or remain the same (Fig. 50.bottom), therefore, the area C + D could

also change arbitrarily. In practice, however, this area always increases, and in the next

section we show how to incorporate this into our cost model.

T

Raw space distances
P(false dismissals)P(false positives)

A
C

B

D

DG DR

0

TN

Approximate space distances
P(false dismissals)P(false positives)

DGN
DRN

0

A
C

B
D

 120

4.4.2 Cost Model

It is important to note that in our problem definition, of the two errors we can make

while detecting an instance in G, one “hurts” more than the other. This is because if we

falsely miss two exemplars in G, then we still have the hope of detecting an instance in G

in the future. However, if we mistakenly say two exemplars are in G, when in fact at least

one is in R, then we can never detect two instances in G, as we immediately stop our

search. Of course, we could adapt our definition such that we do not actually stop,

perhaps buffering the tentative motif and continuing the search. However, the tentative

motif must be examined by a human or algorithm at some point [121]. Thus, these false

positives do have an inescapable cost [121].

Given this observation, we can design a cost model in which we fix the probability

that we mistakenly claim two patterns to be in G (area C in Fig. 50). This fixing results in

an increasing tendency of the probability of falsely dismissing two true patterns in G

(area D in Fig. 50) as we downsample the data. As a consequence, the probability that

two patterns in the cache are believed to be from G tends to decrease. We defer the

calculations of these probabilities until Section 4.4.2.1. However, Fig. 51 shows an

empirical illustration of this observation.

From Fig. 51.left) we can see that if we fix the probability that two patterns in C are

falsely identified to be in G, then as we downsample more, the probability of the false

dismissals of two cached patterns in G tends to increase. As a consequence, the

probability that two cached patterns are potential candidates in G tends to decrease (Fig.

51.right).

 121

Fig. 51.: left) When downsampling, the probability of falsely dismissing two instances in G tends
to increase if we fix the probability that two cache patterns are claimed to be in G by mistake.
right) Consequently, the probability that two patterns in the cache are believed to be from G
tends to decrease.

We are now in a position to describe the derivation of these probabilities and to

formally define the ‘costs’ involved.

4.4.2.1 Cost Calculation

Assume that we know the distance threshold T in the raw space, which can come

either from user input or from a threshold learning model (cf. [141]). Further assume that

we know the means (
,

) and standard deviations (
,

) of both of the distance

distributions in Fig. 50.top. Given these, we can calculate the standard score of T

corresponding to each of these distributions as below:

Using the standard normal probability table, we can calculate the area to the left of

zFalse Positive, which is the probability of mistakenly claiming two patterns to be in G.

Similarly, we can calculate the area to the right of zFalse Dismissal, which is the probability of

4 8 12 16

0.7

0.8

0.9

1

1

P
ro

b
ab

il
it

y
 o

f
fa

ls
el

y
 d

is
m

is
si

n
g

tw
o

 p
at

te
rn

s
in

 G

Downsample Factor

0.02

0.06

0.1

0.14

0.18

4 8 12 161
Downsample Factor

P
ro

b
ab

il
it

y
 t
h

at
 t
h

e
ca

ch
e

h
as

tw
o

 p
o

te
n

ti
al

 c
an

d
id

at
es

 i
n

 G

 122

falsely dismissing two true patterns in G. In Fig. 50.top, these errors are represented as

shaded areas labeled C and D, respectively. From now on, we will refer to these errors as

α and β, respectively.

Given these two error probabilities, Fig. 46 illustrates that the probability that two

cached patterns are believed to be exemplars in G is:

 (2)

As noted above, we fix α to be a constant independent of the downsampling rate.

Therefore, the probability of falsely dismissing two true patterns in G in this space

becomes greater. We illustrate this error as the shaded area D in Fig. 50.bottom. We call

this error βN, and calculate it as follows.

From the fixed α, we can calculate zFalse Positive. Using this zFalse Positive, we can

calculate TN (cf. Fig. 50.bottom) as below:

where
 and

 are the mean and standard deviation of the distance

distribution
 in Fig. 50.bottom.

We can calculate the standard score of TN corresponding to the distribution
 in

Fig. 50.bottom as:

Using the standard normal probability table, we can calculate the area to the right

of zN, which is βN. β and βN correspond to the probabilities shown in Fig. 51.left) for the

original and downsampled spaces, respectively.

 123

From the areas A, B, C and D in Fig. 50.bottom), we can calculate the probability

that two cached patterns are believed to be exemplars in G,
 using equation 2. and

 correspond to the probabilities shown in Fig. 51.right) for the original and

downsampled spaces, respectively.

More generally, Fig. 52 shows the relationship between a ‘virtually’ large cache

made by downsampling the data and the number of objects we expect to see before

reporting success, under the following conditions. We make a synthetic dataset of two

classes, G and R, by distorting an instance of Gun point and FaceAll datasets [19],

respectively, with some Gaussian noise. We assume the rareness of the patterns in G is

1/100 and our cache is allowed to store just two patterns in raw format. Under the

assumption that we can unambiguously detect instances in G, we show the expected

number of objects we need to see before reporting success in Fig. 52.left).

Fig. 52.: left) The help factor: A larger cache allows faster detection of instances in G. center) The
hurt factor: The greater the downsampling, the slower the detection. right) The performance of
the overall system is based on the influence of these two factors, with downsample factors of 2 to 4
performing best.

E
x

p
e
c
te

d
 n

u
m

b
e
r

o
f

o
b

je
c
ts

 p
ro

c
e
ss

e
d

b
e
fo

re
 d

e
te

c
ti

n
g
 a

 p
a
tt

e
rn

 i
n

 G

Cache Size
2 6 10 14

0

10000

20000

30000

40000

7
Downsample Factor

1 3 5 2 6 10 14
Cache Size

7

Downsample Factor

1 3 5

 124

As noted above, due to downsampling the data, we can no longer identify instances

in G unambiguously; therefore, we detect two instances in G with probability pG.

Because we fix the false positive error probability, the probability of falsely dismissing

true instances in G tends to increase as we downsample more (Fig. 51.left). This

increased probability of false dismissals of the patterns in G results in a decreasing

tendency of pG (Fig. 51.right). As a consequence, we expect to see an increase in the

expected number of objects in S we examine before detecting an instance in G. This

effect is illustrated in Fig. 52.center).

If we review these two observations: A larger cache allows faster detection of an

instance in G and A “larger” cache (emulated by downsampling) causes slower detection

of an instance in G given the higher probability of not recognizing a pair from G, they

suggest that there must be a cache size that maximizes this tradeoff, i.e.,

 . In Fig. 52.right), this cache size is achieved with downsample

factors from two to four.

There are two important observations we must make before moving on. First, note

that the cache size that maximizes this tradeoff has a fairly wide “valley,” suggesting that

this parameter is not too sensitive. Second, while the best downsampling factor depends

on the data and its sampling rate, it can be robustly learned on a small amount of training

data. That is to say, if we find that the best downsampling factor for one person’s

electrooculography data at 1024Hz is about eight to ten, we can expect this to generalize

well to other individuals.

 125

4.4.3 Dimensionality Reduction

In our simple analysis in the previous section, we assumed that we placed more

objects into the cache by downsampling. However, the reader will appreciate that there

are more sophisticated dimensionality and cardinality reduction techniques to reduce the

size of a time series. Indeed, the literature is replete with dimensionality reduction

techniques, such as Singular Value Decomposition (SVD), Discrete Fourier Transform

(DFT), Discrete Wavelet Transform (DWT), and Piecewise Aggregate Approximation

(PAA) [139]. Here we consider PAA as the dimensionality reduction technique, because

it is simple, incrementally computable and has linear time complexity [122]. We note that

PAA and DWT are logically identical if both the original and reduced dimensionality are

integer powers of two, and nearly identical otherwise [122].

Recall our observation in Fig. 50; in Fig. 53 we demonstrate that we get a similar

shifting of the distance distributions under PAA as downsampling.

Fig. 53.: top) The all-pair distance distributions of the patterns in G and R in the raw space.
bottom) After reducing the dimensionality by an integer factor of 5, the new distance distributions
shift left.

0 1 2 3

0 1 2 3

Euclidean Distances

PAA Distances

 126

As noted in Section 4.3.3, a larger cache size allows faster detection of a pattern in

G, and dimensionality reduction emulates the effect of a larger cache. But as described in

Section 4.4.1, working in the dimensionality-reduced space also makes it harder to

determine if two objects in the cache belong to G. Therefore, we should expect to see a

similar “help and hurt” effect as illustrated in Fig. 52. To see this, in Fig. 54 we

conducted a similar experiment on the same synthetic dataset in Section 4.4.2.1 using

PAA instead of downsampling.

Fig. 54.: help factor vs. hurt factor using PAA. The tradeoff between both factors suggests that a
dimensionality reduction factor of about 10 is best here.

4.4.4 Cardinality Reduction

We use the SAX (Symbolic Aggregate Approximation) [126] approach for

cardinality reduction. This is because SAX is unique in allowing a distance calculation in

the symbolic space that is commensurate with the Euclidean distance.

In Fig. 55 we show that if we reduce the volume of time series with cardinality

reduction rather than dimensionality reduction (cf. Fig. 53), the distance distributions in

2 6 10 14 18 22
0

20

40k

1 3 5 7 9 11

Virtual Cache Size

Dimensionality Reduction

Factor

E
x

p
ec

te
d

n
u

m
be

r
o

f
o

bj
ec

ts

p
ro

ce
ss

ed
 b

ef
or

e
d

et
ec

ti
n

g

a
p

at
te

rn
 i
n

 G

 127

the approximate space do not shift to the left as much. This is a promising sign that

cardinality reduction might be a better technique for the task at hand.

Fig. 55.: top) The all-pair distance distributions of the patterns in G and R in the raw space.
bottom) After reducing only the cardinality of the data by a factor of 5 (6 bits), the new distance
distributions shift left (assuming the original data points are 32 bits).

As hinted at in the observation in Section 4.4.1, we get the similar “help and hurt”

behaviors after doing cardinality reduction on the same synthetic dataset in Section

4.4.2.1. We illustrate this in Fig. 56.

Fig. 56.: The tradeoff between the help and hurt factors using SAX suggests that a cardinality
reduction factor of about 8 is best.

We can now answer the following question: Of the three techniques introduced to

emulate a large cache, which is best? To see this, we plot the results of the experiments in

0 1 2 3

0 1 2 3

Euclidean distances

SAX distances

2 4 16 32
0

20

40k

8

1 2 8 164

Virtual Cache Size

Cardinality Reduction Factor

E
x

p
ec

te
d

n
u

m
be

r
o

f o
bj

ec
ts

p
ro

ce
ss

ed
 b

ef
or

e
d

et
ec

ti
ng

a
p

at
te

rn
 in

 G

 128

this section on a single commensurate axis in Fig. 57. We can see that cardinality

reduction gives the minimum value of the expected number of objects we need to see

before we report success. Moreover, cardinality reduction has a very wide flat “valley,”

meaning a large range of parameter choices produces excellent results.

Fig. 57.: Of the three data reduction techniques, cardinality reduction dominates the other two
over the entire range of virtual cache sizes.

Note that these results are for a single dataset with a single setting. However, many

additional experiments (archived at [141]) confirm this general behavior.

4.5 Sticky Cache Algorithm

As hinted at in the thought experiment in Section 4.3.4, if we had a ‘magic’ cache

in which the potential instances in G tend to remain for longer, the probability of early

detection of an instance in G increases significantly. In order to realize this idea, we need

to create a biased cache replacement policy that reduces the probability of discarding

potential G items from the cache as opposed to instances in R. This seems to open a

16 20 24 300

4

8

12k

2 4 8 12

E
x

p
e

c
te

d
 n

u
m

b
e

r
o

f
o

b
je

c
ts

p

ro
c

e
ss

e
d

 b
e

fo
re

 d
et

e
ct

in
g

a
 p

a
tt

e
rn

 i
n

 G

Virtual Cache Size

 129

chicken-and-egg paradox, as finding a pair of objects from G is our goal. In this section

we will show how we can use a Bloom filter [112] to resolve this paradox.

A Bloom filter is a space-efficient randomized data structure (bit array) to support

membership queries with no false negative and a small false positive probability [112]. It

uses k independent hash functions, each of which maps some set element to one of the m

bit positions of the array and sets the hashed bit positions. A membership query takes an

input element and feeds it to the k hash functions to get k array positions. If any of the bit

positions is found to be 0, then the element is definitely not a set member; otherwise, the

element is probably a set member. Bloom filters have been widely used in frequent

pattern mining [125][135]. To the best of our knowledge, this work is the pioneer where

Bloom filters have been used for real-valued time series.

The high-level intuition behind our idea is as follows. For every subsequence we

see, we will use a Bloom filter to “remember” seeing (a SAX representation of) it. Before

inserting the SAX word corresponding to the subsequence into the Bloom filter, we check

to see if we have already seen this SAX word. If we have, this is suggestive that the

subsequence may be from G. Given that evidence, we should make sure that it “sticks” in

the cache longer than the subsequences we have only seen once.

There are some obvious caveats to this idea. Two SAX words being identical does

not guarantee that both original real-valued sequences come from G, and two real-valued

sequences that come from G can map to different SAX words. However, as we shall

show, for reasonable SAX parameters false positives and false negatives are rare, and a

collision in the SAX space is really highly predictive of membership in G.

 130

Note that for this idea to work we actually need to see three items from G. The first

is inserted into the Bloom filter as with all items. The second item collides with the first,

which tells us to store the real-valued version of the second item in the cache, marked

with low priority for deletion. Finally, when the third item arrives it will be recognized to

be within threshold T of the second item, and we can report success.

The success of our method depends on finding reasonable values for the two SAX

parameters - word and alphabet size. This is straightforward, so we relegate the

discussion to [141].

4.5.1 Setting Appropriate Bloom Filter Size

As noted in Section 4.5, we require a biased cache replacement policy to detect

instances in G earlier. The Bloom filter tags each instance in S as potential members in G

or R. Based on these tags, we make the potential instances in R ∑ times more likely to be

discarded from the cache than that of a potential instance in G. It is important to note that

∑ is not a critical parameter. Consider the two extreme situations. If ∑ = 1, then the

sticky cache policy degenerates to RR. In contrast, if ∑ = ∞, the cache gets filled with

potential instances in G, which results in frequent flushes of the cache, and decreases the

probability of detecting instances in G. Note that the Bloom filter is not “free”; therefore,

we must use up a portion of C for it. As the reader will appreciate, the two extreme

choices of using almost all of C, or almost none of C (thus essentially degenerating to

RR), are unlikely to perform well. The following analysis allows us to derive the

appropriate size allocation for the Bloom filter in C.

 131

Assuming C can hold at most ρ instances of length λ each, then the size of C in

bytes is: 2. If we restrict C to hold at most ρr instances (ρr ≤ ρ), and allocate

the remaining space to the Bloom filter, then the size of the Bloom filter in bytes

is: . Therefore, the number of unique elements hashed into

the Bloom filter is: 3.

Based on the analysis above, we perform an experiment in which we vary the cache

/Bloom filter allocation in C to identify the region in which we obtain significant

performance improvement over the naive RR policy. We use a fixed buffer which can

hold at most 32 patterns each of length 150; thus, 38,400 bytes. We vary the

number of cache elements/ Bloom filter allocation. From Fig. 58 we can see that the

cache holding 8 to 12 patterns performs best and beyond this allocation, the performance

starts degrading.

Fig. 58.: For a fixed w = 38,400 bytes (32 patterns of length 150), ∑ = 64, and p = 1/100, a cache
allocation of 9,600 to 14,400 bytes (i.e., 8 to 12 patterns) performs best.

2 Each value of the time series takes 8 bytes.

3 9.58 bits per element for 1% FP probability of the Bloom filter.

4 6 8 10 12 14 16
50

250

450

E
x

p
e
c
te

d
 n

u
m

b
e
r

o
f
e
le

m
e
n
ts

s
e
e
n

 b
e
fo

re
 g

e
tt

in
g
 a

 h
it

Cache Size

22 19 16 14 12 10 0.4

Bloom Filter Size (K)

 132

The reader will have anticipated the following question: if we exploit the

performance improvement of the sticky cache in addition to the cardinality reduction

technique (the best technique from Section 4.4.4), can we do even better? To see this, we

perform cardinality reduction of the patterns by a factor of 8 (the best reduction factor as

of Fig. 56), and redo the sticky cache experiment. We plot the results of this experiment

with the other data reduction techniques in Section 4.4 with the same setup and plot the

results on a common axis in Fig. 59.

Fig. 59.: Out of all optimization techniques we discuss, the Sticky cache approach with a
cardinality reduction factor of eight performs best. See also Fig. 57, which shows a subset of this
data.

In the next section we more formally describe the sticky cache algorithm.

0 50 100 150 200 250 300 350

100

1000

400E
x

p
e
c
te

d
 n

u
m

b
e
r
o

f
e
le

m
e
n

ts

se
e
n

 b
e
fo

re
 g

e
tt

in
g
 a

 h
it

Virtual Cache Size

Downsampling

Dimensionality

Reduction

Cardinality

Reduction

Cardinality

Reduction with Sticky cache

 133

4.5.2 Algorithms

In order to elucidate our sticky cache framework, we first explain how we use the

Bloom filter in order to identify potential instances in G. Later we describe the cache

maintenance policy.

4.5.2.1 Detection of Potential Target Instances

For a given alphabet size a and word size ω, we call the probability that two

instances in G and R will map to the same SAX string pGsameSAXString(a,ω) and

pRsameSAXString(a,ω), respectively. As explained in Section 4.5.1, in order to exploit the

Bloom filter for detecting potential instances in G, we have to determine the approximate

SAX parameters so that pGsameString is maximized and pRsameString is minimized. In 16, we

describe the algorithm.

Recall our assumption of the existence of a distance threshold as a form of domain

knowledge in Section 4.3. Based on this domain knowledge, we form a buffer of

instances in G in line 1. We randomly sample patterns of the length of our interest from

our input time series in order to form a buffer of instances in R in line 2. From lines 3-9,

we determine the appropriate SAX parameters using the scoring function outlined in

[141].

 134

Table 16: SAX Parameter Selection Algorithm

In
p

u
t

TS, the input time series

l, length of the subsequences

A, predefined set of SAX alphabet sizes

Ω, predefined set of SAX word sizes O
u

tp
u

t

a, the appropriate SAX alphabet size

ω, the appropriate SAX word size

1

2

3

4

5

6

7

8

9

GBuffer = formGbuffer(TS,l) //using domain knowledge

RBuffer = formRbuffer(TS,l) //by random sampling

for i = 1 to size(A)

 for j = 1 to size(Ω)

 pnormalizedGsameSAXString =findNormalizedProbability(GBuffer,i,j)

 pnormalizedRsameSAXString =findNormalizedProbability(RBuffer,i,j)

 end

end

(a,ω)=findMaxNormalizedScore(pnormalizedGsameSAXString, pnormalizedRsameSAXString)

We are now in a position to use the Bloom filter in order to detect potential

instances in G. In Table 17, we outline the algorithm.

In line 1, we quantize the input subsequence with the appropriate SAX parameters

we discovered in 16. We check whether the discretized SAX word exists in the Bloom

filter in line 2. If the SAX word exists, then we mark it as a potential instance in G and

assign weight 1 (line 4). Otherwise, the potential instances in R are assigned the weight

that determines how likely they are to be discarded from the cache (line 7) and insert the

word into the Bloom filter (lines 9 and 13). We check to see whether the Bloom filter is

saturated or not (lines 8 and 11). In case the filter is saturated, we flush it (line 12).

 135

Table 17: Potential Target Instance Selection Algorithm

In
p

u
t

TS, the input time series

subSeq, subsequence in question

a, the appropriate SAX alphabet size

ω, the appropriate SAX word size

∑S, likeliness factor of potential instances in R to be

 discarded from the cache O
u

tp
u

t

∑, weight of the potential instances in R

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

SAX_word = quantizeBySAX(subseq, a, ω);

bool exists = existsInBloomFilter(SAX_word)

if exists == true

 ∑ = 1

 return

else

 ∑ = ∑S;

 if saturatedBloomFilter()== false

 insertInBloomFilter(SAX_word)

 return;

 else

 flushBloomFilter()

 insertInBloomFilter(SAX_word)

 return

 endif

endif

4.5.2.2 Cache Maintenance

Using the algorithm outlined above, we ‘tag’ the instances by a user-defined factor,

which determines the relative discard probabilities for potential instances R and G. We

describe the algorithm in Table 18.

 136

Table 18: Cache Maintenance Algorithm

In
p

u
t

subSeq, subsequence in question

w, size of the cache

C, the cache

∑, likeliness factor of subSeq to be discarded from the cache

LikelinessBuffer, the buffer storing ∑

O
u

tp
u

t

success, flag indicating successful cache insertion

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

if currentCacheElementCount ≤ w //underflow

 currentCacheElementCount++

 InsertInCache(subSeq, currentCacheElementCount)

 //insert ∑ in LikelinessBuffer

 InsertInLikelinessBuffer(∑,currentCacheElementCount)

 success = true

else //overflow

 //Pathological Situation 1

 //if all potential instances in G are in C

 if sum(LikelinessBuffer) == w

 flushBloomFilter()

 flushCache()

 flushLikelinessBuffer()

 currentCacheElementCount = 0

 InsertInCache(subSeq,1)//insert in first location

 InsertInLikelinessBuffer(∑,1)

 SAX_word= quantizeBySAX(subseq, a, ω)

 insertInBloomFilter(SAX_word)

 currentCacheElementCount++

 //Pathological Situation 2
 else if saturatedBloomFilter()==true

 flushBloomFilter()

 currentCacheElementCount++

 InsertInCache(subSeq, currentCacheElementCount)

 InsertInLikelinessBuffer(∑,currentCacheElementCount)

 SAX_word= quantizeBySAX(subseq, a, ω)

 insertInBloomFilter(SAX_word)

 else

 loc = calculateCacheDiscardLocation(LikelinessBuffer)

 InsertInCache(subSeq, loc)

 InsertInLikelinessBuffer(∑,loc)

 endif

 success = true

If there is no cache overflow, we insert the subsequence into the next available

cache slot (lines 1-6). Otherwise, we check for two pathological situations. If the cache is

 137

full of potential instances in G (which is extremely unlikely to occur provided that we

have set a, ω properly), then we flush the cache, the Bloom filter and the buffer storing

the likeliness factor of each cache element, and start from scratch (lines 10-19). We also

check for saturation of the Bloom filter, and if we find it, we flush the Bloom filter (lines

21-22). Otherwise, we determine the discard location based on the likeliness factors of

the elements and insert instances into the cache accordingly (lines 28-32). We describe

the cache discard location algorithm in Table 19.

We generate a random index between 1 and the total weight in the LikelinessBuffer

(line 1). We calculate the desired discard location so that potential instances in R are ∑

times more likely to be discarded (lines 2-4), and return.

Table 19: Cache Discard Location Calculation Algorithm

In

p
u

t

LikelinessBuffer, the buffer storing ∑

O
u

tp
u

t

loc, cache discard location

1

2

3

4

5

ind = generateRandomIndex([1,sum(LikelinessBuffer)])

cumSumArray = cumulativeSum(LikelinessBuffer)

//find the first smallest index greater than or equal //to ind in cumSumArray

loc = firstSmallestIndex(cumSumArray,ind)

return

 138

4.6 Experimental Evaluation

We begin by noting that all experiments (including all the figures above) are

completely reproducible. All experimental code and data (and additional experiments

omitted for brevity) are archived in perpetuity at [141].

The goal of our experiments is to show that our algorithm is more efficient than any

obvious strawman technique, and that it is not particularly sensitive to the parameter

choices. In addition, we show the utility of our approach with case studies on two real-

world datasets.

4.6.1 Rate of Detection

We begin by comparing our algorithm with the naive RR cache replacement policy.

RR is a simple, but highly effective algorithm for many problems.

From the UCR archive we take examples of class 1 from the MALLAT dataset [19]

and consider them as target motifs. We randomly embed these into a much longer

random walk time series with different occurrence probabilities, and our task is to recover

at least one matching pair as soon as possible.

We consider the cache size to be a function of the target patterns’ occurrence

probability. In particular, our cache can buffer at most only 10% of the rareness of the

target motifs. In other words, if our target motifs have 1/100 occurrence probability, then

our cache can hold at most only 10 patterns. In addition, we use 3.2, 12 and 16 as the

values of T, a, and ω, respectively. Furthermore, we will show that the setting of these

 139

parameters is not a black art; there exists a wide range of possible values of the

parameters that have no significant impact on the performance of our algorithm.

In order to show how quickly we detect the target patterns, we do the following.

We run our sticky cache algorithm and the RR algorithm under the same experimental

conditions and record the average number of objects we must process until we get the

first true positive (i.e., a pair of patterns are in the cache, and our algorithm recognizes

this fact).

As we are interested in our algorithm’s performance relative to RR, as shown in

Fig. 60, we plot the results relative to the mean performance of RR, with values less than

one indicating that our algorithm offers an improvement. In addition, to show the quality

of our algorithm, we record the number of false positives we see before we attain success.

From Fig. 60.top), we can see that in the worst case, the sticky cache algorithm is

faster than the RR policy by a factor of 2. In addition to this, because the median score of

the sticky cache algorithm remains almost constant (~0.18) for different rareness factors,

we can say that on average, our algorithm is ~6 times faster than the RR policy. In

particular, on average, the probability that an object is a false positive before we attain

success is at most only ~2% [141]. The results above suggest the utility of an adaptive T

as a function of the rareness factor. We modified our model to achieve this; however,

because this is straightforward, we relegate the discussion to [141].

 140

Fig. 60.: top) For the sticky cache algorithm, the average number of objects seen before the first
true positive is expressed with respect to the results for RR policy at different rareness factors.
bottom) The parameter robustness of our algorithm offers a wide range of possible values that
have no significant impact on performance (from left to right ω, a and T).

Recall our claim that our algorithm is not sensitive to the parameter choices. In

order to show this, we do the following experiment. Assume that our data generator

generates the target patterns with a probability of 1/100. Keeping the same experimental

setup we discussed above, we vary ω, a and T, and show the result in Fig. 60.bottom).

The results show too conservative or too liberal values of ω and a result in an increase in

the average number of objects we see before the first true positive. In addition, if we

make T too liberal, then the average false positive count increases and vice versa.

However, the results clearly show the existence of a wide range of choice of these

parameters which confirms our algorithm is not parameter-sensitive.

0

0.2

0.4

0.6

0.8

1

1/100 1/1000 1/10000

R
R

 s
co

re

1/100000

Rareness of the target patterns

2 5 15 25 35 45350

450

550

650

Word Size

A
v

e
ra

g
e
 N

u
m

b
e
r

o
f

O
b

je
c
ts

 S
e
e
n

 B
e
fo

re
 t

h
e

F
ir

st
 T

P

2 4 6 8 10 12 14 16

350

450

550

Alphabet Size

A
v

e
ra

g
e
 N

u
m

b
e
r

o
f

O
b

je
c
ts

 S
e
e
n

 B
e
fo

re
 t

h
e

F
ir

st
 T

P

2 2.4 2.8 3.2 3.6

350

450

550

650

0.05

0.15

0.25

Distance Threshold

A
v

e
ra

g
e
 F

P
 c

o
u

n
t

A
v

e
ra

g
e
 N

u
m

b
e
r

o
f

O
b

je
c
ts

 S
e
e
n

 B
e
fo

re
 t

h
e

F
ir

st
 T

P

 141

4.6.2 Worst-Case Time Complexity

Consider the worst-case scenario. For each pattern TSi of length m in question, we

make its SAX representation first. This step needs O(m) time. In order to detect whether

TSi is a potential instance in G or R, we hash it into the Bloom filter. Assume the number

of independent hash functions we use in the Bloom filter is h. Given this, querying if the

SAX representation of TSi is in the Bloom filter, and if not, hashing it into the Bloom

filter, requires O(h) time. In the worst possible case, the Bloom filter will be saturated,

and we flush it. This is a constant-time operation. After this, we insert TSi into a cache of

size w. For an overflowed cache, discarding a cache element requires O(1) time. After we

insert TSi into the cache, we calculate its distance from all cache elements (recall this is

the worst-case scenario) until the participating patterns pass the threshold test. This needs

O(wm) time. Therefore, the overall worst-case time complexity of our algorithm is O(m)

+ O(h) + O(wm). In practice, this means our somewhat naive implementation can handle

250Hz under typical parameter settings, and a carefully optimized implementation could

easily handle 1,000Hz.

4.6.3 Case Studies

4.6.3.1 Wildlife Monitoring

Wildlife monitoring by examining sensor traces has been shown to be a useful tool

for measuring the health of the environment [137]. In some cases, we may have a known

bird call we would like to monitor, but here we consider the more difficult task of

 142

detecting previously unknown calls. Our only assumptions are that the call will be

repeated at least once.

Assume we monitor the audio trace of a ten-hour-long night of a forest [134].

Given a data rate of 62 Hz in the Mel-Frequency Cepstral Coefficients (MFCC) space, we

will see about 2.2 million data points. Assume we have a fixed-size memory which can

buffer at most only 1/4000 of the subsequences that appear on this night. Our final

assumption is that we have a predefined distance threshold for detecting a pair of target

patterns (which we learned offline on a handful of known bird calls). Given these

assumptions, if a bird calls randomly ten times during this night, we can ask the

following question: What fraction of nights can we expect to detect at least one pair (any

pair) of bird calls? Recall that detecting a single pair is sufficient for the wildlife

monitoring task. In order to answer this question, we perform the following experiment.

In a ten-hour-long audio trace of environmental sounds, we randomly insert ten

approximately three-second-long calls of a White Crowned Sparrow (Zonotrichia

leucophrys) [140]. We run our sticky cache algorithm ten times on this dataset and in

each run we continue monitoring until we detect the first true positive pairs in the cache.

Our experimental results tell us we can expect to detect the target bird 98 out of

100 nights. Impressive as these results are, they are somewhat pessimistic. After a careful

analysis of the results we discovered that the “false positives” are actually true bird

sounds. In Fig. 61 we show examples of both the injected bird calls we recovered, and

other bird calls (unknown species) we recovered.

 143

We do not report the timing experiments, except to note that we can easily search a

dataset with an arrival rate much faster than real-time on a laptop, suggesting we could

handle real-time even on a resource-limited recording device.

Fig. 61.: top) A snippet of the ten-hour-long audio trace in the MFCC space. The injected bird
calls are shown in green/bold. bottom) A) The detected motif pairs occurring at 37 minutes and
2.3 hours, respectively. B – D) Three examples of unknown bird calls discovered.

4.6.3.2 Energy Disaggregation

The problem of reducing energy consumption has attracted increasing interest in

recent years. To illustrate how our approach may help in solving energy disaggregation

problems, we consider one year of energy usage data, containing 0.5 million points [128].

For simplicity, we consider a meter that monitors the electricity usage of just two

appliances– a refrigerator and a dishwasher. From personal experience, we assume the

dishwasher cycles are approximately 1.5 hours long. As before, we use a cache which

buffers at most 5% of the data, and had 20, 12, and 7.5 as values of ω, a, and T,

respectively. In order to show how effective our algorithm is, we annotate the ground

truth by careful human inspection. As soon as our algorithm detects a target motif pair,

we flush the cache and continue scanning the dataset. We show the result in Fig. 62.

0 40 80 120 160 200

37 minutes : : : : : : : : : : : : : : : : : : : 140 minutes

(omitted section)

0 40 80 120 160 200

36 min 54 sec

2.3 hours

A

0 40 80 120 160 200

1 min 57 sec

B

0 40 80 120 160 200

31 min 27 sec

D

21 min 36 sec

C

 144

Fig. 62.: top) An excerpt of the electricity usage of a refrigerator and dishwasher. The dishwasher
patterns have been marked in green/bold. bottom) The ground truth locations (dishwasher usage
occurrences) are shown as green lines. The locations identified by our algorithm are shown as
blue arcs.

From Fig. 62 we can see that our algorithm detected eight dishwasher motif pairs,

most of which are many days apart.

4.7 Related Work

In recent years researchers have devoted significant attention to efficiently

discovering motifs in static offline databases [117][127][138]. Until [133], all scalable

motif discovery algorithms were approximate. In [133], the authors proposed an exact

motif discovery algorithm which was tenable for a database of millions of objects.

Although the worst case time complexity of [133] was quadratic, in practice this is a very

pessimistic bound and it was shown to be fast enough to serve as a subroutine for

summarization, near-duplicate detection, etc.

Day 308 Day 311: : : : : : : : : : :

(omitted section)

Day 70 Day 140 Day 210 Day 280 Day 350

Day 70 Day 140 Day 210 Day 280 Day 350

Ground Truth

Motifs Detected

 145

Because most data sources are not static, and we may need to deal with unbounded

streams, the necessity of online discovery of time series motifs has been noted [132].

However the only work devoted to this problem limits its consideration to the last k

minutes, for some small k [132]. This means that [132] maintains motifs based on the

most recent history of the stream. However, as we noted in our real-world case studies,

we may need to find patterns that repeat hours, days or even weeks apart. For such cases,

it is very unlikely that motifs will occur in the same window. In addition to this, if we

consider the huge volume of data that we wish to process, we are bounded by the

scalability of the fastest offline algorithm for this problem [131][133]. Our work is

different in a sense that we detect very sparse motifs using a very limited buffer compared

to the size of the data with very high probability. In the context of the data volume, the

interested reader might think of [130], which detects motifs from gigabyte-scale

databases. However, [130] is a multi-pass algorithm, whereas we explicitly address

situations where we can scan the data only once to detect motifs.

Various discrete analogues of our problem have seen significant research; see [118]

and the references therein. In the discrete space the ability to directly test for equality and

to directly hash that data, makes the “rare pattern” problem significantly easier. However

our use of Bloom filters was inspired by this community’s literature [118]. Bloom filters

have been an area of active research in the database community for the last decade, with

research effort in both applying them to various problems and introducing variants such

as “forgetting” Bloom filters [118].

 146

4.8 Conclusions

We have argued that for most applications, finding the closest pair of subsequences

is intractable and unnecessary. It suffices to find any pair of repeated patterns. Any pair

can be used to alert an ornithologist to listen to a snippet of bird calls (cf. Section

4.6.3.1), or allow a technician to build a “dictionary” of electrical demand patterns (cf.

4.6.3.2), etc. Based on this observation, we have introduced the first algorithm that can

detect repeated patterns in unbounded real-valued time series. We have demonstrated

efficiency and effectiveness of this algorithm on both synthetic and real-world datasets.

 147

Chapter 5: Conclusion and Directions to
Future Extension

Time series data mining is an active area of research now. With the advancement of

sensor technology, these days it is extremely easy obtaining vast amount of time series

data. However, for this data to be useful, it has to be collected properly and labeled. In

real-life scenario, the data collection process faces failures at different levels. In this

circumstance, generating clean data from scratch requires careful cleaning and pre

processing. In addition, obtaining human annotation is expensive, and remains the critical

bottleneck for the data analysis process. Our core contribution in mining time series data

from the perspective of scarce labeled data and abundance of noisy data is as follows:

 In Chapter 2 of this dissertation, we propose approaches to mitigate human labor in

mining time series data by semi-supervised learning. We proposed a novel method

of semi-supervised classification of time series with as few as a single labeled

instance. Previous approaches for stopping the classification process required

extensive parameter tuning, and hence remain something of a black art. We devised

a stopping criterion for the semi-supervised classification based on Minimum

Description Length (MDL), which is parameter free, and leverages the intrinsic

structure of the data. To our knowledge, this is the first work addressing time series

 148

SSL using MDL. Extensive experiments demonstrate that our method allows us to

classify real-world medical datasets with near perfect accuracy.

Our current approach works only on offline time series data; a future direction

might be extending it to perform online semi-supervised time series classification.

Another potential contribution is to generalize our algorithm in the setting of

multiple classes.

 In Chapter 3 of this dissertation, we propose a generalized density based clustering

framework for admissible clustering. As we have mentioned before, designing

parameter-lite algorithms is one of the key aspects of ensuring the reproducibility of

results. In addition, such algorithms are generally less brittle and less ad-hoc. In

many situations, clustering the whole dataset might hurt the cluster quality. For

example, simple objects tend to be too close from everything. This is why, they act

as ‘attractors’, and tend to swallow almost all the objects in their own cluster.

Therefore, it is important that the underlying clustering algorithm is agnostic to

such objects which are either not clusterable or hurt the clusterability of other

objects.

Besides being agnostic to noise and outliers, it is necessary that the clustering

algorithm provides high quality results as soon as possible. In many state-of-the-art

time series works, it has been shown that when the data objects have time lag

among them, the Dynamic Time Warping (DTW) distance measure is exceptionally

difficult to beat. However, DTW is very slow, for which there is the need for a

 149

clustering algorithm which could accelerate the clustering process by admissibly

pruning unnecessary distance computations.

In Chapter 3, we augment the DP (Density Peaks) algorithm to cluster time series

data using both the upper and lower bounds of Dynamic Time Warping. We

propose a heuristic to order the distance computations in a best-first manner, which

gives the algorithm a desirable anytime property. In addition, we show the

generality of our clustering framework to other domains by efficiently obtaining

semantically significant clusters in protein sequences using the Edit Distance, the

discrete data analogue of DTW.

A future direction to this work is to perform a theoretical analysis on the asymptotic

pruning rate. In addition, a concrete analysis on when TADPole does pruning better

and when not, is a great direction to look closely into.

 In Chapter 4 of this dissertation, we investigate algorithms to discover rare time

series motifs. We argue that that for most applications, rather than finding the

closest pair of subsequences, it suffices to find any pair of repeated patterns. Any

pair can be used to alert an ornithologist, or allow a technician to build a

“dictionary” of electrical demand patterns, etc. Based on this observation, we have

introduced the first algorithm that can detect repeated patterns in unbounded real-

valued time series. We designed a rigorous theoretical model to understand the

behavior of different cache replacement polices. In addition, we analyzed the cost

model showing the independent factors associated on the expected number of

 150

objects before we report success. Extensive empirical results support our claim that

our Bloom filter based sticky cache algorithm with changed data representation can

typically detect rare motifs with very high probability.

An interesting future direction to this work is to analyze the results of different

algorithms when the Bloom filter is full. For now we flush the whole Bloom filter

when this situation arises. But with such flushes, we are doing fresh restarts of the

algorithm, and we might lose track of some potential motifs already present, but not

detected in the cache yet. A future work would be to keep several parallel Bloom

filters storing data of one month apart for example. We can think about flushing

only the most recently flooded filter. This way we will not lose track of useful

patterns already in the cache, and can exploit them better.

 151

Bibliography

Chapter 2

[1] Besemer, J., Lomsadze, A., Borodovsky, M.: GeneMarkS: A Self-training Method for

Prediction of Gene Starts in Microbial Genomes. Implications for Finding Sequence Motifs

in Regulatory Regions. Nucleic Acids Research, 2001.

[2] Blum, A., Mitchell, T.: Combining Labeled and Unlabeled Data with Co-training. In

Proceedings of the 11
th
 ACM Annual Conference on Computational Learning Theory, pp. 92-

100, 1998.

[3] Bouchard, D., Badler, N.: Semantic Segmentation of Motion Capture Using Laban Movement

Analysis. In Intelligent Virtual Agents, pp. 37-44. Springer Berlin Heidelberg, 2007.

[4] Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. Vol. 2. Cambridge, MA::

MIT press, 2006.

[5] Chazal, P. D., O'Dwyer, M., Reilly, R. B.: Automatic Classification of Heartbeats Using

ECG Morphology and Heartbeat Interval Features. IEEE Transactions on Biomedical

Engineering, 2004.

[6] Chen, Y., Hu, B., Keogh, E., Batista, G. E.: DTW-D: Time Series Semi-supervised Learning

from a Single Example. The 19
th
 ACM SIGKDD, pp. 383-391, 2013.

[7] Demšar, J.: Statistical Comparisons of Classifiers Over Multiple Data Sets. The Journal of

Machine Learning Research 7: 1-30, 2006.

[8] Druck, G., Pal, C., Zhu, X., McCallum, A.: Semi-Supervised Classification with Hybrid

Generative/Discriminative Methods. The 13
th
 ACM SIGKDD, 2007.

[9] Florea, F., Müller, H., Rogozan, A., Geissbuhler, A., Darmoni, S.: Medical image

categorization with MedIC and MedGIFT. Medical Informatics Europe (MIE), 2006.

[10] Geurts, P.: Pattern Extraction for Time Series Classification. Proceedings of the 5
th

European Conference on Principles of Data Mining and Knowledge Discovery, 115 – 127,

2001.

[11] Goldberger, A. L. et al.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New

Research Resource for Complex Physiologic Signals. Circulation, 101(23): pp. 215-220,

2000.

 152

[12] Greenwald, S. D., Patil, R. S., Mark, R. G.: Improved Detection and Classification of

Arrhythmias in Noise-corrupted Electrocardiograms using Contextual Information. Proc’ of

IEEE Conf’ on Computing in Cardiology, 1990.

[13] Greenwald, S. D.: The Development and Analysis of a Ventricular Fibrillation Detector.

M.S. thesis, MIT Dept. of Electrical Engineering and Computer Science, 1986.

[14] Grünwald, P.: A Tutorial Introduction to the Minimum Description Length Principle, 2005.

[15] Herwig, M.: Google's Total Library: Putting the World's Books on the Web, 2007.

[16] Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of Time Series by

Shapelet Transformation. Data Mining and Knowledge Discovery, 1-31, 2013.

[17] Hu, B., Rakthanmanon, T., Hao, Y., Evans, S., Lonardi, S., Keogh, E.: Discovering the

Intrinsic Cardinality and Dimensionality of Time Series using MDL. ICDM, 2011.

[18] Jones, P. D., Hulme, M.: Calculating Regional Climatic Time Series for Temperature and

Precipitation: Methods and Illustrations. International Journal of Climatology 16.4, 361-377,

1996.

[19] Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanamahatana, C. A.: The UCR

Time Series Classification/ Clustering. www.cs.ucr.edu/~eamonn/time_series_data

[20] Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications. 2nd Ed,

Springer, 1997.

[21] Maeireizo, B., Litman, D., Hwa, R.: Co-training for Predicting Emotions with Spoken

Dialogue Data. Proceedings of ACL, 2004.

[22] McClosky, D., Charniak, E., Johnson, M.: Effective Self-training for Parsing. In Proceedings

of the Main Conference on Human Language Technology Conference of the North American

Chapter of the Association of Computational Linguistics, pp. 152-159, Association for

Computational Linguistics, 2006.

[23] Nemenyi, P. B.: Distribution-free Multiple Comparisons. PhD Thesis, Princeton University,

1963.

[24] Nguyen, M. N., Li, X. L., Ng, S. K.: Positive Unlabeled Learning for Time Series

Classification. Proc’ of AAAI, 2011.

[25] Nguyen, M. N., Li, X. L., Ng, S. K.: Ensemble Based Positive Unlabeled Learning for Time

Series Classification. Database Systems for Advanced Applications. Springer

Berlin/Heidelberg, 2012.

 153

[26] Ordonez, P., Oates, T., Lombardi, M. E., Hernandez, G., Holmes, K. W., Fackler, J.,

Lehmann, C. U.: Visualization of Multivariate Time-series Data in a Neonatal ICU. IBM

Journal of Research and Development 56, no. 5, 2012.

[27] Patton, A. J.: Copula–based Models for Financial Time Series. Handbook of financial time

series, Springer Berlin Heidelberg, pp. 767-785, 2009.

[28] Philipose, M.: Large-Scale Human Activity Recognition Using Ultra-Dense Sensing. The

Bridge, National Academy of Engineering 35.4, 2005.

[29] Radovanovic, M., Nanopoulos, A., Ivanovic, M.: Time-Series Classification in Many

Intrinsic Dimensions. SIAM SDM, 677-688, 2010.

[30] Rakthanmanon, T., Keogh, E., Lonardi, S., Evans, S.: Time Series Epenthesis: Clustering

Time Series Streams Requires Ignoring Some Data. ICDM, 2011.

[31] Raptis, M., Wnuk, K., Soatto, S.: Flexible Dictionaries for Action Classification. The 1
st

International Workshop on Machine Learning for Vision-based Motion Analysis, 2008.

[32] Ratanamahatana, C. A., Keogh, E., Making Time-series Classification More Accurate Using

Learned Constraints. SIAM SDM, 2004.

[33] Ratanamahatana, C. A., Wanichsan, D.: Stopping Criterion Selection for Efficient Semi-

supervised Time Series Classification. Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing, 2008.

[34] Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised Self-training of Object

Detection Models, 2005.

[35] Simon, B. P., Eswaran, C.: An ECG Classifier Designed Using Modified Decision Based

Neural Networks. Computers and Biomedical Research, 257-272, 1997.

[36] Sun, A., Grishman, R.: Semi-supervised Semantic Pattern Discovery with Guidance from

Unsupervised Pattern Clusters. In Proceedings of the 23
rd

International Conference on

Computational Linguistics: Posters, pp. 1194-1202, Association for Computational

Linguistics, 2010.

[37] Sykacek, P., Roberts, S. J.: Bayesian Time Series Classification. Advances in Neural

Information Processing Systems, 2002.

[38] Tsumoto, S.: Rule Discovery in Large Time-Series Medical Databases. In Principles of Data

Mining and Knowledge Discovery, pp. 23-31. Springer Berlin Heidelberg (1999).

[39] Veeraraghavan, A., Chellappa, R., Srinivasan, M.: Shape and Behavior Encoded Tracking of

Bee Dances. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008.

 154

[40] Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E. J.:

Experimental Comparison of Representation Methods and Distance Measures for Time

Series Data. Data Min. Knowl. Discov. 26(2): 275-309, 2013.

[41] Wei, L., Keogh, E.: Semi-Supervised Time Series Classification. SIGKDD, 2006.

[42] Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C. A.: Fast Time Series

Classification Using Numerosity Reduction. Proceedings of the 23rd ACM International

Conference on Machine Learning, pp. 1033-1040, 2006.

[43] Yarowsky, D.: Unsupervised Word Sense Disambiguation Rivaling Supervised Methods.

Proceedings of ACL, 1995.

[44] Zhu, X.: Semi-supervised Learning Literature Survey.Technical Report No. 1530, Computer

Sciences, University of Wisconsin-Madison, 2005.

[45] Support website: http://www.cs.ucr.edu/~nbegu001/SSL_myMDL.htm

Chapter 3

[46] Aggarwal, C. C., & Reddy, C. K. (Eds.). Data Clustering: Algorithms and Applications.

CRC Press, 2013.

[47] Agrawal, R., Faloutsos, C., & Swami, A. Efficient Similarity Search in Sequence

Databases (pp. 69-84). Springer Berlin Heidelberg, 1993.

[48] Assent, I., et al. Anyout: Anytime Outlier Detection on Streaming Data. In Database Systems

for Advanced Applications, pp. 228-242, 2012.

[49] Begum, N. et al. Rare Time Series Motif Discovery from Unbounded Streams. Proceedings

of the VLDB Endowment, 8(2), 2014.

[50] Bradley, P. S., Fayyad, U. M., & Reina, C. Scaling Clustering Algorithms to Large

Databases. ACM SIGKDD, pp. 9-15, 1998.

[51] Cao, F., Ester, M., Qian, W., & Zhou, A. Density-Based Clustering over an Evolving Data

Stream with Noise. SIAM SDM, 2006.

[52] Chambers, G. S., Venkatesh, S., West, G. A., & Bui, H. H. Segmentation of Intentional

Human Gestures for Sports Video Annotation. IEEE Multimedia Modelling Conference,

2004.

http://www.cs.ucr.edu/~nbegu001/SSL_myMDL.htm

 155

[53] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E. Querying and Mining of

Time Series Data: Experimental Comparison of Representations and Distance

Measures. Proceedings of the VLDB Endowment,1(2), 2008.

[54] Ding, R. et al. YADING: Fast Clustering of Large-Scale Time Series Data Proceedings of

the VLDB Endowment 8.5, 2015.

[55] Ding, R., Wang, Q., Dang, Y., Fu, Q., Zhang, H., and Zhang, D. Evaluation on Real

Datasets: YADING: Fast Clustering of Large-scale Time Series Data. Microsoft Tech

Report , 2015.

[56] Ester, M., Kriegel, H. P., Sander, J., & Xu, X. A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise. ACM SIGKDD, pp. 226-231, 1996.

[57] Ester, M., Kriegel, H.-P., Sander, J., Wimmer, M., and Xu, X. Incremental Clustering for

Mining in A Data Warehousing Environment. VLDB, vol. 98, pp. 323-333. 1998.

[58] Farré, D., Roset, R., Huerta, M., Adsuara, J. E., Roselló, L., Albà, M. M., & Messeguer, X.

Identification of Patterns in Biological Sequences at the ALGGEN server: PROMO and

MALGEN. Nucleic acids research, 31(13), 3651-3653, 2003.

[59] Gheissari, N. et al. Person Reidentification using Spatiotemporal Appearance. IEEE CVPR,

vol. 2, pp. 1528-1535, 2006.

[60] Goldberger, A. L. et al. Physiobank, Physiotoolkit, and Physionet Components of A New

Research Resource for Complex Physiologic Signals. Circulation, 101(23), e215-e220, 2000.

[61] Guha, S., Rastogi, R., & Shim, K. CURE: An Efficient Clustering Algorithm for Large

Databases. ACM SIGMOD Record, vol. 27, no. 2, pp. 73-84, 1998.

[62] Hinneburg, A., and Gabriel, H.-H. Denclue 2.0: Fast Clustering Based on Kernel Density

Estimation. Advances in Intelligent Data Analysis VII, pp. 70-80, 2007.

[63] Hildebrand, J. D., Schaller, M. D., & Parsons, J. T. Identification of Sequences Required for

the Efficient Localization of the Focal Adhesion Kinase, pp125FAK, to Cellular Focal

Adhesions. The Journal of cell biology, 123(4), 993-1005, 1993.

[64] Hirzer, Martin, et al. Person Re-identification by Descriptive and Discriminative

Classification. Image Analysis. Springer Berlin Heidelberg, pp. 91-102, 2011.

[65] Jang, J. S. R. Machine Learning Toolbox, available at

mirlab.org/jang/matlab/toolbox/machineLearning, (Dec 1, 2014).

[66] Kahveci, T., & Singh, A. K. An Efficient Index Structure for String Databases. Proceedings

of the VLDB Endowment, Vol. 1, pp. 351-360, 2001.

 156

[67] Keogh, E., & Lin, J. Clustering of Time Series Subsequences is Meaningless: Implications

for Previous and Future Research. KAIS, 8(2), 154-177, 2005.

[68] Keogh, E. & Ratanamahatana, C.A. Exact Indexing of Dynamic Time Warping. KAIS 7, no.

3, 358-386, 2005.

[69] Keogh, E., et al. The UCR Time Series Classification Page

[70] Keogh, E., & Kasetty, S. On the Need for Time Series Data Mining Benchmarks: A Survey

and Empirical Demonstration. DMKD, 7(4), 349-371, 2003.

[71] Kotsifakos, A., Stefan, A., Athitsos, V., Das, G., & Papapetrou, P. DRESS: Dimensionality

Reduction for Efficient Sequence Search. DMKD, 1-32, 2015.

[72] Krishnamurthy, A., Balakrishnan, S., Xu, M., & Singh, A. Efficient Active Algorithms for

Hierarchical Clustering. arXiv preprint arXiv:1206.4672, 2012.

[73] Levenshtein, V. I. Binary Codes Capable of Correcting Deletions, Insertions, and Reversals.

In Soviet physics doklady (Vol. 10, No. 8, pp. 707-710), 1966.

[74] Liao, T. W. Clustering of Time Series Data—A Survey. Pattern recognition 38, no. 11, 2005.

[75] Liu, J., Zhong, L., Wickramasuriya, J., & Vasudevan, V. uWave: Accelerometer-based

Personalized Gesture Recognition and Its Applications. Pervasive and Mobile

Computing, 2009.

[76] Lord’s, The Home of Cricket, www.lords.org/laws-and-spirit/lawsof-cricket/laws/,accessed

on Sept 17, 2015.

[77] Mai, Son T., et al. Efficient Anytime Density-Based Clustering. SDM, 2013.

[78] Metabolic Diseases Encyclopedia,

http://www.encyclopedia.com/topic/Metabolic_diseases.aspx

[79] Mueen, A., Keogh, E. J., Zhu, Q., Cash, S., & Westover, M. B. Exact Discovery of Time

Series Motifs. SDM, pp. 473-484, 2009.

[80] Ng, A. Y., Jordan, M. I., & Weiss, Y. On Spectral Clustering: Analysis and An

Algorithm. Advances in Neural Information Processing Systems, 2, pp. 849-856, 2002.

[81] Paparrizos, J., & Gravano, L. k-Shape: Efficient and Accurate Clustering of Time Series.

ACM SIGMOD, 2015.

[82] Rabiner, L. R., & Juang, B. H. An Introduction to Hidden Markov Models. ASSP Magazine,

IEEE, 3(1), 1986.

 157

[83] Rabiner, L. R., & Levinson, S. E. Isolated and Connected Word Recognition--Theory and

Selected Applications. Communications, IEEE Transactions on, 29(5), 621-659, 1981.

[84] Rakthanmanon, T. et al. The UCR Suite: Fast Subsequence Search (DNA)

www.youtube.com/watch?v=c7xz9pVr05Q, 2012.

[85] Rakthanmanon, T., et al. Addressing Big Data Time Series: Mining Trillions of Time Series

Subsequences Under Dynamic Time Warping. ACM TKDD, 7(3), 10, 2013.

[86] Rakthanmanon, T., et al. Time Series Epenthesis: Clustering Time Series Streams Requires

Ignoring Some Data. ICDM 2011.

[87] Rand, W. M. Objective Criteria for the Evaluation of Clustering Methods. J. Am. Statist.

Assoc. 66.336, pp. - 846-850, 1971.

[88] Ratanamahatana, C. A., & Keogh, E. Everything You Know About Dynamic Time Warping

is Wrong. In 3
rd

 Workshop on Mining Temporal and Sequential Data, pp. 22-25, 2004.

[89] Rodriguez, A., & Laio, A. Clustering by Fast Search and Find of Density

Peaks. Science, 344(6191), 1492-1496, 2014.

[90] Saeed, M., et al. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A

Public-access Intensive Care Unit Database. Critical care medicine, 39(5), 952, 2011.

[91] Sakoe, H., & Chiba, S. Dynamic Programming Algorithm Optimization for Spoken Word

Recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1), 43-49,

1978.

[92] Signorini, A., Segre, A. M., & Polgreen, P. M. The Use of Twitter to Track Levels of Disease

Activity and Public Concern in the US During the Influenza A H1N1 Pandemic. PloS

one, 6(5), 2011.

[93] Shieh, J., & Keogh, E. iSAX: Indexing and Mining Terabyte Sized Time Series. ACM

SIGKDD, pp. 623 – 631, 2008.

[94] Shokoohi-Yekta, M., Hu, B., Jin, H., Wang, J., & Keogh, E. Generalizing Dynamic Time

Warping to the Multi-Dimensional Case Requires an Adaptive Approach. SDM 2015.

[95] STRING database: http://string-db.org/

[96] Ueno, K., Xi, X., Keogh, E., & Lee, D. J. Anytime Classification Using the Nearest

Neighbor Algorithm with Applications to Stream Mining. IEEE ICDM, pp. 623-632, 2006.

[97] Ulanova, L., Hao, Y. and Keogh, E. Generating Synthetic Data to Allow Learning from a

Single Exemplar Per Class. SISAP 2014.

 158

[98] UniProt dataset: http://www.ebi.ac.uk/uniprot/

[99] Wang, J. et al. Preliminary Test of A Real-time, Interactive Silent Speech Interface Based on

Electromagnetic Articulograph, SLPAT, pp. - 38 - 45, 2014.

[100] Wang, J., Balasubramanian, A., Mojica de la Vega, L., Green, J. R., Samal, A., &

Prabhakaran, B. Word Recognition from Continuous Articulatory Movement Time-series

Data Using Symbolic Representations, ACL/ISCA Workshop on Speech and Language

Processing for Assistive Technologies, 2013.

[101] Wang, X., et al. Experimental Comparison of Representation Methods and Distance

Measures for Time Series Data. DMKD, 26(2), 275-309, 2013.

[102] Xu, X., Ester, M., Kriegel, H-P., and Sander, J. A Distribution-based Clustering Algorithm

for Mining in Large Spatial Databases. ICDE, 1998 .pp. 324-331.

[103] Yang, J., & Leskovec, J. Patterns of Temporal Variation in Online Media. ACM WSDM,

pp. 177-186, 2011.

[104] Zhu, Q. et al. A Novel Approximation to Dynamic Time Warping allows Anytime Clustering

of Massive Time Series Datasets. SDM, 2012.

[105] Zilberstein, S. Using Anytime Algorithms in Intelligent Systems. AI magazine, 17(3), 73,

1996.

[106] 2009 MTV Video Music Awards en.wikipedia.org/wiki/2009_MTV_Video_Music_Awards

[107] Unknown Author. (15
th
 cent., second half). Treatises on Heraldry. Bodleian Library

collection, MS. Lat. misc. e.

[108] Supporting Webpage: http://www.cs.ucr.edu/~nbegu001/TADPoleDMKD

Password: DMKD2016

Chapter 4

[109] Agrawal, R., Faloutsos, C., and Swami, A. Efficient Similarity Search in Sequence

Databases. Springer, 1993.

[110] Barrenetxea, G., et al. Sensorscope: Out-of-the-Box Environmental Monitoring. IPSN,

2008.

 159

[111] Bhattacharjee, R., Goel, A., and Lotker, Z. Instability of FIFO at Arbitrarily Low Rates in

the Adversarial Queuing Model. SIAM Journal on Computing 34, no. 2, pp. 318-332, 2005.

[112] Bloom, B. H. Space/Time Trade-offs in Hash Coding with Allowable Errors.

Communications of the ACM, vol. 13, issue 7, pp. 422 – 426, 1970.

[113] Brown, A. E. X., et. al. A Dictionary of Behavioral Motifs Reveals Clusters of Genes

Affecting Caenorhabditis elegans Locomotion. Proceedings of the National Academy of

Sciences 110, no. 2 pp. 791-796, 2013.

[114] Carton, C. et. al. Fast Repetition Detection in TV streams Using Duration Patterns. CBMI,

2013.

[115] Castro, N. C., et al. Significant Motifs in Time Series. Statistical Analysis and Data

Mining 5, 2012.

[116] Chan, K. P., and Fu, A. W. C. Efficient Time Series Matching by Wavelets. Proc’ of the 15
th

IEEE ICDE, 1999.

[117] Chiu, B., Keogh, E., and Lonardi, S. Probabilistic Discovery of Time Series Motifs. ACM

SIGKDD, 2003.

[118] Cormode, G., and Hadjieleftheriou, M. Methods for Finding Frequent Items in Data

Streams, VLDB Journal, 19(1), 3-20, 2010.

[119] Dasgupta, D., et. al. Novelty Detection in Time Series Data Using Ideas from

Immunology. Proc’ of the International Conference on Intelligent Systems, 1996.

[120] Hamming, R. W. Error Detecting and Error Correcting Codes. Bell System Technical

Journal 29, no. 2, 1950.

[121] Hao, Y., Chen, Y., Zakaria, J., Hu, B., Rakthanmanon, T., and Keogh, E. Towards Never-

Ending Learning from Time Series Streams. Proc’ of the 19
th
 ACM SIGKDD, 2013.

[122] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. Dimensionality Reduction for

Fast Similarity Search in Large Time Series Databases. KAIS 3, pp. 263-86, 2001.

[123] Keogh, E., and Kasetty, S. On the Need for Time Series Data Mining Benchmarks: A

Survey and Empirical Demonstration. Proc’ of the 8
th
 ACM SIGKDD, 2002.

[124] Keogh, E. The UCR Time Series Classification/ Clustering Page:

www.cs.ucr.edu/~eamonn/time_series_data

[125] Lan, B., Ooi, B. C., and Tan, K. L. Efficient Indexing Structures for Mining Frequent

Patterns. Proceedings of the IEEE 18
th
 ICDE, pp. 453-462, 2002.

 160

[126] Lin, J., Keogh, E., Wei, L., and Lonardi, S. Experiencing SAX: A Novel Symbolic

Representation of Time Series. DMKD vol. 15, no. 2, pp. 107 – 144, 2007.

[127] Lin, J., Keogh, E., Lonardi, S., Patel, P. Finding Motifs in Time Series. Proc. of the 2
nd

Workshop on Temporal Data Mining. 2002.

[128] Makonin, S., et. al. AMPds: A Public Dataset for Load Disaggregation and Eco-Feedback

Research. EPEC, pp. 1-6. 2013.

[129] Mitzenmacher, M., and Upfal, E. Probability and Computing: Randomized Algorithms and

Probabilistic Analysis. Cambridge University Press, 2005.

[130] Mueen, A., et al. A Disk-aware Algorithm for Time Series Motif Discovery. Data Mining

and Knowledge Discovery, 22.1-2, 2011.

[131] Mueen, A. Enumeration of Time Series Motifs of All Lengths. Proc’of the IEEE ICDM, pp.

547-556, 2013.

[132] Mueen, A., and Keogh, E. Online Discovery and Maintenance of Time Series Motifs. Proc’

of the 16
th
 ACM SIGKDD, 2010.

[133] Mueen, A., Keogh, E., Zhu, Q., Cash, S., and Westover, M. B. Exact Discovery of Time

Series Motifs. Proc’of the 9
th
 SIAM SDM, pp. 473-484, 2009.

[134] URL http://www.youtube.com/watch?v=ndL6m5vHVhw

[135] Pietracaprina, A., Riondato, M., Upfal, E., and Vandin, F. Mining Top-K Frequent Itemsets

Through Progressive Sampling. DMKD, vol 21, no. 2, 2010.

[136] Smith, J. E., and Goodman, J. R. Instruction Cache Replacement Policies and

Organizations. IEEE Transactions on Computers, 1985.

[137] Trifa, V., et. al. Automated Wildlife Monitoring Using Self-Configuring Sensor Networks

Deployed in Natural Habitats, 2007.

[138] Vahdatpour, A., et. al. Toward Unsupervised Activity Discovery Using Multi-Dimensional

Motif Detection in Time Series. IJCAI. Vol. 9. 2009.

[139] Wang, X., et al. Experimental Comparison of Representation Methods and Distance

Measures for Time Series Data. DMKD, vol. 26, issue 2, pp. 275 – 309, 2013.

[140] Xeno-canto, Sharing Bird Sounds from Around the World, www.xeno-canto.org/, accessed

on Feb 11, 2014.

[141] Project website: www.cs.ucr.edu/~nbegu001/RareMotif.htm

