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This paper presents an approach for analyzing complex processes, including those involving human agents,
hardware devices, and software systems, and illustrates the utility of this approach by analyzing part of
a process for holding an election. In the work described here, the Little-JIL process definition language is
used to create a precise and detailed model of an election process. Given this process definition, two forms of
automated analysis are used to explore the possibility that specified security policies could be undermined.
Model checking is first used to identify process execution sequences that violate event-sequence security
policies and other properties. After these are addressed, fault-tree analysis is applied to identify when the
misperformance of steps might allow security breaches or other undesirable outcomes to occur. The results of
these analyses can provide assurance about the process, suggest areas for improvement, and, when applied
to a modified process definition, evaluate proposed changes in the process.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications—Lan-
guages; Methodologies; Tools; K.4.3 [Computers and Society]: Reengineering; K.6.m [Management of
Computing and Information Systems]: Security

General Terms: Languages, Management, Reliability, Security, Verification

Additional Key Words and Phrases: process modeling, iterative analysis, model checking, fault-tree analysis,
elections

1. INTRODUCTION
This paper presents an approach for systematically and iteratively evaluating and im-
proving the security of processes. We use the word “process” in the colloquial sense that
refers to a real-world system or enterprise. More specifically, we consider a process1 to
be a collaboration among people, hardware devices, and software systems, perhaps
using additional resources, to achieve desired goals. Our approach to studying the
security of such processes requires that they be specified precisely and in sufficient
detail to support automated, rigorous analyses based upon carefully defined security
policies. In this paper we present a particular approach for rigorously specifying and
then analyzing such processes and illustrate its benefits using part of an election pro-
cess.

Our approach exploits the rigor of a mathematically precise model of a process that
describes its various usage contexts, as well as precise specifications of security poli-
cies that may describe either desirable or undesirable behavior. Using these represen-
tations we apply two analysis techniques to determine how well the process model
satisfies the security policies. We use model checking to determine if any executions of
a given process would not satisfy specified policies, and if so identify usage scenarios
that illustrate such violations. Model checking basically determines if any execution of
the process as specified could violate security policies. Fault-tree analysis (FTA), on the

1This use of the word “process” is not to be confused with its use in the operating systems literature where
it refers more narrowly to the execution of a specific program as part of a larger computer system.
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A:2 L. Osterweil et al.

other hand, identifies different ways in which undesirable execution states, referred to
as hazards, could be reached due to the incorrect performance of some parts of the
process.

To emphasize the rigorous basis of our models, we refer to them as process defi-
nitions. In our approach, processes are modeled using a process definition language,
called Little-JIL [Cass et al. 2000]. Little-JIL has rigorously defined semantics capable
of supporting both the precision and multiple levels of detail needed. Moreover, it pro-
vides rich semantics for specifying concurrency, recognizing exceptional situations, and
specifying how to handle these situations. Responses to exceptions or the lack of speci-
fied responses often reveal flaws in the security defenses of the process that otherwise
might be difficult to detect. Thus our work incorporates careful analyses of how pro-
cesses handle exceptions, even in the presence of concurrency and non-determinism,
as such complexities are often critical to understanding how secure processes are.

Our approach can be applied to a broad range of different kinds of processes, includ-
ing those where computers and automation are not used. But the approach seems par-
ticularly useful in specifying and analyzing human-intensive systems, namely those in
which humans are active participants [Chen et al. 2008; Avrunin et al. 2006; Osterweil
et al. 2007; Henneman et al. 2007; Avrunin et al. 2010; Wise et al. 2000]. Process defi-
nitions, and consequently the associated analysis of these definitions, are usually more
complicated when human activities must be incorporated, since humans often desire a
high level of autonomy and often display wider variability and greater fallibility than
is typical of non-human components. In this paper we demonstrate our approach using
election processes as examples. Election processes are good vehicles for demonstrating
our approach as they involve the coordination of the efforts of humans playing various
roles, with mechanical devices and software systems playing other roles. Election pro-
cess definitions must specify the precise roles that each of these entities is expected to
play, how they are to be coordinated, and what checks should be put in place to assure
that each can be shown to be performing their roles correctly.

In this paper, we present some key details of a precise and rigorous definition of a
specific election process, define some specific security policies, and demonstrate how
model checking can be used to support reasoning about how well the process definition
adheres to these policies. Then, given a particular hazard, we derive a fault tree from
that process definition and compute from the fault tree the combinations of incorrectly
performed activities that could cause the violations of election policies represented by
the hazard. Using this approach, we would expect analysts to work with election of-
ficials to identify process modifications, modify the process definition to reflect these
changes, and then reapply the analyses to assure that the proposed changes eliminate
the detected flaws in the process without adding new ones. Whether proposed process
changes are because of flaws detected by our analyses, actual observed security vi-
olations, modifications to the laws, or desired proposed efficiency improvements, our
approach provides systematic support for continuous process improvement.

1.1. Election Processes
An election is the “formal choosing of a person for an office, dignity, or position of
any kind; usually by the votes of a constituent body” [Simpson and Weiner 1991]. An
election process may be as simple as counting raised hands in a room (e.g., a caucus)
or as complex as tallying votes across a multiplicity of jurisdictions, each of which uses
its own rules to control the casting, reporting, and tallying of votes.

The process is important because the results of an election can affect the course
of history. Imagine how different United States history would have been had George
McClellan, rather than Abraham Lincoln, become president in 1864. Thus, it is critical
to verify that an election has been carried out consistent with criteria that assure

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.



Iterative Analysis to Improve Process Security A:3

such desirable properties as correctness, fairness, and privacy. Ideally the verification
should satisfy all parties that have stakes in the election, especially key stakeholders
such as the voters and candidates.

Currently election officials typically use ad hoc approaches to address problems as
they arise and to anticipate problems before they arise. Some ad hoc approaches have
resulted in election process improvements. But given the frequent changes to election
law over time, current ad hoc procedures are often a patchwork of responses to legis-
lation at varying levels of government. Using formal analyses of process definitions to
identify problems that might occur systematizes the search for problems before they
arise. Once problems have been identified, either through such analyses or through
experience in using the processes, the same analyses can then demonstrate that pro-
posed solutions do indeed solve problems without creating new problems.

Verification of a real election process entails performing a rigorous comparison of a
definition of the process to a set of characteristics (such as those pertaining to security)
that are stated as rigorous criteria. Specifying both the process and the criteria accu-
rately and precisely is difficult because elections are very large and complex processes,
and these criteria are numerous and diverse. Some examples of criteria are “all quali-
fied voters must be allowed to vote,” “no voter may vote more than once,” and “no one
other than the voter may know how that voter voted.” To support rigorous analysis,
these natural language statements of criteria must be refined into precisely specified
election process requirements. Thus, “no voter may vote more than once” would be rep-
resented by something like “suppose that v is a voter, and C is the set of all voters who
have already cast their ballots. If v ∈ C, then voter v must not be issued a ballot”. We
express these statements as specifications using formal logic and automata theory.

Issues concerned with the consistency of these requirements with each other and
with the entire body of election criteria arise as the number of requirements grows. For
example, to prevent voters from voting more than once, jurisdictions in the U.S. state
of Ohio kept a list of the names of voters who have voted in the order of their arrival.
Expecting to have to verify electronic ballots, they also kept another list of the ballots
in the order in which they were cast. Each list satisfied an important requirement.
But the simultaneous existence of both lists enabled people to associate a specific voter
with a specific ballot, thereby violating the voter’s expectation of privacy, another key
requirement [McCullagh 2007].

Other problems arise from the size and complexity of the election processes. These
processes may need to define how to handle a single ballot that includes races from
multiple jurisdictions, each of which may have its own set of election requirements.
In the United States, there are over 3,000 jurisdictions, each with the legal right to
carry out its own election process, which may be quite different from the processes in
other jurisdictions. A good example is a ballot for an election for federal, state, and
local candidates in San Francisco, California. San Francisco uses ranked-choice voting
for some local races, and majority voting for state and federal races as required by
state law. Another example is an election for officials or ballot initiatives that spans
two or more legal jurisdictions, each with its own set of election procedures. Which
jurisdiction’s procedures should be used — or should both be used, each in its own
jurisdiction? Thus, election requirements may vary even for the elections on a single
ballot, and consequently election process specifications must vary accordingly.

Election processes must also specify how to deal with problems arising during the
course of balloting. For example, a ballot box might not be submitted for tabulation by
a specified deadline, or a set of ballots might not be tabulated, or might be tabulated
more than once. If the procedures for handling such contingencies are expected to be
developed ad hoc, how can it be assured that all affected parties will have the same,
correct understanding of the ad hoc procedure? And if procedures for handling con-
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tingencies are only informally specified and understood, what happens when the only
person who understands these procedures is sick on election day? Moreover, humans
have widely varying degrees of education, training, age, and cultural backgrounds. In
some jurisdictions, the average age of poll workers is over 80. These poll workers may
still be required to set up heavy voting equipment, understand the intricacies of the
operation of the equipment, and fully grasp all of the details of the voting procedures
in the jurisdiction. Because unexpected or unforeseen problems may arise, election
processes must make appropriate provisions for detecting and correcting problems in
ways that are known to be consistent with election process requirements, and thus
election process definitions will need to be constantly improved and analyzed to assure
compliance.

2. ITERATIVE PROCESS IMPROVEMENT
To develop a process definition that precisely and rigorously represents the real-world
process, several important aspects of the process must be understood, captured, and
defined. These include issues that are often overlooked, such as exception handling,
different scenarios for different contexts, the precise specification of who is responsible
for what activities, and the integration of the efforts of both humans and machines.
Developing an appropriately detailed and precise process definition requires substan-
tial effort and consultation with domain experts. But once a suitable process definition
has been constructed, it can be leveraged to significantly improve the understand-
ing, security, performance, or automation of the real-world process, as well as to train
future cohorts of process performers. It can also be used to evaluate the effect of poten-
tial changes on the actual conduct of the process. Because human-intensive processes
often require the communication, coordination, and synchronization of many people,
machines, and other entities, it is not surprising that such a multi-faceted model may
illuminate issues that the domain experts previously overlooked.

We use an iterative approach to identify potential areas for improvement. Shewhart
[Shewhart 1931] introduced the basic tenets of continuous process improvement, and
they were applied with perhaps the greatest effect by Deming [Deming 1982]. The
essence of this approach is to capture the process to be improved in a model, compare
the characteristics of the model to those that are desired, identify weaknesses and
shortcomings in the model, propose and evaluate improvements to the model, and, once
these improvements have been shown to be effective and efficient without introducing
additional problems or defects, deploy the improvements in the real-world process to
complete the improvement cycle and form the basis for a subsequent improvement cy-
cle. This cycle has been referred to in various ways (e.g., the Plan-Do-Check-Act, or
PDCA, Cycle; Define-Measure-Analyze-Improve-Control, or DMAIC; Observe, Orient,
Decide, and Act, or OODA) over the past decades. In all of its names and manifesta-
tions, it has relied primarily on the ability to understand the process and its desired
criteria and to analyze the ways in which the process does or does not adhere to those
criteria.

These understandings and analyses have usually been pursued informally. Pro-
cesses and requirements are typically described in informal natural language, and
analyses of their conformance have typically been done through informal discussion
and argumentation. More recently, research has shown that processes and require-
ments can be defined using precise and rigorous notations that render the evaluation
of their consistency amenable to powerful technological support. Our approach moves
the approach towards a disciplined engineering practice supported by scientific rigor.
This approach to rigorous definition and analysis of processes has also been used in
several other domains, including science [Altintas et al. 2004; Ellison et al. 2006],
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Fig. 1. A framework for iterative process improvement

medicine [Clarke et al. 2008; Henneman et al. 2007], and business [Georgakopoulos
et al. 1995; Wiegert 1998].

2.1. A Systematic Process Improvement Loop
To demonstrate our approach, in this paper we define parts of an election process us-
ing Little-JIL. Once the process is defined in sufficient detail, it can be analyzed using
different approaches grounded in mathematical reasoning that allow for the automatic
derivation of important assertions about the process definition. Figure 1 illustrates our
framework for continuous process improvement. It shows how a single process defini-
tion can be leveraged to attain a multi-faceted understanding of the process. A formal
process definition can be created using the Visual-JIL environment2, which provides
a visual representation that helps the domain experts understand the definition. This
formal definition then serves as the input for a variety of reasoning approaches, such
as automatic derivation of a hyperlinked textual representation of the process, or dis-
crete event simulations to evaluate different scenarios for performance or efficiency.
Each reasoning approach creates a specific output (illustrated in the last column of
data components in Figure 1), and these outputs are used as inputs for the next it-
eration in the continuous process improvement loop by informing changes to the pro-
cess definition, the properties representing precise requirement specifications, or both.
Applying this framework iteratively allows us to identify and test improvements to
ensure they do not introduce undesirable side effects before deploying them in the
real-world process. Here, we focus on a subset of this framework that highlights the
tools and components shown in the boxes with thick outlines in Figure 1, showing two
analysis approaches, namely model checking and FTA.

Model checking determines if a process definition is consistent with a set of require-
ments, specified formally as properties, by considering every relevant path through a
representation of the process. This approach has been used in previous work, for ex-
ample to determine if a set of circumstances may allow an impostor pretending to be

2Distributed as a plugin for the Eclipse IDE
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an eligible voter to cast a provisional ballot3 [Simidchieva et al. 2008]. FTA is quite
different from model checking. Given a specification of a hazard, an undesirable out-
come at a certain point in the process, FTA considers the conditions or events that
might allow that undesirable event to occur. The analysis creates a fault tree where
each such event is considered in turn. Our automated FTA tool uses the artifact flow
through the process definition to automatically construct and analyze a fault tree for
a specified undesirable event. In previous work, we demonstrated how FTA could be
applied to an election process definition to construct the different scenarios that may
lead to an incorrect vote tally [Simidchieva et al. 2010]. This paper shows how model
checking and FTA, two very different techniques, can be applied in tandem to provide
a more comprehensive analysis and to better inform the process improvement loop.
Specifically, before deploying a new release, analysts would use this approach to eval-
uate known security properties, specified either as event sequence properties verified
using model checking or as undesirable events evaluated using FTA.

2.2. Modeling the Process
The election process defined and discussed throughout this paper is used in Yolo
County, California, USA. We elicited it from laws, procedure documents, and exten-
sive interviews with Yolo County election officials. The election officials then carefully
reviewed the process definition to ensure that it faithfully represented their election
process. It models a wide range of exceptional situations along with how they are han-
dled, and also carefully specifies what agents perform what activities using what arti-
facts. These artifacts form the basis for deriving some of the answers to the questions
that the different analysis techniques focus on.

The process of eliciting the information that the process model embodies bears some
discussion. Initially, we had a basic understanding of how the generic election process
works in that county, as one of the authors lives there and has observed many elections
as part of other research. We then constructed a very high level process definition
and reviewed it with the election officials of Yolo County. Their feedback enabled the
process definition to be refined to match the process they used at a high level. We then
focused on specific parts of the process, notably (for our purposes here) the subprocess
by which votes were counted. We met with the election officials several times and they
gave us detailed descriptions of the tallying of the votes, the California mandatory 1%
manual audit, and the canvass, during which the totals are completed and the counts
certified.

To elicit information about the process, we had the election officials describe the
election process at a high level and identify specific parts of the process that they
wished analyzed in more detail. From this description, we developed a graphical model
of the process (see the next section). We then went back to the election officials, showed
them our model, and walked them through what we had done. Sometimes they realized
details had been omitted; indeed, one of the benefits of the elicitation process was that
their understanding of the process improved by their having to recall and discuss these
details. Other times, they clarified parts of the process we did not understand properly.

We then began to “drill down” into specific areas of interest. One of the areas, which
we examine in this paper, is the subprocess for describing the counting of votes. For
that subprocess, we repeated the elicitation process, but confined our focus to that
area. We interacted regularly with the election officials to ensure our model reflected
their practice. Also, one of the authors observed the counting process over the course

3A provisional ballot is used by a voter to cast a vote when there is a question by election officials about the
voter’s eligibility to vote. If the voter is deemed to be eligible to vote by election officials after adjudication,
then the vote is accepted and, if not, it is rejected.
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Fig. 2. Little-JIL process model: Top level of the “conduct election” process

of many elections, and participated as a deputy clerk in some. Thus, in addition to the
information the election officials provided, we benefitted from actual observations.

2.2.1. Little-JIL: A Process Definition Language. Little-JIL proved to be an effective ve-
hicle for defining election processes. Its rich semantics support the precise definition
of many different aspects of processes, such as concurrency, communication, and co-
ordination among human actors as well as software and hardware components; the
specification of possible human choice and flexibility; the creation, use, and modifi-
cation of artifacts; and the specification of complex exceptional situations and their
mitigation. The diagrams presented in this paper omit many such important details to
avoid visual clutter.

A Little-JIL process coordination diagram, such as the one shown in Figure 2, spec-
ifies a hierarchical decomposition of steps. A step in the process is shown as a black
rounded rectangle, with the step name above it. Each step is assigned an agent that is
responsible for its execution; this agent may be a human actor, such as an election of-
ficial or a voter, or a hardware or software component, such as a direct-recording elec-
tronic voting machine (DRE)4. Agents can also be composites, combinations of other
component agents, such as polling places that are defined to consist of various devices,
space, and people. A step in turn may be decomposed into substeps or children (the
steps that connect to the lower left side of the parent step rectangle bar via edges), each
with its own agent responsible for its execution. Each step that has children also has a
sequence badge, which appears in the left half of the step bar and specifies the order in
which its children will be carried out. For example, in Figure 2, the root step conduct
election is a sequential step, indicated by a right arrow, specifying that its children
will be executed in left to right order, so pre-polling activities will be followed by
prepare for and conduct election at precinct, which in turn will be followed by
count votes. Each of these activities is further decomposed in the complete definition
of the process, but as noted above, here we focus on the count votes activity. A step
without children is called a leaf step. Responsibility for the execution of leaf steps is
left entirely to the step’s agent. A step in a Little-JIL process definition is akin to a
procedure or method specification that, once specified, can be invoked from anywhere
in the process definition through an appropriate reference.

A Little-JIL process definition also contains complete specifications of the artifact
flow and the different agents responsible for the steps. The artifact specification con-
sists of all the artifacts that are created, modified, or consumed in the process, for
example a ballot repository (a repository containing all the ballots cast) and differ-
ent tallies (a report of the number of ballots used at a precinct or votes cast for each
candidate). Each step definition declares what artifacts it will be accessing and pro-

4A DRE records votes directly to electronic media without the additional use of a paper trail.
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viding. Artifacts are generally passed within the hierarchical flow of the coordination
hierarchy (i.e., from parents to children and vice versa). If steps are thought of as pro-
cedures, this artifact passing is essentially a parameter-passing mechanism. Lateral
artifact flow is also supported.

The agent specification allows each process step to request that a specific type of
agent be responsible for its execution. Little-JIL allows the definition of both human
and automated (hardware devices or software systems) agents. For the election pro-
cess, Voter, Election Official, Voting Machine, and Polling Place are some exam-
ple types of agents. Note that the former two are human agents while the latter two
are non-human, and the last, Polling Place is a compound agent, consisting of such
components as voting booths, election officials, and ballot-marking equipment. Little-
JIL definitions only specify the type of agent (e.g., Voter) that should execute a specific
step, and not a specific agent instance (e.g., Jane Doe). In Figure 2, the agent+ notation
on the edges to the first two substeps of conduct election indicates that each agent
of the type requested should carry out these activities. Given that both steps request
a Polling Place agent, this indicates that each Polling Place will provide the specific
resources (e.g. tabulating devices) needed in order to support the execution of the spe-
cific election activities mandated by the authorities having cognizance over that site.
The count votes step will occur once afterward, just as in the real-world Yolo County
process where the precincts carry out election activities in parallel with each other, but
the counting of all votes is carried out at Election Central.

In real-world processes, exceptional conditions may arise frequently and must be
resolved before the process continues along its normative path. To accurately model
this, Little-JIL provides comprehensive exception-handling semantics. For example,
in Figure 2, the recount votes step in Figure 2 connects to the × in the right half
of the step bar of its parent, conduct election, to indicate that recount votes is an
exception handler. Exceptions in Little-JIL are typed, which means that different ex-
ception handlers must be defined for each exception type. This is especially important
in complex human-intensive systems such as elections as different exceptions usually
necessitate different protocols. Thus, for example, the recount votes step is an excep-
tion handler for exceptions of the type Vote Count Inconsistent Exception. Finally,
Little-JIL’s exception-handling mechanism also provides flexible continuation seman-
tics after exception handling takes place. In this case, recount votes specifies how
to resolve inconsistencies in the counting of the votes and the step that threw this
exception is considered completed and is not to be repeated or revisited after the ex-
ception has been handled. Other exceptions may require the re-execution of the step
that threw the exception, and this continuation behavior can be defined in Little-JIL
as well.

To demonstrate the analysis approaches described in the previous section, we focus
on the part of the process definition responsible for the tabulation of ballots and votes
after the voting is completed. Figure 3 shows the decomposition of the count votes
step from Figure 2. In Yolo County, every precinct brings its ballots, along with a sum-
mary cover sheet (indicating how many ballots were issued to the precinct, and how
many of them are used, spoiled or blank after election day), to Election Central for tab-
ulation. There, election officials first count votes from all precincts, then perform
random audit, and then, finally, if no exceptions are raised, report final vote totals
to Secretary of State. The agent+ notation on the edge from the first substep to its
child step indicates that the decomposition of this activity is into separate count votes
from precinct steps, each of which tallies the votes from a different precinct sepa-
rately before the precinct tally is added to a total tally. Ballot counts are compared to
the summary sheets for each precinct, and after reconciling the actual and reported
numbers the ballots are scanned to obtain the actual vote counts. Random auditing
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count votes

count votes from all precincts
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Fig. 3. “count votes” sub-process

(or a mandatory manual recount of 1% of precincts to ensure consistency) is a state
requirement in California and many other states [VerifiedVoting 2013; National Asso-
ciation of Secretaries of State (NASS) 2007].

It is important to understand how the regular tabulation of votes is performed as
well as how reconciliation works should any discrepancies occur. Yolo County uses
primarily paper ballots, which are scanned and counted by automated optical scanners.
It also has voting machines designed for disabled voters, but that any voter may use.
California election law requires all DRE machines to have an attached printer so that a
voter-verified paper audit trail (VVPAT) can be maintained at all times. In Yolo County,
these paper trails are in fact the artifact used to count votes cast on these machines.
A damaged or missing paper trail can therefore lead to many problems in the election
process, as fault tree analysis demonstrates and is discussed in the Results Section.

2.3. Model Checking
In this section, we briefly describe model checking and the tools we use, discuss the
translation of legal and other requirements into formal properties that can be checked
by model checking, and present the results of model checking the process definition
described in the previous section.

2.3.1. Background. Before considering the ways in which the security of a process such
as an election might be vulnerable to attack, we would like to be sure that the process
works as required when it is not subject to attack. This means that we must check
that all possible executions of the process in which each step is executed correctly
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(i.e., assuming correct inputs and outputs) satisfy the requirements for the process as
stated, for example, in election law. But complex real-world processes such as elections
are typically concurrent systems that need to coordinate and synchronize their activ-
ities and communications. The number of possible executions of a concurrent system
is usually exponential in the number of concurrent activities. This makes it hard to
understand all the ways that such processes could be executed, and infeasible to list
them and examine each one manually.

Model checking techniques [Clarke et al. 2000; Baier and Katoen 2008] work by con-
structing a representation of all possible relevant executions of the concurrent system
with respect to a specification, usually defined as an automaton or by using a modal
logic formalism, and then comparing that representation to the formal specification.
We refer to such a precise specification as a property to distinguish it from the original
requirement or policy that may be informal (e.g., natural language) or even unstated.
The model checking technique that we use expects a property to be represented as
a finite-state automaton (FSA) that specifies intended (or unintended) sequences of
events drawn from an alphabet of all events of interest.

Model checking techniques try to determine whether every execution represented
by the model satisfies a given property. When the property is not satisfied by all exe-
cutions, the analysis identifies counterexamples, particular executions that violate the
property. For most classes of systems, the complexity of model checking techniques is
at least NP -hard (and undecidable for some classes), but numerous optimizations have
been developed, so that model checking techniques are now sufficiently practical that
they are widely used to analyze real-world hardware and software systems.

Our process analysis and improvement framework translates Little-JIL to the Ban-
dera Intermediate Representation (BIR) [Iosif et al. 2005], a guarded command lan-
guage. From the BIR, we can construct models suitable for use with various model
checking techniques; for the work described in this paper, we have primarily used the
FLAVERS [Dwyer et al. 2004] tool. FLAVERS uses qualified data flow analysis [Hol-
ley and Rosen 1980] to check whether all executions of a system satisfy a property by
propagating tuples of states from the property automaton, as well as various feasibil-
ity constraint automata, through a graph describing the possible orderings of events
in the process. FLAVERS can make use of symbolic representations of sets of states,
such as Zero-suppressed Binary Decision Diagrams [Minato 1996], to handle large
processes.

2.3.2. Specifying properties by refining requirements. Requirements for elections are typi-
cally given in natural language documents such as laws and regulations. To determine
whether a particular election process satisfies such requirements using model checking
techniques requires that each requirement be refined to one or more precisely speci-
fied properties. This is tricky and error-prone, especially since natural language is
inherently ambiguous and incomplete. We use the PROPEL (PROPerty ELucidator)
tool [Smith et al. 2002; Cobleigh et al. 2006] to help address these difficulties.

PROPEL provides templates for commonly occurring property specification pat-
terns [Dwyer et al. 1999], and each template has a set of options that must be con-
sidered in order to specify the property precisely and completely. For instance, the
template for properties that require one event to have already occurred before a sec-
ond event can occur includes options such as whether the first event is required to
occur at all, whether it can occur more than once, and whether each occurrence of the
second event must be preceded by a different occurrence of the first event. PROPEL
provides three different views of a property: a hierarchical series of questions (referred
to as the question tree view), the answers to which determine the template and the de-
tailed options; a graphical FSA view in which the user selects transitions, transition
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labels, and accepting states to choose the options; and a Disciplined Natural Language
(DNL) view in which the user selects phrases from drop-down boxes. Although the
question tree and DNL views assist domain experts, who may not be comfortable with
automata, all three views result in an FSA representation of the property that is then
used in model checking.

To illustrate our approach, we focus on the canvass, that portion of the election pro-
cess that validates the results of the election by verifying that the counting is accurate
and all applicable laws and regulations have been followed. Figure 4 lists the six high-
level legislative requirements for the canvass that we verified, where each requirement
(the Ri in the figure) has been refined to one or more properties (the Pi.j in the figure).
The California election code5 requires local election officials to conduct a canvass after
the close of the polls (R1) and before reporting the election results to the Secretary of
State (R2). Most of the tasks to be carried out in the canvass are laid out in Section
15302 (R3, R4) and Section 15360 (R5) of the California election code. In cases where
electronic voting equipment is used, a manual audit of 1% of the precincts is required
as part of the canvass (R5). Since Yolo County allows voters to use DREs to mark their
ballots and the election officials use scanners to count ballots and votes, the county
must always perform this audit. Our formulations of the properties therefore always
require the audit. If any audit shows a discrepancy, then a recount must be conducted
(R6).

The refinement from requirements to properties must take into account that one
requirement might impact other requirements. For instance, requirements R1 and R2
impact requirements R3, R4, and R5. Additionally, PROPEL supports alternative ways
to represent a requirement and a particular choice could affect the number of proper-
ties and their complexity. To illustrate, we describe here the refinement of requirement
R3 that there be a reconciliation of the number of signatures on the roster with the
number of ballots recorded on the ballot statement.

To capture this requirement in PROPEL, we describe the canvass in terms of three
events: begin canvass, reconcile number of voter signatures and number of
recorded ballots, and report final results to the Secretary of State. We take the
initial reporting of the final results to signify the end of the canvass (in the case of
recounts, for example, there may be more than one report to the Secretary of State).
PROPEL provides a template for properties that are intended to hold between two
events, and so we could represent this requirement as a single property requiring that
the reconciliation occur between the beginning of the canvass and the initial report of
the final results to the Secretary of State. We chose, however, to express this require-
ment using two properties, one saying that the reconciliation occurs after the canvass
begins and the other saying that the reconciliation occurs before the final results are
reported. We felt that this separation made the choice of options simpler, thereby mak-
ing it easier for election officials to validate our formalization of this part of the election
code.

To illustrate, Figure 5 shows the question tree (some of the lower-level questions
have been omitted for brevity), and Figure 6 shows the FSA and DNL produced by
PROPEL for property 3.1. The patterns on which PROPEL is based describe each prop-
erty using a scope that specifies the parts of an execution to which the property applies,
and a behavior, which specifies the restriction on sequences of events in those parts.
PROPEL’s question tree and DNL views give the scope and behavior separately. The
“secondary events” mentioned in the DNL refer to other events whose occurrence be-
tween the events of primary interest might need to be restricted; in this case, there are
no such events. The FSA views can give the scope and behavior together, or only the

5http://www.leginfo.ca.gov/.html/elec table of contents.html
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R1. The canvass begins after the polls close.
P1. After the event close polls occurs, the event begin canvass must occur.

R2. The canvass needs to report the final results to the Secretary of State.
P2. The event report final results to Secretary of State must occur.

R3. The canvass must include a reconciliation of the number of voter signatures and the number
of recorded ballots.
P3.1. After the event begin canvass occurs, the event reconcile number of voter signa-

tures and number of recorded ballots must occur.
P3.2. The event report final results to Secretary of State is not allowed to occur until

after the event reconcile number of voter signatures and number of recorded
ballots has occurred.

R4. The canvass must include a reconciliation of the number of recorded ballots and the number
of tallied ballots.
P4.1. After the event begin canvass occurs, the event reconcile number of recorded

ballots and number of tallied ballots must occur.
P4.2. The event report final results to Secretary of State is not allowed to occur until af-

ter the event reconcile number of recorded ballots and number of tallied ballots
has occurred.

R5. The canvass must include a 1% manual audit.
P5.1. After the event begin canvass occurs, the event conduct one percent manual au-

dit must occur.
P5.2. The event report final results to Secretary of State is not allowed to occur until

after the event conduct one percent manual audit has occurred.
R6. If the 1% manual audit shows a discrepancy, then a recount must be conducted.

P6. After the event one percent manual audit shows discrepancy occurs, the event
recount votes must occur.

Fig. 4. Refinement of canvass-related requirements to low-level properties

behavior. More formally, the FSAs produced by PROPEL are deterministic and total,
so there is exactly one transition from each state labeled by each event in the alpha-
bet of the property. If a particular event should not be allowed to occur in some state,
the transition labeled by that event goes to a violation state. The violation state is a
sink—every transition from the violation state is a loop that goes back to the violation
state—and is a non-accepting state. For simplicity, the FSAs in the figures do not show
the violation state or any transitions to it, so if there is no transition shown with a
particular label from a given state, there is an implicit transition with that label to the
violation state.

A key part of the requirement partially encoded in Property 3.1 is that, once the
event begin canvass has occurred, the event reconcile number of voter signa-
tures and number of recorded ballots must subsequently occur. But the specifi-
cation must resolve a number of ambiguities that could lead to events occurring that
should be forbidden. Are there any allowed executions of the process in which the be-
gin canvass event does not occur? Can begin canvass occur multiple times? Can the
reconciliation occur before the beginning of the canvass? Based on discussions with the
domain experts, we interpret the legal requirement as meaning that no executions of
the election process should be allowed in which the canvass is not begun and the recon-
ciliation of the numbers of signatures and ballots should not occur before the canvass
has begun. The canvass may not begin more than once and the reconciliation may not
occur more than once.

2.3.3. Binding property events to the process definition. The properties discussed in the pre-
ceding subsection are formalizations of the requirements for the real-world process.
Therefore, any process defined to achieve the same goal should satisfy those proper-
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How many events of primary interest are there in this behavior?

One event

Two events

Which of the following choices best describes how begin canvass and reconcile
number of voter signatures and number of recorded ballots interact?

If begin canvass occurs, reconcile number of voter signatures and number of
recorded ballots is required to occur subsequently.

reconcile number of voter signatures and number of recorded ballots is not
allowed to occur until after begin canvass occurs.

Both statements describe how begin canvass and reconcile number of voter
signatures and number of recorded ballots interact: if begin canvass occurs,
reconcile number of voter signatures and number of recorded ballots is
required to occur subsequently, and reconcile number of voter signatures
and number of recorded ballots is not allowed to occur until after begin
canvass occurs.

Is begin canvass required to occur?

Yes, begin canvass is required to occur.

No, begin canvass is not required to occur.

After begin canvass occurs, is begin canvass allowed to occur again before the
first subsequent reconcile number of voter signatures and number of recorded
ballots occurs?

Yes, begin canvass is allowed to occur again, zero or more times, before the
first subsequent reconcile number of voter signatures and number of recorded
ballots occurs.

No, begin canvass is not allowed to occur again before the first subsequent
reconcile number of voter signatures and number of recorded ballots occurs.

Fig. 5. PROPEL question tree for Property 3.1. Red highlighting indicates the selected answer.

ties. But different process definitions may satisfy those properties in different ways
and may represent the events in the properties in different ways. So, to check whether
our particular Little-JIL process definition satisfies these properties, we must first
bind each of the events in the properties to all of the Little-JIL process definition ac-
tivities whose execution causes the event to occur. In most cases, we bind a property
event, such as begin canvass, to the start or completion of a Little-JIL step. For ex-
ample, we bound the event begin canvass to the start of the Little-JIL step count
votes (shown in Figure 3), and the event reconcile number of voter signatures
and number of recorded ballots to the completion of the Little-JIL step reconcile
voting roll and cover sheet (shown in the same figure). Our process analysis and
improvement framework provides support for indicating which process steps should
be bound to each event in a property.

2.3.4. Benefits from model checking. Execution of the FLAVERS model checker suc-
ceeded in verifying that our election process definition satisfies the Propel representa-
tion of property 3.1 as well as all of the other properties enumerated in Figure 4. Verify-
ing that the process definition satisfies each of the properties increases our assurance
that the election process definition adheres to federal and state laws and regulations.
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begin&canvass&

reconcile&number&of&voter&
signatures&and&number&of&
recorded&ballots&

Scope:

(1) From the start of any event sequence through to the end of that event sequence, the behavior
must hold.

Behavior:

(1) The events of primary interest in this behavior are begin canvass and reconcile number
of voter signatures and number of recorded ballots.

(2) There are no events of secondary interest in this behavior.
(3) If begin canvass occurs, reconcile number of voter signatures and number of

recorded ballots is required to occur subsequently.
(4) Before the first begin canvass occurs, reconcile number of voter signatures and num-

ber of recorded ballots is not allowed to occur.
(5) begin canvass is required to occur.
(6) After begin canvass occurs, but before the first subsequent reconcile number of voter

signatures and number of recorded ballots occurs, begin canvass is not allowed to
occur again.

(7) After begin canvass and the first subsequent reconcile number of voter signatures and
number of recorded ballots occur:
— Neither begin canvass nor reconcile number of voter signatures and number of

recorded ballots are allowed to occur again.

Fig. 6. PROPEL finite state automaton and disciplined natural language views for Property 3.1.

In general, it usually takes many iterations of analysis and refinement of the model
(and properties) to convince ourselves and the domain experts that the process model is
an accurate representation of the real process. Model checking is an important tool in
reaching this consensus. When there is significant concurrency and exceptional behav-
ior, human analysts are increasingly challenged to be sure that they have adequately
considered all possible executions. Model checking provides this assurance, at least
with respect to the properties that are considered important for the process. Thus, it is
not surprising that numerous errors are usually found in the process definition and in
the property specifications. But without such rigorous analysis, domain experts would
be relying on inaccurate models. After errors in the process definition and property
specifications are removed, we begin to find errors that are actual problems in the real
process.

Although the initial process modeling and model checking are time consuming, the
resulting process models and properties are valuable assets that can continue to be
modified and improved as the process itself evolves. For election processes that are
continually being updated, these are valuable resources that allow important accuracy
and security checks to be applied before changes are made to the actual process; this is
especially important since elections cannot easily be redone. In our framework, these
models become the fundamental basis for subsequent vulnerability analysis, described
in the next subsection, and thus their accuracy is vitally important.
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Fig. 7. Simple fault tree

2.4. Fault-Tree Analysis
Model checking evaluates whether the process model adheres to stated properties, as-
suming that the steps in the model are carried out correctly. As noted earlier, however,
process steps may not be done accurately, especially when humans, who may become
fatigued or confused or maliciously desire to undermine a process, are involved. Thus
we use FTA to evaluate how vulnerable the process, as represented by the process
definition, is to incorrectly executed process steps.

FTA is a deductive, top-down analytical technique that is used in a variety of in-
dustries [Ericson II 1999; Ward et al. 2007; Hyman and Johnson 2008; Chen 2010] to
study conditions under which an accident or hazard that can cause substantial damage
or loss might occur. In the case of our election process, a very serious hazard would
be for an incorrect count of votes to be delivered to the Secretary of State, creating
the condition that the wrong candidate would be declared to have been elected. This
hazard might result, for example, if a batch of ballots was not counted because it was
mistakenly or maliciously assumed to have been counted previously.

With FTA, one first specifies a hazard and then attempts to determine which process
execution events could combine to cause the actual occurrence of that hazard. Given
the hazard, FTA produces a fault tree, a visualization of all the various combinations
of these events that could lead to the hazard. A fault tree consists of events and gates.
At the top (root) of the fault tree lies the hazard. In the fault tree, intermediate events
are the consequences of previous events, and this dependence is shown by hierarchical
elaboration down to primary events, which are not further elaborated. Events are con-
nected to each other by Boolean-logic gates. A gate connects one or more lower-level
input events to a single higher-level output event. There are three types of gates:

— AND gates: the output event occurs only if all the input events occur, implying that
the occurrence of all the input events causes the output event;

— OR gates: the output event occurs only if at least one of the input events occurs,
implying that the occurrence of any input event causes the output event; and

— NOT gates: the output event occurs only if the (only) input event does not occur.
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Figure 7 shows a fault tree with the top event, or hazard, A. An OR gate connects
this event with two lower-level events, B and C, so A occurs if B or C occurs or they
both occur. The event B in turn occurs if and only if both of the two lower-level events
connected to it through an AND gate occur. The event E is a primary event so it is
not elaborated further in the fault tree. A cut set is a set of event literals such that the
occurrence of all the events associated with the event literals in the set could allow the
hazard to occur. An event literal is either a primary event or the negation of a primary
event. A cut set is considered minimal if, when any of its event literals is removed, the
resulting set is no longer a cut set. For example, {H,E} is a minimal cut set (MCS) of
the fault tree in Figure 7. An MCS indicates a potential process vulnerability, which
might be a flaw or weakness in the process design, implementation, or operation and
management that could be exploited to allow a hazard to occur. An MCS with one
element represents a single point of failure. An example of a single point of failure
in Figure 7 is the event literal {¬F}. The probability of a hazard occurring can be
calculated if sufficient information about the probabilities of the events associated with
the event literals in the MCSs is available.

Many software tools facilitate the manual construction of fault trees. When fault
trees become large, as is typical, manual construction, even with such tool support,
becomes error-prone and time-consuming. We developed a process-driven FTA tool to
automate fault-tree construction and MCS calculation from process definitions written
in precisely-defined languages [Chen 2010]. Thus, for example, given a process defini-
tion written in the Little-JIL language and a hazard specification, our tool constructs
a fault tree and then calculates its MCSs.

2.4.1. Identifying a hazard. Once domain experts have validated the process definition
as a correct representation of an actual real-world process, the resulting fault trees can
lead to the discovery of unforeseen process vulnerabilities and can suggest modifica-
tions to improve the robustness and safety of the real-world process. Typically, domain
experts can suggest multiple hazards from their own experiences. Furthermore, they
can often evaluate the importance of a hazard, depending on its anticipated impact and
the perceived probability of its occurrence. One hazard of particular interest, which we
discuss in this paper, is “the final vote totals reported to the Secretary of State is
wrong”. As noted above, if realized, this hazard could change the election result.

2.4.2. Tying the events and hazard to the process definition. To automatically generate a
fault tree from a Little-JIL process definition and a given hazard, the FTA tool requires
the process definition (including the coordination diagram and artifact and agent spec-
ifications), a pointer to the root step in the process, and the hazard definition. The only
events in the generated Fault Tree are incorrect execution of steps in the process def-
inition. The FTA tool requires a hazard to be defined as an artifact being wrong when
input to or output from a step. Thus, the hazard “the final vote totals reported to the
Secretary of State is wrong” is defined in the tool as:

Artifact “finalTallies” to “report vote totals to Secretary of State” is wrong., and it is
shown as the root of a tree of incorrectly executed process steps.

2.4.3. Deriving the fault tree. The fault tree is automatically derived from the process
definition by tracing process artifact flow back through the steps of the process to de-
termine where artifacts may have been modified or created incorrectly. These incorrect
artifacts may have been generated by the erroneous execution of a step or because a
step may have failed to identify an artifact as being incorrect (e.g., when a step should
have thrown an exception, but did not). A complete fault tree for the hazard “the final
vote totals reported to the Secretary of State is wrong” is shown in Figure 8 for the sim-
plified count votes subprocess shown in Figure 3 to give the reader an intuitive sense
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Fig. 8. The fault tree automatically derived for the hazard specification “the final vote totals tally reported
to the Secretary of State is wrong.”

of the size and structure of a typical fault tree derived from a complex process. The
fault tree presented here is actually not a tree, but an optimized directed acyclic graph
(DAG), where repeated nodes have been consolidated to reduce the size of the original
structure, in this case by a factor of more than three. Before optimization, there were
1194 events and 1106 gates in the fault tree. After optimization, the DAG contains 735
events and 659 gates. From this example, it is clear why attempting to construct such
structures by hand quickly becomes intractable.

2.4.4. Calculating Minimal Cut Sets. Once a fault tree has been automatically derived
from the Little-JIL process definition, it could be manually inspected to identify dif-
ferent scenarios that could cause the hazard to occur by identifying paths containing
combinations of event literals that lead back to the root. Given that the optimized fault
tree generated for this hazard contains hundreds of nodes, however, the ability to au-
tomate the calculation of the MCSs, and thus give the analyst guidance about where
to look for vulnerabilities, becomes particularly valuable.

MCSs can be automatically calculated from the fault tree by using standard Boolean
algebra techniques to represent and simplify flow equations, where the root node, the
hazard, is equal to a disjunction of conjunctive clauses of event literals. Given this
equation, the hazard could occur only if one or more of the conjunctive clauses evalu-
ates to true, which can only happen if all the terms in a conjunctive clause evaluate to
true, indicating all participating event literals in that clause occur. Therefore each con-
junctive clause forms a cut set. The substitution for the simple fault tree in Figure 7
therefore proceeds as follows:

A = B + C

= D ∗ E + ¬F

= (G + H) ∗ E + ¬F

= G ∗ E + H ∗ E + ¬F

Thus the fault tree has 3 cut sets: {G, E}, {H,E}, and {¬F}.
MCSs are then obtained by removing events until non-minimal cut sets become min-

imal. Applying this to the fault tree shown in Figure 8 for the Yolo County election pro-
cess and the hazard “the final vote totals reported to the Secretary of State is wrong”
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results in 125 MCSs: 2 MCSs of size 2, 23 of size 3, 58 of size 4, 30 of size 5, and 12 of
size 6.

2.4.5. Leveraging the results to alleviate process vulnerabilities . The fault tree provides a
detailed description of the combinations of events that can lead to the occurrence of
the hazard. Certain traces through the fault tree structure, however, indicate more
likely scenarios than others. By examining the MCSs, analysts can focus on those
scenarios that seem likely to occur or are likely to have a large impact. In this section,
we examine a few of the smaller MCSs.

One example MCS for the fault tree is:

MCS-1 (see Figure 9)
(1) Step “increment and announce appropriate tally” produces wrong “tallies”,
(2) Exception “VoteCountInconsistentException” is NOT thrown by step “incre-

ment and announce appropriate tally”,
(3) Exception “VoteCountInconsistentException” is NOT thrown by step “perform

random audit”

In this case, the tallies produced by “count votes” are incorrect because the steps “in-
crement and announce appropriate tally” and “perform random audit” are not carried
out correctly since neither step recognized a VoteCountInconsistentException. Figure 9
shows only a portion of the fault tree that contains the nodes and edges that are rel-
evant to this MCS. Such a targeted fault tree, which we call a mini fault tree, can
be automatically generated for any selected MCS by analyzing the original high-level
fault tree and extracting partial paths or scenarios corresponding to the MCS of inter-
est.

MCS-1 demonstrates the impact that election officials could have on the election re-
sults by performing all three of these three steps incorrectly. Moreover, this suggests
that a single election official could successfully attack this election process if that of-
ficial were assigned to perform all three steps. This suggests that the security and
robustness of the process might be improved by putting in place checks to assure that
different election officials are always assigned to these steps.

Another example MCS for the fault tree is:

MCS-2 (see Figure 10)
(1) Step “scan votes” produces wrong “tallies”,
(2) Exception “VoteCountInconsistentException” is NOT thrown by step “perform

random audit”

The tallies produced by “count votes” are incorrect as a result of the step “perform
random audit” not being carried out correctly. After receiving incorrect tallies from the
“scan votes” step, the “perform random audit” step does not recognize a VoteCountIn-
consistentException. So the audit fails to catch the incorrect result. This MCS suggests
another way in which a single election official might attack the process unless the pro-
cess is modified to assure that no single official could ever be assigned to both of these
steps.

The third example MCS demonstrates the impact an optical scanner could have
on the election results. Since the scanner is dealing with entire batches of ballots,
incorrect performance of the scanner could have a very large impact. The MCS for this
fault tree is:
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Fig. 9. MCS-1’s mini fault tree

Fig. 10. MCS-2’s mini fault tree

MCS-3 (See Figure 11)
(1) Step “fill out ballot” produces wrong “paperTrail”,
(2) Exception “VoterSpoiledBallotException” is NOT thrown by step “fill out ballot”,
(3) Exception “VoteCountInconsistentException” is NOT thrown by step “confirm

tallies match”,
(4) Exception “VoteCountInconsistentException” is NOT throw by step “perform

random audit”
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Fig. 11. MCS-3’s mini fault tree

In this case, the voter chooses the electronic voting option, and the step “fill out
ballot” fails to produce the correct paper trail. In addition, no exception is thrown at
this step nor at the later steps, “confirm tallies match” and “perform random audit”.
Such a scenario results in the wrong totalTallies being output from the step “count
votes,” and then input to “report final vote totals to Secretary of State”.

This MCS example demonstrates a vulnerability introduced by electronic voting,
and suggests the desirability of introducing some kind of redundant checking to im-
prove the robustness of this process. Indeed, the event Step “fill out ballot” produces
wrong “paperTrail” appears in 18 out of 125 MCSs of the fault tree. Thus, it seems
important to bring the significance of the possible failure of this step to the attention
of election officials so that they can try either to minimize the probability of the event’s
occurrence, or put in place redundant checking.

These examples have shown how MCSs can help a process developer identify areas
of the process definition that may be problematic. These areas can then be further ex-
plored with additional hazard specifications. The MCSs presented here particularly
highlight the need for election processes to be more robust with respect to possible
incorrect performance, either intentional or unintentional, by the process performers.
For example, if an election official unintentionally announces the tally incorrectly once
or twice, that might not make a big difference to the final outcome of the election. But if
an official maliciously misperforms this step continually, and in collusion with the per-
son doing the random audit, the election results might well be compromised. Similarly,
if a defective scanner continually produces results that are not checked redundantly,
the final election results could be changed significantly.
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3. RESULTS
For the election process described here, the process definition was first elicited by inter-
viewing California election officials, studying the California election code, and by first-
hand observations. The resulting process definitions were then validated with manual
reviews performed by the election officials along with both model checking and fault
tree analysis.

These efforts produced a full process definition has 98 steps: 71 step declarations
and 27 references to previously defined steps. The agents include election officials,
voters, optical scanners, voting machines, and precincts. The control flow often involves
iteration, concurrency and exceptional situations. There are eight exceptions defined
for this process and twelve of the leaf steps (one third of the leaf steps) may throw
an exception that then must be handled appropriately. For the full process definition,
we ran the model checking and fault tree analysis tools that are implemented in Java
on a laptop with two 2.5 GHz processors and 8 GB of memory. The laptop was using
a UNIX-based operating system (OS X Yosemite Version 10.10.5) and Java 7 (Version
1.7.0 80-b15).

For the model checking, we elicited high-level requirements from the California elec-
tion code. We applied the FLAVERS model checker to the full process definition to ver-
ify six high-level requirements, represented by the nine lower-level properties shown
in Figure 4. Each property had one or two events and three or four states (counting
the violation state). As is often the case with model checking, the verification of each
property typically required several attempts where refinement of the process defini-
tion or property was needed before the process definition was shown to be consistent
with the property for all possible executions. The simpler properties typically required
two attempts while the paired properties required about half a dozen. Initially we of-
ten needed to add detail to the process definition to capture important aspects of the
process. Later attempts typically required refinements to the properties to capture
scope and repeatability aspects accurately. Often we needed to confer with the elec-
tion officials to determine precisely what the actual requirements should be. In these
cases, the property or process definition was often too restrictive, not fully representing
all allowed behaviors when unusual special cases are taken into account. After making
these improvements to the process definition and to the properties, FLAVERS reported
that the process definition satisfies each property. For each property, the space needed
was less than 64 MB and the time needed was at most six seconds. Although, we did
not discover any problems in the actual process, this exercise had several benefits. The
discussion with the election officials about the details of the process and the properties
led to a better understanding of the process both by the analysts, and also by the elec-
tion officials themselves. Importantly, it led to a more complete and accurate process
definition, which was especially important because this definition was then used as
the basis for further security and vulnerability analyses.

After the model checking was successfully completed, we then applied our fault tree
generator to the full process definition. For the hazard “the final vote totals reported
to the Secretary of State is wrong,” the unoptimized fault tree we generated has 1194
events and 1106 gates, while the optimized fault tree has 735 events and 659 gates.
The generator needed less than 64 MB and took a little under a minute. We then ap-
plied the fault tree analyzer to the generated fault tree to compute its minimal cut sets.
The analyzer found 125 minimal cut sets with sizes ranging from two to six events for
this hazard. The fault tree analyzer needed less than 64 MB and took less than one
second. Observe that this hazard demonstrates some of the process vulnerabilities
that electronic voting introduces. The event step “fill out ballot” produces wrong “pa-
perTrail” appears in 18 out of 125 MCSs of the fault tree. Bringing this failure to the
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attention of election officials will enable them to try to mitigate the risks created by
over-reliance on the correctness of the execution of this step.

When used together, model checking and FTA are complementary approaches. Given
an MCS with a small number of events having reasonably high probabilities, model
checking could be used to identify process execution paths on which all those events
occur, providing domain experts with insight into how to modify the process to increase
its robustness. Applying model checking to the modified process definition using the
original properties could then be used to check whether the modifications had intro-
duced property violations, and FTA would determine whether these modifications had
removed the MCS or additional paths need to be considered.

Choosing how to change the process definition requires the input of domain experts.
They determine how to respond to errors discovered using model checking. For the
election process this involved how to change the process definition or the properties to
reflect the real process and actual properties. The domain experts also identified the
MCSs that they deem to be of highest priority. This usually begins with the identifica-
tion of several small candidate MCSs with steps that are often performed incorrectly in
the real-world process and would therefore benefit the most from risk mitigation, such
as extra redundancy. Domain experts can also provide insight into steps that, in their
experience, have a lower chance of being carried out erroneously, or are performed so
infrequently that added redundancy would have much less impact than would added
redundancy at steps that are performed more frequently.

Once these analyses identify problems, process modifications are introduced to try
to address these problems. These modifications are usually proposed by the domain
experts through discussions of the process definition to ensure that the proposed mod-
ifications are reasonable, would not interfere unacceptably with performance of the
real-world process, and would be relatively easy to make. Reanalyzing the modified
process definition ensures that it successfully corrects the problems without introduc-
ing more problematic vulnerabilities in other parts of the process.

4. RELATED WORK
In our work, we have applied process definition, model checking, and fault-tree anal-
ysis to election processes in order to test, understand, and improve the process with
respect to security and other problems.

4.1. Elections and Security
The widespread introduction of electronic voting machines in the early-to-mid 2000s
was originally intended to make the process of casting and counting votes faster and
less costly while also eliminating ambiguous markings of ballots. But it introduced a
new set of concerns about the accuracy, privacy, and security of elections.

Electronic voting systems are computers, and computers have security vulnerabil-
ities. Realizing this, the Federal Election Commission (FEC) and the Election Assis-
tance Commission (EAC) developed a series of standards that electronic devices should
meet, the latest of which is the 2005 Voluntary Voting System Guidelines (VVSG) set of
standards6 [Election Assistance Commission 2005; Federal Election Commission 1990;
2002]. Many states require that any voting systems used in their elections meet these
standards, so validation and testing of such machines is critical. Mercuri and Neu-
mann [Mercuri and Neumann 2003] give an overview of how electronic voting systems
can be verified and emphasize the importance of a verifiable paper trail, and Salt-
man [Saltman 2003] outlines different techniques for performing auditing to improve
public confidence for both ballot and non-artifactual systems. The EAC is developing

6A new standard [TGDC 2007] has been developed but not yet adopted.
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a set of Election Management Guidelines (EMG) to complement the technical stan-
dards for voting equipment [Election Assistance Commission 2010]. These standards
and guidelines, however, focus only on the electronic voting system itself.

The election security community has focused on the electronic voting system vulner-
abilities. Examination of vendor source code [Kohno et al. 2004; Yasinsac et al. 2007;
Office of the California Secretary of State 2007; Brunner 2007] considered ways an
attacker could compromise such systems, or make them produce inaccurate results.
Red-team testing, in which testers played the role of attackers, has found ways to com-
promise these systems [RABA Innovative Solution Cell (RiSC) 2004; Proebstel et al.
2007; Office of the California Secretary of State 2007; Brunner 2007; Springall et al.
2014; Wolchok et al. 2012]. Indeed, studies have found that these systems “failed to
adopt, implement and follow industry standard best practices” [Brunner 2007] and
that their security mechanisms were “inadequate to ensure the accuracy and integrity
of the election results” [Bishop 2007; Office of the California Secretary of State 2007].
This has caused many states to re-evaluate electronic voting systems and how those
systems are to be handled and used before, during, and after an election.

Other work has focused on the requirements that an election must meet, such as
privacy, anonymity, accessibility, and ballot design [Brennan Center Task Force on
Voting System Security 2006; Lambrinoudakis et al. 2003; Mitrou et al. 2003]. Some,
such as Chaum, et al, have studied the Scantegrity voting system [Chaum et al. 2008],
to enable voters to verify that their votes have been counted correctly without being
able to prove to others how they voted, thereby preventing vote selling. The Scantegrity
work focuses on the cryptographic protocols and system requirements that provide
these properties.

Perhaps surprisingly, little published work has focused on how elections themselves
are conducted, even though proper implementation of policies and procedures designed
to conduct elections are critical to their success [Barr et al. 2007; Simidchieva et al.
2008]. This aspect of elections raises critical security and privacy concerns. For exam-
ple, consider an election worker misplacing marked but uncounted ballots. The results
of the election might be different were those ballots counted. Worse, suppose a ma-
licious election official alters ballots to favor a particular candidate. Such an attack,
called an insider attack, may well alter the results of the election. Insider attacks are
of great concern in other realms as well, and are a topic of active research in the se-
curity community [Bishop et al. 2008; Pfleeger et al. 2010; Hunker and Probst 2011;
Probst et al. 2010; Bishop et al. 2014; Sarkar et al. 2014]. Other issues, such as seem-
ingly benign disruptions in the proper running of a polling place or a failure to follow
proper procedures could also compromise the results of an election by preventing vot-
ers from casting their votes in a timely manner. Even maintaining both security and
privacy simultaneously may sometimes create conflicts [Peisert et al. 2009].

Attacks against a process, such as those identified above, are often more effective
than attacks against the electronic voting systems because they focus on people. Hu-
mans make mistakes, have different competency levels, and often have widely varying
notions of security and privacy of elections [Hall et al. 2012]. Similarly, the processes
that election officials design to carry out election tasks also have vulnerabilities that
may cause the tasks not to be completed, or be completed incorrectly. There has been
little formal study of election processes as opposed to protocols or electronic voting sys-
tems. Analyzing the process of how elections are conducted may uncover weaknesses,
or potential weaknesses, that could result in compromising the election without com-
promising any of the electronic systems involved in the election. Further, it may be
unclear how system errors or failures impact the results of an election. Thus, study-
ing such processes should help build an understanding of their security, integrity, and
accuracy. Our work undertakes such a study.
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4.2. Process definition and improvement
The security assurance of an electronic voting system does not provide assurance of
the security or accuracy of an election [Barr et al. 2007] in which it is used, because
the system is not intended to enforce all of the election process requirements. For ex-
ample, the requirement that eligible voters can vote at most once is typically enforced
by a process external to the electronic voting system. Studying the effectiveness of
a process in satisfying such a requirement falls within the area of process modeling
and analysis, which “focuses [on] interacting behaviors among agents, regardless of
whether a computer is involved in the transactions” [Curtis et al. 1992]. Process anal-
ysis is most effective when applied to process models that are rigorously defined, and
relatively complete and detailed.

Raunak et al. apply process definition and analysis to election processes to determine
whether fraudulent behavior can result in incorrect election results [Raunak et al.
2006]. Simidchieva et al. extend this approach to determine whether an election pro-
cess definition meets selected requirements [Simidchieva et al. 2008], and then extend
the approach further to improve the robustness of election processes using fault-tree
analysis [Simidchieva et al. 2010].

Audit procedures have been a fertile field for the application of process-oriented tech-
niques. Antonyan et al. use AccuVote Optical Scan systems and a generic election pro-
cess model to study how additional auditing processes may improve the integrity of
elections [Antonyan et al. 2009]. The authors focus on how different election processes
can affect the ability to prevent or detect attacks on the underlying election systems.
Our work focuses on how the election processes themselves may fail. Hall et. al. ex-
amine audit processes, specifically focusing on post-election audits [Hall 2008; Hall
et al. 2009]. Like our work, the authors examine the processes for a specific county
and use iterative process improvement before generalizing their approach. Our work,
however, is not focused on audit processes, but on automatically finding errors and
vulnerabilities in specific election processes.

4.3. Model Checking
The history of using model checking techniques in security goes back at least to
Lowe’s application of the FDR model checker to find a subtle attack on the Needham-
Schroeder authentication protocol [Lowe 1996]. While much of this work has focused
on the analysis of protocols, other work has used model checking to analyze informa-
tion flow (e.g., [Dimitrova et al. 2012]) or verify access control policies (e.g., [Wolter
et al. 2009]). A number of researchers have used model checking techniques to gen-
erate possible attacks. For instance, Sheyner et al. [Sheyner et al. 2002a] constructed
atomic attacks, such as buffer overflows, and modeled a computer network as a finite
state machine with transitions corresponding to the atomic attacks. They then used
model checking to generate an attack graph in which any path from the initial system
state to a leaf node represents a sequence of atomic attacks that allow an intruder to
violate a specified security property (such as “no intruder can achieve root access on
host A”).

Other researchers have used model checking techniques to analyze the aspects of the
security of business processes (e.g., [Armando and Ponta 2009]. A few papers have ap-
plied model checking approaches to election processes, including [Raunak et al. 2006].
Closest to our approach is the work of Weldemariam et al. [Weldemariam and Vil-
lafiorita 2008; Villafiorita et al. 2009]. In this work, the authors modeled processes
that incorporated best practice, defining how critical assets are to be managed, elab-
orated, and transformed, and then inject threats—actions that alter some features of
an asset or allow some actors additional privileges. The extended model is then en-
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coded for the NuSMV model checker and a property (such as “poll officers will never
receive an altered version of the election software that can be run on the machines”)
is checked. Any generated counterexample provides an example attack. Our approach
differs from theirs in our use of FTAs to devise more structured and detailed attack
plans given a hazard.

Recently, Phan et al. has built on the work described here to use fault-tree analysis
to find process vulnerabilities and then build attack processes exploiting them. This
work uses model checking to evaluate the robustness of the process definition to the
derived attack processes [Phan et al. 2012].

4.4. Fault-Tree Analysis
Numerous safety-critical industries, including the aerospace, nuclear power, and au-
tomotive industries, use FTA. Brooke et al. demonstrate that fault trees may also be
used to analyze security-critical systems [Brooke and Paige 2003]. Helmer et al. used
augmented Software Fault Trees (SFTs), attack trees with temporal order, to model
intrusions [Helmer et al. 2002]. In their models, the root node represents the intrusion
and an MCS contains events to be monitored to detect intrusions. Zhang et al. use
fault trees for vulnerability evaluation [Zhang et al. 2005]. Rushdi and Ba-Rukab ap-
ply fault trees to measure a system’s exposure to a vulnerability [Rushdi and Ba-rukab
2005]. Yee discusses how safety cases, a construct similar to fault trees, may be used
to increase confidence in voting systems [Yee 2007].

Leveson et al. [Leveson et al. 1991] proposed using fault trees to guide analysts
in identifying errors that cause Ada programs to produce incorrect outputs. The in-
correct output is represented as the hazard. Templates, one for each kind of Ada
statement, are used to elaborate intermediate events to construct the full fault tree.
Friedman developed a template-based tool to construct fault trees from a Pascal pro-
gram and a software-caused hazard [Friedman 1993]. Pai and Bechta Dugan [Pai and
Bechta Dugan 2002] showed an algorithm to automatically derive fault trees from
UML models. Our approach also uses language-based templates, but the analysis is
based on models that incorporate the more elaborate semantics needed to more com-
pletely and faithfully represent the variability encountered in real life processes.

Like fault trees, attack trees are hierarchical logic diagrams in which one event
is represented as a logical combination of lower-level events [Schneier 1999]. They
are used to model the different paths an attacker may take to reach an objective.
Moore et al. used attack trees to model attacks and document them [Moore et al.
2001]. Lazarus created a catalog of election attacks in the form of a single attack
tree, attempting to provide a threat model and a quantitative threat evaluation ap-
proach intended to be reusable across different jurisdictions [Lazarus 2010]. Attack
trees have also been used in penetration testing [McDermott 2001], in identifying in-
sider attacks [Ray and Poolsapassit 2005], and for forensics [Bishop et al. 2009; Peis-
ert 2007; Peisert et al. 2007; Poolsapassit and Ray 2007]. Nai Fovino et al. combine
fault trees and attack trees for quantitative security risk assessment [Nai Fovino et al.
2009]. Attack graphs [Phillips and Swiler 1999; Sheyner et al. 2002b] are similar to
attack trees, but may be cyclical and do not use logic operators between nodes.

Attack tree analysis generally assumes that faults arise from malicious intent. Since
we do not ascribe an intent to how these faults arise, we focus on FTA in this paper. As
fault trees and attack trees are structurally equivalent, the analyses described here
for fault trees would apply equally well to attack trees.

5. CONCLUSION
This paper presents a systematic approach for evaluating the security and accuracy
of processes, especially those involving human performers. We describe and illustrate
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the application of this approach by defining and analyzing an election process. Using
election code policies and considerable guidance from election officials, we developed
a definition of how an election is conducted. We expressed our definition in Little-
JIL, and then iteratively refined the definition with the help of domain experts. We
performed model checking and FTA on this definition and identified errors and vul-
nerabilities that suggest problems in the election process. The two analysis techniques
provided powerfully complementary ways to identify process defects and vulnerabili-
ties. Taking the analysis results back to the domain experts, we worked with them on
how to modify the process to remove these errors and reduce vulnerabilities through
an iterative improvement cycle of analysis and restructuring.

The approach can also be used to study hypothetical scenarios, such as the effects
of changes to requirements. For example, suppose a law requires that all ballots be
counted at the precinct, rather than allowing them to be counted at Election Central
(as in our definition). What must change in the new process to ensure that it still satis-
fies the other requirements and does not introduce new vulnerabilities? By generating
a definition of the new process and applying our analysis techniques, we are able to
identify potential problems and address them in advance, rather than waiting until
the problems occur in practice, when it may be too late to remedy them effectively.

Our experience with this approach suggests that it can be used on a wide range
of processes to systematically address security concerns, especially for processes that
coordinate technologies and human activity.
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