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University of California, Berkeley, CA 94720 
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ABSTRACT 
Simulations and field experiments in previous works suggest that a freeway’s general purpose 

lanes (those not dedicated to high occupancy vehicles) discharge vehicles from bottlenecks at an 

equal or higher average rate when one of the lanes is devoted to high occupancy vehicles than 

when it is not. This result was used in these previous works to develop formulae for the total 

discharge rate of bottlenecks, with and without dedicated lanes, as a function of the percentage of 

high occupancy vehicles in the traffic stream.  

 This present paper extends these ideas by examining the effect of dedicated lanes on the 

density of traffic queues. We find that an underutilized dedicated lane reduces a queue’s density 

(in vehicles per km of freeway) when the downstream flow of both high occupancy and low 

occupancy vehicles is the same in both scenarios and exogenously determined; e.g., as would 

happen if the queue’s service rate is dictated by recurrent downstream congestion. A formula is 

given; and the reduction in density turns out to be small if the underutilization is small.  

 Reductions in queue density without changes in bottleneck flows or traffic demand imply 

spatially longer queues, and this could be problematic. The paper also shows that the extra space 

consumed by a queue adjacent to a dedicated lane can contribute significantly to congestion, but 

only if heavily traveled routes that do not go through the bottleneck pass through this extra 

space. To quantify this effect, the paper analyzes dedicated lanes on multi-ramp freeways and 

beltways. Formulae are given for the changes in the people-hours and vehicle-hours of travel due 

to dedicated lanes both, when there is uncongested freeway space upstream of the queue for it to 

expand, and when there is not.  The recipes are based on readily observable data and can be used 

to evaluate existing and planned installations of dedicated lanes. Building on these formulae, the 

paper finally presents qualitative principles that can be used to plan city-wide systems of both, 

high occupancy vehicle lanes on freeways and dedicated bus lanes on surface streets.  
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1. INTRODUCTION AND BACKGROUND 

High occupancy vehicle lanes (H-lanes) are supposed to give priority to HOV’s (high occupancy 

vehicles) with as little disruption as possible to LOV’s (low occupancy vehicles). Converting a 

general purpose lane (G-lane) into an H-lane can: (a) increase the average number of occupants 

in each vehicle by encouraging car-pooling; and (b) reduce person-hrs of delay for any given 

level of car-pooling by allocating most of it to LOV’s. Effect (b) is the focus of this paper. If it is 

achieved, then the average distance traveled per person per unit time (a measure of accessibility) 

increases. As we shall see, a conversion that achieves (b) often does so without increasing 

vehicle-hours of travel. Since the latter are a proxy for the externalities of traffic, the result is 

increased accessibility without significant adverse side effects. This paper examines how to 

achieve this goal for a freeway network. The minimum number of occupants that renders 

vehicles eligible for an H-lane is treated as a variable because the results for a large minimum 

then shed light on bus-only lanes.  

We will build on recent results that have clarified the interaction between H-lanes and 

freeway bottlenecks. Cassidy et al (2006) analyzed field data from several congested freeways in 

the San Francisco Bay Area, and found (surprisingly1) that, at these sites, H-lanes were having 

no discernible negative effects despite their underutilization. At one of the sites, high-resolution 

video data showed that although the H-lane was underutilized at the bottleneck (by about 35%) 

this was more than compensated by an increase in the capacity of the remaining G-lanes. This 

may seem counter-intuitive, but had been theoretically predicted in Menendez and Daganzo 

(2006). Simulations of a merge bottleneck in that reference revealed that by reserving the median 

lane for HOVs, fewer lane changes occur near the bottleneck, and that this has a “smoothing 

effect” on discharge flow. The reference also provided formulas describing how underused H-

lanes affect the flow through bottlenecks of various types. To no surprise, the formulas predict 

that severe underutilization reduces bottleneck flows. The reference also identified a real-world 

example of this phenomenon. 

Daganzo et al (2002), Menendez and Daganzo (2006), and Cassidy et al (2006) have 

recommended ways in which the problem of bottleneck underutilization can be eliminated. 

Those references argue that H-lanes can be installed upstream of bottlenecks without reducing 

                                                 
1 An earlier study of the same sites (Chen et al, 2006) had conjectured from less complete data that the H-lanes were 
causing the congestion.  
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discharge flow—even in the absence of the smoothing effects—if they are terminated (i.e., 

opened to all vehicles) short of the bottleneck. A dynamic termination strategy has been found in 

simulations to enhance the smoothing effect and actually increase bottleneck discharge flow; see 

Menendez and Daganzo (2006). 

Bottleneck flow, however, is not the only freeway metric of importance. If a freeway’s 

ability to store vehicles is reduced by an H-lane, freeway queues can grow longer, blocking more 

off-ramps and reducing the freeway’s vehicle outflow. Vehicle delay would then increase, even 

without a change in bottleneck flow. Longer freeway queues can also block important access 

points. This is of particular concern in urban areas with closely spaced interchanges.  Thus, the 

effect of H-lanes on freeway storage density requires attention.  

Unfortunately, a purely empirical understanding of storage effects would require repeated 

observations of freeway queues with and without an H-lane. Hence, we shall use instead the 

model in Menendez and Daganzo (2006), because it is simple and roughly consistent with 

empirical data. To be conservative, we shall choose parameters unfavorable to H-lanes when a 

choice has to be made. Our model ignores the smoothing effect, for example. 

The paper will examine the effect of two policy scenarios (an H-scenario with an H-lane 

and a G-scenario without one) on freeway queues, and then generalize the ideas to transport 

systems on a city- or region-wide scale. Section 2 examines open-ended freeway queues, with 

uncongested space behind their tails. Section 3 examines close-ended queues that form a loop 

and have no tail, e.g. on circular beltways. Section 4 then shows how H-lanes should be 

systematically deployed in a city to increase people accessibility without increasing vehicle-

hours of travel and the associated externalities. Section 5 generalizes the ideas and suggests how 

urban street space (not just freeway space) should be shared with, and/or separately partitioned 

among, different modes to improve accessibility.  

 

2. OPEN-ENDED FREEWAY QUEUES  

Menendez and Daganzo (2006) describes conditions to ensure that a freeway’s median lane can 

be converted into an H-lane without creating bottlenecks or reducing the discharge rate of 

existing ones. The conditions are applied at every point x along the freeway in the G-scenario. 

For an L-lane freeway we require: 

    q(x)L ! qH(x) ! Q(L ! 1) " 0,     (1a) 
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where Q is the capacity (veh/hr-lane) of a lane, q(x) is the flow per lane at x in the G-scenario, 

and qH (x) the flow of HOVs that could feasibly be on the H-lane at x had the HOV restriction 

been activated. (One must recognize when estimating qH that only thru-moving HOVs can be in 

the H-lane at any x close to exits and entrances.)  The LHS of (1a) is called the “overflow”. It is 

the difference between the flow one would have in the G-lanes in the H-scenario, q(x)L ! qH(x), 

and the combined capacity of these lanes, Q(L ! 1).  

 The “overflow” condition should hold at the termination point of an H-lane. This ensures 

that if a queue exists at that location in the G-scenario, activation of the H-lane (upstream of the 

location only) does not starve the location for flow. Note that (1a) imposes a lower bound on qH.  

Of course, a problem also arises if qH is too high: for the H-lane to remain effective, qH must not 

exceed the maximum the H-lane can carry, which is q at the termination point (due to 

downstream congestion). Thus, we have: 

          qH  " q   (at the H-lane termination point, if congested), and qH  " Q otherwise.       (1b) 

If (1b) were to be violated at some x, the H-lane would become oversaturated and HOVs would 

not find it attractive. As a result, the freeway would operate in G-mode at x despite the presence 

of an H-lane. 

 Conditions (1) guarantee that bottleneck discharge flows do not decrease, but the H-lane 

can still cause damaging reductions in the queued flows upstream due to the presence of on- and 

off-ramps. Because this is undesirable, queues should be studied in their entirety with due 

consideration of the effects of ramps. We start by looking at open-ended queues. Our analysis is 

incremental: Section 2.1 shows that introduction of an H-lane into a congested freeway stretch 

that contains a single interchange (an on-ramp/off-ramp pair) does not affect vehicle flows of 

either type (LOV or HOV) if some mild conditions are met. Sections 2.2 and 2.3 then show how 

the H-lane affects queue density, and its spatial growth on a stretch containing any number of 

interchanges. Finally, Sec 2.4 estimates the effect of the H-lane on VHT and PHT. 

  

2.1 A building block: steady-state flows along a single interchange  

As in Menendez and Daganzo (2006), we model the freeway as a set of parallel kinematic wave 

traffic streams on each lane with a triangular fundamental diagram (FD). The simulations in that 

reference showed that provision of an H-lane tended to: increase the capacity of G-lanes (the 

smoothing effect); reduce the free-flow speed in the H-lane when the G-lanes are congested; and 
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reduce slightly G-lane storage density when flows are near capacity.2 We will thus 

conservatively assume that the FD of all G-lanes is the same in both scenarios, and that the free-

flow speed of the H-lane is lower in the H-scenario. We shall denote the free-flow speed by v (or 

vH < v for the H-lane) (km/hr) and the jam-density of a lane by # (veh/km-lane). 

 Assume that the freeway stretch containing our single interchange is in a queued steady 

state in the G-scenario; and that there is no queue on the interchange’s on-ramp. Can we convert 

the freeway’s median lane to a faster-moving H-lane, as shown in Fig. 1a, without reducing the 

HOV and LOV flows past any of the ten screen lines also shown in the figure? To answer this 

question, consider the freeway segments between consecutive screen lines one at a time.  

 At line x = 0, vehicles leaving the undifferentiated queue segregate themselves by class; 

between lines 1 and 2 HOV’s destined for the off-ramp move onto the G-lanes; between 3 and 4 

all exiting vehicles leave; between 5 and 6 on-ramp vehicles merge onto the G-lanes; between 7 

and 8 HOV’s from the on-ramp merge into the H-lane; and at 9, where the H-lane ends, LOV’s 

merge into the median lane to take up its available capacity. This system can be idealized as the 

two-commodity network of Fig. 1b, where dotted links are reserved for HOV’s and where the 

flow of each commodity must be conserved at every node. When operating properly the solid 

links would carry only LOV’s and the double-lined links both commodities.  There are also 

capacity constraints imposed by the nodes, as explained below.  

 Nodes c, e, g and h act as merges with capacities equal to the flow of their respective 

downstream links, when these links are queued. This capacity is prorated to the inbound links as 

per the usual priority rules (Daganzo, 1995). Since our interchange is isolated the lane changes in 

sections 1-2 and 7-8 can be spread over a long distance; thus, we assume that cross-over links bc 

and fg claim total priority over ac and bg, and have a capacity equal to the (queued) flow of cd 

and gh, respectively. Also, since node h does not include a lane drop or addition, the capacity of 

link gh should be the (queued) flow in the median lane downstream of h, which is q; i.e., the H-

lane should act as an on-ramp with priority ratio 1/L. Finally, we assume that if link ef is queued, 

the on-ramp will introduce into the stream no more than a fraction $ < 1 of the flow in the 

shoulder lane of ef; i.e., the on-ramp priority ratio is $/(L ! 1). 

                                                 
2 The later effect was not simulated for lower queued flows because trends in the simulated data showed that the 
effect would not be significant under those conditions. 
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Figure 1.  A freeway stretch: (a) H-scenario; (b) network representation of H-scenario; and 
(c) network representation of G-scenario. Arrows in part (a) denote lane changes across 
classes of lanes (i.e. among the G-lanes, the H-lane, and the ramps); dark shading denotes 
congested traffic, which takes the form of a FIFO queue upstream of screen line 0 and 
downstream of screen line 9; and white shading denotes the uncongested H-lane. 
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 Nodes a, b, d and f operate as FIFO diverges with branch flows determined from their 

capacities in the usual way (Daganzo, 1995). Branches bc and fg are assumed to have infinite 

capacity (for the reasons stated above), and the off-ramp is assumed to have the same capacity as 

that of a freeway lane, Q. 

 We now check the existence conditions for an equilibrium pattern in our interchange. We 

start in the G-scenario (Fig. 1c) with a set of commodity flows arising from a steady state OD 

table: %Had, %Hah, %Heh, %Lad, %Lah, %Leh, where the three subscripts denote (from left to right) 

vehicle class, origin and destination. To be feasible, the OD flows passing screen line 9 must 

satisfy: %Hah + %Heh + %Lah + %Leh = qL; the off-ramp flows: qd & %Had + %Lad " Q; and the on-ramp 

flow: qe &%Heh + %Leh " $q (since there are no queues on the on-ramp).  

 To understand what happens in the H-scenario, this OD table is assigned to the shortest 

paths of Fig. 1b. The input and output flows are as in the G-scenario. Since there is no route 

choice in either scenario, the commodity flows across screen lines are also as in the G-scenario. 

However, there are constraints in the network of Fig. 1b that could be violated by the assigned 

link flows. In what follows we use qij to denote the flow on the link from node i to node j. One 

set of constraints ensures that the H-lane remains uncongested; they are: (i) qab " Q; (ii) qbc " qcd; 

(iii) qbg + qfg " Q and (iv) qgh " q. Another set ensures that the G-lanes and the ramps can carry 

the required flows; i.e: (v) qcd " (L-1)Q; (vi) qe " $qef/(L-1); (vii) qef " (L-1)Q; and (viii) qd " Q. 

 Constraints (i), (ii) (iii) and (iv) are met if the demand for the H-lane does not exceed q at 

the downstream end and if, as is typical, it remains below Q elsewhere upstream; i.e. if:  

   qH(x)  "  q   for x = 9     and      qH(x) " Q   for x < 9.      (2a) 

This is the same as (1b). Constraints (v) and (vii) are met if the demand for the G-lanes 

immediately upstream of the off-ramp and immediately downstream of the on-ramp (a demand 

which would include all the LOVs and all exiting/entering HOVs) is less than (L-1)Q. These 

constraints are satisfied if the HOV-demand for the H-lane at a location (x = 3, 6 or 9) is large 

enough to relieve pressure from the G-lanes; i.e., if: 

       qH(x) '  q(x)L  ! Q(L-1)  ,         for  x = 3, 6 or 9.                                 (2b) 

This is the same as (1a).3  

                                                 
3 Note that qH(6) " qH(9) and q(6) = q(9); therefore the condition at x = 9 is redundant. This means that the overflow 
condition only needs to be verified downstream of on-ramps and upstream of off-ramps. As a further simplification, 
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 We still have to check the input and output constraints (vi) and (viii). The latter is 

automatically satisfied since qd and Q are the same in both scenarios, but the former needs to be 

checked since the shoulder lane flow on link ef changes from q in the G-scenario to qef/(L-1) in 

the H-scenario; i.e., the upper bound to the on-ramp flow changes from $q to $qef/(L-1). We now 

show that the upper bound is higher in the H-scenario, i.e., qef/(L-1) ' q, and thus that the H-lane 

cannot cause the on-ramp flow to decrease; it can only increase or stay the same. 

 The reason for the inequality is that the total assigned flow across screen line 6 is the 

same in both scenarios, and since the median lane carries less (or equal) flow in the H-scenario,4 

the shoulder lane (and the remaining G-lanes) must compensate for the deficit. If qef/(L-1) = q the 

upper bounds are the same in both scenarios; since the assigned ramp flows are also the same, 

(vi) is satisfied. If qef/(L-1) < q the upper bound increases. The priority rules imply in this case 

that on-ramp flow increases if and only if an on-ramp queue exists in the G-scenario. Absent this 

ramp queue, ramp inflow is invariant. Unfortunately, an increased inflow at e reduces the queued 

flow at d, and the off-ramp flow qd: this flow would satisfy (viii) but the reduction is a bad thing. 

On the other hand, remedial action is always possible since on-ramp inflow can be reduced by 

metering. We summarize the above as follows: 

 

INSIGHT: For both vehicle types, on-ramp and off-ramp flows, and freeway flows across 

any screen line, are the same in both scenarios if: (i) conditions (2) are satisfied; and (ii) 

either on-ramp queues do not exist in the G-scenario, or these queues exist but are 

metered in the H-scenario in such way that on-ramp inflows do not change. 

 

When used in the H-scenario, for example, the insight determines whether eliminating the HOV 

restriction would increase total system outflow. Since all the flows in (2) are observed in the H-

scenario, one only has to guess whether on-ramp queues would arise in the G-scenario. To do 

this, check if the observed inflow qe exceeds the reduced on-ramp capacity of the G-scenario, $q, 

where q is observed and $ easily estimated. When applying the insight in the G-scenario, only 

                                                                                                                                                             
note that if L is sufficiently large (it doesn’t have to be very large in typical cases) the RHS of (2b) becomes 
negative; then (2b) is automatically met.   
4 This is true because qbg " qgh by virtue of conservation at node g, and qgh " q by virtue of (2a). Consequently, qbg 
(the median lane’s flow in the H-scenario) cannot exceed q (that lane’s flow in the G-scenario), as claimed. 
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qH(x) needs to be guessed.  Field experiments are planned to test if, absent on-ramp queues, total 

outflows from an interchange are indeed unaffected by an H-lane’s activation or deactivation. 

 

2.2 Queue density in each scenario 

We now examine an open-ended queue spanning many interchanges. We consider the part of the 

freeway that would be queued under both scenarios and compare the two freeway densities. 

Density affects spatial growth, and this is examined in Sec 2.3.    

 The H-lane is still the median lane, but the restriction is interrupted for short sections 

between every pair of successive interchanges. In these sections the freeway operates in G-mode, 

even while the interchanges are in H-mode. In this way we can apply the insight of Sec 2.1 to 

each interchange separately, such that if (2) holds everywhere and the on-ramps are not queued 

(or metering is applied in the H-scenario), then flows of both vehicle types would remain 

invariant at any location  that is queued in both scenarios. This is true no matter how short the G-

sections are; and thus remains true even if they are eliminated.  

 We now prove that, at any location, the average density across all lanes in the G- and H-

scenarios (kG and kH, respectively) satisfy the following theorem, where Q’ is the capacity of the 

H-lane in the H-scenario and u = 1 – qH/Q’  is its underutilization level. 

 

PROPOSITION:  If the conditions of the insight in Sec. 2.1 apply, then at any location that 

is queued in both scenarios:  

     (kG ! kH)L = #u                                                                (4) 

Proof: Displayed in Fig. 2 are the FD’s for both an H- and a G-lane. Also shown are 4 

points: G, Hh, Hg , and H, respectively denoting the states of: a G-lane in the G-scenario; 

and the H-lane, a G-lane and the average across all lanes in the H-scenario. Horizontal lines 

through these points identify corresponding flows on the ordinates axis: qGG, qH and qGH. In 

light of the insight of Sec 2.1, total flow at the point of interest is the same in both scenarios 

and we can write: qH + (L – 1)qGH = LqGG . Therefore: qH – qGH = L(qGG – qGH). If we use 

vertical bars around the end-points of horizontal and vertical segments in Fig 2 to denote 

their length, this equality can be written as (P1P3( = L(P2P3(; thus, 1 = L(P2P3(/(P1P3(. The 

geometry of Fig. 2 reveals that: 1 = L(P2P3(/(P1P3( = L(HG(/(HhP5( = L(HG(/(#(P0P1(/(P0O() = 

L(HG(/[#(1 – qH/Q’)]. The second equality holds because triangles HhP5Hg and HGHg are 
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similar; the denominators of the third equality are the same because triangles OP4P6 and 

HhP4P5 are similar; and the fourth inequality holds by substitution. Since u is defined as (1–

qH/Q’), the above equalities reduce to 1 = L(HG(/[#u], and since (HG( = (kG ! kH), this 

concludes the proof. 

We see from (4) that if the H-lane is perfectly utilized, the traffic density is the same in both 

scenarios. Thus, both queues would be equally long. Otherwise, the freeway is less dense in the 

H-scenario; it holds #u fewer vehicles per unit distance. Curiously, this storage deficit is 

independent of flow conditions on the freeway. The deficit will in most cases expand the H-

queue and accelerate its spatial growth.  This phenomenon is now examined. 

 

2.3 Spatial growth of the H- and G-queues 

Here we derive formulae for the trajectories of the backs of the H- and G-queues with due 

consideration of the entering and exiting ramp flows along the queues. We shall assume here and 

in the next sub-section that the freeway is homogeneous and long enough (length D) to include 
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Figure 2.  Fundamental diagrams for a single G-lane (triangle OP0P6), and a single H-lane 
(triangle OP7P6). 
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all the queues that develop; that its off-ramp/on-ramp pairs (interchanges) are spaced d distance 

units apart; that the demand is translationally symmetric with an inflow % at each on-ramp; and 

that the distribution of destinations is Markovian in the sense that a fixed proportion of flow ) 

exits at each off ramp. Note, that the equilibrium flow per lane * must satisfy *L) = %.  At the 

freeway’s downstream end, a bottleneck with discharge rate per lane q " * causes a queue to 

grow. We assume that on-ramp inflows along the queues are the same in both scenarios so that 

the insight of Sec 2.1 holds.  

 We assume that time starts (t = 0) when queues first form at the downstream bottleneck, 

and look for the times TG(y) and TH(y) when the G- and H-queues, respectively, grow to be y 

distance units long. We will develop a simple formula for the retardation factor of the G-queue, 

defined to be: e(y) & [TG(y) ! TH(y)] / TH(y).  

 Let q(z) be the flow per lane in either of the queues z distance units upstream of the 

bottleneck, where z " y " D.  Note that q(z) is time-independent and the same for both scenarios 

as per the insight of Sec 2.1. To find TG(y) and TH(y), consider the vehicular accumulation 

growth rate, V, over the freeway’s entire length D. Since vehicles are conserved, V is just the 

total net freeway inflow (the difference between inflows and outflows). To express this net 

inflow, let +(y) & , i=0,y/d [)q(id)L] / (y/d) be the average outflow across the off-ramps that reside 

along the queue. Note that +(y) is the same for both scenarios. Then, we have: 

       V(y) = (*!q)L + [%!+(y)](y/d)               (5) 

The first term of (5) is the difference between upstream and downstream mainline flows; and the 

second term the difference between ramp inflows and outflows along the queue. Note that there 

is no need to consider ramp flows upstream of the queue because entering and exiting flows are 

balanced there in both scenarios. Note too that V(y) is the same for both scenarios.  

 We will show now that in either scenario, the accumulation growth rate V(y) can also be 

expressed by considering changes in density, the motion of the back of the queue, and the fact 

that in any short time interval local density can only change on those points traversed by the back 

of the queue. Consider thus the time it takes for a queue to grow by dy length units, dT.(y) -- the 

dot subscript shall henceforth be a place-holder for the scenario. When the queue reaches length 

y, it increases the density at that location from the free-flow density */vf to the queued density 

associated with flow q(y). This density depends on the scenario and is denoted k.(y). Thus, for 
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our small distance interval total accumulation increases by [k.(y) ! */vf] dy. Since this quantity 

must equal V(y)dT.(y), the following ODE for T.(y) results: 

                 dT.(y)/dy  =  [k.(y) ! */vf] /V(y).            (6)  

An expression for T.(y), and for the difference across scenarios, -T(y) = TG(y) ! TH(y), is found 

by integrating the right side of (6) from 0 to y for the two scenarios. The ratio of this integral and 

the constant S(y) = . x=0,y [1/V(z)]dz is the weighted average of the changes in density [k.(z) ! */vf] 

for x /[0, y] with weights 1/[S(y)V(z)]. We denote averages with these weights by the superscript 

“a”. Thus, we can write:  

   T.(y)  =  [ka
.(y) ! */vf] S(y) ,       

  -T(y) = TG(y) ! TH(y) = [ka
G(y) ! ka

H(y)] S(y) = [#u/L] S(y),  and  

  e(y) & -T(y)/ TH(y) = [#u/L] / [ka
H(y) ! */vf].          (7) 

Equation (7) is the sought-after retardation factor.  

To simplify (7), the weighted average ka
H(y) appearing in the denominator can be 

replaced by the un-weighted average density; i.e., by the ratio of the number of vehicles in the 

queued freeway from 0 to y, and Ly. This simplification is (nearly) exact if the weights are 

(nearly) constant; i.e., if V(y) is (nearly) independent of y. This will happen if the net vehicular 

inflow from the ramps along the queue is zero (or is small compared with the mainline net 

inflow). The simplification is also a good approximation if the density within the queue does not 

change much—since in that case weighted and un-weighted averages are similar.  In most 

practical applications, the density within a queue does not change drastically and therefore we 

expect the un-weighted method to estimate e to well within a factor of 2.  In our case, this is all 

we seek, since in typical applications e is just a few percentage points and, as we shall see, H-

lanes can still reduce PHT with considerably larger e. We now examine the effect that the 

retardation factor has on VHT and PHT. 

  

2.4. Effect of the H-lane on VHT and PHT 

2.4.1 VHT:  We show here that eliminating an existing H-lane along an open queue fractionally 

reduces VHT by at most: [2u/L][)N], where N is the number of off-ramps affected by the 

H-queue. We also argue that for typical installations, [2u/L][)N] << 1.  

 Since vehicle flows entering our freeway are the same in both scenarios, to estimate 

changes in VHT it suffices to compare the cumulative changes in vehicular outputs. And since 
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flow at the freeway’s downstream end (e.g., the discharge flow at h in Fig. 1b) is the same in 

both scenarios, we only need to consider the off-ramp flows. This estimation approach is used 

below. 

 The exit rate at an off-ramp that is y distance units upstream of the bottleneck is )*L 

before the queue arrives and drops to )q(y)L thereafter. These quantities are invariant across 

scenarios. The only difference is that in the H-scenario the off-ramp’s exit rate declines -T(y) 

time units earlier, as shown by the cumulative curves of exit counts in Fig.3a. The shaded area is 

the total extra vehicular delay imparted by the H-lane. We can tightly bound this area from above 

with the product of the number of exiting vehicles delayed by the H-queue, )q(y)L0H(y), where 

0H(y) is the time elapsed while the H-queue blocks the y-ramp, and the maximum extra delay 

incurred by each vehicle, -wmax(y).  Consideration of the figure shows that -wmax(y) and -T(y) 

are related by -wmax(y) = -T(y)[*/q(y)!1], and therefore: -wmax(y) = TH(y)e(y)[*/q(y)!1]. Thus, 

the bound to the shaded area is: )L0H(y)TH(y)e(y)[*! (y)].  

 We now sum these bounds across all off-ramps to obtain a tight upper bound to the total 

extra delay, -W, that occurs in the H-scenario. To this end, let D be the maximum length of the 

H-queue and 0o > 0H(y) the duration of the queuing episode at the bottleneck; see Fig. 3b. 

Assume (neutrally) that the queue recedes steadily at the same rate it grows; thus, 0H(y) = 

0o!2TH(y). In this case, -W " .y=0,D )LTH(y)e(y)[*!q(y)]0H(y)(1/d)dy = )L(1/d).y=0,D 

TH(y)e(y)[*!q(y)][0o!2TH(y)]dy.  If e(y) and q(y) do not vary much (as we expect in many 

practical applications), they can be replaced by their averages, e and [*! qa], in the above 

integrand to yield a good approximation.5 The simplified approximate inequality is thus: -W " 

-U 1 )Le(1/d) [*!qa].y=0,D TH(y) [0o!2TH(y)]dy. Since the queue grows (and recedes) at a steady 

rate such that TH(y) 1 ½y0o/D the integral is: (1/12)D0o
2. Thus, the bound to the total extra delay 

is: -U 1 (1/12))Le(1/d)[*!qa]D0o
2.  

 We now develop an expression for the total vehicle delay of the H-scenario, VH, so that 

we can determine the fractional contribution of the H-lane toward total delay, -U/VH. In this 

scenario, a queued freeway segment of unit length adds total delay at a rate [kH(y) ! q(y)/vf]L per

                                                 
5 If e(y) and [*! q(y)] were to vary substantially, one could conservatively use high percentiles instead of averages. 
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unit time. Therefore, we have: VH = .y=0,D [kH(y) ! q(y)/vf]L0H(y)dy = .y=0,D [kH(y) ! 

q(y)/vf]L[0o!2TH(y)]dy 1 [kH
a

 ! q(y)/vf]L[½D0o]. Thus, the fractional reduction in vehicle hours of 

delay achieved by eliminating the H-lane, 2 = -W/VH, satisfies: 2 " -U/VH 1 

(1/6))e(0o/d)[*!qa]/[kH
a!q(y)/vf] " (1/6))e(0o/d)[*!qa]/[kH

a!*/vf]  1 (1/6))e(0o/d)[2D/0o]. The 

last inequality is true because * ' q(y); and the last approximate equality because (as per the 

“shock equation”) [*!qa]/[kH
a!*/vf] is the average speed of the back of the H-queue, which is 

2D/0o. Since D/d is the number of off-ramps affected by the H-queue, N, the last of these 

equalities reduces to (1/3)e)N.  Thus, we propose: 

    2 "  (1/3)e)N               (8) 

as a simple test to bound approximately the fractional increase in VHT imposed by an H-lane.  

 Since e is not readily observed (7) can be used as an estimate. And, since the ratio 

[# / (ka
H(y) ! */vf)] in (7) is typically close to 2 and rarely more than 6, we can use 6[u/L]  as a 

conservative upper bound for e in (8). This yields the even simpler rule of thumb: 

              2 " [2u/L][)N]    (rule-of-thumb.)      (9)  

Reassuringly, (9) indicates that the savings in VHT obtained by switching from the H- to G-

scenario are null if either the H-lane is perfectly utilized or there is no off-ramp flow, as one 

would expect. 

 Underutilizations comparable with 0.4 are typical in the San Francisco Bay Area 

(Cassidy et al, 2006). Thus, for freeways with 4 lanes or more ! where H-lanes are normally 

found ! the first factor in the right side of (9), 2u/L, will rarely exceed 0.1. The second factor, 

)N, approximately equals the ratio of the flows leaving through the off-ramps and through the 

bottleneck when the queue is longest.6 If this “off-flow ratio” is less than 30% ! which is also 

typical ! equation (9) would guarantee that 2 " 3%. Thus, H-lanes would appear not to increase 

VHT significantly in typical open-ended queues.7  Let us now see how H-lanes affect PHT.  

 

                                                 
6 The two are exactly equal when the flow in the freeway queue is the same at all locations. 
7 An H-lane can add significant delays to an open ended queue if: (1) the freeway has few lanes; (2) the H-lane is 
severely underutilized; and (3) off-ramp flows are significant. On a 3-lane freeway with u = 0.75 and off-flow ratio 1 
the penalty would be 25%. 
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2.4.2 PHT: A simple formula for the ratio of PHTs in the two scenarios is now derived. When 

exceptions for access to the H-lane are not made for LOVs (e.g., for low emission vehicles, on 

the basis of tolls, etc), the result simplifies. We show that an H-lane of this type reduces PHT if 

the fraction of demand that are HOVs, f, is greater than 2. This comparison only involves 

quantities that are readily obtained from detector data, and is therefore easy to verify in the field. 

 We first consider the general case, where exceptions are allowed. Let oH be the average 

number of people in those vehicles allowed to use the H-lane, oL the average in vehicles that are 

not, and o = foH + (1 ! f)oL the overall average. If an H-lane is successful in allocating most of 

the VHT to LOVs, it will generate PH = oLVH person-hours of delay in the H-scenario. On the 

other hand, the person-hours of delay in the G-scenario would be: PG = oVG = o(1!2)VH . Thus, 

the ratio of the PHTs in the two scenarios is: 

   PG / PH = (1!2)(o/oL)       (general case).              (10) 

When no exceptions are made, so that every vehicle on the H-lane is an HOV, all H-lane 

vehicles carry at least one more passenger than the rest. Hence, oH is bounded from below as: oH  

' oL + 1. In this case, after replacing oH by its lower bound in the equality o = foH + (1 ! f)oL, and 

dividing both sides by oL , we find that o / oL  '  1 + f / oL  1 1 + f . The last approximation reflects 

current conditions in the US.  Inserting it in (10) we find: 

    PG / PH = (1!2)(o/oL) '  (1!2)(1+f)  1 1 ! 2 + f       (if no exceptions allowed).   (11) 

The last approximation in (11) applies when both 2 and f are small compared with 1, as is 

usually the case in the US, and implies that an H-lane improves mobility if f  > 2.  Whereas (10) 

requires estimates of vehicle occupancies, (11) only involves quantities measured by detectors. 

 Section 2 has examined how an H-lane bypassing an open-ended queue affects freeway 

mobility. Metering was used, as explained in Sec. 2.1, to ensure that all vehicles entered the 

freeway at the same rates in both scenarios. Thus, the H-lane does not affect the surface streets: 

PHT and VHT outside the freeway are invariant to the scenario. We used worst-case 

assumptions with no smoothing effect, no modal shift, and no preferential treatment of HOVs at 

the metered ramps. Preferential metering should reduce on-ramp PHT, increasing overall 

benefits, as would the smoothing effect and modal shift (if they were to happen). This could be 

decisive in cases where the freeway VHT penalty is close to the freeway PHT benefit. We now 

examine the effect of H-lanes on closed-loop queues that form on beltways. 
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3. CLOSED-LOOP QUEUES 

We consider here an ideal L-lane beltway with rotational symmetry, and use the notation of Sec. 

2 except where otherwise indicated. Symmetry is useful because it can be exploited to derive 

general insights. Sec. 3.1 will show that an H-lane reduces the maximum outflow possible from 

any rotationally symmetric beltway that is susceptible to gridlock. (This maximum outflow is 

achieved when on-ramp inflows are as high as possible without creating beltway queues.) In this 

idealized case, the H-lane would increase freeway VHT and likely do more harm than good.  

 This result is somewhat academic, however, because, without rotational symmetry or 

time-invariance, maximum flow is not necessarily achieved by eliminating all queues. On a real-

world busy beltway, one would expect queues to remain at isolated locations, or to persist all 

around the beltway, even when metering the ramps. Isolated queues can be analyzed as in Sec. 2.  

But we have yet to examine the case where queues persist around a (metered) beltway. This is 

done in Sec. 3.2; it shows that in this case an H-lane combined with preferential metering for 

HOVs can reduce PHT without increasing VHT anywhere.  

 

3.1 Maximum outflows of an idealized beltway with and without an H-lane: time-

independent case 

We assume that queues exist on all the on-ramps of our congested beltway and analyze the 

inflows and exit flows per ramp. Since the system is closed, the exit flow per ramp is a measure 

of system outflow. Consider first the G-scenario.  

 When the (queued) flow per lane upstream of an off ramp is q the exiting flow is )qL. To 

avoid gridlock and maintain a steady exit flow per off-ramp +  (and circulating flow + /)L), on-

ramp meters should allow more (++) vehicles into the beltway when the circulating flow rises 

(i.e., queued beltway density decreases) above the target + /)L, and fewer (+!) when the 

circulating flow drops; see Daganzo (1996, 2007) for more details. The on-ramp flow is bounded 

from above by + " $Q and the circulating flow by + /)L " Q. Therefore, the maximum exit flow 

that can be achieved in the G-scenario is +G = min{$; )L}Q.  If  $ > )L the system is susceptible 

to gridlock (more vehicles can enter than leave), and the maximum outflow (+G = )QL) can only 

be achieved by metering; if  $ " )L the system self-regulates and the maximum flow arises 

spontaneously as the on-ramp queues discharge. Consider now the H-scenario. 
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 As before f is the fraction of HOVs in the on-ramp queues (the fractional demand) and qH 

the average flow per lane circulating across screen lines between neighboring interchanges (e.g., 

each drawn  downstream of an on-ramp and upstream of an off-ramp). Assume that HOVs and 

LOVs have the same), so that the combined exit flow of both vehicle types is )qH. If the on-

ramps are metered so as to match and sustain this output at every off-ramp, and we do not give 

priority to HOVs at the on-ramps, each on-ramp’s input flows of HOVs and LOVs will be: )qHf 

and )qH(1!f), respectively. These will create HOV and LOV flows qHf and qH(1!f) at all of our 

inter-ramp screen lines. For these flows to be feasible they must satisfy capacity constraints for 

the H-lane and the G-lanes. Thus, the maximum possible circulating flow qH* is the solution of: 

   max {qH
 }  s.t.:       (12a) 

   qHf  " Q     (H-lane constraint) and  (12b) 

   )qHf + qH
 (1!f) " Q(L!1) (G-lane constraint).   (12c) 

We assume that f < 1/L, so that the first capacity constraint is redundant. Then, qH*  = 

Q(L!1)/[1 + f(1 ! ))].  Since the maximum exit flow from an off-ramp in the H-scenario is +H
 = 

)qH*, we see that +H  = )Q(L!1)/[1 + f(1 ! ))]. Thus, the ratio +H /+G is: [1!1/L] / [1!f(1!))].  

Since 0 < f < 1/L and 0 < )  < 1, the denominator of this ratio is always larger than the 

numerator.  Thus, installing an H-lane always reduces an idealized beltway’s maximum outflow.  

 

3.2 A congested beltway with and without an H-lane: time-dependent case 

Start again with the G-scenario. To prevent on-ramp queues from spilling back to city streets the 

beltway is operated during the rush in the congested regime (where it can store many vehicles) 

with a circulating flow per lane q inferior to the maximum possible in the H-scenario, as 

determined from (12). The exit flow at each off-ramp would be )qL and this would be achieved 

with queues on all the on-ramps.  

  The same outflows can be achieved in the H-scenario with 3#u fewer vehicles per mile of 

beltway, as per the proposition of Sec 2.2, but to achieve this smaller density one would have to 

meter the on-ramps more aggressively at the beginning of the rush, since demand is invariant to 

the scenario. Thus, the #ud vehicles removed from each inter-ramp beltway segment would have 

to be transferred to the on-ramps. This is undesirable, since we are trying to control spillbacks. 

Therefore, we do not pursue this strategy and ask instead a more relevant question: how is 
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outflow impaired by an H-lane with a given underutilization level u if we maintain the same 

beltway accumulation in both scenarios?  

 The proposition of Sec. 2.2 implies that the congested branch of a beltway’s FD in the H-

scenario must be parallel to the congested branch in the G-scenario; see Fig. 4. One can see that 

when density is the same in both scenarios, the circulating flow in the G-scenario is greater by 

#uw 1 uQ units, where w is the backward wave speed. Thus, an off-ramp’s exit flow would 

increase in the G-scenario by )uQ. Since it was originally )qL, it rises by a factor [uQ/qL]. This 

is the real penalty imposed by the H-lane. It reduces the outflows that can be sustained with the 

same beltway accumulation. The effect is undesirable because it extends the length of the rush, 

negatively affecting all vehicles and lengthening on-ramp queues. Thus, H-lanes should not be 

active when a beltway is congested everywhere.  

The only exception to this rule arises if u 1 0. This, of course, would require a fortuitous 

value of f that cannot be expected to happen frequently. But it can artificially. Simply, modulate f 

by metering HOVs and LOVs differently (enriching the entering stream with HOVs) but keeping 
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Figure 4. Fundamental diagram for a whole freeway in two scenarios (underutilization = u). 
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the total metering rate for the two flows combined the same as in the G-scenario. If queues of 

both vehicle types exist on the on-ramps one can increase f as much as necessary to saturate the 

H-lane, and achieve u 1 0. Call this approach differential-metering; “D-metering” for short.  

With D-metering in the H-scenario the beltway suffers no loss in storage compared with 

the G-scenario, and the same outflows are achieved. In this way we avoid transferring VHTs 

from the beltway to its on-ramps. Since total vehicular inputs into the beltway are the same, the 

beltway VHT also remains invariant. D-metering in the H-scenario, however, allocates all the 

beltway delay to LOVs, unlike the G-scenario. Thus, (10) and (11) apply with 2 = 0 and we see 

that D-metering reduces PHT relative to the G-scenario.  

 One can also D-meter in the G-scenario without changing total on-ramp flows. This 

reduces on-ramp PHT, same as in the H-scenario, but without the positive effects on the beltway. 

In either scenario, D-metering cannot be sustained for the duration of the rush, but only while 

HOV queues exist on the on-ramps. At other times, and if the beltway is congested everywhere, 

the H-lane should be deactivated.  

The above illustrates that dynamic strategies can be of value even in seemingly hopeless 

situations, like a fully congested, symmetric beltway. The strategies should be even more 

beneficial in realistic cases with asymmetric demand where they can be adjusted to deal with 

local spatiotemporal phenomena such as fragmented queues. But an important point of this 

subsection is that closed-loop queues respond to H-lanes in a very different way from open 

ended queues and that management strategies should recognize this dichotomy. 

  

4. DEPLOYMENT 

Here we summarize those of the above findings that can be applied macroscopically on an urban 

scale, and then discuss what they say about H-lane deployment. 

 We found that underutilized H-lanes reduce traffic density for the same flow, relative to 

the G-scenario, albeit only slightly if the underutilization is slight. The density reduction forces 

queues to grow longer and faster, i.e., to expand more, in the H-scenario. This phenomenon is 

critical on congested beltways with closed-ended queues because such queues can only expand 

on the on-ramps; and on-ramp queues are problematic if they spill back onto the surface streets 

and interfere with local traffic. The density reduction effect, on the other hand, is not very 
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significant for open-ended freeway queues, because they can usually expand on the freeway with 

little harm, even if the H-lane is underutilized. 

The above suggests a general deployment and design principle: since traffic is stored less 

densely [#u fewer vehicles per mile] on an H-system than a G-system, the former requires more 

storage buffers, e.g., city streets, and these should be located where the stored vehicles would not 

interfere significantly with traffic that does not use the freeway.  

 As an example, consider a city with a ring and radial system of thoroughfares where most 

trips during the morning (evening) rush are to (from) the center. For the morning commute, our 

findings suggest that H-lanes can be used on the inbound radial freeways, since queues on these 

facilities would typically be open-ended. Our findings also mean that H-lanes can be used on the 

outer rings where queues are likely to be fragmented (and therefore open-ended). But H-lanes 

should not be used on uniformly congested inner rings.  

The evening commute is slightly different. Although rings should be treated as described 

above, radial links should not. Outbound queues close to the center would spillback onto the 

congested city streets and interfere with local traffic. Thus H-lanes should not be installed on 

outbound freeway links that are close to the center. If at locations further from the center 

outbound queues fragment, H-lanes can be used to bypass these queues.  

H-lanes may be deployed even more generally than described above if they induce higher 

bottleneck discharge flows by means of the smoothing effect.  

 

5. GENERALIZATION FOR OTHER MODES IN THE URBAN LANDSCAPE 

Our findings about H-lanes suggest ways to allocate crowded street space to transportation 

modes with different passenger occupancies and performance characteristics. We found that 

reserving freeway lanes for HOVs reduces PHT without significantly increasing vehicle-

kilometers of travel if: (i) one does not create new bottlenecks or reduce the capacity of existing 

ones; and (ii) LOVs removed from the reserved areas can be stored harmlessly in buffers. Thus, 

proper deployment increases the distance that people can travel in a given time and the number 

of opportunities available to them; i.e., it increases accessibility. Equation (10) reveals that 

accessibility increases with o/oL. Thus, in agreement with intuition, lane reservation strategies 

should yield even greater benefits in urban street contexts, when applied to vehicle classes in 

which passenger occupancies are more markedly different, such as buses (or trams) vs. cars.  
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 When vehicles of different classes have different performance characteristics, as occurs 

with buses (trams) and cars, lane reservation schemes should smooth flow more markedly than in 

the case of H-lanes for cars, increasing outflows and reducing PHT. With segregated lanes, buses 

are prevented from delaying cars (when making stops, changing lanes or accelerating slowly) 

and cars from delaying buses by forming queues next to bus stops. Although we do not know yet 

how to predict the magnitude of this smoothing effect for surface streets with cars and buses (this 

is an important research topic) we can predict its impact on system PHT parametrically. Of 

particular interest is its effect on the worst-case scenario of Sec 3.1, because a beltway is a 

metaphor for severely congested city centers. Therefore, the analysis of Sec. 3.1 generalized 

below.  

 

5.1. Performance of bus-only lanes in uncongested beltways  

We consider a beltway on which there is one (or more) H-lane(s) reserved for a bus (or tram) 

route. We assume that the transit agency supplies enough vehicles and drivers to sustain the same 

fixed frequency, qH, in both scenarios. In this way, bus passengers experience the same out-of 

vehicle delay in both scenarios; and we can focus on their in-vehicle travel time: the PHT. We 

also assume that our HOVs (buses from now on) do not enter or leave the loop in significant 

numbers during the study period. We now compare the two scenarios. 

As before, Q is the capacity of a lane carrying only cars in the H-scenario (cars/hr). The 

capacity of a lane carrying only buses will in general be a smaller number (buses/hr), since buses 

make stops and are less maneuverable than cars. Hence, we introduce a passenger-car-equivalent 

(pce) constant, p that converts buses into “car-equivalents” for the purposes of determining 

maximum flows. We estimate p 1 2. This means that the number of lanes allocated to HOVs in 

the H-scenario, l < L, must satisfy: pqH < Ql. In the G-scenario flow should be less efficient, and 

the capacity of a lane (in cars/hr, counting each bus as p cars) significantly smaller. It shall be 

denoted rQ, where r < 1 is a positive parameter.8  

Consider now the H-scenario, and look for the best l. Since buses generally stay in the 

beltway without entering or exiting, they do not affect the LOV lanes if lQ ' pqH. Under these 

conditions the maximum LOV flow (arising downstream of our beltway’s merges) is Q(L!l). To 

                                                 
8 This parameter should depend on the mix of buses vs. cars; and be smallest when the stream includes significant 
numbers of both.   
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maximize it, choose the smallest integer l that satisfies: lQ ' pqH.  The result, l*, should leave a 

gap in the inequality smaller than the capacity of one lane; i.e., such that l*Q ! pqH = uQ, where 

u / (0, 1) is the underutilization level of the bus-lanes. Thus, in the H-scenario, the maximum 

combined flow of both vehicle types on the two sets of lanes, pqH + Q(L!l*), becomes: Q(L! u). 

In the G-scenario, the maximum combined flow is (1! r)QL. Thus, the extra flow circulating on 

the beltway in the H-scenario is: 

   Extra flow on beltway in H-scenario = Q(Lr !  u).       (13) 

This extra flow is composed of LOVs only, since bus flow is fixed. In the H-scenario, 

this extra flow produces )Q(Lr ! u) extra units of LOV exit flow per off ramp. Thus, the H-

scenario is better for LOVs if Lr > u. Models to predict r are not available but we expect values 

comparable with 0.2 to arise when the stream contains a significant fraction of buses that make 

many stops. (This is common in cities that rely heavily on buses and para-transit to meet their 

transportation needs.) With r this large, segregation should improve LOV outflows on beltways 

with four lanes or more, even if the bus-only lanes are significantly underutilized. Recall that our 

segregation strategy does not affect the PHT of bus users because it keeps invariant both, the bus 

service frequency and the bus speed on the beltway. Thus, the strategy is Pareto efficient if 

Lr > u.  This shows that segregation of street space when modes are very different improves 

mobility, even in the worst-case situation of a symmetric beltway.  

 

5.2 Bus-only lanes in congested beltways and general deployment issues  

The above assumed that the beltway can be maintained congestion-free, and this may not always 

be possible. To relax this assumption, the logic of Sec. 3.2 is now qualitatively applied with two 

modifications: (i) no D-metering, since buses are permanently on the beltway; and (ii) not using 

the proposition of Sec. 2.2 to estimate density changes because it only applies to two identically 

performing vehicle classes. We conjecture that a mixed stream of buses and cars is considerably 

less dense than if the vehicle fleet was homogeneous;9 and that if the fraction of buses is large, 

the segregated stream could contain more LOVs than the mixed stream. In this case, the H-

scenario would exhibit smaller VHT and PHT for LOVs.  

                                                 
9 Research is planned to substantiate this conjecture. Our rationale is that lane-changing interactions in a G-scenario 
are both more numerous and onerous (they may involve mandatory stopping) in bus vs. car systems than in car vs. 
car systems. These interactions may introduce gaps in the traffic stream that reduce density. 
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In addition, because the beltway is congested, buses travel faster in the H-scenario than in 

the G-scenario, and this helps the bus side of the system in two ways: (i) by reducing passengers’ 

in-vehicle PHT; and (ii) by allowing the bus agency to maintain the stipulated service frequency 

with fewer vehicles and drivers. This shows that bus-only lanes can offer copious benefits even 

in situations, such as our symmetric beltway, where conventional HOVs would not.   

 We conclude that the recipe for deployment of special bus-only lanes in cities (including 

bus rapid transit applications) should be more liberal than for conventional HOVs, but similar in 

character. The following are tentative rules, pending research on the behavior of mixed traffic 

streams: (i) devote special lanes to buses in congested central areas, but only where they can be 

nearly fully utilized; (ii) restrict LOV traffic in the remaining lanes (by metering access points, 

pricing or some other means) to ensure they flow as close to capacity as possible; (iii) use rules 

(i) and (ii) also for the outbound radii close to the center; and (iv) use special lanes liberally for 

inbound radii, and wherever streets are not uniformly congested. 

 The above assumes that transit routes and schedules are given, but more improvements 

are possible if one is allowed to change them. For example by focusing the layout of parallel 

transit lines on a few streets, instead of spreading them over many, we can ensure that bus 

frequencies are high enough for rule (i) to apply. This would increase bus speeds, but could also 

reduce connecting times and increase walking distances. Holistic study of these matters is 

necessary. To this end, a comprehensive theory of transit system design on an urban scale would 

be useful, particularly if it could be linked to the emerging theory of urban traffic dynamics. By 

combining the two theories, urban decision-makers could choose with scientific information how 

best to allocate the urban pavement to its various possible uses, and even to decide how much 

pavement should be provided per city dweller.  Much research is still needed. 
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