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ABSTRACT OF THE THESIS

Diffusion of Run-and-Tumble Microswimmers in Porous Media

by

Can Yang

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2020

Professor David Saintillan, Chair

Microswimmers are objects that are able to propel themselves actively in fluid environ-

ments. The typical motion of bacteria such as E. coli can be described by the run-and-tumble

model, which consists of successive relatively straight runs in conjunction with erratic changes of

the swimming direction known as tumbles. The process of diffusion of microswimmers in porous

media is crucial in many biological and environmental systems, and their motility is critical for

processes such as bioinfection, bioremediation and biodegradation. In this thesis, the diffusion of

microswimmers in porous media is studied numerically based on the run-and-tumble model. The

results show that an increase in volume fraction of the obstacles comprising the porous medium

leads to a decrease in effective long-time diffusivity. In cases where obstables are allowed to

vii



overlap, the diffusivity drops even more dramatically with volume fraction than in the case of

no overlap. The effect of varying the range of pillar dimensions is also studied. In the case of

overlapping pillars, it is found that the diffusivity increases slightly when the domain is filled

with larger pillars.
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Chapter 1

Introduction

The observations of Brownian motion, which denotes the continuous random motion of

microscopic immersed particles in solution, can be traced back to 17th century. In 1828, Robert

Brown reported irregular oscillations of pollen particles. He also found that this motion is not

restricted to organics or their products, as non-organic minerals and rocks are also subject to

this type of motion. Brownian motion is caused by the continuous collisions of fluid molecules

against immersed particles. In 1905, Albert Einstein showed that particles of any size, from

microscopic molecules to those large enough to be observed macroscopically, are subjected to

thermal fluctuations [1]. This thermal energy is the root cause of Brownian motion, and the

random motion of particles subjected to that is called ’diffusion’. Unlike thermal fluctuations

that having no preferred direction, external applied forces such as gravitational sedimentation,

centrifugal acceleration or electrical fields can introduce bias in the direction of diffusion [2].

In contrast to passive Brownian particles, active particles are able to transform the energy

extracted from external sources into work for self-propulsion. Examples include macroscopic

objects such as fish, birds, and humans, or microscopic swimming organisms such as Escherichia

coli (E. coli) and Listeria. For these swimmers, the mechanism of swimming depends strongly on

Reynolds numbers, or the ratio between inertial forces and viscous forces. Fish swim at Reynolds
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numbers of the order of 105 by taking advantage of inertia, while bacteria live in low Reynolds

numbers of order 10−5 where thrust mainly results from viscous forces [2, 8, 9]. Under the

condition of low Reynolds number, the Stokes flow equation suggests that swimming relies on

non-time reversible processes, which suggests totally different hydrodynamics from that of the

time-reversible swimming strategies at high Reynolds number, such as fish that propel themselves

by reciprocal flapping [3].

The existence of biological swimmers is ubiquitous: bacteria and archaea habit extensively

in the Ocean, soil, deep continental subsurface, upper oceanic sediment, deep oceanic subsurface,

groundwater, wastewater, animals and plants, with a total population of about 1.2×1030 cells,

and serve as a critical part in the carbon and nutrition cycling in the ecosytem [12, 13]. Besides

environmental impacts, biological swimmers are also crucial for human activities. Spermatozoa

travels through the female reproductive tract to reach the site of fertilization, wastewater treatment

benefits from microorganisms by removing dissolved organic matters [14, 15, 17]. On the other

hand, they can also cause human health issues: bacteria such as E. coli can cause urinary tract

infections affecting 150 million people per year, and helicobacter pylori present in the human

stomach can cause peptic ulcers and stomach cancer [16, 18].

Active swimmers are not limited to biological swimmers: artificial swimmers with sizes

comparable to biological microswimmers are gaining attention, taking advantage of their potential

in medical, health care, and drug delivery applications wtih minimal invasion and infection

[19, 20]. Some of them have magnetically triggered flagellar filaments that mimic the swimming

strategy of some of biological swimmers, while autophoretic bimetallic rods with no moving

parts that propel themselves by electrochemical reactions [6, 7, 21].

The mechanism of swimming of E. coli, a rod-shapred biological microswimmer with

flagellar filaments mounted on the sides of its body, has been extensively studied [4]. The

swimming pattern of E. coli can be described by the ’Run-and-Tumble’ model: runs, which are

steady directed straight motions in a certain direction, alternate with tumbles, which are erratic
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changes in the direction of swimming [5]. During the run stage, the flagella turn anticlockwise

and group into a bundle, and the rotation of this helical filament generates thrust to push it

forward; in the tumble stage, they rotate clockwise and comes apart, each of these flagella rotating

individually and thereby changing the direction of swimming [2]. The trajectory of a run is not

perfectly straight due to rotational diffusion, and its direction changes by approximately 27◦ on

average [2]. Experimental tracking shows that the duration of runs and tumbles satisfy exponential

distributions, with means of 1s and 0.1s respectively, and that the duration of individual runs

are not correlated. For the direction of swimming, in the dilute aqueous solution, E. coli do

have a preferred change in swimming direction of 68◦ on average, but this preferred direction is

wiped off since the swimmer forgets its original orientation after a few tumbles [5]. In addition to

flagellated bacteria such as E. coli and Salmonella, eukaryotic swimmers propel themselves by

cilia, which are shorter than typical flagella with different beating patterns with so-called power

and recovery strokes, unlike the sinusoidal bending waves observed in flagellated swimming [11].

Although the transport of bacteria in free medium has been well studied, their motility

in complex heterogeneous media such as human tissues and soils still requires exploration.

Swimming of active particles in periodic lattices [22] and through the interstices between closely

packed hydrogel particles [23] have been analyzed in experiments. Computer simulations of

microswimmers with circular orbits in 2D porous media were also reported [24]. In this thesis, we

apply numerical simulations to analyze run-and-tumble dynamics of microswimmers in idealized

porous media and elucidate how the geometry of the medium affects the long-time diffusion of

the swimmers.
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Chapter 2

Numerical Model

2.1 2D Domains with Non-Overlapping Pillars

The run-and-tumble dynamics of microswimmers in porous media is numerically simu-

lated in two dimensions as follows. The porous medium is modelled as a periodic box consisting

of pillars with circular shape as show in Figure 2.1. Circular pillars are generated randomly,

with position PPP = (Px,Py) ∈ R2, and radius R ∈ [Dmin,Dmax]. We enforce periodic boundary

conditions: if a pillar overlaps with any of the boundaries, an additional image pillar will be

added on the other side of the box (Figure 2.1). Pillars are not allowed to overlap with each other

in this case, therefore any pillar that are generated by the algorithm will be removed it overlaps

with any of the existing pillars.
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Figure 2.1: (a) Periodic boundary conditions. (b) Example of pillar distribution in a periodic
box.

The volume fraction (or, to be precise, area fraction in two dimensions) is another factor that

governs the porous medium geometry. It is defined as

φ =
Vpillars

Vbox
=

N
∑

i=1

1
4πD2

i

L2 (2.1.0.1)

where N is the total number of pillars whose center is located inside the periodic box.

A swimmer is initially placed at the center of domain SSS0 =
(L

2 ,
L
2

)
. If the initial position

of swimmer falls inside of a pillar, the swimmer will be shifted to the right until it is no longer

inside the pillar. Once the swimmer is placed in the domain, the run-and-tumble model is applied

to march time forward and update the position of swimmer. Swimmer transport is characterized

by straight runs in certain direction and with a duration of run which is called the persistence

time. Persistence times τ are extracted from an exponential distribution with mean of 1, and

the swimming direction ppp = (cos(β) ,sin(β)), which is characterized by angle β(t) ∈ [0,2π),

is picked from uniform distribution. Since duration of tumble ( 0.1s) is much smaller than the
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persistence time of a run ( 1s), the duration of tumbles is ignored in the simulation: between two

runs, the swimmer orientation changes instantaneously.

More precisely, the simulations proceeds as explained here. At the beginning of each

run, the swimming direction and duration are randomly selected. In the first place, we need to

determine if collision with a pillar will take place (contact detection): If the particle does not

collide with any of the pillars by the end of its run, the swimmer will move in a straight line

throughout the current run, with final position SSSi = SSSi−1 + τppp. However, if the swimmer collides

with an obstacle during its straight run, we assume that the subsequent trajectory of the swimmer

complies to the shape of pillar, i.e. swimmer will maintain its current orientation and will slide

on the obstacle with the tangential component of its swimming velocity. To perform the contact

detection, consider a particle located at an arbitrary position SSSi, with swimming direction pppi.

Pillars boundaries are defined by a group of second-order polynomials (x−Px)
2 +(y−Py)

2 = d2

4 .

Suppose that the swimmer will collide with a pillar during its run, then the position of the collision

point is SSScollide = SSSi + tcollide ppp where tcollide is unknown. To find it, we substitute SSScollide into the

equation of the circular pillar, solve the second order polynomial to obtain the time to collide. If

there is no pillar located on the way of swimmer, the second order polynomial will return two

imaginary roots; in this situation, swimmer will not collide with any of the pillars during this run.

Figure 2.2: Setup of new coordinate system and angles
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To determine swimmer motion after the collision, we define a new coordinate system

x
′′
O
′′
y
′′

(Figure 2.2) with the origin at the center of pillar, the x axis aligned with the swimming

direction of the current step, and the y axis satisfy right hand rule. α is the absolute angle between

the negative x axis and the vector defined by the center of pillar and the collision point, θ is

defined in similar manner but using the swimmer location after sliding instead of collision point:

α = |Ang(SSScollide−PPPcollide,−ppp) |, (2.1.0.2)

θ = |Ang(SSS−PPPcollide,−ppp) |. (2.1.0.3)

At any instant of time, the swimmer will slide on the pillar with a tangential velocity of vvv =

|vvv0|sin(θ). It is clear that if α is 0 at the time of collision, the swimmer will just get stuck instead

of sliding. Once the swimmer slides on the pillar, it can leave the pillar and proceed to swimming

in a straight line again as ppp becomes tangent to the pillar (θ = π

2 ) at its current location. It follows

two scenarios: 1) The swimmer rests on the pillar at the end of its run; 2) The swimmer escapes

from the pillar which it slides on. In the second case, once the swimmer escapes from the pillar,

we must repeat the whole procedure described above (including contact detection with other

pillars), with run time of τ− tcollide− tescape while keeping ppp unchanged. Consequently, the time

for the swimmer to escape from the pillar which it slides on should be computed in order to

determine whether the swimmer will escape or not.

Consider a particle sliding on a pillar of diameter d. At any instant of time, its angular

velocity along the pillar surface is given by:

ω =
dθ

dt
=
|vvv0|sin(θ)

d/2
(2.1.0.4)

This can rearranged as
1

|vvv0|sin(θ)
dθ =

2
d

dt (2.1.0.5)
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θ = α at the time of collision of the swimmer with the pillar, and the swimmer can escape as

θ = π

2 . Therefore, to obtain the time taken for the swimmer to escape the pillar, we integrate θ

from α to π

2 and time from 0 to t:

∫ tescape

0

2
d

dt =
∫ π

2

α

1
|vvv0|sin(θ)

dθ

2
d

tescape =
1
|vvv0|

log
1/ tanα+1/sinα

1/ tan π

2 +1/sin π

2

Rearranging yields the time for swimmer to escape from the pillar which it is sliding on:

tescape =
d

2|vvv0|
log
(

1
tanα

+
1

sinα

)
(2.1.0.6)

We compare t given by (2.1.0.6) with the remaining time tremain = τi−tcollide to determine whether

the swimmer will escape from the pillar or not, where τi is run time for current step, tcollide is the

time for the swimmer to collide with the nearest pillar. If tescape > tremain, the swimmer leaves the

pillar before the end of the current run; otherwise the swimmer will finish its run somewhere on

the surface of the pillar.

Then next question is: if the remaining time is not enough for the swimmer to escape,

where will it stop on the pillar? Starting from (2.1.0.5), we integrate over θ from α to θend , and

time from 0 to tremain: ∫ tremain

0

2
d

dt =
∫

θend

α

1
|vvv0|sinθ

dθ

i.e.,
2|vvv0|

d
tremain =− log

(
cosθend

sinθend
+

1
sinθ− end

)
+ log

(
cosα

sinα
+

1
sinα

)
= log

(
1

sinα
+ 1

tanα

1+cosθend
sinθend

)
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Take the exponential on both sides,

e
2|vvv0|

d tremain =
1

sinα
+ 1

tanα

1+cθend
sinθend

(2.1.0.7)

Define

A =
1

sinα
+ 1

tanα

e
2|vvv0|

d tremain

Then (2.1.0.7) becomes
1+ cosθend

sinθend
= A

θend = 2|vvv0| tan−1 1
A

(2.1.0.8)

Since α, d and tremain are all known, A is known for current step. Therefore, the position where

the swimmer will be at the end of the time step is fully described by θend . Let SSS
′′
collide be the

position of collision point with respect to x
′′
O
′′
y
′′
, which is given by:

SSS
′′
collide = RRR(SSScollide−PPPcollide) (2.1.0.9)

where PPPcollide is the position vector of the collision point with respect to the initial coordinate

system, i.e. PPPcollide =
−→
OPcollide. RRR is the rotation matrixRRR =

 cosβ sinβ

−sinβ cosβ

. θend is the angle

with respect to the relocated and rotated coordinate system x
′′
O
′′
y
′′
. To obtain the position

of swimmer with respect to the original coordinate system, we need to transfer the position

information given by θend back to that coordinate frame:

SSSend = RRR−1SSS
′′
collide−PPPcollide (2.1.0.10)

Note that for the case of escape, (2.1.0.10) could also be used to compute the point of escape

by replacing θ with [0, d
2 ]

T , and SSScollide by SSSescape, Where sign is the sign of the y component of

9



SSS
′′
collide.

Overall, the steps described above can be summarized in the flow chart below in Figure

2.4.
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Figure 2.3: (a) No Collision. (b) Collision but no escape. (c) Collision and escape. (d) Collision,
escape, and collision with another pillar after the escape.
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Figure 2.4: Flow chart of the simulation
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2.2 2D Domains with Overlapping Pillars

We also consider more complex geometries where the pillar distribution allows pillars to

overlap with each other. Therefore, a new pillar will not be removed if it overlaps with an existing

pillar: it will only be removed when the new pillar is completely inside an existing pillar. The

strategy for analyzing swimmer motion is generally the same as discussed in the section above,

but with new complexity induced by the overlapping geometry.

Figure 2.5: Example of configuration that allow pillars to overlap. Circular pillar in blue
represents it is not in overlap with any of other pillars, that in green denotes there are at least
one pillar overlap with it.

The volume fraction of pillars could be defined in the same way as (2.1.0.1). However, un-

like in the non-overlapping case where volume fraction could be computed from direct summation

of the area of each pillar, overlapping pillars impose complexity that renders a analytical calcula-

tion of the volume fraction difficult. Hence, we perform this calculation numerically. To this end,

we discretize the domain into uniformly space cells, where the total number of cells is denoted by

Ntotal . If the center of one cell is located inside at least one of the pillars, then that cell should be la-

belled as ”occupied by a pillar”. After looping through all the pillars, the number of cells occupied

by pillars (Ninside) can be counted exactly, and the volume fraction can then be easily computed as:

13



φ =
Ninside

Ntotal
(2.2.0.1)

Obviously, this method will introduce numerical errors, though it is excepted that (2.2.0.1) should

converge to the exact volume fraction with mesh refinement. To determine what is the reasonable

choice of cell size that balances accuracy and CPU run time, a benchmark testing was imple-

mented by numerically integrating non-overlapping pillars for which the volume fraction is known

analytically, as shown in Figure 2.6 and Figure. 2.7. From Figure 2.8, it can be seen that 0.001,

for both accuracy and computation efficiency, is a reasonable choice of cell size under which the

volume fraction converges.

Figure 2.6: Example of discretization. Curve in blue belongs to part of a pillar, black solid lines
represent grid cells, and black crosses are the centers of the cells. Cell II and IV are taken to be
occupied by a pillar, but I and IV are not.
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Figure 2.7: Illustration of the numerical integration for one pillar. The domain is discretized
by cells with size of 0.2 and 0.1. For this particular pillar, cells marked in grey are labelled as
’occupied’ by the pillar.

Figure 2.8: Convergence test of the numerical integration. This test is done in a periodic domain
filled with non-overlapping pillars with volume fraction of 0.3.

The strategy for the run-and-tumble motion is similar as before, where for each individual

run the swimmer undergoes a straight run in the interstice between pillar but slides on pillars

15



after collision. Consider the case that the swimmer collides with and slides on a pillar. What

make overlapping pillars different from non-overlapping pillars is that the swimmer might not

finish its run on or escape from the pillar that it first collides with. Scenarios in FIG. ?. (a) and

(b) are essentially identical as before: the swimmer will either rest on the pillar at the end of the

time step or escape. Assume in the i-th run, run time τ is long enough τ≥ tescape for swimmer to

escape from the pillar that it is colliding with. In this situation, SSSescape is no longer applicable,

since the swimmer will reach the intersection point between the pillar which the swimmer first

collided with another pillar, as illustrated in Figure 2.10(c) and Figure 2.10(d). As a result, for

the situation where pillar intersections occur before reaching SSSescape, SSSescape is not applicable

anymore; in this case, the nearest intersection point, analog to non-overlapping case, would serve

as ’SSSescape’ to compute ’tescape’. Denote ’SSSescape’ as SSSinter, and the time for swimmer to reach

SSSinter as tinter. It is straightforward to note that SSSinter is a critical point where swimmer may either

continue sliding on the second pillar (Figure 2.10(c)), or get stuck (Figure 2.10(d)).

One pillar can intersect with one or more other pillars, and intersection points can be on

either sides of y
′′
. Obviously, intersection points between the pillar that swimmer first collides

with and other pillars could be easily obtained by equating two equations for the circles, but

one still needs to determine which of two interactions is the closes point to SSSescape. To do this,

we define another new coordinate system (x
′
O
′
y
′
) with the origin at the collision point, the x

axis aligned with swimming direction of the current run, and the y axis obtained by the right

hand rule as previously. We transform the coordinates of the intersection points to x
′
O
′
y
′

by

SSS
′
inter = RRR(SSSinter−SSScollide, and the nearest intersection point is the one with smallest positive x

′

value.

The procedure to determine the time for the swimmer to reach SSSinter is described as follow.

Let α be the initial direction of swimming with the same definition as (2.1.0.2), θinter be the angle

16



following (2.1.0.3) that provides information on SSSinter:

θinter = |Ang(SSSinter−PPPcollide,−ppp) | (2.2.0.2)

The time for the swimmer to slide from SSScollide to SSSinter is computed by integrating (2.1.0.5) over

θ from α to θinter and t from 0 to tinter:

∫ tinter

0

2
d

dt =
∫

θinter

α

1
|vvv0|sin(θ)

dθ

tinter =
d

2|vvv0|
log
(

cotα+ cscα

cotθinter + cscθinter

)
(2.2.0.3)

Hence, depending on the remaining run time after collision, the swimmer might complete its run

somewhere between Scollide and Sinter (tremain ≤ tinter), or overpass Sinter (tremain > tinter). There

is nothing special in the first case: at the next time step, the swimmer will again pick another

direction of swimming and run. In the second case, however, the swimmer will either continue

sliding or get stuck (Figure 2.10).

Consider the situation where the swimmer collides on the first pillar and reaches Sinter

before the end of the run. Generally, Sinter could belongs to multiple pillars, so which pillar does

swimmer continue to slide on? And under which condition will it get stuck? To address the these

questions, we first define β ∈ [0,π] as the angle between ppp and
−−→
O
′′
Sinter. γ is measured clockwise

from ppp if the y
′′

component of SSSinter is positive and anti-clockwise otherwise. From the geometry,

we find that the swimmer should slide on the pillar which returns the maximum value of γ < π

among these intersecting pillars (Figure 2.9(a)). Meanwhile, if these exists a pillar for which

γ≥ π, then the swimmer will get stuck (Figure 2.9(b)).

17



Figure 2.9: (a) γ1 < γ2 < π, swimmer continue sliding on Pillar2. (b) γ1 < π < γ2, swimmer get
stuck.

Figure 2.10: (a) Sescape is available, swimmer slides on both pillars. (b) Sescape is available, but
swimmer gets stuck on the second pillar. (c) Sescape is unavailable, swimmer slides on both
pillars. (d) Sescape is unavailable, the swimmer directly gets stuck without sliding.
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A flowchart of whole process discussed above is shown in the Figure 2.11 below.

Figure 2.11: Flowchart of the simulation procedures of overlap case.

19



Chapter 3

Simulation Setup and Results

3.1 Computational Setup

In this Chapter, we provide details of the computational setup, and present and discuss

results.

As discussed in Chapter 2, the simulation is conducted inside a periodic box. The reasons

for using a periodic box are that swimmers are easier to track, and fewer pillars are required, which

reduces the computational cost. Since the objective is to consider the diffusion of swimmers in a

domain filled with random obstacles, the periodic boxes should be large enough to contain enough

obstacles to capture this randomness. To make sure the domain is representative, a benchmark

test was conducted to determine which size of periodic box should be used. In order to compare

the effect of periodicity of the domain on the diffusivity, two mostly identical cases are simulated,

with the same swimming direction and duration, and a volume fraction of 0.5. The only difference

is that one is conducted inside a periodic box with L = 20, while the other is simply a large

domain without periodicity. The resulting diffusivity shows that there are no differences between

these two cases, therefore for the volume fraction of 0.5, L = 20 is large enough to capture the

randomness of the domain. However, the size of boxes should not be kept constant for various
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volume fractions. Consider two cases of volume fraction of 0.1 and 0.5, when reducing it from

0.5 to 0.1, if the box lengths are kept fixed, the total number of pillars contained in the box would

also be reduced with the potential for losing some randomness. This problem can be avoided by

scaling the size of boxes as we reduce the volume fraction. The scaling factor is determined as

follows. Suppose that the length of the box L has been determined for a specific volume fraction,

then the expectation of the total number of pillars inside this box is:

N = φ
L2

E[d]
(3.1.0.1)

where E[d] is the expectation of the pillar diamete, which satisfies uniform distribution with

d ∈ [d1,d2].

E[d] =
∫ d2

d1

d
1

d2−d1
dd =

d1 +d2

2

Rearranging (3.1.0.1), we obtain
N
L2 =

E[d]
φ

N/L2 can be interpreted as the number density of pillars, which should be kept constant when

changing the volume fraction. Hence for another case with volume fraction φ′, mean pillar

diameter E[d′] and corresponding box length L′, (3.1.0.1) would yield:

N′ = φ
′ L′2

E[d′]
,

N
L2 =

N′2

L′2
,

L′2 =
φE[d′]
φ′E[d]

L2.
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Therefore, the scaling factor on the box length is:

C =

(
φE[d′]
φ′E[d]

) 1
2

(3.1.0.2)

Since the duration and direction of runs are extracted randomly from the exponential

and uniform distributions, respectively, the run-and-tumble dynamics of the swimmers inside

the medium is a stochastic process. To obtain the effective diffusivity of the swimmers, their

displacements should be averaged over a large enough number of realizations:

< SSSi >=
1
N

N

∑
j=1

SSSi (3.1.0.3)

Note that since the duration of runs will be different for each realization, the position of the

swimmers must be interpolated to the same instant of time to proceed with the averaging in

(3.1.0.3). A convergence test for the effect of the number of realizations on the obtained diffusivity

was conducted, as shown in 2.8. It can be seen that with increasing number of realizations the

diffusivity converges. However, 7000 realizations is computational expensive, so a smaller

number of realizations should be used to balance out the computation cost and accuracy of the

diffusivity. The value of the diffusivity obtained from 2000 realizations is within 5 percent

from that with 7000 realization. In the results shown below, we therefore average over 200

realizations, which provides a balance between computation cost and accuracy. After the average

displacements are obtained, a straight line can be fitted to the plot of mean square displacement

versus time, whose slope is 4 times the diffusivity in 2D.

22



Figure 3.1: Illustration of how effective diffusivity changes with respect to number of realiza-
tions.

In terms of the geometry, two dimensionless parameters can be defined to characterize

the porous medium. One is the volume fraction which is the ratio between the area occupied

by obstacles and the total area of the periodic box. The other one is the ratio between the mean

diameter µ of the pillars and its standard deviation σ. For a uniform distribution of pillar size, the

probability density function of their sizes is:

P(d) =
1

dmax−dmin
(3.1.0.4)

Then µ, σ and their ratio are given by:

µ =
∫ dmax

dmin

dP(d)dd =
dmax +dmin

2
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σ =
∫ dmax

dmin

(
(d−µ)2P(d)dd

)2
=

dmax−dmin

2
√

3

σ

µ
=

1√
3

dmax−dmin

dmax +dmin
=C (3.1.0.5)

Rearranging (3.1.0.5), we obtain a relation between dmin and dmax:

dmax =
1+C
1−C

dmin (3.1.0.6)

The volume fraction defines the pillar density inside the domain, with larger volume fractions

leading to more frequent collisions with obstacles. In our simulations, we vary the average size

µ of the pillars while keeping σ

µ constant, which amounts to keeping the ratio between dmin and

dmax constant. The physical interpretation of that is either placing the same type of swimmer into

domains filled with pillars of various diameter ranges, or placing swimmers with different run

lengths inside the same domain. Further, since the porous media geometries are also generated

randomly, we perform each simulation in five different geometries in order to test whether the

diffusivity changes based on pillar arrangement.
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3.2 Diffusion in free space: theory

The diffusivity of run-and-tumble swimmers in the free space (no pillars) can be predicted

theoretically as follows. Let xxxN be the position of swimmer after N runs, ∆xxxi to be the displacement

of the swimmer during the ith run. The position of swimmer after N runs is the vector sum of

these individual displacements:

xxxN =
N

∑
i

∆xxxi (3.2.0.1)

We assume the displacements during distinct runs are not correlated, and therefore:

〈∆xxxi ·∆xxx j〉= 0 if i 6= j

〈∆xxxi ·∆xxx j〉= (τv0)
2 if i = j

(3.2.0.2)

where τ is the duration of run which satisfies an exponential distribution, and v0 is the swimming

velocity which is assumed to be constant. Based on (3.2.0.1) and (3.2.0.2), the mean square

displacement of the swimmer at step N is:

〈xxxi · xxx j〉=
N

∑
i

N

∑
j
(∆xxxi ·∆xxx j) (3.2.0.3)

The probability density function of the run times is given by

P(τ) =
1
τ0

Exp
(
− τ

τ0

)
(3.2.0.4)

with mean duration of a run τ0. The mean square displacement for a single individual step can be

expressed as

〈∆xxxi ·∆xxx j〉=
∫

∞

0
(τv0)

2P(τ)dτ = 2(τ0v0)
2 (3.2.0.5)
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Plugging (3.2.0.5) into (3.2.0.1) gives

〈xxxN · xxxN〉= 2(τ0v0)
2N (3.2.0.6)

In the limit of long times, we also have t = Nτ0. Therefore, (3.2.0.6) becomes

〈xxxN · xxxN〉= 2τ0v2
0t (3.2.0.7)

Comparing this with the mean square displacement for Brownian motion in 2D allows us to

obtain the diffusion coefficient of run-and-tumble swimmers as:

〈r2〉= 4Dt

D =
τ0v2

0
2

(3.2.0.8)

With non-dimensionalization (using τ0 as time scale and v0 as velocity scale), the free space

diffusion coefficient is 0.5.
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3.3 Results

Figure 3.2: (a) Numerically obtained diffusivity as a function of volume fraction and for
different random geometries. (b) Diffusivity as a function of volume fraction for different pillar
diameter ranges. Both plots are for non-overlapping pillars.

Figure 3.2 illustrates how the long-time diffusivity changes for various volume fractions,

random geometries and pillar diameter ranges. From this figure, we see that these exists a small

variation between different pillar arrangements, but these variations are generally in the range

of 5 percent with respect to the mean value. As shown in both (a) and (b), with the increase of

volume fraction, the diffusivity decreases, which is expected as result of collisions with pillars,

which reduce transport. The reason of that is straight forward: as the swimmer slides along a

pillar, its swimming velocity is the vector projection onto the tangential direction, which reduces

the effective magnitude of the velocity. The higher the volume fraction, the larger the possibility

for swimmers to collide and slide on pillars, hence the decrease in diffusivity. As can be seen in

(a), the red straight line, which is obtained by fitting a straight line only the mean diffusivity for

all five geometries, is found to intersect with line of zero volume fraction (vertical axis) at a point

around 0.5, which corresponds to the free space diffusivity. The size range of pillars does not

have a strong effect on the diffusivity in the non-overlapping pillar case.
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Figure 3.3: (a) Numerically obtained diffusivity as a function of volume fraction and for
different random geometries. (b) Diffusivity as a function of volume fraction for different pillar
diameter ranges. Both plots are for overlapping pillars.

When pillars are allowed to overlap, the diffusivity also decreases with increasing of

volume fraction, but the rate of decrease is larger than that of the non-overlapping case, as shown

in 3.3(a). The complexity of the pillar geometry is the root cause for that larger rate of decrease, as

swimmers have more possibilities to get stuck compared with the non-overlapping case. Another

difference can be seen in 3.3(b), where an increase in pillar size gives rise to a slight increase

in diffusivity, as the swimmers spends more time sliding on the pillars when the size of pillars

become larger. The time that the swimmer takes to slide from the point of collision to the point

where it gets stuck also becomes larger, which decreases the probability for swimmers to get

stuck and explains the slight increase in diffusivity in (b).
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Chapter 4

Conclusion

In this thesis, the transport of run-and-tumble microswimmers in porous media was

modeled numerically. The porous medium is modeled as a periodic box containing circular pillars

in two dimensions. The duration of swimmer runs is extracted from an exponential distribution

as observed in experiments, while swimming directions during runs are chosen from a uniform

distribution of the orientation angle and assumes that orientation of each step is uncorrelated. As

the duration of a run is much longer than that of a tumble, we assume in our numerical simulations

that tumbles are instantaneous. If the swimmer doesn not collide with any of the obstacles, its

trajectory during a run is straight line, as it would be in free space. However, if the swimmer

collides with a pillar, it is assumed that the swimmer maintains its orientation and slides on the

surface of that pillar with the tangential component of swimming velocity. The swimmer can

escape from the pillar as the tangential direction of the pillar surface coincides with the swimming

direction. Allowing pillars to overlap introduces complexity in pillar geometry, which modified

the escape criteria and add the possibility of swimmers getting stuck in corners: if there exists

intersection points between the pillar that the swimmer first collides with and other nearby pillars

on the way of sliding to ‘Sescape’, the closest intersection point ‘Sinter’ serves the same role as

‘Sescape’ in non-overlapping case. When it reaches ‘Sinter’, the swimmer will get stuck until the
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next tumble if sliding on any of the pillars causes the swimmer to penetrate the other pillar.

Statistics were obtained by averaging trajectories over many realizations. The effective

long-time diffusivity of the swimmers in porous media is obtained from the slope of the mean-

square displacement vs time. Numerical simulations were conducted for various volume fractions

of the porous media and pillar size ranges, for both non-overlapping and overlapping cases. In

both cases, the diffusivity was found to decrease with the volume fraction of the pillars, but the

complexity of the overlapping geometry leads to a faster decay of the diffusivity with volume

fraction. In the non-overlapping case, varying the size the pillars while keeping σ

µ constant does

not have any noticeable effect on the diffusivity. However for overlapping case, the diffusivity

increases slightly in response to an increase in pillar size.
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