UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Creating Pleasant Programming Environments For Cognitive Science Students

Permalink
https://escholarship.org/uc/item/6r44f48d

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 3(0)

Authors
Einenstadt, M.
Laubsch, J. H.
Kahney, J. H.

Publication Date
1981

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/6r44f48q
https://escholarship.org
http://www.cdlib.org/

CREATING PLEASANT PROGRAMMING ENVIRONMENTS
FOR COGNITIVE SCIENCE STUDENTS

M. Eisenstadt, J.H. Laubsch, & J.H. Kahney
Open University, England

1. Introduction and background

This paper describes our current efforts towards
the systematic improvement of a LOGO-like software
environment called SOLO (Eisenstadt, 1978), which
has been used by over 1500 Cognitive Psychology
students at the Open University. SOLO is geared
towards the manipulation of assertional data
bases, and provides the students with a handful of
easy to use primitives with which they can address
some elementary problems of knowledge represen-
tation. Students login to one of our DECsystem-20s
from a regional study centre, and experience about
10 hours of hands-on activity early in the
academic year. Later on, they attend a residential
summer school at which they can acquire an
additional 30 hours of hands-on experience.

Although SOLO is a toy language in some respects,
the total user environment has many features which
make it ideal for providing the vast majority of
our students (80% of whom are computer-naive) with
their first exposure to computing. Among these
features are a spelling corrector, syntax-directed
editing aids, automataic display of data base
changes as they occur, "undo" facilities, and an
easily modifiable user-profile.

An in-depth analysis of our students’ errors
(Lewis, 1980) has led to an improved design to
help ensure that beginners can write syntactically
correct programs with a minimum of fuss. A micro-
computer implementation, which uses screen-
oriented syntax-directed editing (cf. Teitelbaum

& Reps, 1980) is being piloted just prior to this
conference.

Even with SOLO's extensive user aids and carefully
pre-tested curriculum materials, our students
still experience problems in writing programs
which perform precisely as intended. Because of
this, we have undertaken a detailed analysis of
their programming behaviour. Our empirical
studies, described in section 2, have highlighted
the use of a small number of programming schemas
by a large proportion of our students. These
schemas serve as the basis for an automated debug-
ging assistant, which is described in section 3.

2. The behaviour of SOLO programmers

As part of their SOLO activities at the beginning
of the year, our students are asked to “write a
program which makes the following inference: If
someone is found to be guilty, then whoever that
person works for is also guilty."” In solving the
problem, students are invited to invent their own
data structures and algorithms. We analyzed a
sample of 160 student programs to see if some
underlying order could be found among a potential-
ly large variety of databases and program struc-
tures. As it turns out, the programs written

by these students are built from a handful of
basic program schemas. These schemas are langauge-
independent programming constructs such as FILTER,
CONJUNCTION, SIDE-EFFECT, and GENERATE-NEXT-OBJECT,
which are closely related to those found in the
LISP "plan library" of Shrobe, Waters & Sussman
(1979).

148

The students' databases can be broken down into
basic relational patterns. These patterns are
reliably associated with particular program
structures, allowing us to predict in 80% of the
cases precisely what the students' program
organization will be. To illustrate this point,
consider the following typical (student-generated)
database:

BURGESS PHILBY
i---ISA---)COMMUNIST | ===ISA-=-->COMMUNIST
{ ---WASAT--->CAMBRIDGE I---WASAT---)CAMBRIDGE
| - -WORKSFOR--->PHILBY | ——-WORKSFOR--->BLUNT
BLUNT

| ---ISA-~->COMMUNIST
| ==-WASAT--->CAMBRIDGE
| ~=-WORKSFOR--->THEQUEEN

This database exhibits the following patterns:

Transitive-Relation:
WORKSFOR (BURGESS PHILBY BLUNT THEQUEEN)

Shared-Successor:
(ISA COMMUNIST) (BURGESS PHILBY BLUNT)
(WASAT CAMBRIDGE) (BURGESS PHILBY BLUNT)

Several items (BURGESS, PHILBY, BLUNT) are present
in both the Transitive-Relation and the Shared-
Successor lists. One of the program structures
typically accompanying such a database structure
contains three segments: a CONJUNCTION (COMPLEX-
FILTER), SIDE-EFFECT, and GENERATE-NEXT-OBJECT.
The Shared-Successors will be used as a FILTER
selectively to choose nodes on which a SIDE-EFFECT
is perpetrated (e.g. asserting X ISA SPY) and the
Transitive-Relation list will be used to GENERATE-
NEXT-OBJECT. Since the Shared-Successor list
contains two patterns, a COMPLEX-FILTER will
almost surely be used: IF x isa communist AND

x wasat cambridge THEN ...

But why should a student write a program like this
in the first place? Our analysis indicates that
students have their own stylised interpretations,
or mental models, of the task at hand. For
instance, some students think that a program
involving two inferences is called for: "If X has
done something criminal then he is guilty. And if
this is so, then his employer is subject to the
same scrutiny, and so on for all employers." Other
students feel that only one inference is called
for: "Assuming X is guilty, his employer, by
association, is guilty also, and so on for all
employers."

The observed program structures ought to
correspond to students' mental models of the task.
Some of these mental models are "appropriate”, in
that they address the problem as stated, while
others introduce certain anomalies which preclude
a satisfactory solution. Such “inappropriate"
models could actually be artifacts of students
"thinking in SOLO"™ and getting led astray.

In order to test these ideas we have begun study-
ing individual students in depth, collecting
videotaped protocols and terminal session
transcripts. The first subject bepgan her project
session with the clear intention of writing a
program involving two inferences. Because of
preconceived and inaccurate notions about
constraints on the way she was allowed to approach
the problem and because of misconceptions arising
from her interaction with SOLO, she twice altered
her intentions. At the end of the session the

student had a working program for a “one-
inference” interpretation of the task described
above, a compromise with which she herself was not
completely satisfied. All of her programming
behavior throughout this session, her various
approaches to solving the problem, and the bugs
she encountered, fell within the scope of the
structures we had identified in the earlier
analysis of 160 programs.

Our ability to categorize standard database
structures and predict implementation strategies
on the basis of those structures means that we can
develop tools for assisting students in terms of
the way in which they prefer to think about the
task at hand. One such tool is described in the
next section.

3. Debugging Aids

We have designed and partially implemented a
tutorial debugging assistant which attempts to
articulate the causes of bugs in terms which are
close to the way we believe the students actually
think about their own implementations. The bugs
dealt with range from domain independent
violations of the semantics of SOLO to domain
specific errors that can be detected only if
knowledge about the task at hand is used.

The debugging assistant uses symbolic evaluation
(cf. Ruth, 1976) as a tool for (1) recognizing
procedures as parts of a given "library plan",
(2) detecting errors of the following types:
unreachable program steps, purposeless steps,
reference to absent database objects, infinite
recursion because of a missing or unsatisfiable
termination condition.

In the tutorial situation, a student's goal is to
write a program to accomplish some modelling task.
The debugging assistant is provided with a proto-
typical solution in terms of a canonical effect
description. The task of the assistant is to
recognize a match between the canonical effect
description and an effect description derived from
the student's own program.

In peneral these will not match, and the nature of
the deviation will enable the assistant to draw
the student's attention to shortcomings of his or
her program which may be classified in the
following way:

- The program will achieve the desired effect only
in certain cases. A counter-example outside this
range can provoke the student to discover the
cause.

- The program would work if missing data or
inconsistent entries in the data base were
corrected. These corrections can be pointed
out directly.

A particular sub-procedure, if corrected using
heuristics about typical errors (e.g. missing
indirect link, violation of A program schema),
would make the overall program correct. In this
case, sn appropriate hint can be provided for
the student.

None of the above.

In the 1ast case, the student may initiate a
dialogue, requesting help on a particular
procedure. During the dialogue the assistant tries
to find out the intended effect of that procedure
(Eisenstadt & Laubsch, 1980). It does this by
categorizing the procedure into one of several
programming schemas stored in a lanpguage-
independent “plan library", using a notation
developed by Rich & Shrobe (1978).

Consider the case in which the nearest matching
schema is “"conjunctive filter and side effect".
The assistant examines the deviation between the
user's procedure and the stored schema. The
following violations of the use of that schema may
be recognized: omission of a conjunct, omission of
the side effect, wrong (or transposed) arguments
in the slots of the schema, or wrong control flow
links. The assistant can describe these violations
in terms which the student can relate to, since
the library plans are themselves based upon
schemas known to occur in students' code.

Since the students' procedures depend on their
databases, and vice versa, the debugging assistant
relies heavily on domain-specific knowledge to
deal with alternative ways of formulating a
solution to a given problem. Although the students
have a great deal of freedom to choose ways of
implementing solutions, they typically resort to a
few common approaches. The assistant knows about
these, and uses these both to make sense of what
the students are attempting and to explain why
they have gone astray.

4. Conclusions

Our experience with SOLO leads us to believe that
a SOLO-like language/environment/curriculum could
be of use to a broader group of cognitive science
students-- for instance as the basis of a
beginners' LISP curriculum oriented entirely
towards pattern-matching and assertional data
bases. For this to become a reality, it is
important to understand precisely what remaining
problems students have in this type of environ-
ment, and why. Our empirical work is a step in
this direction. It has immediate spinoffs in that
it provides a foundation for our debugging
agsistant. The assistant provides students with a
tool for attaining their goals, and provides us
with a tool for analyzing and describing their
behaviour.

REFERENCES

Eisengtadt, M. Artificial intelligence
project. Units 3/4 of Cognitive psychology:
a third level course. Milton Keynes: Open

University Press, 1978.

Eisenstadt, M. & Laubsch, J. Towards an
automated debugging assistant for novice
programmers. Proceedings of the AISB-80
conference on Artificial Intelligence,
Amsterdam, 1980.

Lewis, M. Improving SOLO's user-interface: an
empirical study of user behaviour and
proposals for cost-effective enhancements
to SOLO. Technical report no. 7, Computer
Assisted Learning Research Group, The Open
University, 1980.

Rich, C. & Shrobe, H. Initial report on a LISP
programmer's apprentice. IEEE Transactions on
Software Engineering, SE-4:6, 1978.

Ruth, G.R. Intelligent program analysis.
Artificial intelligence, 7, 1976.

Shrobe, H., Waters, R., & Suasman, G. A
hypothetiral monologue illustrating the
knowledge underlying program analysis. MIT
Artifieial Intelligence Laboratory Memo 507,
1979.

Teitelbaum, T., & Reps, T. The Cornell program
synthesizer: a syntax-directed programming
environment. Technical report 80-421,
Department of Computer Science, Cornell
University, 1980.

149

	cogsci_1981_148-149

