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Abstract

Endocannabinoids and their attending cannabinoid type 1 receptor (CB1) have been implicated in 

animal models of posttraumatic stress disorder (PTSD). However, their specific role has not been 

studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission 
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tomography (PET) and the CB1-selective radioligand [11C]OMAR in individuals with PTSD, and 

healthy controls with lifetime histories of trauma (trauma controls [TC]) and those without such 

histories (healthy controls [HC]). Untreated individuals with PTSD (N=25) with non-combat 

trauma histories, and TC (N=12) and HC (N=23) participated in a magnetic resonance (MR) 

imaging scan and a resting PET scan with the CB1 receptor antagonist radiotracer [11C]OMAR, 

which measures volume of distribution (VT) linearly related to CB1 receptor availability. 

Peripheral levels of anandamide, 2-arachidonoylglycerol (2-AG), oleoylethanolamide (OEA), 

palmitoylethanolamide (PEA), and cortisol were also assessed. In the PTSD group, relative to the 

HC and TC groups, we found elevated brain-wide [11C]OMAR VT values (F(2,53)=7.96, p=.001; 

19.5% and 14.5% higher, respectively) which were most pronounced in women (F(1,53)=5.52, p=.

023). Anandamide concentrations were reduced in the PTSD relative to the TC (53.1% lower) and 

HC (58.2% lower) groups. Cortisol levels were lower in the PTSD and TC groups relative to the 

HC group. Three biomarkers examined collectively—OMAR VT, anandamide, and cortisol—

correctly classified nearly 85% of PTSD cases. These results suggest that abnormal CB1 receptor-

mediated anandamide signaling is implicated in the etiology of PTSD, and provide a promising 

neurobiological model to develop novel, evidence-based pharmacotherapies for this disorder.
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INTRODUCTION

Posttraumatic stress disorder (PTSD) is an anxiety disorder that can develop following 

exposure to traumatic life events1. Central clinical features of PTSD include a persistent, 

heightened experience of alarm and distress, as well as a failure of extinction processes to 

diminish the emotional impact of traumatic memories. Investigation of the neural 

mechanisms that underlie fear acquisition, consolidation, and extinction may thus enhance 

our understanding of the neurobiological basis of PTSD, and open opportunities for 

mechanism-based drug discovery and development of the next-generation 

pharmacotherapies for this disabling disorder.

The process by which emotionally-aversive memories become consolidated is recognized to 

be an interaction between glucocorticoid hormones and norepinephrine, both of which are 

released in response to stress2. The primary component of this response appears to be a 

noradrenergic signal that is necessary for encoding emotionally salient information3. The 

hyperconsolidation of traumatic memories in PTSD is driven by a glucocorticoid-hormone-

facilitated potentiation of norepinephrine inputs to the basolateral amygdala (BLA)4, 5. 

Recent work has revealed that this glucocorticoid action is mediated by cannabinoid type-1 

(CB1) receptors, a mechanism that is critical for the consolidation of aversive memories6, 7 

and thus implicates CB1 receptors in the etiology of PTSD. Moreover, there is an emerging 

body of evidence demonstrating an important role for CB1 receptor-mediated 

endocannabinoid signaling in the extinction of aversive memories8. Augmenting levels of 

anandamide in the amygdala modulates short-term fear extinction9, thereby resulting in 
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long-term reduction in fear10 and highlighting the endocannabinoid system as a candidate 

system for developing novel pharmacotherapies for PTSD11.

CB1 receptors are the most abundant G-protein-coupled receptors in the central nervous 

system12, 13, and are found in high concentrations within an amygdala-hippocampal-cortico-

striatal circuit responsible for processing and storing fear-related memories and coordinating 

fear-related behaviors14–16. Animal studies17 have shown that chronic stress is associated 

with decreased brain levels of the endocannabinoid anandamide and CB1 receptor 

adaptations17–19, which in turn give rise to an anxious/depressive phenotype20, 21. However, 

it is not clear whether these animal findings apply to PTSD in humans.

The development of a CB1 receptor selective radiotracer—[11C]OMAR22—now makes it 

possible for the first time to conduct a quantitative assessment of in vivo CB1 receptor 

availability using positron emission tomography (PET). In the current study, we 

hypothesized that, relative to healthy non-trauma-exposed (HC) and trauma-exposed 

controls (TC), individuals with PTSD would have increased CB1 receptor availability. In 

light of data from animal studies17–19, 23, we further predicted more pronounced CB1 

receptor elevations in women than men with PTSD. A TC group free of lifetime PTSD or 

other psychiatric illness was recruited in order to assess the relation between trauma 

exposure alone and CB1 receptor availability. We also assessed peripheral levels of the 

endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG); levels of the fatty acid 

ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide (PEA); and cortisol. 

We expected to find lower anandamide and cortisol levels in the PTSD group relative to the 

HC and TC groups24. Finally, psychiatrically relevant biomarkers for PTSD are important 

yet elusive contributors towards accurate diagnosis and improved clinical care for trauma 

survivors. We predicted that measures of CB1 receptor availability, anandamide and cortisol 

would accurately categorize a majority of participants with regard to PTSD diagnostic status 

relative to healthy and trauma-exposed controls.

METHODS

Participants

Participants were recruited via public advertisements seeking individuals with non-combat 

trauma histories and healthy control participants with and without lifetime histories of 

trauma. None of the participants had ever been treated with psychotropic medications. In 

addition, none were receiving psychotherapy at the time of scanning. The protocol was 

approved by the New York University Institutional Review Board, the Yale University 

School of Medicine Human Investigation Committee, the Yale University Magnetic 

Resonance Research Center, and the Yale New Haven Hospital Radiation Safety 

Committee. After providing written informed consent, participants underwent a thorough 

medical and psychiatric evaluation that included physical examination, electrocardiogram, 

standard blood chemistry and hematology laboratory tests, urine analysis and toxicology, 

followed by a magnetic resonance (MR) imaging scan and a resting PET scan with the CB1 

receptor antagonist radiotracer [11C]OMAR. Psychiatric diagnoses were made using 

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition – Text Revision 

(DSM-IV-TR) criteria and the Structured Clinical Interview for DSM-IV (SCID), which was 
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administered by an experienced psychiatric clinician25, 26. PTSD symptom severity was 

assessed using the Clinician-Administered PTSD Scale for DSM-IV (CAPS)27 and trauma 

history was assessed using the Traumatic Life Events Questionnaire (TLEQ)28. Only 

traumatic events meeting DSM-IV-TR PTSD criterion A1 for severe trauma exposure, as 

well as criterion A2, which confirms the emotional response to the trauma (i.e., response 

involved intense fear, horror, or helplessness), were counted towards participants' trauma 

history in this study. Additional assessments included the Hamilton Rating Scale for Anxiety 

(HAM-A)29, the Montgomery-Åsberg Depression Rating Scale (MADRS)30, the Alcohol 

Module of the Addiction Severity Index31 and the Fagerström Test for Nicotine Dependence 

(FTND)32. To meet TC inclusion criteria, individuals must have been exposed to at least one 

potentially traumatic event that met DSM-IV-TR PTSD Criteria A1 and A2, but have no 

lifetime PTSD or other Axis I diagnosis. Participants with significant medical or 

neurological conditions, substance abuse within 12 months of the PET scan, a lifetime 

history of substance dependence (including cannabis), or history of head injury with loss of 

consciousness were excluded from the study. The absence of substance use (including 

cannabis) was determined by self-report and confirmed by urine toxicology and breathalyzer 

test at screening, and on the days of MR and PET imaging. Participants were asked to 

abstain from food, nicotine, and caffeinated beverages after midnight on the day prior to the 

imaging study until after completion of the scan. Blood samples were collected at the time 

of tracer injection and processed immediately after collection in the laboratory, which is 

adjacent to the scan room and frozen at −80°Celsius until analyzed, as previously 

described33.

PET imaging

[11C]OMAR was prepared in high specific activity (109±74 MBq/nmol at end of synthesis). 

The radiotracer (injected dose: 589±122 MBq, injected mass: 0.05±0.03 μg/kg) was infused 

over 1 minute through the antecubital vein. The radioactivity concentration in blood from 

the radial artery was measured continuously using an automated system (PBS101, Veenstra 

Instruments, Joure, The Netherlands) for the first 7 min after radiotracer administration and 

manually drawn and counted thereafter. Discrete samples were acquired at selected times 

and measured on a gamma counter (Wizard 1480, Perkin-Elmer, Waltham, Massachusetts, 

United States) to determine radioactivity concentration in whole blood and plasma. Five 

discrete blood samples (5, 15, 30, 60, 90 minutes) were analyzed for the fraction of 

unchanged [11C]OMAR and its radiometabolites using a column-switching high pressure 

liquid chromatography method34. The fraction of tracer unbound to plasma proteins was 

determined in triplicate by ultrafiltration35. Listmode emission data were collected for 120 

minutes after radiotracer administration using the High Resolution Research Tomograph 

(HRRT; Siemens Medical Systems, Knoxville, Tennessee, United States), a dedicated brain 

PET scanner with spatial resolution better than 3 mm36. Head motion was measured using 

the Polaris Vicra optical tracking system (Northern Digital Inc., Waterloo, Ontario, Canada) 

and incorporated into PET image reconstruction with all corrections.37. The PET images 

were registered to subject-specific T1-weighted magnetic resonance images (256 × 256 × 

176 grid of 1 mm isotropic voxels) acquired on a 3 Tesla Trio imaging system (Siemens 

Medical Systems, Erlangen, Germany). Anatomical MR images were in turn nonlinearly 

registered to an MR template where regions of interest (ROIs) were defined38. Regional 
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time activity curves (TACs) were extracted from the dynamic PET data and analyzed using 

the multilinear analysis method39 with metabolite-corrected arterial input functions and 

cutoff time t*=30 minutes. The kinetic analysis yielded regional estimates of total volume of 

distribution (VT), the equilibrium ratio of radioligand concentration in tissue relative to 

arterial plasma40, which is directly proportional to CB1 receptor availability.

Data Analysis

Shapiro-Wilk tests were conducted to assess data distributions of all study variables for 

normality. Non-normally distributed variables (e.g., [11C]OMAR VT values, cortisol levels) 

were transformed using logarithmic-base-10 prior to analysis. Analyses of variance 

(ANOVA) were then used to compare continuously-distributed demographic and clinical 

variables of the HC, TC, and PTSD groups; χ2 tests were used to compare categorical 

variables. Because [11C]OMAR VT values across brain regions were highly correlated (r 

values=.73 to .96), mean composite [11C]OMAR VT values were computed by averaging 

[11C]OMAR VT values across all brain regions for each individual. A series of analyses of 

covariance (ANCOVA) were then conducted to test for group differences in mean 

composite [11C]OMAR VT values, as well as in regions that comprise the amygdala-

hippocampal-cortico-striatal circuit implicated in PTSD41. In these analyses, group (HC, 

TC, and PTSD) and sex were entered as independent variables, age as a covariate, and 

[11C]OMAR VT values as the dependent variable. Pairwise comparisons—least-squares 

difference tests—were computed to compare [11C]OMAR VT values in each of the three 

groups, with p<.01 used to indicate significant group differences. Effect sizes of differences 

in [11C]OMAR VT values in the TC and PTSD groups relative to the HC group were 

expressed using percent difference and Cohen's d ((Mgroup1-Mgroup2)/SDpooled). Similar 

ANCOVAs were conducted for anandamide, 2-AG, OEA, and PEA and cortisol values. To 

examine the relation between [11C]OMAR VT values, anandamide, and cortisol biomarkers, 

and PTSD group membership, a series of binary logistic regression analyses were 

conducted, with main effects and all combinations of these variables entered as explanatory 

variables in separate analyses, and PTSD (coded “1”) vs. TC+HC group (coded “0”) entered 

as the dependent variable.

RESULTS

Seventy-two participants were recruited into the study and 60 completed the protocol. 

Reasons for exclusion were previous medication exposure (n=9) and medical reasons that 

would interfere with correct interpretation of the collected data (n=4). Table 1 shows 

demographic, trauma, and clinical characteristics of the HC, TC, and PTSD groups whose 

data were used for analyses. [11C]OMAR injection parameters, age, sex, education, nature 

of trauma histories, and body mass index did not differ among the groups; there was a 

greater proportion of white individuals in the HC than TC and PTSD groups. The PTSD 

group was significantly more likely than the HC and TC groups to currently smoke 

cigarettes, and to have a lifetime history of mood or anxiety disorder, and alcohol or drug 

abuse, but the groups did not differ with respect to lifetime and current alcohol use and 

nicotine dependence. The PTSD group scored higher on the MADRS and HAM-A relative 

to both control groups, and on the CAPS relative to the TC group.
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Bivariate correlations revealed that composite [11C]OMAR VT values correlated negatively 

with age (r= −.34, p=.007) and positively with female sex (r= .39, p=.002). Composite 

[11C]OMAR VT values also correlated negatively with anandamide levels (r= −.27, p=.038), 

but not cortisol levels (r= −.06, p=.67); and the correlation between anandamide and cortisol 

levels was also not significant (r= .02, p=.88). Other demographic variables, BMI, lifetime 

and current alcohol use, current cigarette smoking status and nicotine dependence, and 

trauma-related variables and lifetime history of mood or anxiety disorders, and alcohol or 

drug abuse were not associated with [11C]OMAR VT values (all r values<|.22|, all p values>.

10).

An ANCOVA examining mean composite [11C]OMAR VT values in the HC, TC, and PTSD 

groups revealed significant main effects of group (F(2,53)=7.96, p=.001), sex (F(1,53)=5.52, 

p=.023), and age (F(1,53=11.95, p=.001); there was a trend towards a significant group-by-

sex interaction (F(2,53)=2.75, p=.073). Women in the full sample had higher mean 

composite [11C]OMAR VT values than men (M=1.233, SE=.040 vs. M=1.369, SE=.042, 

Cohen's d=.61). As shown in Table 2, mean composite [11C]OMAR VT values differed by 

group, such that PTSD group VT was higher than the TC and HC groups, which did not 

differ. This same general pattern was also observed in brain regions that comprise the 

amygdala-hippocampal-cortico-striatal neural circuit implicated in PTSD. As shown in 

Figure 1, effect sizes for the differences between the PTSD group and HC and TC groups 

were consistently large in magnitude. Differences between the TC and HC groups were 

generally small in magnitude. Analyses of [11C]OMAR VT values in brain regions outside of 

the amygdala-hippocampal-cortico-striatal neural circuit implicated in PTSD revealed this 

same pattern of results, with the PTSD group having significantly greater [11C]OMAR VT 

values than both the HC and TC groups (all F's for group effect>4.91, all p's<.01; all p's for 

pairwise comparisons<.01).

Figure 2 shows mean [11C]OMAR VT values for the PTSD, and HC and TC groups by sex. 

Pairwise comparisons revealed that mean [11C]OMAR VT values were significantly higher 

among women in the HC (p=.009; d=1.26) and PTSD (p=.011; d=1.16) groups, but not in 

the TC group (p=.65; d=.32).

An ANCOVA examining anandamide levels in the HC, TC, and PTSD groups revealed 

significant main effects of group (F(2,53)=9.75, p<.001) and sex (F(1,53)=4.23, p=.045), but 

age (F(1,53)=1.00, p=.32) and the interaction of group-by-sex (F(2,53)=1.47, p=.24) were 

not significant. Pairwise comparisons revealed that the PTSD group had lower anandamide 

levels than both the HC (p=.001; Cohen's d=1.10) and TC (p=.001; Cohen's d=1.36) groups; 

anandamide levels did not differ between the HC and TC groups (p=.51; Cohen's d=.26). 

Women had lower levels than men (M=2.44, SE=.24 vs. M=1.76, SE=.23; Cohen's d=.54). 

OEA levels also differed by group, with the HC group having significantly higher OEA 

levels than the TC and PTSD groups; age (F(1,45)=2.91, p=.095), sex (F(1,45)=.55, p=.46), 

and the interaction of group × sex (F(2,45)=.02, p=.98) were not significant. 2-AG and PEA 

levels did not differ by group.

An ANCOVA examining cortisol levels in the HC, TC, and PTSD groups revealed a 

significant main effect of group (F(2,52)=12.69, p<.001), but sex (F(1,52)=.05, p=.82), age 
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(F(1,52)=1.84, p=.18), and the interaction of group-by-sex were not significant (F(2,52)=.33, 

p=.72). Pairwise comparisons revealed that the HC group had higher cortisol levels than 

both the TC (p<.001; Cohen's d=1.59) and PTSD (p<.001; Cohen's d=1.22) groups; cortisol 

levels did not differ between the TC and PTSD groups (p=.35; Cohen's d=.34).

Table 3 shows results of binary logistic regression analyses that examined how each of the 

biomarkers ([11C]OMAR VT values, anandamide, and cortisol) independently and in various 

combinations related to PTSD vs. HC/TC group membership. Results revealed that the 

classification accuracy increased as additional biomarkers were added to the model, with the 

highest classification accuracy observed when [11C]OMAR VT values, anandamide, and 

cortisol were entered simultaneously. None of the interaction terms were significant (all p 

values>.21).

DISCUSSION

We found that PTSD is associated with a ubiquitously expressed large magnitude elevation 

(~20%) in [11C]OMAR VT values, which quantitatively reflects CB1 receptor availability. 

Notably, this elevation was found in an amygdala-hippocampal-cortico-striatal neural circuit 

implicated in PTSD, as well as in brain regions outside this circuit. These results suggest 

greater brain-wide CB1 receptor availability in individuals with PTSD relative to control 

participants with and without histories of trauma exposure. Reduced peripheral anandamide 

levels in PTSD complemented the brain [11C]OMAR VT results, suggesting that the elevated 

CB1 receptor availability in PTSD may result from a combination of both receptor up-

regulation and low receptor occupancy by anandamide. The lack of displacement of CB1 

radioligands by agonists42–44 which has been attributed to a large receptor reserve45 

suggests that increased [11C]OMAR VT values are explained to the most part by receptor up-

regulation in response to low anandamide levels rather than low receptor occupancy by 

anandamide. This idea is substantiated by data showing that CB1 receptor up-regulation in 

response to low stress-induced synaptic anandamide availability was prevented by enhanced 

anandamide signaling46. OEA levels were higher in HC relative to TC and PTSD 

participants in the current study, but groups did not differ with respect to 2-AG and PEA 

levels. Taken together, these data suggest that abnormal CB1 receptor-mediated anandamide 

signaling is implicated in the etiology of PTSD.

The sex-related results of the current study accord with animal data demonstrating sex 

differences in CB1 receptor regulation, with stress-related up-regulation of CB1 receptors 

observed predominantly in female animals18. We also found abnormally low cortisol levels 

in trauma survivors, corroborating prior work47. Another key contribution of the current 

study is the finding that collective consideration of all three of the biomarkers examined—

OMAR VT, anandamide, and cortisol—was highly accurate in classifying PTSD, with nearly 

85% of PTSD cases correctly classified and overall classification accuracy approaching 

90%. Results of this study advance the extant literature in three important ways: (1) they 

contribute to extant knowledge regarding the etiology of PTSD; (2) they identify candidate 

biomarkers that may be used to support clinical decision-making regarding diagnostic 

classification of PTSD; and (3) they provide a promising neurobiological rationale to 

develop novel, evidence-based pharmacotherapies for PTSD.
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Our results of reduced peripheral anandamide levels together with a compensatory up-

regulation of CB1 receptors in PTSD suggest lower anandamide tone in PTSD. Notably, 

elevated rates of cannabis abuse/dependence among individuals with PTSD have been 

reported48, 49. Such findings substantiate, at least in part, emerging evidence that synthetic 

cannabinoid receptor agonists50 or plant-derived cannabinoids such as marijuana51 may 

possess some benefits in individuals with PTSD by helping relieve haunting nightmares and 

other symptoms of PTSD. However, such data do not allow the conclusion that self-

medication with cannabis with its primary psychoactive constituent tetrahydrocannabinol 

should be recommended for the treatment of PTSD, as direct activation of CB1 receptors 

with plant-derived cannabinoids over an extended period of time leads to down-regulation of 

CB1 receptors52, 53, which may in turn result in a depression-like phenotype in certain 

individuals54 and increase risk of addiction55.

Another important finding in this study is the sex differences in anandamide levels and 

[11C]OMAR VT values in both the HC and PTSD groups. Animal data showing higher CB1 

receptor levels in male relative to female animals18, 56, 57 and receptor fluctuations during 

the estrous cycle together with changes in affinity of agonist binding58 highlight the 

importance of careful considerations of gender and menstrual cycle phase in assessments of 

CB1 receptor availability in imaging studies. In addition, we believe, that a conclusive 

interpretation of the CB1 receptor profile in males and females requires a broad and dynamic 

perspective rather than a single observation in a cross-sectional study with a single time 

point. Our results are largely in agreement with a previous study that used the CB1 PET 

tracer [18F]MK-9470 to investigate the effects of age and gender59. That report found 

greater plasma parent fraction and higher normalized brain uptake (SUV) in men, which is 

consistent with our findings. However, because of the nearly irreversible uptake kinetics of 

the radiotracer and the lack of significant gender differences in the metabolite-corrected 

input function in the initial cohort that underwent arterial blood sampling, the 

[18F]MK-9470 study used brain SUV as the final outcome metric of tracer binding. We 

performed kinetic analysis of [11C]OMAR data using metabolite-corrected arterial input 

functions in all participants. This methodology provided estimates of VT, which – in contrast 

to SUV, which was greater in men than women – was reduced in men compared to 

women60. Thus, our measurements are compatible with those of the previously reported 

[18F]MK-9470 data and the discrepant interpretations appear to be accounted for by 

different endpoints centered on our use of arterial input functions in kinetic analyses rather 

than the simplified outcome of normalized brain concentration. If, as our results suggest, 

women show higher CB1 receptor availability than men already under basal, non-stress 

conditions, then they may be at increased risk for PTSD when exposed to trauma. This 

finding may thus provide a neurobiological explanation for why women are at greater risk 

for developing PTSD following exposure to various types of trauma than men even when 

sexual trauma—which is more common in women—is excluded61.

To date, drug development in PTSD has been opportunistic, building almost entirely on 

empirical observations with drugs approved for other indications. The data reported herein 

are the first of which we are aware of to demonstrate the critical role of CB1 receptors and 

endocannabinoids in the etiology of PTSD in humans. As such, they provide a foundation 
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upon which to develop and validate informative biomarkers of PTSD vulnerability, as well 

as to guide the rational development of the next generation of evidence-based treatments for 

PTSD. Blocking anandamide deactivation or re-uptake, both of which will increase synaptic 

anandamide availability, may lead to a more circumscribed and beneficial spectrum of 

biological responses than those produced by direct CB1 receptor activation62, 63. This is of 

particular interest for the development of mechanism-based novel pharmacotherapies for 

PTSD, as emerging data have revealed that enhanced anandamide signaling can curb the 

effects of chronic stress, possibly by maintaining normal amygdala function64 via 

extinction-driven reductions in fear resulting in improved stress-reactivity in humans10.
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Figure 1. 
Cohen's d and 95% confidence intervals of effect size differences in [11C]OMAR volume of 

distribution (VT) values in PTSD and TC groups relative to HC group
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Figure 2. 
Cohen's d and 95% confidence intervals of effect size differences in [11C]OMAR volume of 

distribution (VT) values in PTSD and TC groups relative to HC group by sex
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Table 1

Demographic and clinical characteristics of study groups

Healthy controls Trauma controls PTSD Test of difference Pairwise comparisons

N 23 12 25

M (SD) or n (%) M (SD) or n (%) M (SD) or n 
(%)

Age 32.1 (8.5) 29.7 (7.9) 32.2 (9.9) F(2,57)=.36, p=.70 -

Male sex 11 (47.8%) 7 (58.3%) 11 (44.0%) χ2(2)=.67, p=.71 -

White race/ethnicity 14 (60.9%) 2 (16.7%) 8 (32.0%) χ2(2)=7.56, p=.023 HC>TC,PTSD

Education (years) 16.0 (2.1) 14.1 (1.8) 14.6 (3.1) F(2,57)=2.86, p=.066 -

Body mass index 25.0 (3.4) 26.6 (4.5) 25.3 (4.7) F(2,57)=.56, p=.57 -

Ever drank alcohol in 
lifetime 11 (73.3%) 3 (42.9%) 12 (57.1%) χ2(2)=2.04, p=.36 -

Number of years used 
alcohol 5.7 (6.3) 8.0 (11.5) 5.0 (6.0) F(2,38)=.44, p=.65 -

Drank alcohol in past 30 
days 9 (56.3%) 6 (54.5%) 10 (47.6%) χ2(2)=.31, p=.86 -

Number of days drank 
alcohol in past 30 days 2.4 (3.3) 3.7 (5.0) 2.5 (3.4) F(2,45)=.48, p=.62 -

Current smoker 0 (0%) 0 (0%) 9 (36.0%) χ2(2)=14.82, p=.001 PTSD>HC,TC

Nicotine dependence 0 (0%) 0 (0%) 3 (12.0%) χ2(2)=4.42, p=.11 -

Indices of lifetime trauma

Age at first trauma - 13.0 (4.8) 13.9 (10.3) F(1,35)=.09, p=.77 -

Age at presenting trauma - 16.5 (8.7) 18.2 (11.1) F(1,35)=.22, p=.64 -

Number of traumas - 3.0 (2.0) 3.5 (3.7) F(1,35)=.18, p=.68 -

Index traumatic event Fisher's exact test=6.38, p<.001

Physical assault - 9 (75.0%) 22 (88.0%)

Motor vehicle accident - 3 (25.0%) 0 (0%)

Witnessed suicide - 0 (0%) 3 (12.0%)

Lifetime mood or anxiety 
disorder 0 (0%) 0 (0%) 13 (52.0%) χ2(2)=23.23, p<.001 PTSD>HC, TC

Lifetime alcohol or drug 
abuse 0 (0%) 0 (0%) 9 (36.0%) χ2(2)=14.82, p=.001 PTSD>HC, TC

CAPS score - 5.6 (7.6) 75.5 (17.4) F(1,35)=175.99, p<.001 PTSD>TC

MADRS score 2.2 (3.0) 3.5 (6.5) 22.7 (10.0) F(2,57)=54.89, p<.001 PTSD>HC, TC

HAM-A score 1.6 (2.5) 2.3 (3.3) 21.4 (10.4) F(2,57)=55.77, p<.001 PTSD>HC, TC

Note. HC=Healthy controls; TC=Trauma Controls; SD=standard deviation; PTSD=Posttraumatic stress disorder; SD=standard deviation; 
CAPS=Clinician-Administered PTSD Scale; MADRS= Montgomery-Åsberg Depression Rating Scale; HAM-A=Hamilton Anxiety Rating Scale. 
Physical assault includes sexual abuse, domestic violence, and other non-combat related physical violence. Some frequencies and denominator 
degrees of freedom do not sum to total n due to missing data.
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Table 3

Classification accuracy statistics for logistic regression model examining relation between [11C]OMAR VT, 

anandamide, and cortisol bio markers and PTSD

Biomarker Overall classification accuracy % PTSD cases correctly 
classified Nagelkerke's R2

Cortisol 61.0% 33.3% .134

Composite [11C]OMAR VT 70.0% 52.0% .217

Anandamide 73.3% 76.0% .348

Cortisol + AEA 72.9% 70.8% .482

Composite [11C]OMAR + Anandamide 75.0% 68.0% .472

Composite [11C]OMAR + Cortisol 76.3% 66.7% .357

Composite [11C]OMAR + Cortisol + Anandamide 88.1% 83.3% .661

Final logistic regression model
 Hosmer and Lemeshow test=9.17, p=.33

Wald χ2, p OR (95%CI)

 Composite [11C]OMAR VT 6.96, .008 3.09 (1.34–7.16)

 Cortisol 7.40, .007 .24 (.08–.67)

 Anandamide 9.88, .002 .13 (.03–.46)

Note. VT=volume of distribution; OR=odds ratio; 95%CI=95% confidence interval.
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