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Distributed Subnetworks of
Depression Defined by Direct
Intracranial Neurophysiology
Katherine Wilson Scangos1,2* , Ankit N. Khambhati2,3, Patrick M. Daly1,2, Lucy W. Owen4,
Jeremy R. Manning4, Josiah B. Ambrose5, Everett Austin5, Heather E. Dawes2,3,
Andrew D. Krystal1,2 and Edward F. Chang2,3*

1 Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States, 2 Weill Institute
for Neurosciences, University of California, San Francisco, San Francisco, CA, United States, 3 Department of Neurological
Surgery, University of California, San Francisco, San Francisco, CA, United States, 4 Department of Psychological and Brain
Sciences, Dartmouth College, Hanover, NH, United States, 5 Kaiser Permanente Redwood City Medical Center, Redwood
City, CA, United States

Major depressive disorder is a common and disabling disorder with high rates of
treatment resistance. Evidence suggests it is characterized by distributed network
dysfunction that may be variable across patients, challenging the identification of
quantitative biological substrates. We carried out this study to determine whether
application of a novel computational approach to a large sample of high spatiotemporal
resolution direct neural recordings in humans could unlock the functional organization
and coordinated activity patterns of depression networks. This group level analysis
of depression networks from heterogenous intracranial recordings was possible due
to application of a correlational model-based method for inferring whole-brain neural
activity. We then applied a network framework to discover brain dynamics across this
model that could classify depression. We found a highly distributed pattern of neural
activity and connectivity across cortical and subcortical structures that was present
in the majority of depressed subjects. Furthermore, we found that this depression
signature consisted of two subnetworks across individuals. The first was characterized
by left temporal lobe hypoconnectivity and pathological beta activity. The second was
characterized by a hypoactive, but hyperconnected left frontal cortex. These findings
have applications toward personalization of therapy.

Keywords: biomarkers, biotypes, depression, ECoG, EEG

INTRODUCTION

Major depressive disorder (MDD) is a common, highly disabling and potentially deadly disorder
that affects more than 264 million individuals worldwide (G. B. D. Disease Injury Incidence
Prevalence Collaborators, 2018). Despite significant neuroscientific advances, the biological
substrate of depression remains poorly understood and new approaches that facilitate our
understanding are critical. The majority of early studies seeking to characterize depression
pathophysiology examined specific brain regions [ex. subgenual anterior cingulate cortex (Kennedy
et al., 2001; Botteron et al., 2002; Yoshimura et al., 2010)], cognitive networks [ex. default mode
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network (Greicius et al., 2007; Bluhm et al., 2009; Grimm et al.,
2009; Sheline et al., 2010; Zhu et al., 2012)], or univariate
electrophysiological markers [ex. alpha asymmetry (Henriques
and Davidson, 1991; Gotlib et al., 1998; Kentgen et al., 2000;
Diego et al., 2001; Kemp et al., 2010; Jaworska et al., 2012)]. Yet,
there is increasing evidence that depression is characterized by
distributed network dysfunction beyond a single brain region or
network (Veer et al., 2010; Zeng et al., 2012; Liu et al., 2013).

Recent computational advancements within a network
neuroscience framework have enabled researchers to model
brain activity with the scope and complexity necessary to
understand such distributed processes (Bassett and Sporns,
2017). However, detailed investigations of both the functional
organization and coordinated activity patterns of depression
networks have been limited by the capabilities of current imaging
and electroencephalography (EEG) technologies, both indirect
measures of neural activity that require a trade-off between spatial
and temporal resolution. Intracranial EEG (iEEG), typically
collected in patients with epilepsy for the purpose of seizure
localization, has the advantage of high temporal resolution, and
provides direct recordings from both cortical and subcortical
brain structures. Patients with epilepsy have high rates of co-
morbid depression (Hermann et al., 2000; Gilliam et al., 2003;
Swinkels et al., 2005; Hermann and Jones, 2006; Fuller-Thomson
and Brennenstuhl, 2009; Rai et al., 2012) that shares origin
(Schmitz, 2006; Mula and Schmitz, 2009; Vezzani et al., 2011;
Gleichgerrcht et al., 2015; Wulsin et al., 2016) and treatment
response (Kanner, 2003) characteristics with primary depression.
However, owing to heterogenous electrode placement across
individuals, previous iEEG studies have been limited to low
patient numbers and region-based approaches (Kirkby et al.,
2018; Sani et al., 2018; Scangos et al., 2019a).

We hypothesized that we could apply a novel computational
approach to a large unique dataset of multi-region, multi-day
iEEG recordings in 54 participants to uncover distributed
cortico-subcortical networks in depression. To tackle
inconsistent network sampling across individuals, we utilized
a method called SuperEEG (Owen et al., 2020) that uses the
correlational structure of brain activity across the population to
create a model of multiregional iEEG activity for each individual
despite heterogeneous electrode placement. This model provided
a highly detailed representation of brain activity across space
and time and allowed us to chart out the inherent organization
of the brain into functional networks. Once a generalized map
of functional brain network organization was established, we
quantified the multi-dimensional nature of corresponding brain
dynamics to discover how rhythmic activity riding atop these
functional networks differed in depressed and non-depressed
individuals (Gu et al., 2018). Because depression has a variable
presentation, we further examined how depression-associated
circuitry varied across individuals in the depressed group.

We found that depression circuitry was highly distributed
across cortical and subcortical structures with global dysfunction
in both connectivity and spectral activity. Two unique depression
subnetworks present in 89% of depressed subjects were
identified. One pattern was marked by decreased connectivity
across the occipitotemporal region and dominant beta band

activity. The second was characterized by excessive frontal
cortical connectivity with decreased activity in the alpha
spectral frequency band.

MATERIALS AND METHODS

Patient Characterization
Participants included 54 adults (27 female) aged 20–67 who had
medication-refractory epilepsy and were undergoing intracranial
mapping with multi-channel iEEG for seizure localization as part
of their standard medical care (Supplementary Table 1). Neural
data from these participants comprised our full dataset and was
utilized to build the whole-brain iEEG model of LFP time-series.
Participants were screened for depression following electrode
implantation and concurrent with neural recordings using the
Patient Health Questionnaire-9 (PHQ-9), a 9-item self-report
instrument validated for depression screening (Supplementary
Figure 1A; Spitzer et al., 1999, 2000; Kroenke et al., 2001).
A score≥ 10 defined the depressed group (moderate depression)
and a score ≤ 5 defined the non-depressed control group
generating a sample of 23 depressed subjects (56%) and 18
controls (44%). A cut-off score of 10 was selected to define the
depressed group because it is the standard threshold used for
screening in clinical practice, was defined by the scale’s developer,
and has been used in large-scale validation studies (Kroenke
et al., 2001; Arroll et al., 2010; Levis et al., 2019). The remaining
13 patients were used in the first step of the study (Model
building) but not the second (Model utilization). Data comprised
a consecutive series of patients recruited from University of
California, San Francisco and Kaiser Permanente, Redwood City,
California over a 5-year period. This study was approved by
the University of California, San Francisco Institutional Review
Board with written informed consent provided by all subjects.
Patients’ antiepileptic medications (AEDs) were withdrawn as
part of standard clinical care. However, to control for possible
effects of medication on neural activity in the depressed and
control groups we examined the number of patients in each group
that were on AEDs associated with depression (Nadkarni and
Devinsky, 2005) using a chi squared test.

Electrode Implantation and Localization
Subdural grid, strip, and depth electrodes (AdTech, Racine, WI,
United States; or Integra, Plainsboro, NJ, United States) were
implanted using standard neurosurgical techniques. The number
of electrodes per subject ranged from 33 to 201 (mean = 120,
SD = 37). Subjects underwent pre-operative 3 Tesla brain
magnetic resonance imaging (MRI) and post-operative computed
tomography (CT) scan to localize electrodes in patient-
centered coordinates using an open source python package for
preprocessing imaging data for use in iEEG recordings (Hamilton
et al., 2017). The steps included warping brain reconstructions to
a common Montreal Neurologic Institute (MNI) template and
merging electrode locations across subjects. Surface warpings
were then generated by projecting pial surfaces of the subject and
template brains into a spherical coordinate space and aligning the
surfaces in that space. Depth warping was then performed using a
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combination of volumetric and surface warping (Postelnicu et al.,
2009). For visualization, pre-operative T1-weighted MRI scans
were pre-registered with the post-operative CT using Statistical
Parametric Mapping software SPM12 and pial surface 3D
reconstructions were generated using FreeSurfer (Fischl, 2012).

Data Acquisition and Pre-processing
Data acquisition of iEEG recordings were acquired using the
Natus EEG clinical recording system at a sampling rate of 1–
2 kHz. Standard iEEG/ECoG pre-processing techniques were
conducted in python including application of a 2–250 Hz
bandpass filter, notch filters at line noise frequency and
harmonics (60, 120, 180, and 240 Hz), down sampling to 512 Hz,
and common average referencing to the mean of all channels. The
data were acquired across a range of behaviors while the patient
was in the epilepsy monitoring unit.

Overall Approach
Our overall approach consisted of two steps – a model building
step where we identified large-scale functional networks across
iEEG electrodes, and a model utilization step where we related the
architecture and intrinsic neural activity of functional networks
to depression status (Figure 1).

Construction of Whole-Brain Intracranial
EEG Model
For the model building step, we used a functional connectivity
imputation technique, called SuperEEG (Owen et al., 2020) to
map continuous iEEG recordings from different patients into
a common neural space (Figure 2). This method provided
an important advance over previous iEEG studies (Kirkby
et al., 2018; Sani et al., 2018; Scangos et al., 2019a) that were
limited to region-based analyses conducted in small samples
due to heterogeneous electrode placement. To generate this
model, pre-processed iEEG signals were chunked into 60 s non-
overlapping blocks and filtered for putative epileptiform activity
or artifacts using kurtosis, a measure of infrequent extreme
peaked deviations (Akbarian and Erfanian, 2018; Owen et al.,
2020). We then randomly sampled the 60 s intervals across
daytime hours (8am–10pm) and concatenated them into 2-
h blocks, each representative of naturalistic activity. We then
constructed subject-level whole-brain correlational models. To
do so, interelectrode correlation matrices were constructed from
activity where sensors were present and learned radial-basis
function weighted averages were used to generate correlational
information at locations where sensors were not present. The
subject-level models were then averaged to generate a population-
level model. We then used Gaussian process regression based
on the population-level model and individual time series for
each subject to reconstruct whole-brain local field potentials
for each subject. Evaluation of the SuperEEG algorithm has
been performed previously on two large independent iEEG
datasets using leave-one-out cross-validation (Owen et al.,
2020). Reconstruction accuracy was measured by calculating
the correlation between the true and reconstructed signals for
each held-out electrode from the held-out patients. By using

only other patients’ data to estimate activity for each held-out
electrode, volume conductance or other sources of “leakage” were
minimized resulting in a conservative estimate of reconstruction
accuracy. Using the same approach as Owen et al. (2020), we
compared the reconstruction accuracies obtained by the true
held-out models (mean r = 0.38) to the reconstruction accuracies
obtained by shuffled held-out models (mean r = 0.00) in which
the interelectrode correlations of the SuperEEG model were
permuted uniformly to generate activity patterns that would be
reconstructed by chance. As we hypothesized, we found that
the reconstruction accuracies for the true held-out models were
significantly greater than the reconstruction accuracies of the
shuffled held-out models (t = 13.94, p = 1.04e−25), suggesting that
the SuperEEG model reconstructs activity patterns significantly
better than chance.

The SuperEEG algorithm requires extensive computational
resources. Therefore, we sought to utilize the minimum required
information to obtain the majority of information and enable
computational feasibility. Using the 10 h benchmark as the largest
feasible model we could build, we compared 2, 4, 6, and 8 h
models to the 10 h model and found that the difference in adding
additional time beyond 2 h was marginal and could be computed
at a fraction of the computational cost. We therefore utilized the
2 h model for further analysis (Supplementary Figure 1B).

Signal Processing
Standard signal processing techniques were applied to the time-
series activity across all reconstructed electrodes. This included
continuous wavelet transformation using the Morlet transform
wavelet method (6-cycles) (Schiff et al., 1994) performed in 30 s
intervals to obtain power spectra in 6 frequency bands (delta = 1–
4 Hz, theta = 5–8 Hz, alpha = 9–12 Hz, beta = 13–30 Hz, low
gamma (gammaL) = 31–70 Hz, high gamma (gammaH) = 71–
150 Hz). Relative power was calculated by dividing the power of
each frequency band by the total power across the 6 frequency
bands for each electrode. Signals were summarized by taking the
mean power across time for each spectral band and were z-scored
across patients.

Electrode Clustering Into Functional
Modules
After construction of the full-brain correlational model, we
next utilized principles of graph theory to identify data-driven
functional networks (modules) across it. Our rationale was
that the model had learned statistically correlated fluctuations
between iEEG signals, akin to functional connectivity, and that a
network-based approach could enhance discovery of depression
circuitry over a univariate, single-region approach. We used
a well-validated modularity optimization technique known as
multiscale community detection, which groups electrodes into
non-overlapping modules by their correlational relationships
(Newman, 2006; Blondel et al., 2008) and has been used to reveal
system-level disruptions in disease states (Alexander-Bloch et al.,
2010; Chen et al., 2011; Yu et al., 2011; Bruno et al., 2012; Cao
et al., 2014; Sun et al., 2014; Keown et al., 2017) including MDD
(He et al., 2018). We conceptualize a network module as a distinct
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FIGURE 1 | Overall approach. Model Building: We utilized direct neural recordings from 54 patients to construct a whole-brain model of iEEG activity based on
correlational relationships of neural LFP time series signals across all electrode pairs. We then parcellated this model into functional network modules using graph
theory metrics. Model Utilization: We used the whole-brain iEEG model to study how brain activity and connectivity measures relate to depression status. We first
defined spectral power features across network modules and applied supervised machine learning to identify a group-level network features of depression (Activity
analysis). In parallel, we identified alterations in functional network connectivity and organization between depressed and control groups (Connectivity analysis).
Common group-level network features expressed at the individual level were clustered to identify two distinct patterns of altered activity and connectivity.

property of connectivity organization, akin to validated atlas
parcellations (Cammoun et al., 2012) but specifically designed for
functional rather than structural data. Atlases apply boundaries
to brain regions based on structural or functional organization
derived from coarse-scale neuroimaging and thus, while they
provide a useful validation for our data-driven parcellation
scheme, there is no reason to assume their boundaries will
perfectly align with neural signals at the millimeter scale of iEEG.

Individual functional connectivity models generated in the
whole-brain iEEG reconstruction were used as a starting point in
this analysis. Using the Louvain algorithm (Blondel et al., 2008),
we identified an optimal parcellation of electrodes into discrete
functional modules by maximizing a modularity cost function
defined by the following relationships,

P =
2
|K|F

KJKT (1)

Q =
∣∣(K − γP)◦ G

∣∣
F (2)

where J is a ones matrix, ◦ is the Hadamard product and Gi,j is 0 if
node pair (i, j) are assigned to different modules and 1 if the pair is

assigned to the same module, Q is modularity, K is the connection
weights (correlation) between node i and j, P is the Newman-
Girvan null model (Newman, 2006) and γ is the weighting of
that null model which is tuned to obtain network modules of
different sizes. Previous work on module detection (Bassett et al.,
2013) demonstrated that tuning this resolution parameter is key
to identifying modules at different topological scales of a network.
We examined network modularity at values of γ between 0.5 and
2.1. We first assessed the stability of clustering at each value of γ

by examining module allegiance (Bassett et al., 2015), calculated
by repeating module detection 100 times and evaluating the
probability that two electrodes occupied the same module.

Then, in line with previous efforts that have related iEEG
network structure to brain parcellations based on anatomy
(Betzel et al., 2019), we computed a similarity index (Misic et al.,
2016) between the division of electrodes into modules and the
division of electrodes into the 234 anatomically distinct brain
areas defined by the Lausanne atlas (Cammoun et al., 2012) for
the range of resolution parameters (Supplementary Figure 1C).
Significance was assessed by a permutation test where the null
model was generated by randomly assigning electrodes to each
module and calculating the confidence interval of the similarity
index generated from 1,000 random permutations and tested at
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FIGURE 2 | Construction of whole-brain model. (A) To generate a multi-subject whole-brain model of iEEG activity, patient’s electrode locations across participants
were first represented in a common space [Montreal Neurologic Institute (MNI) space]. Electrode locations and sample recordings for a few example patients are
shown. Activity was then randomly sampled in 1 min intervals across daytime hours to obtain a stable representation of brain activity across a 2-h period.
(B) Individual inter-electrode correlation matrices were constructed for each participant at locations where electrodes were present. (C) Subject-level full brain
correlational models were then predicted using radial basis function (RBF)-weighted averages to estimate brain activity correlations at locations where sensors were
not present. (D) Subject-level correlational models were then averaged to generate a population level whole-brain correlational model. (E) Local field potential activity
for each of the 4,244 electrodes was then reconstructed using Gaussian process regression with the population-level model as a prior and activity where electrodes
were present as the marginal likelihood. (F) The distribution of the electrode signal reconstruction accuracy across true correlational models (orange) compared to
reconstruction accuracy obtained from shuffled correlational models. To obtain this distribution we built models with 53/54 patients, and then applied the model to
the held-out patient, holding out each patient in turn. Correlation of the true and reconstructed signals were compared for each held-out electrode. Significance was
assessed by averaging the patient level Fisher transformed correlation coefficients and comparing the distribution for the true correlational model and the shuffled
correlational model using a t-test (t = 13.94, p = 1.04e−25).

significance level 0.05 for a two-tailed test. Two similarity peaks
were identified, with values of γ that generated 6 and 1,855
modules, respectively. The peak with the highest modularity

(lowest number of clusters) was selected for further analysis due
to our goal of examining the brain at a low level of granularity.
This selection enabled subsequent classification of activity across
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these clusters without overfitting our model. While we report
our results based on this most parsimonious match between
modules and anatomical structures (γ = 1.19), we verified that the
assignment of electrodes into slightly coarser and slightly finer
modules (1 < γ < 2.1) did not substantially alter our ability
to predict subjects with depression (Supplementary Figure 1C,
red). Finally, we assessed the distribution of electrodes that were
assigned to each module across the main anatomical regions
defined by Cammoun et al. (2012) (Supplementary Figure 1D).

Assigning Names to Modules
We assigned a name to each module by examining the location
of each module’s most influential electrodes. We utilized the
participation coefficient (PaC), which is a degree-based measure
of network connectivity that describes a node’s functional
interaction within and across network modules (Guimera and
Amaral, 2005; Rubinov and Sporns, 2010; Bertolero et al.,
2015). This metric is typically utilized to identify influential
hubs across a large-scale network. We utilized it in our study
to identify the location of hubs that were most important
for driving connectivity in each module identified through
community detection. Groups of electrodes with low PaC values
indicate hubs with high intramodular connectivity, also known
as provincial hubs (van den Heuvel and Sporns, 2013). Similarly,
connector hubs are those with high PaCs and drive intermodular
connectivity. The PaC describes the weight of edges from node
i to all other nodes in the same module relative to the weight of
edges from that node to all nodes in the network according to

yi = 1 −
∑
c∈C

(
ki (c)

ki

)
(3)

where yi is node i′s participation coefficient, C is the set of all
modules, ki (c) is the sum of all correlations between node i and
other members of module C and ki is the sum of all correlations
between node i and members of all modules. We calculated the
PaC for each electrode across our model, and then selected those
with high and low participation values (top/bottom 10%). We
then grouped these selected nodes by Lausanne atlas region,
eliminating or combining a minority of regions due to having
too few electrodes for analysis. We addressed the non-uniform
distribution of electrodes across the model by then assigning each
Lausanne region a score according to the following hub weight:

Ri =
NiMj

Tj
(4)

where Ni is the number of selected electrodes (top/bottom 10%)
in Lausanne region i, Mj is the number of selected electrodes
in Lausanne region i of module j, and Tj is the number of
total electrodes across modules in Lausanne region i. Hubs
were those Lausanne regions with the highest hub weight. Hub
location was identified by averaging the MNI coordinates of
electrodes within each hub. The full list of Lausanne regions
and hub weights is shown in Supplementary Figure 2 and
Supplementary Tables 2, 3. The purpose of the identified hubs

in the present report was primarily descriptive and helped relate
the computational model to known brain regions and structure;
all subsequent analyses utilized the population set of electrodes
across the full model.

Model Utilization: Activity Analysis
We next used the whole-brain correlational model to relate the
architecture and intrinsic neural activity of functional networks
to depression status. We hypothesized that by leveraging the
high temporal resolution of iEEG, as well as the direct access
to subcortical structures, we could overcome limitations of
scalp recordings (Widge et al., 2019). We used a machine
learning algorithm validated with leave-one-out cross validation
to identify distributed neural circuit features that discriminated
depression. We first averaged local field potentials across the
electrodes within each module and then decomposed the signals
into common spectral bands to identify 36 features (6 frequency
bands × 6 modules) where each feature contained information
about a spectral power band across one functional module.
These features, referred to as spectral-spatial features, served
as our starting feature space for entry into our classification
pipeline. Transformation with principal component analysis
(PCA) (Hotelling, 1933) followed by methods for feature
selection and subsequent discrimination have been used on
previous iEEG classification problems (Kirkby et al., 2018; Sani
et al., 2018). We followed a similar pipeline. PCA enabled us to
identify a low-dimensional feature representation of spectrally
band-limited neural activity across electrodes that potentially
span different modules. It is important to note that while
PCA and network module detection reduce the complexity
and inherent collinearity in the dataset (Manning et al., 2011,
2012; Kirkby et al., 2018; Sani et al., 2018; Scangos et al.,
2019b), they also reflect two non-mutually exclusive properties
of brain connectivity (modules) and brain activity (principal
components). Specifically, modules demarcate groups of brain
regions with correlated broadband brain activity, irrespective of
the amplitude of the activity, and principal components represent
additional state-dependent neural activity that is band-specific,
such as rhythms and oscillations (Betzel et al., 2019), and may
arise from functionally important integrative connections that
span between modules (Bertolero et al., 2015; Betzel et al.,
2018). This line of thinking closely resembles previously reported
accounts of neural co-activation dynamics (akin to principal
components) spanning multiple cognitive networks (akin to
network modules) that explain inter-individual differences in
task performance and cognitive traits. After identifying a
principal component representation of cross-module spectral-
spatial network features, we utilized logistic regression (with L1
regularization) to classify subjects with depression and identify
features with the greatest discriminatory power. PCA and logistic
classification were performed within the cross-validation loop
where a model is trained on all subjects but one, and then
tested on the held-out subject with each subject held-out in
turn. We report mean accuracy (balanced to group-size) across
the cross-validation iterations. Models without PCA were also
performed for comparison (L1, L2, elastic net, random forest).
To further asses our model validity, we repeated our classification
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pipeline on a null model obtained from randomly permuting
the target class labels 1,000 times and used a permutation test
to assess significance between the true and null model accuracy
distributions. In order to control for possible differences in
epileptiform activity residual to data-cleaning across the modules
we calculated mean line-length, a commonly utilized measure
for the detection of epileptiform activity (Guo et al., 2010), of
the electrodes within each module and used a logistic regression
model to determine if line-length across the six modules was a
significant predictor of depression status.

Hierarchical Clustering to Identify
Depression Networks
We reasoned that we could utilize the group-level network
to identify common features that defined depression at the
individual level. To do so, we mapped the principal component
values (feature loadings ≥ 0.2) back to the original feature space
weighted by the logistic regression coefficients. Specifically, we
computed the dot product between the loading weights for
each spectral-spatial feature and the coefficient weighting from
the classifier. Performing this operation provided the log-odds
impact of each original feature and enabled us to show the
direction of change of each power band and module in relation to
depression diagnosis. We then tested the distribution of feature
impact on depression classification probability across depressed
participants by grouping similar log-odds impact covariates
(thresholded at 0.15) utilizing an agglomerative hierarchical
clustering algorithm (Ravasz et al., 2002; Rihel et al., 2010;
Drysdale et al., 2017; Grisanzio et al., 2018). A log-odds threshold
of 0.15 was selected because it retained classification results
for 98% of subjects while isolating the most contributory
spectral-spatial features (see Supplementary Figure 3A for non-
thresholded model for comparison). The clustering yielded both
patient and feature groupings that defined neurophysiological
network expression patterns (NEPs) of depression. We quantified
the impact of these NEPs on each participant’s probability
of being classified as depressed by performing a sensitivity
analysis where we withheld each NEP and then attributed the
probability decrement from the total classification probability
to the withheld activity pattern. We also ran this analysis on
the boundary patients who had mild symptoms of depression
but did not reach threshold (PHQ-9 < 10) for depression
(Supplementary Figure 3B).

Model Utilization: Connectivity Analysis
In addition to alterations in the spectral content of network
activity in depression, previous studies have observed distinct
deficiencies in connectivity across depression networks (Sun
et al., 2011; Zhang et al., 2011; Lord et al., 2012; Korgaonkar
et al., 2014; Chen et al., 2017). A fundamental interest in
neuroscience is the relationship between the brain’s neural
activity and its underlying functional and structural connectivity,
which remains unknown. The graph of our whole-brain iEEG
model defines correlational relationships between electrodes
across our total population. We thus examined these correlational
relationships across control and depressed groups independently

in order to measure the relative differences of functional
network organization between the two groups. First, inter- and
intramodular connectivity strengths were assessed by looking at
the correlations between all electrodes within the same module
(intramodular) and the correlations between electrodes across
all pairs of modules (intermodular). Next, to assess whether the
effect of connectivity differences between groups is a network-
wide characteristic of the depressed brain or whether the effect is
localizable to specific modules, we used a Cohen’s d effect size
metric and compared the distribution of correlation strengths
across depressed and control groups for each possible module
pair. To assess significance across these connections we generated
a null distribution of Cohen’s d values for each module pair
and retained the true Cohen’s d values that survived multiple
comparisons testing (p < 0.001).

RESULTS

Derivation of Functional Modules
Using leave-one-patient out validation of the correlational model,
we found that the distribution of correlations (mean r = 0.38) was
similar to the prior reconstruction accuracies (Owen et al., 2020)
and centered well above shuffled correlational models (mean
r = 0.00) suggesting the algorithm estimates activity patterns
substantially better than chance. The distribution of patient
level fisher transformed correlation coefficients was significantly
different than 0 (t = 13.94, p = 1.04e−25, Figure 2F). We observed
that our whole-brain iEEG model was optimally parcellated
into 6 stable modules (Jaccard index, p < 0.05, permutation
test) and that these modules were spatially distributed and
spanned multiple anatomical structures (Figure 3A). A graph
of the network and its subdivision into modules is shown in
Figure 3B, where module membership is indicated by the color
of nodes (iEEG electrodes) and edges (inter-electrode correlation
from whole-brain model). These modules included the left
dorsolateral prefrontal cortical (L-DLPFC), left occipitotemporal
(L-OT), left orbitofrontal cortical (L-OFC), right frontotemporal
(R-FT), right medial frontal (R-MF), and mid-hemispheric
modules. Figure 3C shows hub locations by their mean
Montreal Neurological Institute (MNI) (Cammoun et al., 2012)
coordinates and associated Brodmann Areas.

Relationship of Functional Network
Identification to Depression Status
In accordance with literature-derived rates of depression in this
population (Hermann et al., 2000; Gilliam et al., 2003; Swinkels
et al., 2005; Hermann and Jones, 2006; Fuller-Thomson and
Brennenstuhl, 2009; Rai et al., 2012), 43% of our population had
self-reported depression (defined by PHQ-9 ≥ 10, n = 23), and
33% had mild or no symptoms of depression, which defined our
control group (PHQ-9 ≤ 5, n = 18). The two groups did not vary
in age, sex, type of epilepsy, antidepressant usage, or anti-epileptic
drug class (t-test, X2, p > 0.4, Supplementary Table 1). In order
to determine the spectral-spatial neural activity features that
discriminated the depressed from the control group, we used a
standard leave-one-out cross validated machine learning pipeline
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FIGURE 3 | Identification of functional modules. (A) Multiscale community detection was applied to the whole-brain model to group electrodes (nodes) into
non-overlapping modules (communities) by their correlational relationships (Newman, 2006; Blondel et al., 2008). First, the population-level correlational model was
reordered by the module assignment according to the modularity cost function. Network modules were identified at different levels of granularity by varying the
tuning parameter (Garcia et al., 2018; He et al., 2018). Increasing partitions the brain into increasing numbers of modules with a limit equal to the number of
electrodes, as shown here for 3 values of (left). Next, the stability of this clustering at each value of was assessed by calculating module allegiance, which describes
the probability that any two electrodes occupy the same module on repeated module detection (Bassett et al., 2015) (right). A value of 1.19 was selected by
comparing the similarity of partitions generated by values of with those of a commonly used brain atlas (Cammoun et al., 2012), resulting in 6 modules. Of note, one
of the modules is small and difficult to resolve in the figure. (B) The graph of the large-scale network with module membership delineated by the color of the nodes
and edges for selected of 1.19 is shown along with a schematic representation of the 6 modules. (C) Hubs for each module were identified by selecting electrodes
with the lowest 10% participation coefficients. Values were then averaged for each Lausanne brain region per module and weighted by the distribution of electrodes
across Lausanne regions in all modules. Hub weight is indicated by the size of hub, and module assignment is indicated by hub color. Module 5 contained
insufficient number of electrodes for hub identification (0.3% of total sample) and coefficients across all electrodes were utilized to name this module. L-DLPFC, left
dorsolateral prefrontal cortex; L-OT, left occipitotemporal cortex; L-OFC, left orbitofrontal cortex; R-MF, right medial frontal cortex; R-FT, right frontotemporal cortex.

(PCA followed by logistic regression, Figure 4A) (Arbabshirani
et al., 2017). We found that a combination of four principal
components had the strongest predictive ability to detect
depressed from non-depressed subjects. Their loading weights
represent their contribution toward likelihood of depression
(Figure 4B). Utilizing the four most discriminative components
alone, we achieved a mean classification accuracy of 77.4%
(p = 0.002). The same classification pipeline applied to a null
model obtained from randomly permuting the target class labels
1,000 times and retraining the classifier with each permutation
led to an accuracy of 50.0%. Alternate classification models
without PCA also performed better than chance (L1 0.68; L2 0.77;
Elastic Net 0.75; Random Forest 0.60). Furthermore, a logistic
regression model showed that epileptiform activity residual to
data-cleaning across the modules was not a significant predictor
of depression status (R2 = 0.15, p = 0.13). Together, these
data suggest that a parsimonious model with four principal
components, which capture major sources of variance in spectral-
spatial features, can detect subjects with depression from the
control group significantly better than chance.

As our primary goal was to uncover the underlying biology
of depression, we next turned to an examination of the
individual spectral-spatial features contained within the four
components. These features comprise the circuit activity that

distinguishes depression in our population (for full component
loadings see Supplementary Table 4). To better interpret the
biological meaning of this distributed network activity in terms
of recognized brain regions and our similarly scaled network
modules, we spatially projected the four components back onto
the brain (Figure 4C). On visual inspection two gross patterns
of spectral activity across the modules emerged. The first was
high alpha power across the L-OT, R-FT, and mid-hemispheric
modules (attention and default mode regions, modules 2,5, and
6 in Figure 4C). The second was high delta and low alpha
and theta power in the L-DLPFC and OFC modules (executive
and limbic regions, modules 1 and 3 in Figure 4C). These
results suggested that low- and mid- frequency activity across
broad networks characterize depression at the group level and
motivated the subsequent statistical analysis to define the two
patterns quantitatively.

Distinct Network Expression Patterns
Define Depression
To further examine the observed inter-individual heterogeneity
in expression of the group-level depression network features,
we tested the distribution of feature impact on depression
classification probability across participants using an
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FIGURE 4 | Spectral-spatial features that discriminate depression at group level. (A) Activity analysis pipeline showing steps including power feature extraction,
dimensionality reduction, transformation, and classification. The distribution of PHQ-9 scores across the depression (n = 18, purple) and control groups (n = 23, gray)
is shown bottom left (mean PHQ-9 score 8.85, standard deviation 6.13). Power was extracted from the reconstructed time-series using the Morlet transformation in
30 s intervals across 6 frequency bands (delta = 1–4 Hz, theta = 5–8 Hz, alpha = 9–12 Hz, beta = 13–30 Hz, low gamma (gammaL) = 31–70 Hz, high gamma
(gammaH) = 71–150 Hz). This process yielded 25,464 spectral power features from our model (6 frequency bands × 4,244 electrodes × 2 h). Z-scored relative
power was calculated and averaged within each band across each of the 6 network modules. Power was then further averaged across time to yield 36
spectral-spatial features per participant. Principal component analysis was then used to transform the full spectral-spatial feature set, followed by logistic
classification yielding 4 features that identified depression with 80.0% accuracy on the training set and 77.4% on the test set. (B) The component weights of the four
features with cumulative explained variance across the first 10 principal components shown in the inset. (C) Spectral distribution of the 4 components was obtained
by calculating the dot product between the loading weights (>0.2) for each spectral-spatial feature in the four principal components and the coefficient weighting
from the classifier. Bars show the direction of change of each power band and module in relation to depression diagnosis and relate changes in spectral power
associated with depression across spatially distributed brain networks. These spectral-spatial features represent the circuit activity that distinguishes depression in
our population. DLPFC, dorsolateral prefrontal cortex; OT, occipitotemporal; OFC, orbitofrontal cortex; MF, medial frontal; FT, frontotemporal; MH, mid-hemispheric.

agglomerative hierarchical clustering algorithm (Ravasz et al.,
2002; Rihel et al., 2010; Drysdale et al., 2017; Grisanzio et al.,
2018). We found two distinct subnetwork activity patterns
(network expression patterns (NEPs)) that strongly impacted
depression and subdivided our depressed population into two
groups (Figure 5A). The first subnetwork (NEP1) was marked
by increased beta power in the L-OT module, and increased
alpha and decreased delta power over the L-OT and R-FT
modules. The second subnetwork (NEP2) was marked by
decreased theta in the L-DLPFC, L-OFC, and R-FT modules,
and decreased alpha, beta power together with increased delta
power within the L-DLPFC and L-OFC modules. The presence
of two subnetworks importantly demonstrated that different core
features were relevant in different subjects.

We next used a sensitivity analysis to quantify the impact of
each NEP on each participant’s probability of being classified

as depressed. Figure 5B shows the probability contribution
of each NEP for each subject in the depressed group (top
plot) and control group (bottom plot). While we anticipated
that each individual would exhibit several NEPs with differing
contributions to their depression classification, an alternate
pattern emerged from the data. We found that increased
activity in either NEP was correlated with depression, but that
each patient exhibited activity in only one of the two NEPs.
Thus, depressed participants fell into two groupings based on
NEP activity. Classification for the first group (37% depressed
subjects) was largely driven by NEP1 (n = 7, mean probability
contribution = 0.38, SD = 0.13) alongside usually modest
opposing contributions form NEP2, while classification for the
second group (53% depressed subjects) was largely driven by
NEP2 (n = 10, mean probability contribution = 0.39, SD = 0.18,
Figure 5C), alongside more modest opposing contributions from
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FIGURE 5 | Identification of two depression subnetworks. (A) Hierarchical clustering on log-odds of spectral-spatial features at the individual patient level showing 2
patient groups (horizontal groupings) and 2 network expression patterns (NEPs) (vertical groupings). Columns represent individual patients with patient study number
shown at bottom, and rows represent spectral power across one frequency band and module (ex. alpha_1 = alpha power across module 1). Magnitude of log-odds
represented by color of corresponding boxes (color-bar legend top right). Spectral-spatial features associated with NEP-1 represented in purple text and those
associated with NEP-2 represented in blue text. (B) NEP probability contribution for the depressed group (top plot) and control group (bottom plot) derived from a
sensitivity analysis where the probability of depression for each individual was calculated in total and with a perturbation where each NEP was held out. The
probability difference was attributed to the presence of the NEP. This probability contribution is represented by the colored bars overlaid over each patient’s total
probability of being depressed as derived from the machine learning classification model (gray bars, probability > 0.5 leads to classification of depression). The
perturbations do not sum to produce the total classification probability; rather each quantifies the relative importance of that NEP toward depression. Bars in the
positive direction indicates a positive contribution toward depression, and those in the negative direction indicate a protective contribution toward depression.
Subjects where one of the two NEPs did not drive classification probability are shown in muted colors (mixed profile). Subjects classified incorrectly shown on far
right of each plot (misclassified). (C) Mean probability contribution of each NEP to two patient groups is shown. NEP-1 (purple bars) contributed most strongly to the
probability of depression in the first group (mean = 38% probability contribution, SD = 0.13) and NEP-2 (blue bars) contributed most strongly to a second group
(mean = 39% probability contribution, SE = 0.18). Number of participants who exhibit each NEP shown above each bar. Error bar = standard deviation. (D) Direction
of activity and spatial distribution of activity changes within NEP shown on glass-brain in several orientations. Hubs for each module within the NEP are designated
by hub color.

NEP1. Classification of the remaining 11% of participants was
either driven by mixed effects of both NEPs or there was
little contribution from either NEP and may be evidence of
additional subnetworks that were not resolved in our dataset.
Two distinct groups also emerged from the control participants
with NEP activity contributing here as well, but with distinct
contribution profiles compared to the depressed participants.
Classification for the first group (21% control patients) was

driven either by mixed effects of both NEPs or little contribution
of either NEP, as we anticipated. Classification for the second
group, was driven by one of the two NEPs with a more modest
contribution of the opposing NEP (79% of control group).
We might speculate that relative NEP activity could represent
either risky or conversely, protective activity profiles, and that
NEP activity could be modulated in either direction to treat
depression. The anatomical distribution of the two depression
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FIGURE 6 | Intra- and Inter-modular connectivity signatures of depression and control groups. (A) Connectivity structure derived using whole-brain iEEG model
recalculated for the control group (left) and depressed group (right) with module membership delineated by the color of the nodes (electrodes), and edges
(connections between electrodes) delineated by the black interconnecting lines. (B) Heatmap of significant Cohen’s d values calculated from the distribution of
correlation strengths between depressed and control groups for each possible module pair and compared to Cohen’s d values for a null distribution derived from
permuted nodal module assignment. Those that survived multiple comparison testing (p < 0.001) were retained (red: increased connectivity for depressed group;
blue: increased connectivity for control group; white: not significant). (C) Schematic of NEP-1 (left) and NEP-2 (right) showing both connectivity and spectral power
underlying each pattern. Increased connectivity strength shown in red, and decreased connectivity shown in blue (hub = intramodular, line = intermodular
connectivity). Color of shaded area refers to module number as shown in color legend in (A).

subnetworks and the associated changes in spectral activity are
shown in Figure 5D and Supplementary Figure 3C.

Network Organization Is Disrupted
Across Depression Subnetworks
We expected that alterations in functional network topology
would also be present in our depressed population and that
we could delineate new relationships between activity and
functional connectivity with our high-resolution dataset to
more comprehensively characterize depression subnetworks. We
performed a connectivity analysis using correlation of local field
potential activity across modules as an estimate of functional
connectivity between electrodes. Figure 6A shows the two-
dimensional representation of the functional network structure
for control (left) and depressed (right) groups. In comparison to

the control group, we qualitatively observed an overall reduction
in the segregation between modules in the depression network.

To quantify these differences and test whether the effect
of connectivity differences between groups is a network-wide
characteristic of the depressed brain or whether the effect is
localizable to specific modules, we calculated the inter- and intra-
modular connectivity strength. Figure 6B shows the heatmap of
significant Cohen’s d values, where a greater effect of connectivity
for the depressed group is indicated in red, and lower effect
of connectivity for the depressed group is indicated in blue.
The results demonstrate strong evidence that, indeed, there
are module-specific differences in the effect of connectivity
between depressed and non-depressed individuals suggesting
that modules may express hyperconnectivity or hypoconnectivity
in depression depending on their anatomical localization in
the brain. In the depressed group, there was overall greater
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frontal connectivity and weaker cross-hemispheric connectivity.
Specifically, we observed greater intra-modular connectivity
within L-DLPFC, L-OFC, and R-MFC modules, weaker intra-
modular connectivity within L-OT and R-FT modules, and
greater inter-modular connectivity between L-DLPFC, L-OFC,
and L-OT modules. Hubs in the insula, amygdala, temporal
pole and fusiform gyrus drove the cross-module connectivity
(top 10% participation coefficient, see section “Materials and
Methods”). We also observed a decrease in cross hemispheric
connectivity in the depressed group compared to the control
group (L-DLPFC/L-OFC to R-FT modules, and L-OT to R-FT/R-
MFC modules), with hubs in the insula, temporal-parietal region
and amygdala responsible for this decreased connectivity. The
L-OFC module showed greater connectivity with the R-MFC
module, and R-MFC module exhibited stronger connectivity with
the R-FT module.

On the basis of the above analyses we were able to parse
specific connectivity components that characterize the two
depression subnetworks (Figure 6C), unifying both activity and
connectivity analyses across cortical and deep structures with a
level of specificity that has not previously been possible. In the
first subnetwork characterized by NEP1 we observed increased
beta power in the L-OT module, and right-left asymmetry in
the alpha and delta bands over right frontal/L-OT modules with
weaker intra- and inter-modular connectivity throughout. In
the second subnetwork characterized by NEP2 we observed a
hyperactive left frontal cortex that was more highly connected
within itself but more weakly connected to R-FT module. Lower
theta bilaterally was observed in this subnetwork.

DISCUSSION

In this report, we present a large study of direct neural recordings
aimed at identifying depression networks, made possible by
multi-day iEEG recordings paired with a depression measure.
The opportunity to directly record semi-chronically from cortical
and subcortical structures in this manner enabled us to estimate
whole-brain neural activity and incorporate both activity and
connectivity analyses to resolve new subnetworks underlying
depression. We found that depression is associated with a
complex distributed pattern of network activity and two distinct
depression subnetworks were expressed in 89% of depressed
patients. These included a poorly connected occipitotemporal
network characterized by heightened beta activity, and a
hyperconnected frontal cortical subnetwork characterized by low
alpha and theta power.

Our ability to delineate the functional organization and
spectral activity patterns of depression networks with high
spatiotemporal resolution relied on the application of a network
neuroscience framework to the output of the SuperEEG
model. Recently, Betzel and colleagues successfully applied
a similar correlational network model to multi-subject iEEG
recordings, followed by community detection, and found
network organization to be representative of that obtained from
DTI and fMRI (Betzel et al., 2019). We further extended these
findings, by applying the iEEG model to the study of disease

status for the first time. The two depression subnetworks we
identified are supported by previous fMRI and EEG studies
of depression that have found individual components of the
subnetworks in different studies including limbic alpha power
that correlates with depression severity (Neumann et al.,
2014), disruptions in frontal theta, temporal beta (Newson
and Thiagarajan, 2018), and alpha asymmetry (Henriques and
Davidson, 1990, 1991; Tomarken et al., 1992; Wheeler et al.,
1993; Gotlib et al., 1998). Decreased connectivity in the occipital,
temporal, and right medial frontal regions (Veer et al., 2010) and
higher frontal connectivity has also been observed (Nofzinger
et al., 2005; Greicius et al., 2007; Frodl et al., 2010; Sheline et al.,
2010; Alexopoulos et al., 2012; Cheng et al., 2016). Our findings of
two dichotomously expressed subnetworks may provide a partial
explanation for the inconsistent findings across prior EEG studies
that have predominantly focused on single frequency band or
brain regions and have lacked rigorous cross-validation as noted
by a recent meta-analysis (Widge et al., 2019).

Prior analyses of neuropsychiatric-related iEEG features have
been made using components of the patient dataset used in
this study (Kirkby et al., 2018; Sani et al., 2018; Scangos
et al., 2019a). These efforts (Kirkby et al., 2018; Sani et al.,
2018) have focused on studying a broad emotion state rather
than depression and took region-based approaches using low
subject numbers due to the problem of heterogenous electrode
coverage across individuals. The computational approach
developed here was motivated by limitations of this prior work,
enabling us to incorporate parallel information from all of our
subjects despite differing electrode coverage, perform group
level analyses of depression, and uncover distributed circuit
activity. While our aim was to capture network dysfunction
associated with depression, the two distinct ways in which
activity within the NEP networks combinatorically relates to
disease classification also suggest the possibility of their reflecting
depression biotypes. Deeper exploration of these putative
biotypes awaits further study.

Functional connectivity informs longer time-scale
organization of neural populations whereas functional activity
informs moment-to-moment behavior of neural populations.
Our finding that some brain regions show distinct changes
in both activity and connectivity, while other regions, such
as the right medial frontal region (module 4), demonstrate
connectivity differences alone suggests that depression is
both a state-invariant connectivity disorder and a state-
dependent activity disorder. This relationship might explain
why traditional antidepressant medications can take 6–8 wks
to start working, yet ketamine can improve symptoms on
the same day of administration (McGirr et al., 2015). It is
possible that the presence of aberrant activity over long periods
of time could shape network connectivity via plasticity or
that changed connectivity patterns can impact the timing
and flow of normal neural activity. Future work using high
temporal resolution iEEG could inform how symptom-states
and depression traits are integrated at the level of distributed
neural circuits.

We acknowledge some weaknesses in the results presented.
Depression in epilepsy is thought to arise from similar
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origins to primary depression [ex. stress (Wulsin et al.,
2016), inflammation (Vezzani et al., 2011), circuit dysfunction
(Gleichgerrcht et al., 2015)], and is responsive to antidepressants
(Kanner, 2003) suggesting it can provide valuable insight
into depression more broadly. It remains unknown whether
the depression networks we identified are related to the
presence of epilepsy. Our categorical approach using the
PHQ-9 to identify depressed patients was straightforward
to apply in the context of complex data and has direct
clinical relevance. However, it also selects inherently imperfect
diagnostic boundaries and limited our capacity to examine
variation in depression among subjects. Furthermore, as this
was a cross-sectional investigation, some patients in the control
group had a history of depression treated with ongoing
antidepressant use but were not depressed per the PHQ-9
at the time of the study. Future analyses could explore how
neural signatures vary with symptom severity in addition to
alternative dimensional approaches which have the potential
benefit of mapping neural features onto symptom profiles
(Drysdale et al., 2017; Grisanzio et al., 2018). Furthermore,
assumptions about the number of communities are a limitation
of the community detection method (Betzel et al., 2019).
Future studies could explore changes in network structure
across depressed and non-depressed individuals at different
levels of resolution.

While our whole-brain iEEG model was extensive in coverage,
we did not have electrodes placed in all brain regions, including
some regions implicated in depression (Mayberg et al., 1997;
Malone et al., 2009; Hamani et al., 2011; Marchand et al., 2012;
Riva-Posse et al., 2018) and the density of electrode sampling
varied across brain regions leading to uncertainty in the accuracy
of estimation in sparsely sampled areas (Owen et al., 2020).
We dealt with this constraint by discounting the effect of each
individual node degree before running community detection and
comparing network measures to a null model that accounted
for overall node density. Furthermore, our prior work has
shown no reliable correlation between reconstruction accuracy
and density (Owen et al., 2020). SuperEEG relies on accurate
reconstruction of held-out activity patterns. While accuracy of
this algorithm is significantly above chance and similar to the test-
retest reliability of fMRI in redetecting estimated activity (Bennett
and Miller, 2010), improved reconstruction is an important
area for future work. The SuperEEG approach reconstructs
just a portion of the verum iEEG signal – the remaining
unexplained portion may stem from subject-specific variation
in connectivity (Mueller et al., 2013; Finn et al., 2015), state-
dependent variability in connectivity (Hutchison et al., 2013a,b)
within subjects, or statistical noise. It follows that of this faithfully
reconstructed portion of the iEEG signal, we found that higher-
order principal components of spectral-spatial iEEG activity were
most important for identifying patients with depression. Taken
together, we speculate that depression may in fact have a low-
dimensional network representation that is widely pervasive in
the iEEG signal but represents just a small portion of iEEG signal
dynamics. Importantly, we found that alternate machine-learning
pipelines converged on these same low-dimensional features.
Thus, there is high likelihood that the neural features we have
found reflect circuit physiology that is stereotyped to depression.

With advancements in data processing capabilities and
accessibility we may be able to reduce assumptions and the
estimation burden, extend coverage to more brain regions, and
utilize larger samples. Indeed, work to integrate our findings with
network features from high spatial resolution MRI is already
underway by our group. Finally, while ideally we would have
independent test and training datasets for the machine learning
used for classification, we utilized leave-one-out cross validation
due to our sample size.

Through the current study, we identified two novel
subnetworks of depression. The results have important
implications for disease subtyping, diagnosis, treatment
planning, and monitoring of depression status. These
subnetworks could form the basis for interventions at many
different potential control points along each subnetwork and
suggest that interventions that change both connectivity and
spectral power could be promising. For example, they provide
a mechanistic rationale for practitioner’s choice between right
and left DLPFC vs. OFC targets for repetitive transcranial
magnetic stimulation (Drysdale et al., 2017; Feffer et al., 2018).
Evidence of high activity in one network pattern, countered
by an anti-weighting of the other pattern further suggests the
existence of protective or high-risk profiles and the possibility
of preventative treatments. A library of new treatment targets
and frequency-specific treatment parameters (Chanes et al.,
2013; Cocchi and Zalesky, 2018) could enable a new wave of
interventional therapies that personalize treatment based on
neurophysiological signals.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation. The
electrophysiological whole-brain atlas (correlational model) has
been uploaded to zenodo (https://zenodo.org/record/5540172#
.YVUn9WZKjzc).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Institutional Review Board at University of
California, San Francisco. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

KS, AKh, EC, and AKr conceived the study. KS, AKh, and PD
analyzed and interpreted the data. JA and EA contributed to data
collection. JM and LO contributed to data analysis methods. KS
wrote the manuscript with significant input from all authors. All
authors reviewed and approved the manuscript.

FUNDING

This work was supported by the National Institutes of Health
award (K23NS110962 to KS), NARSAD Young Investigator grant

Frontiers in Human Neuroscience | www.frontiersin.org 13 October 2021 | Volume 15 | Article 746499

https://zenodo.org/record/5540172#.YVUn9WZKjzc
https://zenodo.org/record/5540172#.YVUn9WZKjzc
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-746499 October 15, 2021 Time: 16:18 # 14

Scangos et al. Depression Subnetworks Defined by iEEG

from the Brain and Behavioral Research Foundation (to KS), and
a Ray and Dagmar Dolby Family Fund through the Department
of Psychiatry at the University of California, San Francisco (to
KS and AKr) and a Brain Initiative grant (SUBNETS to EC).
EC receives research support from National Institutes of Health,
New York Stem Cell Foundation, the Howard Hughes Medical
Institute, the McKnight Foundation, the Shurl and Kay Curci
Foundation, and the William K. Bowes Foundation. AKr receives
support from National Institutes of Health, PCORI, Janssen, Jazz,
Axsome, and Reveal Biosensors.

ACKNOWLEDGMENTS

We thank the members of the Chang Lab for assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2021.746499/full#supplementary-material

REFERENCES
Akbarian, B., and Erfanian, A. (2018). Automatic seizure detection based on

nonlinear dynamical analysis of EEG signals and mutual information. Basic
Clin. Neurosci. 9, 227–240. doi: 10.32598/bcn.9.4.227

Alexander-Bloch, A. F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F.,
et al. (2010). Disrupted modularity and local connectivity of brain functional
networks in childhood-onset schizophrenia. Front. Syst. Neurosci. 4:147. doi:
10.3389/fnsys.2010.00147

Alexopoulos, G. S., Hoptman, M. J., Kanellopoulos, D., Murphy, C. F., Lim, K. O.,
and Gunning, F. M. (2012). Functional connectivity in the cognitive control
network and the default mode network in late-life depression. J. Affect. Disord.
139, 56–65.

Arbabshirani, M. R., Plis, S., Sui, J., and Calhoun, V. D. (2017). Single
subject prediction of brain disorders in neuroimaging: promises and pitfalls.
Neuroimage 145, 137–165. doi: 10.1016/j.neuroimage.2016.02.079

Arroll, B., Goodyear-Smith, F., Crengle, S., Gunn, J., Kerse, N., Fishman,
T., et al. (2010). Validation of PHQ-2 and PHQ-9 to screen for
major depression in the primary care population. Ann. Fam. Med. 8,
348–353.

Bassett, D. S., Porter, M. A., Wymbs, N. F., Grafton, S. T., Carlson, J. M., and
Mucha, P. J. (2013). Robust detection of dynamic community structure in
networks. Chaos 23:013142.

Bassett, D. S., and Sporns, O. (2017). Network neuroscience. Nat. Neurosci. 20,
353–364.

Bassett, D. S., Yang, M., Wymbs, N. F., and Grafton, S. T. (2015). Learning-
induced autonomy of sensorimotor systems. Nat. Neurosci. 18, 744–751. doi:
10.1038/nn.3993

Bennett, C. M., and Miller, M. B. (2010). How reliable are the results from
functional magnetic resonance imaging? Ann. N. Y. Acad. Sci. 1191, 133–155.

Bertolero, M. A., Yeo, B. T., and D’esposito, M. (2015). The modular and integrative
functional architecture of the human brain. Proc. Natl. Acad. Sci. U.S.A. 112,
E6798–E6807.

Betzel, R. F., Medaglia, J. D., and Bassett, D. S. (2018). Diversity of meso-scale
architecture in human and non-human connectomes. Nat. Commun. 9:346.
doi: 10.1038/s41467-017-02681-z

Betzel, R. F., Medaglia, J. D., Kahn, A. E., Soffer, J., Schonhaut, D. R., and Bassett,
D. S. (2019). Structural, geometric and genetic factors predict interregional
brain connectivity patterns probed by electrocorticography. Nat. Biomed. Eng.
3, 902–916. doi: 10.1038/s41551-019-0404-5

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks. J. Stat. Mech. Theory Exp.
2008:10008. doi: 10.1103/PhysRevE.83.036103

Bluhm, R., Williamson, P., Lanius, R., Theberge, J., Densmore, M., Bartha, R., et al.
(2009). Resting state default-mode network connectivity in early depression
using a seed region-of-interest analysis: decreased connectivity with caudate
nucleus. Psychiatry Clin. Neurosci. 63, 754–761. doi: 10.1111/j.1440-1819.2009.
02030.x

Botteron, K. N., Raichle, M. E., Drevets, W. C., Heath, A. C., and Todd, R. D.
(2002). Volumetric reduction in left subgenual prefrontal cortex in early onset
depression. Biol. Psychiatry 51, 342–344. doi: 10.1016/s0006-3223(01)01280-x

Bruno, J., Hosseini, S. M., and Kesler, S. (2012). Altered resting state functional
brain network topology in chemotherapy-treated breast cancer survivors.
Neurobiol. Dis. 48, 329–338. doi: 10.1016/j.nbd.2012.07.009

Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P., Sporns, O., Do, K. Q.,
et al. (2012). Mapping the human connectome at multiple scales with diffusion
spectrum MRI. J. Neurosci. Methods 203, 386–397.

Cao, M., Shu, N., Cao, Q., Wang, Y., and He, Y. (2014). Imaging functional and
structural brain connectomics in attention-deficit/hyperactivity disorder. Mol.
Neurobiol. 50, 1111–1123.

Chanes, L., Quentin, R., Tallon-Baudry, C., and Valero-Cabre, A. (2013). Causal
frequency-specific contributions of frontal spatiotemporal patterns induced by
non-invasive neurostimulation to human visual performance. J. Neurosci. 33,
5000–5005. doi: 10.1523/JNEUROSCI.4401-12.2013

Chen, T., Kendrick, K. M., Wang, J., Wu, M., Li, K., Huang, X., et al. (2017).
Anomalous single-subject based morphological cortical networks in drug-
naive, first-episode major depressive disorder. Hum. Brain Mapp. 38, 2482–
2494. doi: 10.1002/hbm.23534

Chen, Z. J., He, Y., Rosa-Neto, P., Gong, G., and Evans, A. C. (2011). Age-
related alterations in the modular organization of structural cortical network
by using cortical thickness from MRI. Neuroimage 56, 235–245. doi: 10.1016/j.
neuroimage.2011.01.010

Cheng, W., Rolls, E. T., Qiu, J., Liu, W., Tang, Y., Huang, C. C., et al. (2016). Medial
reward and lateral non-reward orbitofrontal cortex circuits change in opposite
directions in depression. Brain 139, 3296–3309. doi: 10.1093/brain/aww255

Cocchi, L., and Zalesky, A. (2018). Personalized transcranial magnetic stimulation
in psychiatry. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 731–741.

Diego, M. A., Field, T., and Hernandez-Reif, M. (2001). CES-D depression scores
are correlated with frontal EEG alpha asymmetry. Depress. Anxiety 13, 32–37.

Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y.,
et al. (2017). Resting-state connectivity biomarkers define neurophysiological
subtypes of depression. Nat. Med. 23, 28–38.

Feffer, K., Fettes, P., Giacobbe, P., Daskalakis, Z. J., Blumberger, D. M., and Downar,
J. (2018). 1Hz rTMS of the right orbitofrontal cortex for major depression:
safety, tolerability and clinical outcomes. Eur. Neuropsychopharmacol. 28,
109–117. doi: 10.1016/j.euroneuro.2017.11.011

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., et al.
(2015). Functional connectome fingerprinting: identifying individuals using
patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671.

Fischl, B. (2012). FreeSurfer. Neuroimage 62, 774–781.
Frodl, T., Bokde, A. L., Scheuerecker, J., Lisiecka, D., Schoepf, V., Hampel, H.,

et al. (2010). Functional connectivity bias of the orbitofrontal cortex in drug-
free patients with major depression. Biol. Psychiatry 67, 161–167. doi: 10.1016/
j.biopsych.2009.08.022

Fuller-Thomson, E., and Brennenstuhl, S. (2009). The association between
depression and epilepsy in a nationally representative sample. Epilepsia 50,
1051–1058. doi: 10.1111/j.1528-1167.2008.01803.x

G. B. D. Disease Injury Incidence Prevalence Collaborators (2018). Global,
regional, and national incidence, prevalence, and years lived with disability
for 354 diseases and injuries for 195 countries and territories, 1990-2017: a
systematic analysis for the Global Burden of Disease Study 2017. Lancet 392,
1789–1858. doi: 10.1016/S0140-6736(18)32279-7

Garcia, J. O., Ashourvan, A., Muldoon, S. F., Vettel, J. M., and Bassett, D. S. (2018).
Applications of community detection techniques to brain graphs: algorithmic
considerations and implications for neural function. Proc. IEEE Inst. Electr.
Electron. Eng. 106, 846–867. doi: 10.1109/JPROC.2017.2786710

Gilliam, F., Hecimovic, H., and Sheline, Y. (2003). Psychiatric comorbidity, health,
and function in epilepsy. Epilepsy Behav. 4(Suppl. 4), S26–S30.

Frontiers in Human Neuroscience | www.frontiersin.org 14 October 2021 | Volume 15 | Article 746499

https://www.frontiersin.org/articles/10.3389/fnhum.2021.746499/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2021.746499/full#supplementary-material
https://doi.org/10.32598/bcn.9.4.227
https://doi.org/10.3389/fnsys.2010.00147
https://doi.org/10.3389/fnsys.2010.00147
https://doi.org/10.1016/j.neuroimage.2016.02.079
https://doi.org/10.1038/nn.3993
https://doi.org/10.1038/nn.3993
https://doi.org/10.1038/s41467-017-02681-z
https://doi.org/10.1038/s41551-019-0404-5
https://doi.org/10.1103/PhysRevE.83.036103
https://doi.org/10.1111/j.1440-1819.2009.02030.x
https://doi.org/10.1111/j.1440-1819.2009.02030.x
https://doi.org/10.1016/s0006-3223(01)01280-x
https://doi.org/10.1016/j.nbd.2012.07.009
https://doi.org/10.1523/JNEUROSCI.4401-12.2013
https://doi.org/10.1002/hbm.23534
https://doi.org/10.1016/j.neuroimage.2011.01.010
https://doi.org/10.1016/j.neuroimage.2011.01.010
https://doi.org/10.1093/brain/aww255
https://doi.org/10.1016/j.euroneuro.2017.11.011
https://doi.org/10.1016/j.biopsych.2009.08.022
https://doi.org/10.1016/j.biopsych.2009.08.022
https://doi.org/10.1111/j.1528-1167.2008.01803.x
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1109/JPROC.2017.2786710
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-746499 October 15, 2021 Time: 16:18 # 15

Scangos et al. Depression Subnetworks Defined by iEEG

Gleichgerrcht, E., Kocher, M., and Bonilha, L. (2015). Connectomics and graph
theory analyses: novel insights into network abnormalities in epilepsy. Epilepsia
56, 1660–1668. doi: 10.1111/epi.13133

Gotlib, I. H., Ranganath, C., and Rosenfeld, J. P. (1998). Frontal EEG alpha
asymmetry, depression, and cognitive functioning. Cogn. Emot. 12, 449–478.

Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna,
H., et al. (2007). Resting-state functional connectivity in major depression:
abnormally increased contributions from subgenual cingulate cortex and
thalamus. Biol. Psychiatry 62, 429–437. doi: 10.1016/j.biopsych.2006.09.020

Grimm, S., Boesiger, P., Beck, J., Schuepbach, D., Bermpohl, F., Walter, M.,
et al. (2009). Altered negative BOLD responses in the default-mode network
during emotion processing in depressed subjects. Neuropsychopharmacology 34,
932–943.

Grisanzio, K. A., Goldstein-Piekarski, A. N., Wang, M. Y., Rashed Ahmed, A. P.,
Samara, Z., and Williams, L. M. (2018). Transdiagnostic symptom clusters and
associations with brain, behavior, and daily function in mood, anxiety, and
trauma disorders. JAMA Psychiatry 75, 201–209. doi: 10.1001/jamapsychiatry.
2017.3951

Gu, S., Cieslak, M., Baird, B., Muldoon, S. F., Grafton, S. T., Pasqualetti, F., et al.
(2018). The energy landscape of neurophysiological activity implicit in brain
network structure. Sci. Rep. 8:2507. doi: 10.1038/s41598-018-20123-8

Guimera, R., and Amaral, L. A. (2005). Cartography of complex networks: modules
and universal roles. J. Stat. Mech. 2005:niha35573.

Guo, L., Rivero, D., Dorado, J., Rabunal, J. R., and Pazos, A. (2010). Automatic
epileptic seizure detection in EEGs based on line length feature and artificial
neural networks. J. Neurosci. Methods 191, 101–109. doi: 10.1016/j.jneumeth.
2010.05.020

Hamani, C., Mayberg, H., Stone, S., Laxton, A., Haber, S., and Lozano, A. M.
(2011). The subcallosal cingulate gyrus in the context of major depression. Biol.
Psychiatry 69, 301–308.

Hamilton, L. S., Chang, D. L., Lee, M. B., and Chang, E. F. (2017). Semi-automated
anatomical labeling and inter-subject warping of high-density intracranial
recording electrodes in electrocorticography. Front. Neuroinform. 11:62. doi:
10.3389/fninf.2017.00062

He, Y., Lim, S., Fortunato, S., Sporns, O., Zhang, L., Qiu, J., et al. (2018).
Reconfiguration of cortical networks in MDD uncovered by multiscale
community detection with fMRI. Cereb. Cortex 28, 1383–1395. doi: 10.1093/
cercor/bhx335

Henriques, J. B., and Davidson, R. J. (1990). Regional brain electrical asymmetries
discriminate between previously depressed and healthy control subjects.
J. Abnorm. Psychol. 99, 22–31. doi: 10.1037//0021-843x.99.1.22

Henriques, J. B., and Davidson, R. J. (1991). Left frontal hypoactivation in
depression. J. Abnorm. Psychol. 100, 535–545.

Hermann, B. P., and Jones, J. E. (2006). Intractable epilepsy and patterns of
psychiatric comorbidity. Adv. Neurol. 97, 367–374.

Hermann, B. P., Seidenberg, M., and Bell, B. (2000). Psychiatric comorbidity
in chronic epilepsy: identification, consequences, and treatment of major
depression. Epilepsia 41(Suppl. 2), S31–S41. doi: 10.1111/j.1528-1157.2000.
tb01522.x

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal
components. J. Educ. Psychol. 24, 417–441, 498–520.

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D.,
Corbetta, M., et al. (2013a). Dynamic functional connectivity: promise, issues,
and interpretations. Neuroimage 80, 360–378.

Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S., and Menon,
R. S. (2013b). Resting-state networks show dynamic functional connectivity
in awake humans and anesthetized macaques. Hum. Brain Mapp. 34,
2154–2177. doi: 10.1002/hbm.22058

Jaworska, N., Blier, P., Fusee, W., and Knott, V. (2012). alpha Power, alpha
asymmetry and anterior cingulate cortex activity in depressed males and
females. J. Psychiatr. Res. 46, 1483–1491.

Kanner, A. M. (2003). Depression in epilepsy: prevalence, clinical semiology,
pathogenic mechanisms, and treatment. Biol. Psychiatry 54, 388–398. doi:
10.1016/s0006-3223(03)00469-4

Kemp, A. H., Griffiths, K., Felmingham, K. L., Shankman, S. A., Drinkenburg,
W., Arns, M., et al. (2010). Disorder specificity despite comorbidity: resting
EEG alpha asymmetry in major depressive disorder and post-traumatic stress
disorder. Biol. Psychol. 85, 350–354. doi: 10.1016/j.biopsycho.2010.08.001

Kennedy, S. H., Evans, K. R., Kruger, S., Mayberg, H. S., Meyer, J. H., Mccann,
S., et al. (2001). Changes in regional brain glucose metabolism measured with
positron emission tomography after paroxetine treatment of major depression.
Am. J. Psychiatry 158, 899–905.

Kentgen, L. M., Tenke, C. E., Pine, D. S., Fong, R., Klein, R. G., and Bruder,
G. E. (2000). Electroencephalographic asymmetries in adolescents with major
depression: influence of comorbidity with anxiety disorders. J. Abnorm. Psychol.
109, 797–802. doi: 10.1037//0021-843x.109.4.797

Keown, C. L., Datko, M. C., Chen, C. P., Maximo, J. O., Jahedi, A., and Muller,
R. A. (2017). Network organization is globally atypical in autism: a graph theory
study of intrinsic functional connectivity. Biol. Psychiatry Cogn. Neurosci.
Neuroimaging 2, 66–75.

Kirkby, L. A., Luongo, F. J., Lee, M. B., Nahum, M., Van Vleet, T. M., Rao, V. R.,
et al. (2018). An amygdala-hippocampus subnetwork that encodes variation in
human mood. Cell 175, 1688–1700.e14. doi: 10.1016/j.cell.2018.10.005

Korgaonkar, M. S., Fornito, A., Williams, L. M., and Grieve, S. M. (2014). Abnormal
structural networks characterize major depressive disorder: a connectome
analysis. Biol. Psychiatry 76, 567–574.

Kroenke, K., Spitzer, R. L., and Williams, J. B. (2001). The PHQ-9: validity of a brief
depression severity measure. J. Gen. Intern. Med. 16, 606–613.

Levis, B., Benedetti, A., Thombs, B. D., and Collaboration, D. E. S. D. (2019).
Accuracy of Patient Health Questionnaire-9 (PHQ-9) for screening to detect
major depression: individual participant data meta-analysis. BMJ 365:l1476.

Liu, F., Guo, W., Liu, L., Long, Z., Ma, C., Xue, Z., et al. (2013). Abnormal amplitude
low-frequency oscillations in medication-naive, first-episode patients with
major depressive disorder: a resting-state fMRI study. J. Affect. Disord. 146,
401–406. doi: 10.1016/j.jad.2012.10.001

Lord, A., Horn, D., Breakspear, M., and Walter, M. (2012). Changes in community
structure of resting state functional connectivity in unipolar depression. PLoS
One 7:e41282. doi: 10.1371/journal.pone.0041282

Malone, D. A. Jr., Dougherty, D. D., Rezai, A. R., Carpenter, L. L., Friehs,
G. M., Eskandar, E. N., et al. (2009). Deep brain stimulation of the ventral
capsule/ventral striatum for treatment-resistant depression. Biol. Psychiatry 65,
267–275.

Manning, J. R., Polyn, S. M., Baltuch, G. H., Litt, B., and Kahana, M. J. (2011).
Oscillatory patterns in temporal lobe reveal context reinstatement during
memory search. Proc. Natl. Acad. Sci. U.S.A. 108, 12893–12897. doi: 10.1073/
pnas.1015174108

Manning, J. R., Sperling, M. R., Sharan, A., Rosenberg, E. A., and Kahana, M. J.
(2012). Spontaneously reactivated patterns in frontal and temporal lobe predict
semantic clustering during memory search. J. Neurosci. 32, 8871–8878. doi:
10.1523/JNEUROSCI.5321-11.2012

Marchand, W. R., Lee, J. N., Suchy, Y., Johnson, S., Thatcher, J., and Gale, P.
(2012). Aberrant functional connectivity of cortico-basal ganglia circuits in
major depression. Neurosci. Lett. 514, 86–90. doi: 10.1016/j.neulet.2012.02.063

Mayberg, H. S., Brannan, S. K., Mahurin, R. K., Jerabek, P. A., Brickman, J. S.,
Tekell, J. L., et al. (1997). Cingulate function in depression: a potential predictor
of treatment response. Neuroreport 8, 1057–1061.

McGirr, A., Berlim, M. T., Bond, D. J., Fleck, M. P., Yatham, L. N., and Lam, R. W.
(2015). A systematic review and meta-analysis of randomized, double-blind,
placebo-controlled trials of ketamine in the rapid treatment of major depressive
episodes. Psychol. Med. 45, 693–704. doi: 10.1017/S0033291714001603

Misic, B., Betzel, R. F., De Reus, M. A., Van Den Heuvel, M. P., Berman, M. G.,
Mcintosh, A. R., et al. (2016). Network-level structure-function relationships in
human neocortex. Cereb. Cortex 26, 3285–3296. doi: 10.1093/cercor/bhw089

Mueller, S., Wang, D., Fox, M. D., Yeo, B. T., Sepulcre, J., Sabuncu, M. R., et al.
(2013). Individual variability in functional connectivity architecture of the
human brain. Neuron 77, 586–595.

Mula, M., and Schmitz, B. (2009). Depression in epilepsy: mechanisms and
therapeutic approach. Ther. Adv. Neurol. Disord. 2, 337–344.

Nadkarni, S., and Devinsky, O. (2005). Psychotropic effects of antiepileptic drugs.
Epilepsy Curr. 5, 176–181.

Neumann, W. J., Huebl, J., Brucke, C., Gabriels, L., Bajbouj, M., Merkl, A., et al.
(2014). Different patterns of local field potentials from limbic DBS targets
in patients with major depressive and obsessive compulsive disorder. Mol.
Psychiatry 19, 1186–1192. doi: 10.1038/mp.2014.2

Newman, M. E. (2006). Finding community structure in networks
using the eigenvectors of matrices. Phys. Rev. E Stat. Nonlin.

Frontiers in Human Neuroscience | www.frontiersin.org 15 October 2021 | Volume 15 | Article 746499

https://doi.org/10.1111/epi.13133
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1001/jamapsychiatry.2017.3951
https://doi.org/10.1001/jamapsychiatry.2017.3951
https://doi.org/10.1038/s41598-018-20123-8
https://doi.org/10.1016/j.jneumeth.2010.05.020
https://doi.org/10.1016/j.jneumeth.2010.05.020
https://doi.org/10.3389/fninf.2017.00062
https://doi.org/10.3389/fninf.2017.00062
https://doi.org/10.1093/cercor/bhx335
https://doi.org/10.1093/cercor/bhx335
https://doi.org/10.1037//0021-843x.99.1.22
https://doi.org/10.1111/j.1528-1157.2000.tb01522.x
https://doi.org/10.1111/j.1528-1157.2000.tb01522.x
https://doi.org/10.1002/hbm.22058
https://doi.org/10.1016/s0006-3223(03)00469-4
https://doi.org/10.1016/s0006-3223(03)00469-4
https://doi.org/10.1016/j.biopsycho.2010.08.001
https://doi.org/10.1037//0021-843x.109.4.797
https://doi.org/10.1016/j.cell.2018.10.005
https://doi.org/10.1016/j.jad.2012.10.001
https://doi.org/10.1371/journal.pone.0041282
https://doi.org/10.1073/pnas.1015174108
https://doi.org/10.1073/pnas.1015174108
https://doi.org/10.1523/JNEUROSCI.5321-11.2012
https://doi.org/10.1523/JNEUROSCI.5321-11.2012
https://doi.org/10.1016/j.neulet.2012.02.063
https://doi.org/10.1017/S0033291714001603
https://doi.org/10.1093/cercor/bhw089
https://doi.org/10.1038/mp.2014.2
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-746499 October 15, 2021 Time: 16:18 # 16

Scangos et al. Depression Subnetworks Defined by iEEG

Soft Matter Phys. 74:036104. doi: 10.1103/PhysRevE.74.03
6104

Newson, J. J., and Thiagarajan, T. C. (2018). EEG frequency bands in psychiatric
disorders: a review of resting state studies. Front. Hum. Neurosci. 12:521. doi:
10.3389/fnhum.2018.00521

Nofzinger, E. A., Buysse, D. J., Germain, A., Price, J. C., Meltzer, C. C., Miewald,
J. M., et al. (2005). Alterations in regional cerebral glucose metabolism across
waking and non-rapid eye movement sleep in depression. Arch. Gen. Psychiatry
62, 387–396. doi: 10.1001/archpsyc.62.4.387

Owen, L. L. W., Muntianu, T. A., Heusser, A. C., Daly, P. M., Scangos,
K. W., and Manning, J. R. (2020). A Gaussian process model of human
electrocorticographic data. Cereb. Cortex 30, 5333–5345. doi: 10.1093/cercor/
bhaa115

Postelnicu, G., Zollei, L., and Fischl, B. (2009). Combined volumetric and surface
registration. IEEE Trans. Med. Imaging 28, 508–522.

Rai, D., Kerr, M. P., Mcmanus, S., Jordanova, V., Lewis, G., and Brugha, T. S. (2012).
Epilepsy and psychiatric comorbidity: a nationally representative population-
based study. Epilepsia 53, 1095–1103.

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabasi, A. L. (2002).
Hierarchical organization of modularity in metabolic networks. Science 297,
1551–1555.

Rihel, J., Prober, D. A., Arvanites, A., Lam, K., Zimmerman, S., Jang, S., et al. (2010).
Zebrafish behavioral profiling links drugs to biological targets and rest/wake
regulation. Science 327, 348–351. doi: 10.1126/science.1183090

Riva-Posse, P., Choi, K. S., Holtzheimer, P. E., Crowell, A. L., Garlow, S. J.,
Rajendra, J. K., et al. (2018). A connectomic approach for subcallosal cingulate
deep brain stimulation surgery: prospective targeting in treatment-resistant
depression. Mol. Psychiatry 23, 843–849. doi: 10.1038/mp.2017.59

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52, 1059–1069.

Sani, O. G., Yang, Y., Lee, M. B., Dawes, H. E., Chang, E. F., and Shanechi, M. M.
(2018). Mood variations decoded from multi-site intracranial human brain
activity. Nat. Biotechnol. 36, 954–961. doi: 10.1038/nbt.4200

Scangos, K. W., Ahmad, H. S., Shafi, A., Sellers, K. K., Dawes, H. E., Krystal, A.,
et al. (2019a). Pilot study of an intracranial electroencephalography biomarker
of depressive symptoms in epilepsy. J. Neuropsychiatry Clin. Neurosci. 32,
185–190. doi: 10.1176/appi.neuropsych.19030081

Scangos, K. W., Weiner, R. D., Coffey, E. C., and Krystal, A. D. (2019b). An
electrophysiological biomarker that may predict treatment response to ECT.
J. ECT 35, 95–102.

Schiff, S. J., Aldroubi, A., Unser, M., and Sato, S. (1994). Fast wavelet transformation
of EEG. Electroencephalogr. Clin. Neurophysiol. 91, 442–455.

Schmitz, B. (2006). Effects of antiepileptic drugs on mood and behavior. Epilepsia
47(Suppl. 2), 28–33.

Sheline, Y. I., Price, J. L., Yan, Z., and Mintun, M. A. (2010). Resting-state functional
MRI in depression unmasks increased connectivity between networks via the
dorsal nexus. Proc. Natl. Acad. Sci. U.S.A. 107, 11020–11025. doi: 10.1073/pnas.
1000446107

Spitzer, R. L., Kroenke, K., and Williams, J. B. (1999). Validation and utility of
a self-report version of PRIME-MD: the PHQ primary care study. Primary
care evaluation of mental disorders. Patient Health Questionnaire. JAMA 282,
1737–1744.

Spitzer, R. L., Williams, J. B., Kroenke, K., Hornyak, R., and Mcmurray, J.
(2000). Validity and utility of the PRIME-MD patient health questionnaire
in assessment of 3000 obstetric-gynecologic patients: the PRIME-MD Patient
Health Questionnaire obstetrics-gynecology study. Am. J. Obstet. Gynecol. 183,
759–769. doi: 10.1067/mob.2000.106580

Sun, Y., Hu, S., Chambers, J., Zhu, Y., and Tong, S. (2011). Graphic patterns
of cortical functional connectivity of depressed patients on the basis of EEG
measurements. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 1419–1422. doi:
10.1109/IEMBS.2011.6090334

Sun, Y., Yin, Q., Fang, R., Yan, X., Wang, Y., Bezerianos, A., et al. (2014). Disrupted
functional brain connectivity and its association to structural connectivity
in amnestic mild cognitive impairment and Alzheimer’s disease. PLoS One
9:e96505. doi: 10.1371/journal.pone.0096505

Swinkels, W. A., Kuyk, J., Van Dyck, R., and Spinhoven, P. (2005). Psychiatric
comorbidity in epilepsy. Epilepsy Behav. 7, 37–50.

Tomarken, A. J., Davidson, R. J., Wheeler, R. E., and Kinney, L. (1992).
Psychometric properties of resting anterior EEG asymmetry: temporal stability
and internal consistency. Psychophysiology 29, 576–592. doi: 10.1111/j.1469-
8986.1992.tb02034.x

van den Heuvel, M. P., and Sporns, O. (2013). Network hubs in the human brain.
Trends Cogn. Sci. 17, 683–696.

Veer, I. M., Beckmann, C. F., Van Tol, M. J., Ferrarini, L., Milles, J., Veltman, D. J.,
et al. (2010). Whole brain resting-state analysis reveals decreased functional
connectivity in major depression. Front. Syst. Neurosci. 4:41. doi: 10.3389/fnsys.
2010.00041

Vezzani, A., French, J., Bartfai, T., and Baram, T. Z. (2011). The role of
inflammation in epilepsy. Nat. Rev. Neurol. 7, 31–40.

Wheeler, R. E., Davidson, R. J., and Tomarken, A. J. (1993). Frontal brain
asymmetry and emotional reactivity: a biological substrate of affective
style. Psychophysiology 30, 82–89. doi: 10.1111/j.1469-8986.1993.tb0
3207.x

Widge, A. S., Rodriguez, C. I., Carpenter, L. L., Kalin, N. H., Mcdonald, W., and
Nemeroff, C. B. (2019). EEG biomarkers for treatment response prediction in
major depressive illness. Am. J. Psychiatry 176:82.

Wulsin, A. C., Solomon, M. B., Privitera, M. D., Danzer, S. C., and Herman, J. P.
(2016). Hypothalamic-pituitary-adrenocortical axis dysfunction in epilepsy.
Physiol. Behav. 166, 22–31.

Yoshimura, S., Okamoto, Y., Onoda, K., Matsunaga, M., Ueda, K., Suzuki, S.,
et al. (2010). Rostral anterior cingulate cortex activity mediates the relationship
between the depressive symptoms and the medial prefrontal cortex activity.
J. Affect. Disord. 122, 76–85.

Yu, Q., Sui, J., Rachakonda, S., He, H., Gruner, W., Pearlson, G.,
et al. (2011). Altered topological properties of functional network
connectivity in schizophrenia during resting state: a small-world brain
network study. PLoS One 6:e25423. doi: 10.1371/journal.pone.002
5423 doi: 10.1371/journal.pone.0025423

Zeng, L. L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P.,
et al. (2012). Identifying major depression using whole-brain
functional connectivity: a multivariate pattern analysis. Brain 135,
1498–1507.

Zhang, J., Wang, J., Wu, Q., Kuang, W., Huang, X., He, Y., et al. (2011). Disrupted
brain connectivity networks in drug-naive, first-episode major depressive
disorder. Biol. Psychiatry 70, 334–342.

Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., et al. (2012).
Evidence of a dissociation pattern in resting-state default mode
network connectivity in first-episode, treatment-naive major depression
patients. Biol. Psychiatry 71, 611–617. doi: 10.1016/j.biopsych.2011.
10.035

Conflict of Interest: AKr consults for Eisai, Evecxia, Ferring, Galderma, Harmony
Biosciences, Idorsia, Jazz, Janssen, Merck, Neurocrine, Pernix, Sage, and Takeda.
EC has patents related to brain stimulation for neuropsychiatric conditions, brain
mapping, and speech neuroprosthesis and also given talks related to epilepsy
treatment for Neuropace and Cyberonics/Livanova.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Scangos, Khambhati, Daly, Owen, Manning, Ambrose, Austin,
Dawes, Krystal and Chang. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 16 October 2021 | Volume 15 | Article 746499

https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.3389/fnhum.2018.00521
https://doi.org/10.3389/fnhum.2018.00521
https://doi.org/10.1001/archpsyc.62.4.387
https://doi.org/10.1093/cercor/bhaa115
https://doi.org/10.1093/cercor/bhaa115
https://doi.org/10.1126/science.1183090
https://doi.org/10.1038/mp.2017.59
https://doi.org/10.1038/nbt.4200
https://doi.org/10.1176/appi.neuropsych.19030081
https://doi.org/10.1073/pnas.1000446107
https://doi.org/10.1073/pnas.1000446107
https://doi.org/10.1067/mob.2000.106580
https://doi.org/10.1109/IEMBS.2011.6090334
https://doi.org/10.1109/IEMBS.2011.6090334
https://doi.org/10.1371/journal.pone.0096505
https://doi.org/10.1111/j.1469-8986.1992.tb02034.x
https://doi.org/10.1111/j.1469-8986.1992.tb02034.x
https://doi.org/10.3389/fnsys.2010.00041
https://doi.org/10.3389/fnsys.2010.00041
https://doi.org/10.1111/j.1469-8986.1993.tb03207.x
https://doi.org/10.1111/j.1469-8986.1993.tb03207.x
https://doi.org/10.1371/journal.pone.0025423
https://doi.org/10.1371/journal.pone.0025423
https://doi.org/10.1371/journal.pone.0025423
https://doi.org/10.1016/j.biopsych.2011.10.035
https://doi.org/10.1016/j.biopsych.2011.10.035
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Distributed Subnetworks of Depression Defined by Direct Intracranial Neurophysiology
	Introduction
	Materials and Methods
	Patient Characterization
	Electrode Implantation and Localization
	Data Acquisition and Pre-processing
	Overall Approach
	Construction of Whole-Brain Intracranial EEG Model
	Signal Processing
	Electrode Clustering Into Functional Modules
	Assigning Names to Modules
	Model Utilization: Activity Analysis
	Hierarchical Clustering to Identify Depression Networks
	Model Utilization: Connectivity Analysis

	Results
	Derivation of Functional Modules
	Relationship of Functional Network Identification to Depression Status
	Distinct Network Expression Patterns Define Depression
	Network Organization Is Disrupted Across Depression Subnetworks

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References




