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ARTICLE

A national cohort study (2000–2018) of long-term
air pollution exposure and incident dementia in
older adults in the United States
Liuhua Shi 1,9✉, Kyle Steenland1,9, Haomin Li2, Pengfei Liu3, Yuhan Zhang2, Robert H. Lyles4,

Weeberb J. Requia 5, Sindana D. Ilango6, Howard H. Chang1,4, Thomas Wingo 7, Rodney J. Weber3 &

Joel Schwartz 8

Air pollution may increase risk of Alzheimer’s disease and related dementias (ADRD) in the

U.S., but the extent of this relationship is unclear. Here, we constructed two national U.S.

population-based cohorts of those aged ≥65 from the Medicare Chronic Conditions Ware-

house (2000–2018), combined with high-resolution air pollution datasets, to investigate the

association of long-term exposure to ambient fine particulate matter (PM2.5), nitrogen

dioxide (NO2), and ozone (O3) with dementia and AD incidence, respectively. We identified

~2.0 million incident dementia cases (N= 12,233,371; dementia cohort) and ~0.8 million

incident AD cases (N= 12,456,447; AD cohort). Per interquartile range (IQR) increase in the

5-year average PM2.5 (3.2 µg/m3), NO2 (11.6 ppb), and warm-season O3 (5.3 ppb) over the

past 5 years prior to diagnosis, the hazard ratios (HRs) were 1.060 (95% confidence interval

[CI]: 1.054, 1.066), 1.019 (95% CI: 1.012, 1.026), and 0.990 (95% CI: 0.987, 0.993) for

incident dementias, and 1.078 (95% CI: 1.070, 1.086), 1.031 (95% CI: 1.023, 1.039), and

0.982 (95%CI: 0.977, 0.986) for incident AD, respectively, for the three pollutants. For both

outcomes, concentration-response relationships for PM2.5 and NO2 were approximately

linear. Our study suggests that exposures to PM2.5 and NO2 are associated with incidence of

dementia and AD.
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Dementia is a major public health issue, affecting >47
million people worldwide1. Alzheimer’s disease (AD)
contributes to about two-thirds of dementia cases and is

the sixth leading cause of death in the United States2. In response,
the National Alzheimer’s Project Act was signed into law to
overcome dementia, and the National Plan was launched with
Goal 1 aiming to prevent and effectively treat dementia (delay
onset, slow progression) by 20253. As there are no disease-
modifying treatments for the most common types of dementia, it
is a top research priority to identify modifiable risk factors for
dementia that can be intervened on at the population level.

There is growing evidence associating air pollution with neu-
rodegenerative disease. A systematic review by Peters et al.4 found
nine longitudinal studies of air pollution and AD and related
dementias (ADRD). Among them, five of six showed a positive
association between increased exposure to PM2.5 and dementia or
AD; four of four showed an association between NO2 and
dementia or AD, whereas one of three did so for ozone (O3). Fu
and Yung5 published a review and meta-analysis of AD and air
pollution, and found a twofold excess risk of AD for a 10 µg/m3

increase of PM2.5 among six studies, and no increased risk for
NO2 in four studies, nor for O3 in three studies. There have been
several longitudinal studies since these reviews, with the majority
finding positive associations between air pollutants and either
dementia or AD6–14. A few of these studies examine the asso-
ciations in US populations, and these studies have almost
exclusively used hospitalization as a measure of morbidity6,7,11,13.
The diagnosis of ADRD, however, likely occurs in doctor visits,
and ADRD does not generally result in hospitalizations. Thus,
hospitalization records may not well represent either disease
incidence or prevalence in the overall population, and likely leads
to an underestimation of the number of cases, and unclear gen-
eralizability. In addition, neuropathologic changes are known to
occur many years prior to the diagnosis15, and the relevant time
window in which air pollution might increase the risk of
dementia or AD is unclear.

To address these knowledge gaps in studying ADRD incidence
in the US, here we constructed a national, population-based
cohort study from Medicare data to investigate the impact of
long-term exposure to PM2.5, NO2, and warm-season (May to
October) O3 on dementia and AD incidence. To better measure
disease incidence, we required a 5-year “clean” period without
events of interest after enrollment in Medicare system and used
all Medicare claims nationwide (2000–2018), including inpatient
and outpatient claims, carrier file (primarily doctor visits), skilled
nursing facility, and home health-care claims to identify the first
diagnosis of ADRD. We used high-resolution (1 km × 1 km) daily
surface-level concentration fields of PM2.5, NO2, and O3 for
2000–2016, estimated based on ground observations, satellite
data, chemical transport modeling, land use, and meteorological
data using national spatiotemporal ensemble exposure
models16–18. We assigned air pollution exposure to subjects based
on resident ZIP code, and calculated time-varying 5-year lagged
moving averages for each follow-up year.

Results
Study population characteristics. Table 1 provides descriptive
information on the dementia cohort and AD cohort. Both cohorts
were followed after requiring a 5-year period without events of
interest to better capture disease incidence. There were 12.2 and
12.4 million people in dementia and AD cohorts, respectively
(Table 1). Most of the studied subjects (78.5% and 78.1% for
dementia and AD, respectively) entered the cohorts between ages
65 and 74. The median follow-up was 7 years in both cohorts.
More than 90% were not eligible for Medicaid, indicating that

most were defined as being above the poverty level19. A majority
of the study population had comorbidity at some point during
follow-up. 16.6% developed dementia (~2.0 million cases), 6.5%
developed AD (~0.8 million cases), and Supplementary Table 1
presents detailed demographic information for the cases and non-
cases.

Air pollution levels. The average annual level of PM2.5 of cohort
participants during the study period, 9.3 µg/m3, was below the US
EPA standard of 12 µg/m3; The average NO2 level was 17.1 ppb,
considerably below the EPA annual standard of NO2 of 53 ppb.
The annual warm-season average O3 was 42.6 ppb. EPA does not
have a standard for annual warm-season O3. As a reference, the
EPA standard for daily maximum of 8-hour average O3 is 70 ppb
(Table 1). We examined warm-season O3, because O3 is more
readily formed in the warm season20, and this metric is often used
in long-term epidemiological studies21. Fig. 1 shows the dis-
tribution of the three pollutants across the US during our study
period, as estimated by the exposure models used in our analysis.
PM2.5 is highest in the eastern US and in California, O3 in the
West, and NO2 (largely produced by traffic) in urban centers.
Further detail on exposure levels can be found in Supplementary
Table 2. The three pollutants in our data were only modestly
correlated. The Pearson correlations between pollutants (average
exposure within the past 5 years) were as follows: PM2.5 and O3

0.22, NO2 and O3 0.19, and NO2 and PM2.5 0.39.

Health effect estimates. Fig. 2 provides the main study results
from the Cox proportional hazards models stratified by individual
characteristics, adjusting for neighborhood-level socioeconomic

Table 1 Descriptive statistics for the study population.

Dementia cohort AD cohort

Variables Number % Number %

Number of events 2,025,130 16.6 804,668 6.5
Number of the total
population

12,233,371 100 12,456,447 100

Total person-years 89,035,081 100 93,278,266 100
Median follow-up years 7 7
Age at entry (years)
65–74 9,597,788 78.5 9,734,481 78.1
75–114 2,635,583 21.5 2,721,966 21.9
Sex
Male 5,023,879 41.1 5,107,942 41.0
Female 7,209,492 58.9 7,348,505 59.0
Race
White 11,023,202 90.1 11,214,287 90.0
Black 649,081 5.3 666,619 5.4
Othera 561,088 4.6 575,541 4.6
Medicaid eligibility
Dual-eligible 800,139 6.5 852,499 6.8
Non-dual eligible 11,433,232 93.5 11,603,948 93.2
Comorbidity
Diabetes 4,433,314 36.2 4,590,000 36.8
Hypertension 10,273,506 84.0 10,502,180 84.3
Stroke 1,991,730 16.3 2,137,239 17.2
Heart failure 3,388,540 27.7 3,598,028 28.9
No comorbiditiesb 1,642,674 13.4 1,865,751 15.0
Air pollutantsc

Annual PM2.5 (µg/m3) 9.3 (3.2) 9.3 (3.2)
Annual NO2 (ppb) 17.1 (11.6) 17.1 (11.6)
Warm-season O3 (ppb) 42.6 (5.3) 42.6 (5.3)

aOther included Asian, Hispanic, American Indian, or Alaskan Native, and unknown.
bMeans none of the above comorbidities.
cPresented as mean concentration (interquartile range).
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status (SES) (see details in Methods), behavioral risk factors,
health-care capacity variables, and residual temporal and spatial
trends (see Methods). An interquartile range (IQR) increase in
the 5-year average of the annual PM2.5 (3.2 µg/m3) in the 5 years
prior to diagnosis was associated with an increased risk of
dementia (HR= 1.061, 95% CI: 1.056, 1.067) in single-pollutant
models, which changes little in models with other pollutants. An
IQR increase in 5-year average NO2 (11.6 ppb) is associated with
an HR of 1.035 (95% CI: 1.028, 1.042) in single-pollutant models,
dropping to 1.019 (95% CI: 1.012, 1.026) in multi-pollutant
models. An IQR increase in the 5-year average of warm-season
O3 (5.3 ppb) has little effect on dementia rates, with HRs of 1.002
(95% CI: 0.998, 1.005) in single-pollutant models and 0.990 (95%
CI: 0.987, 0.993) in multi-pollutant models.

The findings for AD have a similar pattern to those for
dementia, but the hazard ratios (HRs) are higher per IQR
increase, being 1.078 (95% CI: 1.071, 1.086) for PM2.5, 1.050 (95%
CI: 1.042, 1.059) for NO2, and 0.999 (95% CI: 0.995, 1.003) for O3

assessing each pollutant individually. After adjusting for co-
pollutants, the effect estimates were similar for PM2.5 (HR=
1.078, 95% CI: 1.070, 1.086) and attenuated for NO2 (HR=
1.031, 95% CI: 1.023, 1.039), while O3 is slightly protective
(HR= 0.982, 95% CI: 0.977, 0.987).

Concentration–response relationships. Figure 3 presents pena-
lized spline curves for the three pollutants, derived from the tri-
pollutant models. The concentration–response (C-R) relation-
ships for PM2.5 are approximately linear for both dementia and
AD across the exposure distribution, although for AD there is a
suggestion of a steeper slope below 8 µg/m3. For NO2, the C-R
curves for dementia and AD are linear for low concentrations
(<25 ppb), and then level off for higher concentrations. The
curves for O3 are essentially flat for both endpoints until high,
and rarely occurring concentrations. These results suggest that
the adverse effects of PM2.5 and NO2 on dementia or AD are at
least retained, if not strengthened, at low levels of air pollution
exposure (e.g., below the WHO air quality guidelines: PM2.5 ≤
10 μg/m3, NO2 ≤ 20 ppb). Across the 0.5th to 99.5th percentile of

Fig. 1 Maps of the spatial distributions of air pollutants studied. The three
panels present the average concentrations of a annual PM2.5 (μg/m³)16,
b annual NO2 (ppb)17, and c warm-season O3 (ppb)18 at 1-km2 resolution
across the contiguous United States over the study period, respectively. Map
was made from the census bureau shapefile (cb_2017_us_county_500k.shp,
https://www2.census.gov/geo/tiger/GENZ2017/shp/) using R software,
and no licenses are required as this map was provided free of any copyright
restrictions. Source data are provided as a Source Data file.
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Fig. 2 Results of the Cox proportional hazards models. The two panels
present the hazard ratios of a dementia (n= 12,233,371 individuals examined)
or b Alzheimer’s disease (AD, n= 12,456,447 individuals examined) associated
with per IQR increase in annual PM2.5, or annual NO2, or warm-season O3

concentration, respectively. The estimated hazard ratios were obtained using
single pollutant, bi-pollutant, and tri-pollutant models. Error bars stand for the
95% confidence intervals. The gray and white stripes are used to distinguish
any two adjacent models. Source data are provided as a Source Data file.
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the exposure distribution, PM2.5 shows the strongest effect on
dementia or AD among all pollutants.

Effect modifications. We examined five potential effect modifiers
(sex, race (white, Black, other), Medicaid eligibility, urbanicity
(expressed in quartiles of population density), and age (<75, ≥75).
Fig. 4 shows HRs in each subgroup, based on the interaction term
between exposure and the potential effect modifier. Most marked
results were seen for an increased hazard of dementia and AD for
Black individuals compared with white individuals in relation to
both PM2.5 and NO2; a similar pattern was found for those eli-
gible for Medicaid. At the same time, those living in the rural
areas (i.e., lowest quartile of population density) were found to
have notably lower effect estimates between both dementia and
AD and both PM2.5 and NO2. Regarding age, those <75 had a
markedly stronger association between dementia and both PM2.5

and NO2, while the association was stronger between AD and
both PM2.5 and NO2 among those older than 75. Finally, we
found little evidence of an interaction between PM2.5 or NO2, and
sex in relation to dementia or AD. For O3, all subgroup-specific
estimated HRs were below one, and the association with both
endpoints was stronger among those not eligible for Medicaid or
those living in rural areas. The p values for testing the null
hypothesis that the estimated associations are the same between
subgroups classified by a subpopulation indicator are shown in
Supplementary Table 3.

Sensitivity analysis. Associations between long-term exposure to
PM2.5, NO2, O3, and dementia or AD were robust to a series of
sensitivity analyses. First, a more strict “clean period” by
excluding anyone who had a diagnosis for dementia or AD in
their first 10 years of follow-up yielded results similar to the main
analyses (Supplementary Table 4). Second, based on this new
subcohort (with 10-year clean period), the use of alternative
exposure windows (annual exposure 10, 5, 1, or 0 years prior to
disease diagnosis, i.e., lags 10, 5, 1, or 0) all support a positive
association with PM2.5 and NO2, but not O3, though HRs varied
in magnitude (Supplementary Table 4). For both outcomes,
associations with PM2.5 and NO2 were attenuated with increasing
lag periods. Third, the observed associations with dementia or
AD were not mediated by nor modified by comorbidities, such as
diabetes, hypertension, stroke, and heart failure (Supplementary
Table 5). Fourth, to account for potential bias related to moving
of the resident address, we performed analyses for subjects who
did not move during the follow-up period (i.e., non-mover
cohort). The results are roughly consistent with the main analysis,
showing significant positive associations for PM2.5 and NO2, but
not for O3, for both dementia and AD. However, compared with
the main model, the effects of PM2.5 are attenuated and the effects
of NO2 are enhanced (Supplementary Table 6). At last, we
assessed the effect of possible outcome misclassification in two
ways, one via using a linear regression model based on rates, and
the other based on prior estimates of Medicare sensitivity and
specificity and estimating the true number of cases within strata.
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Both methods support the findings from our main analysis, i.e.,
long-term exposure to PM2.5 and NO2, but not O3, were sig-
nificantly associated with an increased incidence of dementia and
AD; both also suggest that misclassification has biased our find-
ings to the null (Supplementary Tables 7 and 8).

Discussion
We found elevated HRs for both dementia and AD in relation to
PM2.5, and less markedly to NO2, while HRs for warm-season O3

were not elevated. We did this study in a large US cohort (12
million), with national coverage, and including non-urban areas.
For both PM2.5 and NO2, we found a larger effect on AD com-
pared to dementia, which may reflect the fact that dementia
includes a wide range of diseases with distinct etiologies, some of
which may be unrelated to air pollution, while AD is a subset of
dementia and a single disease, for which we found a stronger
association. On the other hand, we know of no pathophysiologic
data, which indicate that air pollution might affect AD more than
dementia; data relevant to disease mechanisms would suggest
both AD and the broader category of dementia might be affected
by air pollution22,23.

We also found that shorter time windows between exposure
(PM2.5 or NO2) and disease showed slightly higher effect esti-
mates, and we suggest (assuming the association is causal,
although we acknowledge this is not possible to conclude from an
observational study such as this) that this implies an acceleration
of an existing process (dementia progression, i.e., accelerating
cognitive decline that was already well developed). Further
research assessing specific aspects of progression is warranted in
the future, preferably with data on the stage of dementia at
diagnosis. Moreover, our diagnosis free period requirement pro-
vides reasonable assurance that we are looking at incidence, and
use of physician’s visits, nursing home data, etc. to ascertain
diagnosis avoids missing large numbers of cases, possibly not
missing at random, which likely occurs in studies using diagnoses
based on hospital admission records.

Some of our models showed a protective effect of O3. However,
when we compare results in Fig. 2, we see that in single-pollutant
models the effect estimate for O3 was null, whereas in bi-pollutant
models with either PM2.5 or NO2, the effect size for O3 was pushed

below the null (albeit not significantly) and only in the tri-pollutant
model was it protective at the conventional 0.05 level. Moreover, in
the bi-pollutant models with O3, the effect sizes for PM2.5 and NO2

increased from their level in the single-pollutant models. We
interpret this as evidence that there is no effect of O3, and the
protective effect seen in the tri-pollutant model may be due to
collinearity, even though the correlations between pollutants are
moderate. The Pearson correlation between 5-year moving average
NO2 and warm-season O3 is positive, which is inconsistent with
previous studies within cities that show a negative correlation24.
One possibility is that our study included exposure estimates with
full coverage including both urban and rural areas, unlike previous
studies that only focused on cities. The chemical regime of O3

formation in rural areas is typically NOx-limited, and a positive
correlation between O3 and NO2 is expected.

Higher effect estimates were observed for more populated areas
(Fig. 4). PM2.5 in urban areas consists of more ultrafine particles,
such as soot and metals, mainly emitted from traffic sources.
Numerous studies have shown that traffic-related air pollution
can be a risk factor for dementia and AD25–27. Ultrafine particles
can move up the olfactory nerve into the brain directly and can
penetrate into the blood and reach the blood–brain barrier28.
Although NO2 is a single species and the composition is uniform
everywhere, its spatial pattern shows a high correlation with
major highways and cities, and the NO2 concentration may serve
as a proxy for other traffic/urban air pollutants, which might have
high neurotoxicity.

Our results are broadly consistent with developing literature,
which shows relatively consistent effects for PM2.5 and NO2, but less
consistent for O3. We observed an HR of 1.06 for dementia and an
HR of 1.08 for AD per 3.2 μg/m3 increase in annual PM2.5 in single-
pollutant models, i.e., equivalent to an HR of 1.10 and an HR of 1.13
per 5 μg/m3 increase in PM2.5. These values can be compared with
our previous Medicare cohort study using hospitalizations7, reporting
an HR of 1.06 for dementia and an HR of 1.17 for AD per 5 μg/m3

increase in annual PM2.5. A cohort study conducted in Ontario,
Canada by Chen et al.29 simultaneously accessed the effects of PM2.5,
NO2, and O3 on dementia risks, and they also found significant
associations with PM2.5 and NO2, but not O3. Recent 2018 and 2020
Lancet Commission overviews of modifiable environmental agents

Dementia    Dementia Dementia  AD      AD AD     
 PM2.5 NO2 O3 PM2.5 NO2 O3

Male 
Female 

White 
Black 

Other 
Non-Medicaid 

Medicaid 
Age<75 
Age≥75 

Density Q1 
Density Q2 
Density Q3 
Density Q4

1.00 1.04 1.08 1.00 1.05 1.10 0.99 1.00 1.00 1.05 1.10 0.95 1.00 1.05 0.96 0.98 1.00
Hazard ratio

Fig. 4 Effect modifications by sex, race, Medicaid eligibility, age, and population density. Results represent the hazard ratios of dementia (n= 12,233,371
individuals examined) or Alzheimer’s disease (AD, n= 12,456,447 individuals examined), from the tri-pollutant models, per IQR increase in 5-year average
PM2.5, NO2, or O3. Error bars stand for the 95% confidence intervals. The blue dashed lines indicate the overall effect estimates for all groups. “Other”
includes Asian, Hispanic, American Indian or Alaskan Native, and unknown. “Density Q1–Q4” denotes quartiles of population density, i.e., low population
density, low-medium population density, medium-high population density, and high population density. Source data are provided as a Source Data file.
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associated with disease noted a possible association between air
pollutants and dementia, but noted the evidence still preliminary1,30.

The epidemiologic findings are supported by brain imaging and
toxicologic studies. Regarding brain imaging, Shaffer et al.31 have
found associations between PM2.5 and AD neuropathology upon
autopsy, while Laccarino et al.32 found an association between PM2.5

and positive positron emission tomography (PET) scans for amyloid.
Younan et al.33 followed 1000 women and found increased cognitive
decline on immediate memory/new learning, and increased MRI-
determined risk for future AD using a neuroanatomical risk score.
These recent findings support earlier neuroanatomical associations
found by others34,35. Toxicological studies support several plausible
biological mechanisms. PM2.5 has been consistently linked to oxi-
dative stress, neuroinflammation, systemic inflammation, and all of
which, in turn, have been reported as key pathways to AD
pathogenesis26,34,36. Magnetite nanoparticles from combustion pro-
cesses have been discovered in the human brain, indicating that
particles from urban air pollution can reach the blood–brain barrier
(e.g., by interacting with dysfunctional cells)37.

The strongest relationship we found with both endpoints was
for PM2.5 among the three pollutants. If the US PM2.5 levels could
be lowered by 3.2 μg/m3, which is the IQR, then the attributable
fraction (AF) of dementia and AD due to current exposure levels,
based on our main results from tri-pollutant models assuming a
linear relationship, would be 6% and 7%, respectively. Namely, if
there is a causal relationship (although we acknowledge this is not
possible in the present associative study), this would suggest an
estimated 6% of dementia cases and 7% of AD cases would
potentially be avoided if PM2.5 levels decreased by 3.2 μg/m3,
which is approximately the difference between our large cities like
New York and Chicago and smaller cities like Portland, Buffalo,
or Baltimore38. Likewise, if the US NO2 levels could be reduced
by 11.6 ppb (IQR), an estimated 2% of dementia cases and 3% of
AD cases would be avoided assuming a causal relationship.

Our study has several strengths. To our knowledge, this is the
first nationwide, population-based cohort study that focuses on
the simultaneous health effects of PM2.5, NO2, and O3 on
dementia and AD. The large sample size gives us ample power to
detect effects even though they are small, which is often the case
in environmental studies. Second, the use of Medicare claims data
that include doctor’s visits rather than restricting the data to
hospitalizations is likely to include many more cases, given that
many cases are never hospitalized, and also cases which are
diagnosed earlier and hence better reflect incidence. Evidence can
be found by comparing recent data in another paper about
dementia and AD hospitalization in Medicare data7, to the data in
the current paper. To allow for a fair comparison, we used the
same inclusion/exclusion criteria and restricted to the same time
period (2000–2016) and geographic region (i.e., the lower
48 states), and we found that using just hospitalization missed
nearly 90% of dementia cases and 60% of AD cases, compared to
using our current data including doctor’s visits (Supplementary
Table 9). Third, we used a conservative method by requiring a
5-year “clean” period and restricting the analysis to subjects with
continuous enrollment in Medicare Fee-for-Service (FFS), and
Part A (hospital insurance) and Part B (medical insurance)
programs throughout the study period, which can ensure that
cases were newly diagnosed and thus better approximate inci-
dence. At last, we were able to control for a large number of
individual- and neighborhood-level covariates. The inclusion of
comorbidities had a negligible effect on our results, suggesting
that they are unlikely mediators in our studied associations.
However, a formal mediation analysis would be important to
confirm these findings.

Despite these advantages, some key limitations should be
noted. One limitation, typical of using administrative records to

identify disease, is potential misclassification of the outcome. AD
cases in our database represented only ~40% of the dementia
cases, suggesting important under-ascertainment of AD, given
that AD represents ~60–80% of dementia cases2. This percentage
is quite similar to the findings of Goodman et al.39, who found
that AD represented 44% of all dementia diagnoses in Medicare
data in 2013, including both hospitalizations and doctor visits. It
is likely that a large number of our dementia cases, who show no
AD diagnosis in Medicare, actually had AD, but physicians did
not feel confident to make the more specific diagnosis. This is
supported by the findings of Taylor et al. (2009), who compared
Medicare data to clinical diagnoses considered as the gold stan-
dard, and found that the sensitivity of dementia was 0.85 but was
considerably lower, 0.65, for AD. At last, given the long insidious
onset of dementia and lack of information on the stage of
dementia at diagnosis, our study may mismeasure the year of
onset of dementia, though we applied the 5-year “clean” period as
inclusion criteria to reduce the bias.

We have assumed that outcome misclassification is non-
differential (conditionally independent of exposure to air pollu-
tants, conditional on confounders); there are no data indicating
otherwise. We have conducted two types of sensitivity analyses to
adjust for such misclassification of classifying dementia or AD
cases as without dementia or AD (false negative, or 1-sensitivity),
and the misclassification of non-dementia, non-AD subjects to
one of the diseases (false positive, or 1-specificity). Both these
methods of adjustment for false negatives and false positives were
in agreement that our results were likely to under-estimate the
true HRs for PM2.5 and NO2 for both dementia and AD.

Another limitation of our study is the potential exposure error
and its spatial pattern, although the exposure prediction model
we used has excellent predictive accuracy16–18. Using larger scale
ambient air pollution assigned to individuals has been shown to
have a net bias towards the null, consistent with non-differential
measurement error, which reflects some degree classical type of
error40–42. In addition, our study is subject to unmeasured and
residual confounding. While we were able to control for a number
of potential confounders at the neighborhood level, we had no
individual-level data on SES and education, a limitation implying
some mismeasurement of confounders, which may have biased
our results (moderately, given that these unmeasured con-
founders are not likely to act as very strong risk factors for
dementia), in an unknown direction. Furthermore, we only stu-
died the Medicare FFS population who enrolled in both Part A
and Part B programs, precluding generalizability to the entire US
elderly population. Further work is also needed to determine if
the association is generalizable in other countries.

Our study provides evidence that long-term exposure to PM2.5

mass is associated with increased ADRD incidence. Future studies
of air pollution and dementia in other countries, including low-
to-middle-income countries on which there are currently few
studies, will be important. Understanding the potential bias and
unmeasured confounding, given the limitations of observational
studies, is encouraged. Examining the role of specific pollutant
components in ADRD may also be important because different
components of PM2.5 (e.g., metals, elemental carbon, organic
carbon, sulfate, and nitrate) and different sources of PM2.5 (e.g.,
traffic, industrial, cooking, and biomass burning) may have dif-
ferent neurotoxicities. A better understanding of component-
specific and source-specific effects of PM2.5 on ADRD could
potentially inform pollution control policies on specific sources.

Methods
Study population. Data were drawn from the Medicare denominator file and the
Medicare Chronic Conditions Warehouse (CCW), both from the Centers for
Medicare and Medicaid Services (CMS). In the U.S., people are eligible to enter the
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Medicare program after they turn 65 years of age. The denominator file (i.e., the
enrollment file) contains enrollment records for all Medicare beneficiaries,
including age, sex, race, Medicaid eligibility (a proxy for SES), the date of death (if
any), and ZIP code of residence. Age, Medicaid eligibility, and ZIP code of resi-
dence are updated annually. CCW provides the date of the first occurrence with
dementia or AD diagnosis code across the available Medicare claims. Based on
these two Medicare databases, we constructed an open cohort including all Med-
icare beneficiaries aged 65 and over who were always enrolled (1) in Medicare Fee-
for-Service program; and (2) in both Medicare Part A (hospital insurance) and Part
B (medical insurance) in the contiguous United States between 2000 and 2018.
These criteria excluded those with any time in Medicare Advantage (HMO) over
the study period since claim records are not available for these beneficiaries and
excluded those only enrolled in Medicare Part A or Part B. If we relaxed these
restrictions to broaden the cohort, the chance of missing dementia or AD cases
among those additional people brought into the analysis would be high.

We created separate data sets for dementia and AD. For each cohort, we further
required a “clean” period of 5 years after enrollment, during which there were no
diagnosis codes for dementia or AD. For example, a participant entering Medicare in
2005 would be required to be dementia-free until 2010; follow-up for disease incidence
began only then. By removing potentially prevalent cases in their first five years of
follow-up, a diagnosis after that “clean” period more likely approximates disease
“incidence”. We considered that 5 years was a reasonable period to ensure that a person
truly was not demented prior to the Medicare diagnosis; however, we also explored a
10-year clean period in sensitivity analyses. Therefore, study subjects entered the cohort
on January 1st of the year following the “clean” period and were followed until the first
diagnosis of the outcome of interest across all Medicare claims, death, or end of follow-
up. We excluded this 5-year clean period from follow-up time to avoid immortal time
bias. A schematic diagram of the cohort selection criteria is illustrated in Supplementary
Fig. 1. Our research is approved by Emory’s IRB (#STUDY00000316) and the Centers
for Medicare & Medicaid Services (CMS) under the data use agreement (#RSCH-2020-
55733). The Medicare dataset was stored and analyzed in Emory Rollins School secure
cluster environment (HPC), with Health Insurance Portability and Accountability Act
(HIPAA) compliance.

Data management and maintenance of confidentiality. Emory provides and
operates the secure cluster environment HPC certified for use with confidential
health records data (e.g., Medicare) storage and analysis and safeguard the data in
compliance with the HIPAA security rule. The CMS data files are stored on the
secure servers at Emory Rollins School of Public Health. All the participating
research members are granted Emory-affiliated user accounts with which to access
processed data for the duration of the project. No transfer of CMS data from
Emory systems is allowed for any user. In addition, a technical data scientist at
Emory is monitoring the activities of the user accounts and manually inspecting
any derived data and output from analyses. When an analysis is complete, data
access will be removed for that investigator.

Outcome classification. The primary outcomes of interest for this study were time
to (1) all-cause dementia and (2) AD subtype. CCW includes pre-defined indica-
tors for dementia and AD, which are identified using an algorithm43 that incor-
porates information from all available Medicare claims (such as inpatient and
outpatient claims, Carrier file, skilled nursing facility, and home health-care claims)
indicating that an individual was diagnosed with dementia or AD (ICD-codes
provided in Supplemental Material43). This algorithm applied by Medicare to
define dementia and AD is primarily based on Taylor et al.44 and Taylor et al.45.
CCW provides the date of the first occurrence with the dementia or AD diagnosis
code. In the dementia cohort, the outcome dementia was defined as the first
occurrence of a diagnosis code of dementia, while for the AD cohort, AD was
defined as either (1) the first occurrence of a diagnosis code of AD with no prior
diagnosis of dementia, or (2) the first occurrence of a diagnosis code of dementia
when there was a subsequent diagnosis code of AD (under the supposition that the
original dementia diagnosis was probably AD, given the subsequent AD diagnosis).

Exposure assessment. High-resolution daily ambient PM2.5 (24-hour average),
NO2 (1-hour maximum), and O3 (8-hour maximum) concentrations at 1-km
spatial resolution for the entire United States were derived using spatiotemporal
ensemble models that integrated three different machine learning algorithms,
including neural networks, random forest, and gradient boosting. The ensemble-
based model was calibrated using hundreds of predictors, including satellite
measurements, chemical transport model simulations, land-use terms, meteor-
ological variables, and monitoring measurements from the Environmental Pro-
tection Agency (EPA) Air Quality Systems (AQS). This ensemble learning
approach yielded strong prediction model performance for each pollutant, with an
average cross-validated coefficient of determination (R2) of 0.89, 0.84, and 0.86 for
annual mean PM2.5, annual mean maximum 1-hour NO2, and warm-season (May
to October) mean maximum 8-hour O3, respectively16–18. We averaged these 1-km
resolution predictions for each pollutant at the ZIP code scale across each year46,
because ZIP Code is the smallest level of geography in the Medicare data. We used
the annual averages in each ZIP code, for each calendar year, as the exposure
estimates for each Medicare beneficiary according to the ZIP code of residence. We

calculated time-varying 5-year moving averages of exposure for each follow-up
year for each subject. For example, air pollution estimates for someone entering
Medicare in 2005 and being diagnosed with dementia in 2013 would include the
average air pollution over the period from 2008–2013 and linked to the last follow-
up year (i.e., 2013). All dementia and AD events were linked to exposures averaged
over 5 years prior to diagnosis, and any annual residential mobility changes by ZIP
code were taken into account, based on their yearly residence in the Medicare
database. All high-resolution PM2.5, NO2, and O3 data used in this study were
available from 2000 to 2016. For the follow-up year of 2017, we assigned the
multiple-year average exposure during 2012–2016 to each subject (since 2017
exposure is not available); for the follow-up year of 2018, we assigned the multiple-
year average exposure during 2013–2016 to each subject.

Covariates. Individual-level age at entry, sex, race, and Medicaid eligibility were
obtained from the Medicare denominator file. We also obtained neighborhood-
level covariates in our study. These included ZIP code-level SES variables (popu-
lation density, % Black population, education, median household income, %
owner-occupied housing units, and % population above 65 years of age living
below the poverty line), county-level behavioral risk factors (smoking rate and
body mass index) and health-care capacity variables (number of hospitals and
active medical doctors), as well as a geographical region. Specifically, SES variables
were obtained from the 2000 U.S. Census47, 2010 U.S. Census48, and the American
Community Survey for 2005–2012;49 behavioral risk factors were obtained from
the Behavioral Risk Factor Surveillance System (BRFSS) between 2000 and 2016;50

and healthcare capacity data were obtained from 2010, 2015, and 2018 American
Hospital Association Annual Survey Database51. We linearly interpolated or
extrapolated any missing data based on the data available52. Data were also
available for comorbidities (diabetes, heart failure, stroke, hypertension) in CCW.
These covariates have been associated previously with ADRD and may be asso-
ciated with air pollution, and hence were candidate confounders to be included in
models53,54.

Statistical analysis. We fit a series of stratified Cox proportional hazards models
with a generalized estimating equation (GEE)55 to estimate the associations
between long-term exposure to PM2.5, NO2, and O3 on dementia or AD among the
elderly, where the coefficient for the exposure variable was the parameter of
interest, and years of follow-up was the time scale. Specifically, we fit single-
pollutant, bi-pollutant, and tri-pollutant models and estimated HRs per
interquartile-range (IQR) increase in the 5-year average of the annual PM2.5, NO2,
and warm-season O3 concentrations in the 5 years prior to diagnosis. All three
pollutants are of interest because some prior literature has shown associations
between each of them and dementia7,25,29,56. GEE was used to adjust for residual
autocorrelation within ZIP code with the use of robust standard errors (and 95%
CIs). To allow for flexible strata-specific baseline hazard functions, we stratified all
models on four individual characteristics, including sex, race (white, Black, other),
Medicaid eligibility, and 1-year categories of age at study entry. To adjust for
potential confounding, we included neighborhood-level SES, behavioral risk fac-
tors, and health-care capacity variables in our analyses. Potential residual temporal
and spatial trends were controlled by respectively including a linear term for
calendar years and indicator variables for the geographical region7.

To assess the shape of the C–R relationship between each air pollutant and
dementia or AD, we respectively fit penalized splines7 for PM2.5, NO2, and O3,
adjusting for all covariates included in the tri-pollutant models. To identify
subpopulations who might be more vulnerable than others, we assessed potential
effect modification by sex, race, Medicaid eligibility, age groups (aged 75+ vs.
below 75), and urbanicity (quartiles of population density) on the multiplicative
scale by including interaction terms between these potential modifiers and
pollutants.

In addition, we estimated the attributable fraction (AF) of dementia and AD
cases due to PM2.5 and NO2 air pollution, for those in the US exposed to an
additional IQR of PM2.5 (a difference of 3.2 μg/m3) and NO2 (a difference of
11.6 ppb), beyond current levels in US cities with relatively low exposure (i.e.,
7 µg/m3 for PM2.5 and 4 ppb for NO2, the counterfactual)38, using results from the
multi-pollutant model, and using standard AF calculations when the entire
population is exposed (RR-1)/RR (see Steenland and Armstrong57).

We conducted a series of sensitivity analyses to test the robustness of our main
findings. First, we repeated the analyses using a “clean” period of 10 years, i.e.,
thinking that excluding cases with a diagnosis during their first 10 years of
enrollment would increase the probability that we are capturing the first diagnosis
and thus more closely estimating disease incidence, albeit at the cost of a smaller
number of years of follow-up and cases. Second, using this new subcohort, we
assessed alternative exposure time windows by comparing the results using
different lags (0-, 1-, 5-, and 10-year lags), in which exposure was assigned either as
the annual exposure at 10 years prior to case (or the risk set for given cases), or 5
years prior, or 1 or 0 years prior. We posit that if a shorter lag between exposure
and disease fits the data best, assuming the association is causal, would imply an
acceleration of an existing process (e.g., dementia progression) by air pollution,
whereas a longer lag might indicate the air pollution has an effect in more initial
stages of neurodegeneration (e.g., involved in the onset of dementia). In addition,
to evaluate whether the associations we observe can be attributed to comorbidities
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also linked to air pollution, we additionally adjusted for the comorbidities
(including diabetes, hypertension, stroke, and heart failure), and also restricted
analyses to subjects without the comorbidities. Finally, we conducted analyses to
estimate the effect of possible outcome misclassification in two ways. First, we fit
linear regression models for the rate of dementia or AD (events/person-time) with
a GEE, which in theory should target an approximately unbiased estimate of the
additive effect58. Second, we considered the possible effect of outcome
misclassification following methods similar to those described by Fox et al.59. We
obtained estimates of misclassification parameters from Taylor et al.45 and adjusted
the observed outcomes for each stratum to match up with the expected true values
given pre-specified values for sensitivity and specificity for the outcome
classification (details provided in Supplemental Material).

All computational analyses60 were run on the Rollins HPC Cluster at Emory
University. R software, version 4.0.2, was used for all analyses. A two-sided P < 0.05
was considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Ensemble-based PM2.5 data that support the findings of this study are available from
https://doi.org/10.7927/0rvr-4538, NO2 and O3 data are available from https://doi.org/
10.6084/m9.figshare.16834390. Behavioral risk factors are available from https://
www.cdc.gov/brfss/annual_data/annual_data.html; SES data are available from https://
www.census.gov/data/datasets/2000/dec/summary-file-3.html, https://www.census.gov/
data/datasets/2010/dec/summary-file-1.html, and https://www.census.gov/data/
developers/data-sets/acs-1year.html; health-care capacity data are available from https://
data.hrsa.gov/topics/health-workforce/ahrf. The rules governing the Medicare dataset
prohibit any sharing of the health datasets being used for our epidemiologic research.
Restricted by our Data Use Agreement with the US Centers for Medicare & Medicaid
Services, the Medicare data that support the findings of this study are neither sharable
nor publicly available. Academic and non-profit researchers who are interested in using
Medicare data should contact the US Centers for Medicare & Medicaid Services directly
to obtain their own datasets upon completion of a Data Use Agreement. Source data are
provided with this paper.

Code availability
The R codes for the epidemiological analyses are publicly available from https://doi.org/
10.6084/m9.figshare.16843528.
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