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Abstract

Stable, Scalable, Reduced-Order Methods for Physical Simulation

by

Qiaodong Cui

Reduced-order methods are an attractive model for physical simulation in computer

graphics. They aim to reduce the computational cost of a full-rank simulation by project-

ing onto a reduced set of bases. However, an improper application of such methods can

be unstable and scale poorly, which prevents many methods from being used in practice.

In this work, we aim to improve the scalability and stability of reduced order methods

for two such scenarios. For the Eigenfluids method of fluid simulation, we show that

by carefully applying the discrete sine and cosine transforms, the prohibitive scaling of

its memory usage can be reduced asymptotically. The simulation is further stabilized

by using a variational approach with different basis functions. We also show that the

basis functions can be made quite general by extending them to spherical and polar

coordinate systems. By using an orthogonalization method, we show a wide variety

of basis functions can be designed that maintain fast transformations. For stochastic

structure optimization, which assesses whether a fabricated object will break under real-

world conditions, we show that the computation can be made asymptotically faster by

carefully exploiting certain tensor structures. We then stabilize the optimization by

applying an alternate basis to the function gradients.
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Chapter 1

Introduction

Note: A significant portion of this chapter has previously appeared as [1, 2].

With the increasing computing capabilities of modern computers, physical simulations

have become a powerful tool in different areas. For example, in the film and game

industries, physical simulations create a realistic yet virtual experience that’s impossible

to capture in the real world. In manufacturing, it helps to assess whether an object will

fail in a virtual setting, therefore validating design choices and reducing costs. While

much progress has been made in physical simulation over the last decade, efficient high-

quality physical simulation remains an ongoing challenge.

Recently, model reduced methods have proven to be an attractive candidate to achieve

efficient high-quality simulations. Reduced methods apply to a wide range of problems

and can lead to orders of magnitude speed-ups. This, however, comes at a cost: bases

matrices used by reduced order methods pose a serious memory bottleneck, and reduced

dynamics are unstable unless carefully implemented. In this dissertation, I focus on two

specific reduced-order simulations: fluid simulation using Laplacian eigenfunctions and

stochastic structure optimizations.
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Introduction Chapter 1

1.1 Fluid Simulation

Many astonishing natural phenomena are governed by the motion of fluids. For

example, they range from common life experiences like smoke swirling off a cigar and

water splashing in a swimming pool, microscopic phenomena like blood cells being carried

around in plasma, to macroscopic phenomena like ocean currents and planetary flows.

Due to their ubiquitous presence in our lives, the study of fluid phenomena is of prominent

importance in physics, mechanical engineering, weather prediction, and many other fields.

In physics, there is a consensus that the Navier-Stokes equations are a good model to

describe the motion of fluids. The equation is derived by applying Newton’s second law

to a continuum fluid body. Despite its importance, analytical solutions to this equation

are impossible except in some special cases. The computational difficulties precluded

numerical solutions until the invention of digital computers.

The earliest effort towards a numerical approach was introduced by Lewis Fry Richard-

son [3] in 1922. More than 20 years later, John Von Neumann and his colleagues began to

use the ENIAC to compute weather using an approach similar to Lewis’s book [4]. With

the increasing computation power of computers, these earliest efforts evolved into a com-

pletely new field: computational fluid dynamics (CFD). In computer graphics, digitally

capturing fluid-like motion occured much later when computers became an important

tool in filmmaking.

In contrast to CFD, where physical accuracy is most important, fluid simulation in

computer graphics is primarily governed by visual effects. The earliest work to capture

fluid-like motion in computer graphics was not physically accurate. For example, particle

systems were used to capture the fire effect in the film: StarTrek II: The Wrath of Khan

[5]. Random turbulence was later developed to add more visual details with better

physical accuracy [6]. Physically-based models were first applied in two dimensions. For

2



Introduction Chapter 1

example, Yaeger et al. [7] simulated a two-dimension planetary flow in film production,

Kass and Miller [8] simulated liquids using shallow water equations. Three-dimensional

fluid simulation in computer graphics was first shown by Foster and Metaxas [9] with

clear visual advantages. However, the method is based on finite difference and explicit

time solvers, so it became unstable unless a small time step was used.

The seminal work by Stam [10] presented the first work that is unconditionally sta-

ble in computer graphics, and thus become a standard approach of fluid simulation in

computer graphics. However, the stabilities come at a price of uncontrollable numerical

dissipation, where the fluid appears more viscous than intended. This prevents many

visually interesting details from appearing, and later work sought to mitigate the nu-

merical dissipation. Many works seek to compensate for the dissipated energy using

techniques such as vorticity confinement [11] or IVOCK [12]. Alternatively, methods can

be devised that are non-dissipative by construction, though these can involve asymmetric

linear solves and non-linear Newton iterations [13].

The method of Laplacian Eigenfunctions [14], which we shall refer to as the Eigenfluids

method, proposes an alternative approach for simulating inviscid flows. The simulation

occurs over a set of eigenfunctions, and the primary variables are the coefficients of these

functions. The functions are inherently divergence-free, so the dissipation introduced by

a pressure projection is avoided entirely. The advection operator is formulated in terms

of the eigenfunctions, so the numerical smearing that occurs during semi-Lagrangian

backtraces is also eliminated. The functions have global support, so interesting results

appear with even a handful of coefficients. The simulations are fast and lively, and possess

natural connections to model reduction [15].

With these advantages come several significant drawbacks. Like most model reduction

methods, Eigenfluids require a large basis matrix to be present in memory at runtime.

Each column of the matrix represents an eigenfunction sampled over some spatial par-
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Introduction Chapter 1

titioning, e.g., a regular grid or a tetrahedral mesh. When a high spatial resolution

is needed, only a limited number of eigenfunctions can be used, so the 3D simulations

in previous work were limited to several hundred basis functions (540 for [14] and 230

for [15]). However, compelling, fine-scale dynamics continue to appear when more basis

functions are added, so a practical method for improving the scalability is needed.

If the domain is rectangular–which is an extremely common production scenario [16]–

a potential solution was proposed in De Witt et al. [14]: the eigenfunctions can be written

in closed form. In lieu of storing a large matrix, entries can be recomputed on-the-fly

at runtime. However, evaluating these functions dominates the running time and makes

the algorithm unacceptably slow.

The Eigenfluids method thus appears to possess the classic zero-sum tradeoff of time

vs. memory, but we show that this is not in fact the case. By carefully applying discrete

sine (DST) and cosine (DCT) transforms over a rectangular domain, it is in fact possible

to arrive at an algorithm that is both faster and more memory efficient than previous

approaches. This is achieved without introducing any numerical approximations. Using

our approach, we are able to scale the original Eigenfluids algorithm by an additional two

orders of magnitude. We are able to efficiently simulate scenarios that would otherwise

have taken terabytes of memory or more than an hour of per-frame computation.

The second major limitation of the Eigenfluids method is that it is constrained to

a closed box, because analytic eigenfunctions have only been presented for boundary

conditions that are Dirichlet on the velocity. However, many practical scenarios require

Neumann velocity boundaries that allow mass to flow out of the domain. To remove

this limitation, we derive the analytic eigenfunctions that arise when 1 to 6 walls of a

3D domain are set uniformly to Neumann boundaries. Fortunately, the DCT and DST

accelerations from the Dirichlet case carry over to the Neumann case as well.

As the algorithm scales, a CFL-like stability condition emerges that makes it necessary

4
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to use an implicit solver. While the underlying advection tensor is inherently anti-

symmetric, we find that symmetric solvers can still be used, because the resulting systems

are extremely well-conditioned. We additionally find that as Eigenfluids is scaled up to

thousands of basis functions, the bottleneck becomes the storage of the sparse, 3rd-order

tensor for advection. However, most of these entries are near-zero, and we show that

∼90% of the entries can be discarded while still retaining the overall character of the

flow. All of these advantages can be leveraged to obtain a real-time version of the

algorithm.

Our method shares many similarities with the wide family of spectral methods that

also employ fast transformations [17, 18, 19, 20], so we perform an in-depth comparison in

§4.3 that shows that our algorithm is capable of achieving significantly lower viscosities.

The Eigenfluids advection formulation offers precise and direct control of the phe-

nomenon of forward scattering, i.e., the rate at which energy cascades from low to high

frequencies. Using this mechanism, we can stably produce aesthetically interesting flows

that are not possible with any other method.

While fluid simulations in rectangular domains are very common, certain types of fluid

simulation may be more suitable for other coordinate systems. For example, simulation of

planetary flow and soap bubbles is more suited to spherical coordinates. For this reason,

simulation of fluid in non-Cartesian coordinates has also attracted attention [21, 22, 23,

24]. While representing analytical basis functions using fast transformations is attractive,

they are constrained to a rectangular domain. I will show that analytical basis functions

that support fast transformations can be found for polar and spherical coordinates, and

therefore expand the potential applications of the Eigenfluids algorithm.

5
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1.2 Stochastic Structure Optimization

Recently, a wide range of computational techniques have been developed to assist in

the design of objects manufactured using additive fabrication (see, e.g., excellent surveys

of the state-of-the-art [25, 26]). One key concern is the robustness of the manufactured

object (i.e., the conditions in which it will break), and various failure analysis algorithms

have been developed to estimate the failure cases of the object in order to improve its

design.

Traditionally, failure analysis is performed for worst-case scenarios, and while such

analyses are critical in certain scenarios (e.g., bridge construction), they can be overly

conservative in others, such as figurine design. In these (more common) situations, it is

more realistic to ask whether an object is robust in real-world situations, such as being

dropped on the floor or down a flight of stairs. In this case, reinforcing portions of

the object that are unlikely to experience an impact because they are already shielded

by more robust regions is clearly sub-optimal. Unlikely mechanical scenarios should not

artificially constrain the design space, and the manufactured designs should be optimized

for the “common case.”

Along these lines, Langlois et al. [27] recently proposed a stochastic structural analysis

method that used a rigid body simulator to sample a more realistic space of real-world

impacts and construct a probability map of predicted failures. This probability map

was then incorporated as a constraint into a topology optimization, and used to solve a

context-aware inverse design problem that produced geometrical models more robust to

realistic impacts. Unfortunately, the method is quite computationally intensive, where

even a single optimization step over a small 26 × 34 × 28 model takes over an hour to

compute .

In this dissertation, we observe that this computational expense arises for two main
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reasons. First, computing the probability gradients is quadratic in the number of ele-

ments. Second, the inertia gradient that arises from the rigid body simulation is com-

puted using a finite difference scheme that leads to instabilities, which in turn negatively

impacts the convergence of the optimization. We present an approach that is both asymp-

totically faster and more numerically robust than Langlois et al. [27]. We achieve both

of these goals directly; no approximation is applied to the original algorithm. In the first

case, we show that a careful analysis of the probability gradient can yield a computation

that is only linear in the number of elements. In the second case, we use a combination

of Gaussian Mixture Models and an alternate central-differencing method to arrive at a

more stable version of the inertia gradient.

Even with these improvements, the optimization can still stall at local minima. We

therefore introduce a constrained restart method that is able to make further progress

and discover interesting new structures that were otherwise inaccessible to the original

algorithm. Finally, we show that additional progress can be made by assuming that a

thin sheath that is beyond the resolution of the numerical simulation will be printed

along the exterior of the object.

Together, these components comprise a stochastic structural optimization method

that is orders of magnitude faster than Langlois et al. [27], able to achieve previously-

impractical resolutions, and capable of discovering previously-inaccessible designs.

1.3 Thesis Statement and Main Results

My thesis statement is the following:

Stable, scalable, reduced-order simulations can be obtained by carefully analyzing the un-

derlying basis functions and physical systems.

To support this thesis, I developed stable, scalable, reduced-order algorithms for two

7
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different kinds of simulations: fluid simulation and structure optimization. In the first

case, I will show that the bases used by the Laplacian Eigenfluids algorithm can be

effectively represented by fast transformations, which removes the basis storage problem

and leads to a more scalable version of the method. The method can be stabilized

with a variational approach. In the second case, I will show an asymptotically faster

stochastic structure optimization can be achieved by exploiting certain tensor structures.

The method is then stabilized by using smoother basis functions to capture function

gradients.

Chapters 3 and 4 introduce a scalable reduced-order fluid simulation algorithm based

on Laplacian eigenfunctions. The contributions are:

• Use of DCT and DST to remove the memory limitations imposed by the eigenfunc-

tion basis matrix.

• Generalization of the analytic eigenfunctions of Eigenfluids to support Neumann

velocity boundaries.

• Directable forward scattering through tensor reweighting.

• Demonstration of effective lossy compression on the 3rd-order advection tensor.

• Demonstration of support for real-time interaction.

• Lower viscosity flows than equivalent spectral methods.

Chapter 5 shows an extension of the scalable Laplacian Eigenfluids algorithm to polar

and spherical coordinates. The contributions are:

• Generalized 2D analytical basis functions in polar coordinates and on the surface

of a sphere.

8
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• Generalized 3D analytical basis functions in spherical coordinates.

• An orthogonalization method that allows non-orthogonal basis functions to be used.

Chapter 6-7 shows a fast and robust version of the stochastic structure optimization

method. The contributions are:

• Asymptotically faster computation of probability gradients

• A robust scheme for computing inertia gradients that stabilizes the optimization

search direction

• A constrained restart strategy that allows global optimization to climb out of local

minima

• A sheathing approach that robustly removes additional mass from the final design

1.4 Mathematical Notation

I will use unbolded lower case to denote scalars (k), bold lower case to denote vectors

(u), and bold upper case to denote matrices (C). An overdot denotes a time derivative

(u̇ = ∂u
∂t

), and superscripts denotes the timestep (wt and wt+1). Angle brackets denote

the inner product of two fields, i.e., 〈u,Ψ〉 =
∫

Ω
u ·ΨdΩ.

The 3rd-order advection tensor C ∈ Rr×r×r appears throughout. Note, the order here

refers to the tensor rank, not the Taylor truncation order. We denote contraction along

the third index using the ×3 notation [28]. This yields a matrix, e.g., C×3 w = C, where

C ∈ Rr×r. Products along the other two indices can be written using the usual matrix

notation, but are then applied to all r matrices along the third index, i.e., wTCw = x

where x ∈ Rr.

9
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1.5 Organization

The dissertation is organized as follows: Chapter 2 provides related work on physically-

based fluid simulation and structure optimization. In chapter 3, I introduce one particular

reduced-order fluid simulation: Laplacian Eigenfluids. In chapter 4, I describe several

improvements to the Eigenfluids algorithm, which makes it scalable and stable. Chapter

5 provides an extension of Eigenfluids to polar and spherical coordinate systems. In

chapter 6, background on stochastic structure optimization is provided. Finally, chapter

7 describes several contributions that lead to a more fast and robust stochastic structure

optimization method.

10



Chapter 2

Background and Related Work

Note: A significant portion of this chapter has previously appeared as [1, 2].

2.1 Physical Simulation of Fluids

Before introducing the physical simulation of fluids, I will introduce the basic physi-

cal equation of the fluid phenomena. In physics, when the change of volume of the fluid

under consideration is very small and can be ignored, it is considered as an incompress-

ible. This greatly simplifies the physical phenomena. Assuming the density of the fluid

is homogeneous, the fluid can be described by the incompressible Navier-Stokes (N-S)

equations 2.1:

u̇ = −u · ∇u + ν∇2u−∇p+ f

∇ · u = 0.

(2.1)

Here, terms ν, p, f denote viscosity, pressure, and external forces. The term −u · ∇u

describes how the velocity is advected by the velocity field itself, therefore it is referred to

11



Background and Related Work Chapter 2

as the advection term. The term ν∇2u describes how the velocity expands and diffuses

through the media, therefore it is referred to as the diffusion term. The term −∇p

describes how internal pressure affects the velocity of the fluid. The pressure forms

internally so that the fluid is incompressible. This implies the velocity field of the fluid

is divergence-free: ∇ · u = 0. Finally, the term f describes external forces like gravity,

buoyancy, or user interactions that can be applied to the fluid.

One key task of fluid simulation is to track the motion of the fluid. There are two ma-

jor approaches: the Lagrangian approach and the Eulerian approach. In the Lagrangian

approach, fluids are discretized by a particle system. Usually, one particle has at least

three attributes: mass, position, and velocity. Each particle describes the velocity of the

fluid near that particle. One way to solve the motion of the fluid is to move the particle

around according to its velocity. The external forces like gravity and pressure will be

computed for each particle, and the velocity of the particle is updated accordingly. Eu-

lerian approach, on the other hand, discretizes the fluid by a static mesh. Each element

of the mesh describes the quantities of the fluid at a fixed position, for example, velocity

and density. The motion of the fluid is solved by evolving the fluid quantities stored at

each element. In the Lagrangian approach, the advection of the fluid is trivially solved

by advecting the particles. However, spatial derivatives are not straightforward, and the

divergence-free condition is hard to maintain. In the Eulerian approach, spatial deriva-

tives are easier to compute. For example, the finite difference can be used, although a

careful treatment for advection is required for a robust method. In this dissertation, I

will mostly focus more on the Eulerian approach.

12



Background and Related Work Chapter 2

2.1.1 Eulerian Simulation of Fluids

To simulate the fluid, continuous quantities like velocity u, pressure p and force f in

equation 2.1 are discretized. The most frequently used discretization method is a uniform

grid as shown in figure 2.1.

N
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Figure 2.1: A typical discretization grid for 3D fluid simulation. Note the degree of
freedom grows cubically.

The finite difference method [29] is most frequently used to discretize the N-S equation

on a uniform grid due to its simplicity. The velocity of the fluid is the primary variable

to solve. The task for fluid simulation is the following: Given the velocity field ut at a

time step t, solve the velocity at the next time-step ut+1.

The finite difference method has a long history of applications in computational fluid

dynamics, one of the earliest works is introduced by Harlow and Welch [30], where they

simulated a 2D incompressible fluid with the finite difference method and the forward

explicit time-stepping. Following this work, Foster and Metaxas [9] introduced simula-

tions of smoke with 3D N-S equations into computer graphics. However, the method

uses explicit time stepping, where the time-step is constrained. Larger time steps may

lead to instabilities, where the simulation ”blows up” and has to restart with a smaller

time-step. This greatly limits the method. Stam [10] introduced the first fluid simula-

tion method which is unconditionally stable, regardless of the time-step. The method

was widely adopted as a result.
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Here I briefly introduce the work of Stam [10]. In this work, a splitting approach is

used to solve the N-S equations in 2.1. As shown in figure 2.2, four sub-steps are involved

to solve the velocity u at the next time step. Each sub-step solves one term of the N-S

equation.

ut
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project

Figure 2.2: A splitting approach to solve the N-S equation.

Add force: To add force to the simulation, the force weighted by time step is simply

added to the velocity field:

ut1 = ut + f∆t. (2.2)

Advect: Stam introduced the classical semi-Lagrangian method to solve the advec-

tion term. This method can be described by:

ut2(x) = ut1(x− ut1(x)∆t). (2.3)

To evaluate the velocity ut2 at a location x, this method back-tracks the point x using

the velocity at that point in sub-step t1, the location is then evaluated as x− ut1(x)∆t.

The velocity at this point is then interpolated and assigned to the velocity of the point x

at the next sub-step t2. Linear interpolations are usually used. This method is uncondi-

tionally stable because max(ut2) ≤ max(ut1) introduced by the interpolation. However,

the averaging caused by the interpolation introduces numerical dissipation, where sharp

features are dissipated over time.

Diffuse: The diffusion term ν∇2u introduces a Poisson equation, which can be solved

to obtain ut3 :

(I − ν∆t∇2)ut3 = ut2 . (2.4)
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After discretization, operator (I − ν∆t∇2) becomes a sparse matrix. Iterative methods

like conjugate gradient [28] are then used to solve the sparse linear system. In most fluid

simulations, due to the numerical dissipation introduced by the advection step, viscosity

ν is usually set to zero. This step is entirely skipped.

Project: Finally, the velocity ut3 may not be a divergence-free velocity field. There-

fore, it is projected to a divergence-free vector field. The Helmholtz decomposition states

that any vector field can be decomposed into a divergence-free component and the gra-

dient of a scalar field p:

ut+1 = ut3 −∇p. (2.5)

The term p is a pressure field because it enforces the velocity field to be divergence-free.

The pressure p can be solved via a Poisson system:

∇2p = ∇ut3 . (2.6)

The gradient of the pressure is then subtracted from ut3 to obtain the velocity at the next

time step. The Poisson system requires solving a large sparse linear system. Assuming

the viscosity step is skipped, this usually becomes the bottleneck of the algorithm.

The method is unconditionally stable; therefore, it is the first widely adopted method

in computer graphics. However, both the pressure projection and the semi-Lagrangian

advection schemes introduce numerical dissipations that many subsequent works have

sought to mitigate.
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2.1.2 Full Rank Methods

The most direct method to do this is to increase the underlying grid resolution, so

simulations have been performed on large grids such as octrees [31], multigrid hierarchies

[32, 33], and sparsely paged grids [34].

Methods for re-injecting dissipated energy have also been explored, such as vorticity

confinement [11], vortex particles [35], IVOCK [12], and turbulence methods that are

applied as a post-process [36, 37, 38]. The structure-preserving properties of Lagrangian

methods have also been leveraged in the form of vortex filament [39] [40], APIC [41], and

PPIC [42] methods have also been developed.

Mullen et al. [13] introduced the first method in computer graphics for simulating to-

tally inviscid flows. While the dynamics of a zero-viscosity “super-fluid” can be somewhat

unintuitive, being able to achieve this regime then allows the user to gradually dial in

the desired level of viscosity. However, the method can be computationally expensive, as

it involves asymmetric linear solves and non-linear Newton iterations. The Schödinger’s

Smoke [43] algorithm also exhibits inviscid behavior, but it does not contain a viscosity

parameter.

For most full rank methods, the degree of freedom grows as the resolution increases.

This in turn requires more time to solve for the unknown variables. Therefore, fast full

rank simulations of fluid are inherently difficult.

2.1.3 Reduced-Order Methods

Reduced-order methods mitigate the computational cost of the simulation by reducing

the degree of freedom of the physical system. To do that, a set of basis functions (bases)

are chosen for the vector of variables in the simulation. They are chosen in a way that a

small number of basis functions can effectively represent the state space of the simulation.
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This is similar to describing a signal in frequency space, where Fourier series are used

as the basis function. The linear space composed by the basis functions is then called

the subspace. If the entire physical system can be projected down to the subspace via

the basis functions, the simulation can be entirely be performed in the subspace. This

usually leads to orders of magnitude of speed-ups compared to full rank simulations.

Reduced-order methods were first introduced into computer graphics by Pentland and

Williams [44] to simulate solids. Treuille et al. [45] first introduced the reduced-order

simulation of fluid in computer graphics. The method however is not consistent with the

full rank solver, and Kim and Delaney [46] introduced subspace fluid re-simulation, which

closely matches the full rank simulation. In both methods, the bases matrix is numerically

constructed from a set of velocity fields from exemplar simulations. Each column of the

bases matrix is a principle component obtained via the principal component analysis

(PCA) on the exemplar simulations. A full rank velocity field can then be projected to

the subspace by the bases matrix, which I will refer to as the reduced coordinates. This

is shown in figure 2.3.

u 2 RN3
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Figure 2.3: Projection of a full rank velocity into subspace via a basis matrix. The
term w is reduced coordinates. The term U is a bases matrix. The term u is a full
rank velocity field.

Model reduction methods suffer from the problem of basis matrix storage. If a simu-

lation on a very high resolution O(N3) velocity field is desired, a matrix with r columns
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takes up O(rN3) memory, so the system capacity is quickly exhausted for r ≈ 500.

Several approaches have tried to address this issue through modularization [47] and

JPEG-like compression [48], but the issue is far from resolved.

The method of Laplacian Eigenfunctions, which we refer to as Eigenfluids, was de-

veloped by De Witt et al. [14], and further stabilized using variational methods by Liu

et al. [15]. While I will describe the method in detail later (§3), I will position it within

the literature here. Because the method begins to produce non-trivial results even with

a very small number of degrees of freedom, it can be seen as a model reduction method,

albeit one that does not need the example snapshots required by previous approaches

[45, 46, 49]. Instead of discovering a basis from example data, the simulation is per-

formed in the space of Laplacian eigenvectors defined over the simulation mesh. Due to

the correspondence of these eigenvectors to the intrinsic frequencies of the mesh, numeri-

cal dissipation can be eliminated entirely. Interestingly, the work of Gupta et al. [50] also

performed reduced fluid simulations in an analytic (Legendre) space, but traded spatial

resolution for rendering efficiency.

2.1.4 Spectral Methods

This work makes extensive use of discrete sine (DST) and cosine (DCT) transforms,

and thus shares connections with a variety of spectral fluid solvers. Stam [10, 51] first

showed that by imposing periodic boundaries, the FFT could be used to accelerate the

pressure projection stage of Stable Fluids. Later, Long and Reinhard [52] showed that

this approach could be extended to Dirichlet boundaries by using the DST and DCT, and

Henderson [53] showed that it scales favorably over multiple processors. I will show that

by leveraging the correspondence between these spectral modes and the eigenfunctions

of the Laplacian, and by performing the non-linear advection entirely within the spectral

18



Background and Related Work Chapter 2

domain, we can efficiently compute inviscid flows.

The relationship to spectral solvers extends more widely to spectral methods in gen-

eral. Spectral methods have a long history stretching back to Lanczos [54], and gained

wider attention in fluid mechanics during the 1970s due to the work of [55, 56]. Many

excellent texts exist that describe these methods Orszag [18, 19, 57], but relative to our

current method, the use of Chebyshev and Legendre polynomials to handle non-periodic

boundary conditions is the most relevant feature [17, 20]. I will perform an extensive

comparison of our own method against a modern pseudo-spectral library [58] in §4.3, and

show that our method can simulate flows with significantly lower viscosity.

2.1.5 Fluid Simulation in Non-Cartesian Coordinates

In most cases, the fluid is parameterized in 2D or 3D Cartesian coordinates, where the

domain is usually rectangular. However, some fluid phenomena may better be parame-

terized with other coordinate systems. For example, spherical coordinates may better be

suited to describe the planetary flow, where the fluid is constrained on the surface of a

sphere.

Stam [21] introduced fluid simulation on Catmull-Clark surfaces of arbitrary topolo-

gies. The Stable Fluids method [10] is extended to arbitrary curvilinear coordinates and

then mapped to the surface of the mesh. Following this work, [22] simulated surface

waves on a character mesh. Thürey et al. [59] simulates wave details on the fluid surface

to capture the surface tension effects. Kim et al. [60] upsampled the resolution of a

liquid simulation by directly simulating waves on the liquid surface. Recently Hill and

Henderson [23] introduced an efficient fluid simulation method on a sphere surface, where

the geometry terms omitted by previous works are addressed. Yang et al. [24] extended

this work using GPUs, achieving real-time performance. In this work, I will extend the
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Eigenfluid algorithm [1] to polar coordinates and spherical coordinates.

2.2 Structure Optimization

Structural optimization, also referred as topology optimization, is a method that op-

timizes the material distribution of a shape given a set of loadings, boundary conditions,

and objective and constraint functions. Since structural optimization was introduced by

Bendsøe et al. [61, 62], it has attracted lots of attention in computer graphics. Tradition-

ally, topology optimization involves the minimization of compliance, which I will briefly

introduce here.

2.2.1 Compliance Optimization

Figure 2.4: Left: The initial slab object that needs to be optimized. Right: The
optimized slab object under the applied force and the boundary condition.

Figure 2.4 shows a typical setting of structure optimization. On the left is the initial

condition of the optimization, where the slab is fully filled. The shape is typically pa-

rameterized by a finite element mesh. A density value is assigned to each mesh element,

which is the primary variable for the optimization. Concatenate all density variables into

a vector and denote it as ωωω.

20



Background and Related Work Chapter 2

Most materials used in structure optimization are stiff, for example, ABS plastics

and metals. The material breaks when the deformation is very small, therefore, linear

elasticity models are very frequently used. The nodal displacements (u) of the finite

element mesh can be computed as:

u = K−1f . (2.7)

The term K denotes the stiffness matrix. The term f denotes the external force. One

simplest objective function to minimize is the compliance: uTKu. Minimizing the com-

pliance corresponds to maximizing the global stiffness [62], because the compliance is

equal to fTK−T f , assuming f is fixed during the optimization. The optimization can be

written as:

min uTKu

s.t. u = K−1f .

(2.8)

Many different methods can be used to solve the above optimization problem. For ex-

ample, the Optimality Criteria [63] method, the Sequential Linear Programming method

or, the Method of Moving Asymptotes (MMA) [64]. All these methods are iterative in

nature. I will focus on the MMA method here.

The MMA method can solve nonlinear optimizations with inequality constraints, it is

a trust region method where information around the current optimization point is used

to construct a convex approximation model at that point. The convex model is then

solved to find the next iteration point. For each iteration, the value and gradient of both

objective and constraint functions are evaluated externally, and then the information is

supplied to the MMA optimizer to compute the next iteration point. For example, for the
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optimization problem in equation 2.8, given current iteration point ωωωt, stiffness matrix is

then evaluated at this point. Next, the equality constrain can be satisfied by evaluating

ut = K−1f . The value of compliance (ut)TKut and its derivative (ut)T ∂K
∂ωωω

ut are then

evaluated and supplied to the MMA optimizer.

Due to the simplicity of using compliance as the objective function, There are many

works in computer graphics following this approach, e.g., [65, 66, 67]. However, com-

pliance minimization can overfit to one loading condition and has difficulty predicting

whether objects will fail under realistic conditions.

2.2.2 Other Formulations

Instead of minimizing compliance, minimizing the object’s weight subject to a stress

constraint offers a better guarantee of the robustness of the object. For example, Lee

et al. [68] uses a constraint on the yield stress and minimizes the weight of the object.

Similarly, Ulu et al. [69] optimizes the thickness of the shell to minimize the weight,

subject to a constraint on the yield stress. Many of these methods use prescribed loadings.

This can be useful in some particular cases, e.g., designing a bridge, where the loading can

be prescribed in advance. However, in many other cases, the loading might be unknown

beforehand.

To capture uncertainty, stochastic finite element analysis has been extensively studied

in the engineering community. Stefanou [70] provides an excellent overview. There are

two broad classes of methods: 1) the perturbation approach, which uses a Taylor series

expansion of the system matrix and solution [71], and 2) the spectral stochastic finite

element method, which represents each solution quantity with a series of random Hermite

polynomials [72]. Monte Carlo simulation (MCS) [73] can be used in conjunction with

these two methods, which models randomness by solving a deterministic problem many

22



Background and Related Work Chapter 2

times using different samples of the random variables. These methods are very general,

and can consider uncertainties in the loading, geometry, and material behavior of the

problem. In our case, we care only about uncertainty in loading conditions, so do not

need the complex, expensive machinery to approximate randomness in the system matrix

provided by these methods. Our approach (and the previous approach we accelerate [27])

is akin to an MCS approach using model reduction to reduce the computational load.

To address uncertainty in the graphics community, worst case structural analysis was

introduced by Zhou et al. [74]. The method computes a worst case loading scenario

where it produces the worst possible stress distribution in the object. Along this line,

several different works use the worst case loading to optimize the structure [75, 76, 77].

However, it is unknown how often the worst cast loading will be present in a realistic

scenario, such as a figurine falling and hitting the ground.

To address this limitation, Langlois et al. [27] presented a method where the loading

of the object was computed from a rigid body simulator that closely mimicked realistic

loadings. The work also introduced semantically meaningful failure probabilities that

better reflected real-word object failures. The work also presented a structural opti-

mization scheme where the weight of the object was minimized under failure probability

constraints. Still, this optimization scheme remained expensive due to the computation

of the failure probability gradients.

This work immediately follows this line. I aim to optimize stochastic structural opti-

mization through three specific contributions: acceleration of the gradient computation,

a more robust probability gradient formulation, and a restart strategy to overcome non-

optimal local minima during optimization.
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Laplacian Eigenfluids Background

Note: A significant portion of this chapter has previously appeared as [1].

3.1 Laplacian Eigenfluids Bases

In the Eigenfluids algorithm, u in the the Navier-Stokes equations 2.1 is encoded as a

linear combination of vector eigenfunctions, Ψ. These functions are defined according to

a vector wave index, k = (kx, ky, kz). Each Ψ has three associated scalar eigenfunctions,

Φx(k), Φy(k), and Φz(k), which respectively specify the x, y, and z velocity components

for that index, i.e., Ψ = {Φx(k),Φy(k),Φz(k)}. The total number of eigenfunctions being

simulated is denoted r, which is the reduced simulation rank. The visualizations of the

eigenfunctions is shown in figure 3.1.

We use the notation Ψi for cases where it is necessary to generically iterate over all r

eigenfunctions. This allows us to write the velocity field u in terms of the eigenfunctions

Ψ simply as:

u =
r∑
i=1

wiΨi. (3.1)

In a 2D domain defined over Ω ∈ [0, π]2, the eigenfunctions of Dewitt et al. [14] take

24



Laplacian Eigenfluids Background Chapter 3

 3
<latexit sha1_base64="i6M4BQMM3S98LabPULn/mDrrNBw=">AAAB/HicbVDNS8MwHE3n15xf1R29BIfgabQq6HHoxeME9wFrKWmabmFpUpJUKGX+K148KOLVP8Sb/43p1oNuPgh5vPf7kZcXpowq7TjfVm1tfWNzq77d2Nnd2z+wD4/6SmQSkx4WTMhhiBRhlJOeppqRYSoJSkJGBuH0tvQHj0QqKviDzlPiJ2jMaUwx0kYK7KYXChapPDFX4XUVDS5mgd1y2s4ccJW4FWmBCt3A/vIigbOEcI0ZUmrkOqn2CyQ1xYzMGl6mSIrwFI3JyFCOEqL8Yh5+Bk+NEsFYSHO4hnP190aBElXmM5MJ0hO17JXif94o0/G1X1CeZppwvHgozhjUApZNwIhKgjXLDUFYUpMV4gmSCGvTV8OU4C5/eZX0z9uu03bvL1udm6qOOjgGJ+AMuOAKdMAd6IIewCAHz+AVvFlP1ov1bn0sRmtWtdMEf2B9/gAeyZUO</latexit><latexit sha1_base64="i6M4BQMM3S98LabPULn/mDrrNBw=">AAAB/HicbVDNS8MwHE3n15xf1R29BIfgabQq6HHoxeME9wFrKWmabmFpUpJUKGX+K148KOLVP8Sb/43p1oNuPgh5vPf7kZcXpowq7TjfVm1tfWNzq77d2Nnd2z+wD4/6SmQSkx4WTMhhiBRhlJOeppqRYSoJSkJGBuH0tvQHj0QqKviDzlPiJ2jMaUwx0kYK7KYXChapPDFX4XUVDS5mgd1y2s4ccJW4FWmBCt3A/vIigbOEcI0ZUmrkOqn2CyQ1xYzMGl6mSIrwFI3JyFCOEqL8Yh5+Bk+NEsFYSHO4hnP190aBElXmM5MJ0hO17JXif94o0/G1X1CeZppwvHgozhjUApZNwIhKgjXLDUFYUpMV4gmSCGvTV8OU4C5/eZX0z9uu03bvL1udm6qOOjgGJ+AMuOAKdMAd6IIewCAHz+AVvFlP1ov1bn0sRmtWtdMEf2B9/gAeyZUO</latexit><latexit sha1_base64="i6M4BQMM3S98LabPULn/mDrrNBw=">AAAB/HicbVDNS8MwHE3n15xf1R29BIfgabQq6HHoxeME9wFrKWmabmFpUpJUKGX+K148KOLVP8Sb/43p1oNuPgh5vPf7kZcXpowq7TjfVm1tfWNzq77d2Nnd2z+wD4/6SmQSkx4WTMhhiBRhlJOeppqRYSoJSkJGBuH0tvQHj0QqKviDzlPiJ2jMaUwx0kYK7KYXChapPDFX4XUVDS5mgd1y2s4ccJW4FWmBCt3A/vIigbOEcI0ZUmrkOqn2CyQ1xYzMGl6mSIrwFI3JyFCOEqL8Yh5+Bk+NEsFYSHO4hnP190aBElXmM5MJ0hO17JXif94o0/G1X1CeZppwvHgozhjUApZNwIhKgjXLDUFYUpMV4gmSCGvTV8OU4C5/eZX0z9uu03bvL1udm6qOOjgGJ+AMuOAKdMAd6IIewCAHz+AVvFlP1ov1bn0sRmtWtdMEf2B9/gAeyZUO</latexit><latexit sha1_base64="i6M4BQMM3S98LabPULn/mDrrNBw=">AAAB/HicbVDNS8MwHE3n15xf1R29BIfgabQq6HHoxeME9wFrKWmabmFpUpJUKGX+K148KOLVP8Sb/43p1oNuPgh5vPf7kZcXpowq7TjfVm1tfWNzq77d2Nnd2z+wD4/6SmQSkx4WTMhhiBRhlJOeppqRYSoJSkJGBuH0tvQHj0QqKviDzlPiJ2jMaUwx0kYK7KYXChapPDFX4XUVDS5mgd1y2s4ccJW4FWmBCt3A/vIigbOEcI0ZUmrkOqn2CyQ1xYzMGl6mSIrwFI3JyFCOEqL8Yh5+Bk+NEsFYSHO4hnP190aBElXmM5MJ0hO17JXif94o0/G1X1CeZppwvHgozhjUApZNwIhKgjXLDUFYUpMV4gmSCGvTV8OU4C5/eZX0z9uu03bvL1udm6qOOjgGJ+AMuOAKdMAd6IIewCAHz+AVvFlP1ov1bn0sRmtWtdMEf2B9/gAeyZUO</latexit>

 1
<latexit sha1_base64="t53unsNOhFxHH53P1wJpdx+LvTI=">AAAB/HicbVDLSsNAFL3xWeur2qWbwSK4KokIuiy6cVnBPqAJYTKZtEMnmTAzEUKov+LGhSJu/RB3/o2TNgttPTDM4Zx7mTMnSDlT2ra/rbX1jc2t7dpOfXdv/+CwcXTcVyKThPaI4EIOA6woZwntaaY5HaaS4jjgdBBMb0t/8EilYiJ50HlKvRiPExYxgrWR/EbTDQQPVR6bq3C7ivnOzG+07LY9B1olTkVaUKHrN77cUJAspokmHCs1cuxUewWWmhFOZ3U3UzTFZIrHdGRogmOqvGIefobOjBKiSEhzEo3m6u+NAseqzGcmY6wnatkrxf+8Uaaja69gSZppmpDFQ1HGkRaobAKFTFKieW4IJpKZrIhMsMREm77qpgRn+curpH/Rduy2c3/Z6txUddTgBE7hHBy4gg7cQRd6QCCHZ3iFN+vJerHerY/F6JpV7TThD6zPHxu/lQw=</latexit><latexit sha1_base64="t53unsNOhFxHH53P1wJpdx+LvTI=">AAAB/HicbVDLSsNAFL3xWeur2qWbwSK4KokIuiy6cVnBPqAJYTKZtEMnmTAzEUKov+LGhSJu/RB3/o2TNgttPTDM4Zx7mTMnSDlT2ra/rbX1jc2t7dpOfXdv/+CwcXTcVyKThPaI4EIOA6woZwntaaY5HaaS4jjgdBBMb0t/8EilYiJ50HlKvRiPExYxgrWR/EbTDQQPVR6bq3C7ivnOzG+07LY9B1olTkVaUKHrN77cUJAspokmHCs1cuxUewWWmhFOZ3U3UzTFZIrHdGRogmOqvGIefobOjBKiSEhzEo3m6u+NAseqzGcmY6wnatkrxf+8Uaaja69gSZppmpDFQ1HGkRaobAKFTFKieW4IJpKZrIhMsMREm77qpgRn+curpH/Rduy2c3/Z6txUddTgBE7hHBy4gg7cQRd6QCCHZ3iFN+vJerHerY/F6JpV7TThD6zPHxu/lQw=</latexit><latexit sha1_base64="t53unsNOhFxHH53P1wJpdx+LvTI=">AAAB/HicbVDLSsNAFL3xWeur2qWbwSK4KokIuiy6cVnBPqAJYTKZtEMnmTAzEUKov+LGhSJu/RB3/o2TNgttPTDM4Zx7mTMnSDlT2ra/rbX1jc2t7dpOfXdv/+CwcXTcVyKThPaI4EIOA6woZwntaaY5HaaS4jjgdBBMb0t/8EilYiJ50HlKvRiPExYxgrWR/EbTDQQPVR6bq3C7ivnOzG+07LY9B1olTkVaUKHrN77cUJAspokmHCs1cuxUewWWmhFOZ3U3UzTFZIrHdGRogmOqvGIefobOjBKiSEhzEo3m6u+NAseqzGcmY6wnatkrxf+8Uaaja69gSZppmpDFQ1HGkRaobAKFTFKieW4IJpKZrIhMsMREm77qpgRn+curpH/Rduy2c3/Z6txUddTgBE7hHBy4gg7cQRd6QCCHZ3iFN+vJerHerY/F6JpV7TThD6zPHxu/lQw=</latexit><latexit sha1_base64="t53unsNOhFxHH53P1wJpdx+LvTI=">AAAB/HicbVDLSsNAFL3xWeur2qWbwSK4KokIuiy6cVnBPqAJYTKZtEMnmTAzEUKov+LGhSJu/RB3/o2TNgttPTDM4Zx7mTMnSDlT2ra/rbX1jc2t7dpOfXdv/+CwcXTcVyKThPaI4EIOA6woZwntaaY5HaaS4jjgdBBMb0t/8EilYiJ50HlKvRiPExYxgrWR/EbTDQQPVR6bq3C7ivnOzG+07LY9B1olTkVaUKHrN77cUJAspokmHCs1cuxUewWWmhFOZ3U3UzTFZIrHdGRogmOqvGIefobOjBKiSEhzEo3m6u+NAseqzGcmY6wnatkrxf+8Uaaja69gSZppmpDFQ1HGkRaobAKFTFKieW4IJpKZrIhMsMREm77qpgRn+curpH/Rduy2c3/Z6txUddTgBE7hHBy4gg7cQRd6QCCHZ3iFN+vJerHerY/F6JpV7TThD6zPHxu/lQw=</latexit>

 2
<latexit sha1_base64="REsqZWVZgUpaHcmRgmwoe3mI+8c=">AAAB/HicbVDNS8MwHE3n15xf1R29BIfgabRD0OPQi8cJ7gPWUtI03cLSpCSpUMr8V7x4UMSrf4g3/xvTrQfdfBDyeO/3Iy8vTBlV2nG+rdrG5tb2Tn23sbd/cHhkH58MlMgkJn0smJCjECnCKCd9TTUjo1QSlISMDMPZbekPH4lUVPAHnafET9CE05hipI0U2E0vFCxSeWKuwuspGnTmgd1y2s4CcJ24FWmBCr3A/vIigbOEcI0ZUmrsOqn2CyQ1xYzMG16mSIrwDE3I2FCOEqL8YhF+Ds+NEsFYSHO4hgv190aBElXmM5MJ0lO16pXif9440/G1X1CeZppwvHwozhjUApZNwIhKgjXLDUFYUpMV4imSCGvTV8OU4K5+eZ0MOm3Xabv3l63uTVVHHZyCM3ABXHAFuuAO9EAfYJCDZ/AK3qwn68V6tz6WozWr2mmCP7A+fwAdRJUN</latexit><latexit sha1_base64="REsqZWVZgUpaHcmRgmwoe3mI+8c=">AAAB/HicbVDNS8MwHE3n15xf1R29BIfgabRD0OPQi8cJ7gPWUtI03cLSpCSpUMr8V7x4UMSrf4g3/xvTrQfdfBDyeO/3Iy8vTBlV2nG+rdrG5tb2Tn23sbd/cHhkH58MlMgkJn0smJCjECnCKCd9TTUjo1QSlISMDMPZbekPH4lUVPAHnafET9CE05hipI0U2E0vFCxSeWKuwuspGnTmgd1y2s4CcJ24FWmBCr3A/vIigbOEcI0ZUmrsOqn2CyQ1xYzMG16mSIrwDE3I2FCOEqL8YhF+Ds+NEsFYSHO4hgv190aBElXmM5MJ0lO16pXif9440/G1X1CeZppwvHwozhjUApZNwIhKgjXLDUFYUpMV4imSCGvTV8OU4K5+eZ0MOm3Xabv3l63uTVVHHZyCM3ABXHAFuuAO9EAfYJCDZ/AK3qwn68V6tz6WozWr2mmCP7A+fwAdRJUN</latexit><latexit sha1_base64="REsqZWVZgUpaHcmRgmwoe3mI+8c=">AAAB/HicbVDNS8MwHE3n15xf1R29BIfgabRD0OPQi8cJ7gPWUtI03cLSpCSpUMr8V7x4UMSrf4g3/xvTrQfdfBDyeO/3Iy8vTBlV2nG+rdrG5tb2Tn23sbd/cHhkH58MlMgkJn0smJCjECnCKCd9TTUjo1QSlISMDMPZbekPH4lUVPAHnafET9CE05hipI0U2E0vFCxSeWKuwuspGnTmgd1y2s4CcJ24FWmBCr3A/vIigbOEcI0ZUmrsOqn2CyQ1xYzMG16mSIrwDE3I2FCOEqL8YhF+Ds+NEsFYSHO4hgv190aBElXmM5MJ0lO16pXif9440/G1X1CeZppwvHwozhjUApZNwIhKgjXLDUFYUpMV4imSCGvTV8OU4K5+eZ0MOm3Xabv3l63uTVVHHZyCM3ABXHAFuuAO9EAfYJCDZ/AK3qwn68V6tz6WozWr2mmCP7A+fwAdRJUN</latexit><latexit sha1_base64="REsqZWVZgUpaHcmRgmwoe3mI+8c=">AAAB/HicbVDNS8MwHE3n15xf1R29BIfgabRD0OPQi8cJ7gPWUtI03cLSpCSpUMr8V7x4UMSrf4g3/xvTrQfdfBDyeO/3Iy8vTBlV2nG+rdrG5tb2Tn23sbd/cHhkH58MlMgkJn0smJCjECnCKCd9TTUjo1QSlISMDMPZbekPH4lUVPAHnafET9CE05hipI0U2E0vFCxSeWKuwuspGnTmgd1y2s4CcJ24FWmBCr3A/vIigbOEcI0ZUmrsOqn2CyQ1xYzMG16mSIrwDE3I2FCOEqL8YhF+Ds+NEsFYSHO4hgv190aBElXmM5MJ0lO16pXif9440/G1X1CeZppwvHwozhjUApZNwIhKgjXLDUFYUpMV4imSCGvTV8OU4K5+eZ0MOm3Xabv3l63uTVVHHZyCM3ABXHAFuuAO9EAfYJCDZ/AK3qwn68V6tz6WozWr2mmCP7A+fwAdRJUN</latexit>

 r
<latexit sha1_base64="3PQAV5hJUf9C3bPLpMq/c9jtzhE=">AAAB/HicbVDLSsNAFL3xWeur2qWbwSK4KokIuiy6cVnBPqAJYTKZtEMnmTAzEUKov+LGhSJu/RB3/o2TNgttPTDM4Zx7mTMnSDlT2ra/rbX1jc2t7dpOfXdv/+CwcXTcVyKThPaI4EIOA6woZwntaaY5HaaS4jjgdBBMb0t/8EilYiJ50HlKvRiPExYxgrWR/EbTDQQPVR6bq3C7ivly5jdadtueA60SpyItqND1G19uKEgW00QTjpUaOXaqvQJLzQins7qbKZpiMsVjOjI0wTFVXjEPP0NnRglRJKQ5iUZz9fdGgWNV5jOTMdYTteyV4n/eKNPRtVewJM00TcjioSjjSAtUNoFCJinRPDcEE8lMVkQmWGKiTV91U4Kz/OVV0r9oO3bbub9sdW6qOmpwAqdwDg5cQQfuoAs9IJDDM7zCm/VkvVjv1sdidM2qdprwB9bnD36ElU0=</latexit><latexit sha1_base64="3PQAV5hJUf9C3bPLpMq/c9jtzhE=">AAAB/HicbVDLSsNAFL3xWeur2qWbwSK4KokIuiy6cVnBPqAJYTKZtEMnmTAzEUKov+LGhSJu/RB3/o2TNgttPTDM4Zx7mTMnSDlT2ra/rbX1jc2t7dpOfXdv/+CwcXTcVyKThPaI4EIOA6woZwntaaY5HaaS4jjgdBBMb0t/8EilYiJ50HlKvRiPExYxgrWR/EbTDQQPVR6bq3C7ivly5jdadtueA60SpyItqND1G19uKEgW00QTjpUaOXaqvQJLzQins7qbKZpiMsVjOjI0wTFVXjEPP0NnRglRJKQ5iUZz9fdGgWNV5jOTMdYTteyV4n/eKNPRtVewJM00TcjioSjjSAtUNoFCJinRPDcEE8lMVkQmWGKiTV91U4Kz/OVV0r9oO3bbub9sdW6qOmpwAqdwDg5cQQfuoAs9IJDDM7zCm/VkvVjv1sdidM2qdprwB9bnD36ElU0=</latexit><latexit sha1_base64="3PQAV5hJUf9C3bPLpMq/c9jtzhE=">AAAB/HicbVDLSsNAFL3xWeur2qWbwSK4KokIuiy6cVnBPqAJYTKZtEMnmTAzEUKov+LGhSJu/RB3/o2TNgttPTDM4Zx7mTMnSDlT2ra/rbX1jc2t7dpOfXdv/+CwcXTcVyKThPaI4EIOA6woZwntaaY5HaaS4jjgdBBMb0t/8EilYiJ50HlKvRiPExYxgrWR/EbTDQQPVR6bq3C7ivly5jdadtueA60SpyItqND1G19uKEgW00QTjpUaOXaqvQJLzQins7qbKZpiMsVjOjI0wTFVXjEPP0NnRglRJKQ5iUZz9fdGgWNV5jOTMdYTteyV4n/eKNPRtVewJM00TcjioSjjSAtUNoFCJinRPDcEE8lMVkQmWGKiTV91U4Kz/OVV0r9oO3bbub9sdW6qOmpwAqdwDg5cQQfuoAs9IJDDM7zCm/VkvVjv1sdidM2qdprwB9bnD36ElU0=</latexit><latexit sha1_base64="3PQAV5hJUf9C3bPLpMq/c9jtzhE=">AAAB/HicbVDLSsNAFL3xWeur2qWbwSK4KokIuiy6cVnBPqAJYTKZtEMnmTAzEUKov+LGhSJu/RB3/o2TNgttPTDM4Zx7mTMnSDlT2ra/rbX1jc2t7dpOfXdv/+CwcXTcVyKThPaI4EIOA6woZwntaaY5HaaS4jjgdBBMb0t/8EilYiJ50HlKvRiPExYxgrWR/EbTDQQPVR6bq3C7ivly5jdadtueA60SpyItqND1G19uKEgW00QTjpUaOXaqvQJLzQins7qbKZpiMsVjOjI0wTFVXjEPP0NnRglRJKQ5iUZz9fdGgWNV5jOTMdYTteyV4n/eKNPRtVewJM00TcjioSjjSAtUNoFCJinRPDcEE8lMVkQmWGKiTV91U4Kz/OVV0r9oO3bbub9sdW6qOmpwAqdwDg5cQQfuoAs9IJDDM7zCm/VkvVjv1sdidM2qdprwB9bnD36ElU0=</latexit>

…

Figure 3.1: Visualization of Laplacian eigen-functions used by Dewitt et al.

the following form:

Φx(k) = − 1

ηk
ky sin(kxx) cos(kyy)

Φy(k) =
1

ηk
kx cos(kxx) sin(kyy),

(3.2)

where kx, ky ∈ Z+. We use the normalization term ηk to denote the square root of −λk,

i.e., ηk =
√
k2
x + k2

y. A higher wavenumber k corresponds to a higher frequency of the

eigenfunctions. As shown in figure 3.2:

All of the weights wi are then concatenated into a vector w ∈ Rr. If the number of

eigenfunctions r is much less than N3, then a model reduction-like acceleration is realized,

as we only have to solve a system of size O(r2) instead of O(N3) (i.e., an N3×N3 matrix

with O(N3) sparsity). In practice, each Ψi is sampled onto the same grid as u, and a

large matrix U ∈ RN3×r is used to transform between the two representations. Thus,

Eqn. 3.1 can be written as u = Uw.

We will show the eigenfunctions in equation 4.26 are found by solving for the eigen-

functions of the vector Laplacian, ∇2Ψi = λiΨi, with Dirichlet conditions imposed along

the boundary Γ, i.e., ΨΓ = 0.
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kx = 2, ky = 2
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Figure 3.2: Visualization of Laplacian eigen-functions with different wavenumbers.

3.2 Laplacian Eigenfluids Dynamics

The velocity field formed by these eigenfunctions is intrinsically divergence-free, so

if the simulation is performed in this coordinate system, no pressure projection step is

needed. Similar to Stam [10, 51], damping becomes a point-wise exponential: wt+1
k = wtke

νλi∆t.

External forces f can be projected onto the eigenfunctions using UT f = f̂ .

C(g, h, i) = [∇× (φh ×Ψi)] · φg (3.3)

In order to formulate the advection operator, a vorticity basis function φ is constructed

for each eigenfunctions by computing φi = ∇×Ψi. A 3rd-order advection tensor C is then

computed with entries in equation 3.3. The contribution of the advection operator to the

time derivative can then be written,

ẇg =
r∑

h=1

r∑
i=1

whwiC(g, h, i), (3.4)

which can be expressed in tensor form as ẇ = wTCw. Following [14], the complete
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equations can now be integrated using forward Euler,

wt+1 =
(
wt + ∆t

(
wt
)T
Cwt + ∆tf̂

)
eν∆tΛ, (3.5)

where Λ denotes a diagonal matrix of all the vector Laplacian eigenvalues, and we

assume the mass associated with the force term is equal to one. Applying an alternate

explicit method such as RK4 or exponential integration also becomes straightforward.

Above time-stepping scheme is summarized in the following algorithm.

Algorithm 1 Time-stepping algorithm of Dewitt et al. [14]

1: procedure Time-stepping
2: e1 =

∑r
i=1 w2

i , // Store kinetic energy of velocity field
3: for k from 1 to r do
4: ẇk = wTC×3 w
5: end for
6: w += ẇ∆t, // Explicit Euler integration
7: e2 =

∑r
i=1 w2

i , // Calculate energy after time step

8: w ∗=
√
e1/e2, // Renormalize energy

9: for k from 1 to r do
10: ẇk ∗= exp(νλk∆t)
11: ẇk += f∆t
12: end for
13: end procedure

3.3 Discussion

The algorithm has shares the common bottleneck of the reduced order methods. Once

w has been stepped forward in time, the velocity field u can be reconstructed via u = Uw

and used to advect particles or densities. Both the storage and application of U presents

challenges. If a high-resolution velocity field is needed, e.g., N = 256, then the RN3×r

matrix quickly consumes all available memory as r is increased. In addition to these

memory issues, the computational cost of the Uw and UT f matrix-vector multiplies can
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dominate the overall running time. In [14], these multiplies can take up to 84% of the

running time, and similar stages in other algorithms [46] take up to 99%.

Alternatively, [14] observe that if analytic eigenfunctions are available, then storage

issues can be eliminated entirely by recomputing the entries of U on the fly. Our own

measurements show that this increases the already considerable expense of the matrix-

vector multiply by an additional 5× to 7×, and makes the overall algorithm prohibitively

slow.

It’s unclear whether the advection tensor computed in equation 3.3 preserves energy.

However, Dewitt et al. used an energy renormalization step as shown in line 7 of algorithm

1. These renormalization steps reweighs all the basis coefficients when the energy is

not preserved in the advection step, therefore may lead to non-physical behaviors. I’ll

analysis the properties of the advection tensor and how it connects to energy behavior in

advection, and the stability of the algorithm when the renormalization step is dropped.
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Chapter 4

Scalable Laplacian Eigenfluid

Note: A significant portion of this chapter has previously appeared as [1].

4.1 Fast and General Analytical Basis Functions

In this section, I will first show how to use DCT and DST to improve both the

memory complexity and runtime performance of the Eigenfluids algorithm. Specifically,

the memory complexity will drop from O(rN3) to O(r), effectively removing the basis

storage problem. The running time will shift from O(rN3) to O(N3 logN), which will

yield an order of magnitude speedup in practice.

With these improvements in place, I will present a set of analytical eigenfunctions

that support any combination of Neumann and Dirichlet velocity conditions along the

boundaries of the simulation. These functions will be chosen so that the accelerations

from DCT and DST can be applied with only minor modifications.
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4.1.1 Fast Projection and Reconstruction

The DCT can be used to perform fast, memory-efficient projections and reconstruc-

tions. For simplicity, we will show this in 2D, but generalization to 3D is straightforward.

[14] proposed eigenfunctions defined over Ω ∈ [0, π]2 that satisfy Dirichlet boundary con-

ditions along its walls,

Φx(k) = − 1

ηk
ky sin(kxx) cos(kyy)

Φy(k) =
1

ηk
kx cos(kxx) sin(kyy),

(4.1)

It is straightforward to project a force field f onto these functions using a mix of sine and

cosine transforms. For example, the projected x and y components of f correspond to:

〈fx,Φx(k)〉 = − 1

ηk
ky

∫∫
Ω

fx sin(kxx) cos(kyy) dx dy

〈fy,Φy(k)〉 =
1

ηk
kx

∫∫
Ω

fy cos(kxx) sin(kyy) dx dy.

(4.2)

The first projection can be computed by performing a DST in the x direction and a

DCT in the y direction, and the second by applying DCT in x and DST in y. The result

is a delta function centered at k which is scaled by the projected quantity of interest:

〈fx,Φx(k)〉 = − 1

ηk
ky f̂x(k)

〈fy,Φy(k)〉 =
1

ηk
kxf̂y(k).

(4.3)

Only the f̂x(k) and f̂y(k) coefficients need to be stored, which takes O(r) memory;

the basis matrix is implicitly encoded by the DCT/DST. Velocity reconstruction follows

analogously: for example, the elements of w can be restated as ûx(k) and mapped into

2D frequency space according to their wave index. An IDST in the x direction followed
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by an IDCT in y then recovers ux. In 3D, an additional trigonometric function appears

in the product, which requires an additional DST or DCT to be performed in a third

direction, but the approach is otherwise identical.

The fact that these bases take on a compact structure under these transforms was

previously observed by [48], but they did not use it to accelerate an Eigenfluids simulation.

The transformation also has fundamental connections to the spectral methods of Stam

[10, 51], [52] and [53], but they all used the transform to accelerate pressure projection,

not velocity reconstruction.

4.1.2 Enabling Neumann Boundaries

The above transform only applies to analytic eigenfunctions corresponding to Dirichlet

boundary conditions. We now present eigenfunctions that correspond to any number of

walls being set to a Neumann condition, and show that the DCT-based accelerations can

be applied to these functions as well. For simplicity, we will again present results in 2D,

but the extension to 3D is straightforward. For completeness, the eigenfunctions for all

the 3D cases are listed in the supplementary material.

Laplacian eigenfunctions can more generally be viewed as solutions to the homoge-

neous Helmholtz equation: ∇2g(x, y) = λkg(x, y). In 2D, the function takes the form,

g(x, y) =
(
a cos(kxx) + b sin(kxx)

)(
c cos(kyy) + d sin(kyy)

)
, (4.4)

where (a, b, c, d) are undetermined constants. Each velocity eigenfunction then becomes

an instance of this solution:

Φx(k) =
(
ax cos(kxx) + bx sin(kxx)

)(
cx cos(kyy) + dx sin(kyy)

)
Φy(k) =

(
ay cos(kxx) + by sin(kxx)

)(
cy cos(kyy) + dy sin(kyy)

)
.
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The four-walled Dirichlet solution is retrieved for the special case where ax = dx =

by = cy = 0, bxcx = −ky
ηk

, and aydy = kx
ηk

. We can solve for other solutions by coupling

the two equations via the divergence-free constraint ∇ ·Ψ = 0, which expands to:

kxbxcx + kyaydy = 0 kxbxdx − kyaycy = 0 (4.5)

−kxaxcx + kybydy = 0 kxaxdx + kybycy = 0. (4.6)

Additionally, we observe that the following conditions will minimize the number of DSTs

and DCTs that are needed:

axbx = 0 cydy = 0 (4.7)

ayby = 0 cxdx = 0. (4.8)

Sufficient conditions have now been specified to solve for Neumann eigenfunctions.

Two Neumann Walls:

We first illustrate the case of two Neumann walls in the x direction and two Dirichlet

walls along y:

∂Φx

∂x

∣∣∣
x=0,π

= 0 Φy

∣∣
y=0,π

= 0. (4.9)

The values bx = cy = 0 select the trigonometric functions that satisfy these boundaries,

as well as Eqn. 4.7. The solution now becomes,

Φx(k) = ax cos(kxx)
(
cx cos(kyy) + dx sin(kyy)

)
Φy(k) = dy sin(kyy)

(
ay cos(kxx) + by sin(kxx)

)
,

(4.10)
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and two of the constraints from Eqn. 4.6 become:

kxaxdx = 0 kyaydy = 0.

Setting dx = ay = 0 avoids a trivial solution and yields:

Φx(k) = axcx cos(kxx) cos(kyy)

Φy(k) = bydy sin(kyy) sin(kxx).

(4.11)

The last constraint, −kxaxcx+kybydy = 0, can be satisfied using axcx = ky
ηk

and bydy = kx
ηk

,

where the 1
ηk

is added as a normalization. The final eigenfunctions are then:

Φx(k) =
1

ηk
ky cos(kxx) cos(kyy)

Φy(k) =
1

ηk
kx sin(kxx) sin(kyy).

(4.12)

These eigenfunctions are clearly amenable to DCT and DST acceleration, as they are all

products of trigonometric functions. They are visualized in Fig. 4.1. The eigenfunctions

for Neumann walls along the y direction, as well as the case where all four walls are

Neumann, can be obtained using a similar process.

One Neumann Wall:

If Neumann conditions are only needed along one wall, Dirichlet conditions can be

restored on the opposing wall. For example, if the x boundary conditions from Eqn. 4.9

are instead set to,

∂Φx

∂x

∣∣∣
x=π

= 0 Φx

∣∣
x=0

= 0, (4.13)
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(a) Dirichlet boundaries along all walls

(b) Neumann boundaries on left and right walls, Dirichlet along top and bottom

Figure 4.1: Visualization of the first three Dirichlet and Neumann bases in 2D using
line integral convolution. Mass cannot flow through the walls in the Dirichlet case,
but it can leave the domain in the Neumann case.

then the same eigenfunctions from Eqn. 4.26 can be used. However, a half-period fre-

quency shift

is added so that kx is a non-negative half-integer in lieu of an integer, i.e. kx ∈(
Z+ − 1

2

)
. This is illustrated by the function sin((k− 1

2
)x), where k is a positive integer.

The function is zero at x = 0, which satisfies the Dirichlet condition, and its derivative,

cos((k − 1
2
)x), is zero at x = π, which satisfies the Neumann condition.
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1 2 3 4 5

6 7 8 9 10

Figure 4.2: Visualization of all 10 possible boundary conditions, with associated indices.

3D Neumann Basis:

For a box domain with six boundary walls, there are 10 possible combinations of

Dirichlet and Neumann boundary conditions (up to symmetry). Figure 4.2 is a visu-

alization of all 10 combinations. We list all the basis functions we derived for these

combinations.

1. Six Dirichlet walls:
Φx = a(sin(kxx) cos(kyy) cos(kzz))

Φy = b(cos(kxx) sin(kyy) cos(kzz))

Φz = c(cos(kxx) cos(kyy) sin(kzz))

(4.14)

kx, ky, kz ∈ Z+ ∪ 0. The constants a, b, c need to satisfy the divergence free condition:

akx + bky + ckz = 0.
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2. One Neumann wall, Φx at x = π:


Φx = a(sin(kxx) cos(kyy) cos(kzz))

Φy = b(cos(kxx) sin(kyy) cos(kzz))

Φz = c(cos(kxx) cos(kyy) sin(kzz))

(4.15)

kx ∈
(
Z+ − 1

2

)
∪ 0, ky, kz ∈ Z+ ∪ 0. Divergence free condition: akx + bky + ckz = 0.

3. Two Neumann walls, Φx at x = 0, x = π:


Φx = a(cos(kxx) cos(kyy) cos(kzz))

Φy = b(sin(kxx) sin(kyy) cos(kzz))

Φz = c(sin(kxx) cos(kyy) sin(kzz))

(4.16)

kx, ky, kz ∈ Z+ ∪ 0. Divergence free condition: −akx + bky + ckz = 0.

4. Two Neumann walls for Φx at x = π and Φy at y = π:


Φx = a(sin(kxx) cos(kyy) cos(kzz))

Φy = b(cos(kxx) sin(kyy) cos(kzz))

Φz = c(cos(kxx) cos(kyy) sin(kzz))

(4.17)

kx, ky ∈
(
Z+ − 1

2

)
∪ 0, kz ∈ Z+ ∪ 0. Divergence free condition: akx + bky + ckz = 0.

5. Three Neumann walls, Φx at x = π, Φy at y = π and Φz at z = π:


Φx = a(sin(kxx) cos(kyy) cos(kzz))

Φy = b(cos(kxx) sin(kyy) cos(kzz))

Φz = c(cos(kxx) cos(kyy) sin(kzz))

(4.18)
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kx, ky, kz ∈
(
Z+ − 1

2

)
∪ 0. Divergence free condition: akx + bky + ckz = 0.

6. Three Neumann walls, Φx at x = π, x = 0 and Φy at y = π:


Φx = a(cos(kxx) cos(kyy) cos(kzz))

Φy = b(sin(kxx) sin(kyy) cos(kzz))

Φz = c(sin(kxx) cos(kyy) sin(kzz))

(4.19)

ky ∈
(
Z+ − 1

2

)
∪ 0, kx, kz ∈ Z+ ∪ 0, Divergence free condition: −akx + bky + ckz = 0.

7. Four Neumann walls, Φx at x = 0, x = π and Φz at z = 0, z = π:


Φx = a(cos(kxx) cos(kyy) sin(kzz))

Φy = b(sin(kxx) sin(kyy) sin(kzz))

Φz = c(sin(kxx) cos(kyy) cos(kzz))

(4.20)

kx, ky, kz ∈ Z+ ∪ 0. Divergence free condition: −akx + bky − ckz = 0.

8. Four Neumann walls, Φx at x = π, Φy at y = π and Φz at z = 0, z = π.


Φx = a(sin(kxx) cos(kyy) sin(kzz))

Φy = b(cos(kxx) sin(kyy) sin(kzz))

Φz = c(cos(kxx) cos(kyy) cos(kzz))

(4.21)

kx, ky ∈
(
Z+ − 1

2

)
∪ 0, kz ∈ Z+ ∪ 0. Divergence free condition: akx + bky − ckz = 0
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9. Five Neumann walls, Φx at x = π, Φy at y = 0, y = π and Φz at z = 0, z = π:


Φx = a(sin(kxx) sin(kyy) sin(kzz))

Φy = b(cos(kxx) cos(kyy) sin(kzz))

Φz = c(cos(kxx) sin(kyy) cos(kzz))

(4.22)

kx ∈
(
Z+ − 1

2

)
∪ 0, ky, kz ∈ Z+ ∪ 0. Divergence free condition: akx − bky − ckz = 0

10. Six Neumann walls for all three axes.
Φx = a(cos(kxx) sin(kyy) sin(kzz))

Φy = b(sin(kxx) cos(kyy) sin(kzz))

Φz = c(sin(kxx) sin(kyy) cos(kzz))

(4.23)

kx, ky, kz ∈ Z+ ∪ 0. Divergence free condition: akx + bky + ckz = 0.

All the above basis functions need to be normalized, which places another constraint

on the three constants. Assuming we are given a fixed wave number kx, ky, kz, we need

to solve for a, b and c. There are currently only two constraints, the normalization and

divergence-free constraint. Another constraint needs to be added in order to determine

a, b and c. Functions of the same form as ours are used to describe the electric field

in a box cavity resonator, see e.g. [78]. In this case, a “direction of propagation” is

chosen, and then the functions to describe the electric field are derived. For example,

if the basis in equation 4.23 and the x axis is chosen as the “direction of propagation”,

then the constants become : a = −(k2
y + k2

z), b = kxky, c = kxkz. The constants are

then normalized. We found that choosing the constants this way maximizes a under

both the divergence-free and normalization constraint. Thus, the velocity along the

direction x is maximized. One can also derive the same formula by solving the constrained
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maximization problem where a is maximized under the divergence-free and normalization

constraints.

When we determine the constants a, b, c, we take the scene into consideration. For

example, for a scene where the fluid flows predominantly along y direction (e.g. due to

buoyancy), we choose the constant by maximizing the velocity along the y direction. If

there is no prior knowledge about the direction of the fluid, we then choose the constant

by maximize a, b and c individually, and then use the average value for each constant.

4.1.3 Computational Considerations

The velocity reconstruction method from §4.1.1 is already quite fast, but since r � N3,

it is also possible to perform a pruned DCT. In general, when w is transformed into the

3D frequency representation for ûx(k), the non-zero entries are localized to a cube with

length 3
√
r on each side, with one corner coincident with the zero-frequency, DC compo-

nent. In lieu of performing three transforms of size N3 logN , we can use the knowledge

that most of the coefficients are zero to skip many of the 1D transforms. The trans-

forms along the first two dimensions can be pruned to 3
√
r

2
N logN and 3

√
rN2 logN , and

only the last dimension requires the full N3 logN . In practice, we found that this easy

modification yields a 30% acceleration. A 2D example is shown in figure 4.3.

A slight modification is needed when there is a single Neumann boundary along a

direction, because most FFT libraries do not support half-integer wave numbers. In this

case, we double the resolution of the DST grid in the respective direction, and only keep

the odd wave numbered coefficients. This extra factor of two is very modest compared

to the O(rN3) memory complexity of the original Eigenfluids algorithm, so we found it

acceptable.
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Figure 4.3: Pruned DCT in 2D coordinates. Left: Instead of doing N IDSTs along
the first direction, we can prune it down to

√
r IDSTs. Right: A full N IDCTs are

then performed along the second direction.

4.2 Stable Eigenfluid Dynamics

With the basis functions in place, we will now describe the construction of the 3rd-

order advection tensor C and the time integration scheme. In particular, we will show that

following the method of [14] results in an unstable simulation, and that the variational

form from [15] must be used instead. We will also comment on the sparsity of this tensor,

and show how to perform the time integration using a symmetric solver.

4.2.1 Advection Tensor

The method of [14] computes each entry of the advection tensor as C(g, h, i) = [∇×

(φh×Ψi)] · φg, where Ψi is a velocity basis, and φ∗ are vorticity bases. This formulation

is effective for Dirichlet bases because the projection onto the vorticity basis is sparse,

i.e., the cross product only produces a non-zero projection onto a small number of φ basis

functions.

We have found that this property does not always hold for Neumann boundaries.

For example, a single Neumann wall adds basis functions containing a half-period
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frequency shift, and the φg function can contain this shift while the cross product [∇×

(φh ×Ψi)] does not. The phase mismatch will cause [∇ × (φh ×Ψi)] to have non-zero

projections onto an infinite series of φg.

The error introduced by truncating the series will manifest as a blowup in energy

that occurs regardless of the timestep size. Energy renormalization [14] can be used to

coerce the simulation back to stability, but the resulting motion is clearly non-physical.

In order to avoid blowups, the tensor must be have an energy conserving anti-

symmetry, C(g, h, i) = −C(h, g, i). We found that even a simple post-process that forced

the advection tensor to have this property significantly stabilized the simulation. How-

ever, [15] showed a more principled way of enforcing this condition:

C(g, h, i) =

∫
Ω

(∇×Ψi) · (Ψg ×Ψh)dΩ. (4.24)

By preferring to use this form, the anti-symmetry of the tensor is preserved by construc-

tion, energy blowups are avoided, and no ad-hoc post-processing of C is needed. Details

on computing this tensor in 2D are given in section 4.2.2.

The advection tensor in equation 4.24 preserves energy. To prove that, the energy of

the fluid can be written as Et = 1
2
ΩTΩ. The derivative of the energy is then:

Ėt = wT ẇ = wTCw =
1

2
wT (C + CT )w = 0. (4.25)

where C = C ×3 w. Matrix C is skew-symmetric due to equation 4.24. On the other

hand, if energy derivative is zero for all w, we know that matrix C is skew-symmetric,

which in turn requires the 3D tensor must be anti-symmetric. Therefore the sufficient

and necessary for the advection to preserve energy is that the advection tensor should

be anti-symmetric.
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4.2.2 Computing the advection tensor

2D Dirichlet Basis

First we will show how to compute the advection tensor for 2D Dirichlet basis. Assume

the simulation domain is defined as Ω = [0, π]2. Each entry in advection tensor C has

three associated wave indices, we will denote them as k = (kx, ky), l = (lx, ly), and

m = (mx,my). Basis functions with corresponding wave indices will be indexed with

unbolded letters, i.e. Ψk = Ψ(k),Ψl = Ψ(l), Ψm = Ψ(m). The normalized 2D Dirichlet

basis functions (Ψ(k) = {Φx(k),Φy(k)}) are:

Φx(k) = − 2

π

ky
ηk

sin(kxx) cos(kyy)

Φy(k) =
2

π

kx
ηk

cos(kxx) sin(kyy),

(4.26)

where ηk =
√
k2
x + k2

y, and Ψ(l) and Ψ(m) have the same form as above but with k

replaced with l and m.

We can compute ∇×Ψm as:

∇×Ψm = − 2

π
ηm sin(mxx) sin(myy). (4.27)
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After computing the term Ψk ×Ψl, we have

C(k, l,m) =
2ηm
π3ηlηk

[

lxky

∫ π

0

sin(mxx)(sin((kx + lx)x) + sin((kx − lx)x))dx∫ π

0

sin(myy)(sin((ky + ly)y)− sin((ky − ly)y))dy−

lykx

∫ π

0

sin(mxx)(sin((kx + lx)x)− sin((kx − lx)x))dx∫ π

0

sin(myy)(sin((ky + ly)y) + sin((ky − ly)y))dy],

(4.28)

where the integral

∫ π

0

sin(mxx)(sin((kx + lx)x)dx =

1

2

∫ π

0

cos((mx − kx − lx)x)− cos((mx + kx + lx)x)dx

(4.29)

is only non-zero when mx = kx + lx. Similarly,∫ π
0

sin(mxx)(sin((kx − lx)x)dx is non-zero only when mx = kx − lx or mx = lx − kx.

The same constraints can be derived for my, ky and ly. These integrals will determine

the density of the advection tensor. Finally, as an example, when mx = kx + lx and

my = ky + ly, the tensor entry becomes C(k, l,m) = ηm(lxky−lykx)

2πηlηk
.
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2D Neumann Basis

Next we show how to compute the advection tensor for a 2D Neumann basis. For the

basis with two Neumann walls for Φx at x = 0 and x = π, the normalized basis is:

Φx(k) =
2

π

ky
ηk

cos(kxx) cos(kyy)

Φy(k) =
2

π

kx
ηk

sin(kxx) sin(kyy).

(4.30)

We can compute ∇×Ψm as

∇×Ψm =
2

π
ηm cos(mxx) sin(myy). (4.31)

Similar as the Dirichlet case, we can then compute tensor entries as:

C(k, l,m) =
2ηm
π3ηlηk

[

− lykx
∫ π

0

cos(mxx)(sin((kx + lx)x) + sin((kx − lx)x))dx∫ π

0

sin(myy)(sin((ky + ly)y) + sin((ky − ly)y))dy+

lxky

∫ π

0

cos(mxx)(sin((kx + lx)x)− sin((kx − lx)x))dx∫ π

0

sin(myy)(sin((ky + ly)y)− sin((ky − ly)y))dy].

(4.32)

The major difference between equation 4.32 and equation 4.28 is that the integrand along

x direction in equation 4.32 is the product of cosine and sine functions. But the integrand

along the y direction is still the product of sine and sine functions. Since the integral of

sine functions over [0, π] is non-zero for odd wavenumbers, the only necessary condition

for equation 4.32 to be non-zero is my = ky + ly,my = ky − ly or my = ly − ky. Thus, the

Neumann basis tensor will be denser than the Dirichlet basis tensor.
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Tensor Sparsity:

Each entry in C has three associated wave indices, which we will denote k = (kx, ky, kz),

l = (lx, ly, lz), and

m = (mx,my,mz), and can be expanded into sine and cosine integrals. As shown in §2.1

of supplementary material, with Dirichlet boundaries, the following conditions determine

the sparsity:

mx = lx + kx mx = lx − kx mx = kx − lx (4.33)

my = ly + ky my = ly − ky my = ky − ly (4.34)

mz = lz + kz mz = lz − kz mz = kz − lz. (4.35)

In order for an entry in C to be non-zero, one relation in each row of Eqns. 4.33-4.35

must be satisfied. A single, fixed assignment of l and k can thus only generate 27 values

for m that satisfy these relations. Since there are r2 possible assignments for l and k,

there are 27r2 possible non-zero entries, or O(r2) sparsity in C.

When the boundary conditions in one direction is switched from Dirichlet to Neu-

mann, one of the constraint rows in Eqns. 4.33-4.35 is dropped. For each fixed l and k,

the number of possible valid combinations relaxes from 33 = 27 to 32 3
√
r = 9 3

√
r. Over all

r2 combinations of l and k, this then yields (9 3
√
r)r2, or O

(
r2+1/3

)
sparsity in C. This

trend continues as the number of Neumann boundaries is increased. For four Neumann

walls, the sparsity becomes O
(
r2+2/3

)
, and when all six walls, the tensor becomes a

dense O(r3). For odd numbered walls, one Neumann boundary gives O
(
r2+1/3

)
, three

gives O
(
r2+2/3

)
, and five yields O (r3).

The density of the Neumann advection tensor is initially counter-intuitive from a

physical perspective, because it suggests that two low-frequency modes can combine to
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interact with an arbitrary high-frequency mode. This is in contrast to Fourier or Dirichlet

modes, where two low-frequency modes can only scatter into a mode that is at most

double the pair’s maximum wavenumber. While longer-range frequency interactions are

now possible, the advection coefficients are very nearly zero. The ability of low frequencies

to activate arbitrary high frequencies is in fact severely limited.

The sparsity can vary from quadratic to cubic, so storing C can become a scaling

limitation on the Eigenfluids algorithm. Compression using sparse schemes [79, 80] is

a direction for future work. However we will later show in §4.4 that the simplest lossy

scheme, i.e., discarding small entries, can reduce the size of the tensor by an order of

magnitude while still maintaining the overall character of the flow. This scheme will be

particularly effective in the Neumann case, because as previously described, most of its

O(r3) entries are near-zero.

Reweighting the Tensor:

One advantage of the Eigenfluids formulation is that energy cascades between different

frequencies are directly encoded by the advection tensor. Therefore, forward scattering,

which is usually characterized statistically over long time scales [81], can be observed

with much higher temporal and spectral resolution, and even directly manipulated.

By reweighting the advection tensor, we observe that we can achieve a variety of

stable fluid dynamics that are not possible using any other method.

We state this modified advection tensor as:

C(g, h, i) = bgbhbi · C(g, h, i). (4.36)

We use a simple linear function bk = (1 + c|k|2) as our reweighting strategy, but many

other choices are possible. Here, c is a tuning parameter that adjusts the speed of the
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energy cascade (c = 0 yields the original tensor). Intuitively, weights larger than one

amplify scattering to specific frequencies, while weights smaller than one slow the rate of

energy transfer. Since the weighted tensor C is still antisymmetric, C(g, h, i) = −C(h, g, i),

the new tensor will preserve energy. Different scattering behaviors will be shown in §4.4.

4.2.3 Implicit Time Integration

With our scalability improvements, we are able to perform simulations with much

larger rank than previously possible. As a consequence, the stability of explicit timestep-

ping becomes a concern. Deriving a CFL-like condition for the maximum stable ∆t is

not straightforward, as the usual “speed of sound” argument [82] is difficult to apply in

the spectral domain, and the non-linear advection tensor interferes with spectral eigen-

analysis approaches, which are inherently linear [18]. In lieu of a direct expression, we

have found empirically that the maximum stable ∆t decreases quadratically with the

basis rank. For r = 1000 this is already ∆t ≈ 10−6, so an implicit treatment that allows

for larger ∆t is clearly needed.

We are again able to use machinery from [15] in the form of their implicit trapezoidal

update,

wt+1 =
∆t

2
Ct+1wt+1 +

∆t

2
Ctwt + wt + f̂ , (4.37)

where Ct+1 = C×3 wt+1 and Ct = C×3 wt denote contractions along the third mode of

C. For brevity, we have written the equation in its inviscid form here, but an additional

eν∆tΛ term should be multiplied on the right-hand side if viscosity is desired. While a

full Newton solve could be performed to reconcile the Ct+1 and wt+1 terms, we show in

Fig. 4.4 that a semi-implicit solve (i.e., a single Newton iteration in the style of [83]) was

sufficient to maintain stability and good energy behavior.
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Figure 4.4: Energy of the simulation in Fig. 4.6 over time, for multiple viscosities. For
the zero-viscosity regime, energy is stably preserved even when only a single Newton
iteration is used.

Symmetric Solvers:

One drawback of implicit integration is that the anti-symmetric C imposes anti-

symmetry on its contraction Ct+1, and necessitates the use of a non-symmetric solver

such as BiCGSTAB. While these solvers can be effective, it is usually preferable to use a

symmetric solver such as PCG whose convergence is both faster and better understood.

A classic method for applying a symmetric solver to an asymmetric matrix A is to

apply conjugate gradient to its normal form, ATA, i.e., CGNR [84]. The main caveat of

CGNR is that the condition number of A is squared, which can make a badly-conditioned

matrix even worse. However, we have found that Eqn. 4.37 is sufficiently well-conditioned
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that this caveat does not apply. We can rewrite the system as:

(
I− ∆t

2
Ct+1

)
wt+1 =

∆t

2
Ctwt + wt + f̂ . (4.38)

Dropping the t + 1 superscript from Ct+1 for brevity, forming the normal matrix, and

applying the identity C = −CT yields:

(
I− ∆t

2
C

)T (
I− ∆t

2
C

)
= I +

∆t2

4
CTC. (4.39)

The matrix C and its condition number are squared, but since ∆t � 1, the squaring

is offset by the ∆t2

4
term. The resulting normal matrix is very close to identity, and

adding the viscosity term only pushes it closer. When r = 8000, frame-rate timesteps of

∆t ≈ 1/30 require 3 to 4 CGNR iterations to converge to a tolerance of 10−10, and even

large timesteps of ∆t = 0.2 only need 6 iterations. The convergence is sufficiently fast

that preconditioning is unnecessary.

4.3 Comparison with Spectral Methods

Since our method is closely related to spectral methods [57], we discuss and compare

the approaches here. Specifically, we compare our algorithm to the collocation methods

from Dedalus [58], a recent spectral library that has been successfully used to advance

understanding in both general [85] and computational [86] physics.

Spectral collocation methods usually use Fourier bases to represent periodic bound-

aries, and either sine functions or Chebyshev polynomials to implement non-periodic

Dirichlet boundaries. Thus, there are obvious similarities to our use of sine and cosine

functions.

When Neumann conditions are desired, Chebyshev polynomials are employed due to
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their non-periodicity.

However, attempts to use trigonometric functions to perform an expansion of the

Neumann boundary conditions suffer from the same problems with infinite non-zero pro-

jections we encountered with the method of [14] in §4.2.1. If Neumann conditions are

desired in multiple directions, Chebyshev polynomials must be used in multiple direc-

tions as well. However, this introduces additional issues, because the derivatives of the

polynomials become non-trivially coupled along multiple modes (e.g., Dedalus does not

even allow the use of Chebyshev along more than one direction). In our method, using

multiple Neumann conditions only requires a tweak to the trigonometric transform and

the use of a different advection tensor.

Furthermore, we can show that when Chebyshev polynomials are used, the resulting

system will not be energy-preserving. Spectral collocation methods make extensive use

of differentiation matrices [20], as they are employed to obtain spatial derivatives at

specific collocation points [18]. While these differentiation matrices are never constructed

explicitly, we can use them to determine the conservation properties of the underlying

scheme. As shown in [20], in order for the semi-discrete Navier-Stokes equations to be

energy-preserving, the differentiation matrix must be skew-symmetric. However, as we

show in the supplemental material, the differentiation matrix that arises from Chebyshev

polynomials does not fit this form.

In practice, this means that a viscosity term must be introduced into the spectral

simulation or it will become unstable. Qualitatively, it also means that our Eigenfluid

method will be able to capture lower viscosity flows. We verify this hypothesis by com-

paring our method to a 2D Dedalus simulation where both simulations use 60 basis

functions along each axis (Fig. 4.5). The viscosity of the spectral simulation was set to

ν = 10−4; further decrease destabilized the simulation. Our Eigenfluids simulation with

ν = 2 × 10−5 clearly captures non-trivial vortical structures which are not resolved in
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spectral simulation with the same resolution. A higher resolution spectral result with a

more converged version of the same feature is also shown in Fig. 4.5. Overall, compared

to spectral collocation methods, our method handles various boundary conditions more

easily and captures a wider variety of low viscosity flows.

Figure 4.5: Left: A spectral simulation using 60 × 60 basis functions in Dedalus.
The top and bottom walls were set to Dirichlet velocity boundaries, while the left
and right were set to Neumann. We used the smallest possible viscosity that did
not destabilize the simulation. Middle: An equivalent 60 × 60 simulation using our
method. We capture small-scale vortical features that the spectral simulation cannot.
Right: A reference spectral simulation using 240 × 240 basis functions in Dedalus,
with ν = 2× 10−5.

4.3.1 Energy Conservation of Chebyshev Collocation Methods

In spectral collocation (pseudospectral) methods, differentiation matrices are used to

compute the derivative of a given function on a grid. For example, given a discretized

function v(xi), i = 0, 1, ..., N − 1, the discretized derivative of v can be written as

v′ = Dv, where D is an N × N matrix, and v′,v ∈ RN . Generally, D is a dense

matrix. However, the matrix is usually never constructed explicitly, and a transformation

method is used to compute the derivative v′ given v. For Fourier series and Chebyshev

polynomials, the derivative can be evaluated in N log(N) time complexity using the FFT.
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When the N-S equation is discretized in space, it is desirable for the spatially-

discretized, time-continuous equation to conserve some important properties of the N-S

equations. It is advised in [87] that the convection form of N-S equation will lead to in-

stabilities at various Reynolds numbers, bcause the discretized convection form may not

conserve momentum and energy. Thus, the rotation form of the N-S equations should be

used instead. We can show that Chebyshev collocation does not conserve energy under

rotation form when the viscosity is zero. In contrast to the Chebyshev differential ma-

trix, the Fourier differential matrix is skew-symmetric, thus its semi-discretized equation

conserves energy [20]. However, the Fourier basis assumes periodic boundary conditions.

The rotation form of the N-S equations is:

∂u

∂t
+ w × u = −∇q + ν∇2u

∇ · u = 0

(4.40)

where w = ∇×u and q = p+ 0.5|u|2. This form is equivalent to the common convection

form of the N-S equations.

First, let us denote spatially-discretized velocity as uN . Define the discrete gradient

operator GNq
N =

[
Dx
Nq

N Dy
Nq

N Dz
Nq

N

]T
where D is the Chebyshev differentiation

matrix with size N along desired direction. And define the discrete divergence operator

DNuN = Dx
NuNx + Dy

NuNy + Dz
NuNz . Omitting the viscosity, the space discretized inviscid

N-S equation can be written as:

duN

dt
+ wN × uN + GNq

N = 0

DNuN = 0

(4.41)

Taking the first equation of above and performing a dot product on both sides using uN
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yields:

d|u|2
dt

+ (wN × uN ,uN) + (GNq
N ,uN) = 0. (4.42)

The product (wN × uN ,uN) is zero since the cross product is orthogonal to uN . Thus,

in order for energy to be conserved, (GNq
N ,uN) must be equal to zero. In addition to

this, since DNuN = 0, we can construct the equation (qN ,DNuN) = 0. Thus, assuming

that energy is conserved, the below two equations must hold:

(GNq
N ,uN) = (Dx

Nq
N ,uNx ) + (Dy

Nq
N ,uNy ) + (Dz

Nq
N ,uNz ) = 0

(qN ,DNuN) = (qN ,Dx
NuNx ) + (qN ,Dy

NuNy ) + (qN ,Dz
NuNz ) = 0

(4.43)

Writing the above two equations as matrix products yields:

(uNx )TDx
Nq

N + (uNy )TDy
Nq

N + (uNz )TDz
Nq

N = 0

(qN)TDx
NuNx + (qN)TDy

NuNy + (qN)TDz
NuNz = 0.

(4.44)

Taking the transpose of the first equation, and then adding the second one, we get:

(qN)T (Dx
N + (Dx

N)T )uNx +(qN)T (Dy
N + (Dy

N)T )uNy +

(qN)T (Dz
N + (Dz

N)T )uNz = 0.

(4.45)

For arbitrary u and q, the above equation only holds when DN + (DN)T = 0 (skew-

symmetric), or when DN = (DN)T (symmetric). As shown in page 53 of [18], the
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Chebyshev differentiation matrix is:

DN =



2(N−1)2+1
6

. . . 2 (−1)j

1−xj . . . 1
2
(−1)(N−1)

...
. . . (−1)i+j

xi−xj
...

−1
2

(−1)i

1−xi
−xj

2(1−x2j )
1
2

(−1)N−1+i

1+xi

... (−1)i+j

xi−xj
. . .

...

−1
2
(−1)(N−1) . . . −2 (−1)N−1+j

1+xj
. . . −2(N−1)2+1

6


(4.46)

where i, j is integer index from 0 to N−1, and xj = cos( jπ
N−1

). It is clear that this Cheby-

shev differentiation matrix is neither skew-symmetric, nor symmetric. So the equation

4.45 does not hold. Thus, (GNq
N ,uN) = 0 does not hold since DNuN = 0, and Chebyshev

collocation methods are not energy-conserving.

4.4 Implementation and Results

4.4.1 Implementation

We implemented our Scalable Laplacian Eigenfluids algorithm in C++. The CGNR

algorithm was implemented by modifying the CG implementation in Eigen [88] to include

an extra transposed matrix multiply. We used FFTW3 [89] to perform DCT and DST.

Multi-threading was enabled using OpenMP whenever possible, including during DCT

and DST computations. We used a collocated grid for our velocity fields because FFTW3

computes the transformation at the center of the grid cell. Since there is no pressure

projection performed in the spatial domain, the null space arguments for MAC grids do

not apply.

The implementation of [52] used the semi-Lagrangian advection from Zephyr [90], but

replaced the pressure projection with the DCT-based approach. All density advection

54



Scalable Laplacian Eigenfluid Chapter 4

was performed using a MacCormack scheme [91]. Similar to [14], [45], and [43], explicit

penalty forces are used to insert static and dynamic obstacles into scenes. All our results

were run on a desktop with 96GB of memory and 12 cores running at 2.4 GHz.

4.4.2 Results

Grid size 1283 2203

Basis dimension 200 1000 200 24000
on-the-fly basis (OTF) 8.660 secs 44.10 secs 45.56 secs 6630 secs

cached basis 1.65 secs 9.54 secs 17.2 secs -
Running DCT (ours) 0.10 secs 0.10 secs 0.78 secs 0.78 secs

Time speedup vs. OTF 87× 440× 58× 8499×
speedup vs. cached 17× 95× 22× -

Total cached basis 10.2 GB 50.5 GB 52.0 GB 6.10 TB
Memory Ours 185 MB 223 MB 938 MB 26.0 GB
Usage memory savings 55× 226× 55× 235×

Table 4.1: Running time and memory usage results of our DCT-based approach com-
pared to caching a large matrix U of basis functions, or recomputing the entries of
U on-the-fly. Double precision floating point was used, and multithreading is enabled
for all three methods. Advection tensor size is reported using Dirichlet boundary
conditions.

Colliding Smoke Jets

. Our simplest example contains two blocks of smoke driven together by an initial

impulse. As can be seen in Fig. 4.6, visually interesting details continue to appear as

we increase the basis rank. The grid resolution is 2203. As shown in Table 4.1, these

scenes are infeasible with the original Eigenfluids algorithm. Either 6.10 terabytes of

memory would be needed to store the basis, or 1.84 hours would be needed per frame to

recompute the basis on-the-fly. Instead, we compute the velocity reconstruction 8499×

faster than the on-the-fly approach, and use 235× less memory than the cached basis

approach. The timings all use the unpruned DCT.
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We also compare our method to [52], as their use of DCT more closely matches our

approach than the original [10] algorithm. Our results are clearly less viscous, as we do

not perform the smearing-prone pressure projection or semi-Lagrangian advection. The

complexity of the DCT-based projection is the same as our velocity reconstruction and

force projection. If the pruned DCT from §4.1.3 is used, this stage of our method runs

30% faster. In Fig. 4.6, [52] takes 2.50 secs per frame, while our method with 3000 basis

functions takes 1.53 secs per frame. Our method preserves more detail and runs slightly

faster.

Paddle Wheel

.

We show a scene containing a moving Neumann obstacle in Fig. 4.7. This scene

tests the scalability of our approach and shows its ability to accommodate Neumann

boundary conditions. The scene contains two Neumann walls in the positive and negative

x directions, and the basis rank is varied from r = 100 to 12600. The viscosity varies from

0.002 to zero, and smoke density is continually added along the bottom of the domain.

The smoke also dissipates over time, so the entire box never becomes full. As shown in

Fig. 4.7, more detail appears as we increase the basis rank.

The timings are shown in Table 5.1. For this scene, at the maximum rank of r =

12600, each frame takes 6.6 secs.

Thin Dirichlet Obstacles

. We also test our algorithm using static, Dirichlet obstacles. As observed by [14],

the ability of the Eigenfluids algorithm to resolve obstacles is limited by the basis rank.

Thus, as we add more bases, the fluid should be able to resolve finer obstacles. We test

this by placing many thin cylinders into a scene, as shown in Fig. 4.8. We use a basis
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with two Neumann walls along the positive and negative y directions and vary the basis

rank from r = 200 to 7000. The r = 200 basis completely fails to resolve the cylinders.

When r is increased to 1000, the smoke interacts with the obstacles, but some of the

smoke is pushed against the side of the box instead of flowing between the cylinders.

When r = 7000, the velocity field is able to resolve each obstacle, so the smoke flows

around them.

Precomputing and Compressing the Tensor.

While it should be possible to directly address the entries that satisfy Eqns. 4.33-4.35,

we instead used the direct, O(r3) method for precomputing the advection tensor. The

Dirichlet tensor for r = 24000 took 32 hours 4 minutes to precompute. When r = 14000,

it took 5 hours 30 minutes. The two-wall Neumann tensor with r = 12600 took 6 hours

3 minutes to precompute. The advection tensor only depends on the wall boundaries, so

it can be re-used across scenes.

As we have removed the storage issues surrounding the O(rN3) basis matrix, the

advection tensor becomes the main memory bottleneck. When r = 8000, a Dirichlet

tensor has O(r2) sparsity, and takes up 2.5 GB of memory. A two-Neumann wall case

has O(r2+1/3) sparsity, and consumes 25.7 GB of memory. However, even the simplest

lossy compression scheme of dropping small entries is highly effective. As shown in

Fig. 4.10, results that retain the lively character of Eigenfluids flows can be obtained

even when 92% of the tensor entries have been dropped. As shown in Table 4.2, the time

needed to compute the mode-3 product (×3) also decreases as entries are discarded. For

flows that are dominated by external forces, even more entries can be dropped. More

principled compression methods [79, 80] are a direction for future research.
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% of entries discarded 0 % 60 % 80 % 90%
Tensor size 11 GB 4.4 GB 2.2 GB 1.1 GB

Contraction time 0.89s 0.45s 0.43s 0.22s

Table 4.2: Contraction timings for compressed tensors. As entries are discarded, the
contraction time predictably decreases. Even after 10× lossy compression, much
of the overall fluid motion remains (Fig. 4.10).

Real-time Interaction

. Even with a large basis rank, our method is fast enough to run interactively.

Fig. 4.11 shows an interactive simulation with r = 1000 and two Neumann walls. The

advection tensor is compressed by dropping 80% of the smallest entries, and the grid

resolution is 120× 60× 60. The example runs at 13 FPS.

Directable Forward Scattering

. As described in §4.2.1, we can re-weight the advection tensor to introduce di-

rectability into the phenomenon of forward scattering. In Fig. 4.12, we show the results

of different forward scattering intensities using a various settings for c in the bi func-

tion from Eqn. 4.36. When scattering is amplified, details emerge at higher frequencies

much more quickly. In Fig. 4.13, we show that when a negative is introduced into the

reweighting function, flows emerge that undergo ghostly reversals.
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Scene Paddle Wheel† Colliding Smoke Cylinders Interactive
Grid

400× 200× 200 220× 220× 220 266× 200× 200 120× 60× 60
Resolution
Boundary two two six two two
Condition Neumann Neumann Dirichlet Neumann Neumann

Basis
12600 7000 24000 7000 1000

Dimension

Tensor
4.2 secs 0.89 secs 8.9 secs 0.92 secs 0.0070 secs

Contraction
Linear

0.69 secs 0.42 secs 3.0 secs 0.39 secs 0.0050 secs
Solver
DCT/

1.2 secs 0.78 secs 0.78 secs 0.85 secs 0.044 secs
DST

Density
0.46 secs 0.48 secs 0.48 secs 0.25 secs 0.020 secs

Advection

Total 6.6 secs 2.6 secs 13 secs 2.3 secs 0.076 secs

Table 4.3: Timing breakdown of our algorithm across all the different examples. The
tensor † uses single precision floating point, and the rest use double.
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(a) Top to bottom: r = 200, r = 3000, and r = 24000 with Dirichlet boundaries.

(b) Results of the semi-Lagrangian / DCT method of [52].

Figure 4.6: Colliding smoke scene: On top, the results of our method. As basis
functions are added, more fine-scale detail emerges. On bottom, the results of the
Stam-like DCT method of [52]. Our results are clearly more inviscid.
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Figure 4.7: Paddle wheel scene: Top row: r = 100, r = 200, r = 1000 basis
functions are used. Bottom row: r = 2000, r = 4000, r = 12600 basis functions are
used. Previous approaches have only been able to achieve r ≈ 500, and would have
needed 2.25 TB of memory to simulate the r = 12600 case.

Figure 4.8: Larger bases resolve thinner obstacles, as shown in the Cylinders scene.
The basis rank from left to right is r = 200, r = 1000, and r = 7000.
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Figure 4.9: Distribution of magnitudes in the advection tensor. Most of the entries
have values that are near-zero, and can be discarded without significantly influencing
the overall fluid motion.

Figure 4.10: From left to right, 0%, 92%, 100% of the smallest tensor entries are
discarded in an r = 7000 simulation. At 100%, no energy is transferred between basis
functions, which creates a static velocity field.
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Figure 4.11: Interactive example, with r = 1000 basis functions and two Neumann walls.

Figure 4.12: We introduce a directability parameter c that reweights the advection
tensor according to Eqn. 4.36 and uses the function bk = (1 + c|k|2). Each image
in the sequence shows the same simulation timestep, but with a different setting
for c. From left to right, the settings are c = 0 (i.e. the original, default tensor),
c = 0.0003, c = 0.0005, and c = 0.0017. As c increases, energy cascades rapidly into
high-frequency modes, and creates more turbulent flows.
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Figure 4.13: Using different tensor reweighting schemes, e.g. bk = −(1+c|k|2), a wider
variety of flows are observed. Above, reweighted versions of the same simulation frame
as Fig. 4.12 are shown.
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Chapter 5

Eigenfluids in Polar and Spherical

Coordinates

In this chapter, I introduce the Eigenfluid algorithm [1] in both polar and spherical

coordinates. First, I will begin with 2D polar coordinates. The basis functions are

derived, to support both fast transformations and the divergence-free condition. Next, an

orthogonalization method is introduced to extend the basis functions to non-orthogonal

cases. The basis functions are extended to the surface of a sphere, and full 3D spherical

coordinates. Finally, the results are presented.

5.1 Eigenfluids in Polar Coordinates

5.1.1 The Polar Coordinate System

In this section, I introduce the polar coordinate system and the differential operators

in this coordinate system.

The polar coordinate system is shown in figure 5.13. The basic transformations be-
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Figure 5.1: The polar coordinate system.

tween the polar coordinate system and the cartesian coordinate system are the following:

x = r cos(θ)

y = r sin(θ),

(5.1)

and

r =
√
x2 + y2

θ = atan2(y, x).

(5.2)

The transformations between vector fields in the polar and cartesian coordinate sys-

tem are the following:

ur

uθ

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)


ux

uy

 (5.3)
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and

ux

uy

 =

cos(θ) − sin(θ)

sin(θ) cos(θ)


ur

uθ

 . (5.4)

Assuming a vector field f and a scalar field f , several important differential operators

in polar coordinates can be expressed as:

∇2f(r, θ) =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2

∇ · f =
1

r

(
fr + r

∂fr
∂r

+
∂fθ
∂θ

)
∇ · f = −1

r
sin(θ)

∂fx
∂θ

+ cos(θ)
∂fx
∂r

+
1

r
cos(θ)

∂fy
∂θ

+ sin(θ)
∂fy
∂r

∇× f =
1

r

(
∂(rfθ)

∂r
− ∂fr
∂θ

)
.

(5.5)

Defining the simulation domain (Ω) as a unit circle, the integration of a scalar function

in this domain can be computed as:

∫
Ω

f(r, θ)dΩ =

∫ 1

r=0

∫ 2π

θ=0

f(r, θ)rdrdθ. (5.6)

The first step of simulating Eigenfluids in polar coordinates is to find appropriate

velocity basis functions. As shown in [1], a desirable basis function should satisfy the

following three conditions:

• Divergence-freeness

• Support fast transformations

67



Eigenfluids in Polar and Spherical Coordinates Chapter 5

• Orthogonality

As shown in appendix A, it is impossible to derive vector Laplacian eigenfunctions

in polar coordinates. However, if the orthogonality condition is relaxed, it is possible to

derive a set of divergence vector basis functions.

5.1.2 Generalized Divergence-free Vector Basis Functions

First of all, constructing the vector basis functions in polar components (ur,uθ) is

better than in Cartesian components (ux,uy), because it is easier to specify the boundary

conditions along the border (r = 1) in polar coordinates. Therefore, I will derive the

basis functions in polar components.

Assuming both components of the velocity are separable functions:

ur = A(r) sin(nθ)

uθ = C(r) cos(nθ),

(5.7)

the divergence-free condition becomes:

∇ · u = (ur + r
∂ur
∂r

+
∂uθ
∂θ

) = 0

A+ r
∂A

∂r
− nC = 0.

(5.8)

From this observation, we can derive another set of possible basis functions:

ur = A(r) cos(nθ)

uθ = C(r) sin(nθ).

(5.9)
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Given these assumptions, the radial terms A(r) and C(r) can be arbitrary functions

as long as equation 5.8 is satisfied. As for fast transformations, because θ components

are trigonometric functions, the only requirement is that A(r), C(r) should satisfy the

fast transformation. For example, we can choose sin, cos function along the radial direc-

tion. Before choosing the specific form of functions along the radial direction, boundary

conditions at r = 1 and r = 0 are needed to be considered.

Boundary Conditions

First, I will discuss the Dirichlet and Neumann boundary condition at the border.

The Dirichlet boundary condition can be expressed as:

ur(r = 1) = 0, (5.10)

which can be satisfied by finding functions that A(r = 1) = 0. Similarly, Neumann

boundary condition is the following,

dur
dr

∣∣∣∣
r=1

= sin(nθ)
dA(r)

dr

∣∣∣∣
r=1

= 0, (5.11)

which can be satisfied by finding function that A′(r = 1) = 0. To prevent a singularity at

the center(r = 0), as shown in [23], an additional boundary condition should be satisfied.

Assume we have a velocity field in Cartesian coordinates. To avoid the singularity at

the center, assume we have a well-defined velocity at the pole in Cartesian coordinates:

ux(0, 0),uy(0, 0). Applying the velocity transformations at the center to equation 5.3
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yields:

ur(r = 0) = ux(0, 0) cos(θ) + uy(0, 0) sin(θ)

uθ(r = 0) = uy(0, 0) cos(θ)− ux(0, 0) sin(θ).

(5.12)

This implies:

∂ur
∂θ

= uθ,
∂uθ
∂θ

= −ur, r = 0. (5.13)

Taking a derivative from equation 5.13, we have

∂2ur
∂θ2

= −ur, r = 0, (5.14)

which implies the θ component of ur at r = 0 should be a wave function with wavenumber

equal to 1. The θ component uθ should then be equal to ∂ur

∂θ
at the center. Assuming

we have a velocity field that is non-zero at the center, then the boundary condition in

equation 5.13 should be satisfied. This implies n in equation 5.7 and 5.9 should be 1

when A(r = 0) 6= 0. On the other hand, if A(r = 0) = 0, C(r = 0) = 0, this constraint

does not apply.

Finally, the velocity field should be continuous along θ direction. This requires a

periodic boundary condition along θ direction, which is the following:

A(r) cos(nθ) = A(r) cos(nθ + 2nπ)

C(r) sin(nθ) = C(r) sin(nθ + 2nπ).

(5.15)

This can be trivially satisfied by requiring the wavenumber along θ direction to be
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an integer.

Considering the boundary conditions in equations 5.10, 5.11 and 5.13, I propose the

following basis functions, which I will call principal basis functions.

Principal Basis Functions

The principal basis functions take sine mode along the radial direction. As a result, it

is zero at the center. Both sine and cosine mode can be chosen along the angle direction,

therefore we have two different choices. We use Φ to denote the principal basis functions,

with a superscript denoting the index:

Φ0
r(r, θ) = sin(i1πr) sin(i2θ), i1 > 0, i2 > 0

Φ0
θ(r, θ) =

1

i2
(sin(i1πr) + i1πr cos(i1πr)) cos(i2θ),

(5.16)

Φ1
r(r, θ) = sin(i1πr) cos(i2θ), i1 > 0, i2 > 0

Φ1
θ(r, θ) = − 1

i2
(sin(i1πr) + i1πr cos(i1πr)) sin(i2θ).

(5.17)

Both basis functions are zero at the center

Φ0
r(0, θ) = 0, Φ0

θ(0, θ) = 0

Φ1
r(0, θ) = 0, Φ1

θ(0, θ) = 0,

(5.18)

and therefore they satisfy the boundary conditions in equation 5.13. The boundary

condition at r = 1 can be controlled by the first wavenumber i1. For example, when

i1 ∈ Z, it satisfies the Dirichlet boundary condition (5.10). Similar to [1], the Neumann

boundary condition can be obtained by offsetting the integer wavenumber by 0.5: i1 ∈
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Z+ − 0.5. In figure 5.2 and figure 5.3, I show some visualizations of Φ0 and Φ1 with

Dirichlet boundary conditions.

Figure 5.2: Basis function Φ0 with Dirichlet boundary conditions.

As we can see, increasing the wavenumber along the radial direction(i1) captures

the higher frequency components along the radial direction. Increasing the wavenumber

along the angle direction (i2) captures the higher frequency components along the angular

direction. It may seem Φ1 can be obtained by rotating the basis function Φ0 along the

angle direction. However, this is impossible because the rotation angle is different for

different wavenumber i2. Therefore, basis functions Φ1 complement Φ0 in a non-trivial

way. For this reason, we use both basis functions in our simulation for completeness.
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Figure 5.3: Basis function Φ1 with Dirichlet boundary conditions.

The Neumann boundary condition can be obtained by offsetting the integral wavenum-

ber i1 by 0.5. The visualization is shown in figure 5.4:

The basis functions satisfy all the boundary conditions and is smooth in the disk

domain. However, since it is zero at the pole, the fluid cannot flow past the center if

we use this basis function. To resolve this issue, I propose a set of enrichment basis

functions, which are non-zero at the center.
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(a) Basis functions Φ0 with Neumann boundary conditions.

(b) Basis functions Φ1 with Neumann boundary conditions.

Figure 5.4: Visualizations of basis functions Φ0 and Φ1 with Neumann boundary conditions.

Enrichment Basis Functions

The enrichment basis functions should be non-zero at the center. To this end, we

select the cosine function along the radial direction, because it is non-zero at the center.

Similar to the principal basis functions, we have two different choices along the angle

direction, therefore we have two sets of enrichment basis functions. We use Ψ to denote
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the enrichment basis functions, with a superscript as the index:

Ψ0
r = cos(i1πr) sin(θ), i1 ≥ 0

Ψ0
θ = (cos(i1πr)− i1πr sin(i1πr)) cos(θ),

(5.19)

Ψ1
r = cos(i1πr) cos(θ), i1 ≥ 0

Ψ1
θ = (− cos(i1πr) + i1πr sin(i1πr)) sin(θ),

(5.20)

Both enrichment basis functions are non-zero at the center:

Ψ0
r(r = 0) = sin(θ)

Ψ0
θ(r = 0) = cos(θ)

Ψ1
r(r = 0) = cos(θ)

Ψ1
θ(r = 0) = − sin(θ).

(5.21)

Additionally, they satisfy the center boundary condition as shown in equation 5.13.

If we compute the velocity at the pole in the Cartesian coordinates, we have

u0
x = 0, u0

y = 1,

u1
x = 1, u1

y = 0,

(5.22)

where u0,u1 correspond to Ψ0 and Ψ1. This corresponds to unit vectors along the y and

x directions in Cartesian coordinates. Therefore, these two basis functions are sufficient

to resolve any velocity at the center.

Finally, to capture the circular motion of the fluid around the center, I add the

75



Eigenfluids in Polar and Spherical Coordinates Chapter 5

(a) Basis functions Ψ0 with Neumann boundary conditions.

(b) Basis functions Ψ1 with Neumann boundary conditions.

Figure 5.5: Visualizations of enrichment basis functions Ψ0 and Ψ1 with Neumann
boundary conditions.

following enrichment basis functions:

Ψ2
r = 0

Ψ2
θ = sin(i1πr), i1 > 0.

(5.23)
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Fast Transformations and Discretization

The principal basis functions and enrichment basis functions all support fast transfor-

mations. The basis functions are expressed in polar coordinates, therefore we discretized

the basis functions on a uniform polar grid as shown in figure 5.6.

Figure 5.6: The polar discretization grid.

The velocity reconstruction and force projection are then performed on this uniform

polar grid. For example, to reconstruct the r component of basis function Φ0 as shown

in equation 5.16, we apply

u =
r∑
i=1

wi sin(i1πr) sin(i2θ), (5.24)

which can be done by first putting the coefficients into the corresponding position in

the polar grid, and then performing an inverse DST along the r direction, performing

an inverse DST along the θ direction. For force projection, assuming the force field is

in a polar grid, we first need to weight the force field by r along the radial direction,

due to the r which appears in the integration formula in equation 5.6. Then, the force

is transformed by a DST along r direction and a DST along θ direction. Finally, the

projection coefficients on each basis can be extracted from the corresponding position in

the polar grid.
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Finally, to advect the scalar density field, we interpolate the velocity on the polar

grid onto the Cartesian grid using equation 5.22. Similarly, a force field on the Cartesian

grid is first interpolated onto the polar grid, and then the force projection is performed.

Unlike the interpolation of Stam advection [10], this interpolation does not affect the

dynamics of the Eigenfluid. The density field is also discretized on a Cartesian grid,

which is then advected by the velocity field obtained from interpolation.

5.2 Polar Eigenfluids Dynamics

We use the same dynamic framework as in [15] and [1]. However, as the basis functions

are not orthogonal, we need to extract a set of orthogonal basis functions from them.

The extracted orthogonal basis functions are then used in the simulation. The orthogonal

basis functions will be linear combinations of principal and enrichment basis functions Φ

and Ψ, therefore it is also divergence-free.

5.2.1 Orthogonalization

To extract a set of divergence-free basis functions, one standard method is the Gram–Schmidt

process. Let’s say we have a set of r non-orthogonal basis functions Φi. The extracted

orthogonal basis functions are denoted as vi. We use V and φφφ to denote the vector
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formed by these basis functions. The Gram–Schmidt process can be described as:



v1

v2

v3

...

vr


=



a11 0 0 . . . 0

a21 a22 0 . . . 0

a31 a32 a33 . . . 0

...
...

...
. . .

...

ar1 ar2 ar3 . . . arr





Φ1

Φ2

Φ3

...

Φr


,

V = AΦΦΦ,

(5.25)

where A is a block triangular matrix that denotes the transformation between a set of

non-orthogonal bases Φi and a set of orthogonal bases vi. Therefore the set of orthogonal

basis functions is a linear transformation of the original basis functions with a transfer

matrix A. The Gram–Schmidt algorithm can be used to compute the transfer matrix A.

However, here I proposed a slightly different approach.

Computing the Transfer Matrix A

To compute the transfer matrix A, assuming Φi, i = 1, 2, 3, ..., r are linearly in-

dependent, we use H to denote the inner product matrix between all basis functions:

Hij = 〈Φi,Φj〉 . The inner product matrix should be symmetric positive definite because

Φi are linearly independent. V is a set of orthogonal basis functions, therefore VVT = I.

We have:

AΦΦΦΦΦΦTAT = AHAT = I. (5.26)

The matrix H is symmetric. It has eigen-decomposition UDUT = H. Matrix U is or-

thogonal and D is diagonal with diagonal entries as eigenvalues. This eigen-decompoition
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can be efficiently computed via a symmetric QR decomposition, see from [28]. We use

an efficient implementation in Eigen matrix library [88]. The transfer matrix can then

be A = D−
1
2 UT .

Numerically, matrix H is well-conditioned if ΦΦΦ are close to orthogonal. H becomes

badly-conditioned or can even have zero eigenvalues if ΦΦΦ are far from orthogonal, or has

linearly dependent elements. To ensure a well-conditioned transfer matrix A, compo-

nents correspond to smaller eigenvalues of H should be discarded, because the inverse of

eigenvalues appear in the transfer matrix A. Intuitively, this removes some basis func-

tions that are overlapping with other basis functions. This thresholding on eigenvalues

also discards columns of matrix U, therefore the transfer matrix A is also resized.

Assuming we extract m orthogonal components from ΦΦΦ, we have A ∈ Rm×r, and V

is a vector of orthogonal basis of size m. The D ∈ Rm×m is a diagonal matrix where only

m large eigenvalues are kept. For the basis functions I derived in polar coordinates, 10%

of the basis functions are discarded from the set ΦΦΦ, or m = 0.9r, to keep the condition

number of matrix H below 10.

Advection Tensor Under Orthogonal Basis

To simulate the fluid using orthogonal basis functions, one obvious way is to directly

compute the new advection tensor under the orthogonal basis vi as a pre-process:

C(g, h, i) =

∫ 1

0

∫ 2π

0

(∇× vi) · (vg × vh)drdθ

=
∑
l,m,n

ailagmahn

∫ 1

0

∫ 2π

0

(∇× Φl) · (Φm × Φn)drdθ

=
∑
l,m,n

agmahnailC
o(m,n, l),

(5.27)
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where Co is the old advection tensor computed with non-orthogonal bases. Coefficients

aij are entries of the transfer matrix A. The new advection tensor is skew-symmetric:

C(g, h, i) =
∑
l,m,n

agmahnailC
o(m,n, l)

C(h, g, i) =
∑
l,m,n

ahmagnailC
o(m,n, l) =

∑
l,m,n

agmahnailC
o(n,m, l) = −C(g, h, i).

(5.28)

Assuming Co is O(r3) dense, and transformation A is also O(r2) dense, this will

mostly take O(r4) to compute. For example, for each index i, computing the contraction

Ci =
∑

l ailC
o(m,n, l) ∈ Rr×r takes O(r3). Then we cache Ci in memory, and compute

the tensor entries for all g, h. C(h, g, i) =
∑

m,n ahmagnCi. To do this, we can compute

a matrix vector product : cg,i =
∑

n agnCi, which takes O(r2) for each g. Finally we

compute the tensor entry C(h, g, i) =
∑

m ahmcg,i and takes O(r) for each h.

In summary, we need to compute Ci a total of r times, each takes O(r3), therefore

this part takes O(r4). Next, we need to compute cg,i a total of r2 times, each taking

O(r2), therefore this part also takes O(r4). Finally, we need to compute
∑

m ahmcg,i a

total of r3 times, each taking O(r), and this part is also O(r4). Thus, we can compute the

tensor transformation 5.27 in at most O(r3) complexity with O(r2) additional memory.

Therefore, computing the new tensor given the tensor Co will take O(r4) computations.

A better solution is to apply transfer matrix A on the fly when computing the advection,

without computing the new tensor as a pre-process.
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A Modified Conjugate Gradient Solver

We use the trapezoidal update rule to solve for advection. As shown in [1], the

equation we need to solve is:

(I− ∆t

2
C)wt+1 =

∆t

2
Cwt + wt + f . (5.29)

The matrix C is the contraction C ×3 wt. By using equation 5.27, we can expand C in

terms of the old advection tensor

Cgh = C×3 wt = agmahnailwiC
o(m,n, l)

= agmahnylC
o(m,n, l) = agmahnC

o(m,n, l)×3 y = agmahnC
o
mn

= agmCo
mnahn = (ACo)gnahn = (ACoAT )gh,

(5.30)

where y = ATw, Co = Co ×3 y. Therefore equation 5.29 can be written as

(I− ∆t

2
ACoAT )wt+1 =

∆t

2
ACoATwt + wt + f . (5.31)

So, instead of doing a tensor transformation using equation 5.27, we can still use the

old tensor, compute old matrix Co with Co = Co ×3 y, and then use matrix ACoAT as

the new system matrix. This matrix is obviously skew-symmetric, and the system should

be energy conserving. The only change here is that three vector matrix products are

required for the conjugate gradient solver.

Finally, to compute the fast transformations, we can use the transfer matrix to recover

the coefficients of the original basis functions or to project the coefficients of the original

basis functions onto the orthogonal basis functions.
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Fast Transformations with Transfer Matrix A

The velocity reconstruction is computed as:

u =
∑
i

wivi = wTV = wTAΦ. (5.32)

where w is a set of basis coefficients. A is the transformation matrix, u is the full rank

velocity. We already know Φ admits fast transformations. To do fast transformations

over the orthogonal velocity basis V, we can first transform the coefficients by computing

wTA, and then do fast transformations using basis Φ.

The force projection is computed as:

wi = 〈f ,vi〉 = 〈f ,
∑
k

aikΦk〉 =
∑
k

aik〈f ,Φk〉, (5.33)

w = A



〈f ,Φ1〉

〈f ,Φ2〉
...

〈f ,Φr〉


. (5.34)

Therefore we can compute the fast transformations under the Φ basis, and obtain a

vector of coefficients, then multiply with the matrix A to obtain the coefficients under

the orthogonal basis functions.

In summary, I dropped the requirement of basis functions being orthogonal. Therefore

we can choose any set of divergence-free functions, and use them as bases. This is
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compatible with the previous work [1].

5.2.2 Quasi-viscosity

The orthogonalized basis functions vi are no longer Laplacian eigenfunctions, there-

fore the Laplacian ∇2u no longer projects the basis to itself. While a Galerkin treatment

of viscosity is possible, here we use an approximate quasi-viscosity treatment to this

problem.

The point-wise decay of coefficients in Laplacian eigenfluids is

wt+1
k = wtke

µλi∆t, (5.35)

where λi is the eigenvalue for eigenfunction Φi. In the previous work λi = −(i21 + i22).

Therefore λi describes the frequency of basis function Φi. In this work, we still use λi

as a measurement of the frequency of the basis functions, even though it is no longer an

eigenvalue of the basis functions. This is still valid as increasing i1, i2 will lead to higher

frequency components. The orthogonal basis functions v are linear combinations of ΦΦΦ.

For each orthogonal basis function vi, I compute a frequency characterization of that

basis function using the transfer matrix A,

λλλ∗ = Aλλλ, (5.36)

where λλλ is a vector concatenating all the square wavenumbers −i21 − i22. λλλ∗ is then a

vector of the same size with basis coefficients w, and we then decay each basis coefficients

according to:

wt+1
k = wtke

µλλλ∗i ∆t. (5.37)
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I use this to approximately capture viscosity effect for the Eigenfluids in polar and

spherical coordinates.

5.3 Eigenfluids in 2D Spherical Coordinates

In this section, I introduce Eigenfluid simulation on the surface of a sphere.

5.3.1 Spherical Coordinate System

First I introduce the spherical coordinate system and several important differential

operators.

x
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<latexit sha1_base64="uGd0okehDoFk+oRyzO0MixH+Fuk=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUL0VvXisYD+gDWWz3TRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmBQln2rjut1Pa2Nza3invVvb2Dw6PqscnXR2nitAOiXms+gHWlDNJO4YZTvuJolgEnPaC6V3u956o0iyWj2aWUF/giWQhI9jk0jCJ2Khac+vuAmideAWpQYH2qPo1HMckFVQawrHWA89NjJ9hZRjhdF4ZppommEzxhA4slVhQ7WeLW+fowipjFMbKljRoof6eyLDQeiYC2ymwifSql4v/eYPUhNd+xmSSGirJclGYcmRilD+OxkxRYvjMEkwUs7ciEmGFibHxVGwI3urL66R7Vfca9ZuHRq11W8RRhjM4h0vwoAktuIc2dIBABM/wCm+OcF6cd+dj2VpyiplT+APn8wcXaI5L</latexit>

Figure 5.7: The spherical coordinate system.

The polar coordinate system is shown in figure 5.13. The basic transformations

between the spherical coordinate system and the Cartesian coordinate system are the
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following:

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ),

(5.38)

r =
√
x2 + y2 + z2

θ = acos(
z

r
)

φ = atan2(y, x).

(5.39)

Given a vector field in spherical coordinates, the vector field can be transformed to

Cartesian coordinates by the following:


ux

uy

uz

 =


sin(θ) cos(φ) cos(θ) cos(φ) − sin(φ)

sin(θ) sin(φ) cos(θ) sin(φ) cos(φ)

cos(θ) − sin(θ) 0




ur

uθ

uφ

 , (5.40)

On the other hand, the inverse of the above transformation is:


ur

uθ

uφ

 =


sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)

cos(θ) cos(φ) cos(θ) sin(φ) − sin(θ)

− sin(φ) cos(φ) 0




ux

uy

uz

 . (5.41)

Given a vector field f , a few important differential operators in spherical coordinates
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can be expressed as:

∇ · f =
1

r2

∂(r2fr)

∂r
+

1

r sin(θ)

∂

∂θ
(fθ sin(θ)) +

1

r sin(θ)

∂fφ
∂φ

,

∇× f =
1

r sin(θ)

(
∂

∂θ
(fφ sin(θ)

)
− ∂fθ
∂φ

)r̂+

1

r

(
1

sin(θ)

∂fr
∂φ
− ∂

∂r
(rfφ)

)
θ̂θθ +

1

r

(
∂

∂r
(rfθ)−

∂fr
∂θ

)
φ̂φφ.

(5.42)

Assume the simulation domain(Ω) as a unit sphere: r ∈ [0, 1], θ ∈ [0, π], φ ∈ [0, 2π),

the integration of a scalar function in this domain can be computed as:

∫
Ω

f(r, θ, φ)dΩ =

∫ 1

r=0

∫ π

θ=0

∫ 2π

φ=0

f(r, θ, φ)r2 sin(θ)drdθdφ. (5.43)

5.3.2 Divergence-free Vector Basis Functions

While it is possible to compose divergence-free and orthogonal vector basis functions

using spherical harmonics (A.3). It is unclear how these basis functions can be generalized

to include the entire sphere. Also, fast transformations of spherical harmonics may pose

a challenge. Therefore I instead derive new basis functions using trigonometric functions.

Similar to the case in polar coordinates, I will begin with the divergence-free condition,

and then derive the divergence-free basis functions which support fast transformations.

Because the fluid is constrained on the surface, the degrees of freedom are θ and φ.

Therefore I will derive the vector basis functions expanded in θ and φ components.
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The divergence-free condition on the surface of a sphere can be expressed as:

∇ · u =
1

r sin(θ)

∂

∂θ
(sin(θ)uθ) +

1

r sin(θ)

∂uφ
∂φ

= 0

∂

∂θ
(sin(θ)uθ) +

∂uφ
∂φ

= 0.

(5.44)

Assuming both uθ and uφ are separable functions along θ and φ, we have:

∇ · u =
∂

∂θ
(sin(θ)C(θ))D(φ) + E(θ)

∂F (φ)

∂φ
, (5.45)

where uθ = C(θ)D(φ),uφ = E(θ)F (φ). Assuming D(φ) = ∂F (φ)
∂φ

and resolving the φ

direction, the divergence free condition then becomes:

∇ · u = sin(θ)
∂C

∂θ
+ cos(θ)C + E = 0. (5.46)

Therefore, we can choose function C that satisfies the fast transformation, and then

choose E accordingly. Before we choose the specific form of C, boundary conditions

should be specified.

Boundary Conditions

As pointed out in [23], there are two boundary conditions at the north and south pole

θ = 0, θ = π:

∂uφ
∂φ

= −uθ,
∂uθ
∂φ

= uφ, θ = 0

∂uφ
∂φ

= uθ,
∂uθ
∂φ

= −uφ, θ = π.

(5.47)

This implies the wavenumbers of uφ,uθ along φ direction are both one, albeit in the

opposite direction along θ = 0, θ = π. Another boundary condition is the periodic
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boundary condition along the direction φ, which can be easily satisfied by using an

integer as the second wavenumber. Because the fluid flows on a closed surface, there is

no need for Dirichlet or Neumann boundary conditions.

Principal Basis Functions

For the principal basis functions, we choose sine modes along the θ direction. There-

fore the basis functions are zero at both the north and the south pole, and the boundary

conditions there are trivially satisfied:

Φ0
θ = sin(i1θ) cos(i2φ)

Φ0
φ = − 1

i2
(cos(θ) sin(i1θ) + i1 sin(θ) cos(i1θ)) sin(i2φ), i1 > 0, i2 > 0,

(5.48)

Φ1
θ = sin(i1θ) sin(i2φ)

Φ1
φ =

1

i2
(cos(θ) sin(i1θ) + i1 sin(θ) cos(i1θ)) cos(i2φ), i1 > 0, i2 > 0,

(5.49)

Φ2
θ = 0

Φ2
φ = sin(i1θ), i1 > 0.

(5.50)

To capture the circular flow, one additional basis function Φ2 is added. It corresponds to

flow along the latitude direction. Similar to before, for the fluid to flow past the north

and south pole, I introduce the enrichment basis functions as follows.

89



Eigenfluids in Polar and Spherical Coordinates Chapter 5

Enrichment Basis Functions

The enrichment basis functions take cosine modes along the θ direction. The basis

functions are non-zero at both poles. The second wavenumber is set to one to satisfy the

boundary condition at the pole. They are

Ψ0
θ = cos(i1θ) cos(φ)

Ψ0
φ = (− cos(θ) cos(i1θ) + i1 sin(θ) sin(i1θ)) sin(φ), i1 ≥ 0,

(5.51)

Ψ1
θ = cos(i1θ) sin(φ)

Ψ1
φ = (cos(θ) cos(i1θ)− i1 sin(θ) sin(i1θ)) cos(φ), i1 ≥ 0.

(5.52)

At the north pole (θ = 0), the enrichment basis functions satisfy the boundary con-

dition:

Ψ0
θ(θ = 0) = cos(φ)

Ψ0
φ(θ = 0) = − sin(φ)

Ψ1
θ(θ = 0) = sin(φ)

Ψ1
φ(θ = 0) = cos(φ).

(5.53)

At the south pole (θ = π), the enrichment basis functions satisfies the boundary
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condition:

Ψ0
θ(θ = π) = cos(i1π) cos(φ)

Ψ0
φ(θ = π) = cos(i1π) sin(φ)

Ψ1
θ(θ = π) = cos(i1π) sin(φ)

Ψ1
φ(θ = π) = − cos(i1π) cos(φ).

(5.54)

We can compute the Cartesian velocity at both poles for both basis functions. For

Ψ0, we have:

ux(θ = 0) = 1, uy(θ = 0) = 0

ux(θ = π) = (−1)i1+1, uy(θ = π) = 0.

(5.55)

For Ψ1, we have:

ux(θ = 0) = 0, uy(θ = 0) = 1

ux(θ = π) = 0, uy(θ = π) = (−1)i1+1.

(5.56)

Similar to the enrichment basis functions in 2D, the enrichment basis function presented

here form two orthogonal directions at both poles.

5.3.3 Fast Transformations and Discretization

We discretize the velocity field on an even 2D θ, φ grid, which maps to a surface of a

sphere as shown below:

In contrast to the 2D polar case, I do not interpolate the velocity field onto a Cartesian

grid. The density field is also discretized on a uniform sphere surface grid. The density

is then advected using the same algorithm as in [23]. The density field is then used as a
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Figure 5.8: Uniform grid on the surface of a sphere.

texture map for a sphere.

Similar to the polar 2D case, both the principal and enrichment basis functions sup-

port the fast transformation. As we can see the basis function 5.48 and 5.49 require

multiple transformations. The following two observations can be leveraged to reduce

computation.

First of all, when transforming terms like (cos(θ) sin(i1θ) + i1 sin(θ) cos(i1θ)) sin(i2φ),

one way is to do the transformation separately:

∑
wi(cos(θ) sin(i1θ) + i1 sin(θ) cos(i1θ)) sin(i2φ) =

cos(θ)
∑

wi sin(i1θ) sin(i2φ) + sin(θ)
∑

wi i1 cos(i1θ) sin(i2φ).

(5.57)

This corresponds to doing two 2D DCTs. However, 2D DCTs are separable, meaning

doing a 2D DCT is equal to doing 1D DCTs along each dimension. Therefore a better way

is to first to do a batch of 1D DCTs that transforms (cos(θ) sin(i1θ) + i1 sin(θ) cos(i1θ))

along the first dimension, and then do a second batch of 1D DCTs that transforms

sin(i2φ) along the second dimension. This corresponds to transforming the first line of

equation 5.57 directly, and saves one DCT compared to doing them separately and adding

the result together.
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The second observation is that when transforming terms like cos(θ) sin(i1θ), one way

to do this is to first use DST to transform sin(i1θ), and then weight the results by the

scalar field cos(θ). A better way is by observing:

∑
wi cos(θ) sin(i1θ) =

1

2

∑
wi sin((i1 + 1)θ) + wi sin((i1 − 1)θ). (5.58)

Therefore we can put coefficients 1
2
wi in spots corresponding wavenumber i1 + 1 and

i1− 1, and then do a single transformation of DST, that would be equal to doing a DST

and then weighting the results by weighting with cos(θ).

In summary, in the case of transforming the first part of φ term, (cos(θ) sin(i1θ) +

i1 sin(θ) cos(i1θ)) sin(i2φ), we can do the following:

∑
wi(cos(θ) sin(i1θ) + i1 sin(θ) cos(i1θ)) =

1

2

∑
wi(sin((i1 + 1)θ) + sin((i1 − 1)θ) + i1 sin((i1 + 1)θ)− i1 sin((i1 − 1)θ)).

(5.59)

Therefore, we can put the coefficients 1
2
wi(1+i1), 1

2
wi(1−i1) into spots corresponding

to i1 + 1, i1 − 1 respectively, and do a single transformation instead.

5.4 Eigenfluids in 3D Spherical Coordinates

In this section, I will present the Eigenfluid simulation in full 3D spherical coordinates.

5.4.1 General Forms of Vector Basis Functions

Similar to the 2D case, the divergence-free condition should be satisfied when deriving

the basis functions in full 3D spherical coordinates. There are multiple ways that this

constraint could be satisfied, which leads to different basis functions. In this section, I
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will derive 3 different forms that will be used to derive the final basis functions. First I

will begin with the divergence-free condition shown in equation 5.42:

∇ · u =
1

r2

∂

∂r
(r2ur) +

1

r sin(θ)

∂

∂θ
(sin(θ)uθ) +

1

r sin(θ)

∂uφ
∂φ

= 0

1

r2 sin(θ)

(
sin(θ)

∂

∂r
(r2ur) + r

∂

∂θ
(sin(θ)uθ) + r

∂uφ
∂φ

)
= 0.

(5.60)

Compared to the flow on the surface of a sphere, the velocity component along r is

needed (ur). Assuming both three velocity components are separable functions along

different dimensions, where ur = A(r, θ)B(φ),uθ = C(r, θ)D(φ),uφ = E(r, θ)F (φ), we

have:

∇ · u =
1

r2

∂

∂r
(r2A(r, θ))B(φ) +

1

r sin(θ)

∂

∂θ
(sin(θ)C(r, θ))D(φ) +

1

r sin(θ)
E(r, θ)

∂F (φ)

∂φ
.

(5.61)

The φ component can be determined by letting B(φ) = D(φ) = ∂F (φ)
∂φ

, and above equation

can be simplified as:

∇ · u = r sin(θ)
∂Ar
∂r

Aθ + 2 sin(θ)ArAθ + sin(θ)
∂Cθ
∂θ

Cr + cos(θ)CrCθ + ErEθ = 0. (5.62)

There will be three combinations that will lead to useful divergence-free basis func-

tions.
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Choice One

First of all, the equation 5.62 can be grouped as:

sin(θ)(r
∂Ar
∂r

Aθ + ArAθ +
∂Cθ
∂θ

Cr) + sin(θ)ArAθ + cos(θ)CrCθ + ErEθ = 0. (5.63)

We can assume:

r
∂Ar
∂r

Aθ + ArAθ +
∂Cθ
∂θ

Cr = 0

sin(θ)ArAθ + cos(θ)CrCθ + E1
rE

1
θ + E2

rE
2
θ = 0.

(5.64)

This gives:

∂Cθ
∂θ

= Aθ

r
∂Ar
∂r

+ Ar + Cr = 0

sin(θ)ArAθ + E1
rE

1
θ = 0

cos(θ)CrCθ + E2
rE

2
θ = 0.

(5.65)
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One solution of above equation is:

Φ0
r = sin(i1πr) cos(i2θ) sin(i3φ)

Φ0
θ = − 1

i2
(i1πr cos(i1πr) + sin(i1πr)) sin(i2θ) sin(i3φ)

Φ0
φ = − 1

i2i3
[−i2 sin(i1πr) sin(θ) cos(i2θ) + (i1πr cos(i1πr) + sin(i1πr)) cos(θ) sin(i2θ)] cos(i3φ).

(5.66)

In general, the solution of this combination can be written as:

Φ0
r = A(i1πr)B(i2θ)C(i3φ)

Φ0
θ =

1

i22
(A(i1πr) + rA′(i1πr))B

′(i2θ)C(i3φ)

Φ0
φ =

1

i23

(
1

i22
(A(i1πr) + rA′(i1πr)) cos(θ)B′(i2θ) + A(i1πr) sin(θ)B(i2θ)

)
C ′(i3φ),

(5.67)

where A,B,C can be sin or cos functions.

Choice Two

Another way to group equation 5.62 is:

sin(θ)

(
r
∂Ar
∂r

Aθ + 2ArAθ +
∂Cθ
∂θ

Cr

)
+ cos(θ)CrCθ + ErEθ = 0. (5.68)
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We can assume:

r
∂Ar
∂r

Aθ + 2ArAθ +
∂Cθ
∂θ

Cr = 0

cos(θ)CrCθ + ErEθ = 0,

(5.69)

which gives:

Aθ =
∂Cθ
∂θ

r
∂Ar
∂r

+ 2Ar + Cr = 0

cos(θ)CrCθ + ErEθ = 0.

(5.70)

A general form of the solution is:

Φr = A(i1πr)B(i2θ)C(i3φ)

Φt =
1

i22
(2A(i1πr) + rA′(i1πr))B

′(i2θ)C(i3φ)

Φp =
1

i22i
2
3

(2A(i1πr) + rA′(i1πr)) cos(θ)B′(i2θ)C
′(i3φ).

(5.71)

Choice Three

To avoid the boundary condition at the pole, Aθ and Cθ can be weighted by sin(θ),

because sin(θ) is zero at both pole. Assuming Aθ = A∗θ sin(θ), Cθ = C∗θ sin(θ) then,

sin(θ)

(
r
∂Ar
∂r

A∗θ sin(θ) + 2ArA
∗
θ sin(θ) + sin(θ)

∂C∗θ
∂θ

Cr

)
+ sin(2θ)CrC

∗
θ + ErEθ = 0.

(5.72)
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This leads to:

∂C∗θ
∂θ

= A∗θ

r
∂Ar
∂r

+ 2Ar + Cr = 0

sin(2θ)CrC
∗
θ + ErEθ = 0.

(5.73)

A general form of the basis function is:

Φr = A(i1πr) sin(θ)B(i2θ)C(i3φ)

Φt =
1

i22
(2A(i1πr) + rA′(i1πr)) sin(θ)B′(i2θ)C(i3φ)

Φp =
1

i22i
2
3

(2A(i1πr) + rA′(i1πr)) sin(2θ)B′(i2θ)C
′(i3φ).

(5.74)

5.4.2 Basis Functions

Using the general forms are derived in the previous section, I will derive the principal

basis functions and enrichment basis functions.

Principal Basis Functions

To derive the principal basis functions, we use choice 3 as shown in 5.74. The basis

functions are weighted with sin(θ), therefore they are zero along the pole line. Further-

more, I choose the sine mode along r direction for the Φr component, so they are also

zero at the center. In this way, they will satisfy all the boundary conditions. For these

basis functions, we are free to choose the three wave-numbers along each direction. They
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are

Φ0
r = sin(i1r) sin(θ) cos(i2θ) sin(i3φ)

Φ0
θ = − 1

i2
(i1r cos(i1r) + 2 sin(i1r)) sin(θ) sin(i2θ) sin(i3φ)

Φ0
φ = − 1

i2i3
(i1r cos(i1r) + 2 sin(i1r)) sin(2θ) sin(i2θ) cos(i3φ)

i1 > 0, i2 > 0, i3 > 0,

(5.75)

and

Φ1
r = sin(i1r) sin(θ) cos(i2θ) cos(i3φ)

Φ1
θ = − 1

i2
(i1r cos(i1r) + 2 sin(i1r)) sin(θ) sin(i2θ) cos(i3φ)

Φ1
φ =

1

i2i3
(i1r cos(i1r) + 2 sin(i1r)) sin(2θ) sin(i2θ) sin(i3φ)

i1 > 0, i2 > 0, i3 > 0.

(5.76)

The velocity at the boundaries is:

Φ0
∗(r = 0) = 0, Φ0

∗(θ = 0) = 0, Φ0
∗(θ = π) = 0,

Φ1
∗(r = 0) = 0, Φ1

∗(θ = 0) = 0, Φ1
∗(θ = π) = 0.

(5.77)

Because the principal basis functions are zero both at the pole and the center, I

propose another set of enrichment basis functions which are non-zero at those locations.
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Enrichment Basis Functions at θ = 0, π

First, I propose two basis functions that enrich the velocity along the pole, except at

the center. These basis functions are choice 2 in equation 5.71. For these basis functions,

Φr is zero at the pole, therefore the velocity points in tangent directions, similar to the

basis functions on a sphere. Two wave-numbers are free, while the third one along φ is

constrained to be 1. These basis functions are zero at the center. The first one is:

Ψ2
r = sin(i1r) sin(i2θ) sin(φ)

Ψ2
θ =

1

i2
(i1r cos(i1r) + 2 sin(i1r)) cos(i2θ) sin(φ)

Ψ2
φ =

1

i2
(i1r cos(i1r) + 2 sin(i1r))(cos(θ) cos(i2θ)) cos(φ).

i1 > 0, i2 ≥ 0

(5.78)

When i2 = 0, the coefficients 1
i2

is set to 1 instead, which still makes a valid basis

function. At the pole and the center, we have:

Ψ2
r(θ = 0) = 0

Ψ2
θ(θ = 0) = H sin(φ), Φ2

φ(θ = 0) = H cos(φ)

Ψ2
r(θ = π) = 0

Ψ2
θ(θ = π) = cos(i2π)H sin(φ), Φ2

φ(θ = π) = − cos(i2π)H cos(φ),

(5.79)

where H = 1
i2

(i1r cos(i1r) + 2 sin(i1r)). We can see it satisfies the boundary condition at
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both poles. The other one is:

Ψ3
r = sin(i1r) sin(i2θ) cos(φ)

Ψ3
θ =

1

i2
(i1r cos(i1r) + 2 sin(i1r)) cos(i2θ) cos(φ)

Ψ3
φ = − 1

i2
(i1r cos(i1r) + 2 sin(i1r))(cos(θ) cos(i2θ)) sin(φ).

i1 > 0, i2 ≥ 0

(5.80)

When i2 = 0, the coefficients 1
i2

is set to 1 instead. At the pole and the center, we have

the velocity value as:

Ψ3
r(θ = 0) = 0

Ψ3
θ(θ = 0) = H cos(φ), Φ3

φ(θ = 0) = −H sin(φ)

Ψ3
r(θ = π) = 0

Ψ3
θ(θ = π) = cos(i2π)H cos(φ), Φ3

φ(θ = π) = cos(i2π)H sin(φ).

(5.81)

It also satisfies boundary conditions at both poles. Finally, the principal basis func-

tions and the above two enrichment basis functions are all zero at the center. To enrich

the velocity at the center, I propose three extra basis functions for the center.
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Enrichment Basis Functions at the Center

The first enrichment basis function is Ψ4:

Ψ4
r = cos(i1r) cos(θ)

Ψ4
θ = (− cos(i1r) +

1

2
i1r sin(i1r)) sin(θ)

Ψ4
φ = 0

i1 ≥ 0.

(5.82)

The velocity at the center and the poles for this basis function is:

Ψ4(r = 0) =

[
cos(θ) − sin(θ) 0

]T
Ψ4(θ = 0) =

[
cos(i1r) 0 0

]T
Ψ4(θ = π) =

[
− cos(i1r) 0 0

]T
.

(5.83)

This is the last column of the transformation matrix shown in equation 5.41, therefore

it points towards z direction in Cartesian coordinates. The next enrichment basis function

takes the choice 1 from equation 5.67:

Ψ5
r = cos(i1r) sin(θ) sin(φ)

Ψ5
θ = (−i1r sin(i1r) + cos(i1r)) cos(θ) sin(φ)

Ψ5
φ = (−i1r sin(i1r) cos2(θ) + cos(i1r)) cos(φ)

i1 ≥ 0.

(5.84)
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The velocity at the center of this basis function is:

Ψ5(r = 0) =

[
sin(θ) sin(φ) cos(θ) sin(φ) cos(φ)

]T
Ψ5(θ = 0) =

[
0 (cos(i1r)− i1r sin(i1r)) sin(φ) (cos(i1r)− i1r sin(i1r)) cos(φ)

]T
Ψ5(θ = π) =

[
0 −(cos(i1r)− i1r sin(i1r)) sin(φ) (cos(i1r)− i1r sin(i1r)) cos(φ)

]T
.

(5.85)

This is the second column of the transformation matrix shown in equation 5.41,

therefore it points towards y direction in Cartesian coordinates.

Finally, the enrichment basis function along x direction at the center is Ψ6. It also

takes choice 1 from the equation 5.67:

Ψ6
r = cos(i1r) sin(θ) cos(φ)

Ψ6
θ = (−i1r sin(i1r) + cos(i1r)) cos(θ) cos(φ)

Ψ6
φ = −(−i1r sin(i1r) cos2(θ) + cos(i1r)) sin(φ)

i1 ≥ 0.

(5.86)

The velocity at the center:

Ψ6(r = 0) =

[
sin(θ) cos(φ) cos(θ) cos(φ) − sin(φ)

]T
Ψ6(θ = 0) =

[
0 (cos(i1r)− i1r sin(i1r)) cos(φ) −(cos(i1r)− i1r sin(i1r)) sin(φ)

]T
Ψ6(θ = π) =

[
0 −(cos(i1r)− i1r sin(i1r)) cos(φ) −(cos(i1r)− i1r sin(i1r)) sin(φ)

]T
.

(5.87)

This is the first column of the transformation matrix shown in equation 5.41, therefore
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it points towards x direction in Cartesian coordinates.

In conclusion, these enrichment basis functions satisfy the boundary condition at

θ = 0, π. Also, they satisfy the boundary condition at r = 0, because each basis function

projects to ez, ey, ex at the center, accordingly. For these basis functions, two wavenum-

bers along θ and φ are constrained to be 1, to satisfy the boundary condition at the poles.

Only one wavenumber along r is free to choose.

Finally, to capture the circular motion of the fluid along the polar axis, I add the

following enrichment basis functions:

Ψ7
r = 0

Ψ7
θ = 0

Ψ7
φ = sin(i1r) sin(i2θ)

i1 > 0, i2 > 0.

(5.88)

Boundary Conditions

For the 3D basis functions in a sphere, there will be a boundary condition along the

line θ = 0. This is discussed in the case of the surface of a sphere, as shown in equation

5.47. Here, I instead focus on the boundary conditions at the center.

For the boundary condition at the center, we can compute three velocity terms for

each Cartesian direction using coordinate transformations.


ur

uθ

uφ

 =


sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)

cos(θ) cos(φ) cos(θ) sin(φ) − sin(θ)

− sin(φ) cos(φ) 0

u, (5.89)

where u can be assigned with ex, ey, ez to compute each of the boundary terms.

Similar to the surface of a sphere, we have a periodic boundary condition along φ,
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u(φ+2π) = u(φ). This can be satisfied by letting the wavenumber along φ be an integer.

The other boundary condition we need to consider is at the border of the sphere.

Similar to polar 2D case, we can control the boundary condition by changing the first

wavenumber of the basis function. For the basis functions 5.75, 5.76, 5.78 and 5.80,

Dirichlet boundary condition at r = 1 can be satisfied by letting i1 ∈ N. Neumann

boundary condition can be satisfied by letting i1 ∈ N+ 0.5. For the basis functions 5.82,

5.84 and 5.86, Dirichlet boundary condition can be satisfied by letting N+0.5. Neumann

boundary condition can be satisfied by letting i1 ∈ N.

5.4.3 A Better Transformation Scheme

In this section, I show how to use the least number of DCTs to transform all the basis

functions.

Transformation of ur of Φ0,Φ1,Φ2,Φ3

The transformation of r component of Φ0 can be expressed as:

ur =
∑
i

w0
i sin(i1r) sin(θ) cos(i2θ) sin(i3φ) =

1

2

∑
i

w0
i sin(i1r)[sin((i2 + 1)θ)− sin((i2 − 1)θ)] sin(i3φ).

(5.90)

Instead of doing two 3D DCTs and adding the results together, we can add 1
2
w0
i and

−1
2
w0
i into slots which corresponds to wavenumber i2 + 1 and i2 − 1, respectively, and

then do one 3D DCT. Because the final velocity along r is the summarization of r terms
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from all basis functions, we can group them as:

ur =
∑
i

w0
iΦ

0
r +

∑
i

w1
iΦ

1
r +

∑
i

w2
iΦ

2
r +

∑
i

w3
iΦ

3
r =(∑

i

w0
iΦ

0
r +

∑
i

w2
iΦ

2
r

)
+

(∑
i

w1
iΦ

1
r +

∑
i

w3
iΦ

3
r

)
.

(5.91)

The Φ0
r,Φ

2
r are grouped because they share the transformations sin(r), sin(θ), sin(φ)

along all three directions. Therefore, we can simply add the contributions of Φ0
r,Φ

2
r

together, before doing any transformations. Similarly, Φ1
r,Φ

3
r share the transformations

sin(r), sin(θ), cos(φ), therefore we can also add contributions of them together. Now,

Φ0
r,Φ

2
r and Φ1

r,Φ
3
r share transformations along r, θ. To do that, we can do a DST along

φ for Φ0
r,Φ

2
r, and a DCT along φ for Φ1

r,Φ
3
r, adding the results together, and then doing

a DST along r and θ. The flow graph looks like the following:

Figure 5.9: Flow graph of transformations.

Therefore, we can transform the r component of Φ0,Φ1,Φ2,Φ3 using only 4 DCTs,

where each DCT transforms along one direction. This also trivially supports trimmed

DCTs along the first two directions.
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5.4.4 Computing Dot Products of Basis Functions

In this section I briefly describe the method I use to compute the dot product be-

tween all different basis functions. The integration of a scalar function in 3D spherical

coordinates is described in equation 5.43. First of all, the velocity components r̂, θ̂, φ̂ are

orthogonal, therefore:

〈
Φl,Φm

〉
=
〈
Φl
r,Φ

m
r

〉
+
〈
Φl
θ,Φ

m
θ

〉
+
〈
Φl
φ,Φ

m
φ

〉
. (5.92)

Each of the Φl components are multiplications of separable functions along r, θ, φ.

The term
〈
Φl
r,Φ

m
r

〉
can be evaluated as:

〈
Φl
r,Φ

m
r

〉
=

∫ 1

r=0

Al(r)Am(r)r2dr

∫ π

θ=0

Bl(θ)Bm(θ) sin(θ)dθ

∫ 2π

φ=0

C l(φ)Cm(φ)dφ. (5.93)

The integration along with r, θ, φ can be evaluated individually. This is better than

computing all combinations at once. For example, assume we have total 8 basis functions,

computing them at once will result in 64 combinations. However, as we can see there are

only 2 choices of function A, we only need 4 combinations along each direction.

As for the advection tensor, computing all combinations at once will results in 64*8

= 512 combinations. However, by decomposing them along each direction, we only need

8 combinations along each direction.
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5.5 Implementation and Results

We implemented our algorithm in C++. The FFTW3 library [89] is used to perform

the DCTs and DSTs. Multithreading was enabled using OpenMP whenever possible. We

use the Eigen library [88] to perform basic linear algebra operations, including the eigend-

ecomposition of the inner product matrix. All our results were run on a desktop with 48

GB of memory and 6 cores running at 3.7 GHz. To ensure a well-conditioned transfer

matrix that transforms the basis functions into orthogonal, we discarded the smallest

10% of eigenvalues of the inner product matrix H in all our examples. The pruned DCT

mentioned in [1] is used whenever possible. We do not compress the advection tensor in

any of our examples.

5.5.1 Polar 2D Coordinates

Below I show some results of Eigenfluid simulations in polar coordinate systems. In

all examples, I interpolated the velocity under the polar grid onto a Cartesian grid of

resolution 512×512. The polar grid is rectangular, where more pixels are allocated along

the angular direction to ensure an even discretization. The resolution of the polar grid

roughly matches the resolution of the Cartesian grid.

Dirichlet and Neuman boundary conditions: In figure 5.10 I show the simulation in

polar coordinates with Dirichlet and Neumann boundary conditions. In the simulation,

the plume is driven by a buoyancy force. Fig (a) of 5.10 is simulated with only principal

basis functions 5.16 and 5.17 only. As we can see, it is difficult for the plume to pass

through the center, because the principal basis functions are zero at the center. Adding

enrichment basis functions as shown in 5.19 and 5.23 resolves this issue, which allows the

plume to pass through the center.

Colliding smoke in polar coordinates: In figure 5.11 we animate two smoke plumes
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(a) Simulation without enrichment basis functions.

(b) Simulation with enrichment basis functions for the center.

Figure 5.10: Simulation of a plume without and with the enrichment basis functions.
The enrichment basis function allows the plume to pass through the center.

colliding with each other. In figure (a) we show the simulation with 300 basis functions.

Adding more basis functions will allow more detailed vortices to appear. Because the

polar basis functions support fast transformations, we retain the scalability in [1].

Boundary conditions in polar coordinates: In figure 5.12 we simulate the fluid under

Neumann and the Dirichlet boundary conditions. This is achieved by changing the

wavenumber along with radial directions of the basis functions. The plume bounces

back into the simulation domain under the Dirichlet boundary condition. The Neumann

boundary condition allows the plume to flow out of the domain.
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(a) Simulation with 300 basis functions.

(b) Simulation with 1600 basis functions.

Figure 5.11: Simulation of two plumes colliding with each other, the viscosity is set
to zero. The plume scatters into finer vortices with more basis functions added.

5.5.2 2D Spherical Coordinates

In this section, I show the results using the spherical 2D basis functions. The basis

functions are best suited for simulating surface flow, for example, planetary flows or soap

bubbles. All of our examples are simulated on a (θ, φ) grid of resolution 512× 1024. The

density field is obtained by splatting density particles that are passively advected along

the velocity field. The density field is then used as a texture map on the sphere.

Planetary flow on sphere surface: In figure 5.13 we simulate a planetary flow. Usually,

the planetary flow is driven by both pressure gradient and Coriolis force [7]. However,

our method is pressure-free, so we are not able to capture the effect of forces caused by
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(a) Simulation with Dirichlet basis functions.

(b) Simulation with Neumann basis functions.

Figure 5.12: Simulation of a pulse under Dirichlet and Neumann basis functions.
Neumann basis functions can allow the fluid to flow out of the domain, while Dirichlet
basis functions can not.

an uneven pressure field. Still, we show that our basis function can be sufficient to result

in a detailed planetary flow simulation, assuming appropriate force are injected. In this

example, we initialized the density to form a stripe pattern. Then, I injected forces that

are alternating in direction along the θ direction, which points toward the φ direction.

The forces are continuously injected into the simulation, and a viscosity of ν = 0.01 is

used to dissipate the energy.

Turbulent planetary flow: In figure 5.14 a turbulent planetary flow is obtained by

injecting extra Coriolis force [7]. The Coriolis force pulls the flow along the tangent

direction, where the magnitude is proportional to the velocity. This results in a more
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Figure 5.13: A simulation of planetary flow.

turbulent look. In figure (b) we show the periodic texture that is wrapped around the

sphere. Notice the intricate details formed by the basis function.

5.5.3 Full 3D Spherical Coordinates

Finally, we show the results of the full 3D spherical simulation. Similar to the case

of a polar grid, velocity is spatted onto a Cartesian grid. Density is then advected on

the Cartesian grid with a MacCormack method [91]. In all the examples the resolution

of the Cartesian grid is 1283, where the resolution of the spherical grid is 64× 128× 256,

along (r, θ, φ), respectively. We ray trace the density field with PBRT [92].

Impulse flow: In figure 5.15 we show an animation where a block of smoke is pushed

by an impulse. The viscosity in this example is zero. Figure (a) shows the simulation

with 300 basis functions. As we can see, 300 basis functions already produces detailed

vortices. Figure (b) shows the same simulation with 1700 basis functions. More details

appear as more basis functions are added.

Boundary comparison in 3D: In figure 5.16 we show two simulations with different

boundary conditions, both with 700 basis functions. Similar to the simulation on the

polar grid, the Neumann boundary condition allows the fluid to flow out of the domain.
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Also, notice the fluid can freely flow past the center contributed by the enrichment basis

functions.

Plume Gravity: In 5.17 we show a simulation with a block of smoke pulled down by

gravity. In this case, the viscosity is set to zero.

Circular Force: Finally, the enrichment basis function 5.88 can resolve the circular

motion of the fluid along the polar axis. In figure 5.18, we inject a circular force, where

a slab of smoke is pushed around by it. In this case, the viscosity is set to zero.

The timing of all our examples is shown in table 5.1.

Scene Impulse flow Planetary flow Colliding smokes
Grid

1283 512× 1024 5122

Resolution
Basis

Spherical 3D Spherical 2D Polar 2D
functions

Basis
1700 300 4000 1600 300

Dimension

Tensor
0.122 secs 0.0011 secs 1.25 secs 0.310 secs 0.009 secs

Contraction
Linear

0.017 secs 0.0002 secs 0.265 secs 0.064 secs 0.0015 secs
Solver
DCT/

0.135 secs 0.135 secs 0.100 secs 0.133 secs 0.133 secs
DST

Density
0.064 secs 0.064 secs 0.820 secs 0.0027 secs 0.0026 secs

Advection

Total 0.338 secs 0.200 secs 2.44 secs 0.534 secs 0.222 secs

Table 5.1: Timing breakdown of our algorithm across all the different examples.
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(a) A turbulent planetary flow simulation.

(b) The Periodic texture produced by the method, which is then wrapped onto a sphere in figure (a).

Figure 5.14: A turbulent planetary flow simulation with 4000 basis functions.
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(a) A simulation with 300 basis functions.

(b) A simulation with 1700 basis functions.

Figure 5.15: Simulation of an impulse under 3D spherical coordinates.
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(a) A simulation with Dirichlet boundary conditions.

(b) The same simulation with Neumann boundary conditions.

Figure 5.16: Two simulations are shown with Dirichlet and Neumann boundary con-
ditions. Notice the Neumann boundary condition allows the smoke to flow out of the
domain.

Figure 5.17: A simulation of smoke pulled down by gravity.
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Figure 5.18: Simulation of a slab of smoke twisted by circular forces.
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Chapter 6

Stochastic Structure Optimization

Background

Note: A significant portion of this chapter has previously appeared as [2].

In this chapter, I summarize the stochastic structural optimization technique of Lan-

glois et al. [27].

Finite Element Method (FEM)

We use a hexahedral uniform grid as our FEM discretization and compute the dis-

placement (u) and element Cauchy stresses (σσσ) that arise from an external force (f):

Ku = f

σσσ = CBu.

(6.1)

Above, K ∈ R3n×3n is the stiffness matrix, σσσ ∈ R6m is a vector of per-element Cauchy

stresses, C ∈ R6m×6m is a constitutive matrix, and B ∈ R6m×3n maps u to Cauchy

strains. Stresses and strains are evaluated at the center of each voxel. The quantity m
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is the total number of mesh elements, and n is the number of vertices.

Using the per-element stress,

σσσe =


σ11 σ12 σ31

σ12 σ22 σ23

σ31 σ23 σ33

 (6.2)

we compute a scalar, per-element von Mises stress:

S(σσσe) =
1

2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2]+

3
(
σ2

23 + σ2
31 + σ2

12

)
.

(6.3)

A yield stress σ̂ completes our failure criteria. An element fails if S(σσσe) > σ̂, and we

define “object failure” as the failure of any individual element.

Stochastic Failure Probability

Prior to optimization, we need to estimate an object’s failure probability under various

force distributions. Langlois et al. [27] estimated real-world loadings by using a rigid-body

simulation to generate force samples. For each sample, they then computed the maximal

von Mises stress across the whole object, and then estimated a probability distribution

function (PDF) of maximal stresses. The object fails if its maximal stress is greater than

the yield stress, so the survival probability is computed by integrating the PDF from 0

to σ̂. The failure probability is one minus the survival probability.

Many force samples (≈ 5000) are needed to accurately represent the PDF, so principal

component analysis (PCA) is used to reduce its computational complexity. We denote

each force sample as f i, where i = 1 . . . ns, and ns is the total number of samples.

In lieu of performing an FEM analysis for each sample, they compute a reduced force
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basis, F̄ ∈ R3n×r, where r is the number of principal components. Each sample is then

represented with a reduced coordinate, αααi ∈ Rr, where f i ≈ F̄αααi. The element stresses

for each sample i can then be computed as:

σσσi = CBK−1F̄αααi. (6.4)

By pre-solving CBK−1 for each column in F̄, significant savings can be achieved when

r � ns (e.g. r ≈ 100).

The normalized, whole-object stress for each f i is then:

si =
1

σ̂
max
e

(S(σσσie))


e = 1 . . .m

i = 1 . . . ns

(6.5)

Using all the stress samples si, we can construct a probability distribution function

(PDF) p(s) for the whole-object stress. The corresponding cumulative distribution (CDF)

function is denoted as P (s). The probability of the object survival P (s < 1) is then:

P (s < 1) =

∫ 1

0

p(s)ds. (6.6)

Topology Optimization

The failure probability is then used as a constraint in a topology optimization that

adds or subtracts materials from some initial design. The overall goal is to reduce the

final object weight while satisfying a user defined failure probability Θ:

min
m∑
e=1

ωe

s.t. P (s < 1) > 1−Θ.

(6.7)
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Above, ωωω is a vector of element densities, such that ∀e ωe ∈ [0, 1], which is usually ini-

tialized to be fully filled (∀e, ωe = 1). Eqn. 6.7 is optimized using the Method of Moving

Asymptotes (MMA) [64], which requires both the object and constraint gradients. The

objective gradient is straightforward to efficiently compute, but the constraint gradient is

a major bottleneck because the existing approach is quadratic in the number of elements.

We will show that it is possible to reduce its complexity to linear.
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Chapter 7

Fast and Robust Stochastic

Optimization

Note: A significant portion of this chapter has previously appeared as [2].

In this chapter, I will present our fast and robust stochastic optimization algorithm.

First, in section §7.1, I analyze the complexity of computing the probability gradients.

By carefully leveraging the structure of the problem, we found the quadratic complexity

of previous methods [27] can be reduced to linear with respect to the number of elements.

In practice, this results in a roughly two-order of magnitude speedup.

Next, in section §7.2, I show that the existing approach leads to unreliable probability

gradients. This negatively impacts the convergence of the optimization and, in turn, the

final design. I show how to stabilize these gradients, which leads to higher-quality shapes.

The optimization can still stall at local minima. To address this, I introduce (§7.3)

a constrained restart method that identifies and constrains promising structures when

the optimization stalls, and applies a perturbation to bump the state out of its local

minimum. Finally, I make additional progress by allowing the outer shell of the object

to erode, and later restore the visual appearance of the object by adding a lightweight
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sheath as a post-process.

7.1 Asymptotic Analysis and Acceleration

First, I will analyze the existing method [27] to show that it runs in O(m2). Then I

will show that an identical computation can be done in O(m).

7.1.1 The Previous Quadratic Method

We begin by expanding the derivative of p(s) from Eqn. 6.6 in terms of si using the

chain rule:

∂P (s < 1)

∂ωωω
=

∫ 1

0

ns∑
i=1

∂p

∂si
∂si

∂ωωω
ds. (7.1)

The ∂si

∂ωωω
term is computed by replacing the discontinuous max function in Eqn. 6.5

with a smoother Lp norm. The density term ωe is also multiplied beforehand to avoid

singularities as shown in [68], si ≈ ||
√
ωieS(σσσie)||p/σ̂, yielding:

∂si

∂ωωω
=

1

σ̂

(
m∑
e=1

√
ωieS(σσσie)

p

) 1
p
−1

m∑
e=1

(
√
ωieS(σσσie))

p−1

(
1

2
√
ωie
S(σσσie) +

∂S

∂σσσie

∂σσσie
∂ωωω

)
.

(7.2)

Combining equation 7.2 with equation 7.1, we obtain:

∂P (s < 1)

∂ωωω
=

ns∑
i=1

ai

(
bi +

(
∂σσσi

∂ωωω

)T
ci

)
, (7.3)
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where

ai =

∫ 1

0

∂p

∂si
ds

1

σ̂

(
m∑
e=1

√
ωieS(σσσie)

p

) 1
p
−1

bi =
m∑
e=1

(
√
ωieS(σσσie))

p−1S(σσσie)/(2
√
ωie)

cie = (
√
ωieS(σσσie))

p−1 ∂S

∂σσσie
.

The term ∂S
∂σσσi

e
can be computed from equation 6.3. Next, from equation 6.4 we com-

pute:

∂σσσi

∂ωωω
= −CBK−1∂K

∂ωωω
Ūαααi︸ ︷︷ ︸

I

+ CBK−1∂F̄

∂ωωω
αααi︸ ︷︷ ︸

II

+ CBŪ
∂αααi

∂ωωω︸ ︷︷ ︸
III

, (7.4)

where Ū = K−1F̄. Here, term I computes the derivative of the stiffness matrix, term II

computes the gradient of the reduced force basis, and term III computes the gradient of

the reduced force coordinates.

Combining equations 7.3 and 7.4, we obtain the final probability derivative, which

can be computed as:

∂P (s < 1)

∂ωωω
= (K−1YŪT ) :

∂K

∂ωωω
+ (K−1Y) :

∂F̄

∂ωωω
+ x + t, (7.5)

where

Y =
ns∑
i=1

BTCTci ⊗αααi t =
ns∑
i=1

aibi

x =
ns∑
i=1

∂αααi

∂ωωω
ŪTBTCTci.

The main complexity in Eqn. 7.5 lies in the second term, (K−1Y) : ∂F̄
∂ωωω

. We show in

Appendix 7.1.2 for a single element e, the force derivative on the right of the double-
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contraction can be written as

∂F̄

∂ωωωe
= F̄We. (7.6)

We ∈ Rr×r is a dense matrix that has to be evaluated for each element. A näıve

evaluation for one element then becomes mr2 because F̄ ∈ R3n×r and m ∝ n due to

the uniform grid discretization. Computing the force derivatives for all samples is then

O(m2r2).

7.1.2 Evaluation of the Derivative of Reduced Force Vectors

For completeness, we summarize the derivative of the reduced force basis vectors F̄,

which is described in the supplemental material of [27]. A finite element force sample

f i ∈ R3n is obtained by mapping a rigid body force li via a projection matrix J : f i = Jli.

Each rigid body force sample li ∈ R3nu+6 is of the form:

li =

[
l1 . . . lnu f com τττ com

]
, (7.7)

where l3(j−1) ∈ R3, j = 1, . . . , nu are the contact forces sampled at the surface of the

object, nu is the total number of possible contact positions, and f com, τττ com ∈ R3 are the

inertial force and torque acting on the center of the mass.

The matrix J is of the form:

J =

[
Jm Jcom Jτ

]
, (7.8)

where Jm ∈ R3n×3nu maps the surface contact points to volumetric element vertices, and

Jcom,Jτ ∈ R3n×3 map the inertial forces and torques acting on the center of mass to

element vertices.
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Given ns rigid body force samples, L =

[
l1 . . . lns

]
, the reduced force basis F̄ is

the eigenvectors of the covariance matrix of the force samples, JL. Therefore, we have

JLLTJT ≈ F̄ΛΛΛF̄T , where ΛΛΛ ∈ Rr×r is a diagonal matrix of eigenvalues of the covariance

matrix JLLTJT . From here we follow the procedure of [93]. We have:

∂JLLTJT

∂ωe
=

∂F̄

∂ωe
ΛΛΛF̄T + F̄

∂ΛΛΛ

∂ωe
F̄T + F̄ΛΛΛ

∂F̄T

∂ωe
. (7.9)

Multiplying Eqn. 7.9 with F̄T from the left and F̄ from the right yields:

F̄T ∂JLLTJT

∂ωe
F̄ = F̄T ∂F̄

∂ωe
ΛΛΛ +

∂ΛΛΛ

∂ωe
+ ΛΛΛ

∂F̄T

∂ωe
F̄. (7.10)

Denote Be = F̄T ∂JLLTJT

∂ωe
F̄. The matrix We = F̄T ∂F̄

∂ωe
is antisymmetric [93], therefore

∂ΛΛΛ
∂ωe

= diag(Be), so we have:

Be − diag(Be) = WeΛΛΛ + ΛΛΛWT
e . (7.11)

Exploiting the skew-symmetry of We and setting λλλ = diag(ΛΛΛ), we can derive a simple

update equation:

(λi − λj)Wije = B∗ij. (7.12)

where B∗ = Be−diag(Be). We solve this equation for each Wije. Finally we can compute

the approximate gradients as ∂F̄
∂ωe

= F̄We. The matrix J has a closed form derivative and

we compute the derivative of LLT using finite differences of the rigid body force samples,

so ∂JLLTJT

∂ωe
is straightforward to evaluate.
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7.1.3 Evaluation of Derivative ∂J
∂ωe

Here we explain how to compute the derivative ∂J
∂ωe

. The general form of J is shown

in equation 7.8. The matrix Jm maps a surface index to full volume index. Because the

FEM mesh does not change during optimization, ∂Jm

∂ωe
= 0. We only need to consider last

6 columns of J:

[
Jcom Jτ

]
.

Before going into the details of Jcom and Jτ , denote the total mass of the object as

M , and the total number of element nodes as n. The mass for each node i is mi, the fill

ratio for each element e is ωe, and the mass of each element is de = ρωe, where ρ is the

density.

Because we use hexahedral elements in the FEM mesh, we compute the node mass

as:

mi =
∑
j∈N(i)

1

8
dj, (7.13)

where N(i) denotes the set of element indices adjacent to node i.

The matrix Jcom maps the center of mass force to each element. It is a tiled diagonal

matrix of 3× 3 of the following form:

Jcom =
1

M



...
...

...

mi 0 0

0 mi 0

0 0 mi

...
...

...


. (7.14)

To compute ∂Jcom

∂ωe
for element e, we need to evaluate:

∂ (mi/M)

∂ωe
=
∂mi

∂ωe

1

M
− ∂M

∂ωe

mi

M2
, i = 1, . . . , n. (7.15)
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The second term on the right hand side of equation 7.15 is non zero for all i = 1, . . . , n,

because all element nodes contribute to the total mass M :

−∂M
∂ωe

mi

M2
= −

∑
k∈N(e)

∂mk

∂ωe

mi

M2
. (7.16)

Because element e contributes 1
8
de to node mk, we have

−1

8

∑
k∈N(e)

∂de
∂ωe

mi

M2
= −1

8

∑
k∈N(e)

ρ
mi

M2
= −ρ mi

M2
, i = 1, . . . , n. (7.17)

Denote this part of the derivative as Ĵc. It is a dense tiled matrix of the form:

Ĵc =
ρ

M2



...
...

...

−mi 0 0

0 −mi 0

0 0 −mi

...
...

...


, (7.18)

where every i = 1 . . . n is tiled with the 3× 3 diagonal matrix.

Now consider the first part of equation 7.15, which is non zero only for nodes i that

are adjacent to element e. We have:

∂mi

∂ωe

1

M
=
∂mk

∂ωe

1

M
=

ρ

8M
, for k ∈ N(e). (7.19)
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This part of the derivative is J̃ce, a sparse matrix of the form:

J̃ce =



...
...

...

ρ
8M

0 0

0 ρ
8M

0

0 0 ρ
8M

...
...

...


, (7.20)

where only node indices k ∈ N(e) are filled with the 3 × 3 diagonal matrix. So in

summary:

∂Jcom

∂ωe
= Ĵc + J̃ce. (7.21)

The matrix Jτ maps the center of mass torque to the elements. It is a tiled 3 × 3

skew-symmetric matrix, where each matrix denotes a cross product:

Jτ =
1

M



...
...

...

0 rizmi −riymi

−rizmi 0 rixmi

riymi −rixmi 0

...
...

...


, (7.22)

where ri = pi−q denotes the vector pointing from the center of mass (q) to the position

of node i (pi). Subscripts x, y, z denote the respective components of that vector. To

compute its derivative, consider the z component:

∂(rizmi/M)

∂ωe
=
∂riz
∂ωe

mi

M
+ riz

∂(mi/M)

∂ωe
, i = 1, . . . , N. (7.23)

The second term of 7.23 is computed with equations 7.15 and 7.19, and results in a
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constant part which is included in equation 7.28, as well as the following non-constant

sparse term:

J̃re =
ρ

8M



...
...

...

0 rkz −rky

−rkz 0 rkx

rky −rkx 0

...
...

...


. (7.24)

Similar to equation 7.20, only node indices k ∈ N(e) are filled. For the first term in

equation 7.23, we have:

∂riz
∂ωe

mi

M
=
∂(piz − qz)

∂ωe

mi

M
= −∂qz

∂ωe

mi

M
. (7.25)

Since qz =
∑n

k=1 pkzmk/M , denote sss =
∑N

k=1 pkzmk, we have:

−∂(sss/M)

∂ωe

mi

M
= − ∂sss

∂ωe

mi

M2
+

qzmi

M2

∂M

∂ωe
, i = 1, . . . , N. (7.26)

The second part of this equation is equal to ρqzmi

M2 for all i, so we have the total contri-

bution to the constant part of derivative as:

(qz − riz)
ρmi

M2
, i = 1, . . . , N, (7.27)
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we denote this part as Ĵτ , which is constant for all elements:

Ĵτ =

ρ

M2



...
...

...

0 (qz − riz)mi −(qy − riy)mi

−(qz − riz)mi 0 (qx − rix)mi

(qy − riy)mi −(qx − rix)mi 0

...
...

...


.

(7.28)

For the first term of equation 7.26, we have:

∂sss

∂ωe

mi

M2
= −

∑
k∈N(e)

pkz
∂mk

∂ωe

mi

M2

= −
∑

k∈N(e)

1

8
pkzρ

mi

M2
, i = 1, . . . , N.

(7.29)

The summation of node position
∑

k∈N(e)
1
8
pkz is the z component of the position

of element e. Using the z component of the centroid of element e: ez =
∑

k∈N(e)
1
8
pkz,

equation 7.29 can be computed as:

1

M



...
...

...

mi 0 0

0 mi 0

0 0 mi

...
...

...


ρ

M


0 −ze ye

ze 0 −xe

−ye xe 0

 = JcomJ̃τe , (7.30)

where the matrix J̃τe denotes the right 3 × 3 matrix of element e. In summary, the
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derivative of J is:

∂J

∂ωe
=

[
0 Ĵc Ĵτ

]
+

[
0 J̃ce J̃re + JcomJ̃τe

]
. (7.31)

7.1.4 Our Linear Method

We first observe that in equation 7.6, the per-element force basis matrix F̄ is fixed,

and only the smaller We ∈ Rr×r ever changes. Second, we observe that the final quantity

(K−1Y) : ∂F̄
∂ωωω

is all that matters; the per-element intermediate ∂F̄
∂ωωωe

is not strictly required.

Therefore, if we pre-contract F̄ with K−1Y, we obtain a smaller matrix, F̄TK−1Y ∈ Rr×r.

Each element can then be computed as F̄TK−1Y : We, which is only O(r2) per element.

Specifically, each element must compute the product

ge = K−1Y : (F̄We), (7.32)

where ge is the entry of the second term in Eqn. 7.5 for element e. Both Z = K−1Y and

F̄ are static, per-element, R3n×r matrices that we use to rewrite ge as

ge =
∑
i,j

(Z)ij(F̄We)ij =
∑
i,j,k

ZijF̄ikWkje =
∑
i,j,k

F̄ikZijWkje

= (F̄TZ) : We.

(7.33)

Since F̄TZ ∈ Rr×r is fixed for all e, we can precompute it in O(mr2) time. At runtime,

an O(r2) contraction is performed over m elements, yielding an O(mr2) overall running

time.

So far, we have only examined the derivative of the force basis in Eqn. 7.6. However,

näıvely evaluating We also takes O(m2) time. We show in the following section that this

can also be reduced to O(m) by leveraging matrix sparsity and similar pre-computations.
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7.1.5 Enhanced Evaluation for We

To evaluate We, first we need to evaluate Be, and then compute We according to

equations 7.11 and 7.12. Using equation 7.9 and expanding derivatives, we have:

Be = B1
e + B2

e + (B1
e)
T

B1
e = F̄T ∂J

∂ωe
LLTJT F̄ B2

e = F̄TJ
∂LLT

∂ωe
JT F̄.

(7.34)

First we consider the evaluation of B1
e. Because only the ∂J

∂ωe
factor is different from

element to element, we can precompute LLTJT F̄ ∈ R(nu+6)×r in O(n2
ur +mr) for all the

elements. The major complication is to compute F̄T ∂J
∂ωe

efficiently for all elements.

From Appendix 7.1.3, ∂J
∂ωe

is composed of three parts:

∂J

∂ωe
=

[
0 Ĵc Ĵτ

]
+

[
0 J̃ce J̃re + JcomJ̃τe

]
, (7.35)

where Ĵc, Ĵτ ∈ R3n×3 is constant for all the elements, J̃ce, J̃re ∈ R3n×3 is different from

element to element (but its sparsity is of O(c), where c is a constant), Jcom ∈ R3n×3 is a

constant matrix, and J̃τe ∈ R3×3 differs from element to element (but it is a small matrix).

Computing F̄T ∂J
∂ωe

naively for all elements poses a complexity of O(m2r). However,

F̄T ∂J

∂ωe
=

[
0 F̄T Ĵc F̄T Ĵτ

]
+

[
0 F̄T J̃ce F̄T J̃re + F̄TJcomJ̃τe

]
(7.36)

where F̄T Ĵc, F̄T Ĵτ and X = F̄TJcom can be precomputed for all elements in O(mr). The

only terms which are needed per-element are F̄T J̃ce, F̄
T J̃re and XJ̃τe . Because the three

matrices J̃ce, J̃
r
e and J̃τe have a constant number of non-zero entries, this can be done for

all elements in O(mr). Therefore, computing F̄T ∂J
∂ωe

can be reduced from O(m2r) to

O(mr). The final matrix products F̄T ∂J
∂ωe and (LLTJT F̄) take O(mr2) for all elements.
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Therefore, B1
e can be computed in O(mr2).

Now consider the evaluation of B2
e. Finite differences are used to evaluate ∂(LLT )

∂ωe
:

∂(LLT )

∂ωe
=

i=10∑
i=1

∂(LLT )

∂Mi

∂Mi

∂ωe
. (7.37)

The terms ∂(LLT )
∂Mi

are 10 matrices which can be precomputed in O(nuns) for all elements.

The matrix product (F̄TJ)∂LL
T

∂ωe (JT F̄) takes O(m(rn2
u + r2nu)) for all elements. This is

the total complexity for B2
e.

This part can also be accelerated through further precomputation. Denote Ai =

∂(FTF)
∂Mi

, H = F̄TJ ∈ Rr×(nu+6). We have:

B2
e = H

i=10∑
i=1

Ai
∂Mi

∂ωe
HT =

i=10∑
i=1

HAiH
T ∂Mi

∂ωe
. (7.38)

Since only ∂Mi

∂ωe
changes between elements, we can precompute HAiH

T ∈ Rr×r before

doing the summation. This reduces the complexity for evaluation of B2
e to O(mr2), and

also reduces the total complexity for Be to O(mr2).

We show in Table 7.1 the running time of computing the total probability gradients

using the previous quadratic method (estimated) and our linear method. Our method is

asymptotically faster, and accelerates this stage of the method by two orders of magni-

tude, effectively removing it as the bottleneck of the method.
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Time (s)

Resolution [27] Our Method Speedup

28× 32× 36 1.84† 0.041 44.9×
28× 44× 28 6.18† 0.044 140×
40× 64× 60 41.7† 0.128 326×

Table 7.1: Running time of Eqn. 7.6 using the quadratic method of Langlois et al.[27]
and our linear method. †Estimated time.

7.2 Stabilizing the Inertia Gradients

Previous Method

We examine the relevant term from Eqn. 7.5,

x =
ns∑
i=1

∂αααi

∂ωωω
ŪTBTCTci, (7.39)

that measures how changing the voxel densities ωωω influence the rigid body force samples

αααi. The previous method [27] evaluates this term using finite differences.

Given ns samples αααi ∈ Rr, we assume each entry of αααi is sampled from a 1D PDF,

and take its finite difference over that distribution. The jth entry of each force sample

αj is denoted α. We assume α is a random variable and that αij is drawn from the PDF

c(α).

Instead of computing a finite difference for the sample αij, we perform a finite differ-

ence over its distribution. For any α, we can compute its CDF as C(α), and retrieve αij

by sampling its inverse using αij = C−1(u), where u is a uniform random variable. Using
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the properties of the CDF, we obtain:

∂C(C−1(u))

∂ωωω
=
∂u

∂ωωω
= 0

∂C(C−1(u))

∂ωωω
=
∂C

∂α

∣∣∣∣
αi
j

∂C−1

∂ωωω

∣∣∣∣
u

+
∂C

∂ωωω

∣∣∣∣
α

= 0.
(7.40)

By manipulating Eqn. 7.40, we obtain the derivative of α:

∂α

∂ωωω
=
∂C−1

∂ωωω

∣∣∣∣
u

= − 1

c(α)

∂C

∂ωωω

∣∣∣∣
α

. (7.41)

We insert α = αij into Eqn. 7.41 to compute the gradient for each random sample. There-

fore, an important step in computing the inertia gradients is building the distributions

C(α) and c(α) over the samples αij, where i = 1 . . . ns.

Langlois et al. [27] computed C(α) and c(α) by fitting a uniform 1D finite element grid

over the samples, which represents them as a sum of basis functions: c(α) =
∑k

i=1 aiψi(α).

Here, k is the number of elements of this 1D finite element grid, ai is a shape coefficient,

and ψi(α) is a symmetric hat function of element i. A Galerkin method is then used

to solve for ai. However, this approach can fit the data poorly. In the top of Fig. 7.1,

Figure 7.1: The PDF constructed from an FEM grid fits the data poorly and leads to
unstable probability gradients. The distribution has a long tail; we have zoomed into
a portion of the x axis. Our GMM fit does not exhibit these artifacts.
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we show the PDF c(α) that results from this approach using n elements. For a small

n, the histogram is fit poorly. As n increases, ringing artifacts appear. This leads to

instabilities when computing 1
c(α)

in Eqn. 7.41 because the ringing artifacts can cause the

PDF to become negative.

Stabilized Inertia Gradients

We use Gaussian Mixture Models (GMMs) to address this problem. GMMs are widely

used to capture discrete distributions [94], and we found that they yield results superior

to the FEM approach.

We first expand c(α) using a set of Gaussians:

c(α) =
k∑
i=1

πiN (α |µk, σk), (7.42)

where k is the number of Gaussians, πk is a weight, and N (α |µk, σk) is a Gaussian with

mean µk and variance σk. The parameters, πk, σk, µk, can be computed from αij using

expectation maximization [94], and we found that k = 10 usually yields good results.

This leads to the superior distribution representations we show in the bottom of Fig. 7.1.

Returning to Eqn. 7.41, ∂C
∂ωωω

is also evaluated using finite differences. We assume that

all the potential contact positions of the rigid-body lies on the surface of the object. So

the rigid-body can be parameterized by its mass, center of mass, and moment of inertia.

As a result, αij and its CDF C(α) can be parameterized using a total of 10 variables.

Denoting the parameters as Mi, i = 1 . . . 10, the finite difference is computed as:

∂C

∂ωωω

∣∣∣∣
α

=
10∑
i=1

∂C

∂Mi

∣∣∣∣
α

∂Mi

∂ωωω
. (7.43)
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The ∂Mi

∂ωωω
is straightforward, and we use a centered difference for ∂C

∂Mi
:

∂C

∂Mi

∣∣∣∣
α

=
1

2

C(Mi + ∆M)|α − C(Mi −∆M)|α
∆M

. (7.44)

Evaluating the above equation involves two extra rounds of rigid body simulation with

Mi+∆M and Mi−∆M perturbations applied to each parameter, for a total of 20 rounds.

Iteration: 1 Iteration: 2 Iteration: 3

...

Iteration: 70 Iteration: 71

(a) Previous, unstable probability gradients

Iteration: 1 Iteration: 2 Iteration: 3 Iteration: 70 Iteration: 71

...

(b) Our stable probability gradients

Figure 7.2: Probability gradients from the first three optimization frames and two
frames near the end. The previous method changes wildly, even when the underlying
densities change very little. Our method changes slowly, in step with the density
changes.

The resulting probability distribution leads to much stabler inertia gradients, as shown

in Fig. 7.2. In that figure, we show the probability gradients from the first three frames of

the optimization as well as two frames near the end. The element densities change only
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slightly during these frames, and yet the FEM-based gradients oscillate wildly. Using

our method, the gradient becomes very stable, and greatly improves the convergence of

the optimization (Fig. 7.12).

7.3 Constrained Restart Strategy

Eqn. 6.7 has a non-linear constraint and a large number of variables, so we use the

Method of Moving Asymptotes (MMA) [64] as our optimization algorithm.

The non-linearity of the probability constraint causes the optimization to often fall out

of the feasible region. MMA can recover, but often at the cost of oscillatory behavior that

converges to sub-optimal local minima [64]. One popular technique for addressing this

well-known problem is the Solid Isotropic Material with Penalization (SIMP) model [62],

but we found it to be insufficient for our case as shown in the following section.

7.3.1 Optimization with Different SIMP Parameters

SIMP penalizes intermediate densities in structural optimization by exponentiating

them when computing the stiffness matrix. This makes the intermediate densities un-

economical in the optimization, attempting to force them to go to either zero or one.

The exponent is a parameter, where increasing it will further penalize the intermediate

densities, but render the optimization more difficult.

In figure 7.4, we use SIMP with an exponent of 5. We experimented with different

choices and found it does not improve the results. As shown in figure 7.3, small SIMP

exponents (2 or 3) lead to an unacceptable number of intermediate densities. Increasing

the exponent above 10 often stall the optimization at the very beginning. We need a

different approach to overcome the local minima.

Instead, we found the following constrained restart method to be effective, which can
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Figure 7.3: Top row: Converged results using SIMP exponent 2,3 respectively. Bottom
row: Converged results using SIMP exponent 5, 10, respectively.

be viewed as a form of either block-cyclic reduction [28] or sand-filling [95]. We observe

that when the optimization stalls, it usually has found a preliminary, but promising,

reinforcement structure. Therefore, we perform multiple optimization passes where the

promising structures from the previous iteration are used as an initial guess.

We isolate these structures by applying threshold c to the current solution and con-

straining the results to ωe = 1 in Eqn. 6.7.

Next, we add a perturbation to push the global solution state out of its current local

minimum.

We compute extension density field βββ of the stalled solution ωωωi−1 and then use

min(ωωωi−1 + βββ, 1) as the initial state for the next pass. The extension field is computed

as:

βββ = max

(
1− SDF(V )

bβ
, 0

)
, (7.45)

where SDF is a signed distance field, V is the set of constrained voxels and bβ is a
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Iteration: 59

Figure 7.4: Left: The object weight and survival probability during the optimization.
Right: The local optimum at iteration 59.

bandwidth parameter. Fig. 7.5 illustrates these quantities. The strategy essentially

inflates the existing reinforcement structure for the next optimization pass.

Figure 7.5: Left: Solution ωωωi−1 after one optimization pass. Middle: The reinforce-
ment structure V from ωωωi−1. Right: Extension field βββ of V .

Using the extension field βββ and constraints on V , we run the next optimization

pass. We found this to be effective in perturbing the solution from local minima and

finding sparser and more interesting structures, e.g. as shown in Fig. 7.6. The complete

optimization is listed in Algorithm 2. We found that nopt = 3 rounds of optimization

with MMA produces converged results. As shown in Fig. 7.7, nopt > 3 produces little

change. In all our computations we set c = 0.7 and bβ = 16 grid cells.

141



Fast and Robust Stochastic Optimization Chapter 7

Figure 7.6: Left: Initial state min(ωωωi−1 + βββ, 1) for the next round of optimization.
Right: Converged result ωωωi after the next round.

nopt=1 nopt=2 nopt=3 nopt=4

Figure 7.7: Results with different nopt. We set nopt = 3 because nopt > 3 yielded
negligible improvements.

7.3.2 Sheathing Post-Process

Many algorithms constrain the exterior of the object during the optimization [75, 27].

However, the final object then has an outer shell that is the thickness of the (quite coarse)

voxel grid. However, as the shell is thickened, it can become the main reinforcement

structure in the model [75], which biases the optimization towards shell-like designs, and

results in heavier objects. Instead, we only constrain the shell at force contact locations,

allowing the optimizer to find a lighter reinforcement structure, and allowing surface
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Algorithm 2 Incremental Shape Optimization

Input: User-defined geometry , user defined failure probability Θ
1: procedure Shape optimization
2: ωωω1 ← 111
3: Optimize ωωω1 using MMA to convergence
4: V ← voxels in ωωω1 with density larger than c
5: for i from 2 to nopt do
6: Compute βββ from V
7: ωωωi ← min(ωωωi−1 + βββ, 1)
8: Constrain densities of V to 1
9: Optimize ωωωi using MMA to convergence

10: V ← voxels in ωωωi with density larger than c
11: end for
12: V ← ∅
13: ωωωf ← ωωωm

14: Optimize ωωωf using MMA to convergence
15: end procedure

Figure 7.8: A raven model optimized using our method. From left to right: The
initial object, the optimized density field, the final shape, and a cut-away view of
the final shape. Our method automatically reinforces the corner (commissure) of the
beak, circled in red, which is likely to break under real-world impacts. Material is
subtracted from regions that are unlikely to experience impacts.

regions which are unlikely to experience contact to be hollowed out. To preserve the

surface geometry, we perform a post-process that adds a thin “sheath” of material, far

below the resolution that we can simulate, along the original surface. We show in §7.4.4

that this sheathing has a minimal impact on the object’s performance.
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Figure 7.9: Force contact locations for different examples. Surfaces marked red are
possible contact locations.

7.4 Implementation and Results

7.4.1 Implementation Details

We initially voxelize the surface mesh according to the resolutions in Tbl. 7.4. We use

Bullet [96] to obtain rigid body force samples. For all our examples, we use the following

scenario: the shape falls 1 meter with a random initial orientation and small random

angular velocity, and hits a flat plane. We record the three initial contact events when

the shape hits the ground. We use ns = 5000 rigid body simulations in all our examples

and kept 90% of the total variance when performing PCA on the force samples. To

avoid checkerboard patterns, we augment our cost function with the energy term of from

Schumacher et al. [97]. We constrain the rigid body contact locations to ωe = 1 to ensure

that they do not change during optimization. As shown in Fig 7.9, these locations are
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usually very sparse and lie on the object’s convex hull. We use the following material

parameters: Young’s modulus = 2.2 GPa, density = 1.037 g/cm3, and yield stress =

0.031 GPa. The object is scaled so that the maximal bounding box dimension is 15 cm.

We implemented our algorithm in C++. OpenMP multi-threading was used whenever

possible, Eigen [88] is used for most matrix operations, Intel’s Paradiso was used to solve

linear systems, and Armadillo [98] was used for the GMMs. All our results were run on

a desktop with 192 GB of memory and a 2.4 GHz, 20-core Intel 6148.

7.4.2 Optimization Results

Fig. 7.10 shows that our method adds densities to locations of potential high stress.

In particular, fragile locations such as the head of the beaver, the extremities of the

camel, the handle and spout tip of the teapot, the beak corner (commissure) on the crow

(Fig. 4.7), and the pelvis of the Armadillo (Fig. 7.15, top) are reinforced during opti-

mization. Conversely, material is removed from low-stress regions. We do not constrain

the surface, so interesting contact-dependent structures form, such as the removal of the

beaver’s back, the tiger’s chest, and the divot between the camel’s humps.

To further explore the dependence of our algorithm on real-world contacts, we opti-

mized a beaver model with and without its tail (Fig. 7.11). The optimizer aggressively

subtracts material along the beaver’s back when collisions in that region become un-

likely. Fig. 7.12 compares our results to Langlois et al. [27], and shows that our method

consistently produces a superior (lighter) object. Tbl. 7.2 shows the survival probability

remains similar, and we achieve up to 3.22× lighter objects. Fig. 7.13 shows the object

weights and survival probabilities during optimization. Langlois et al. [27] stalls early,

while our method makes steady progress.
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Model Method Weight
(gram)

Improve-
ment

Survival
Probability

Rabbit
[27] 97.3 0.630

Ours 36.7 2.65× 0.662

Penguin
[27] 94.8 0.650

Ours 29.4 3.22× 0.767

Molar
[27] 63.6 0.598

Ours 32.3 1.96× 0.621

Table 7.2: The final object weight and survival probabilities of our method and Lan-
glois et al. [27]. Our method consistently produces lighter objects with similar survival
probabilities.

7.4.3 Post-Processing

As is common in many algorithms, we optimize over continuous densities (Fig. 7.14,

left).

To obtain the final mesh (Fig. 7.14, middle), we use marching cubes on the density

field [99] to obtain the ω = 0.5 isocontour. Since we did not constrain the exterior shell

of the object, we attach a thin shell of width dx
4

using the SDF of the original mesh,

where dx is length of one hexahedron (Fig. 7.14, right). We show in §7.4.4 that this thin

shell has a negligible effect on the final object’s weight and survival probability.

7.4.4 Optimization Validation

We ran several comparisons to validate our sheathing post-process. First, we com-

pared the results of the optimization with and without shell constraints (Tbl. 7.3). The

shell constraint consistently produces heavier results, even through the survival proba-

bility is almost identical. We then added a thin sheath to the results without the shell

constraint. The survival probability remains essentially the same (in the Armadillo case,

it actually improves), and the object weight remains significantly below that found using
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the shell constraint.

Model Configuration Weight
(gram)

Survival
Probability

Armadillo
with shell constraint 86 0.706
w/o shell constraint 56 0.706
sheathing post-process 66 0.700

Raven
with shell constraint 63 0.624
w/o shell constraint 42 0.624
sheathing post-process 48 0.632

Teapot
with shell constraint 75 0.737
w/o shell constraint 52 0.737
sheathing post-process 62 0.747

Tiger
with shell constraint 65 0.813
w/o shell constraint 45 0.813
sheathing post-process 52 0.819

Table 7.3: Results with and without the shell constraint, and with the sheathing
post-process from §7.3.2.

Additionally, we visualized the von Mises stresses for several models in Fig. 7.15. The

heavier shell-constrained models produce larger rigid body impact forces, and therefore

larger stresses. The sheath post-processed models have almost the same stress distribu-

tion as the original shell-unconstrained results, which indicate that the regions of likely

impact have been effectively reinforced.

7.5 Physical Validation

We printed five copies of our Raven model with the sheath and five copies without.

The results are shown in Fig. 7.16.

We then dropped each model from a height of 1.5 meters until a breakage occurred.

Each drop used a random initial orientation, and the results are listed in Tbl. 7.5.

We computed the expected survival probabilities from these breakage statistics, and

found that they are close to the probability predicted by our simulation.
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Time (s)

Model Resolution # Iters Sampling GMMs FEM
Solve

Grad Total Volume
Reduction

Survival
Proba-
bility

Armadillo 56× 64× 52 189 72.52 31.40 8.36 289.17 401.45 67.4% 0.706

Camel 20× 64× 52 142 70.14 20.00 3.71 140.34 234.19 64.8% 0.734

Beaver(tail) 56× 28× 64 162 60.55 22.56 6.28 200.84 290.23 70.4% 0.617

Raven 32× 64× 40 159 62.11 31.00 5.00 260.70 328.18 73.1% 0.624

Teapot 64× 36× 44 168 60.80 43.00 7.51 282.51 393.83 71.7% 0.737

Dog 40× 64× 60 103 74.69 32.44 11.8 341.81 460.71 77.4% 0.754

Tiger 32× 40× 64 134 67.36 31.04 4.93 170.77 274.10 67.1% 0.813

Penguin 36× 48× 40 97 21.74 42.11 11.5 180.51 255.85 71.3% 0.767

Rabbit 28× 44× 48 103 17.28 35.15 6.57 99.72 158.72 68.9% 0.662

Hand 40× 32× 24 98 30.72 28.28 3.80 57.66 120.46 68.8% 0.868

Molar 32× 28× 48 91 33.41 41.87 5.45 127.03 207.76 60.0% 0.621

Panda 28× 32× 36 95 17.22 35.12 4.54 90.30 147.18 68.2% 0.776

Table 7.4: Timing breakdown (in seconds), volume reduction, and survival probability
across different examples. The volume reduction is computed with final after the
sheathing post-process.

In Fig. 7.17 we show two breakage patterns from the sheathed and un-sheathed ob-

jects. Breaks occur around the beak or contact locations. In all five of our tests, as

predicted by our simulation, the sheath did not come into contact with the ground.
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sheathed un-sheathed
weight # of drops weight # of drops
44.02 g 4 41.68 g 5
45.00 g 4 42.62 g 3
44.84 g 3 42.48 g 3
44.44 g 3 41.77 g 2
44.89 g 2 41.26 g 2

Table 7.5: Number of experimental drops of the sheathed and un-sheathed objects
before breakage. Our predicted probability of remaining intact is respectively 0.632
and 0.624. The expected probability of remaining intact computed from the breakage
statistics and assuming a binomial distribution is respectively 0.688 and 0.666.
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Figure 7.10: Left: The teapot, camel, beaver, and tiger surface meshes. Middle: Final
optimized density field. Right: Final meshed results, rendered translucently to show
internal structure.

150



Fast and Robust Stochastic Optimization Chapter 7

Figure 7.11: Left: Optimized result of a beaver with its tail. Collision with its back
becomes very unlikely, so the region is entirely hollowed out. Right: With the tail
removed, the back experiences collisions, so the material remains.
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Figure 7.12: The Langlois et al. [27] algorithm vs. ours. Left: Original shape. Middle:
Stalled result from Langlois et al. Right: Improved result using ours.
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Figure 7.13: Left: The object weights and survival probabilities when optimizing using
Langlois et al. [27]. The convergence consistently stalls. Right: The same plots using
our method. Top to bottom: The rabbit, penguin, and molar models. The dashed
line is the constraint probability. In our method, the curves jump at optimization
restarts, but eventually reach lower weights.
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Figure 7.14: Left: Optimized density field. Middle: Post processed final shapes.
Right: Cut view of the post processed shapes.
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Figure 7.15: Left: The von Mises stress of models with a shell constraint. Middle:
Stresses without a shell constraint. Right: Stresses after a sheath is added. The
stresses appear in essentially the same regions. Notice the optimization with a shell
constraint produces a higher stress in the pelvis of the armadillo.
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Figure 7.16: Photos of the 3D printed results from the raven in Fig. 7.8.
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Figure 7.17: Photographs of breakage patterns. Left: Breakages of the un-sheathed
object. Right: Breakages of the sheathed object.

157



Chapter 8

Conclusion

Note: A significant portion of this chapter has previously appeared as [1, 2].

In this dissertation, I have described several methods of enhancing two specific existing

reduced-order methods. The new methods enable scalable and stable simulations, which

lead to visually interesting simulations that are not possible with previous approaches.

The methods presented covers two different scenarios: fluid simulations and structure

optimization. This further establishes reduced-order methods are applicable to a wide

range of physical simulations.

8.1 Summary of Results

First of all, I have described a version of the Eigenfluids algorithm that removes

the memory limitations imposed by basis storage. This is achieved by using analytical

Laplacian eigenfunctions and implicitly representing them using fast transformations.

The basis functions also generalize to Neumann boundary conditions. I showed the

linear system can be solved using common symmetric solvers. I presented the directable

dynamics of the fluid by modifying the advection tensor and showed the possibility to
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compress such tensor effectively. The method is made more practical as we are able to

improve the scalability of the original algorithm by over two orders of magnitude.

Next, I described an extension of Eigenfluids to polar and spherical coordinate sys-

tems, which allows the method to capture a variety of flows on different geometries. For

example: planetary flow, 2D flow inside a circle, and the 3D flow inside a sphere. To

achieve this, a new set of analytical basis functions were derived for each different domain.

The new basis functions admit fast transformations, allowing efficient velocity reconstruc-

tion. While designing the basis functions, I showed they can be made more general by

lifting orthogonality requirements. An orthogonalization approach is presented to rein-

troduce orthogonality into the simulation. The approach allows the advection tensor to

be expressed using the original analytical basis functions, which allows its entries to be

computed analytically as well.

Finally, I described an asymptotically faster and more robust method for stochastic

structural optimization. I reduced the previous quadratic complexity to linear, which

results in a two order of magnitude speed-up. This is achieved by leveraging the matrix

structures in gradient computations. The method is further stabilized by computing

robust gradients with GMMs. The optimization is improved by using a constrained

restart method to overcome the local minima. A more faster and robust stochastic

structural optimization is achieved, exhibiting more detailed and visually interesting

optimized shapes.

8.2 Limitations

Since Eigenfluids can simulate totally inviscid flows, its energy characteristics can

be visually distinct from more established methods. Particularly when the viscosity is

low, the algorithm can exhibit motions that can appear foreign to practitioners. While
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energy is conserved, its cascade is capped at a highest frequency. The energy dynamics

of this case can be seen in the supplemental video, where in the totally inviscid regime,

energy tends to spread evenly across the entire spectrum. The fact that we are able to

capture these flows enables a look-development workflow where a user can start in the

inviscid regime and gradually increases the viscosity until the desired look is achieved

(see, e.g., [13])

At this point, a new memory bottleneck appears in the form of advection tensor

storage. The most immediate direction for future work is to reduce the memory footprint

of this tensor. This can be accomplished through brute-force compression methods [80,

48], or by discovering compact new structures in the tensor, such as Kronecker product

formulations [28].

After extending the basis functions to spherical coordinates, we no longer require the

basis functions to be orthogonal. This implies they are no longer eigenfunctions of the

Laplacian operator. Therefore, the diffusion term no longer projects to the basis function

itself. We approximate the diffusion effect by computing a number to characterize the

frequency that is similar to the eigenvalues of the original Laplacian eigenfunctions [1].

We then exponentially decay the coefficients using this number. While this captures the

viscosity effect, a better treatment like Galerkin projection can be developed.

In the stochastic structural optimization, we hold the contact points fixed during the

optimization, which enables us to use a finite difference method to compute the inertia

gradients (i.e. the gradient of the rigid body simulator). However, this means that our

method cannot handle topological changes along the surface, so it limited to examples

where the external surface is prescribed. As a direction for future work, allowing the

gradients to incorporate shape changes would broaden the possible application areas.
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8.3 Future Work

First of all, the Eigenfluids method shares many similarities with spectral methods,

so treating our results as a fast transform for a single element would allow the advection

tensor to be re-used across multiple tiled domains. Mixed boundary conditions could

then be achieved by varying the conditions across these tiles. Coupling methods [47] still

need to devised for such elements.

We have not yet explored the extension of Eigenfluids to include liquid surfaces.

Although [52] showed some preliminary results, the ability for the basis functions to

resolve the velocity discontinuity across the interface is likely to be the limiting factor.

In this respect, the pseudo-spectral approach of [100] offers interesting possibilities.

For slip, perfectly-matched layer, or prescribed boundary conditions, additional con-

straints need to be considered when selecting basis functions. It remains to be seen if

closed-form, FFT-friendly solutions continue to exist in the presence of these constraints.

Our simulations are fast and memory-efficient because the simulation domain is lim-

ited to simple shapes like boxes. This allows us to use DCT and DST libraries directly,

but these operations cannot be directly applied to the unstructured tetrahedral meshes

shown in other work [14, 15]. New transform methods will need to be devised before these

irregular domains can achieve the same level of scalability. Wavelets and their associated

transforms seem like a promising direction, as they would also allow degrees of freedom

to be added to the regions that show the most spatial complexity.

By extending the basis functions to polar and spherical coordinates, we can simulate

the fluid over more domains like in a circle or a sphere. Because Eigenfluids do not exhibit

numerical viscosity, they are good candidates to enhance small scale vortex details. Also,

Eigenfluids in spherical coordinates closely resembles a particle. Therefore, one direct

extension of this is to use Eigenfluids to upsample existing simulations like in the vortex

161



Conclusion Chapter 8

particle method [35, 101]. New methods of incorporating such Eigenfluids particles into

the base flow need to be devised.

The introduction of the orthogonalization approach no longer requires the basis func-

tions to be orthogonal when they are being designed. The basis functions can be made

quite general, therefore one promising direction for future research is to extend Eigen-

fluids to more domains, for example, ellipsoids or even general curvilinear coordinates as

shown in [21]. As I showed in appendix A.3, the basis functions are likely not unique.

Therefore exploring basis functions that satisfy other constraints, for example, a sparse

advection tensor is promising as well. In contrast to the rectangular domain, increasing

the wavenumber of the basis functions in spherical coordinates do not refine the spa-

tial domain uniformly. Therefore, designing basis functions that uniformly refine spatial

domain is desirable.

In the stochastic structural optimization, while the constrained restart method works

in practice, it remains to be seen if the reinforcement structure can be identified and

constrained within a single optimization pass to improve convergence. Even with our

improvements, computing the probability gradient can still be a bottleneck due to its

dense linear algebra operations, which limits the resolution of our method. One way to

reduce this cost could be to use a sparse grid [66].
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Appendix A

Laplacian Eigenfunctions in Polar

and Spherical Coordinates

To find a vector basis functions in a polar domain, one may start with the scalar Laplacian

eigenfunctions in polar coordinates, similar to the Cartesian case. As shown in [102],

scalar Laplacian eigenfunctions in a disk domain ([0, 1]× [0, 2π]) is the following:

fn,k(r, θ) = Jn(αn,kr) cos(nθ)

fn,k(r, θ) = Jn(αn,kr) sin(nθ), n 6= 0,

(A.1)

where Jn(αn,kr) is the Bessel function of the first kind. The above function is orthogonal.

Transformations over Bessel function of the first kind (the Hankel transform) can be

computed efficiently in O(N log(N)) using FFT [103]. But it remains to be seen if

divergence-free vector basis functions can be constructed using scalar eigenfunctions. In

the following sections, I will attempt to construct a divergence-free vector field using

scalar eigenfunctions in A.1.

There are two directions toward this goal: The first is to decompose velocity into a
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radial ur and a tangent component uθ. The second is to decompose it into Cartesian

components: ux and uy.

A.1 Decomposing Velocity Basis as ur and uθ

In this case, we have: u = urer + uθeθ, where er, eθ are unit vectors along r and

its tangent direction. Assume two velocity components are separable: ur = A(r)B(θ),

uθ = C(r)D(θ). The divergence-free condition is:

ur + r
∂ur
∂r

+
∂uθ
∂θ

= 0

AB + rB
∂A

∂r
+ C

∂D

∂θ
= 0.

(A.2)

We can choose B,D in a way that ∂D
∂θ

= B, for example, B = cos(nθ), D = 1
n

sin(nθ).

Then we have:

A+ r
∂A

∂r
+ C = 0. (A.3)

Both ur,uθ have to choose from equation A.1 in order for u to be an eigenfunction of

the Laplacian operator. This requires A(r) and C(r) to be Bessel functions. However,

equation A.3 indicates that A+rA′ has to be a Bessel function as well. This is impossible

given that A is a Bessel function, this can be proven by contradiction.

First, A is a Bessel function:

r2A′′ + rA′ + (r2 − n2)A = 0. (A.4)
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AssumingA+rA′ is another Bessel function, then the following equation must be satisfied:

r3A′′′ + 4r2A′′ + 2rA′ + (r2 −m2)(A+ rA′) = 0. (A.5)

Take the derivative of equation A.4 and add with the above, we have:

r3A′′′ + 4r2A′′ + 2rA′ + (3r2 − n2)A+ r(r2 − n2)A′ = 0. (A.6)

Subtract above equation from A.5, we have:

(−2r2 + n2 −m2)A+ r(n2 −m2)A′ = 0 (A.7)

This is a different from the equation A.4. So the solution is not a Bessel function. This

contradicts with the assumption that A is a Bessel function. Therefore it is impossible

to satisfy equation A.3 if both A and C are Bessel functions. So it is impossible to

construct a divergence free basis using Laplacian eigenfunctions in a disk domain, in the

form: ur = A(r)B(θ), uθ = C(r)D(θ).

A.2 Decomposing Velocity Basis as ux and uy

Another possible direction is decomposing u in Cartesian coordinates: u = uxex +

uyey. Both ux,uy can be composed from equation A.1. First assume the basis is the
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following:

ux = aJn(αnr) sin(nθ)

uy = bJn(αnr) cos(nθ).

(A.8)

The divergence of above vector field is :

∇ · u = −1

r
sin(θ)

∂ux
∂θ

+ cos(θ)
∂ux
∂r

+
1

r
cos(θ)

∂uy
∂θ

+ sin(θ)
∂uy
∂r

= −1

r
sin(θ)naJn(αnr) cos(nθ) + aαn cos(θ) sin(nθ)Jn(αnr)

′

− 1

r
cos(θ)nbJn(αnr) sin(nθ) + bαn sin(θ) cos(nθ)Jn(αnr)

′

= −n
r

[a sin(θ) cos(nθ) + b cos(θ) sin(nθ)]Jn(αnr)

+ [a cos(θ) sin(nθ) + b sin(θ) cos(nθ)]αnJn(αnr)
′,

(A.9)

which can be simplified into the following:

∇ · u =

=
αn
2

(a− b)Jn−1(αnr) sin((n− 1)θ)− αn
2

(a+ b)Jn+1(αnr)) sin((n+ 1)θ),
(A.10)

because the Bessel function satisfies the following properties:

Jn(r) =
r

2n
(Jn−1(r) + Jn+1(r))

Jn(r)′ =
1

2
(Jn−1(r)− Jn+1(r)).

(A.11)

Therefore, both a− b = 0 and a+ b = 0 must be satisfied. This is not possible unless

a = 0, b = 0.

166



Laplacian Eigenfunctions in Polar and Spherical Coordinates Chapter A

Mixing different frequencies of Laplacian eigenfunctions can lead to a divergence-free

vector field. For example, if a = −b, we have the non-zero divergence be: aαnJn−1(αnr) sin((n−

1)θ). We could add another band of Laplacian eigenfunctions that cancel out this term.

For example, the following basis is divergence-free:

ux = Jn(αnr) sin(nθ) + Jn−2(αnr) sin((n− 2)θ)

uy = −Jn(αnr) cos(nθ) + Jn−2(αnr) cos((n− 2)θ).

(A.12)

The above basis mixes two frequencies unless n = 1, where it becomes:

ux = J1(α1r) sin(θ)

uy = −J1(α1r) cos(θ).

(A.13)

The above analysis also holds if cosine modes are used for ux and sine modes are used

for uy, or combinations of cosine and sine modes are used for θ. Mixing two bands of

Laplacian eigenfunctions may lead to non-orthogonal basis functions. Therefore, it is

unclear how two construct a divergence-free basis using only a single band of Laplacian

eigenfunction, unless n = 1.

Therefore, it seems difficult to construct a divergence-free vector field using scalar

Laplacian eigenfunctions in polar coordinates.
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A.3 Laplacian Eigenfunctions on the Surface of a

Sphere

It can be shown that the vector spherical harmonics form orthogonal bases on the

surface of a sphere. Define the orbital angular momentum operator as L = −ir × ∇.

One type of vector spherical harmonics are:

X =
1√

l(l + 1)
LY m

l

Xθ =
−mY m

l√
(l(l + 1)) sin(θ)

Xφ =
−i√

(l(l + 1))

∂Y m
l

∂θ

(A.14)

The vector field X is divergence free because:

∇ ·X =
1

r sin(θ)
[
∂

∂θ
(sin(θ)Xθ) +

∂Xφ

∂φ
]

1√
(l(l + 1))

1

r sin(θ)
[−m cot(θ)Y m

l −m(
∂Y m

l

∂θ
− cot(θ)Y m

l )− i ∂
∂φ

(
∂Y m

l

∂θ
)] =

1√
(l(l + 1))

1

r sin(θ)
[−m∂Y m

l

∂θ
+m

∂Y m
l

∂θ
] = 0

(A.15)

The vector field X is also shown to be orthogonal in [104].
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