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Abstract of the Dissertation

Vortex Models for Data Assimilation

by

Darwin Darakananda

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2017

Professor Jeff D. Eldredge, Chair

Inviscid vortex models have been used for decades to investigate unsteady aerody-

namics. However, real-time use of these models has been hindered by the tradeoff

between increasing a model’s dynamical capability and reducing its dimension-

ality. In this work, we present two different solutions to this problem. First, we

develop a hybrid model where vortex sheets represent shear layers that separate

from the wing and point vortices represent the rolled-up cores of these shear lay-

ers and the other coherent vortices in the wake. Instead of rolling up, each vortex

sheet feeds its circulation into a point vortex using a circulation transfer procedure

we developed. This procedure eliminates the spurious force that manifests when

transferring circulation between vortex elements. By tuning the rate at which the

vortex sheets are siphoned into the point vortices, we can adjust the balance be-

tween the model’s dimensionality and dynamical richness. This hybrid model can

capture the development and subsequent shedding of the starting vortices in real

time, and remain low-dimensional enough to simulate long time horizon events

such as periodic bluff-body shedding. Our second solution augments a vortex
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blob model with surface pressure measurements using the ensemble Kalman fil-

ter (EnKF). We adapt our circulation transfer procedure to aggressively aggregate

the vortex blobs in order to prevent the dimension of the system from increasing

indefinitely. The reduced number of blobs, along with the parallel nature of the

EnKF, allow this solution to also run in real time. We find that not only does the

data assimilation process compensate for the severe reduction in dimension, it also

seems to fill in some missing physics from our inviscid model.

iii



The disseration of Darwin Darakananda is approved.

Chris R. Anderson

Jason L. Speyer

Xiaolin Zhong

Jeff D. Eldredge, Committee Chair

University of California, Los Angeles

2017

iv



Table of Contents

1 Introduction 1

1.1 Reduced-Order Models . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Data-Driven Vortex Models . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Overview of this work . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Vortex Modeling of Aerodynamics 8

2.1 Vorticity Formulation of Navier-Stokes . . . . . . . . . . . . . . . . . 9

2.2 Modeling Regions of Vorticity . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Vorticity Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Overview of Existing Models . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Fixed-Wake Models . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Dynamic-Wake Models . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 Variable-Strength Vortex Models . . . . . . . . . . . . . . . . 19

2.5 Aerodynamic Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 A Hybrid Vortex Sheet/Point Vortex Model 21

3.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Aggregating Vortex Elements . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Effect of Circulation Transfer on Force . . . . . . . . . . . . . 23

3.2.2 Impulse-Matching Velocity Correction . . . . . . . . . . . . . 25

3.2.3 Circulation Transfer Rate . . . . . . . . . . . . . . . . . . . . 26

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Impulsive Translation at Fixed Angles of Attack . . . . . . . 29

3.3.2 Pitch up while translating . . . . . . . . . . . . . . . . . . . . 37

v



4 Data Assimilation 42

4.1 Bootstrapped Optimization Framework . . . . . . . . . . . . . . . . 43

4.1.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Ensemble Kalman Filter Approach . . . . . . . . . . . . . . . . . . . 51

4.2.1 Data Assimilation through Kalman Filters . . . . . . . . . . 54

4.2.2 Review of The Kalman Filter . . . . . . . . . . . . . . . . . . 54

4.2.3 The Ensemble Kalman Filter . . . . . . . . . . . . . . . . . . 59

4.2.4 Covariance Inflation . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.5 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.6 Applying the EnKF to a Vortex Model . . . . . . . . . . . . . 63

4.2.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Conclusion 88

5.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Appendices

A The Infinitely Thin, Flat Plate 91

A.1 Bound Vortex Sheet Strength . . . . . . . . . . . . . . . . . . . . . . 92

A.2 The Leading Edge Suction Parameter . . . . . . . . . . . . . . . . . . 95

A.3 Impulse of the Bound Vortex Sheets . . . . . . . . . . . . . . . . . . 96

A.4 Pressure Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B Impulse-Matching Velocity Correction 100

vi



List of Figures

2.1 Flat-wake model of the vorticity distribution along the trailing edge

wake as the airfoil performs an impulsive pitch.(Top) Beginning of

impulsive translation. (Middle) Impulsive reversal of angle of at-

tack. (Bottom) Continued translation at new angle of attack. . . . . 17

2.2 Comparison of the predicted large scale structures around the plate

using high fidelity CFD atRe = 1000 (top row), a point vortex model

(middle), and a vortex sheet model (bottom row). The CFD results

show the vorticity contours. The vortex models show the strength

and positions of the vortex sheets and point vortices, as well as the

number of control points used to model the vorticity field. . . . . . 18

3.1 xc, α, and c denote the centroid, angle of attack, and chord length

of the plate. Each vortex sheet has an associated point vortex that it

feeds circulation into. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Comparison of the vorticity distribution predicted at one convec-

tive time (left), and three convective times (right) between the pro-

posed hybrid model (top), a vortex sheet model (middle), and high-

fidelity CFD at Re = 500 (bottom). The positions of the positive and

negative strength point vortices are shown with filled and unfilled

circles, respectively, and N denotes the total number of computa-

tional elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



3.3 Comparison of the number of vortex particles used over time to sim-

ulate impulsive translation at 45◦ using different values of minimum

vortex release time interval: : U∆tmin/c = 0.1 ( ), U∆tmin/c = 0.2 (

), U∆tmin/c = 0.25 ( ). . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Early-time lift (left) and drag (right) coefficients for impulsive trans-

lation atα = 45◦ predicted by the hybrid model withU∆tmin/c = 0.2

( ), the vortex sheet model ( ), the Wang and Eldredge model

( ), and CFD results as Re = 500 ( ). . . . . . . . . . . . . . . . 32

3.5 Comparison of the circulation distribution around an impulsively

translated plate with fixed α = 45◦ at ten convective times between

U∆tmin/c = 0.05 (top), U∆tmin/c = 0.25 (middle), U∆tmin/c = 0.9

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Lift and drag coefficients for impulsive translation at α = 45◦ pre-

dicted by the hybrid model with U∆tmin/c = 0.1( ), U∆tmin/c =

0.2 ( ), and U∆tmin/c = 0.25 ( ) . . . . . . . . . . . . . . . . . . 34

3.7 Vorticity distribution predicted at different convective times by the

proposed hybrid model (left), a vortex sheet model (center), and

high fidelity CFD at Re = 500 (right). The positions of the positive

and negative strength point vortices are shown with filled and un-

filled circles, respectively, and N denotes the total number of com-

putational elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Early-time lift (left) and drag (right) coefficients for impulsive trans-

lation atα = 60◦ predicted by the hybrid model withU∆tmin/c = 0.2

( ), the vortex sheet model ( ), the Wang and Eldredge model

( ), and CFD results as Re = 500 ( ). . . . . . . . . . . . . . . . . 36

viii



3.9 Lift and drag coefficients for impulsive translation at α = 60◦ pre-

dicted by the hybrid model with U∆tmin/c = 0.1( ), U∆tmin/c =

0.2 ( ), and U∆tmin/c = 0.25 ( ) . . . . . . . . . . . . . . . . . . 36

3.10 Comparison of the number of vortex particles used over time to sim-

ulate impulsive translation at 60◦ using different values of minimum

vortex release time interval: : U∆tmin/c = 0.1 ( ), U∆tmin/c = 0.2 (

), U∆tmin/c = 0.25 ( ). . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.11 Circulation distribution predicted by (top) the hybrid model with

∆tmax = 0.1c/U and (bottom) a vortex sheet model for a pitching

plate with K = 0.7 at α = 33◦ (left), α = 90◦ (right). . . . . . . . . . 39

3.12 Lift and drag coefficients for a pitch-up maneuver at K = 0.7. Early-

time lift (left) and drag (right) coefficients for a pitch-up maneuver

at K = 0.7 predicted by the hybrid model with U∆tmin/c = 0.1 (

), the Wang and Eldredge model ( ), and CFD results as Re = 500

( ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.13 Comparison of the long term lift and drag coefficients for a pitch-up

maneuver atK = 0.7predicted withU∆tmin/c = 0.1 ( )U∆tmin/c =

0.2 ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.14 Circulation distribution predicted by the hybrid model with∆tmax =

0.2c/U for a pitching plate with K = 0.2 at α = 23◦ (left), α = 57◦

(center), α = 87◦ (right). . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.15 Lift and drag coefficients for a pitch-up maneuver at K = 0.2. Early-

time lift (left) and drag (right) coefficients for a pitch-up maneuver

at K = 0.2 predicted by the hybrid model with U∆tmin/c = 0.2 (

), the Wang and Eldredge model ( ), and CFD results as Re = 500

( ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



3.16 Long term lift and drag coefficients for a pitch-up maneuver at K =

0.2 predicted by the hybrid model with ∆tmax = 0.2c/U . . . . . . . . 41

4.1 Comparison of model predicted forces (Wang and Eldredge [59]

, Hemati, Eldredge, and Speyer [22] ) and forces predicted by

high-fidelity simulations ( ) for a pitch-up maneuver. (Left) Co-

efficient of drag. (Right) Coefficient of lift. (Top) 30 optimization

iterations. (Bottom) 1000 optimization iterations. . . . . . . . . . . . 46

4.2 Applying the bootstrapping procedure around t
(i)
f = 0.87. The gray

portions bounded by the dashed lines t− and t
(i)
f are used to generate

predictions for the time interval [t(i)f , t+] (Top) Comparison between

force predicted high-fidelity simulation ( ), and optimization up

to time t
(i)
f ( ) (Middle) Predicted force ( ) using previously

optimized results in the shaded interval. (Bottom) Corrected force

in the appended region after 5 iterations of optimization . . . . . . 50

4.3 Applying the bootstrapping procedure around t
(ii)
f = 1.30. The gray

portions bounded by the dashed lines t− and t
(i)
f are used to generate

predictions for the time interval [t(i)f , t+] (Top) Comparison between

force predicted high-fidelity simulation ( ), and optimization up

to time t
(i)
f ( ) (Middle) Predicted force ( ) using previously

optimized results in the shaded interval. (Bottom) Corrected force

in the appended region after 5 iterations of optimization . . . . . . 51

4.4 Comparison of vorticity distributions predicted by a vortex blob

model after one convective time with LESPc = 3.0 (top), LESPc = 0.3

(middle), and LESPc = 0.8 (bottom). . . . . . . . . . . . . . . . . . . 52

x



4.5 Comparison of pressure distributions across the plate predicted by

a vortex blob model with LESPc = 3.0 (top), LESPc = 0.3 (middle),

and LESPc = 0.8 (bottom). . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Comparison of the pressure coefficient distribution along the plate

over time between the CFD results and EnKF predictions with var-

ious covariance inflation settings for the pulse-free case. . . . . . . . 70

4.7 Comparison of the predicted normal force between ( ) CFD re-

sults, and ( ) EnKF ensemble mean for the pulse-free case. . . . . 71

4.8 Time history of the ensemble mean value of the critical LESP for the

pulse-free case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Number of vortex blobs used in the model over time when a com-

bined multiplicative and additive covariance inflation is used for the

pulse-free case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.10 Ensemble variances for the pulse-free case with both multiplicative

and additive covariance inflation . . . . . . . . . . . . . . . . . . . . 72

4.11 Ensemble variances for the pulse-free case with multiplicative co-

variance inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.12 Ensemble variances for the pulse-free case without covariance infla-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.13 Comparison of the vorticity distribution for the pulse-free case at 3

convective times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.14 Comparison of the vorticity distribution for the pulse-free case at

3.5 convective times. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.15 Comparison of the vorticity distribution for the pulse-free case at 4

convective times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



4.16 Comparison of the vorticity distribution for the pulse-free case at 5

convective times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.17 Comparison of the pressure coefficient distribution along the plate

over time between the CFD results and EnKF predictions with var-

ious covariance inflation settings for the single pulse case . . . . . . 77

4.18 Comparison of the predicted normal force between ( ) CFD re-

sults, and ( ) EnKF ensemble mean for the single pulse case. . . . 78

4.19 Time history of the ensemble mean value of the critical LESP for the

single pulse case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.20 Number of vortex blobs used in the model over time when a com-

bined multiplicative and additive covariance inflation is used for the

single pulse case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.22 Ensemble variances for the single pulse case without covariance in-

flation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.21 Ensemble variances for the single pulse case with both multiplica-

tive and additive covariance inflation . . . . . . . . . . . . . . . . . . 79

4.23 Comparison of the vorticity distribution for the single pulse case at

3 convective times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.24 Comparison of the vorticity distribution for the single pulse case at

3.5 convective times. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.25 Comparison of the vorticity distribution for the single pulse case at

4 convective times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.26 Comparison of the vorticity distribution for the single pulse case at

5 convective times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xii



4.27 Comparison of the pressure coefficient distribution along the plate

over time between the CFD results and EnKF predictions with var-

ious covariance inflation settings for the two pulses case . . . . . . . 83

4.28 Comparison of the predicted normal force between ( ) CFD re-

sults, and ( ) EnKF ensemble mean for the two pulses case. . . . . 84

4.29 Time history of the ensemble mean value of the critical LESP for the

two pulses case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.30 Number of vortex blobs used in the model over time when a com-

bined multiplicative and additive covariance inflation is used for the

two pulses case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.32 Ensemble variances for the two pulses case without covariance in-

flation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.31 Ensemble variances for the two pulses case with both multiplicative

and additive covariance inflation . . . . . . . . . . . . . . . . . . . . 85

4.33 Comparison of the vorticity distribution for the two pulses case at

3.5 convective times. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.34 Comparison of the vorticity distribution for the two pulses case at 4

convective times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.35 Comparison of the vorticity distribution for the two pulses case at 5

convective times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xiii



Acknowledgements

There are many people without whom this work would have been impossible. First

and foremost, I would like to thank my advisor, Professor Jeff Eldredge. Without

doubt, my decision to dive into the world of fluid dynamics was born from the

two classes I took from you as an undergraduate. It was with your support that I

was able to join SOFIA lab, and your guidance that helped me navigate the event

horizon around the black hole of curiosity. I would also like to thank my committee

members, Professor Xiaolin Zhong, Professor Chris Anderson, and Professor Jason

Speyer for their time and valuable insights.

I cannot overstate the impact that my friends have made on my last five years. I

would like to thank Kwitae Chong and Ethan Young for their kindness and open-

ness. Our lunch-time discussions made the entire journey more enjoyable. I have

to thank David Weisbart, who introduced me to the wonders and intricacies of

mathematics and Megan Weisbart for always being such a gracious host and let-

ting me camp out at their house whenever I called on David for technical support.

These visits were such wonderful retreats for me during my most stressful times.

Of course, I must thank my family for their continued encouragement and love.

Thank you all for being so understanding even as I worked through the holidays.

I especially want to thank my grandparents. You encouraged and developed my

childhood curiosity at the cost of many broken walls and furniture.

Last but not least, I must thank my best friend and fiancé, Angel Zhang. Your
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Chapter 1

Introduction

Experiments in aerodynamics have demonstrated that there exists a whole host of un-

steady and nonlinear phenomena that we can use to improve the agility and maneuver-

ability of our aircraft. Dickinson and Götz [12] measured the forces on a two-dimensional

model wing and found that the initial production of a leading edge vortex (LEV) can in-

crease the lift by 80% over the steady-state value. The subsequent shedding of the LEV

then results in a decrease in lift production. More recently, Taira et al. [55] performed high-

fidelity simulations of a three-dimensional flat plate at a variety of aspect ratios. While the

transport of spanwise vorticity affected the separation time of the LEV, they found that the

time at which maximum lift occurs is relatively constant over different aspect ratios and

angles of attack. These transient lift-enhancement mechanisms are instinctively used by

insects. By producing and manipulating LEVs, insects are able to sustain lift at angles of

attack that exceed the static stall angle. In fact, Ellington [15] demonstrated that the insects’

ability to hover can only be explained by unsteady aerodynamic theory, since without the

effects of added mass and vortex generation, earlier estimates of insect lift production by

Weis-Fogh [60] and Jensen [25] were unable to offset the insects’ weight.

A better understanding of unsteady aerodynamics is not only useful for enhancing

flight systems with flapping wings, but can also lead to improved performance of fixed-

wing aircraft. Amitay and Glezer [3] first showed that the lift of a fully stalled airfoil can

be temporarily enhanced by applying a pulse of actuation at the leading edge. Williams et

al. [62] then explored the effect of applying multiple pulses and modeled the response of
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these pulses as a convolution of shifted, single-pulse responses. Controllers based on this

model perform well for low-frequency pulse trains, but Kerstens et al. [29] found that when

the frequency of the pulses is on the order of the inverse convective time, the accuracy of

the predicted lift responses drops. Unfortunately, the frequency that results in the most

lift-enhancement and gust-suppression often lies in the latter range of pulse frequencies.

The decreased accuracy in this range is due to the nonlinear interaction between the pulse

responses, since the linear model requires that changes to the flow field be advected far

enough downstream so as to have their effect decorrelated with the effect of the next pulse.

While we are able to recreate many of these flight enhancing effects in high-fidelity

numerical simulations, we still need a better understanding of their key governing mech-

anisms before we can effectively control them. We need models of the full flow physics

that are simple enough for us to understand, low-dimensional enough to be used for real-

time flow control, yet dynamically rich enough to be useful. Vortex-based models were

one of the first attempts at addressing this need. Unfortunately, these vortex models had

to choose between dynamical richness and low-dimensionality, which limited their use

in flow control applications. In this thesis, we introduce a new class of vortex models

where the balance between dynamical richness and model dimension is adjustable. We

also demonstrate how empirical surface pressure can be assimilated into these reduced-

order vortex models to produce force responses with higher accuracy.

1.1 Reduced-Order Models

This work focuses on vortex-based models, which will be discussed in detail in Chap-

ter 2, but to provide context, we first discuss reduced-order models in general. A reduced-

order model can be characterized by what it considers to be a coherent structure, a spatial

structure that persists in time. Modal analysis is a common framework for identifying co-

herent structures. Using techniques from linear algebra, the flow field or the operator that
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evolves the flow field is linearly decomposed into separate modes. Then, a reduced-order

model is constructed by using a subset of the modes.

One of the most commonly used decompositions is the Proper Orthogonal Decompo-

sition (POD) [37]. When applied to data of the velocity field, POD produces the minimum

number of orthogonal modes necessary to capture the distribution of kinetic energy in

the flow field. An important property of POD is that the modes are ordered in decreasing

energy levels given by their coefficients. We can reduce the dimensionality of the data by

truncating the low energy modes while still retaining the highest energy structures in the

flow. Unfortunately, Aubry et al. [6] found that low energy modes can often trigger large

scale dynamics, so truncating them can lead to loss of important flow physics. This is

related to the concept of controllability and observability in control theory. A highly con-

trollable mode means a small change in the flow field has a large impact on the mode’s

coefficient. On the other hand, a highly observable mode means that a change to its coeffi-

cient leads to large changes in the flow field. In the case of POD, changes in the flow field

are essentially absorbed by the higher energy modes, making the lower energy modes less

controllable. However, since low energy modes can have large impacts on the overall flow

field, they can be highly observable.

To address this weakness, Rowley [49] introduced the Balanced POD (BPOD) method.

BPOD uses the impulse responses of the system and its adjoint system (which requires

running the system backwards in time) to determine the controllability and observability

of the system. Then, using a standard control systems technique called balanced trunca-

tion, BPOD finds the modes of the flow data where the most controllable modes are also

the most observable modes. As these modes are ordered in decreasing levels of observabil-

ity/controllability, we can safely truncate higher order modes without missing the most

excitable flow structures. Since BPOD requires the impulse response of the adjoint system,

it cannot process experimental data. This issue was resolved when Ma, Ahuja, and Rowley

[38] introduced the Eigensystem Realization Algorithm (ERA), which produces the same

3



reduced-order model as BPOD without requiring the adjoint impulse response. POD and

its variants are only a small part in a much larger space of modal analysis techniques. We

refer the reader to a recent review by Taira et al. [54] for a more complete overview of

modal analysis techniques.

As these modal analysis techniques arise from linear systems theory, the reduced-order

models they generate are immediately compatible with a variety of tools from linear con-

trol theory. Of course, this also means that these models may have a difficult time captur-

ing heavily nonlinear features of the flow. For example, Ahuja and Rowley [1] used BPOD

to derive a reduced-order model of flow past a flat plate at high angles of attack. They

were then able to use a linear quadratic (Kalman) filter in conjunction with the reduced-

order model to estimate the velocity field from sensor measurements, which was then fed

into a linear quadratic regulator (LQR) that controls an actuator at the trailing edge of the

plate. Although such a flow usually undergoes periodic vortex shedding, there exists an

unstable steady state. By linearizing the model about this unstable steady state, they were

able to avoid the nonlinearity of vortex shedding. The LQR was then able to suppress

vortex shedding indefinitely. However, this also means that the model is not adequate

for investigating flows with strong vortex dynamics, such as those in the development of

a LEV. So while the linearity of the model gave it direct access to the Kalman filter and

the LQR, linearity is also what limits the model’s applicability. There is active interest in

extending modal analysis to nonlinear systems [24], but we will take an alternative route

and explore vortex models.

Vortex models are another class of reduced-order models that define, unsurprisingly,

the vortex as the coherent structure of interest. Instead of identifying important coherent

structures, vortex models start off with the idea that vorticity is the “sinews and muscles

of fluid motion” [32]. Vortex models reduce the dimensionality of the fluid dynamics by

omitting certain physical processes, such as viscous diffusion, and representing regions

of vorticity with simple computational elements, such as point vortices. Unlike models
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derived from modal decomposition, vortex models retain the nonlinear nature of the flow

physics. This makes them a natural choice for modeling highly separated, vortex domi-

nated flows.

1.2 Data-Driven Vortex Models

Unlike models derived from modal decomposition, vortex models are not formulated

in a way that is directly compatible with data assimilation techniques from control theory.

Therefore, researchers have to either limit the dynamical richness of their vortex mod-

els, or develop new data assimilation procedures. In this section, we explore how three

different types of data sources are incorporated into vortex models.

The most common type of data is Eulerian measurements, where field quantities over

an entire spatial region is measured over time. An example of the fusion of Eulerian data

with vortex models can be found in a recent work by Pitt Ford and Babinsky [45]. The

authors investigated the development of the LEV and its effect on lift using snapshots

of experimental flow field data. They introduced a new method that represented these

snapshots as distributions of point vortices whose particle count, instantaneous positions,

and strengths are attained from the experimental velocity field. The bound circulation of

the airfoil is then adjusted to minimize the difference between the velocity field predicted

by the model and that observed empirically. This makes it possible for them to decompose

the vorticity field into contributions from the LEV, trailing edge vortex (TEV), and the

bound circulation around the airfoil, and evaluate the influence each component has on

the lift.

Another source of data is tracer particle trajectories, also known as Lagrangian data.

An early method for assimilating this type of data into vortex models was explored by

Kuznetsov, Ide, and Jones [33]. They used an extended Kalman filter (EKF) to estimate

the positions of point vortices given the trajectories of tracer particles. In order to make
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the model compatible with the EKF, the number of point vortices must be restricted to

some constant and given to the filter. The measurements are generated from the same

point vortex model with added white noise. They obtained promising results for moderate

levels of noise and initial tracer particle positions that are far away from transport barriers

in the flow.

For the purposes of aerodynamic flow control, the only practical source of data is mea-

surements on the airfoil. Hemati, Eldredge, and Speyer [22] used force measurements to

augment a vortex model developed by Wang and Eldredge [59], where the LEV and TEV

are represented as point vortices with time-varying strength. The ability to change the

strength of the point vortices allows the model to simulate the effects of releasing new

vorticity from the wing (i.e. vorticity flux) without creating new vortex particles. Us-

ing optimal control theory, Hemati, Eldredge, and Speyer then determined the sequence

of leading and trailing edge vorticity flux that would minimize the difference between

the model-predicted and empirically-measured force. However, the Wang and Eldredge

model did not have a built-in mechanism for modeling the formation of new vortex struc-

tures in the wake, which limited its use to short time intervals. In this work, we will build

on both the Wang and Eldredge vortex model as well as the data assimilation procedure

developed by Hemati, Eldredge, and Speyer.

1.3 Overview of this work

The primary contributions of this thesis are as follows:

• developed a procedure to transfer circulation between vortex elements in aerody-

namic flows that preserves the instantaneous force response

• enhanced the model optimization procedure originally developed by Hemati, El-

dredge, and Speyer to work with a real-time data source
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• integrated an ensemble Kalman filter with a vortex blob model to form a real-time

flow estimator

We start by reviewing the basic theories behind vortex modeling in Chapter 2. Then in

Chapter 3, we develop the impulse-matching circulation transfer procedure and demon-

strate it by integrating vortex sheets with point vortices of time-varying strength into a

method that is able to capture the formation of coherent vortex structures while remain-

ing computationally tractable for real-time control purposes. We show that by tuning the

rate at which circulation is transferred from the vortex sheets to the point vortices, we can

adjust the balance between the model’s dimensionality and dynamical richness. In Chap-

ter 4, we introduce two new methods of assimilating empirical data into vortex models.

We start with an extension to the model optimization procedure developed by Hemati,

Eldredge, and Speyer, enabling it to incrementally optimize a vortex model as new data

arrives. Then, we show how we can use an ensemble Kalman filter to improve a vortex

blob model using surface pressure data. Finally, in Chapter 5, we present our concluding

remarks and outline future directions for research.
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Chapter 2

Vortex Modeling of Aerodynamics

We are interested in the flow around a wing as it moves through a fluid. For the flow

regimes in which we are interested, the wing can be treated as a two dimensional rigid

body that is moving with velocity ub through an incompressible fluid with uniform den-

sity ρ and kinematic viscosity ν. We will assume that the wing is the only solid body of

relevance so that the fluid domain, Rf , starts from the body surface, Sb, and extends in-

finitely far. Under these conditions, the velocity of the fluid, u, is related to its pressure,

p, through the incompressible Navier-Stokes equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u, (2.1)

with a continuity constraint on the velocity field

∇ · u = 0, (2.2)

and the no-slip boundary condition on the surface of the body

u(x) = ub(x) : x ∈ Sb. (2.3)

While the continuity equation, Equation (2.2), is stated as a divergence-free condition on

the velocity field, it is actually responsible for the tight coupling of the velocity and pres-

sure fields. This tight coupling can be seen by taking the divergence of Equation (2.1) and
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substituting in Equation (2.2), which gives us

∇2p = −∇ · (u · ∇u). (2.4)

This pressure Poisson equation and the Navier-Stokes equations give us a way to co-evolve

the velocity and pressure fields forward in time. However, this velocity-pressure for-

mulation of the governing equations makes it difficult to decompose the flow field for

model reduction. Local changes in the velocity field have a wide reaching effect due to

the divergence-free condition, and local values of pressure require information about the

entire velocity field. This means that even if we are only interested in local changes to the

fluid velocities (e.g. to compute local changes to shear stresses on the body), we would

have to first solve for the changes to the global flow field. Fortunately, the vorticity formu-

lation of the Navier-Stokes equations provides a natural decomposition of the flow field.

All vortex models stem from this vorticity-based decomposition of the flow field. In this

chapter, we first review the role of vorticity and its dynamics. Then, we show how the

vorticity transport equation and its viscous-splitting interpretation provide a systematic

framework for constructing new vortex models. Finally, we review existing vortex models

of aerodynamics and see how they fit into this framework.

2.1 Vorticity Formulation of Navier-Stokes

We start by defining vorticity,

ω := ∇× u. (2.5)

and its integral counterpart, circulation

Γ :=

∮
C
u · dl =

∫
S
ω · n̂ dS. (2.6)
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We can recover the velocity field from the vorticity field by inverting Equation (2.5). For

now, let us temporarily relax the no-slip boundary condition, so that the fluid velocity can

be different from the solid velocity at their interface. This discontinuous jump in veloc-

ity across the solid-fluid interface can be represented as an infinitesimally thin sheet of

vorticity called a vortex sheet, with the strength of the sheet at any point given by

γ := u(x)− ub(x) : x ∈ Sb. (2.7)

Then the fluid velocity can be written in terms of the vorticity with

u(ξ) =
1

2π

∫
Rf

ω × ξ − x

|ξ − x|2
dR +

1

2π

∫
Sb

γ × ξ − x

|ξ − x|2
dS

+
1

2π

∫
Sb

(n̂× ub)×
ξ − x

|ξ − x|2
dS − 1

2π

∫
Sb

(n̂ · ub)
ξ − x

|ξ − x|2
dS. (2.8)

The first integral in Equation (2.8) is the standard Biot-Savart integral. It represents the

relationship between the velocity field and the vorticity field in the absence of internal

boundaries in the fluid. The last three integrals capture the displacement of the fluid that

is caused by the translation and rotation of the body. Note that if the no-slip condition

(Equation (2.3)) is enforced, then γ is zero.

We obtain the transport for vorticity by simply taking the curl of the Navier-Stokes

equations, Equation (2.1), to find

∂ω

∂t
+ u · ∇ω︸ ︷︷ ︸

advection

= ν∇2ω︸ ︷︷ ︸
diffusion

. (2.9)

Note in the equation above that if a fluid initially has no vorticity, it is impossible to gen-

erate new vorticity in the fluid. This suggests that vorticity can only enter into the fluid

through its boundaries, i.e. through the fluid-solid interface. Moreover, advection and

viscous diffusion both affect vorticity at a finite rate. In fact, in an incompressible flow, vor-
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ticity is the only fluid property that does not propagate instantaneously [36]. This means

that vorticity is always a finite distance away from the solid body. This compact nature of

vorticity naturally allows us to decompose the flow field into regions with vorticity and

regions without vorticity.

The advection and diffusion terms in the vorticity transport equation can be thought

of as two separate processes that occur in quick succession. This two-step viscous-splitting

can be written as

1. inviscid convection step
∂ω

∂t
+ u · ∇ω = 0 (2.10)

when vorticity moves with the fluid

2. diffusion step
∂ω

∂t
= ν∇2ω (2.11)

when vorticity simply diffuses.

As the time-step between these two processes go to zero, it can be shown that this al-

ternating process converges to the original vorticity transport equation [39]. Now let us

consider how the the two viscous-splitting steps interact with solid boundaries. In the

first step, since we assume the flow to be inviscid, we cannot enforce the no-slip condi-

tion. However, even inviscid fluids cannot flow through solid boundaries, so at least the

no-flow-through condition must be satisfied. Looking back at Equation (2.8), we see that

since vorticity is constrained to move with the fluid through Equation (2.10), and the body

motion is prescribed, the only term that is free to adjust is the vortex sheet on the body

surface. So during the inviscid advection stage, γ is responsible for taking on whatever

value it must to enforce no-flow-through. In the diffusion step, however, viscosity returns

so we now have to enforce the no-slip condition. If instead of interpreting the vortex sheet

simply as a velocity difference at the fluid-solid interface, we think of it as an infinitely thin

11



layer of vorticity in the fluid, then by diffusing the sheet into the fluid, we automatically

leave behind a solid surface with the no-slip condition enforced. A more involved and

detailed description of this process can be found in [11], but the key idea is that vorticity

dynamics near a surface can be divided into four steps:

1. advect vorticity with inviscid dynamics

2. create bound vortex sheets to enforce no-flow-through

3. inject vorticity from the bound vortex sheet into the fluid

4. and diffuse the ambient vorticity.

While there are viscous vortex methods that deal with the last step, most vortex models

in aerodynamics are concerned with how to model the first three. In this work, we will

focus on inviscid models where the wing is represented as an infinitely thin, rigid plate.

The properties of the bound vortex sheet around the thin plate are well understood, so the

modeling choices revolve mainly around the inviscid advection step and vorticity injection

step. The key variations among the different vortex models stem from how they address

these two steps. This allows us to characterize most vortex models by how they answer

the following questions:

• How should regions of vorticity be represented and moved?

• How should new vorticity be injected into the flow?

2.2 Modeling Regions of Vorticity

The most simple representation of vorticity is a point vortex. The velocity induced by

a point vortex is given by

upv(ξ) =
Γpv

2π
×

ξ − xpv∣∣ξ − xpv
∣∣2 . (2.12)
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The singular behavior as ξ → xpv can lead to very large velocities in clouds of point vor-

tices. It also means that we cannot represent a continuous distribution of vorticity by

increasing the number of point vortices used [35]. There have been many schemes for

handling the singularity numerically. For instance, in an early vortex model by Sarpkaya

[50], when two point vortices come within a threshold distance of each other, they are

merged into a single vortex. A more popular approach regularizes the induced velocity

by using a smoothed blob kernel

upv,ε(x) =
Γpv

2π
×

x− xpv∣∣x− xpv
∣∣2 + ε2

. (2.13)

We will refer to these regularized point vortices as vortex blobs.

The vortex sheet is another commonly used vortex element. It represents a disconti-

nuity in the velocity field where the tangential velocities on either side of the sheet are

allowed to be different, while the velocities normal to the sheet are required to be equal.

The strength of the sheet, γ, is determined by the difference in the tangential velocities

along the sheet. The velocity induced by a vortex sheet along the contour C is given by

uvs(ξ) = −
1

2π

∫
C
γvs ×

ξ − xvs(λ)

|ξ − xvs(λ)|2
dλ. (2.14)

Unlike a point vortex, a vortex sheet induces a velocity on itself. The governing equa-

tion for self-induced evolution of a vortex sheet is given by the Birckhoff-Rott equation.

Unfortunately, Moore [42] showed that the evolution of the vortex sheet is unstable. With-

out viscosity to dampen short-wavelength disturbances, the growth of Kelvin-Helmhotz

instabilities eventually results in parts of the sheet having infinite curvature. Practically,

this means that even the round-off error from numerical simulations will cause the vortex

sheet to become unstable [30].

Instead of using point vortex approximations of the vortex sheet, vortex blobs are used
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to artificially damp out small scale disturbances [31]

uvs,ε(ξ) = −
1

2π

∫
C
γvs ×

ξ − xvs(λ)

|ξ − xvs(λ)|2 + ε2
dλ. (2.15)

Hald and Del Prete [21] has shown that the vortex blob method converges to the solu-

tion for Euler’s equation. More recently, Nitsche, Taylor, and Krasny [44] compared the

results from a high-fidelity viscous simulation against results from a vortex sheet simula-

tion using a blob kernel. They found that while the detailed properties do not converge,

the vortex sheet was able to capture much of the large scale behaviors of the flow.

2.3 Vorticity Generation

Since the diffusion of vorticity into the fluid is a viscous phenomenon, we need to a way

to model it in an inviscid setting. We will focus our discussion on the vorticity generation

from an infinitely thin, flat plate.

An interesting characteristic of the infinitely thin plate is that it cannot support flow

around its edges. The fluid velocity at the edges of the plate is either tangent to the plate, or

infinite and normal to the plate. If the velocity is infinite at an edge, we also have an infinite

negative pressure at that edge. The infinite pressure, integrated across a vanishingly thin

area, gives rise to finite suction forces.

The most common criterion for determining vorticity flux from a flat plate, the Kutta

condition, requires that new vortex elements be released with strengths that eliminate

this singular behavior. The Kutta condition was originally used at the trailing edge of the

plate, as the angles of attack in the earlier models were low enough that there was no

vorticity flux from the leading edge. Although the Kutta condition has also been used at

the leading edge [5, 26, 59], it has mostly been restricted to flows at high angles of attack.

Since enforcing the Kutta condition requires the fluid velocity at the plate edges to be
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tangent to the plate, applying it to the leading edge at low angles of attack means that

flow has to move in the opposite direction as the freestream. This behavior is not only

physically not justifiable, it is also difficult to handle numerically.

Recently, Ramesh and Gopalarathnam [47] introduced a leading edge vortex shedding

criterion based on the observation that real airfoils can support a critical amount of suc-

tion before flow separation occurs. Correspondingly, Ramesh and Gopalarathnam defined

a leading edge suction parameter (LESP) that measures the suction at the leading edge

caused by the singular velocity. In their model, vortex elements are only released at the

leading edge if the LESP exceeds a critical value. The newly released vortex elements are

then responsible for bringing the suction parameter back down to the critical value. For

the low angle of attack flows considered in this thesis, we will be using this critical LESP

vortex shedding criterion.

2.4 Overview of Existing Models

2.4.1 Fixed-Wake Models

We first consider the flow around an airfoil at a low angle of attack that starts translating

from rest. The requirement for low angle of attack allows us to assume that the flow is

attached at the leading edge of the airfoil, and that vortex shedding comes mainly from

the trailing edge. The bulk of this vorticity comes from the bound vortex sheet necessary to

enforce no-flow-through and the Kutta condition during the impulsive start of the airfoil’s

motion. Once the bound vortex sheet has been built up and the initial trailing edge wake

has advected far from the body, only slight changes to the sheet’s strength is enough to

maintain the boundary conditions. The coarsest model for this system can be made by

assuming that the airfoil has achieved its final velocity and has been translating steadily
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for a long time, and that the bulk of the shed vorticity is far from the airfoil. The system

can be modeled as a single point vortex at infinity, with no additional injection of vorticity

into the wake. This assumption results in the Kutta-Joukowski lift theorem

L∞ = ρU∞Γ. (2.16)

Furthermore, since we assume that the Kutta condition is always maintained, the strength

of the starting vortex must be

Γ = U∞L sinα. (2.17)

The steady state lift is then

L∞ = ρU2
∞L sinα ≈ ρU2

∞Lα (2.18)

We can add another layer of sophistication to the Kutta-Joukowski model for transient

flows. Instead of a single point vortex at infinity, the airfoil continuously deposits vortic-

ity from its trailing edge as it moves. At every instant, the vorticity shed from the plate

has the appropriate strength to enforce the Kutta condition. In order to make the problem

more approachable by analytical methods, the trailing edge wake was assumed to be sta-

tionary, and changes in angle of attack are assumed to be small. This model was the first

vortex model for unsteady aerodynamics, also known as the Wagner model [58]. Wagner

computed the response of the force and circulation around the airfoil to a step change in

angle of attack. The response to arbitrary (but small) motion could be found by convolving

appropriately scaled step responses. This process is shown in Figure 2.1. The top row be-

gins the impulsive translation of the airfoil (equivalent to a step change in angle of attack

from 0◦). When the airfoil reaches the position indicated in the middle row, it reverses its

angle of attack while continuing its motion forward. The resulting distribution of vorticity

along the wake, indicated by the color, can be computed by convolving the appropriate
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Figure 2.1: Flat-wake model of the vorticity distribution along the trailing edge wake as
the airfoil performs an impulsive pitch.(Top) Beginning of impulsive translation. (Middle)
Impulsive reversal of angle of attack. (Bottom) Continued translation at new angle of
attack.

step responses. While Wagner formulated the model in the time-domain, Theodorsen ap-

proached the same problem through a frequency-domain method, with Garrick showing

that the two approaches are equivalent [57, 27, 19].

2.4.2 Dynamic-Wake Models

At higher angles of attack, there is flow separation from the leading edge, and the inter-

action between the leading edge vortices and trailing edge vortices often lead to nonlin-

ear behavior that the linear models cannot capture. For these problems, the assumption

of a linear, stationary wake is insufficient. To model vortex shedding from both edges,

researchers released vortex elements from both edges of the plate [50, 28, 5, 26]. In Fig-

ure 2.2, we compare the computed distribution of vorticity around a plate translating at

60◦ angle of attack. The top row shows results from a high-fidelity simulation of viscous

flow at Reynolds number of 1000. The second row shows the result when we use point

vortices as our vortex elements. This is similar to the work by Sarpkaya [50], except point

vortices are not merged together. The third row shows the results when we use vortex

17



sheets instead, as in the work by Jones [26].

Ut/c = 3.5Ut/c = 2.5Ut/c = 1.5

N = 300 N = 500 N = 700

N = 1144 N = 2262 N = 4050

Figure 2.2: Comparison of the predicted large scale structures around the plate using high
fidelity CFD at Re = 1000 (top row), a point vortex model (middle), and a vortex sheet
model (bottom row). The CFD results show the vorticity contours. The vortex models
show the strength and positions of the vortex sheets and point vortices, as well as the
number of control points used to model the vorticity field.

From the figures, it is clear that both the point vortex model and the vortex sheet model

can capture the dominant vortical structures in the flow field. In the second column, where

the shear layer connecting the plate to the trailing edge vortex starts to roll up, we see that

the smoothed coherent structure provided by the vortex sheet method makes it much eas-

ier to identify the shear layer instability than the point vortex method. This extra layer of

detail comes at the expense of computational cost. In order to maintain smooth connec-
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tivity along the sheet, points are routinely inserted into parts of the sheet where curvature

is high. While the number of computational elements used for the point vortex model

increased linearly with time, the number of vortex sheet elements grew almost quadrati-

cally. Even if fast O(n) particle methods are used to speed up the pairwise velocity com-

putations, the continuous increase in particles mean that these methods cannot be used

for real-time applications [20, 13].

2.4.3 Variable-Strength Vortex Models

While the methods described in the previous section captured the flux of vorticity into

the flow by releasing new vortex elements, there is another class of methods that model

vorticity flux by using point vortices with time-varying strength [7, 56, 59, 41]. In these

models, the dominant leading edge and trailing edge vortices are each modeled with a

single point vortex. The roll-up of the shear layers into large scale structures is modeled

by increasing the magnitude of the point vortices’ circulation. Brown and Michael [7]

showed that changing the strength of the point vortices introduced a pressure discontinu-

ity in the fluid, creating a fictitious force. While there is no way of removing the pressure

discontinuity, the velocities of the variable-strength point vortices can be modified so that

an additional force cancels out the effect of the pressure jump. More recently, Wang and

Eldredge [59] developed an alternate model where instead of canceling out the pressure

jump in the fluid, the point vortices are moved in a way so that the instantaneous force on

the immersed body is unaffected by discontinuous flux of vorticity into the fluid.

While the low number of computational elements make this class of methods much

more suitable for real-time applications, it also results in the models missing crucial flow

physics. Without a way to model the shear layers between the plate and the large coher-

ent vortices, these variable-strength vortex models cannot capture the transformation of a

shear-layer instability into a new coherent vortex.
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2.5 Aerodynamic Force

The force on a solid body moving through a fluid is typically calculated by either in-

tegrating the surface traction forces or by determining the change in momentum of the

fluid. Since our fluid domain is only internally bounded, the time derivative of the to-

tal fluid momentum will require us to determine the momentum of the fluid all the way

out to infinity. However, since the velocity field decays as r−2 in two dimensions and r−3

in three dimensions, the momentum velocity integral over the entire fluid domain is not

absolutely convergent [63]. While we can determine the pressure and shear stress from

the velocity field, it will be more helpful to determine force in terms of just velocity and

vorticity.

The force on an immersed body, F , can be written in terms of the linear impulse of the

fluid, P as [14, 63]

F = −ρdP
dt

, (2.19)

which can be expressed in terms of vorticity and velocity

F = −ρ d

dt

{∫
Rf

x× ω dR +

∮
Sb

x× γ dS +

∮
Sb

x× (n̂bf × ub) dS

}
(2.20)

The first integral represents the impulse of the ambient fluid, the second integral repre-

sents that impulse of the vortex sheet at the fluid-solid interface, and the last term is the

effect of added mass on the solid.
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Chapter 3

A Hybrid Vortex Sheet/Point Vortex Model

We want a model that is dynamically rich enough to capture the detailed vortex dy-

namics near the wing. One possible choice is to use a vortex sheet model. By monitor-

ing the dynamics of the sheets, we can detect the growth of new coherent vortices in the

fluid. However, as each vortex sheet is represented discretely by a large collection of vortex

particles, the use of spiraling sheets to model growing coherent vortices is computation-

ally expensive. In an attempt to minimize computational time, we follow the examples of

the low-order models and represent each coherent vortex with a single point vortex. The

growth of these large-scale vortices can then be modeled by transferring vorticity from

the tips of the vortex sheets into the point vortices. Though this hybrid representation has

been used to a limited degree in some previous studies [46, 26], the approach we follow

here is unique in that it is able to ensure that the force exerted on the plate is not spu-

riously affected by this transfer of circulation. This makes use of an extended version of

the impulse-matching principle that was developed by Wang and Eldredge [59]. By using

both vortex sheets and point vortices, we show that we can limit the number of vortex

particles in our model without losing the ability to naturally create new vortex structures.

3.1 Model Formulation

We model the ambient vorticity with three types of vortex elements:

• a vortex sheet rooted at each edge of the wing to represent the shear layers
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• an active point vortex with time-varying strength associated with each vortex sheet

to represent its rolled-up core

• a collection of inactive, constant strength, point vortices to represent large-scale vor-

tex structures in the wake

The vortex sheets themselves are constructed as an ordered collection of vortex blobs. As

noted by Moore [42] and Krasny [30], these sheets are inherently unstable and will am-

plify errors from numerical round-off. To suppress these small-scale instabilities, we ap-

ply Fourier filtering along the lengths of the vortex sheets at every time-step.

The wing is modeled as an infinitely thin, flat plate undergoing rigid body motion. At

every time-step, we enforce the Kutta condition at both edges of the plate by adding new

segments of circulation to the plate-end of the vortex sheets. At the same time, we trim the

number of vortex elements in our system by transferring circulation from the wake-end

of the sheets into the active point vortices.

α

c

x
c

Figure 3.1: xc, α, and c denote the centroid, angle of attack, and chord length of the plate.
Each vortex sheet has an associated point vortex that it feeds circulation into.

3.2 Aggregating Vortex Elements

While previous works [10, 9, 48] also aggregated vortex elements to reduce compu-

tational cost, they focused on identifying elements that can be merged without adversely
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affecting the vorticity field. These merging schemes tend to restrict the circulation and

distances between the mergeable vortex elements. In contrast, we typically do not want

the tips of our vortex sheets to be near their associated point vortex in order to avoid sim-

ulating the details of vortex sheet roll-up. As shown in Figure 3.1, we want to transfer

circulation from the vortex sheets directly to the point vortex representing its core. Since

we are ultimately interested in the force exerted by the fluid on the plate, we will instead

construct the transfer process to preserve the model’s force response.

3.2.1 Effect of Circulation Transfer on Force

Let F be the force exerted on a body as it moves through a fluid with density ρ. If P is the

linear impulse of the fluid, then

F = −ρdP
dt

. (3.1)

In two dimensions, the fluid impulse takes the form:

P =

∫
x× ω dA+

∮
x× γ dl +

∮
x× (n̂× uB) dl, (3.2)

where

• ω is the vorticity in the fluid

• γ is the strength of the bound vortex sheet on the body

• n̂ is normal vector on the body surface

• and uB is the velocity at the body surface.

Since our wing is modeled as a plate with infinitesimal thickness, the last integral in Equa-

tion (3.2) is zero, leaving us only the impulse from ambient vorticity and the bound vortex

sheet. The bound vortex sheet is necessary to maintain the no-flow-through condition on
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the body surface. If we decompose the ambient vorticity field into Nv discrete vortex ele-

ments, then we can interpret the bound vortex sheet as a superposition of Nv + 1 sheets,

that is

γ =
Nv∑
i=1

γi + γB, (3.3)

where each γi cancels out the body normal velocity induced by the i-th vortex element,

and γB cancels out the normal velocity due to the body’s motion. We take advantage of

this interpretation and decompose the fluid impulse into two components P A and PB,

where

P = P A + PB (3.4)

with

P A =
Nv∑
i=1

xi × Γi
A +

∮
x× γi dl (3.5)

and

PB =

∮
x× γB dl (3.6)

The component P A depends only on the ambient vorticity, and PB depends only on the

motion of the body. The force exerted on the body can then be expressed as

F = −ρ
(
dP A

dt
+

dPB

dt

)
. (3.7)

Since PB is independent of the vortex dynamics, the process of transferring circulation

between vortex elements will only influence dP a/ dt. Denote by p(x,Γ) the function that

takes as inputs the positionx and circulationΓ of a vortex element and returns the impulse

of that element and its associated bound vortex sheet, i.e.

P A =
Nv∑
i=1

p(xi,Γi). (3.8)
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Then we have
dP A

dt
=

Nv∑
i=1

(
dp

dx

∣∣∣∣
xi,Γi

ẋi

)
+

(
dp

dΓ

∣∣∣∣
xi,Γi

Γ̇i

)
. (3.9)

For real flows, Kelvin’s circulation theorem requires circulation to be a material quantity,

with Γ̇i equal to zero. If we violate this restriction, we will introduce a spurious force that

is proportional to Γ̇i.

3.2.2 Impulse-Matching Velocity Correction

As we are intent on transferring circulation, we will mitigate the unwanted change to the

force by modifying the velocity of a vortex element. Let us denote the vortex elements

we are transferring circulation between with subscripts s and t (for source and target). To

conserve total circulation, we feed circulation into the target element at the same rate that

we draw it from the source element, that is

Γ̇ = Γ̇t = −Γ̇s.

We now modify the velocity of the target element such that

−1

ρ
∆F =

(
dp

dx

∣∣∣∣
xt,Γt

∆ẋt

)
+ Γ̇

(
dp

dΓ

∣∣∣∣
xt,Γt

− dp

dΓ

∣∣∣∣
xs,Γs

)
= 0, (3.10)

leaving the force on the plate unaffected by the circulation transfer procedure. In our

model, we will be transferring circulation from a vortex sheet to a point vortex. We de-

fer the derivation of the velocity correction to Appendix B and simply present the result

below. To streamline the presentation, we will use complex coordinates where z = x+ iy

is the complex coordinates of the point vortex in inertial space, zc is the complex position

of the plate centroid, and z̃ is the position of the point vortex in a plate-centered frame of
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reference

z̃ :=
2e−iα

c
(z − zc).

The velocity correction, in inertial coordinates, can then be written as

∆żt = ieiα
c

2

(
(p̂s − p̂t)(β

? + 1)− (p̂?s − p̂?t )(β
? − 1)

β + β?

)
Γ̇

Γt

(3.11)

where ? denotes complex conjugation,

p̂i := Im {z̃i} − iRe
{√

z̃i − 1
√
z̃i + 1

}

and

β :=
z̃t√

z̃t − 1
√
z̃t + 1

.

3.2.3 Circulation Transfer Rate

This circulation transfer process can be thought of as a real-time model order reduction

process in which the circulation transfer rate, Γ̇, is at the discretion of the user. A small Γ̇

magnitude may not be able to remove circulation from the sheet as fast as new circulation

is introduced into it from the edge. However, a large Γ̇ might change the vorticity distri-

bution so drastically that the new reduced-order model might no longer observe the same

dynamics as the original system. Consider a circulation transfer that takes place over the

time interval [t0, t0 + ∆t]. The velocity correction can only guarantee that the force pre-

dicted by the reduced model is equal to the force predicted by the original model at time

t0. Since circulation transfer is not a lossless reduction of order, the small differences be-

tween the two models means that, in general, the forces that they predict at time t0 + ∆t

will be different. We can pick Γ̇ to bound the difference between the predicted forces over

∆t to be below an error threshold, denoted as εF .
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In practice, our vortex sheets are represented as ordered collections of regularized

point vortices and our model is evolved forward in time with discrete time-marching.

The strength of each of these vortex elements of the sheet is proportional to the time-step

size, since each such element is formed from the circulation flux from the plate’s edge over

some previous time-step. The transfer of circulation from the sheet into the target point

vortex over time-step∆t comprises an elimination of some finite number of sheet elements

from the edge of the sheet. So at every time-step, we first compute the force that the model

will predict if no circulation transfer occurs. We transfer circulation from as many of the

regularized point vortices as we can (thereby eliminating these vortices from the sheet)

into the active point vortex, stopping only when the accumulated error in predicted force

exceeds εF .

There are instances where even transferring circulation from a single point vortex from

the sheet results in large errors in the predicted force. We treat this as an indication that

the tip of the vortex sheet and the active point vortex are becoming dynamically distinct,

suggesting the possibility of a new vortex core. At this point, we can freeze the strength

of the active point vortex, and convert the tip of the vortex sheet into the new active point

vortex. A large number of new active point vortices may be released in quick succession

when small instabilities form near the tip of the vortex sheet. In order to make the method

more robust to these instabilities, we require a minimum time interval between the release

of new active point vortices, which we will refer to as ∆tmin.

The selection of εF and∆tmin leads to the complete taxonomy of inviscid vortex models.

Suppose we set εF = 0 and∆tmin = 0. This means that no circulation transfer occurs due to

the zero tolerance for error, and the sheet’s last vortex element is converted into a distinct

point vortex at every time-step. This leads to a traditional discrete vortex element model

[50, 28, 64]. Alternatively, if we set εF = 0 and ∆tmin = ∞, then we will never transfer

circulation to the active point vortex, but no new point vortices will ever be created, leaving

us essentially with a vortex sheet model [26, 51, 2]. If we instead make εF = ∞, then any
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circulation shed from the plate to the sheet through the Kutta condition is immediately

absorbed by the active point vortex, giving us a version of the Wang and Eldredge model.

Alternatively, if we substitute the modified velocity of this vortex derived here for the

Brown-Michael equation [7], we would obtain the variable-strength vortex models based

on that equation [41].

Once we have picked values of εF and ∆tmin, then we perform the following procedure

at every time-step:

1. For every point vortex comprising the vortex sheet, we determine the velocity cor-

rection it will contribute to the active point vortex if we transfer all of its circulation

to that vortex.

2. Advect all vortex elements forward in time and compute their individual impulse.

3. Starting from the wake end of each vortex sheet, we attempt to transfer circulation.

Suppose we have already transferred circulation from nv number of point vortices

from the vortex sheet, and we are attempting to transfer the (nv + 1)-th one. Then:

(a) We compute the impulse of the active point vortex with the accumulated circu-

lation and velocity correction from the nv + 1 point vortices .

(b) If the difference between this impulse and that accumulated from the (nv + 1)

point vortices is less than ∆t · εF , then we transfer the circulation of this vortex

(and eliminate the vortex from the sheet), and return to step 3a and proceed to

the next vortex in the sheet.

4. If nv > 0, or the time since we last created a new point vortex is less than ∆tmin, then

we continue to step 5. Otherwise, we turn the current active point vortex into an

inactive one, and the tip of the vortex sheet into the new active point vortex.

5. Apply Fourier filtering to the vortex sheet to redistribute the point vortices evenly

along the sheet and remove small-scale instabilities.
28



6. Add new vortex sheet segment at the root of each sheet to enforce the Kutta condi-

tion.

3.3 Results

In this section, we use the proposed method to model the impulsive translation of a

plate at high angles of attack, as well as pitch-up maneuvers. During the pitching motion,

which starts at t1 and ends at t2, the leading edge of the plate translates horizontally at

a constant velocity, U , while the angle of attack goes from 0◦ to αf = 90◦ as a smoothed

linear ramp given by

α(t) =
K

as
G(t) (3.12)

where K := αf/(t2 − t1)c/(2U) is the non-dimensional pitch rate, as is a smoothing pa-

rameter, and

G(t) = log

[
cosh(asU(t− t1)/c)

cosh(asU(t− t2)/c)

]
+ asU(t1 − t2)/c (3.13)

is a smooth ramp function.

3.3.1 Impulsive Translation at Fixed Angles of Attack

We start by considering the case with 45◦ angle of attack. In Figure 3.2, we compare the

vorticity distribution predicted by the hybrid model, a vortex sheet model, and a Re = 500

high-fidelity Navier-Stokes simulation after one and three convective times. The high-

fidelity CFD simulations are performed with the immersed boundary projection method

developed by Taira and Colonius [53]. The hybrid model results presented in the figure

uses a minimum vortex release interval of ∆tmin = 0.2c/U , and an error threshold of εF =

0.001ρU2c. We see that the hybrid model captures the same large-scale vortex structures as
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the vortex sheet model while using an order of magnitude fewer computational elements.

In Figure 3.4, where we compare the lift and drag coefficients predicted by the hybrid

model, the Wang and Eldredge model (i.e. only two variable-strength point vortices and

no sheets), and CFD results, we see that it is important that we do not completely eliminate

the vortex sheets. The sheets enable the model to naturally capture the formation of new

coherent vortices, which then triggers large-scale vortex shedding. This mechanism allows

the hybrid model to give a more accurate force prediction than existing variable-strength

point vortex models.

We show the effects of changing the minimum vortex release interval in Figure 3.5.

We see that a small ∆tmin gives results that are more similar to those from discrete vortex

models. As we increase ∆tmin, more circulation is fed into each active point vortex, so

we decrease the total number of vortex particles in the model. However, very large values

of ∆tmin tend to result in longer vortex sheets, which significantly increase the number of

computational elements. Since we would rather represent large-scale vortex structures

using a handful of point vortices than as tightly spiraled vortex sheets, ∆tmin should be

around the expected vortex shedding period. In Figure 3.3, we show how different values

of ∆tmin affect the number of vortex particles used in the model over time. While the

sharp increase in particle count corresponds to the lengthening and growth for the vortex

sheets, the sharp drops correspond to the growth of active point vortices as they consume

the sheets. As long as ∆tmin is small enough to prevent the vortex sheet from growing

faster than its active point vortex can absorb it, we can keep the particle count low enough

to simulate flows over extended periods in real-time.
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Figure 3.2: Comparison of the vorticity distribution predicted at one convective time (left),
and three convective times (right) between the proposed hybrid model (top), a vortex sheet
model (middle), and high-fidelity CFD at Re = 500 (bottom). The positions of the positive
and negative strength point vortices are shown with filled and unfilled circles, respectively,
and N denotes the total number of computational elements.

A concern with using a minimum vortex release interval is that it will introduce a

1/∆tmin frequency component to the system and cause vortex shedding to lock-on to that

frequency. We can see that this is not the case in Figure 3.6, as U∆tmin/c = 0.1, 0.2, 0.25 all

predict essentially the same force response.
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Figure 3.3: Comparison of the number of vortex particles used over time to simulate im-
pulsive translation at 45◦ using different values of minimum vortex release time interval:
: U∆tmin/c = 0.1 ( ), U∆tmin/c = 0.2 ( ), U∆tmin/c = 0.25 ( ).
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Figure 3.4: Early-time lift (left) and drag (right) coefficients for impulsive translation at
α = 45◦ predicted by the hybrid model with U∆tmin/c = 0.2 ( ), the vortex sheet model
( ), the Wang and Eldredge model ( ), and CFD results as Re = 500 ( ).
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Figure 3.5: Comparison of the circulation distribution around an impulsively trans-
lated plate with fixed α = 45◦ at ten convective times between U∆tmin/c = 0.05 (top),
U∆tmin/c = 0.25 (middle), U∆tmin/c = 0.9 (bottom).
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Figure 3.6: Lift and drag coefficients for impulsive translation at α = 45◦ predicted by the
hybrid model with U∆tmin/c = 0.1( ), U∆tmin/c = 0.2 ( ), and U∆tmin/c = 0.25 ( )

The results for the α = 60◦ case are mostly similar to the α = 45◦ case. Figure 3.7

shows the early time vorticity distribution predicted by the model, and Figures 3.8 and 3.9

show the predicted force response. We see that the initial development of the leading and

trailing edge vortices predicted by the hybrid model is very similar to the CFD results. As

in the 45◦ case, the ability to model large-scale vortex shedding allows the model to give

a more accurate force response than the Wang and Eldredge model.
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Figure 3.7: Vorticity distribution predicted at different convective times by the proposed
hybrid model (left), a vortex sheet model (center), and high fidelity CFD at Re = 500
(right). The positions of the positive and negative strength point vortices are shown with
filled and unfilled circles, respectively, and N denotes the total number of computational
elements.
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Figure 3.8: Early-time lift (left) and drag (right) coefficients for impulsive translation at
α = 60◦ predicted by the hybrid model with U∆tmin/c = 0.2 ( ), the vortex sheet model
( ), the Wang and Eldredge model ( ), and CFD results as Re = 500 ( ).
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Figure 3.9: Lift and drag coefficients for impulsive translation at α = 60◦ predicted by the
hybrid model with U∆tmin/c = 0.1( ), U∆tmin/c = 0.2 ( ), and U∆tmin/c = 0.25 ( )
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Figure 3.10: Comparison of the number of vortex particles used over time to simulate im-
pulsive translation at 60◦ using different values of minimum vortex release time interval:
: U∆tmin/c = 0.1 ( ), U∆tmin/c = 0.2 ( ), U∆tmin/c = 0.25 ( ).

3.3.2 Pitch up while translating

We now consider pitch up maneuvers, starting with K = 0.7. Unlike the high angle of

attack cases described previously, the extended amount of time that the plate spends at

low angles of attack makes it challenging to release vortex sheets from the leading edge.

If we apply the Kutta condition, then it requires the vortex sheet to leave the plate tangent

to the plate, in a direction nearly opposite the relative free stream. Instead, we will use the

leading edge suction criteria proposed by Ramesh and Gopalarathnam [47]. However, by

relaxing the Kutta condition, the singular velocity at the leading edge will introduce large

amounts of instability into the vortex sheet. Additionally, at very low angles of attack, the

circulation released at the leading edge is so weak that new vortex particles tend to remain

near the plate’s surface instead of rolling into a sheet. Having these point vortices so close

to the plate introduces large fluctuations in the force response due to the large tangen-

tial motions generated by the no-flow-through condition. In this case, moving circulation

from the sheet to the active point vortex not only absorbs the small-scale instabilities in the

sheet, but also tends to move vortex elements away from the plate surface, thus reducing

the noise in the force response. Figure 3.12 shows a comparison of the lift and drag coef-
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ficients during the pitch up motion. In vortex models with only variable strength point

vortices, such as the Wang and Eldredge model, the vorticity flux from the leading edge

goes directly into the active leading edge vortex. The fast growth of such a point vortex

means that these models tend to over-predict the lift on the plate. In the proposed model,

the leading edge circulation is distributed between the active point vortex and the vortex

sheet, which gives a more accurate force response. Figure 3.13 shows the lift and drag co-

efficients as the flow settles down to periodic bluff-body shedding past a plate at normal

incidence.

For the K = 0.2 pitching case, the plate spends even longer in low angle of attack

configurations. From both the vorticity distribution in Figure 3.14 and the predicted force

response in Figure 3.15, we see more noise than in the K = 0.7 case. In these results, the

circulation transfer rate is just high enough to keep the vortex sheets short and stable until

the plate reaches a high angle of attack. As with the K = 0.7 case, we see in Figure 3.16

that the hybrid model also predicts periodic bluff-body shedding for the K = 0.2 case.

Figure 3.15 shows a comparison of the lift and drag coefficients as the plate is pitching up.
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Figure 3.11: Circulation distribution predicted by (top) the hybrid model with ∆tmax =
0.1c/U and (bottom) a vortex sheet model for a pitching plate with K = 0.7 at α = 33◦

(left), α = 90◦ (right).
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Figure 3.12: Lift and drag coefficients for a pitch-up maneuver at K = 0.7. Early-time lift
(left) and drag (right) coefficients for a pitch-up maneuver at K = 0.7 predicted by the
hybrid model with U∆tmin/c = 0.1 ( ), the Wang and Eldredge model ( ), and CFD
results as Re = 500 ( ).
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Figure 3.13: Comparison of the long term lift and drag coefficients for a pitch-up maneuver
at K = 0.7 predicted with U∆tmin/c = 0.1 ( ) U∆tmin/c = 0.2 ( )
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Figure 3.14: Circulation distribution predicted by the hybrid model with ∆tmax = 0.2c/U
for a pitching plate with K = 0.2 at α = 23◦ (left), α = 57◦ (center), α = 87◦ (right).
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Figure 3.15: Lift and drag coefficients for a pitch-up maneuver at K = 0.2. Early-time lift
(left) and drag (right) coefficients for a pitch-up maneuver at K = 0.2 predicted by the
hybrid model with U∆tmin/c = 0.2 ( ), the Wang and Eldredge model ( ), and CFD
results as Re = 500 ( ).
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Figure 3.16: Long term lift and drag coefficients for a pitch-up maneuver at K = 0.2 pre-
dicted by the hybrid model with ∆tmax = 0.2c/U .
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Chapter 4

Data Assimilation

A key open problem in vortex modeling is determining how much vorticity to release

from the leading edge. While it is generally accepted that the Kutta condition is a valid

vortex shedding criterion to use at the trailing edge, its use at the leading edge in numerous

vortex models [5, 26, 59, 7] is mainly due to the lack of better criteria. This has driven the

exploration of data-assisted leading edge shedding criteria. In a discrete vortex model

developed by Katz [28], leading edge shedding was tuned with a handful of parameters.

Some parameters, such as the position of the leading edge separation point, were chosen

based on experimental data, while others were adjusted to bring the predicted force closer

to the measured force. In more recent work, Ramesh and Gopalarathnam [47] introduced

a shedding criterion based on the observation that real airfoils can support a critical level

of suction around the leading edge before flow separation is triggered. Correspondingly,

the authors suggested the use of the leading edge suction parameter (LESP), a measure of

the leading edge suction peak, to govern vortex shedding. In their model, when the LESP

is below a critical value, which we will denote as LESPc, no vorticity is released. However,

when the instantaneous LESP exceeds LESPc, vortex particles will be released with the

appropriate amount of strength to bring the LESP down to LESPc. By tuning their discrete

vortex model with an empirically determined LESPc, the authors were able to predict lift

responses that were in good agreement with experimental results. However, since the

model was statically tuned, it had some difficulty handling real-time perturbations to the

flow, such as gusts or freestream disturbances.
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Hemati, Eldredge, and Speyer [22] took another approach and explored the problem

from an optimal control perspective. The leading and trailing edge vorticity fluxes were in-

terpreted as inputs to a nonlinear dynamical system. They then used variational methods

to find the time history of the leading and trailing edge vorticity fluxes that would min-

imize the squared error between the empirically measured and model-predicted forces.

While this optimization technique produces good results, it requires the measurements to

be available over the entire optimization window. So while it is a useful post-processing

tool, it is also not directly applicable for real-time estimation.

In this chapter we adapt both the work of Hemati, Eldredge, and Speyer and Ramesh

and Gopalarathnam so that they can better assimilate data in real time. In Section 4.1,

we build upon the work of Hemati, Eldredge, and Speyer by presenting a “bootstrap-

ping” procedure, wherein previously optimized results are used to predict the vorticity

fluxes in a short, appended window. The new vorticity flux trajectory is then optimized to

match the empirical force over the appended window. This predictor-corrector cycle can

be pushed forward in time as force data becomes available. In Section 4.2, we first augment

the discrete vortex model introduced by Ramesh and Gopalarathnam with the impulse-

matching circulation transfer method presented in the previous chapter. This prevents

the dimensionality of the model from increasing continuously, which then allows us to

further enhance the model using the ensemble Kalman filter.

4.1 Bootstrapped Optimization Framework

As our current work builds from the model optimization framework by Hemati, El-

dredge, and Speyer, we will briefly summarize the procedure here. Let us define the sys-

tem state z as the vector containing the positions x and strengths Γ of the point vortices
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z ≡

x

Γ

 . (4.1)

For example, in a two-vortex model, z ∈ R6. Given a sequence of the rate of change of the

vortex strengths Γ̇(t) and an initial state z0, the vortex model predicts the history of the

force applied on the plate, F [z(t), Γ̇(t), t]. This force history, in general, will differ from

the force measured empirically, F emp(t). We seek an optimal Γ̇(t) trajectory within a time

interval [t0, tf ] that minimizes the cost function

J =

∫ tf

t0

∥∥∥F [z(t), Γ̇(t), t]− F emp(t)
∥∥∥2 dt (4.2)

with the constraint that the vortices follow an evolution equation

ż = f(z, Γ̇, t). (4.3)

This constrained minimization problem can be solved by defining, then minimizing the

HamiltonianH

H = g(z, Γ̇, t) + p(z, Γ̇, t)>f(z, Γ̇, t) (4.4)

where

g(z, Γ̇, t) ≡
∥∥∥F [z(t), Γ̇(t), t]− F emp(t)

∥∥∥2 (4.5)

and p is the costate of the system, essentially Lagrange multipliers that are used to enforce

the constraint of the evolution equation.

Starting from an initial guess of Γ̇0
(t), each iteration of the optimization goes through

the following steps:

1. Integrate vortex positions and strengths forward in time

z(t) = z0 +

∫ t

t0

f(z, Γ̇, t)dt
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2. Integrate the costate backward in time

p(t) =

∫ t

tf

ṗdt

=

∫ t

tf

[
−∂g

∂z
− ∂f

∂z

>
p

]
dt

3. Compute the gradient of the Hamiltonian

∂H
∂Γ̇

=
∂g

∂Γ̇
+

∂f

∂Γ̇

>
p

4. Update Γ̇(t)

Γ̇
k+1

= Γ̇
k − α

∂H
∂Γ̇

where α is found using a method such as the non-linear conjugate gradient method.

These four steps are repeated until the norm of the gradient is smaller than the desired

tolerance.

In Figure 4.1 we show some results of applying this optimization procedure on the

Wang and Eldredge variable-strength point vortex model for a pitch-up maneuver. The

unoptimized force response predicted by the Wang and Eldredge model are shown with

dashed blue lines, the results from a high-fidelity viscous simulation are shown with solid

red lines, while the optimized results are shown with dot-dashed green lines. The top row

of Figure 4.1 shows the progress of the optimization after 30 iterations, while the bottom

row shows the progress after 1000 iterations. While the optimized results are visually

indistinguishable from the high-fidelity simulation results, they rely on existing force or

velocity field data for prescribed maneuvers, which may not always be available. In the

next section, we present a “bootstrapping” procedure that can be used to adapt the opti-

mization framework for real-time uses.
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Figure 4.1: Comparison of model predicted forces (Wang and Eldredge [59] , Hemati,
Eldredge, and Speyer [22] ) and forces predicted by high-fidelity simulations ( ) for
a pitch-up maneuver. (Left) Coefficient of drag. (Right) Coefficient of lift. (Top) 30 opti-
mization iterations. (Bottom) 1000 optimization iterations.

4.1.1 Model Formulation

Suppose we know the optimal amount of vorticity to transfer from the plate into the fluid,

Γ̇
opt, within a starting time window [t−, tf ], i.e. Γ̇ minimizes the difference between the

predicted and measured force. We would like to use the information in [t−, tf ] to predict

an appropriate vorticity flux for t > tf . Since the kinematics of the plate can be arbitrary,

and Γ̇ is nonlinearly dependent on them, a simple linear extrapolation of the optimized

Γ̇
opt will not yield an accurate prediction. In order to utilize the convenience and speed of a

linear operation but still retain nonlinear dependencies, we can represent the relationship

between the vortex strengths and plate kinematics as a linear combination of nonlinear

basis functions. Though these basis functions can likely be determined by a more sophis-

ticated identification procedure, here we present a simple approach based on an extension
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of the Kutta condition.

The Kutta condition can be stated as an implicit relationship between vortex position,

vortex strength, and the kinematics of the plate

k(x,Γ, t) = 0.

In order to use it in an evolution equation, it is more convenient to express it in its time

derivative form
∂k

∂x
· ẋ+

∂k

∂Γ
· Γ̇+

∂k

∂t
= 0. (4.6)

Note that because the number of variable-strength vortices is equal to the number of salient

edges, dim(k) = dim(Γ), so the matrix ∂k/∂Γ is square; it is also generally invertible. If

we define

Y ≡ ∂k

∂Γ
· Γ̇

X ≡ ∂k

∂x
· ẋ

U ≡ ∂k

∂t

then we can write the previous system Equation (4.6) as

Y = −
(
IX IU

)X

U

 (4.7)

where IX and IU are identity matrices, both of size 2×2 for a two-dimensional plate with

two salient edges.

The Kutta condition is not enforced in the optimized model. However, the Kutta con-

dition embodies important nonlinear relationships that can be used as the basis for a pre-
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dictor model for Γ̇. Let us therefore generalize Equation (4.7) in the form

Y = −
(
A B

)X

U

 .

The matrices A and B are of the same size as the identity matrices in Equation (4.7), but

contain unknown coefficients here. We can determine these coefficients from the follow-

ing: (
A B

)
≡
(
Y1 Y2 · · · Yk

)X1 X2 · · · Xk

U1 U2 · · · Uk


†

(4.8)

where † denotes the Moore-Penrose pseudo-inverse, and the subscripts 1, 2, · · · , k denote

sequential time-steps up to some length k. This definition gives us a least squares approx-

imation of the relationship between X , U , and Y . That is,
(
A B

)
determined from

Equation (4.8) minimizes

∥∥∥∥∥∥∥
(
Y1 Y2 · · · Yk

)
−
(
A B

)X1 X2 · · · Xk

U1 U2 · · · Uk


∥∥∥∥∥∥∥
2

Thus, we obtain an explicit equation for the rates of change of vortex strengths

Γ̇ =

(
∂k

∂Γ

)−1(
A
∂k

∂x
ẋ+B

∂k

∂t

)
. (4.9)

As a linear approximation, Equation (4.9) may only be accurate for a small window ex-

tending beyond the range [t1, tk]. However, this allows us to generate plausible values of

Γ̇ beyond the original optimization window using the following procedure:

1. Use the optimization procedure described in Hemati et al. to obtain an initial tra-

jectory of optimized Γ̇(t) in some time interval [t0, tf ]. Set this initial window as the

current optimization window.
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2. Pick a time interval near the end of the current optimization window [t−, tf ], t− > t0

(colored in gray in any of the plots of Figures 4.2 and 4.3)

3. Compute
(
A B

)
using optimized results in the interval [t−, tf ].

4. Prediction: Generate a new sequence Γ̇(t) using equation for an appended time win-

dow [tf , t
+], t+ > tf .

5. Correction: Apply the optimization procedure over the current optimization window.

6. Set the appended time interval as the current optimization window, [t0, tf ] = [tf , t
+],

with an associated interval [t−, tf ], t− > t0, and return to step 3.

4.1.2 Results

We apply this bootstrapping process to the case of a rapid pitch-up maneuver of a two-

dimensional plate with chord length c in a free stream U∞. The motion starts at 0◦ angle

of attack and continues to 45◦ at a dimensionless pitch rate of K = 0.2. The high-fidelity

simulation data used to drive the optimization procedure assumes a viscous fluid with a

Reynolds number of Re = U∞c/ν = 1000 and a plate thickness of 0.023c. For the model,

we used the Wang and Eldredge variable-strength point vortex model.

Figure 4.2 and Figure 4.3 demonstrate the procedure in two example time windows,

labeled as (i) and (ii), respectively. The top row of Figure shows the result of an ini-

tial optimization over the interval t ∈ [0.1, 0.87] using the original model optimization

method of Hemati et al. We computed (A B) using the optimized results in the interval

t ∈ [0.77, 0.87] (shaded in gray), and predicted the rates of change of vortex strengths in

t ∈ [0.87, 1.0], leading to the associated force components depicted in cyan in the middle

row. The slight difference between the empirical force and the predicted force was cor-

rected by performing only 5 iterations of optimization over the small prediction window.
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The optimized results in the appended region are shown in the bottom row of Figure 4.2.

Figure 4.3 shows the same bootstrapping process applied in a later window, t ∈ [1.30, 1.50].

It is clear that within this time window the force is nonlinearly dependent on time. How-

ever, the prediction was able to qualitatively capture the nonlinearity with constant values

for (A B).

5

4

3

2

1

0 0.5 1.0 1.5 2.0

5

4

3

2

1

0 0.5 1.0 1.5 2.0

1.6

1.4

1.2

1.0

0.8

0.6
0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10

3.5
3.4
3.3
3.2
3.1
3.0
2.9
2.8
2.7
2.6

1.00 1.100.70 0.75 0.80 0.85 0.90 0.95 1.05

1.6

1.4

1.2

1.0

0.8

0.6
0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10

3.5
3.4
3.3
3.2
3.1
3.0
2.9
2.8
2.7
2.6

1.00 1.100.70 0.75 0.80 0.85 0.90 0.95 1.05

Figure 4.2: Applying the bootstrapping procedure around t
(i)
f = 0.87. The gray portions

bounded by the dashed lines t− and t
(i)
f are used to generate predictions for the time inter-

val [t(i)f , t+] (Top) Comparison between force predicted high-fidelity simulation ( ), and
optimization up to time t

(i)
f ( ) (Middle) Predicted force ( ) using previously opti-

mized results in the shaded interval. (Bottom) Corrected force in the appended region
after 5 iterations of optimization
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Figure 4.3: Applying the bootstrapping procedure around t
(ii)
f = 1.30. The gray portions

bounded by the dashed lines t− and t
(i)
f are used to generate predictions for the time inter-

val [t(i)f , t+] (Top) Comparison between force predicted high-fidelity simulation ( ), and
optimization up to time t

(i)
f ( ) (Middle) Predicted force ( ) using previously opti-

mized results in the shaded interval. (Bottom) Corrected force in the appended region
after 5 iterations of optimization

4.2 Ensemble Kalman Filter Approach

In this section, we present our enhancement to the discrete vortex model introduced

by Ramesh and Gopalarathnam [47]. First, let us consider some motivating examples.

In Figure 4.4, we show the vorticity distributions predicted by a LESP-based vortex blob

model of a plate that is impulsively translated at 20◦. In the top plot, LESPc = 3.0. This
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means that in order for the model to release any leading edge vorticity, we must have a

large leading edge suction. Or equivalently, the model assumes that the plate can support

a large amount of suction around the leading edge. In the middle plot, LESPc = 0.3. Here,

we see that the model predicts the formation of a coherent LEV. Finally, in the lower plot

of Figure 4.4, where LESPc = 0.8, we see a weak LEV.
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Figure 4.4: Comparison of vorticity distributions predicted by a vortex blob model after
one convective time with LESPc = 3.0 (top), LESPc = 0.3 (middle), and LESPc = 0.8
(bottom).

In Figure 4.5, we show the corresponding pressure distributions, where the top of each

plot corresponds to the leading edge, the bottom corresponds to the trailing edge, and time

increases in the x-direction. In the middle plot, we can clearly see the growth of a negative

pressure region as it propagates down the chord. This corresponds to the development of
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a strong LEV. In contrast, we see from the top plot that there is no clear LEV, and the low

pressure at the leading edge comes simply from the high LESP value.
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Figure 4.5: Comparison of pressure distributions across the plate predicted by a vortex
blob model with LESPc = 3.0 (top), LESPc = 0.3 (middle), and LESPc = 0.8 (bottom).

The relationship between the critical LESP value and the pressure distribution sug-

gests that there may be a way we can estimate LESPc if we are given the surface pressure

information. Even more importantly, we see that surface pressure measurements may be
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used to directly augment missing parameters in our model.

4.2.1 Data Assimilation through Kalman Filters

We will use the Ensemble Kalman filter (EnKF) to assimilate pressure data into the vortex

model. The EnKF was originally introduced to handle the high-dimensional nonlinear

dynamics found in meteorology [17]. Before describing how we can use it to augment a

vortex model, we first give an overview of the standard Kalman filter.

4.2.2 Review of The Kalman Filter

In systems with noise, we usually do not know our state exactly so we have to treat the

true state x as being drawn from a multivariate random variable X. From the distribution

of X, we can come up with a “best guess” for the true state, which we will denote by

x̂. Let us consider a discrete-time linear system where the state transition matrix at the

k-th time step is denoted as Φk. We will assume that our measurements, zk, are linear

combinations of the state and are determined using the linear operator Hk. To account

for random disturbances and modeling errors, we further assume that at every time-step,

both our system and our measurements are corrupted by additive noise. So, the governing

equations for our true state and measurements are

xk = Φkxk−1 +wk (4.10)

and

zk = Hkxk + vk (4.11)
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where wk and vk are the the unknown perturbations to the state and measurements at

time step k, respectively. However, as we do not ever know what the true state is, our

model should be given by the following set of stochastic difference equations

Xk = ΦkXk−1 +Wk (4.12)

and

Zk = Hkxk + Vk, (4.13)

where the change in font indicates that Xk, Zk, Wk, and Vk are multivariate random vari-

ables. Writing the equations in terms of random variables emphasizes the fact that our

estimate for the new state is corrupted by both noise and the fact that we not have full in-

formation about the previous state. This is in contrast to our measurements, which always

measure the true state and are only corrupted by noise1. To further simplify the problem,

we assume that the distributions of the initial state, X0, the state disturbances, Wk, and

the measurement noise, Vk are all normally distributed

X0 = N (x̂0, P 0) (4.14)

Wk = N (0, W k) (4.15)

Vk = N (0, V k) (4.16)

where we use theN (µ, C) to denote a Gaussian distribution with mean µ and variance C,

and P 0, W k, and V k are the covariance matrices for the state, state disturbance, and mea-

surement noise, respectively. In addition, X0, W1, · · · ,Wk, and V1, · · · ,Vk are indepen-

dent for all k. Under this myriad of assumptions2, it can be shown that the Kalman filter
1This may seem like a superfluous point with unnecessary extra notation, but this subtle distinction was

what the author struggled with when first learning the Kalman filter
2In the original derivation by Kalman, the Gaussian assumption for the state disturbance and mea-

surement noise is relaxed, and they are only restricted to be zero-mean and delta-correlated random pro-
cesses[52].
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recursively combines knowledge about the underlying system with new measurements to

give a prediction that minimizes the uncertainty, maximizes the likelihood, minimizes the

least square difference between the expect measurement and actual measurement, and is

optimal with “virtually any reasonable [definition of] ‘optimal’ ”[40]. We will outline its

basic workings below.

At the first time step, our best estimate of the state is simply x̂0 with uncertainty P 0.

Since this initial state is a Gaussian random variable, and our system (Equation (4.12)) is

linear with additive Gaussian noise (which makes it a Gauss-Markov process), we know

that Xk is Gaussian for all k. Now suppose the optimal estimate at time step k− 1 is given

by mean x̂k−1 and covariance P k−1. Before we obtain any measurements, the optimal

estimate of the state of our system at time step k is computed using our knowledge of the

system dynamics Φk and W k. Since the state equation, Equation (4.10), is an affine linear

equation, we can propagate the mean and covariance of our estimate through

x̂−
k = Φkx̂k−1 (4.17)

and

P−
k = ΦkP k−1Φ

T
k +W k, (4.18)

where the superscript “−” indicates that these estimates are made without the help of

measurements. Moreover, since the mean and covariance completely specify a Gaussian

distribution, the new state distribution is given by

X−
k = N

(
x̂−
k , P

−
k

)
. (4.19)

As we have no other information at this point, x̂−
k is also the optimal estimate with uncer-

tainty P−
k , i.e. Xk = X−

k .

Now suppose we obtain a measurement of the true state through zk. This new infor-
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mation allows us to form a better estimate for the distribution of the state by conditioning

on even that the measurement drawn from Zk = N (Hkxk, V k) took on the value zk. We

denote this conditioned random variable as

X+
k := X−

k | (Zk = zk) , (4.20)

where the superscript “+” indicates that a measurement has been assimilated. This con-

ditional random variable can be shown to be Gaussian, with mean and covariance given

by

E
[
X+

k

]
= x̂−

k + P−
k H

T
k

(
V k +HkP

−
k H

T
k

)−1︸ ︷︷ ︸
Kk

(
zk −Hkx̂

−
k

)︸ ︷︷ ︸
yk

(4.21)

and

cov
(
X+

k

)
= P−

k −Kk

(
V k +HkP

−
k H

T
k

)
KT

k (4.22)

where K is called the Kalman gain, and y, the difference between the actual measurement

and expected measurement, is called the innovation. If we take this conditional mean and

variance as our newest “best estimate” and its uncertainty, i.e.

x̂k := E
[
X+

k

]
P k := cov

(
X+

k

)
,

then we can fulfill all the optimality conditions mentioned above. Now we can compute

optimal estimates of our state for all time.

The provable optimality of the Kalman filter, as well as its ease of implementation

(specified completely by Equations (4.17), (4.18), (4.21) and (4.22)), has made it widely

adopted across many field and industries. However, as we have mentioned in all preced-

ing chapters, we are interested in capturing the nonlinear effects of unsteady aerodynam-

ics. Fortunately, there are several extensions to the Kalman filter for nonlinear systems, in
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which the true state and measurements are evolved according to

xk = fk(xk−1) +wk, (4.23)

and

zk = hk(xk) + vk, (4.24)

where fk and hk are a nonlinear functions. The most common extension to handle such

systems is the extended Kalman filter (EKF). The EKF uses a first-order Taylor expansion

of fk and hk to propagate the estimate covariance and compute the Kalman gain. This

means that it requires explicit expressions for the Jacobians ∂fk

∂x
and ∂hk

∂x
, which may not

be readily available. Moreover, the linearization can lead to unstable growth of the er-

ror covariance. While this can be solved by using higher-order derivatives, the number

of terms in the higher-order Taylor expansion grows exponentially, which can make the

computation prohibitively expensive for real-time applications. Another popular variant

of the Kalman filter is the unscented Kalman filter (UKF). During the prediction step, the

UKF first places a number of sample points around the current estimate of the mean state.

These points, called sigma points, are placed so that their sample mean and covariance

are exactly equal to the current state mean and covariance. These sigma points are then

propagated forward in time through the nonlinear state equation. The sample mean and

covariance of these propagated sigma points are then used as the mean and covariance in

the Kalman update step. Unlike the EKF, the UKF does not require explicitly computing

the Jacobians of the state equation, making it more preferable for highly nonlinear systems.

However, the number of sigma points should be equal to 2d+1, where d is the dimension

of the state vector, which makes the UKF not ideal for high dimensional systems.

For our work, we will be using the ensemble Kalman filter (EnKF). The EnKF was

introduced by Evensen [17] explicitly to address two key short-comings in the EKF: the

need for explicit Jacobians, and large computational cost for high-dimensional systems.
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We will describe it in more detail in the following section.

4.2.3 The Ensemble Kalman Filter

The EnKF is essentially a Monte Carlo version of the Kalman filter. Instead of describing

the distribution of the system state using a mean and a covariance, we approximate the

distribution using an ensemble of size N , where the state of the i-th member at time-step

k is denoted by x̃i,k. Suppose we know the ensemble states at time-step k − 1, we can

propagate each member of the ensemble forward in time

x̃−
i,k = f (x̃i,k−1) for i = 1, 2, · · · , N, (4.25)

where the superscript “−” again indicates that no measurements have been incorporated

yet. Note that there is no additive noise term as it is assumed that the randomness is

naturally introduced by having an ensemble. We now approximate the pre-measurement

mean and covariance of the state with their sample values

x̂−
k :=

1

N

N∑
i=1

x̃−
i,k (4.26)

and

P−
k :=

1

N − 1

N∑
i=1

(
x̃−
i,k − x̂−

k

) (
x̃−
i,k − x̂−

k

)T
. (4.27)

We can then substitute the sample covariance into the standard definition of the Kalman

gain without further modification

Kk = P−
k H

T
k

(
V k +HkP

−
k H

T
k

)−1
. (4.28)
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While all members of the ensemble share the same Kalman gain, they each have their own

innovation. Recall that the original Kalman filter defined the innovation as

yk := zk −Hkx̂
−
k . (4.29)

In defining the innovation for each ensemble member, we can replace x̂−
k with x̃−

i,k. How-

ever, we cannot use the same measurement zk for all ensemble members, as Burgers, Jan

van Leeuwen, and Evensen [8] found that doing so in an ensemble no longer reflects the

fact that zk is drawn from a random variableZk and will introduce spurious correlations in

the ensemble covariance. Instead, we must artificially introduce noise into the innovation

of each member of the ensemble

yi,k := zk + εi −Hkx̃
−
i,k for i = 1, 2, · · · , N, (4.30)

where the εi’s are drawn fromVk. The Kalman update step is then applied to each member

of the ensemble

x̃i,k := x̃−
i,k +Kk

(
zk + εi −Hkx̃

−
i,k

)
for i = 1, 2, · · · , N. (4.31)

4.2.4 Covariance Inflation

The EnKF, just like the original Kalman filter, works to minimize the covariance of the

estimated state distribution. However, unlike the Kalman filter, the EnKF does not use any

information about the process noise when computing the ensemble covariance. Whereas

the pre-measurement covariance of the Kalman filter,

P−
k = ΦkP k−1Φ

T
k +W k, (4.32)
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is bounded from below by W k, there is no lower bound to the pre-measurement ensem-

ble covariance. If we assume a non-zero measurement covariance V k, and a ever decreas-

ing ensemble covariance P−
k , then the Kalman gain of the ensemble eventually becomes

negligible, after which all measurements are ignored by the EnKF. Methods for handling

this covariance collapse are called covariance inflation. In general, covariance inflation

modifies the ensemble states after computing the sample mean but before computing the

sample covariance. Each ensemble state is updated by

x̃−
i,k ← x̂−

k + β
(
x̃−
i,k − x̂−

k

)
+αi,k, (4.33)

where β is the multiplicative inflation factor shared among all ensemble members, and

αi,k is the additive inflation factor drawn from a random distribution at each time-step

and for each ensemble member [4, 61, 34]. After this update, we recompute the ensemble

mean and compute the ensemble covariance. Whitaker and Hamill [61] found that mul-

tiplicative inflation tends to be better at countering the effects of sampling errors, while

additive inflation tends to be better at accounting for modeling errors. Multiplicative in-

flation tends to be easier to tune as it only involves adjusting a single value. Adjusting

additive inflation, in contrast, requires more understanding about the actual dynamics of

the underlying system.

4.2.5 Model Formulation

The model used by Ramesh and Gopalarathnam is a standard vortex blob model, with

a Kutta condition applied at the trailing edge, except that the leading edge vorticity flux

is governed by the LESP criterion (see Appendix A.2). Like most vortex models, the di-

mension of the system increases with every time-step due to leading and trailing edge

vortex shedding. The steady increase of the state dimension prevents such models from
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being used in any real-time applications. This is essentially the same problem that the hy-

brid vortex sheet/point vortex model was constructed to solve. Unfortunately, while the

hybrid model performed well for high angle of attack and pitch-up problems, its use of

vortex sheets make it unsuitable for flows at low angles of attack. Instead, we will adapt

the underlying impulse-matching circulation transfer procedure to work with vortex blob

models.

By using vortex blobs instead of vortex sheets, we lose the natural ordering of the vor-

tex elements that was provided by the sheets. In the hybrid model, the active point vortex

consumes its vortex sheet in order, starting from the sheet’s wake end. When it cannot ab-

sorb any more circulation, it turns into an inactive constant-strength vortex and the tip of

the vortex sheet is converted into a new active point vortex. This ordering makes it always

clear which vortex element consumes circulation and which one provides it. In this work,

we will take the most straightforward approach and simply try out every possible com-

bination of source-target pairs to see which ones incur the least error in predicted force.

We then perform the transfer on as many pairs as possible while keeping the accumulated

error below a specified threshold, εF .

The vortex aggregation procedure is simply a modified version of the circulation trans-

fer procedure described in Section 3.2.3. Once we have determined an appropriate value

for εF , we do the following at every time-step:

1. For every possible source-target pair of vortex blobs in the model, use Equation (3.11)

to compute the velocity correction required to transfer all of the source’s circulation

into the target.

2. Compute the (uncorrected) velocities of all vortex blobs and evolve the system for-

ward by one time step.

3. Compute the impulse for each vortex blob.

4. For every possible source-target pair of vortex blobs in the system, first compute the
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hypothetical impulse that the target blob would have if it absorbed all the circula-

tion from the source blob and applied the velocity correction computed from step 1.

Then, subtract from this the actual impulse of the source and target blobs, computed

in step 3. This difference, when divided by time-step size, is defined as the transfer

error.

5. Sort the source-target pairs based on the magnitude of their transfer error.

6. Starting from the pair with the lowest error, transfer circulation between as many

pairs of vortex blobs as possible, stopping just before the accumulated error exceeds

εF .

Although the procedure listed above contains multiple steps with pairwise interactions

that we usually try to avoid, it also works to eliminate the number of vortex particles in

the system. In practice, the computational savings of keeping the state dimension small

far outweighs the cost of executing this procedure at every time-step.

4.2.6 Applying the EnKF to a Vortex Model

The state of our vortex model consists of the positions and strengths of the vortex blobs,

as well as the current estimate of the critical LESP

xk−1 :=

[
x1
k−1 y1k−1 Γ1

k−1 · · · xn
k−1 ynk−1 Γn

k−1 LESPc
k−1

]T
. (4.34)

The nonlinear state transition function fk propagates the state at time step k − 1 by

1. computing the bound vortex sheet strength on the plate using the vortex blob posi-

tions and strengths

2. computing the velocities of the vortex blobs
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3. advecting the plate and vortex blobs

4. applying the vortex aggregation algorithm, reducing the strength of any aggregated

blobs to zero instead of completely removing the blob

5. releasing a new vortex blob from each edge of the plate with strengths based on the

current estimate of the critical LESP.

Note that the dimensions of the state increase by six (three per new vortex blob) after every

state propagation step. Once all members of the ensemble have been propagated, we look

for any vortex blobs that have zero strength across all members of the ensemble (in terms

of its position/index in the state vector) and eliminate them from the ensemble states.

This particle elimination process, in conjunction with the vortex aggregation algorithm,

works to reduce the dimension of the state vector. We then apply covariance inflation to

the new ensemble states, before computing the pre-measurement ensemble mean x̂−
k and

ensemble covariance P−
k with Equations (4.26) and (4.27).

Our measurements consist of M pressure differences along the plate at every time-step

k

zk :=

[
∆p1k · · · ∆pMk

]T
. (4.35)

Let us denote the pressure distribution predicted by the i-th ensemble member at time-

step k as

mi,k := hk

(
x̃−
i,k

)
. (4.36)

Then the innovation for each member of the ensemble is given by

yi,k = zk + εi −mi,k. (4.37)

Since pressure is definitely not a linear function on vortex properties, we need to lin-

earize hk in order to compute the ensemble Kalman gain. One simple way is to define an
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augmented state vector

X i,k :=

 x̃−
i,k

mi,k

 (4.38)

which admits the linear measurement function

Hk :=

[
0(3n+1)×(3n+1) IM×M

]
. (4.39)

Then, denoting the mean predicted pressure distribution as

m̄k :=
1

N

N∑
i=1

mi,k, (4.40)

the covariance of the predicted pressure distribution as

M k :=
1

N − 1

N∑
i=1

(mi,k − m̄k) (mi,k − m̄k)
T (4.41)

and the cross-covariance between the state and pressure with

Ck :=
1

N − 1

N∑
i=1

(
x̃−
i,k − x̂k

)
(mi,k − m̄k)

T , (4.42)

we find that the ensemble covariance of the augmented state can be written as

P a
k :=

1

N − 1

N∑
i=1


 (x̃−

i,k − x̂k

)
(mi,k − m̄k)

[(x̃−
i,k − x̂k

)T
(mi,k − m̄k)

T

] (4.43)

=

P−
k Ck

CT
k M k

 . (4.44)
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The Kalman gain of the pressure-augmented system is then

Ka
k = P a

kH
T
k

(
V k +HkP

a
kH

T
k

)−1
=

Ck(V k +M k)
−1

M k(V k +M k)
−1

 . (4.45)

Since only the first block in the Kalman gain matrix above corresponds to the actual states

we are interested in, we can write the EnKF Kalman update step for our system as

x̃i,k = x̃−
i,k +Ck(V k +M k)

−1 (zk + εi − hk(x̃
−
i,k)
)

(4.46)

4.2.7 Results

We demonstrate this method on three test problems with increasing complexity. The first

case is impulsive translation of a flat plate at a 20◦ angle of attack. The second case starts off

the same way as the first, then we apply leading edge actuation at 3 convective times. The

last case builds on the second case by adding yet another pulse of actuation at 4 convective

times. For our measurements, we probe the pressure differences across the plate along

M = 50 points, with a distribution given by

c

2
cos

(
mπ

M + 1

)
for m = 1, 2, · · · ,M. (4.47)

The pressure measurements we use are obtained from high-fidelity CFD results for Re =

500. However, this method should be agnostic to the source of pressure measurements,

especially as it is intended to be used for real-time flow control. Ultimately, we would like

to replace these numerically computed pressure measurements with experimental data.

We use an ensemble size ofN = 50 and initialize each ensemble member with a starting

value of critical LESP drawn from N (0.5, 0.2). We set the error tolerance of the vortex

aggregation procedure to εF = 10−3. For time-marching, we use the forward-Euler scheme

66



with a fixed time-step of ∆t = 10−2Ut/c.

No Pulse Actuation

The pulse-free case serves as a baseline for us to confirm our understanding of how pres-

sure, critical LESP and the vortex model interact with each other. Figure 4.6 and Figure 4.7

respectively show the pressure distribution and force predicted by the EnKF-assisted model.

In Figure 4.8 we show the ensemble mean of the critical LESP over time. Then in Figure 4.9

we show the number of vortex elements used by the model over time. Note that since we

add and remove the same number of vortex particles to every member of the ensemble,

the particle count history in Figure 4.9 applies to any member of the ensemble. We show

how using covariance inflation affects the variance of the ensemble state in Figures 4.10

to 4.12. Finally, in Figures 4.13 to 4.16, we compare the vorticity distributions predicted by

the EnKF using different covariance inflation schemes at different convective times.

The top plot in Figure 4.6 shows the pressure distribution given by CFD. This is the

pressure distribution that we are trying to match. Visually, we can immediately see the

growth of a LEV, indicated by the expansion of a negative pressure region towards the

trailing edge. As the LEV stretches across the whole chord at around three convective

times, it starts to entrain opposite-signed vorticity and trigger the growth of a TEV, which

shows up as a thin sliver of negative pressure between three and five convective times. At

around five convective times, we see a small positive pressure region at the trailing edge,

which along with the diminishing TEV pressure signature, suggest the shedding of the

TEV. These events are also observed at the corresponding times in the top right plots of

Figures 4.13 to 4.16, which show the vorticity contours predicted by the CFD.

The second plot in Figure 4.6 shows the pressure distribution predicted by the EnKF

ensemble mean when no covariance inflation is applied. We see a much more aggressive

growth of the LEV in terms of both strength and density. We also see evidence of co-

rotating vortex blobs in the crisscrossing wave-like structure in the pressure distribution.
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Unfortunately, this indicates that the EnKF is not having any corrective effect on the model.

This is consistent with our previous discussion of covariance collapse. In Figure 4.12, we

see that the ensemble variance of the states drop to negligible values almost immediately

after we start running the model. Without any inflation to counter the covariance collapse,

the EnKF essentially ignores the CFD pressure data.

The third plot in Figure 4.6 shows the EnKF-predicted pressure distribution when a 5%

multiplicative inflation is used. Although we can still visibly observe the pressure signa-

ture of co-rotating vortex blobs, we see that the LEV structure is more diffuse compared to

the case without inflation. Looking at Figure 4.11, we see that after the initial covariance

collapse, the multiplicative inflation is able to slowly increase the variance of the vortex

positions and strengths. However, the variance in the critical LESP is so small that it is

immune to multiplicative inflation. This means that the EnKF can no longer influence the

leading edge vorticity flux. To assimilate the pressure data, the EnKF can only rely on

modifying the vortex positions and strengths. As a result, we often observe “teleporting”

vortex blobs in videos, though it is difficult to show here through static figures.

The final plot in Figure 4.6 shows the pressure distribution predicted by the EnKF after

we apply both multiplicative and additive inflation. After tuning the inflation parameters,

we found a suitable set of values:

• 1% multiplicative inflation

• additive perturbation to the vortex positions drawn from N (0, 10−5c)

• additive perturbation to the vortex strengths drawn from N
(
0, 10−3 1

∆t

)
• additive perturbations to the critical LESP drawn from N (0, 5× 10−5).

We can clearly see that the predicted pressure distribution closely matches the CFD pres-

sure distribution. This is further validated in Figure 4.7, where the model-predicted force

coefficient was computed using the rate of change of impulse rather than integrating the
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surface pressures. While there is some noise in the predicted force, we see that it agrees

well with the CFD results.

The covariance inflation parameters were tuned to coerce the EnKF into favoring the

modification of the critical LESP over the vortex blob positions and strengths. This stems

from our underlying assumption that the key process is still governed by inviscid vortex

dynamics, and assimilating pressure data through the EnKF simply provides a closure

model to determine vorticity flux. If we look at Figure 4.8, we see that the estimated criti-

cal LESP values remain relatively constant in time. Note that this does not mean that the

leading edge vorticity flux is constant, since the vorticity flux required to maintain a fixed

leading edge suction depends on the state of the ambient fluid. This result does seem

to reflect the hypothesis from Ramesh and Gopalarathnam that the critical LESP value is

mainly dependent on Reynolds number and relatively independent of the wing kinemat-

ics.

Comparing the placement of vortex blobs in Figures 4.13 to 4.16, we see that the dis-

tributions predicted with both additive and multiplicative inflation are much more repre-

sentative of the vorticity contours obtained from CFD. From Figure 4.9, we see that even

after five convective times, each member of the ensemble is only using about 40 vortex

blobs. This tells us that the vortex aggregation procedure is also working correctly as it

eliminated almost a thousand vortex particles without any adverse effects. With such a

small number of vortex elements, it is surprising that the EnKF-assisted model was able

to generate a LEV with such a diffuse pressure signature. Of course, as the EnKF can still

make small changes to the vortex state, it may be worth investigating whether the EnKF

is introducing some measure of viscosity into the model.
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Figure 4.6: Comparison of the pressure coefficient distribution along the plate over time
between the CFD results and EnKF predictions with various covariance inflation settings
for the pulse-free case.
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Figure 4.7: Comparison of the predicted normal force between ( ) CFD results, and ( )
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0 1 2 3 4 5
Convective Time

0.0

0.2

0.4

0.6

0.8

1.0

C
ri

ti
ca

l L
E

SP
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Figure 4.9: Number of vortex blobs used in the model over time when a combined multi-
plicative and additive covariance inflation is used for the pulse-free case
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Figure 4.10: Ensemble variances for the pulse-free case with both multiplicative and ad-
ditive covariance inflation

0 1 2 3 4 5
Convective Time

10−14

10−12

10−10

10−8

10−6

10−4

10−2

σ
2 x

0 1 2 3 4 5
Convective Time

10−14

10−12

10−10

10−8

10−6

10−4

10−2

σ
2 y

0 1 2 3 4 5
Convective Time

10−14

10−12

10−10

10−8

10−6

10−4

10−2

σ
2 Γ

0 1 2 3 4 5
Convective Time

10−14

10−12

10−10

10−8

10−6

10−4

10−2

σ
2 L
E

S
P

Figure 4.11: Ensemble variances for the pulse-free case with multiplicative covariance in-
flation
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Figure 4.12: Ensemble variances for the pulse-free case without covariance inflation
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Figure 4.13: Comparison of the vorticity distribution for the pulse-free case at 3 convective
times.
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Figure 4.14: Comparison of the vorticity distribution for the pulse-free case at 3.5 convec-
tive times.
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Figure 4.15: Comparison of the vorticity distribution for the pulse-free case at 4 convective
times.
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Figure 4.16: Comparison of the vorticity distribution for the pulse-free case at 5 convective
times.

Single Pulse Actuation

Now we consider the case where a single pulse is applied at the leading edge around

three convective times. As with the pulse-free case, we start by considering the pressure

distributions in Figure 4.17. The top plot shows the pressure distribution predicted by

high-fidelity CFD. We see that the initial development of the LEV is identical to the pulse-

free case. At three convective times, we see the pulse as a band of negative pressure across

the chord. Although the pulse itself is short-lived, we see that it triggers the growth of a

new LEV. The new LEV is promptly absorbed into the old LEV, essentially returning the

state back to the pulse-free case.

The second plot in Figure 4.17 shows the pressure distribution predicted without co-

variance inflation. As expected, the covariance collapse makes the ensemble blind to the

pulse. The appearance of the pulse on the pressure distribution predicted with multiplica-

tive inflation, shown in the third plot of Figure 4.17, indicates that the EnKF is attempting
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to assimilate the pressure data. At three convective times, we see that the predicted distri-

bution of vortex blobs in the lower left plot of Figure 4.23 still resembles the CFD vorticity

contours on the figure’s upper right plot. However, in Figure 4.24, we see that while the

CFD vorticity contours show the development of a new LEV, the EnKF with multiplica-

tive inflation increased the strength of a vortex blob close to the trailing edge instead. Al-

though it was able to push the predicted pressure distribution closer to the CFD results,

the EnKF’s heavy modification of the vortex states created very unnatural dynamics.

The EnKF-predicted pressure distribution that most closely resembles the CFD results

came from using both additive and multiplicative inflation, shown in the bottom plot in

Figure 4.17. We use the same inflation parameters as the pulse-free case, which gives us a

relatively stable set of ensemble variances, as shown in Figure 4.21. Despite the fact that the

sample variance in critical LESP is on the order of 10−8, that amount of variation between

the ensemble members is still enough that in Figure 4.19, we see the EnKF responding to

the measured pressure pulse by temporarily increasing the critical LESP. As the increase

in critical LESP tends to reduce vorticity flux, we see that this small pulse in the critical

LESP has the effect of severing the leading edge shear layer before developing a new LEV.

Comparing the distribution of vortex blobs in Figures 4.23 to 4.26, we see that the cor-

rections made by the EnKF seem to have the effect of spreading out the vorticity over a

larger area. This is especially noticeable when comparing the results between the EnKF

results with combined inflation (top left plots), and those without covariance inflation

(bottom right plots). Even though the LEV was spread over more vortex blobs, we see in

Figure 4.20 that the vortex aggregation process has kept the total number of vortex parti-

cles very low.
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Figure 4.17: Comparison of the pressure coefficient distribution along the plate over time
between the CFD results and EnKF predictions with various covariance inflation settings
for the single pulse case
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Figure 4.18: Comparison of the predicted normal force between ( ) CFD results, and ( )
EnKF ensemble mean for the single pulse case.
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Figure 4.19: Time history of the ensemble mean value of the critical LESP for the single
pulse case
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Figure 4.20: Number of vortex blobs used in the model over time when a combined mul-
tiplicative and additive covariance inflation is used for the single pulse case
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Figure 4.22: Ensemble variances for the single pulse case without covariance inflation
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Figure 4.21: Ensemble variances for the single pulse case with both multiplicative and
additive covariance inflation
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Figure 4.23: Comparison of the vorticity distribution for the single pulse case at 3 convec-
tive times.
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Figure 4.24: Comparison of the vorticity distribution for the single pulse case at 3.5 con-
vective times.
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Figure 4.25: Comparison of the vorticity distribution for the single pulse case at 4 convec-
tive times.
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Figure 4.26: Comparison of the vorticity distribution for the single pulse case at 5 convec-
tive times.
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Double Pulse Actuation

Finally, we look at the case with two pulse actuations, one at three convective times and

one at four convective times. Since we also use the same covariance inflation parameters

as the two previous cases, the results up to the second pulse are essentially the same as the

results for the single pulse case, so we will just discuss the differences. From the pressure

distribution in Figure 4.27, force comparison in Figure 4.28, and critical LESP history in

Figure 4.29, we see that the EnKF with a combined inflation scheme had no problems

capturing the second pulse.

From the pressure distribution predicted by CFD, we see that whereas the first pulse

created a new LEV that was absorbed by the old LEV, the second pulse occurred after

the old LEV had been lifted off by the TEV. In this particular case, the second pulse was

initiated just as a new, replacement LEV was developing. We see from Figure 4.35, both

in the CFD vorticity contours (top right) and in the vortex blob distribution predicted by

the EnKF with combined inflation (top left), that any new vortex structure created by the

second pulse was merged into the newly developing LEV.

At 3.5 convective times, the second pulse has not been applied yet, so we expect the

same distributions of vorticity between the single pulse case and the two pulses case. In-

terstingly, if we compare the vortex blob distributions in Figure 4.33 and those listed in

Figure 4.24, we see that the distributions predicted with multiplicative covariance infla-

tion look very different across the two cases. In contrast, the vortex blob distributions

predicted by the combined inflation scheme agree well. This reinforces the idea that with-

out careful tuning of the additive inflation or some means of localizing the Kalman gain

matrix [23], the EnKF and the nonlinear system dynamics can work together to amplify

spurious correlations and prevent the ensemble from actually converging.
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Figure 4.27: Comparison of the pressure coefficient distribution along the plate over time
between the CFD results and EnKF predictions with various covariance inflation settings
for the two pulses case
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Figure 4.28: Comparison of the predicted normal force between ( ) CFD results, and ( )
EnKF ensemble mean for the two pulses case.
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Figure 4.29: Time history of the ensemble mean value of the critical LESP for the two
pulses case
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Figure 4.30: Number of vortex blobs used in the model over time when a combined mul-
tiplicative and additive covariance inflation is used for the two pulses case
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Figure 4.32: Ensemble variances for the two pulses case without covariance inflation
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Figure 4.31: Ensemble variances for the two pulses case with both multiplicative and ad-
ditive covariance inflation
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Figure 4.33: Comparison of the vorticity distribution for the two pulses case at 3.5 convec-
tive times.
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Figure 4.34: Comparison of the vorticity distribution for the two pulses case at 4 convective
times.
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Figure 4.35: Comparison of the vorticity distribution for the two pulses case at 5 convective
times.
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Chapter 5

Conclusion

Vortex models in aerodynamics typically have to pick between dynamical richness and

speed. In this work, we explored two solutions that allows us to achieve both. In Chap-

ter 3, we introduced a hybrid vortex sheet/point vortex model that was able to keep its

dimensions small by transferring circulation from the computationally expensive sheets

into the point vortices. By using an impulse-matching circulation transfer procedure, we

can ensure that the transfer process does not alter the force response of the model too sig-

nificantly. We demonstrated the model on test cases with impulsive translation and rapid

pitch-up motions, and saw that the predicted early time forces agreed reasonably well

with results from high-fidelity simulations. Although the predicted bluff-body shedding

frequency did not match the CFD results, it is important that the model was even able to

run for that many convective times. The ability to control the relative vorticity distribu-

tion between the vortex sheets and point vortices makes the hybrid model flexible. As we

have noted, the hybrid model can emulate most existing inviscid vortex models with the

appropriate choice of error tolerance and minimum vortex release interval. Moreover, the

hybrid model presented in this work is only one of the possible applications of the circu-

lation transfer procedure, as the underlying impulse-matching principle is agnostic to the

choice of vortex elements.

In Chapter 4, we developed a low-order vortex blob model that used the EnKF to assim-

ilate surface pressure data. We showed that, with the appropriate tuning of the covariance

inflation parameters, the vortex blob model was able to predict a vorticity distribution that
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closely resembles that from CFD results. Once we tuned the model for a single pressure

distribution, that of the pulse-free case, we saw that the same covariance inflation pa-

rameters were able to capture the effect of leading edge actuation. This demonstrates the

possibility of using real-time data as part of the closure model for a leading edge shedding

criterion.

5.1 Future Directions

Using vortex aggregation in conjunction with the EnKF has some unexpected results.

We found that increasing the ensemble size improved our results only up to a point. With a

larger ensemble, we increase the probability that at least one member of the ensemble will

not decide to aggregate a vortex blob that the rest of the ensemble decided to aggregate.

Since the current procedure requires unanimous consensus on which particles to elimi-

nate, a larger ensemble size reduces the effectiveness of the aggregation process. With

more vortex blobs in the system, we also have increased noise. It may be worth investigat-

ing an alternative aggregation procedure that does not couple all the ensemble members

together. One possible resolution is to try the unscented Kalman filter (UKF) instead of the

EnKF. During the initial investigation into data assimilation, we did not have the vortex

aggregation procedure in place. That set up an expectation for a very high-dimensional

system, which pushed us away from using the UKF. Now that we know the aggregation

process can keep the number of our states small, it should be reconsidered as a candidate.

Since the UKF resamples from a mean state at every time-step, it should be possible to

apply the aggregation to only the mean state.

The UKF might also open up the possibility of applying data assimilation to the hybrid

model. Unlike the vortex blob model, where particles are only introduced through vortex

shedding, the number vortex particles changes every time we apply filtering along the

vortex sheet. Even without filtering, we would still have to apply adaptive point insertion

89



in order to keep the sheet smooth. That type of variation makes the hybrid model more

difficult to use in a persistent ensemble. In the UKF, however, it may be possible to apply

filtering only to the mean state.

Another important aspect of the EnKF-based model to consider is the placement of the

pressure sensors. The current placement, based on a Chebyshev grid, is simply an artifact

of how the flat plate is implemented numerically. One possible direction is to reimplement

the EnKF algorithm using representers, which measures how each measurement affects the

model state [16]. A more comprehensive study of the model’s observability properties

would be invaluable.
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Appendix A

The Infinitely Thin, Flat Plate

In this appendix, we derive some useful properties and tools for working with an in-

finitely thin plate in an inviscid fluid. Although some of these results are well known (see

any introduction to thin-airfoil theory, for example), the notation and some intermediate

results introduced in this chapter will be used heavily to derive more interesting aspects

of this thesis.

Let the flat plate be characterized by its chord length c, angle of attack α, and centroid

xc. Its kinematics can then be completely prescribed by its centroid velocity uc and its

angular velocity α̇. We denote the unit vectors tangent and normal to the plate with τ̂ and

n̂, respectively. τ̂ points from the trailing edge to the leading edge, and n̂ points from

the lower surface to the upper surface. We then define a transformation from inertial

coordinates to plate-centered coordinates

l(ξ) = τ̂ · (ξ − x0) , (A.1)

its inverse

xp(λ) = l−1(λ) = x0 + λτ̂ , (A.2)

as well as a normalized variant (plate edges map to ±1)

s(ξ) =
2

c
l(ξ). (A.3)
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A.1 Bound Vortex Sheet Strength

In this section, we derive the strength distribution of the bound vortex sheet used to

maintain the no-flow-through condition on the flat plate. We start with the equation for

the velocity induced by a vortex sheet (from Equation (2.15)):

uvs(ξ) =
1

2π

∫
C
γvs(λ) k̂ ×

ξ − xvs(λ)

|ξ − xvs(λ)|2
dλ,

where C is the contour occupied by the sheet, γvs is the local sheet strength, andxvs converts

arc length coordinates to inertial coordinates. For the bound vortex sheet, the equation

above becomes

up(ξ) =
1

2π

∫ c/2

−c/2

γp(λ) k̂ ×
ξ − xp(λ)

|ξ − xp(λ)|2
dλ.

When the evaluation point ξ is on the plate, we have

up(ξ) = n̂
1

2π
−
∫ c/2

−c/2

γp(λ)

l(ξ)− λ
dλ∓ τ̂

(γp ◦ l) (ξ)
2

, (A.4)

where the integral is a Cauchy principal value integral and the sign in front of the second

term depends on the direction that ξ is approached from (−when the approach is against

n̂ and + when the approach aligns with n̂).

Suppose we can partition the ambient vorticity into Nv vortex elements. We denote the

circulation contained in the i-th element as Γi. Since velocities induced by disjoint regions

of vorticity can simply be added together, we express the velocity induced by all ambient

vorticity at a point ξ as the sum
Nv∑
i=1

ui
A(ξ), (A.5)

where ui
A denotes the velocity field induced by the i-th vortex element. The total velocity
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at any point in the fluid is then given by

u(ξ) = up(ξ) +
Nv∑
i=1

ui
A(ξ). (A.6)

Now let us denote uB(ξ) as the velocity of the plate at some location ξ. In order to

enforce the no-flow-through condition, we must have, for any ξ on the plate,

n̂ · u(ξ) = n̂ ·

[
Nv∑
i=1

ui
A(ξ) + up(ξ)

]
= n̂ · uB(ξ) (A.7)

and after substituting in Equation (A.4), we have

1

2π
−
∫ c/2

−c/2

γp(λ)

l(ξ)− λ
dλ = n̂ ·

[
uB(ξ)−

Nv∑
i=1

ui
A(ξ)

]
,

which forms an integral equation for γp. To make this equation easier to solve, we apply a

change of variables

1

2π
−
∫ 1

−1

(
γp ◦ c

2

)
(λ)

σ − λ
dλ = n̂

[(
uB ◦ s−1

)
(σ)−

Nv∑
i=1

(
ui

A ◦ s−1
)
(σ)

]
,

which can then be solved using the conservation of total vorticity and the inversion for-

mula found in Muskhelishvili to obtain:

(
γp ◦

c

2

)
(σ) =

2

π
√
1− σ2

(
−
∫ 1

−1

√
1− λ2

λ− σ
n̂

[(
uB ◦ s−1

)
(σ)−

Nv∑
i=1

(
ui

A ◦ s−1
)
(σ)

]
dλ+

ΓA

c

)
,

where

ΓA =
Nv∑
i=1

Γi (A.8)

is the total circulation contained in ambient fluid. If we write uB in terms of the plate

kinematics

n̂ · (uB ◦ s−1)(σ) = (n̂ · uc) +
c

2
α̇σ
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and expand each ui
A as a Chebyshev series

(ui
A ◦ s−1)(σ) =

∞∑
n=0

(
Ai

nn̂+Bi
nτ̂
)
Tn(σ), (A.9)

then the bound vortex sheet strength can be expressed as

γp = γb +
Nv∑
i=1

γi, (A.10)

where γb corresponds to the bound vortex sheet generated in response to body motion,

given by

γB

(
σ
c

2

)
=
−2 (n̂ · uc)σ − c

2
α̇

√
1− σ2

+
√
1− σ2

c

2
α̇ (A.11)

and γi corresponds to the bound vortex sheet generated in response to the velocity induced

by the i-th vortex element

γi

(
σ
c

2

)
=

2Ai
0σ + Ai

1 − 2Γi

πc√
1− σ2

−
√
1− σ2

∞∑
n=1

Ai
nUn−1(σ). (A.12)

The bound vortex sheets given by γi serve the same role as image vortices in the circle-

plane formulation of a flat plate. For later derivations where interpreting the bound vortex

sheets as a single entity is more useful, we define

An :=
Nv∑
i=1

Ai
n (A.13)

and

Bn :=
Nv∑
i=1

Bi
n. (A.14)
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A.2 The Leading Edge Suction Parameter

In general, the velocities at the edges of the infinitely thin plate are infinite. This infinite

velocity leads to an infinite negative pressure, which when integrated across the vanish-

ingly thin edge, gives a finite suction force. From Garrick, we know that this force has the

form

Fe = πρS2 (A.15)

where

S :=
1√
2

lim
σ→±1

γ
(
σ
c

2

)√
1− σ, (A.16)

with σ = 1 at the leading edge and σ = −1 at the trailing edge. Substituting Equa-

tions (A.11) and (A.12) into the limit above, we find that

S = ±2A0 + A1 −
2ΓA

πc
. (A.17)

Ramesh and Gopalarathnam defined the non-dimensional form of this suction parameter

with

SP± :=
S√
cU

= ±
2A0 + A1 − 2ΓA

πc√
cU

, (A.18)

where U is the freestream velocity. Following the observations that real airfoils can sup-

port a critical level of leading edge suction before the flow separates, Ramesh and Gopalarath-

nam introduced a new vortex shedding criterion where vorticity is only released if the suc-

tion parameters exceed a threshold value. In this work, we will enforce the Kutta condition

by using a critical trailing edge suction parameter (TESPc) of zero, and relax the Kutta con-

dition at the leading edge by allowing the critical leading edge suction parameter (LESPc)

to be nonzero.
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A.3 Impulse of the Bound Vortex Sheets

The impulse of the bound vortex sheet is defined by the equation

∮
γp(λ)

(
xp(λ)× k̂

)
dλ.

If we substitute the bound vortex sheet strength found in Equations (A.10) to (A.12) into

the expression above, then in our plate-centered coordinates, we find that the impulse of

the bound vortex sheet generated by body motion is

∮
γB(λ)

(
xp × k̂

)
dλ = −n̂π

( c
2

)2
(n̂ · uc) , (A.19)

and the impulse of the sheet associated with the i-th vortex element is

∮
γi(λ)

(
xp × k̂

)
dλ = −(x0 × k̂)Γi + n̂π

( c
2

)2(
Ai

0 −
Ai

2

2

)
. (A.20)

Suppose the i-th vortex element is a point vortex with circulation Γi and located at xi.

We can expressed its position in the normalized, plate-centered coordinates as

x̃ :=
2

c
(xi · τ̂ )

and

ỹ :=
2

c
(xi · n̂) .

The normal component of the velocity that it induces along the plate can then be expressed
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as

n̂ · (ui ◦ s−1)(σ) = n̂ · Γi

cπ
k̂ × (σ − x̃)τ̂ − ỹ

|(σ − x̃)τ̂ − ỹ|2

=
Γi

cπ

[
n̂

σ − x̃

(σ − x̃)2 + ỹ2
− τ̂

ỹ

(σ − x̃)2 + ỹ2

]
.

Using the orthogonality properties of the Chebyshev polynomials of the first kind, we find

that the Chebyshev coefficients in Equation (A.20) are given by

Ai
0 −

Ai
2

2
=

2Γi

π2c

∫ 1

−1

√
1− σ2

(σ − x̃)2 + ỹ2
(σ − x̃) dσ.

If we define z̃ := x̃+ iỹ, then applying contour integration to the integral above gives us

Ai
0 −

Ai
2

2
=

2Γi

πc
Re
{
z̃ −
√
z̃ − 1

√
z̃ + 1

}
. (A.21)

The impulse of the i-th point vortex in the system take the form

∫
i

x× ω dA = Γixi × k̂

= Γ
[
x0 +

c

2
(x̃in̂− ỹiτ̂ )

]
(A.22)

Combining Equations (A.22), (A.20), and (A.21), we find that the impulse of a point vortex

and its associated bound vortex sheet is given by

pi =
c

2
Γi

[
τ̂ Im {z̃} − n̂Re

{√
z̃ − 1

√
z̃ + 1

}]
. (A.23)

This is equivalent to the impulse of the vortex and its circle-plane image.
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A.4 Pressure Distribution

The pressure difference across a the flat bound vortex sheet is given by

[p]+−(ξ) = ρ (γp ◦ l) (ξ)
[
1

2

(
u+(ξ) + u−(ξ)

)
− uc

]
· τ̂ + ρ

dΓ

dt
, (A.24)

where the superscripts on u denote the direction that ξ is approached from (+ when the

approaching against n̂, and−when approaching along n̂). We can find γp through Equa-

tions (A.10) to (A.12), and uc is prescribed, so we only need the surface velocities and the

rate of change of circulation.

Starting with the surface velocities, we have from Equations (A.4) and (A.9) that

u±(ξ) =
∞∑
n=0

(Ann̂+Bnτ̂ ) (Tn ◦ s) (ξ) + n̂
1

2π
−
∫ c/2

−c/2

γp(λ)

l(ξ)− λ
dλ∓ τ̂

(γp ◦ l) (ξ)
2

.

This gives us
1

2

[
u+(ξ) + u−(ξ)

]
· τ̂ =

∞∑
i=1

Bn (Tn ◦ s) (ξ). (A.25)

The circulation contained between the trailing edge of the plate to some arc length

coordinate σ is defined as

Γ(σ) =

∫ l

−c/2

γp(λ) dλ. (A.26)

Substituting in the expression for γp and integrating, we find

(
Γ ◦ c

2

)
(σ) = ΓA

(
cos−1 σ

π
− 1

)
− c
√
1− σ2

2

[
2 (A0 − n̂ · uc) +

(
A1 −

α̇c

2

)
σ (A.27)

+
∞∑
n=2

An

(
Un(σ)

n+ 1
− Un−2(σ)

n− 1

)]
.
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Then taking the time derivative of expression above, we obtain

(
dΓ

dt
◦ c
2

)
(σ) =

dΓA

dt

(
cos−1 σ

π
− 1

)
− c
√
1− σ2

2

[
2

(
dA0

dt
+ α̇τ̂ · duc

dt

)
(A.28)

+

(
dA1

dt
− α̈c

2

)
σ

+
∞∑
n=2

dAn

dt

(
Un(σ)

n+ 1
− Un−2(σ)

n− 1

)]
.

We can find the time derivative of the Chebyshev coefficients by first noting that the the

acceleration induced on the plate’s surface by ambient vorticity can be expanded into the

following Chebyshev series

duA

dt
◦ s−1(σ) =

∞∑
n=0

[(
dAn

dt
+ α̇Bn

)
n̂−

(
α̇An −

dBn

dt

)
τ̂

]
Tn(σ). (A.29)

Then, we can determine the pressure difference by substituting Equations (A.9), (A.25),

(A.28) and (A.29) into Equation (A.24).
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Appendix B

Impulse-Matching Velocity Correction

In this appendix, we will derive the velocity correction on a target point vortex that

eliminates spurious force that it produces as it siphons circulation from a source point

vortex. To streamline the derivation, we will use the complex form of Equation (A.23),

which gives the impulse of a point vortex and its associated bound vortex sheet (or its

image vortex in the circle plane)

p(z̃,Γ) = eiα
c

2
Γp̂(z̃) (B.1)

where we have defined the unit total impulse as

p̂(z̃) := Im {z̃} − iRe
{√

z̃ − 1
√
z̃ + 1

}
. (B.2)

The time derivative of impulse is then given by

dp

dt
(z̃,Γ) = iα̇ + eiα

c

2

(
Γ̇p̂(z̃,Γ) + Γ

dp̂

dt
(z̃)

)
(B.3)

where
dp̂

dt
(z̃,Γ) = −i

[
˙̃z +Re

{(
z̃√

z̃ − 1
√
z̃ + 1

− 1

)}
˙̃z

]
. (B.4)

As before, we will use the subscripts s and t to refer to the point vortices we are transferring

circulation from and to, respectively. The rate of change of impulse due to these two point
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vortices, including the effect of circulation transfer, is

dps
dt

+
dpt
dt

= iα̇(ps + pt) + eiα
c

2

[
Γ̇(p̂t − p̂s) + Γs

dp̂s
dt

+ Γt

(
dp̂t
dt

+
d∆p̂t
dt

)]
, (B.5)

where d∆p̂t/ dt comes from applying a velocity correction to the target point vortex. For

the velocity correction to cancel out the effect of moving circulation, we must have

d∆pt
dt

=
Γ̇

Γt

(p̂s − p̂t). (B.6)

If we define

β :=
z̃t√

z̃t − 1
√
z̃t + 1

, (B.7)

then we can combine Equations (B.4) and (B.6) to get

∆ ˙̃zt(β + 1) + ∆ ˙̃z?t (β
? − 1) = 2i

Γ̇

Γt

(p̂s − p̂t). (B.8)

We can substitute the equation above into its conjugate

∆ ˙̃z?t (β
? + 1) + ∆ ˙̃zt(β − 1) = −2i Γ̇

Γt

(p̂?s − p̂?t ) (B.9)

to obtain the velocity correction to the target point vortex

∆żt =
eiαc

2
∆ ˙̃zt =

ieiαc

2

Γ̇

Γt

(
(p̂s − p̂t)(β

? + 1)− (p̂?s − p̂?t )(β
? − 1)

β + β?

)
(B.10)
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