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Abstract 

 

Remote sensing tools for the large-scale monitoring of vegetation dynamics in wetland 

ecosystems 

by 

Sophie Taddeo 

Doctor of Philosophy in Landscape Architecture and Environmental Planning 

University of California, Berkeley 

Professor Iryna Dronova, Chair 

Continued worldwide urban and agricultural expansion has triggered a loss and degradation of 

wetland resources. The United States alone seen a 50% decline in its wetland extent, with this 

percentage reaching a staggering 70% in certain states. With this widespread fragmentation and 

degradation of habitats, fewer sites are left with the important role of providing ecosystem 

services critical to the well-being of human populations. A thorough monitoring of wetland 

resources is necessary for rapidly identifying areas that require adaptive management and for 

best allocating limited conservation resources. This dissertation explores different 

methodological approaches for the large-scale monitoring of wetland ecosystems at low cost 

using open source remote sensing data. The first chapter provides a review of current monitoring 

practices in restored wetlands of the San Francisco estuary, California, USA. It identifies 

opportunities to leverage geospatial tools and datasets, including remote sensing products, to 

measure the contribution of individual restoration efforts towards regional wetland conservation 

goals. The second chapter examines the response of landscape metrics characterizing the 

distribution, size, and shape of vegetated patches to vegetation dynamics in a subset of restored 

wetlands and reference sites in the Sacramento-San Joaquin Delta of California. To portray 

vegetation response to restoration treatments, this chapter leverages high resolution aerial images 

from the National Agriculture Inventory Program and a collection of bi-monthly satellite images 

from the Landsat archives. The third chapter studies changes in the phenology of wetland sites 

throughout a 17-year period to identify phenological metrics most responsive to restoration 

interventions. This chapter outlines the impact of site characteristics and vegetation dynamics on 

landscape phenology. Finally, the fourth chapter uses a broader scale of analysis to examine how 

vegetation structure, composition, and spatial distribution modulate wetland greenness as 

measured by spectral vegetation indices derived from satellite data. By examining the 

relationships between field properties and spectral greenness across 1,138 wetlands of the 

conterminous United States, this chapter identifies the spectral vegetation indices most suited for 

wetland monitoring across different wetland types, vegetation densities, and disturbance levels. 
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Introduction 
This dissertation focuses on the use of remote sensing data to monitor vegetation dynamics in 

restored wetlands. Free, open source remote sensing data is used to track vegetation changes 

across restored wetlands in the Sacramento-San Joaquin Delta of California and wetlands of the 

conterminous United States monitored by the U.S. EPA’s National Wetland Condition 

Assessment. This effort is motivated by a critical need to develop tools supporting the large-scale 

monitoring of wetland ecosystems at low cost. By studying vegetation dynamics through 

regional and national samples this dissertation aims to enhance our understanding of how 

wetland vegetation — and the ecosystem functions it supports — responds to stressors and 

restoration treatments for a better planning of restoration and conservation efforts. 

Background 

A continued urban and agricultural expansion over the last few centuries has triggered a 

worldwide loss and degradation of wetland resources. The United States alone seen a 50% 

decline in its wetland extent since the industrial revolution, with this percentage reaching a 

staggering 70% in certain states (Bedford 1999; Dahl 2000). Remaining wetlands are subject to 

increasing pressure from biological invasions, agricultural and urban runoff, and habitat 

fragmentation among other stressors (Zedler 2003; Allan et al. 2013; US EPA 2016a). According 

to the latest National Wetland Condition Assessment Report (here after NWCA), 32% of 

wetlands in the conterminous United States are in a “poor” biological condition (US EPA 

2016a). This percentage rises to 61% in the western part of the country as a result of vegetation 

removal, soil hardening, and ditching (US EPA 2016a). Climate change further threatens the 

ecological integrity of wetland ecosystems by increasing their salinity, impacting their vegetation 

productivity, and altering their species composition towards more disturbance-tolerant species 

(Parker et al. 2011; Allan et al. 2013; Chapple et al. 2017). With this widespread loss and 

degradation of habitats, fewer sites are left with the important role of providing ecosystem 

services critical to the well-being of local human populations (Simenstad et al. 2006). These 

include water storage and filtration, carbon sequestration, and habitat provisioning (Zedler 2003; 

Kayranli et al. 2010). The loss of wetland regulation threatens to increase the vulnerability of 

human populations to land subsidence, flooding, and coastal erosion (Barbier et al. 2013; 

Almeida et al. 2016; Jankowski et al. 2017). 

Ecological restoration has emerged in the early 20th century as a solution to the ongoing 

degradation of ecosystems and resulting loss of ecosystem services. Ecological restoration can be 

defined as the assisted recovery of an ecosystem towards a desired state or ecological condition 

(SER, 2014). Interventions to “assist” ecosystem recovery range from active (i.e., significant 

modifications to ecosystem conditions) to passive (i.e., removal of ecosystem stressors) (Zhao et 

al. 2016). Active interventions include excavation and gradation, planting, and site breeching to 

enhance tidal flow and connectivity. Project managers often use nearby, historical, and 

undisturbed sites as a reference point to establish restoration targets (or the ideal final 

composition of the ecosystem).  

While the first American restoration projects date from the late 19th century, the body of 

scientific literature focusing on wetland restoration is relatively recent (Wortley et al. 2013). 
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Aesthetic and utilitarian aims predominantly motivated early wetland restoration efforts, with 

little consideration for natural processes or the need for ecosystems to self-perpetuate (Higgs 

2003). Restoration efforts remained sporadic during the first half of the 20th century until 1989 

when the U.S. government established a federal policy of “no-net loss of wetlands”. This led to a 

substantial increase in the funding allocated to wetland restoration projects by the Environmental 

Protection Agency. Coincidentally, the scientific community’s collective interest in restoration 

ecology grew during the 1980s and led to the foundation of the Society for Ecological 

Restoration in 1983. During that time, restoration projects were placed under increasing 

scientific scrutiny which revealed several project shortcomings. For example, Zedler (1999) 

questioned the assumption that ecosystems follow predictable trajectories and Kentula (2000) 

discussed the lack of clear metrics to define restoration success. 

Despite the substantial increase in wetland restoration projects, recent empirical studies (e.g., 

Matthews & Endress 2008; Van den Bosch & Matthews 2017) and meta-analyses (e.g., Moreno-

Mateos et al. 2015) have reported a wide variability in wetland response to restoration 

treatments, with projects sometimes falling short of restoration targets (Matthews 2015; Brudvig 

et al. 2017). In the literature, vegetation response has ranged from immediate and linear (e.g., 

Staszak & Armitage 2013) to slow and chaotic (Moreno-Mateos et al. 2012). With this 

significant variability, it becomes difficult to predict a site’s capacity to support long-term 

restoration objectives or identify the site design best suited to local conditions and ecological 

goals (Suding 2011). Brudvig et al. (2017) urged the scientific community to study the causes of 

this variation to improve our capacity to predict both short-term and long-term restoration 

outcomes. Developing low-cost monitoring tools is critical to gaining a better understanding of 

factors causing this variability, considering the intensification of the wetland restoration effort 

throughout the country. Between 2004 and 2009, the country experienced the greatest rate of 

wetland re-establishment (i.e., human manipulation of site characteristics to recover wetland 

functions) in three decades (Dahl 2011).  

The ecological literature counts several efforts comparing long-term vegetation dynamics across 

a site sample. For example, Matthews (2015) associated variability in vegetation coverage and 

composition to site age and landscape context. Moreno-Mateos et al. (2015) revealed the slow 

recovery of wetlands’ biological resources, with some wetlands remaining below restoration 

targets even after 100 years. However, most studies published to date have focused on plot-level 

indicators of restoration progress (i.e., indicators directly measured in the field). These indicators 

include species composition, vegetation height, or functional diversity among many others. 

While these plot-level indicators can provide a robust measure of post-restoration recovery, they 

are resource intensive in large sites or where long-term monitoring is needed to account for 

fluctuations. Previous studies have noted that restoration monitoring tends to be limited in space 

and time, which can lead to an overestimation of success or fail to detect unexpected fluctuations 

(Van den Bosch and Matthews 2017).  

Remote sensing could address these shortcomings by complementing field surveys at low cost to 

expand the scale of monitoring efforts. When applied at a large scale, remote sensing favors data 

upscaling through well-calibrated equations (Byrd et al. 2016; Knox et al. 2017) or training 

samples used to produce land cover classifications and map suitable habitats (Fleskes and 

Gregory 2010; Stralberg et al. 2010; Nagendra et al. 2013). It also provides a basis for the 

landscape-scale comparison of multiple sites. Such large-scale ecological data can help measure 

ecosystem services including habitat provisioning (Kelly et al. 2011), carbon sequestration 
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(Kulawardhana et al. 2015), and subsidence reversal (Rosso et al. 2006; Kulawardhana et al. 

2015). Remote sensing also provides a key opportunity to detect ecosystem stressors or 

unexpected site changes (Chapple and Dronova 2017). However, remote sensing remains 

underutilized in wetland restoration monitoring and few studies have used this technology to 

produce regional syntheses of restoration progress. 

Scope 

This dissertation uses the Sacramento San-Joaquin Delta (here after termed the Delta) as a case 

study to explore the potential of free remote sensing datasets for post-restoration wetland 

monitoring. The Delta is confined between the cities of Tracy (37.7397° N, 121.4252° W) and 

Sacramento (38.5816° N, 121.4944° W) and located at the confluence of the Sacramento and San 

Joaquin rivers. It shelters freshwater marshes dominated by Schoenoplectus acutus and Typha 

spp. as well as tidal wetlands dominated by Sarcocornia pacifica and Spartina spp. (Parker et al. 

2011). The Suisun Marsh, adjacent to the Delta, is the largest remaining brackish wetland in the 

Western United States and includes sites dominated by Salicornia virginica and Distchilis 

spicata.  

In the Delta, a large-scale reclamation of wetlands during the 1850s and the subsequent 

agricultural and urban development have degraded wetland habitats and their capacity to fulfill 

critical ecosystem functions (SFEI-ASC, 2014; Whipple et al., 2012). These transformations 

have resulted in the loss of 98% of freshwater wetlands and 95% of tidal marshes historically 

found in the region (Whipple et al. 2012). This large-scale land conversion has triggered a 

phenomenon of land subsidence, with some islands subsiding at an average rate of 0.3 to 1m per 

year (Lund et al. 2010). Furthermore, the sediment supply critical to wetland expansion and 

build-up has been altered by the construction of dams in the early 20th century. Yearly removal 

of depositional sediments for the maintenance of transportation canals further decreases the 

amount of sediment available for soil accretion, which in turn hampers wetlands from increasing 

their elevation and resisting sea level rise (Krone and Hu 2001; Wright and Schoellhamer 2005).  

Large-scale fragmentation has also impacted fish species historically using tidal wetlands (SFEI-

ASC 2014) and the dispersal capacity of certain plant species (Grewell et al. 2013).  

Today, the Delta remains under considerable pressure as a provider of freshwater for 25 million 

Californians and 4.5 million acres of cropland. The expected increase in the frequency and 

magnitude of droughts in California (Diffenbaugh et al. 2015) will further impact the region’s 

wetlands and the species it shelters (Parker et al. 2011). Substantial effort has been deployed in 

the last twenty years to restore wetlands in the Delta. Over 25,000 acres of wetland habitat have 

already been restored while 2,000 additional acres are underway (CWMW,2018). The acreage of 

wetland habitat will increase considerably with the recent adoption of measure AA, a California 

parcel tax funding wetland restoration projects in the estuary. This expansion of restoration effort 

presents both a critical need and unique opportunity to learn from past projects to improve future 

planning and design.  

Research objectives 

Most studies published to date have focused on plot-level vegetation indicators to characterize 

the post restoration trajectories of sites (i.e., temporal dynamics from time of restoration to 
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present day) while fewer studies have measured vegetation progress at the site scale. My 

dissertation seeks to address this gap by developing a methodological framework leveraging 

open source remote sensing data to characterize site trajectories and compare vegetation 

dynamics across multiple sites. I apply this methodological framework to a sample of restored 

and reference sites in the Sacramento-San Joaquin Delta to assess how site design, management 

characteristics, and landscape context affect vegetation dynamics following restoration 

treatments with an emphasis on emergent vegetation. In the last chapter, I expand the scope of 

my analysis by studying the relationships between wetland vegetation properties, abiotic factors, 

and spectral indices throughout different wetland types of the conterminous United States. 

Expanding the scale of analysis in the last chapter enables me to explore relationships based on 

remote sensing data that could be used to monitor spatiotemporal changes in properties of 

wetland vegetation in the Delta and elsewhere. The specific objectives of the dissertation are 

listed below. 

1. Provide the first landscape-scale synthesis of wetland restoration efforts in the Delta 

(chapters 1, 2, and 3). While the region has been the object of an extensive body of literature, no 

study published to date has provided a comprehensive assessment of the ongoing restoration 

effort in the Delta. Published studies have focused on a single site or presented a “snapshot” of a 

site sample. I aim to fulfill this gap by examining the vegetation dynamics of 21 restored and 5 

reference wetlands across 20 years of remote sensing data. By comparing long-term changes in 

this sample of sites, I seek to identify landscape factors (e.g., adjacent land uses, connectivity to 

other wetland habitats) that promote vegetation growth and resistance to stressors. Such an effort 

can help improve the planning and design of future projects, by highlighting the most successful 

restoration practices and landscape contexts most likely to produce enduring ecological benefits. 

It provides a much-needed landscape perspectives on past and future restoration projects in the 

Delta (Kimmerer et al. 2005).  

2. Improve our understanding of post-restoration wetland dynamics (chapters 2 and 3). The 

current monitoring of restoration projects tends to be limited in both spatial and temporal scope. 

Most scientific publications describing the post-restoration trajectory of wetlands have focused 

on plot-level indicators of recovery. This study is one of the first to use remotely-sensed data to 

describe changes in the spatial structure and diversity of plant communities in restored wetlands. 

In addition, this dissertation advances our current understanding of site and landscape-level 

factors affecting the trajectory of wetlands. 

3. Identify cost-effective metrics of vegetation dynamics that show a rapid and consistent 

response to site changes (chapters 1, 2, 3, 4). Previous studies have pointed to a lack of 

consistent monitoring as a possible cause for the substantial variability in restoration outcomes 

reported in the literature (Brudvig 2011; Suding 2011). This dissertation addresses the issue by 

reviewing current methods for post-restoration appraisal (chapter 1). Chapter 1 discusses how 

novel and well-established geospatial tools and methods could complement field monitoring 

effort in the Delta and elsewhere. Then, chapter 2 identifies landscape metrics (i.e., metrics 

characterizing the form, distribution, and diversity of land cover patches) most responsive to 

restoration treatments, time, and vegetation dynamics. Chapter 3 tests the potential of phenology 

metrics (i.e., metrics derived from seasonal growing vegetation curves) to track vegetation 

dynamics in restored wetlands. Chapter 4 tests the impacts of land surface properties (i.e., 

vegetation cover and composition, proportion of open water, bare soil coverage) on spectral 
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vegetation indices typically used to monitor wetlands. These analyses will hopefully provide 

cost-effective tools to promote long-term and large-scale monitoring of wetlands.  

Thesis structure 

Chapter 1 reviews methods and metrics currently used to monitor wetland restoration progress 

in the Bay-Delta region. Using recent literature focusing on the Bay-Delta and elsewhere, it 

discusses how geospatial tools and datasets could be used to complement field surveys and 

expand the current spatiotemporal scope of wetland monitoring at low cost. 

Chapters 2 and 3 seek to address some of the gaps identified in chapter 1 by developing remote 

sensing-based strategies to track wetland restoration progress at a landscape-scale. These 

monitoring strategies are applied to a sample of restoration projects in the Delta to gain insights 

on factors modulating the responses of local vegetation to restoration treatments.  

Chapter 2 seeks to identify a set of landscape metrics (i.e., metrics describing the geometry, 

distribution, and diversity of land cover patches) most responsive to restoration treatments and 

vegetation dynamics. Specifically, this chapter leverages breakpoint analysis - a time series 

segmentation method frequently used to measure ecosystem response to disturbances– to identify 

phases in the development of wetland vegetation following restoration treatments across 21 

restored sites. High resolution data from USDA’s National Agriculture Inventory Program 

(NAIP) is then used to relate these phases in vegetation development to a set of landscape 

metrics describing changes in the distribution and shape of vegetated patches. Lastly, sites 

showing similar phases are grouped to assess the incidence of site design and landscape context 

on vegetation dynamics. Results demonstrate that several landscape metrics, including patch 

density, mean patch area, and distance to nearest neighbor, show significant responses to 

restoration treatments and vegetation processes including colonization. This chapter shows that 

landscape metric analyses and public remote sensing data can be combined to compare site 

trajectories at low cost and to identify landscape and site factors modulating wetland recovery. 

Chapter 3 studies phenological changes within 20 restored wetlands and 5 reference sites. Using 

spectral vegetation indices derived from Landsat 7 ETM + and 8 OLI data, growing season 

curves are generated for each site from 2000 to 2017. Phenological metrics are derived from 

these growing season curves to reveal temporal changes in vegetation extent, productivity, and 

site feedbacks impacting the timing of key phenological events. Results reveal a significant 

phenological response of wetland sites to restoration treatments and climatic fluctuations. These 

phenological variations can impact the provisioning of key ecosystem functions provided by 

wetlands of the Delta, indicating that phenological analyses could be utilized to both characterize 

wetland recovery and help measure key ecosystem functions.  

Chapter 4 expands the scale of analysis by leveraging the National Wetland Condition 

Assessment dataset to study relationships between wetland surface properties and a suite of 

spectral vegetation indices (i.e., NDVI, EVI, GCC, GNDVI, SAVI and LSWI) typically used as 

a proxy for vegetation coverage and productivity. Specifically, this chapter leverages field data 

collected by the National Wetland Condition Assessment in 1,138 sites of the conterminous 

United States. Applying both single and multivariate linear models, the chapter assesses how 

spectral vegetation indices respond to vegetation structure and composition, abiotic factors, and 

climatic and edaphic conditions. Results show substantial variability among wetland types in the 
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performance of vegetation indices, likely due to differences in vegetation density, dominant 

growth forms, and water levels. This suggests that the selection of vegetation indices and 

incorporation of attenuation factors (e.g., water levels, litter) should be tailored to the wetland 

type of interest. 
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Chapter 1 
Geospatial tools for the large-scale monitoring of wetlands in the San 

Francisco Bay-Delta: opportunities and challenges 

This chapter was co-authored with Iryna Dronova. 

Abstract 

Significant wetland losses and continuing threats to remnant habitats have motivated extensive 

restoration efforts in the San Francisco Bay-Delta estuary of California, the largest in the 

Western United States. Consistent monitoring of ecological outcomes from this restoration effort 

would help managers learn from past projects to improve the design of future endeavors. 

However, budget constraints and challenging field conditions can limit the scope of current 

monitoring programs. Geospatial tools and remote sensing datasets could help complement field 

efforts for a low cost, longer, and broader monitoring of wetland resources. To understand where 

geospatial tools could best complement current field monitoring practices, we reviewed the 

metrics and monitoring methods used by 42 wetland restoration projects implemented in the 

estuary. Monitoring strategies within our sample of monitoring plans relied predominantly on 

field surveys to assess key aspects of vegetation recovery while geospatial datasets were used 

sparingly. Drawing on recent publications that focus on the estuary and other wetland systems, 

we propose additional geospatial applications to help monitor the progress made towards site-

specific and regional goals. These include the use of ecological niche models to target on-the-

ground monitoring efforts, the upscaling of field measurements into regional estimates using 

remote sensing data, and the analysis of time series to detect ecosystem shifts. We discuss 

challenges and limitations to the broad scale application of remote sensing data in wetland 

monitoring. These notably include the need to find a venue to store and share computationally 

intensive datasets, the often cumbersome preprocessing effort needed for long-term analyses, and 

multiple confounding factors that can obscure the signal of remote sensing datasets. 

1 Introduction 

Ecological restoration is increasingly used to address the substantial worldwide loss of wetland 

ecosystems and their ecological benefits (Davidson 2014). In the United States, the No Net Loss 

of Wetlands policy mandates that federal agencies offset unavoidable wetland losses through the 

restoration, creation, or enhancement of a site of equal functional value. As a result, wetland 

restoration efforts have intensified across the country (Deland 1992; National Research Council 

2001). The policy itself is implemented through different regulatory frameworks including 

Section 404 of the Clean Water Act enforced by the U.S. Army Corps of Engineers which 

regulates the discharge of dredged and fill material in most wetlands (National Research Council 

2001). The growing societal awareness of wetlands’ key role in supporting biodiversity and 

ecosystem services has further motivated non-profit and governmental organizations to fund 

restoration efforts throughout the United States (Dahl 2011). However, evidence from previous 

scientific studies shows a substantial variability in post-restoration outcomes, even under similar 



11 

 

approaches (Matthews and Spyreas 2010; Matthews 2015). Regional assessments and global 

meta-analyses have documented projects falling short of targets or failing to meet the richness or 

ecosystem functions of reference sites, sometimes even after more than 50 years (Matthews and 

Spyreas 2010; Moreno-Mateos et al. 2012). A current lack of consistent long-term monitoring, as 

reported in previous publications, limits the availability of robust ecological information to help 

identify the site characteristics, restoration interventions, and landscape planning strategies 

promoting site recovery (Simenstad et al. 2006; Matthews and Endress 2008; Suding 2011). 

There is an increasing recognition that monitoring is key to detecting ecosystem stressors and 

promoting adaptive management, particularly in sites exhibiting a high spatial and temporal 

complexity (Perring et al. 2015; Brudvig et al. 2017).  

Nearly 80% of wetlands historically present in the San Francisco Bay and 95% of the wetlands in 

the Sacramento-San Joaquin Delta have been heavily modified or converted into urban and 

agricultural lands (Goals Project 1999; Whipple et al. 2012). In the Suisun Bay, most tidal 

wetlands were diked and are now managed as freshwater habitats used by duck clubs (Goals 

Project 1999; Moyle et al. 2013). Remaining wetlands are subject to increasing ecosystem stress 

due to rapid urbanization, urban and agricultural runoffs, and invasive species (Lund et al. 2010; 

Luoma et al. 2015). Global climate changes may further impact wetland processes by increasing 

droughts (Diffenbaugh et al. 2015), salinity, and sea level rise (Holmes 2012) which will affect 

plant growth and composition (Parker et al. 2011). Furthermore, these ecosystem stressors may 

increase the habitat extent needed to fulfill ecosystem services (Simenstad et al. 2006) and 

exacerbate the vulnerability of local human populations to extreme climatic events (Barbier et al. 

2013; Jankowski et al. 2017).  

In response to this continuing pressure on remaining wetland habitats, several restoration 

projects have been initiated in the San Francisco Bay-Delta estuary (here after “the estuary”). 

The first significant restoration efforts date from the early 1970s with the adoption of the Clean 

Water Act (Callaway et al. 2012). Wetland restoration intensified in the early 2000s with the 

formation of CALFED, a multi-agency effort to address both societal and environmental water 

needs in California. From 2002 to 2015, 6,300 acres were opened to the tides in the San 

Francisco Bay and 25,000 acres restored in the Sacramento-San Joaquin Delta (San Francisco 

Estuary Partnership 2015). Over the last two decades, projects have increased in size and 

topographic complexity (Callaway et al. 2011; Callaway and Parker 2012). Common restoration 

goals for the estuary include enhancing species diversity, reducing coastal erosion, and 

improving water quality among many other objectives (Table 1). 

The current abundance and variety of restoration projects in the estuary present an outstanding 

opportunity for in-depth analyses of wetland monitoring practices and strategies to make this 

monitoring more cost-effective. Over 300 projects have been launched since the 1970s in 

different parts of the estuary (CWMW, 2018) which have been documented by impressive 

regional data collection efforts. The EcoAtlas database of restoration projects in California is a 

notable example which provides information on project scope and goals and thus significantly 

facilitates the understanding of project characteristics, time frames, and geographic 

representation (CWMW, 2018). However, the monitoring aspect of restoration has not yet been 
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extensively addressed by these efforts. There is an emergent need and opportunity to improve 

monitoring practices in the region given the recent approval of Measure AA, a California parcel 

tax funding wetland restoration projects in the region. This measure will fund the restoration of 

24,000 acres of additional wetland habitats over the next 20-30 years.  

Robust post-restoration data could inform the planning and design of future projects in the 

estuary and help measure the progress made towards regional goals (Table 1). Previous papers 

have called for a broadening of restoration planning (Kimmerer et al. 2005; Simenstad et al. 

2006) and monitoring (Kentula 2000; Breaux et al. 2005), recognizing that the combined benefits 

of multiple restoration projects may be needed to fulfill regional wetland conservation objectives 

including increasing habitat quantity and connectivity or enhancing regional carbon sequestration 

potential (Table 1). These goals require data with a large spatial scope and high temporal 

frequency (Kentula 2000; Matthews and Spyreas 2010). Yet many field-focused approaches are 

resource intensive and need to be repeated in time and space (Noss 1990; Wilcox et al. 2002; 

Moorhead 2013). Geospatial tools (i.e., spatial or remote sensing-based analyses of changes in 

vegetation extent, structure, and composition) have been applied at both local and regional scales 

to measure the contribution of conservation efforts to ecosystem service provisioning (e.g., 

Botequilha Leitao and Ahern 2002; McGarigal et al. 2009; Nagendra et al. 2013) but remain 

somewhat underutilized in wetland restoration monitoring (Taddeo and Dronova 2018). The 

increasing availability of low-cost, frequent, and high-resolution remote sensing datasets (e.g., 

NAIP, Landsat, RapidEye) provides an opportunity to complement field surveys economically 

and at a larger scale to help project managers evaluate compliance with site-specific or region-

wide wetland objectives. Recent papers focusing on the San Francisco Bay estuary have 

leveraged different geospatial time series to monitor fluctuations in vegetation productivity and 

composition (e.g., Tuxen et al. 2008; Chapple and Dronova 2017), upscale field measurements 

into regional estimates (e.g., Byrd et al. 2018), track invasive species (e.g., Hestir et al. 2008; 

Khanna et al. 2018), and map critical habitats for species of concern (e.g., Stralberg et al. 2010; 

Moffett et al. 2014). 

To understand the extent to which geospatial tools are currently used in the estuary, this study 

reviewed 42 monitoring plans implemented in the region. Drawing on studies conducted in the 

estuary and elsewhere, we discuss how geospatial tools and datasets could be leveraged, in 

conjunction with field monitoring efforts, to track currently monitored vegetation metrics at a 

larger spatiotemporal scale. We also list indicators of vegetation recovery that remain more 

accurately monitored on the ground, due to limitations in the resolution and availability of 

geospatial datasets. 

2 Methods 

2.1 Study area 

We focus on restored wetlands of the San Francisco Bay-Delta estuary in California, United 

States. The estuary is located between the cities of San Francisco at its western border and 

Stockton and Sacramento at its eastern border (Figure 1). The estuary also includes the cities of 

Santa Rosa, in the North, and Gilroy, in the South. It is characterized by a salinity gradient due to 
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the combined influence of the Pacific Ocean and freshwater from the Sacramento and San 

Joaquin rivers. The estuary supports a variety of wetland types including freshwater wetlands 

dominated by Schoenoplectus acutus and salt marshes dominated by Salicornia pacifica and 

Spartina spp. (Parker et al. 2011; Vasey et al. 2012). Brackish wetlands dominated by 

Schoenoplectus americanus and Bolboschoenus maritimus are found at the confluence between 

salt and freshwater in the Suisun Bay, the largest remaining brackish wetland in the Western 

United States (Vasey et al. 2012; Moyle et al. 2013).  

2.2 Selection of projects/data collection 

We used the EcoAtlas database of wetland restoration in California to find projects implemented 

within the estuary (Figure 1). Among the 332 projects listed for this region, we identified 35 

restoration projects corresponding to our research criteria. Those criteria were: (1) wetland-based 

projects (or restoration projects including a wetland component); (2) located within the estuary, 

and for which (3) a monitoring plan or report was available. We also consulted the U.S. Army 

Corps of Engineers’ RIBITS database to identify an additional seven sites with adequate 

documentation.  Monitoring reports or plans had to include — at a minimum — the list of 

indicators used to evaluate their restoration progress. 

For each monitoring plan and report, we recorded (1) the indicators used to monitor wetland 

restoration progress, (2) the sampling design used to measure these indicators; (3) the length and 

frequency of the monitoring effort, and (4) the success criteria used to assess whether restoration 

objectives had been met. We also noted information on initial restoration treatments and goals 

when such information was available. We noted whether spatial datasets, such as remote sensing 

data, were proposed or used as the basis to map and/or quantify some of the monitored 

indicators. Finally, we collected information on the “reference data” used to establish restoration 

targets including the number of reference sites considered, how these sites had been selected, and 

the sampling design used in these reference sites. 

3 Results 

3.1 General information about projects 

We identified 42 wetland restoration projects with enough information to meet our filtering 

criteria. These projects were restored between 1976 and 2015, with 24 projects restored after 

2000, and 14 restored after 2005. Our project sample included 24 tidal wetlands, three brackish 

sites, nine non-tidal or diked freshwater sites, four vernal pools, and two wet meadows (Table 2). 

Projects varied in size from 0.1 and 1,800 acres, with a mean area of 210.94 acres and a standard 

deviation of 366.33 acres.  

Over half of the projects served as compensatory mitigation for the damage or destruction of 

existing wetlands due to levee maintenance and construction (e.g., Mare Island Navy Mitigation 

Marsh), freeway extension (e.g., Caldecott Tunnel), and infrastructure development (e.g., Muzzi 

Marsh, Madera del Presidio). The overall goals of compensatory mitigation were to replace lost 

ecosystem functions (e.g., habitat provisioning for wildlife and endangered species) via the 

restoration or enhancement of wetlands. Success criteria used to measure compliance with these 
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goals varied among projects but included maintaining a high diversity and coverage of native 

species and reaching a set acreage of wetland habitats (e.g., five acres of estuarine emergent 

wetlands). Restoration goals for non-compensatory projects included creating wildlife habitats, 

increasing species diversity, promoting recreational usage, or reversing land subsidence. For tidal 

wetlands, common restoration actions included breaching to restore flows and tidal prisms, 

creating a system of channels, excavating and grading to improve topographic heterogeneity, and 

using dredged material to increase elevation. Common restoration treatments for freshwater 

wetlands included planting native or desirable species (e.g., Schoenoplectus acutus or Salicornia 

pacifica) and removing non-native species. 

3.2 Length and frequency of monitoring 

Most of the reviewed projects included a monitoring plan to collect information on post-

restoration dynamics. Twenty sites were monitored for five years or less, while 34 sites were 

monitored for 10 years or less. Three sites had planned for 15-25 years of monitoring, while two 

sites planned to monitor in perpetuity. Lastly, three sites established a monitoring protocol but 

did not specify the intended length of post-restoration monitoring. In terms of monitoring 

frequency, 34 sites planned to sample wetland conditions every year, three monitored every other 

year. Five sites adopted an incremental monitoring schedule, with yearly monitoring during the 

first five years and every other year after that. Another project planned to monitor every year 

from years 1 to 8, followed by monitoring every five years from years 10 to 20, and then every 

10 years in perpetuity. Only one project used seasonal monitoring to account for the effect of 

plant phenological differences on composition.  

3.3 Sampling design and references 

Eighteen projects indicated using reference sites as a benchmark to set restoration targets and 

two of them utilized more than one reference site. One project described the statistical approach 

used to assess whether restored sites became statistically similar to reference sites. Fourteen 

projects had conducted a prior ecological assessment to establish baseline conditions (i.e., site 

condition before restoration). The length of baseline data monitoring was typically one year, 

although two sites conducted pre-restoration monitoring for two non-consecutive years. Most 

projects focused their baseline monitoring effort on the year prior to restoration, while three sites 

used monitoring data collected respectively two, seven, and eight years before restoration. No 

project specified the statistical test used to compare baseline and post-restoration conditions. 

All projects included field observations to evaluate vegetation-based indicators of recovery while 

less than half of projects also used geospatial data to monitor progress at a broader site extent. 

The latter employed either high resolution satellite aerial imagery or ground level photography of 

vegetation coverage, but only two of these specified the sensor or image database used. In both 

cases, the images were obtained from a commercial satellite data provider (e.g., Ikonos, 

GeoEye). Remote sensing data were predominantly utilized to map annual changes in vegetation 

cover and patch extent. Seven sites used ground-level photography to compare annual changes in 

vegetation abundance by monitoring the proportion of a focal area covered by vegetation 

throughout a time series. Few of the restoration plans specified any methodology for the ground-
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truthing of ecological data derived from aerial images. However, one site applied the framework 

developed for the 2009 Vegetation Map Update of the Suisun Marsh, which infers restoration 

progress from true color imagery orthorectified using ground control points and a manual 

delineation of vegetation types (California DFG 2012).  

All the reviewed projects leveraged vegetation indicators to evaluate restoration progress. All 

sites included structural indicators (i.e., indicators characterizing the distribution of plant 

biomass throughout the canopy) as part of their post-restoration assessments. Vegetation cover 

proxies were the most commonly used among all structural indicators, assessed either as the 

proportion of the surface covered by all green vegetation (total coverage) or the coverage of one 

single species or functional group (plant coverage). Fourteen projects specifically targeted the 

plant coverage of native or non-native species, while the remaining projects did not distinguish 

between species status. Three projects measured vegetation cover by functional types (i.e., 

classification of plants by their main physical, phylogenetic, or phenological characteristics) 

while four projects targeted a certain plant coverage for specific species (e.g., Salicornia 

pacifica, Bolboschoenus maritimus).  

Twenty-six projects tracked indicators of plant composition (i.e., taxonomic identity, abundance, 

and diversity of species within the plant assemblage) to monitor site progress. Fifteen of these 

conducted a floristic inventory of sites through a visual identification of species presence within 

permanent monitoring plots. Floristic composition targets focused on the percentage of native 

species or wetland-specific species. Other projects concentrated on matching the species 

composition of reference sites. Three sites looked at species richness (i.e., number of species 

present in a plant community), while four sites examined species diversity (i.e., species richness 

and evenness). Two sites focused on target species: one considered rare species, and the other the 

coverage of Californian wetland-specific species.  

Four project plans included spatial indicators of recovery. Three of them used habitat mapping 

(i.e., delineation and quantification of vegetated habitats) while the last one focused on the ratio 

of water to vegetation. Habitat mapping was achieved using both aerial and satellite images from 

commercial providers or delineation of the field boundary with a GPS. Finally, one site included 

an assessment of ecological function: in this case, seedling establishment and recruitment. 

4 Discussion 

Our analysis reveals a sustained effort in the estuary to track wetland response to restoration 

treatments. The spatiotemporal scope and performance metrics of this effort vary among 

projects, likely reflecting a diversity of goals and monitoring requirements as discussed in 

previous publications focusing on wetland restoration in California (e.g., Kimmerer et al. 2005) 

and elsewhere (e.g., Matthews and Endress 2008). Monitoring practices in our sample of projects 

focused on structural indices of vegetation recovery (e.g., plant coverage) and to a lesser extent 

on indicators of species composition. Only a subset of monitoring plans utilized geospatial tools, 

primarily to measure changes in vegetation cover or map habitats. While these are important 

objectives for wetland monitoring and restoration assessments, evidence from recent studies in 

the region and the growing accessibility of remote sensing data highlight other, still somewhat 
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underutilized, opportunities to cost-effectively expand the spatiotemporal scope at which we 

evaluate restoration progress (Table 3). With several conservation plans setting landscape-scale 

goals for the region (Table 1), there is now an opportunity to develop a more consistent 

monitoring framework to track the combined contribution of multiple projects towards regional 

objectives. Geospatial tools can also help project managers measure the progress made towards 

site-specific objectives. 

Project managers now have access to a multitude of sensors providing repeated data (e.g., 

Ikonos, RapidEye, Landsat; Table 4) enabling vegetation tracking at a constant phenological 

stage, medium to high spatial resolution, and over large extents. Several of the sensors listed in 

Table 4 provide multispectral data in three to seven broad spectral bands sensitive to plant 

biomass and coverage (Pettorelli et al. 2005; Jensen 2007). Hyperspectral sensors can provide 

spectral information in thousands of narrow bands sensitive to plant chemical composition 

facilitating the identification of dominant species (Hestir et al. 2008; Andrew and Ustin 2009; 

Muller-Karger et al. 2018). While free medium-high resolution datasets (e.g., Landsat, SPOT; 

Table 3) can provide adequate spatial detail to detect general patterns of change in vegetation 

extent and productivity (e.g., Baker et al. 2007; Wang et al. 2015; Knox et al. 2017), higher 

resolution data is needed to track changes in plant composition and dominant species. The NAIP 

dataset provides the finest resolution (0.6 to 1m) of all free datasets (Table 4), but its low 

acquisition frequency (one image every 2-3 years) and variable timing of acquisition (some 

images captured at the beginning of the summer, others at the end) make change analysis 

difficult if relying on this dataset alone. However, combined with other products, the NAIP 

dataset can increase spatial detail and enhance vegetation mapping for a more robust 

quantification of wetland processes (e.g., Byrd et al. 2018). Some commercial datasets (Table 4) 

provide both high resolution and high frequency – but this can be costly for project managers 

overseeing large sites. Hyperspectral data can best differentiate species that would otherwise be 

too similar at a lower spectral resolution but is expensive for large sites or regional assessments. 

4.1 Opportunities to complement field monitoring using geospatial tools 

4.1.1 Habitat mapping 

Increasing the extent and quality of ecological habitats is a key restoration objective in the 

estuary as reflected in the regional goals (Table 1) and objectives of both compensatory 

mitigation and non-compensatory projects. Habitat quality and extent can be characterized by 

several field-based vegetation metrics (Craft et al. 2003; Bradbury et al. 2005) or mapped from 

remote sensing data via well-established spatial analysis methods (Nagendra et al. 2013; 

Rocchini et al. 2018) to reduce the high cost associated with wildlife observations and stock 

assessments. Remote-sensing data can be utilized to map suitable habitats for species of interest 

based on prior knowledge of their occurrence and association with vegetation composition, 

height, structure, or phenology which translate into spectral contrasts among different habitat 

types (Nagendra et al. 2013; Andrew et al. 2014). For example, structural diversity (i.e., 

heterogeneity in growth forms or canopy height), which can be measured using LiDAR data, 

promotes avian and macroinvertebrate richness in wetlands (Zedler et al. 1999; St. Pierre and 

Kovalenko 2014). Pickleweed (Salicornia pacifica), a species used by the endangered Salt Marsh 
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Harvest Mouse (Reithrodontomys raviventris), can be identified by its late phenology and 

spectrally homogeneous stands (Tuxen and Kelly 2008). Recognition of different vegetation 

types can be further enhanced using multi-date imagery which accentuates phenological 

contrasts (e.g., Wang et al. 2012, Zhong et al. 2012) or narrowband hyperspectral datasets with 

greater sensitivity to biochemical differences among plant types based on leaf water or 

chlorophyll content (Andrew et al. 2014).  

Analysts can combine different geospatial data sources or leverage ancillary data to improve 

habitat quantification. For example, using high-resolution topographic data improved the 

detection of suitable habitats for shorebirds in the Sacramento National Wildlife Refuge 

Complex (Schaffer-Smith et al. 2018). Stralberg et al. (2010) used LiDAR-derived elevation 

data, in addition to a remotely sensed survey of vegetation composition, to map suitable habitats 

for three endangered bird species in the Bay-Delta. Such analyses can also more effectively 

account for the impact of adjacent land uses and covers on the likelihood that species will adopt 

suitable habitats (Nagendra et al. 2013). For instance, Tuxen and Kelly (2008) leveraged high-

resolution aerial photography and LiDAR data to map suitable habitats for the Salt Marsh 

Harvest Mouse (i.e., dense covers of pickleweed) and its preferred landscape context (i.e., 

proximity to elevated patches where it can find refuge during tides).  

Landscape metrics (i.e., statistics describing the spatial structure, heterogeneity, and distribution 

of habitat patches) can help evaluate the quantity and quality of habitats as they reflect key 

processes and properties including species dispersal, water flows, and water quality (Moreno-

Mateos et al. 2008; McGarigal et al. 2009; Sloey et al. 2015). As an example, three landscape 

metrics describing the size and shape of habitat patches were effective predictors of the Song 

Sparrow’s (Melospiza melodia pusillula) distribution in the estuary (Moffett et al. 2014). 

Landscape metrics may also reveal patterns of fragmentation (Markle et al. 2018) or landscape 

homogenization (Costanza et al. 2011) which might reduce the capacity of sites to meet species 

diversity targets or maintain wildlife populations. Several conservation plans — including the 

BDCP and Delta Conservation Framework — are targeting an increase in the connectivity of 

wetland habitat patches, which can be similarly approximated by a suite of landscape metrics 

(Turner et al. 1998) but was not explicitly measured in the monitoring plans of our sample. 

Landscape connectivity promotes the movement of resources, genes, seeds, and individuals 

(Rudnick et al. 2012) critical to ecosystem resilience (Turner et al. 1998; Lindborg and Eriksson 

2004). Using a consistent classification nomenclature and methodology to map suitable wetland 

habitats across the estuary could help measure the contribution of restoration efforts on regional 

habitat connectivity. To this effect, the Tidal Monitoring Framework for the Upper San 

Francisco Estuary (IEP TWM PWT 2017) recommends applying the CalVeg habitat 

classification system upon aerial images to maintain consistency among different monitoring 

efforts. Once such a consistent mapping of vegetated habitats is completed, different GIS-based 

methods, including network analyses and resistance kernels, can quantify habitat connectivity 

throughout the region (Minor and Urban 2008; Fortin et al. 2012; Rudnick et al. 2012).  

Lastly, applying the aforementioned strategies to spatially contiguous remote sensing data may 

help detect the presence and coverage of target species, such as undesirable non-native species 
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or, in contrast, rare species as indicators of restoration progress. Both the Delta Plan (2013) and 

Delta Conservation Framework (2016) stress the importance of timely prevention and early 

detection of biological invasions, which are expected to intensify with climate change (Callaway 

and Parker 2012; Grewell et al. 2013). Furthermore, eradication is more cost-effective when 

populations are still small and isolated (Reaser et al. 2008; Kettenring and Adams 2011). Several 

studies conducted in the Bay-Delta highlight the promise of repeated remote sensing data to track 

the progression of non-native species (e.g., Hestir et al. 2008; Ta et al. 2017; Khanna et al. 2018) 

which were predominantly monitored in the field within our sample. Invasive species can be 

distinguished from co-existing native species when they present distinct spectral or phenological 

properties (Bradley 2014) such as unique flowering schedules (Andrew and Ustin 2008), or, in 

the case of aquatic weeds, a contrast to open water (Hestir et al. 2008; Bradley 2014). The 

characteristic spatial pattern, or “texture”, of some invasive species can also facilitate their 

detection; for instance, Boers and Zedler (2008) identified areas of high Typha x. glauca 

dominance within aerial images by their dark homogeneous circular patches. Though more 

expensive, hyperspectral imagery facilitates the detection of invasive plant species based on 

more subtle spectral contrasts resulting from unique biochemical, anatomical, and structural 

plant properties (Hestir et al. 2008). 

 

Ecological niche models may help target the monitoring of non-natives when sites are too large 

to use more costly high resolution or hyperspectral data or where populations are too small to be 

detected using remote sensing data alone (Andrew and Ustin 2009). Project managers could 

leverage existing datasets documenting non-native species occurrences to construct their habitat 

models (e.g., Calflora and Calflora’s WeedMaper) and identify suitable habitats where 

monitoring efforts using high resolution, spectral, or field data should be targeted. Such a 

modelization approach could also be applied for a more targeted monitoring of rare species or 

species of particular interest because they provide habitat benefits and additional ecosystem 

services (Guisan and Thuiller 2005; Sousa-Silva et al. 2014). 

4.2 Upscale field measurements into site or regional estimates 

Some of the restoration goals set for the estuary will rely on the combined effect of multiple 

projects, which creates the need to develop region-wide estimates of the key ecosystem 

parameters and indicators assessed by individual projects. Well-calibrated relationships between 

ecosystem processes of interest and vegetation properties detectable from satellite images could 

enable such an upscaling of field measurements both within large spatial extents of individual 

projects and across the region. Several regional studies have demonstrated promise for upscaling 

wetland vegetation biomass (e.g., Byrd et al. 2014; Byrd et al. 2016; Byrd et al. 2018), leaf area 

index (e.g., Dronova and Taddeo 2016), primary productivity and greenhouse gas fluxes (e.g., 

Knox et al. 2017; McNicol et al. 2017) using spectral vegetation indices derived from open 

access and commercial remote sensing data. In general, these relationships, similar to previous 

successes from terrestrial ecosystems, are based on the effects of physiological, biochemical, and 

structural properties of vegetation on the absorption, transmission, and reflection of solar 

radiation shaping plant signatures in remote sensing data (Jensen 2007). Wetland environments, 

however, pose unique challenges to upscaling frameworks due to the patchiness of their 
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vegetation and the suppression of plant spectral signals by background effects of dead biomass 

(Rocha et al. 2008, Schile et al. 2013, Byrd et al. 2014) and water (Kearney et al. 2009; Byrd et 

al. 2014; Kulawardhana et al. 2014). Correcting for these effects may be possible using 

specialized image processing methods such as determining relative fractions of vegetation, 

water, and dead biomass inside minimum mapping units (Dronova and Taddeo 2016) or 

selecting data with spectral regions showing a high sensitivity to target properties (Byrd et al. 

2014). 

Other studies have tested the potential of light detection and ranging (LiDAR) instruments for 

the monitoring of vertical accretion in wetlands (e.g., Rosso et al. 2006; Kulawardhana et al. 

2015). LiDAR systems are active sensors that emit and receive radiation signals. The time 

needed for a LiDAR pulse to reach land surfaces and return back provides information on the 

elevation and height of land features (Hudak et al. 2009), and, to some degree, on the vertical 

structure of plant canopies. Annual changes in the digital elevation model (DEM) derived from 

LiDAR data can be measured to characterize vertical accretion in wetlands (Rosso et al. 2006; 

Deverel et al. 2014). However, due to the high cost of LiDAR data acquisition and processing, it 

has not been used systemically across the Bay-Delta region to survey and make comparisons 

between sites. 

4.3 Establish baseline and reference conditions for restoration targets 

The monitoring of baseline and reference conditions in our project sample was typically limited 

to one year (or two years in rare cases). Current literature emphasizes the importance of tracking 

baseline and reference conditions for multiple years to account for the impact of climate, salinity, 

hydrology, and species succession on wetland conditions (White and Walker 1997; Zedler et al. 

1999; Moorhead 2013; Johnson et al. 2017). Ecosystem variability is an important concern in the 

estuary where annual fluctuations in precipitation and salinity can impact the vegetation extent 

(Chapple and Dronova 2017), productivity (Parker et al. 2011), and composition (Chapple et al. 

2017) of both restored and reference sites. Expanding the temporal scope and frequency at which 

reference or baseline data are collected is therefore critical in setting realistic restoration targets 

and accounting for the impact of landscape context and abiotic conditions on the capacity of a 

site to meet those targets. The dynamic reference concept proposes to set such flexible targets via 

a simultaneous monitoring of restored and reference sites to account for impacts of 

environmental fluctuations on restoration indicators and then adjusting restoration targets (Hiers 

et al. 2012). Repeatedly acquired remote sensing data can facilitate this task by tracking key 

environmental and vegetation parameters and comparing them among restored and reference 

sites. For example, Tuxen et al. (2011) used high resolution aerial photography to track changes 

in the extent and diversity of plant communities in a series of reference and restored tidal 

wetlands of the estuary. Their analyses revealed a higher variability and diversity of plant 

communities in more recently restored sites versus mature ones. Tracking environmental 

conditions in several reference sites could also help determine a range of acceptable post-

restoration targets. Previous studies have even suggested using less successful restoration 

projects to set a lower limit of expectation and reference wetlands to set the upper range of 

acceptable wetland conditions (Kentula 2000; Matthews and Spyreas 2010). Understanding year-
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to-year fluctuations in wetland vegetation properties could also help identify which specific 

characteristics should be measured with greater frequency. For example, Chapple and Dronova 

(2017) showed that droughts impact vegetation expansion, suggesting that monitoring may need 

to be intensified under such climatic conditions.  

While there are still few examples of wetland studies using remote sensing to measure baseline 

and reference conditions, research conducted in other ecosystems shows interesting approaches 

that could be applied in wetlands. For example, a study in the Iberian Peninsula used a time 

series of vegetation indices spanning 20 years to describe the typical range of fluctuations in the 

spectral signature of different plant functional types in response to climatic conditions (Alcaraz-

Segura et al. 2009). This allowed authors to identify a range of acceptable conditions accounting 

for natural fluctuations and consequently set thresholds under which large abnormal changes 

would require adaptive management. Adopting a similar method in wetlands could help establish 

a range of expected conditions while a departure from this expected range of values might 

indicate an ecosystem stress or a failure in recovery.  

4.4 Resilience and detection of ecosystem stress and shifts 

The ability to cost-effectively monitor wetland change with geospatial datasets is also crucial for 

assessing the resilience and adaptive capacity of both restored and reference systems. Some of 

the conservation frameworks for the region (Table 1) included resilience as a primary objective, 

although none of the reviewed plans explicitly tracked this or identified its specific indicators. 

Across our sample, monitoring efforts were limited to an average of one year before and six 

years after restoration, which may not be sufficient for assessing the effects of region-specific 

stressors such as droughts and fluctuations in salinity. Repeated efforts to map wetland cover or 

habitat types enable not only tracking of general dynamics, but also early signals of important 

shifts. For example, a change analysis conducted on an 85-yr dataset of manually classified aerial 

images revealed fluctuations in vegetation composition and habitat connectivity and their impact 

on the local herpetofauna of a Canadian wetland (Markle et al. 2018). 

Resilience is notoriously hard to measure and predict, and several publications have called for 

the development of robust tools for its assessment (Carpenter et al. 2001; Standish et al. 2014). 

Recent publications leveraging long-term time series of remote sensing data show promising 

approaches to estimate resilience and detect early signs of ecosystem shifts (e.g., Díaz-Delgado 

et al. 2002; Sen et al. 2012; Alibakhshi et al. 2017). For example, Alibakhshi et al. (2017) 

showed that an increased temporal autocorrelation in a composite water-vegetation index could 

indicate an ecosystem shift triggered by repeated droughts. Similarly, Diaz-Delgado et al. (2002) 

used Landsat time series to measure the time needed for different forest patches to return to pre-

disturbance biomass levels after a series of fires.  

Maintaining a multimetric, site-wide monitoring effort to assess the progress made towards 

multiple objectives can increase the likelihood of detecting unexpected fluctuations, yet the 

required field effort may incur a high logistical and financial burden (Moreno-Mateos et al. 

2015; Brudvig et al. 2017; Taddeo and Dronova 2018). Remote sensing provides a framework to 

detect ecosystem stressors that may warrant further on-the-ground monitoring and signal a 
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potential ecosystem shift. Shifts in the spectral properties or phenology of vegetation could 

expose environmental stress or reveal a decline in the quality of habitat patches (Nagendra et al. 

2013). Project managers can detect early signs of ecosystem shifts (Moffett et al. 2015) by 

tracking spatial variations in vegetation extent and progression (Chapple and Dronova 2017) and 

habitat complexity (Moffett and Gorelick 2016). Monitoring programs can also focus on 

vegetation characteristics known to increase site resistance to ecological threats. For example, 

some monitoring plans are already tracking plant productivity, a key contributor to soil accretion, 

which increases wetlands’ resistance to sea level rise and erosion (Miller et al. 2008; Parker et al. 

2011), bird populations’ resistance to droughts (Selwood et al. 2017), and could be measured 

using both large-scale remote sensing data and site-level phenocams (Shuman and Ambrose 

2003; Kulawardhana et al. 2015; Knox et al. 2017). Response diversity (i.e., variability of plant 

responses to fluctuations in environmental conditions) has been shown in field observations and 

simulations to help ecosystems maintain key processes during and after disturbances. Response 

diversity can be measured as the range or degree of divergence within a set of traits (i.e., plant 

characteristics responding to resource availability, hydrology, disturbances) in a community 

(Mori et al. 2013), some of which can be measured using hyperspectral data (e.g., foliar nitrogen 

or chlorophyll content, height) or long-term time series of multispectral data (e.g., phenology) 

(Andrew et al. 2014). 

4.5 Limitations and future directions 

While different remote sensing datasets and tools are becoming increasingly available, their 

limitations in addressing the objectives of wetland restoration monitoring should be recognized 

and considered carefully. Despite an extended spatial and temporal observation scope compared 

to traditional ground surveys, most spatial instruments are not sufficiently sensitive to some of 

the critical characteristics of vegetation that can be assessed in the field, particularly indicators of 

floristic composition and diversity (Shuman and Ambrose 2003). Furthermore, field surveys are 

very important for the “ground-truthing” of remote sensing analyses to calibrate and validate the 

patterns observed from image datasets. Thus, future monitoring efforts should seek strategies to 

combine remote and ground observations in complementary ways. This section discusses some 

key monitoring needs and opportunities highlighting the importance of such complementary 

efforts. 

4.5.1 Species composition and diversity 

Increasing species diversity is a key goal of restoration efforts in the estuary (e.g., BDCP, 

CALFED I, Delta Conservation Framework; Table 1) due to its potential to promote 

productivity, resistance to biological invasions, and ecosystem stability (Yachi and Loreau 1999; 

Caldeira et al. 2005; Cardinale et al. 2012). Furthermore, Boyer and Thornton (2012) observed 

that restored sites in the estuary maintained fewer species than reference sites on average, further 

emphasizing the importance of monitoring species richness in the region. Incidentally, 26 of the 

monitoring plans we reviewed included indicators of species composition (e.g., richness, 

diversity). Monitoring species composition in the field is challenging because it requires frequent 

sampling to account for seasonal and annual variability in species composition and a large spatial 

extent to increase the likelihood of observing rare species (Noss 1990). Yet composition 
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assessments might be best completed using field observations, considering the limitations of 

remote sensing datasets. Remote sensing has been leveraged to map dominant species, but many 

wetland species can have similar spectral signatures at peak biomass (Schmidt and Skidmore 

2003). It is much easier to distinguish plant functional types using remote sensing data than a 

single species unless it presents phenological characteristics or a spectral signature that is clearly 

distinct from its surroundings (Bradley 2014). Furthermore, to be detectable, this species must 

cover a significant portion of the pixel (Bradley 2014). LiDAR can help distinguish species by 

structural differences but has a limited effectiveness in short canopies where species have a 

similar structure or height (Kulawardhana et al. 2015). Hyperspectral images can help 

differentiate species by their chemical characteristics (e.g., chlorophyll and water content; 

Andrew et al. 2014) but remain more effective in ecosystems with a lower overall richness 

(Andrew and Ustin 2008). 

4.5.2 Early stages of recovery 

Some restoration plans in our sample included plant survival as a primary component of their 

monitoring program. It can be difficult to get a reliable signal of plant biomass or survival at the 

earliest stage of site development, when plant individuals are sparsely distributed, because the 

spectral signal of bare soil or water might obscure the spectral signature of green vegetation 

(Bradley 2014). Advances in the use of satellite images to map vegetation growth in arid 

environments nonetheless suggest potential methodological approaches to facilitate monitoring 

of sites at an early stage of vegetation development using remote sensing data. For example, 

Khanna et al. (2007) showed that indices based on the relationship, or angle, between the near 

and shortwave infrared bands could help distinguish green vegetation from background soil in 

arid environments. Alternatively, project managers could focus their effort on repeated field 

assessments in the very early stages of wetland recovery and transition into more remote-sensing 

based assessments for specific indicators when the vegetation is more established and 

perceivable using aerial or satellite images.  

4.5.3 Tidal effects 

In coastal wetlands, periodic tidal flooding attenuates the spectral reflectance of vegetation due 

to higher water levels and increased soil moisture (Kearney et al. 2009; Adam et al. 2010a). This 

introduces a lot of noise in data, particularly when studying wetland changes through a time 

series or trying to model the phenological cycle of tidal wetlands. Correction factors have been 

used to account for the attenuation of spectral signals by high water levels, but they must be 

tailored to the structural characteristics of dominant species (Kearney et al. 2009; Byrd et al. 

2014) and their phenology (O’Connell et al. 2017) which both impact the proportion of water 

visible from aircrafts or sensors. Correction factors are typically established using field 

observations of plant biomass and structure including leaf area index and vegetation fraction 

(Mishra and Ghosh 2015). For example, O’Connell et al. (2016) developed a correction factor 

for tidal pixels based on plant phenology and spectral reflectance in the green and shortwave 

infrared bands. One of the projects we reviewed circumvented this challenge by restricting 

analyses to images acquired at low tide, which may be a tedious procedure for analysts focusing 

on large sites or extended time series.  
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4.5.4 Logistical challenges 

As the quality and quantity of satellite data increases, so do data storage needs. The large scale 

and long-term monitoring of restored sites in the estuary, while critical to advancing our 

understanding of post-restoration dynamics, will generate heavy datasets that organizations with 

limited resources might have trouble maintaining. As such, there is a crucial need in the estuary 

to develop a platform enabling different organizations and managers to store and share their 

geospatial data. Developing such a repository could reduce redundancy in efforts but also 

provide large-scale, consistent datasets enabling regional analyses and syntheses.  

In the meantime, advances in online application programming interface (API) platforms provide 

cost-effective opportunities for such analyses by allowing cloud-based access to some large 

remote sensing data repositories without manual download and pre-processing of the imagery. 

For instance, a cloud-based Google Earth Engine (GEE; https://earthengine.google.com/) API 

platform provides access to long-term datasets for several sensors and programs including 

Landsat, MODIS, and NAIP (Table 4). Users can utilize the GEE platform to perform a set of 

spatial analyses including change detection, land cover classification, and band arithmetic. A 

new data API by PlanetLabs (https://www.planet.com/) facilitates the access to and analysis of 

high-resolution (3-5m) imagery from Planet satellites. Several other remote sensing data 

repositories allow obtaining the raw satellite and aerial imagery and some of the derived 

products, for example, U.S. Geological Survey’s Earth Explorer (https://earthexplorer.usgs.gov/), 

NASA’s Land Process Distributed Active Archive Center (LPDAAC; https://lpdaac.usgs.gov/), 

NOAA Data Access Viewer (https://coast.noaa.gov/dataviewer/#/), and NAIP imagery 

collections at California Department of Fish and Wildlife libraries.  

4.5.5 New tools and opportunities to reduce costs for multi-approach strategic monitoring 

Several technological advances in remote sensors provide novel opportunities for customized 

monitoring of vegetation properties and seasonality at individual sites to circumvent the 

logistical challenges of ground surveys and reduce the risk of site disturbance. Unmanned aerial 

vehicles (UAVs), for example, allow collecting very high resolution imagery (<10-50cm) at a 

desired frequency (Anderson and Gaston 2013). The data can be mosaicked across site extent to 

map wetland surface and vegetation types or measure relevant indicators such as plant coverage 

(e.g., Zweig et al. 2015). Depending on the specifications of imaging instruments, it might be 

possible to detect individual species with such data, while greater ease of recognition by the 

human eye at such a scale may enable collection of reference samples of vegetation types 

directly from the images, thus reducing the scope of required field work. However, there are 

challenges with these techniques including the rigorous pre-processing of data to achieve 

radiometric calibration and the precise co-registration of images to spatially align them in the 

time series. Furthermore, high-resolution imagery may be sensitive to local noise and color 

variation, which requires specialized processing and mapping methods such as object-based 

image analysis (OBIA; Blaschke 2010; Dronova 2015). 

Another promising cost-effective monitoring strategy involves using in situ phenocams – small, 

inexpensive digital cameras that can record fixed-view images of specific locations within sites 

and monitor changes in vegetation phenology and status at a high temporal frequency. Networks 
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of such strategically placed small cameras have been widely adopted by wildlife ecologists for 

detecting occurrences of mobile species (e.g., Steenweg et al. 2017) and by environmental 

scientists monitoring vegetation greenness as an indicator of productivity and greenhouse gas 

sequestration (Sonnentag et al. 2012a), including in some local wetland restoration projects 

(Knox et al. 2017). Phenocams offer an important opportunity to detect the precise timing of 

plant phenological shifts, including periods falling between cloud-free satellite data acquisitions. 

Their views can be further equipped with fixed visual scale references to measure changes in 

plant height or water levels. Furthermore, the data from small cameras can be transmitted 

wirelessly to a receiving computer server station to automatically extract vegetation parameters 

such as greenness. 

5 Conclusions 

This synthesis of monitoring efforts across 42 wetland restoration projects from the San 

Francisco Bay-Delta estuary reveals a comprehensive effort to track wetland responses to 

restoration treatments. Current monitoring strategies rely primarily on field surveys to assess key 

aspects of vegetation recovery, habitat properties, and their change. In contrast, spatially 

comprehensive geospatial datasets, including remote sensing imagery, are still used sparingly, 

mainly for tracking plant cover and the extent of identifiable vegetation types. The nature of 

indicators commonly targeted by monitoring efforts makes it obvious that remote sensing and 

spatial tools can complement field surveys via instantaneous and repeated coverage of wetland 

sites but cannot replace the informative value of such ground-level assessments, particularly for 

parameters that are not easily perceivable by remote sensors. In particular, the increasing 

availability of remote sensing datasets enables characterizing the spatial extent, phenology, and, 

in some cases, biomass and vertical structure of dominant vegetation types and detecting 

signatures of plant invasions at whole-site and regional scales that are unfeasible for 

comprehensive field surveys, while also reducing site disturbance and trampling. Remote sensing 

data alone cannot provide a robust understanding of on-the-ground processes underlying the 

observed ecological dynamics and remains limited in the capacity to accurately map individual 

species or their diversity. To be robust, geospatial tools and analytical methods require training 

and validation using on-the-ground data. Making monitoring strategies informative, cost-

effective, and reproducible thus calls for a complementary use of spatial/remote and field-based 

strategies to capitalize on their unique advantages. Increasing the use of geospatial tools and 

remote sensing data will also require new data exchange venues to allow managers to compare 

site progress, share relevant data, and measure the combined progress made towards goals. 
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Table 1. Conservation documents for the estuary and their main habitat goals 
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CALFED I X X X  X X      

Bay-Delta Conservation Plan 

(2007) 

X X X   X X X  X X 

Suisun Marsh Habitat 

Management, Preservation, and 

Restoration Plan (2011) 

    X       

California Water Fix (2016) X   X  X X  X  X 

Delta Plan (2013) X  X X X X  X X  X 

California Water Action Plan 

(2014) 

X X    X X X  X  

Delta Conservation Framework 

(2017) 

X X X X X X X X X   

San Francisco Bay Plan (2015) X X X X X X X X X X X 

Baylands Ecosystem Habitat Goals 

(1999) 

           

San Francisco Bay Joint Venture 

(2001) 

 X         X 

Conservation Strategy for 

Restoration of the Sacramento-San 

Joaquin Delta, Sacramento Valley, 

and San Joaquin Valley Regions 

(CDFW et al. 2014). 

X X X  X X X X   X 

 

Table 2. Summary of monitoring plans analyzed for this review 

Restoration type Wetland 

type 

Restoration 

year 

Number 

of 

projects 

Mean 

project 

size 

(acres) 

Restoration indicators Mean 

monitoring 

length (yrs) 

Compensatory 

mitigation 

Brackish 1995 1 4 Vegetation cover, species 

composition, plant survival 

5 

 Diked 1993 1 94 Vegetation cover, vegetation 

composition 

5 

 Freshwater 1976-2009 9 39 Vegetation cover, species 

composition, plant height and 

height heterogeneity, stem 

density 

6 

 Salt marsh 1993-2007 2 6 Vegetation cover 5 
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 Tidal 1995-2004 13 83 Vegetation coverage, species 

composition, plant height, 

biomass, habitats mapping, 

community similarity 

8 

 Vernal 

pools 

2005 2 534 Vegetation cover, species 

composition, habitat mapping 

10 

Non-mitigation Brackish 1996-2003 2 1,077 Vegetation cover, plant height, 

species composition 

10 

 Diked 1998 1 72 Vegetation cover 10 

 Tidal 1998-2015 10 205 Vegetation cover, species 

composition, habitat mapping, 

plant survival, plant height, rate 

of lateral expansion 

10 

 Wet 

Meadow 

2002 1 492 Vegetation cover, rare species 10 

 

Table 3. Examples of geospatial applications for measuring the progress made towards 

restoration goals in the San Francisco Bay-Delta estuary. 

Restoration Goals Geospatial Applications Local Examples 

Recover endangered 

species 

Quantify suitable habitats using aerial and satellite 

images or 3D lidar products. 

Stralberg et al. 2010 

Tuxen and Kelly 2008 

Schaffer-Smith et al. 

2018 

Use ecological niche models to identify potential suitable 

habitats and target field monitoring. 

Zhang & Gorelick 

2014 

Use landscape metrics of habitat size, diversity, density, 

and connectivity. 

Moffett et al. 2014 

Tuxen and Kelly 2008 

Control non-native species Monitoring using repeated satellite images. Hestir et al. 2008  

Ta et al. 2017 Khanna 

et al. 2018 

Andrew and Ustin 

2008  

Use hyperspectral data to detect changes in extent and 

coverage of target plant species. 

Rehabilitate ecological 

processes 

Upscale field measurements into site or regional 

estimates of ecosystem functions. 

Byrd et al. 2014 

Byrd et al. 2016 

Byrd et al. 2018 

Knox et al. 2017  

McNicol et al. 2017 

Enhance adaptability to 

climate change 

Measure the impacts of climatic fluctuations on 

vegetation extent and productivity. 

Chapple and Dronova 

2017 

Enhance habitat 

connectivity 

Use landscape metrics to measure connectivity.   Zhang & Gorelick 

2014 Conduct connectivity analyses using network analysis or 

resistance kernel approach. 

Promote adaptive 

management 

Use time series of satellite images to identify thresholds 

of ecosystem change for intervention. 

  

Moffett and Gorelick 

2016 

  

Use repeated aerial survey to detect early signs of 

ecosystem shifts. 
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Erosion and flood control Upscaling of field measurements into site or regional 

estimates of ecosystem functions. 

Schaffer-Smith et al. 

2018 

Buffington et al. 2016  Identifying changes in terrain and hydrological properties 

using 3D lidar products. 

 

Table 4. Examples of common high-to-moderate resolution remote sensing data sources and 

their potential for the post-restoration assessments of wetlands. 

 Sensor/Database Agency Temporal 

Scope 

Spatial 

Resolution 

Bands Examples of 

Applications 

Commercial RapidEye PlanetLabs Every 1-6 days; 

2008-Present 

5m 5 Habitat mapping 

(Jung et al. 2015). 

World-View  DigitalGlobe Every 1-2 day; 

2009-Present 

0.31 – 

1.24m  

8 Land cover 

mapping, quantify 

vegetation 

expansion 

(Chapple and 

Dronova 2017). 

IKONOS 

 

DigitalGlobe Every ~3 days; 

1999-2015 

0.82-4m 4 Mapping 

vegetation, 

detecting invasive 

species (Belluco et 

al. 2006). 

Quickbird DigitalGlobe 1-3.5 days; 

2001-2015 

0.65-2.9m 4 Mapping 

vegetation 

(Gilmore et al. 

2008; Laba et al. 

2008), detecting 

invasive species. 

Public National 

Agriculture 

Inventory 

Framework  

USDA Every 2-3 years 

from 2003-

Present 

0.6 – 1 m  3-4 Inform sampling 

design (Lackey 

and Stein 2014), 

monitoring 

invasive species 

(Xie et al. 2015).   

Landsat  NASA Every 16 days 

from 1972-

Present 

30 - 120 m  4-11 Base data for 

wetland elevation 

(Byrd et al. 2016) 

and carbon flux 

models (Knox et 

al. 2017; McNicol 

et al. 2017), 

phenological 

analyses (Knox et 

al. 2017). 

Sentinel-2 ESA Every 5-10 days 10-60m 13 Estimate plant 

biomass and 

coverage (Mo et 

al. 2018). 

SPOT ESA Every 26 days 

since 1986 

1.5-20m 4-5 Monitoring 

wetland vegetation 

(Davranche et al. 

2010). 
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LiDAR  Variable Variable Variable  Base data for soil 

accretion model or 

carbon budget 

(Hladik et al. 

2013; 

Kulawardhana et 

al. 2014), map 

certain non-native 

species (Rosso et 

al. 2006) and 

habitats (Bradbury 

et al. 2005). 
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Chapter 2 
Spatial indicators of post-restoration vegetation dynamics in wetland 

ecosystems 

Abstract 

To provide a long-term and broad scale monitoring of wetland restoration outcomes, it is pivotal 

to identify metrics that show rapid and predictable responses to restoration treatments. Remote 

sensing can help monitor such metrics at a large scale, high frequency, and low cost, but remains 

somewhat underutilized in practice. This study sought to identify a set of landscape metrics 

derived from aerial images that were most responsive to restoration treatments and vegetation 

dynamics across a subset of 21 restored and 5 reference sites in the Sacramento-San Joaquin 

Delta of California, USA. Breakpoint analysis was first leveraged to detect phases in the 

development of vegetated pixels within an 11-year time series of Landsat data as estimated from 

satellite-based vegetation indices. Landscape metrics were then generated from land cover 

classifications based on high resolution aerial images from USDA’s National Agricultural 

Inventory Program. Using hierarchical clustering, we grouped phases in post-restoration 

vegetation development showing similar temporal characteristics. We identified a subset of 

landscape metrics that best described the spatial structure of vegetation and ongoing restoration 

processes in each of these phase types. Our analyses identified four distinct phases in vegetation 

development: (1A) rapid non-linear increase; (1B) non-linear decrease; (2A) low change; (2B) 

low change with fluctuations. Landscape metrics offered a significant response to time and 

vegetation dynamics in our study set, suggesting their potential to complement and extend the 

scope of current monitoring at low cost. Young sites and sites experiencing rapid increase in site 

greenness were characterized by a lower density of small patches and a low vegetation cover, 

while older sites, reference sites, and low variability sites were characterized by large, clustered 

patches. Our study demonstrates that publicly available remote sensing data can detect important 

patterns in wetland recovery. Studying these patterns enhances the current understanding of 

factors promoting wetland recovery and capacity to predict future restoration outcomes.  

1 Introduction 

Recent literature reports a substantial variability in wetland responses to restoration treatments 

(Matthews et al. 2009; Moreno-Mateos et al. 2015; Van den Bosch and Matthews 2017), with 

some projects falling short of restoration targets. Responses can range from rapid and linear (e.g., 

Craft et al. 2003; Staszak and Armitage 2013) to slow or chaotic (e.g., Zedler et al. 1999; 

Bullock et al. 2011; Moreno-Mateos et al. 2012). A thorough monitoring of remnant and restored 

sites could identify factors driving this variability (Kentula 2000, Brudvig 2011, Suding 2011) to 

inform the planning of future projects. However, ecological restoration has suffered from a lack 

of consistent and long-term monitoring (Zedler 2000; Brudvig 2011; Wortley et al. 2013), 

particularly at the landscape scale (Simenstad et al. 2006; Brudvig 2011). As a result, factors 

promoting the recovery of sites or explaining divergences in site trajectory are not always fully 
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understood (Brudvig et al. 2017) and long-term responses to restoration interventions sometimes 

become unpredictable (Suding 2011).  

As plants show rapid responses to environmental fluctuations (e.g., Johnston et al. 2007; Chapple 

et al. 2017; McCoy-Sulentic et al. 2017), monitoring their characteristics can elucidate the role of 

local and regional factors on vegetation recovery. For example, tracking long-term fluctuations 

in plant coverage could highlight the role of site legacies and connectivity on successional 

processes (e.g., primary, secondary succession) following restoration treatments. A rapid 

increase in vegetation coverage or richness may signal that abiotic conditions have been 

undisturbed by previous or surrounding land uses. Constraining processes (e.g., lack of 

hydrological connectivity, biological invasions) or inadequate restoration treatments may slow 

the recovery of plant communities (Bullock et al. 2011, Suding 2011).  

Most studies tracking long-term vegetation development in restored wetlands have focused on 

indicators measured in the field, such as vegetation coverage, species richness, and functional 

diversity (e.g., Doren et al. 2009, D’Astous et al. 2013). Tracking these indicators on the ground 

is pivotal to measuring a site’s response to treatments and disturbances (e.g., Matthews and 

Spyreas, 2010) or highlighting the role of site legacies on vegetation colonization and persistence 

(Galatowitsch 2006). However, plot-level indicators can become labor-intensive in large and 

heterogeneous sites requiring extensive sampling (Taddeo and Dronova 2018). These challenges 

have motivated the applications of remote sensing data in restoration monitoring, yet in wetlands 

such efforts are still seldom utilized (but see Shuman and Ambrose 2003; Tuxen et al. 2008; 

Chapple and Dronova 2017). 

Researchers have advocated for broadening the current spatiotemporal scale at which restoration 

efforts are undertaken, recognizing that the combined effect of multiple sites is needed to achieve 

landscape goals (Kentula 2000; Kimmerer et al. 2005; Simenstad et al. 2006). Landscape 

assessments would favor site comparisons and highlight the role of landscape context (i.e., nature 

and configuration of land uses surrounding a project) on site recovery. Remote sensing analyses 

can complement field efforts (Klemas 2013a) and expand the spatiotemporal scale of wetland 

monitoring (Taddeo and Dronova 2018) to enable a low-cost monitoring of whole site extents 

and their landscape context. Breakpoint analysis is an example of application of remote sensing 

products for the monitoring of vegetation dynamics central to restoration success. Breakpoint 

analysis has been used to monitor changes in pixel greenness (i.e., value of remote sensing-based 

vegetation indices responsive to vegetation biomass and cover; Box 1) (e.g., Browning et al. 

2017). Mathematically, these breakpoints segment a time series into phases (Box 1) with distinct 

trends, slope, or frequency amplitude (Verbesselt et al. 2010) marking changes in the direction or 

rate of vegetation development within a pixel. Breakpoints may reflect successional changes in a 

site and their impact on vegetation coverage and density. In other cases, a breakpoint may reveal 

the effect of disturbances or climatic fluctuations on vegetation productivity (Kennedy et al. 

2010; Browning et al. 2017). In both situations, changes in vegetation productivity, composition, 

and abundance will probably impact the value of vegetation indices derived from land surface 

reflectance data and used as a proxy of site greenness (Jensen 2007). Breakpoint analysis can 

detect vegetation response to ecosystem stressors including droughts, fire, and logging (e.g., 
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Browning et al., 2017; Verbesselt et al., 2012), but to our knowledge, has only been marginally 

used to characterize post-restoration patterns of vegetation development.  

Landscape metrics describing the spatial distribution, structure, and diversity of land covers 

(Turner 1989; Box 1) are frequently used in conservation biology to monitor habitat extents, 

ecosystem services (Colwell and Lees 2000; Botequilha Leitao and Ahern 2002), or landscape 

changes and their impacts on ecological processes (Dale and Beyeler 2001; Van Meter and Basu 

2015). As such, they represent another interesting application of remote sensing products for 

post-restoration monitoring. In wetland ecosystems, landscape metrics can detect changes in 

vegetation structure and composition (e.g., Tuxen et al. 2008; Kelly et al. 2011; Chapple and 

Dronova 2017), measure ecosystem services (e.g., Almeida et al. 2016) and quantify faunal 

habitats (e.g., Moffett et al. 2014; Dronova et al. 2016). Additionally, they can unravel ongoing 

ecological processes impacting the post-restoration trajectory of a site. For example, a decrease 

in the distance between neighboring vegetated patches can impact water flows and their capacity 

to transport seeds, plant fragments, and nutrients (Meire et al. 2014). To date, landscape metrics 

have been sparsely used in practice despite recent studies showing their potential to track post-

restoration vegetation expansion and responses to ecosystem stressors (e.g., Tuxen et al. 2008; 

Moffett and Gorelick 2016; Chapple and Dronova 2017). 

To promote the use of remote sensing data and spatial analyses for the broad-scale monitoring of 

wetlands, we developed a methodological framework based on openly accessible aerial and 

satellite images. Our primary goal was to identify a set of landscape metrics most sensitive to 

vegetation dynamics and site characteristics that could be included in long-term monitoring 

plans. Such an effort could help direct project managers towards a few, but most informative, 

landscape metrics that could be monitored repeatedly across projects to characterize post-

restoration ecosystem changes.  
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2 Methods 

2.1 Study area  

We monitored the vegetation dynamics of 21 restored wetlands and five reference sites located in 

the Sacramento-San Joaquin Delta of California (hereafter the Delta) and the adjacent Suisun 

Marsh, United States (Figure 1). The Delta is confined between the cities of Tracy (37.7397° N, 

121.4252° W) and Sacramento (38.5816° N, 121.4944° W) at the confluence of the Sacramento 

and San Joaquin rivers. It includes freshwater marshes dominated by Schoenoplectus acutus and 

Typha spp. and tidal marshes dominated by Sacocornia pacifica and Spartina spp. The Suisun 

Marsh, adjacent to the Delta, is the largest remaining brackish wetland in the Western United 

States and includes sites dominated by Schoenoplectus americanus and Bolboschoenus 

maritimus (Vasey et al. 2012; Moyle et al. 2013).  

A large-scale land reclamation during the 1850s has degraded wetland habitats of the region and 

impacted their capacity to fulfill critical ecosystem functions (SFEI-ASC, 2014; Whipple et al., 

2012). These transformations have resulted in the loss of 98% of freshwater wetlands and 95% of 

tidal marshes (Whipple et al. 2012) endangering few species and increasing the vulnerability to 

sea level rise and saltwater intrusion (SFEI-ASC 2014; Luoma et al. 2015). In response, over 

38.44 km2 of wetland habitats have been restored in the region and an additional 9.09 km2 is 

underway (CWMW,2018). The region includes restoration projects varying in age, size, and 

restoration treatments which provides a unique setting to compare site post-restoration 

trajectories. 

Box 1. Definitions of key terms used in this paper 

Greenness. Remote-sensing based proxy of vegetation coverage and productivity based on 

the passive reflectance of solar energy by vegetation in electromagnetic regions sensitive to 

plant physiology.  

Breakpoint analysis: Breakpoint analysis identifies points within a time series separating 

two segments with a distinct slope or direction. These segments might represent different 

vegetation dynamics including loss of biomass following a major disturbance or a gain of 

coverage via primary succession. 

Phases: In this paper, phases are segments in time series of site greenness separated by 

breakpoints and showing distinct trends or directionality of change.  

Temporal metrics: Temporal metrics are statistics describing the rate of change, 

directionality of change, degree of non-linearity, and presence of abrupt short-term 

fluctuations throughout the duration of a phase. 

Landscape metrics: Landscape metrics describe the geometry and distribution of land cover 

patches within a site. 
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2.2 Study sites 

Using the EcoAtlas database summarizing major restoration projects in the study area (CWMW, 

2018), we selected 21 wetlands restored between 1993 and 2014 which had well-defined spatial 

boundaries and, when possible, information on restoration treatments (SI Table S1). Our sample 

included both freshwater and tidal wetlands but excluded vernal pools and wet meadows. 

Restoration treatments included levee breaching to increase tidal fluctuations, removal of non-

native vegetation, grading, and planting.  These projects ranged in size from 0.01 to 6.01 km2 (SI 

Table S1). We selected five additional remnant wetland sites to serve as a reference as they are 

managed or protected (SI Table S1). To assess the effect of site age on landscape metrics and 

mean greenness, we grouped sites by age class using five-year increments (i.e., <5, 5-10, 10-15, 

>15). 

2.3 Remote sensing data 

To characterize post-restoration vegetation dynamics, we used satellite data from NASA’s 

Landsat archive and aerial images from the USDA’s National Agricultural Inventory Program 

(NAIP). Combining these two datasets enabled us to enhance the temporal frequency and spatial 

detail of our analyses: the Landsat archive includes frequent data (revisit time of 16 days) but a 

medium-high spatial resolution (30m) while the NAIP dataset proposes detailed data (0.6 to 1m 

resolution) but a low temporal frequency (one image every 2-3 years). 

Images from the Landsat archives were used to characterize changes in site greenness from the 

year of restoration to 2017. We used greenness as a proxy of change in vegetation biomass and 

coverage. We leveraged images captured by Landsat satellites 7 ETM+ (2004 to 2014) and 8 

OLI (2013 to 2017; path 44, and rows 33 and 34).  Google Earth Engine (Gorelick et al. 2017) 

was used to mask pixels with clouds, cloud shadow, or water within individual images using the 

quality assessment band of Landsat’s surface reflectance products. We then calculated the 

enhanced vegetation index (EVI) of remaining cloud-free and water-free pixels which we used as 

an indicator of vegetation greenness. EVI is an index of vegetation abundance based on the ratio 

of red light absorbed by plant chlorophyll and the proportion of infrared light scattered by 

mesophyll cells, to which a correction factor is applied to account for soil and atmospheric 

conditions (Huete et al. 2002). As Landsat ETM+ and OLI have different spectral bandwidths for 

similar electromagnetic regions, we used conversion equations developed by Roy et al. (2016) to 

calibrate the spectral data of Landsat 8 OLI to Landsat 7 ETM+.  

2.4 Time series analysis and breakpoint detection  

We applied a cubic smoothing spline to all cloud- and water-free Landsat pixels in a site to 

generate continuous site-level time series of EVI from 2004 to 2017. We then utilized the bfast R 

package (Verbesselt et al. 2010) to identify breakpoints within these site-specific time series of 

EVI values (Fig. 2). Breakpoints separate two statistically distinct but adjacent segments in a 

time series, allowing the identification of different phases in vegetation trajectory (Verbesselt et 

al. 2010). Bfast, for Breaks for Additive Seasonal and Trend, is an algorithm commonly used to 

identify breakpoints in time series of vegetation indices (e.g., Verbesselt et al. 2010; Browning et 

al. 2017). This algorithm identifies the breakpoint distribution that minimizes the Akaike 
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Information Criterion by iteratively testing different combination of breakpoints after removing 

the seasonal trend (Verbesselt et al. 2010). The combination of segments and breakpoints 

satisfying the least squares residuals moving sum is kept. We allowed a minimum of four years 

between breakpoints and used a significance level of 0.05. 

Using the R package Traj we generated a series of temporal statistics describing the rate of 

change, degree of non-linearity, and the magnitude of abrupt short-term fluctuations in greenness 

(Leffondré et al. 2004) within each phase (or time series segment) separated by breakpoints. 

Statistics describing change over time include: change (i.e., amplitude in EVI values over the 

duration of the phase), mean change per year, slope, and change relative to the first score, and 

the coefficient of variation in EVI. The degree of non-linearity in the trend of EVI is described 

by the maximum, mean, and standard deviation in the first differences in time series of EVI 

values (i.e., a linear trajectory would have a low standard deviation in first differences). The 

presence and magnitude of abrupt short-term fluctuations are described by the ratio of the mean 

absolute second difference to the mean absolute first difference and the ratio of the maximum 

absolute second difference to mean absolute first difference (Leffondré et al. 2004). We applied a 

principal component analysis (PCA) to the resulting matrix of temporal metrics (phases X 

temporal metrics) to identify a subset of temporal statistics most representative of phases in 

vegetation recovery. We applied an agglomerative hierarchical clustering on the resulting PCA 

scores to form clusters of phases showing similar temporal characteristics using Ward’s method 

and the hclust function in R (R Core Team 2017).  

2.5 Spatial analyses 

The NAIP dataset was used to delineate vegetated patches within restored sites through a land 

cover classification of all available images between 2005 and 2016. From this land cover 

classification, we generated landscape metrics to describe changes in the extent, structure, and 

spatial distribution of vegetation within our sample of sites. Images captured in 2016 had a finer 

resolution than previous years and were consequently resampled at a 1m resolution for 

consistency. 

We used an object-based image analysis to delineate and classify wetland patches within every 

site and NAIP image. Object-based image analysis (OBIA) uses information on texture, spatial 

context, and shape to form clusters of adjacent and relatively homogeneous pixels (Blaschke, 

2010; Knight et al., 2015). OBIA is increasingly used in wetland change analyses to address the 

ecosystem’s high heterogeneity in vegetation distribution and density, which makes it difficult to 

parse out noise in data from significant change (Dronova 2015). To segment the NAIP images, 

we used the multi-resolution segmentation algorithm of eCognition 8.7. This algorithm uses a 

bottom-up region-growing approach which iteratively merges adjacent pixels by assessing the 

degree of homogeneity in their spectral and spatial characteristics.  

We used the support vector machine (SVM) algorithm to classify the resulting objects as bare 

soil, mudflat, vegetation, or water. The SVM utilizes a set of training samples to find the 

hyperplane that best separates a dataset into a predefined number of classes (Mountrakis et al. 

2011). This approach has been successfully used to classify plant functional types and 
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distinguish vegetated patches from mudflats and open water in wetlands (Wang et al. 2012; 

Dronova et al. 2011). To train the algorithm, we visually identified 200 to 500 randomly 

dispersed points per site using the NAIP dataset. We then verified the output of this supervised 

classification and manually corrected misclassified objects. From this supervised classification, 

we generated six land cover maps (2005, 2009, 2010, 2012, 2014, and 2016) for every study site. 

We then computed landscape metrics from each of these land cover maps to detect changes in 

the distribution and geometry of vegetated patches using the landscape analysis software 

Fragstats v.4 (McGarigal et al. 2012). We focused on eight landscape metrics, identified by 

Cushman et al. (2008) as the most robust and less redundant indicators of landscape composition 

as well as a few additional landscape metrics of significant importance (Table 1). We used the 

mean value of landscape metrics averaged over the duration of each phase length to analyze 

differences between phase types and age classes. 

2.6 Statistical analysis 

We conducted a series of Kruskal-Wallis tests with post-hoc Dunn tests and Bonferroni 

correction for multiple-comparison and a significance level of 0.05 to assess the significance of 

differences in landscape metrics among phase types, age classes, and in between restored and 

reference sites. Lastly, we used chi-square tests to assess whether site age had a significant 

incidence on the occurrence of different phase types.  

3 Results 

3.1 Breakpoints 

The number of breakpoints per site ranged from zero to three, for a total of 52 time series 

segments identified throughout the study area. Seven sites showed no breakpoints between 2005 

and 2017 suggesting that there was no significant change in the slope or direction of their trend. 

Thirteen sites experienced one breakpoint. Seven sites showed two breakpoints. Eight of the 

breakpoints we identified occurred in 2009, which corresponded to the last year of the 2007-

2009 drought in California. Five breakpoints occurred in 2008, the first allowable year of 

breakpoint given the four-year length criteria we set for breakpoint identification. Four 

breakpoints occurred in 2012 and 2013, respectively, which corresponds to the first and second 

year of the 2012-2015 drought in the study area. Lastly, one breakpoint occurred in 2010, while 

two breakpoints occurred in 2011. 

3.2 Cluster-based phase types  

3.2.1 Temporal characteristics 

The PCA used to identify temporal metrics that best distinguished phase types revealed that four 

axes could explain 90% of the variation in temporal characteristics among sites and their phases 

(Table 2). The first axis describes the degree of non-nonlinearity in trajectories (i.e., higher 

standard deviation in the first differences; Leffondré et al. 2004) and explains 42% of variance 

among all phases. This axis is strongly related to the standard deviation of the first difference in 
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EVI, the maximum of the absolute first difference, and the mean of the absolute first difference. 

The second axis describes the rate of change in EVI throughout the phase length and explains 

23% of the total variance. This axis is best described by the mean change in EVI per year, the 

change in EVI relative to the first score, and the amplitude of change in EVI over the entire 

phase length. The third axis pertains to variability in EVI throughout a phase and describes 14% 

of the variance across phases. This axis is best described by the coefficient of variation in EVI 

values and the ratio of the maximum absolute difference to the mean-over-time, which is 

sensitive to important changes in trajectories (Leffondré et al. 2004). Lastly, the fourth axis 

described 11% of variation and was best represented by the ratio of the mean absolute second 

difference to the mean absolute first difference and the ratio of the maximum absolute second 

difference to mean absolute first difference which are both sensitive to fluctuations in the time 

series (i.e., peaks and dips around the trend; Leffondré et al. 2004). 

A hierarchical clustering conducted on sites’ ranking along these four PCA axes (Table 2) 

identified four phase types showing similar temporal patterns and nested in two distinct clusters 

(1 and 2; Fig.3). A Wilcox test revealed that Cluster 1 showed a significantly lower standard 

deviation in first differences (χ2=19.527; df=1; p<0.0001) and a lower absolute rate of change 

than the second cluster (χ2=15.86, df=1, p<0.001). Cluster 1 showed a significantly lower 

coefficient of variation and position along the third axis than the second cluster (χ2=10.17, df=1, 

p<0.001). The first cluster showed a greater magnitude of peaks and dips as evidenced by a 

greater ratio of first to second differences (χ2=15.86, df=1, p<0.001). 

Sub-clusters 2A and 2B showed significant differences in their rate of change with cluster 2A 

exhibiting a rapid positive change in EVI over time, expressed by a higher position along the 

second axis (p<0.0001). Meanwhile, group 2B showed a negative rate of change (decrease). Sub-

clusters 2A and 2B did not show significant differences in their coefficient of variation or in the 

presence and magnitude of peaks and dips (Fig. 3). Cluster 1B showed a greater standard 

deviation in first differences than cluster 1A (p=0.006). Clusters 1A and 1B were not 

significantly distinct in their rate of change over time. They did show, however, a significant 

contrast in their ratio of the maximum absolute difference to the mean-over-time, with sub-

cluster 1B showing significantly greater values than group 1A (p=0.0009) revealing a greater 

frequency and magnitude of abrupt short-term fluctuations (Fig. 3). In sum, cluster 1 is 

characterized by a lower amplitude of change in greenness. Its two sub-clusters are distinguished 

as follows: cluster 1A shows little abrupt fluctuations while 1B shows a greater number and 

magnitude of short-term fluctuations. Cluster 2 is characterized by a greater amplitude of non-

linear change, with 2A showing a positive change in greenness and 2B showing a negative 

change in greenness (Fig. 3). 

3.2.2 Spatial characteristics 

Phase types revealed significant contrasts in landscape metrics (Fig. 4), including patch density 

(χ2=11.63, df=3, p=0.01; Fig. 4B) and mean patch area (χ2=8.2987, df=3, p=0.04; Fig. 4C). In 

addition, phases with a greater absolute rate of change (2A – positive; 2B- negative) were 

characterized by a greater patch density (χ2=9.81, df=1, p=0.002; Fig. 3A) and smaller patches 

(χ2=4.47, df=1, p=0.03; Fig. 4C) than phase types 1A and 1B (little change over time). Phase 
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type 2A (rapid positive change) showed a lower percentage vegetated than any other phase types 

(sign. level=0.05). Lastly, phase type 1A and 1B (both characterized by a smaller density of 

larger patches) showed significant contrasts with phase type 1B showing a greater coefficient of 

variation in patch area (p=0.04; Fig. 4C), greater fractal index (p=0.02; Fig. 4A), but lower 

distance to neighbor than 1A (p=0.02; Fig. 4E). Phase type 1A was characterized by a lower 

distance to neighbors than any other phase types (sign. level=0.05). 

3.3 Spatiotemporal patterns in the occurrence of phase types 

3.3.1 Site age, temporal characteristics, and phase type occurrence 

A chi-square test suggested a potential effect of site age on the occurrence of the different phase 

types (χ2=15.22, df=5, p=0.009).  Site age had a significant impact on the likelihood of 

occurrence of phase type 1 versus phase type 2, but this difference was mainly driven by younger 

sites (0-5-year-old) and reference sites. Site age also had a significant incidence on the 

occurrence of sub-phase types (χ2=21.963, p=0.04). This relationship was mostly driven by 

young sites, which were more likely to experience phase type 2A (rapid non-linear increase). 

Meanwhile, sites at an intermediate level of restoration (10-15 years) showed a greater 

occurrence of phase type 2B (rapid non-linear decrease), as evidenced by a greater Pearson’s 

residual. Finally, reference sites experienced a greater occurrence of phase type 1A (slow change 

with few fluctuations) as shown by a greater Pearson’s residual. 

Younger sites showed a significantly greater non-linearity than older and reference sites 

(p=0.01). Site age significantly impacted the absolute rate of change in greenness (χ2=10.68, 

df=4, p=0.03). This contrast was driven by significant differences between young sites and 

intermediate age class (p=0.003), 5-10 and 10-15 years old (p=0.02) and older restored sites 

(p=0.01). All age classes experienced a greater coefficient of variation in greenness than 

reference sites (p=0.01). Lastly, site age did not have a significant incidence on the magnitude of 

abrupt short-term changes or the position of the different phases along the fourth PCA axis. 

3.3.2 Restored versus reference sites 

There was no statistical difference between restored and reference sites in their position along the 

first PC, indicating that they both exhibit linear and non-linear trajectories. There is no statistical 

difference in the rate of change either or the position along the second axis. Yet restored and 

reference sites significantly differed in their position along the third axis (Mann-Whitney test, 

W=120, p=0.03) and their coefficient of variation in EVI values (χ2=5.24, df=1, p=0.02), with 

restored sites showing more fluctuations around their trend than reference ones.  

3.4 Landscape metrics versus site age 

Reference sites in our study were characterized by lower density (χ2=3.70, df=1, p=0.05; Fig. 

5B) of larger patches (χ2=5.35, df=1, p=0.02; Fig. 5C) than restored sites but a greater coefficient 

of variability in patch area (χ2=4.44, df=1, p=0.04; Fig. 5D). Their patches were generally more 

complex, as revealed by greater shape index (χ2=3.70, df=1, p=0.009) but also showed greater 

variability in shape index (χ2=6.35, df=1, p=0.001). Lastly, patches in restored sites were more 
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aggregated (χ2=5.89, df=1, p=0.02; Fig. 5F) and clustered as revealed by a greater coefficient of 

variation in distance to the nearest neighbor (χ2=12.76, df=1, p=0.0003; Fig. 5E).  

Age classes showed significant contrasts in their patch density (χ2=11.14, df=4, p=0.03; Fig. 5B), 

mean patch area (χ2=12.80, p=0.01; Fig. 5C), coefficient of variation in distance to the nearest 

neighbor (χ2=17.77, df=4, p<0.0001; Fig. 5E), and aggregation index (χ2=9.39,df=4, p=0.05; Fig. 

5F). Younger sites were characterized by a lower percent coverage and higher patch density than 

any other age class (p<0.02) and reference sites (p<0.0001), but these landscape metrics did not 

differ among other age classes. Younger sites had significantly smaller mean patch area than any 

other classes (sign. level=0.05). The coefficient of variation in distance to the nearest neighbor 

was also significantly different (p=0.05), with reference sites showing greater coefficient of 

variation than all other site types except oldest sites (sign. level=0.05), and younger sites 

showing a lower coefficient of variation than older sites and intermediate sites (10-15 yrs). 

Reference sites showed greater aggregation index than all other age types (sign. level=0.05) 

except the oldest restored sites.  

4 Discussion 

4.1 Landscape metrics to monitor vegetation dynamics 

Previous studies have monitored spatiotemporal variations in landscape metrics describing the 

distribution and geometry of land cover types to depict landscape changes, habitat quality and 

quantity, and ecosystem services (e.g., Botequilha Leitao and Ahern 2002; Tuxen et al. 2008; 

Almeida et al. 2016) but landscape metrics remain somewhat under-utilized in the monitoring of 

restored wetlands (Taddeo and Dronova 2018). In this study, landscape metrics showed a 

significant response to time and vegetation dynamics revealing their potential to complement and 

extend the scope of site and regional-level monitoring at low cost. As landscape metrics are key 

predictors of species occupancy and abundance at different taxonomic levels (Paracuellos and 

Tellería 2004; Moffett et al. 2014), our results suggest that they could be used to establish 

compliance to habitat goals and at the same time track vegetation development for other 

purposes, such as monitoring ecosystem functions (Dronova & Taddeo 2016, Matthes et al. 

2014). The most responsive metrics in our study set were percent vegetated cover, patch density, 

mean patch area, shape complexity, distance to the nearest neighbor, and aggregation. 

4.1.1 Responses to vegetation dynamics 

We identified in our sample of sites four phases in vegetation development with distinct trends, 

degree of nonlinearity, and amplitude of fluctuations around the trend. These phases were: 

stability (1A), low change with fluctuations (1B), non-linear increase (2A), and non-linear 

decrease (2B). Phase types showed significant contrasts in landscape metrics which might reflect 

their association to different successional stages or highlight the incidence of the spatial 

distribution of vegetation on wetland trajectory. Sites experiencing a rapid increase in EVI values 

(phase type 2A) were characterized by a low density of smaller patches, resulting in a lower 

percentage of vegetation cover than any other phase types. Meanwhile, the cluster showing a low 

change in EVI (cluster 1) was characterized by a lower density of larger patches, resulting in a 

greater vegetation cover. These contrasts may reflect different wetland successional stages: the 
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low vegetation cover in the 2A phase type likely provides unoccupied niche space promoting a 

rapid colonization of vegetation, as indicated by the emergence of few smaller patches. As sites 

“mature”, patches likely become bigger resulting in an increase in percentage cover. This is 

consistent with previous studies showing that colonization decreases over time as less microsites 

are available for seed establishment (Matthews and Endress 2010). Feedbacks between litter 

accumulation, canopy cover, and their impacts on plant productivity and seedling establishment 

(Craft et al. 2003; Xiong et al. 2003) could further limit the lateral expansion of vegetated 

patches in sites with large patches and a high vegetation cover. For example, dense canopies 

promote litter accumulation which, in sites with a lack of tidal flushing, may impact productivity 

and diversity (Xiong et al. 2003; Rocha et al. 2008; Anderson et al. 2016). 

 

Significant differences among the two phase-types showing the lowest change over time might 

further highlight the role of vegetation structure and spatial distribution on wetland processes. 

The phase type characterized by a greater stability in EVI values over time (1A) showed a lower 

heterogeneity in patch area, lower patch complexity (as evidenced by a smaller fractal index), 

and lower mesh size than phase type 1B (small change with abrupt short-term fluctuations 

around the trend). The phase type 1B was characterized by a greater magnitude of fluctuations 

around the trend as well as bigger patches and a greater variability in patch area. Although at the 

scale of this analysis it is difficult to identify the specific cause of these fluctuations, field 

evidence from previous studies suggest the following potential mechanisms. In sites with a lack 

of tidal flushing (Schile et al. 2013; Anderson et al. 2016) or dominated by reeds (Dronova and 

Taddeo 2016), litter accumulation and burial (Rocha et al. 2008; Schile et al. 2013; Dronova and 

Taddeo 2016) may affect seedling establishment and biomass production in a multi-year cyclical 

manner (Rocha et al. 2008; Anderson et al. 2016). Alternatively, fluctuations in presence of 

floating and submerged aquatic vegetation reported in previous regional studies (Ta et al. 2017; 

Khanna et al. 2018) may contribute to temporarily increasing greenness in sites with open water, 

potentially explaining some occurrences of phase type 1B (small changes, high fluctuations) in 

our study area. 

 

4.1.2 Response to time 

While younger sites showed the most unique landscape patterns and structure, we observed 

significant contrasts among other age classes as well. These differences may reveal a transition 

from a prevalence of seed dispersal (favoring an increase in the number of patches and 

characterized by smaller patches) to increased vegetative reproduction, which would likely result 

in fewer novel patches, and the expansion of existing patches (Combroux et al. 2002). 

Older and reference sites showed a higher coefficient of variation in distance between patches, 

suggesting a greater clustering of their vegetated patches (Cushman et al. 2008), while younger 

sites (<5yrs) showed a lower coefficient of variation but a greater distance between patches, 

suggesting that their patches are further apart and more randomly dispersed. Increased patch 

clustering can reduce water flow thereby affecting the transport of sediments and seeds from 

hydrochorous species (Meire et al. 2014). This can explain why an increased in patch 

aggregation and clustering is linked in our sample to a low change in EVI values over time. 
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4.1.3 Difference between restored and reference sites 

Overall, restored and reference sites in our study area showed distinct landscape spatial patterns. 

Reference sites maintained a lower density of bigger, more complex patches, with a lower 

coefficient of variation in distance to the nearest neighbor. For some of these landscape metrics 

—including percent cover and patch density— this difference was mainly driven by significant 

contrasts between newly restored sites and reference sites. Reference sites maintained greater 

aggregation index and coefficient of variation in distance to neighbors than any age group, 

except the oldest one (>15 yrs), which suggests that sites may tend towards a greater aggregation 

of vegetated patches through time.  

4.2 Patterns in the spatiotemporal occurrence of phase types 

The occurrence of these phase types in time and space seems to reflect the effect of restoration 

treatments, site characteristics, and landscape context on vegetation dynamics. Younger sites (<5 

years old) were more likely to experience a rapid non-linear increase in EVI values (phase type 

2A) than older or reference sites and showed a greater rate of change in site greenness overall. 

These results parallel field observations in restored wetlands revealing an early and rapid 

increase in vegetation coverage in early years resulting from colonization, seedbank emergence, 

and plantings (Bernhardt and Koch 2003; Craft et al. 2003; Matthews et al. 2009; Staszak and 

Armitage 2013). Interestingly, younger sites were characterized by more non-linearity than any 

other age type, which suggests that they might be experiencing an exponential growth in 

vegetation greenness. This may result from the combined expansion of existing patches through 

vegetative dispersal and the apparition of new patches through sexual reproduction allowing a 

more rapid growth as propagule availability increases with colonization. 

 

While site age had a significant impact on the rate of change in greenness over time, it did not 

significantly affect the amplitude of abrupt short-term fluctuations around the trend. This 

suggests that both young and older sites can experience fluctuations in site greenness over time. 

Sites at an intermediate level of restoration (between 10 and 15 years old) showed a greater than 

expected occurrence of phase 2B (non-linear decrease). This type of response in vegetation 

coverage (initial increase followed by decrease) has been observed by field-based studies 

including Anderson et al. (2016) in a freshwater wetland of California, and Matthews et al. 

(2009) in Illinois. Meanwhile, reference sites were more likely to experience phase type 1A 

(little change, little fluctuations) but also showed some occurrence of phase 1B (little change, 

fluctuations). This supports observations made by previous studies (Hiers et al. 2012; Chapple et 

al. 2017) showing that conditions in reference sites are not static but rather fluctuating with their 

abiotic environment. A substantial variability in the vegetation dynamics of sites similar in age 

reveals that restoration outcomes cannot be easily predicted outside of their immediate context, 

as wind, channels, and surface flows transport plant material, nutrients, and pollutants from 

adjacent land covers onto the wetland likely impacts their recovery (Cook and Hauer 2007; 

Matthews et al. 2009; Soomers et al. 2013).   
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4.3 Limitations 

Previous studies have demonstrated the impact of data scale and resolution on landscape metrics 

(Wu 1999; Kelly et al. 2011). While some landscape metrics show a linear response to change in 

resolution, others have a non-linear response to image scale. As such, caution is needed when 

comparing the latter landscape metrics across sites or landscape datasets using a different land 

cover classification or data resolution. Because some of the most responsive landscape metrics 

identified in our results —including patch area, shape index, contagion and contiguity — tend to 

linearly respond to changes in grain size (Kelly et al. 2011), their sensitivity to data resolution 

can be relatively more predictable. Yet it is still possible that other patterns could become 

apparent at a different scale of analysis and that the most responsive metrics here will behave 

differently when applied to a different resolution. Nonetheless, our study shows that significant 

changes can be observed when using open-access aerial images with a coarser resolution (in this 

case, 1m) and lower temporal frequency. This reveals promising applications for project 

managers overseeing large sites for landscape-scale assessments including multiple sites.  

Lastly, an important limitation of this study was the lack of comprehensive data on the 

management history of some of these sites – a common challenge in restoration monitoring that 

has been highlighted by previous studies in river ecosystems (Kondolf 1998; Bernhardt et al. 

2007). Thus, it is possible that some of the patterns we observed in terms of when and where 

phases in vegetation development were occurring in the landscape were not completely relatable 

to site age or location, but rather to unique management approaches. Nonetheless, the fact that 

we could observe significant differences in the vegetation dynamics of our study sites shows that 

cost-effective landscape metrics and remotely sensed vegetation greenness can enable an 

informative comparison of site trajectories and response to restoration treatments.  

5 Conclusion 

Landscape metrics in our study sites showed significant responses to time and vegetation 

dynamics, suggesting their potential to help monitor wetland ecosystems. The variability in 

trajectories observed throughout the study area — even among older, potentially more 

established wetlands — highlights the importance of long-term monitoring to detect arising 

ecosystem stressors or unexpected fluctuations in properties of interest. Differences in the 

characteristics and patterns of occurrences of the phase types identified in this study reveal the 

benefits of a flexible, long term approach to post restoration assessment. Current length of post-

restoration recovery varies widely, with some compensatory mitigation only requiring five years 

of monitoring (Hill et al. 2013; Van den Bosch and Matthews 2017) which can lead to an 

overestimation of restoration success (Van den Bosch and Matthews 2017). In our sample, while 

some sites experienced a relative stability (phase type 1A) after an initial increase (phase type 

2A), other experienced a rapid decline (2B) or substantial fluctuations around the trend (1B). 

Perhaps unsurprisingly, younger, more recently-restored sites showed a greater magnitude of 

change in greenness as revealed by a higher coefficient of variation in EVI and a steeper trend. 

Younger sites showed almost consistently distinct spatial patterns when compared to older sites, 

including a lower percent coverage, higher density of smaller and more regularly dispersed 

patches. This, together with significant differences in landscape metrics between restored and 
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reference wetlands, even among older sites, highlights the potential of public remote sensing 

datasets to support long-term monitoring. This monitoring could be extended to reference sites 

some of which showed substantial fluctuations as observed in previous publications (e.g., 

Chapple et al. 2017). When financial resources for long-term monitoring are limited, monitoring 

efforts may prioritize landscapes that are more likely to experience important fluctuations in 

vegetation properties (Matthews et al. 2009; Matthews and Spyreas 2010).  
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7 Figures and Tables 

 

Figure 2. Study area and sites 

 

Figure 3. Demonstration of the breakpoint analysis. The breakpoint in this example separates 

two phases (or segments) with significantly different slope. 
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Table 1. Landscape metrics used in this study 

Category Landscape Metrics and acronym 

used in figures 

Ecological Importance/Associated 

Processes 

Patch Shape Complexity Mean Fractal Index (FRAC) Impacts edge effects  

Aggregation Aggregation Index (AI) Uniformity of habitat distribution across 

the landscape, local connectivity of 

habitat 

 Connectivity (CONNECT) Dispersion of species, nutrients,  

Nearest neighbor distance Mean Euclidean Nearest Neighbor 

(ENN) 

Impact on water flows, habitat 

connectivity  

Patch dispersion Coefficient of variation in Euclidean 

distance to nearest neighbor 

(ENN_CV) 

Impact on water flows, metapopulation 

dynamics of species inhabiting vegetation 

patches 

Large Patch Dominance Largest Patch Index (LPI) Habitat provisioning and local contiguity 

Patch Density Patch Density (PD) The degree of habitat fragmentation  

Patch size variability Coefficient of variation in patch area 

(AREA_CV) 

Non-uniformity in habitat size 

Vegetation Coverage Percent Cover (PLAND) Contribution to photosynthetic carbon 

uptake, predictor of animal diversity and 

abundance  

 

Table 2. Main principal component describing post-restoration phases 

Principal component axis Percentage of 

variance 

Associated variables Standardized 

loading 

Nonlinearity 42% Standard deviation of the first differences  0.95 

  Maximum of the absolute first differences  0.97 

  Mean of the absolute first differences  0.97 

Rate of change in EVI (per 

year and overall) 

23% Mean change per year  0.96 

 Change relative to first score 0.95 

 Change overall  0.95 

Variability 14% Coefficient of variation  

Ratio of the maximum absolute difference to the 

mean-over-time  

0.88 

0.85 

Short-term fluctuations 11% Ratio of the mean absolute second difference to 

the mean absolute first difference 

0.84 

  Ratio of the maximum absolute second 

difference to mean absolute first difference 

0.78 
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Figure 3. Temporal statistics describing the magnitude and direction of trends in greenness and 

fluctuations around the trend per cluster-based phase type identified through a hierarchical 

clustering. Standard deviation of first differences per cluster-based phase type (A), rate of change 

in EVI per year (B), coefficient of variation in EVI over phase length (C), and ratio of the mean 

absolute second difference to the mean absolute first difference (D) per cluster-based phase type. 
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Figure 4. Landscape metrics per phase types (1A – small change, low fluctuations; 1B – small 

changes, with fluctuations, 2a: rapid positive change, 2B- rapid negative change). (A) mean 

fractal index, (B) density of vegetated patches (number of patches per 100 hectares), (C) mean 

area of vegetated patches, (D) coefficient of variation in the area of vegetated patches, (E) 

coefficient of variation in the distance between a vegetated patch and its nearest neighbor, (F) 

effective mesh size. 

 



67 

 

 

Figure 5. Landscape metrics by age class. (A) percentage of site vegetated, (B) density of 

vegetated patches (number of patches per 100 hectares), (C) mean area of vegetated patches, (D) 

coefficient of variation in the area of vegetated patches, (E) coefficient of variation in the 

distance between neighboring patches, (F) aggregation index. 

  



68 

 

 

Supplemental information 

Table S1. Main properties of study sites and their landscape context. Proportion of wetlands in 

the landscape and dominant adjacent land covers were identified within a 500m radius from each 

site using the National Land Cover Dataset (NLCD). 

Region Type Site Restoration 

Year 

Size 

(acres) 

Proportion of 

Wetland in 

Landscape (%) 

Dominant 

Adjacent 

Land Cover 

Suisun 

Marsh 

Reference Rush Ranch Reference 73 89.7 Wetland 

Peytonia Reference 62 62.5 Wetland, 

Urban 

Hill Slough Reference 275 37.2 Urban, 

wetland 

Restored U.S. Maritime 

Administration 

Marsh  

2006 28 36.8 Urban, 

wetland 

Fairfield 2009 0.02 0 Forest 

     

Ryer Island  376 41 Water, 

wetland 

Buckler 1993 20 35.2 Water, 

Wetland 

Calhoun Cut Ref 398 1.1 Grasslands, 

croplands 

Blacklock 2006 26 79.1 Grassland, 

wetland 

Wheeler 2006 40 56 Grassland, 

Wetland 

Chipp 2004 60 41.6 Water, 

wetland 

Central 

Delta 

Reference Brown Reference 305 36.8 Water, Urban 

Lower Sherman 

Island 

Reference 1,754 79.1 Croplands, 

grasslands 

Restored Mayberry Farms 2010 307 76.3 Croplands, 

wetland 

Sherman Parcel 2005 6 73.4 Grasslands, 

Croplands 

West Pond 1997 8 1.2 Croplands 

East Pond 1997 7 1.2 Croplands 

East End 2013 740 3.8 Croplands 

Decker 2002 11 2 Croplands 

River Island  316 1.7 Croplands 

Fern 1999 79 17.2 Grassland, 

Cropland 

Kimball 2000 109 55.8 Grassland, 

wetland 

North 

Delta 

Reference Calhoun Cut 2014 159 15 Grassland, 

cropland 

Restored Liberty Island 1998 1,706 8 Water, 

Grassland 
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Liberty 

Conservation 

2010 165.7 31 Grassland, 

cropland 

Skyracker 2005 137 73 Croplands, 

wetland 

Beach Lake 2008 31 24.6 Grassland, 

cropland 
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Chapter 3 
Phenological indicators of vegetation recovery in restored wetlands 

Abstract 

Landscape phenology is increasingly used to measure the impact of major disturbances on 

vegetation productivity and ecosystem functions. However, few studies have used phenology as 

a tool to monitor wetland recovery following restoration treatments. As plants show a rapid 

phenological response to changes in abiotic conditions, studying long-term variation in site 

phenology could help assess restoration success. To provide a low-cost approach to measuring 

restoration progress, we used open source remote sensing data from NASA’s Landsat archives to 

characterize long-term phenological trends in restored wetlands of the Sacramento-San Joaquin 

Delta of California, USA. By tracking phenological changes across a 17-year period, we sought 

to identify a set of phenological metrics most responsive to time and restoration treatments. We 

compared phenological metrics derived from Landsat (16-day revisit), Sentinel-2 (5-day revisit), 

and MODIS (daily revisit) which enabled us to measure the sensitivity of these phenological 

metrics to data frequency and scale. Younger reference sites showed earlier start, midpoints, 

peak, and end of growing seasons than older and reference sites. Throughout post-restoration 

phases, sites continued to experience changes in the shape of their growing seasons, likely in 

response to variations in vegetation extent, water and bare ground exposure, and litter 

accumulation. These results demonstrate the potential of phenological analyses to measure 

restoration progress and detect landscape factors promoting wetland recovery. A thorough 

understanding of wetland phenology is key to quantifying ecosystem services including carbon 

sequestration and habitat provisioning. 

1 Introduction 

1.1 Wetland restoration and monitoring 

Wetland restoration is increasingly used to counteract the large-scale degradation of wetland 

resources (Moreno-Mateos et al. 2012). Wetland restoration can be defined as the assisted 

recovery of a site towards a pre-determined ecological state or objective which include 

expanding wildlife habitats, providing ecosystem services critical to human well-being, or 

increasing regional resilience to global changes (SER 2004). Some ecosystem services targeted 

by wetland restoration efforts are bolstered by vegetation productivity and its resilience to 

disturbances. For example, plant accumulate carbon within their green and senescent biomass, 

promoting the sequestration of atmospheric carbon (Chmura et al. 2003; McLeod et al. 2011). 

Biomass production and sediment trapping by plant roots accelerate the soil build-up needed to 

counteract erosion and flooding (Nyman et al. 2006; Callaway et al. 2012). Vegetation recovery 

provides local wildlife species with resources and shelter (Zedler and Kercher 2005), making 

plant biomass, height, and structural heterogeneity key predictors of diversity in upper trophic 

levels (Zedler and Langis 1991; Spautz et al. 2006; Moffett et al. 2014; Quesnelle et al. 2015).  
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Indicators of plant productivity and composition are widely used for post-restoration site 

monitoring as they show rapid responses to site condition (Craft et al. 1999; Bernhardt and Koch 

2003; Staszak and Armitage 2013) and provide base data to model ecosystem functions and 

services (Bradbury et al. 2005; Kollmann et al. 2016; Byrd et al. 2018). For instance, plants show 

a rapid response to environmental stressors, which can be detected through repeated 

morphological measurements (Raab and Bayley 2012; Mollard et al. 2013) or remote sensing 

analyses (Díaz-Delgado et al. 2002; Sen et al. 2012) to identify early ecosystem shifts warranting 

interventions. Current monitoring efforts in restored wetlands frequently leverage plot-level 

indicators (i.e., indicators measured in the field) of vegetation structure, composition, and 

diversity to measure compliance to restoration goals and targets (Taddeo and Dronova 2018). 

However, wetlands are highly heterogeneous and dynamic ecosystems which warrant repeated 

monitoring for a reliable assessment of restoration progress (Zedler et al. 1999; Matthews et al. 

2009). Fluctuating water levels and difficult field access make on-site monitoring challenging 

and sometimes costly. These challenges, together with limited budgets, can result in short 

monitoring periods (Hill et al. 2013; Van den Bosch and Matthews 2017) which can lead to a 

skewed assessment of restoration progress or failure to detect arising ecosystem stressors (Van 

den Bosch and Matthews 2017).  

1.2 Phenology as a restoration indicator 

Remote sensing analyses can expand the spatiotemporal scale of monitoring and facilitate the 

upscaling of field observations into a regional understanding of wetland condition and ecosystem 

services (Adam et al. 2010; Klemas 2013b). A potential application of long-term, large scale 

remote sensing datasets includes landscape phenology which has been used to characterize plant 

response to local and regional changes from time series of satellite images (Liang and Schwartz 

2009; Liang et al. 2011). The life cycle of plant communities controls the timing and intensity of 

several ecosystem processes including litter build-up and carbon cycles (Bellard et al. 2012; 

Cerdeira Morellato et al. 2016). Plant phenology can also impact the interaction, distribution, and 

abundance of multiple taxa including birds and small mammals (Butt et al. 2015; Burgess et al. 

2018) as it determines the availability of food sources and habitat types required at different 

stages of a species’ life cycle. Monitoring temporal variations in plant productivity and 

phenology can provide useful information on the presence and magnitude of disturbances such as 

extreme climatic events including fire, droughts, and hurricanes (e.g., Mo et al. 2015; Verbesselt 

et al. 2010; Buffington et al. 2018) as plants show a rapid morphological response to stress and 

environmental changes. 

Previous studies have used an array of phenological indicators determined using the growing 

season trajectories, or curves, of satellite-based site greenness (i.e., spectral indices likely to 

strongly correlate with presence and coverage of vegetation based on satellite data; Huete et al. 

1997, Shanahan et al. 2001, Pettorelli 2013). Short-term and long-term changes in the timing of 

phenological events (i.e., spring green-up, peak greenness, fall senescence; Fig. 1) or the shape 

of growing season curves (Fig. 1) can respond to site processes or regional factors. Short-term or 

long-term climatic changes including fluctuations in temperature, precipitations, or the frequency 

and magnitude of droughts can delay phenological events (Mo et al. 2015; Buffington et al. 
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2018). For example, Mo et al. (2015) showed that peak greenness could be delayed by two 

months in saline wetlands impacted by droughts. Similarly, climatic anomalies can also impact 

vegetation productivity, resulting in lower peak or mean annual greenness values (Buffington et 

al. 2018). 

Landscape phenology can also respond to changes in species composition impacting biomass 

production, resource partitioning in time, and the duration of growing seasons. For example, 

ecosystem disturbances might favor stress-resistant species with a distinct phenological profile 

(Beaubien and Hall-Beyer 2003; Rigge et al. 2013). The proliferation of an introduced species 

can impact a site’s growing season curve and the time needed for this site to reach peak 

greenness or senescence (Andrew and Ustin 2008; Bradley 2014). Fluctuations in species 

diversity might modulate maximum greenness (Taddeo et al. in revision) through a greater 

partitioning of resources which stimulates the vegetation productivity (Tilman et al. 2001; 

Hooper et al. 2012) captured by spectral vegetation indices (Castillo-Riffart et al. 2017; 

Madonsela et al. 2017). In addition, fluctuations in the spatial extent of plant coverage and the 

ratio of green vegetation to open water and bare soil can impact both median and maximum 

greenness as they modulate soil and water background effects on vegetation indices (Spanglet et 

al. 1998; Ollinger 2011; Li and Guo 2018). 

1.3 Research objectives 

The goal of this study was to provide a regional assessment of phenological changes in wetlands 

to test the potential application of landscape phenology for post-restoration monitoring. 

Specifically, this study compared the annual growing season curves of restored and reference 

wetlands to assess how their phenology responds to time, restoration interventions, and climatic 

fluctuations. Using a sample of restored wetlands from the Sacramento-San Joaquin Delta in 

California, we first assessed the sensitivity of different phenological indicators to the frequency 

of satellite images and to gaps in time series of satellite data. We then leveraged these 

phenological indicators to study the response of 20 wetlands to restoration treatments and 

climatic fluctuations. 

2 Methods 

2.1 Study sites and area 

Our study focused on restored wetlands of the Sacramento-San Joaquin Delta in California, 

United States (here after referred to as the Delta; 725,000 acres) and the adjacent Suisun Marsh 

(116,000 acres). This study area is located at the confluence of the San Joaquin and Sacramento 

rivers and confined between the cities of Tracy (37.7397° N, 121.4252° W) and Sacramento 

(38.5816° N, 121.4944° W; Fig. 2). A hundred and fifty years of land conversion in the Delta has 

triggered the loss of 98% of freshwater marshes and 95% of tidal habitats historically found in 

the region (Whipple et al. 2012). This massive habitat loss has impacted wetland-dependent 

wildlife populations and eroded key ecosystem services (SFEI ASC 2014). Ecosystem services 

central to the region include flood and erosion control as well as carbon sequestration (Callaway 

et al. 2012; Deverel et al. 2015). Furthermore, the large-scale conversion of historical wetlands 
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has triggered a land subsidence throughout the region, with portions of the Delta now located 10 

to 15 ft below sea level (Faunt and Sneed 2015). This land subsidence puts pressure on the levee 

system protecting the Delta against saltwater intrusion (Deverel et al. 2015) with important risks 

for freshwater access in California and the irrigation of 4.5 million acres of cropland.  

Wetland restoration has emerged over the last few decades as a solution to environmental 

challenges in the Delta. Multiple projects implemented since the 1990s aim to promote soil 

build-up and carbon sequestration while improving wildlife habitats (Kimmerer et al. 2005; 

Siegel 2014). Over 30 wetland restoration projects have been initiated in the last twenty years 

(CWMW 2018). We selected among these different restoration projects, 20 restored and five 

reference sites (Fig. 2; SI Table S1) using the EcoAtlas database of wetland restoration projects 

in California (CWMW 2018). These sites have been restored between 1993 and 2014 and range 

in size from 0.01 to 6 km2. Our study sites are included within four regions (Fig. 2): the Suisun 

Marsh, which shelters a greater concentration of wetlands, and the North, Central, and South 

Delta which are mostly covered by croplands. 

2.2 Data  

2.2.1 Satellite images 

We used satellite images from the Landsat 7 ETM+ (2000-2014) and Landsat 8 OLI (2014-2017) 

surface reflectance products, path 44, and rows 33 and 34 which have a spatial resolution of 30m 

and a revisit time of 16 days (Fig.3). We identified a total of 321 images for row 33 (272 from 

Landsat 7 ETM+, 49 from Landsat 8) and 317 images for row 34 (266 from Landsat 7 ETM+, 51 

from Landsat 8). We leveraged the quality assessment band of the Landsat Collection 1 Level 1 

to mask clouds, cloud shadows, and open water in the cloud-based programming interface 

Google Earth Engine (Gorelick et al. 2017). We obtained an average of 15 cloud-free pixels per 

year with a minimum of 13 cloud-free pixel in 2003 and a maximum of 21 cloud-free pixel in 

2016. As the Landsat ETM+ and OLI sensors have different band widths for similar regions of 

the electromagnetic spectrum, we applied conversion equations developed by Roy et al. (2016) 

to calibrate surface reflectance values in the blue, red, and infrared bands of the Landsat 8 OLI 

pixels to Landsat ETM+ values. 

For each Landsat scene, we computed the enhanced vegetation index (EVI), an index based on 

red light absorption by plant chlorophyll and infrared light scattering by mesophyll cells. EVI 

uses correction factors to account for atmospheric scattering and soil background effect (Huete et 

al. 1997). As a result, EVI values do not saturate as quickly as the normalized difference 

vegetation index under high leaf area index conditions (Huete et al. 2002) and show a higher 

correlation to field measurements of leaf area index at low vegetation coverage (Mo et al. 2018). 

2.3 Phenological model: fit and sensitivity analysis 

2.3.1 Curve-fitting 

We used a smoothing spline to fill gaps between Landsat scenes and diminish the effect of 

atmospheric scattering and temporary clouds on growing season curves (Pettorelli et al. 2005, 

Verbesselt et al. 2010; Fig. 3). Among the wide variety of fitting curve techniques used in the 
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literature (Pettorelli et al. 2005), we opted to use a smoothing spline as it offers a flexible 

approach for modeling the phenology of different growth forms, land cover types, and vegetation 

extents. We applied a smoothing spline to the entire set of pixels included within a study site to 

generate site-level growing season curves of greenness (Fig. 4). Splines were fitted using the 

smoothing.spline function of R 3.4.2 (R Core Team 2017). Data from Landsat 7 and Landsat 8 

were fitted independently. 

2.3.2 Phenological metrics 

To identify the day of the year (DOY) corresponding to the start and end of the growing season, 

we used the EVI ratio thresholding method developed by White et al. (1997). We also 

determined for each growing season curve and site the DOY corresponding to the 10th, 25th, 30th, 

50th, 75th, and 90th EVI percentile before (here after referred to as “pre”) and after (here after 

referred to as “post”) a site reaches its peak greenness value. We calculated the integrated EVI 

(IEVI) as the sum of all positive EVI values over a growing season and the relative annual range 

in EVI (here after referred to as “relative EVI”) as the annual amplitude in EVI values divided by 

the IEVI (Pettorelli et al. 2005). Lastly, we identified for each annual growing season curve the 

mean, maximum, median, minimum EVI values as well as the range, standard deviation, 

skewness, and kurtosis in the distribution of EVI values. 

2.3.3 Sensitivity analysis 

As the number of cloud-free Landsat pixels varied by year and site, we tested the impact of gaps 

in the availability of Landsat data on a subset of nine sites (three sites from the Suisun Marsh, 

two sites from the North Delta, and four sites from the Central Delta; SI: Table S1). In each of 

these sites, we tested the sensitivity of phenological metrics to data gaps by incrementally 

removing two scenes per year, from the maximum to the minimum number of scenes available in 

the series (i.e., 21, 19, 17, 15, and 13 scenes). We then measured the difference (in number of 

days) between the timing of phenological indicators based on 21 Landsat scenes per year, and 

19, 17, 15, 13 scenes per year. Lastly, we used an ANOVA test to assess whether phenological 

metrics or sites showed significant differences in their sensitivity to data gaps (i.e., a greater 

difference in phenological indicators based on 21 Landsat scenes versus 19, 17, 15, or 13). 

2.4 Validation using near-surface remote sensing, Sentinel-2, and MODIS data 

To validate phenological models derived from Landsat data, we used near-surface remote 

sensing in three of the study sites and conveyed phenological analyses in a subset of nine sites 

(the same sites used for gap analysis) using MODIS (daily revisit) and Sentinel-2 (revisit every 5 

to 10 days) data. We used in situ digital photography of vegetation in three sites monitored for 

greenhouse gas fluxes by the Ameriflux Network. Digital cameras in these three sites are 

oriented West and permanently perched above the canopy. These three sites utilize a Canon 

Powershot Series A to generate jpeg images at a 30-minute interval for 12 hours a day (Knox et 

al. 2017). We used all images captured between 9 AM and 5 PM to generate growing season 

curves for each of the sites. We extracted within each image a region of interest (or “ROI”) 

centered on vegetation and avoiding other non-vegetated types of land covers (i.e., bare soil, 

water). To reduce calculation time, we smoothed digital information in each ROI within a 3X3 

pixel kernel. We used the phenopix package (Filippa et al. 2017) to extract vegetation indices 
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from the ROI and smooth the resulting phenological curves. For each image, we generated the 

green chromatic coordinate which has shown a strong correlation to gross primary productivity 

in two of our field study sites (Knox et al. 2017).  

In addition, we compared the timing of phenological events derived from Landsat data with 

phenological events derived from MODIS and Sentinel-2 time series. As the MODIS dataset has 

a coarser resolution than Landsat, we compared phenological metrics across sites with varied 

degree of vegetation cover (Chapter 2) and throughout multiple years in order to assess whether 

the differences between phenological metrics derived from MODIS and Landsat data were 

impacted by the prevalence of mixed pixels. We generated phenological curves for every year of 

data between 2013 and 2017 using daily images from MODIS Terra Surface Reflectance product 

(MOD09GA; daily revisit, 500m spatial resolution) for nine sites representative of the area (the 

same sites used to analyze the sensitivity of phenological metrics to data gaps). We masked 

clouds and cloud shadows from every image using the quality assessment bands of MODIS 

scenes. We then computed for every image the EVI index based on the blue (459-479nm), red 

(620-670nm), and near-infrared (841-876nm) bands of the MODIS product. We used the same 

smoothing spline approach used for the Landsat and Phenocam data to generate annual growing 

season curves, from which a series of phenological metrics were then derived (Fig.1). We also 

used scenes from Sentinel-2 MSI: MultiSpectral Instrument which provides spectral information 

at a 10m resolution for the blue (centered at 496.6nm), red (centered at 664.5nm), and near 

infrared (centered at 835.1nm) bands every five days. We used all scenes available between 

January 1, 2016 and December 31, 2017 for images ID 10SEH and 10SFH. Prior to analyzing 

data, we masked clouds using the quality assessment bands of the Sentinel-2 data. This generated 

77 to 86 images per site. 

2.5 Statistical analyses 

We used a principal component analysis to cluster phenological indicators showing similar 

patterns of fluctuations in the study area. We used a gap statistic analysis (Tibshirani et al. 2001) 

conducted using the fviz_nbcluster function of the factoextra package (Kassambara and Mundt 

2017) to determine the maximal number of clusters. Accordingly, the HCPC function (Le et al. 

2008) was leveraged to cluster the PCA results along the first six axis into eight clusters of 

phenological metrics (Table 1) using a hierarchical clustering approach based on the Ward’s 

distance between points (Ward 1963). 

We used analysis of variance (ANOVA) tests with Tukey Honest Significance post-hoc tests to 

assess whether phenological metrics were significantly impacted by data gaps (i.e., variation in 

the number of cloud free Landsat scenes available from one year to another) and data frequency 

(i.e., difference in timing of phenological events derived from Landsat and sensors with a shorter 

revisit time – Sentinel-2 and MODIS). We used Kruskall-Wallis tests with Dunn’s post hoc tests 

to assess whether phenological indicators were significantly impacted by droughts. Specifically, 

we compared phenological indicators among years showing a positive value (i.e., 2000, 2003, 

2005, 2006, 2010, 2011, 2017) for the Palmer Drought Severity Index (PDSI) and years showing 

a negative value (i.e., 2001, 2002, 2004, 2007, 2008, 2009, 2012, 2013, 2014, 2015, 2016). We 
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leveraged PDSI data for the Fairfield station (38.274, -122.068) extracted from the University of 

Nebraska’s U.S. Drought Risk Atlas. 

We utilized the Kruskal-Wallis test with the Dunn's Test with Bonferroni correction for multiple 

comparison to compare phenological metrics before and after restoration, throughout different 

time periods (i.e., first 5 years after restoration, 5-10 years, 10-15 years, and more than 15 years 

after restoration), and between restored and reference sites. Analysis were computed in R using 

the dunn.test package (Dinno 2017). 

3 Results 

3.1 Sensitivity of phenological indicators to data gaps and frequency. 

3.1.1 Data gaps 

An ANOVA test suggested that certain phenological indicators were more impacted by data gaps 

(F=14.5470, df=6, p<0.0001), but that sites and years did not differ significantly in their 

sensitivity to gaps in data. Specifically, data gaps impacted the timing of phenological events by 

an average of 12 days. Peak greenness, the first, and the last 75th percentile were the most 

impacted, as they showed an average difference of 18 days between iterations conducted using 

respectively 13, 15, 17, 19, and 21 images per year. The timing of the start and end of growing 

seasons, as well as the first and last 30th percentile showed an average difference of 4, 7, and 9 

days. The timing of the first 50th percentile showed an average difference of 12 days, while the 

timing of the last 50th percentile showed an average difference of 8 days. Lastly, the number of 

cloud-free Landsat images did not have a significant impact on the mean, median, maximum, 

minimum, standard deviation, range, relative EVI or integrative EVI (significance level=0.05). 

3.1.2 Data frequency 

An ANOVA test with no-replication coupled to a Tukey Honest Significance post-hoc test 

showed that differences (or time delays) between phenological indicators derived from Landsat 

data and those derived from phenocams did not significantly differ from one year to another. 

They did, however, differ among the three sites monitored via phenocams. The site at an 

intermediate level of recovery (Mayberry Farms; 8 years old) showed a greater difference in 

phenophases (p=0.02), which differed by an average of 25 days. In turn, the older site, West 

Pond, showed an average difference of 12 days between phenological events based on phenocam 

data and phenological events based on Landsat data. The more recently restored site, East End, 

showed an average difference of 13 days between phenophases derived from Landsat and 

phenocam data. 

An ANOVA test suggested that site (F=14.208,df=7,p<0.0001) and phenological indicators 

(F=4.254, df=17, p<0.0001) both had a significant effect on the difference (in number of days) 

between MODIS-based and Landsat-based phenological metrics, while this difference did not 

vary significantly from one year to another (F=1.303,  p=0.254). In particular, the peak of the 

growing season, first and last 80th and 90th percentiles showed the greatest difference between 

MODIS and Landsat, as they differed by an average of 20 days. In contrast, the start of the 
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growing season, first 10th and 30th percentile differed by an average of 10 days. Sites varied 

significantly in their contrast between MODIS-based and Landsat-based phenological metrics.  

Meanwhile, phenological indicators based on Sentinel-2 data did not differ significantly from 

Landsat-based phenology (F=0.737, p=0.757), but individual sites showed significant contrasts 

in the differences between phenological indicators based on Sentinel-2 and Landsat data 

(F=9.312, p<0.0001). Phenological metrics based on Sentinel-2 data and those based on Landsat 

data differed by an average of 10 days. 

3.2 Redundancy among phenological indicators 

A principal component analysis showed that the first six principal component axes could explain 

81.48% of the variance in phenological metrics among all reference and restored sites. The 

productivity cluster (Table 1) included the minimum, maximum, mean, median and integrative 

EVI. Mean EVI highly correlated with maximum (Person correlation = 0.89, p<0.0001), median 

EVI values (Person correlation = 0.98, p<0.0001), and integrated EVI values (Person correlation 

= 0.97, p<0.0001) and showed a significant but lower correlation to minimum EVI (Person 

correlation = 0.62, p<0.0001). The range cluster included the relative EVI, range, and standard 

deviation which were all highly positively correlated (Pearson correlation >0.77, p<0.0001). The 

start of growing season cluster included the start of growing season and the DOY associated with 

the first 10th percentile of EVI values which were both significantly correlated (Pearson 

correlation = 0.60 p<0.0001), but negatively correlated to kurtosis (Pearson correlation = -0.29 

p<0.0001), median (Pearson correlation = -0.35 p<0.0001), and maximum EVI (Pearson 

correlation = -0.18 p<0.0001). The peak of growing season cluster included the first 50th, 75th, 

and 90th percentiles, the peak of the growing season, last 50th, 75th and 90th percentiles which 

were all strongly correlated (Pearson correlation > 0.80 p<0.0001), but not significantly related 

to variables of the productivity cluster (sign level=0.05). The length of the growing season 

cluster included the length of growing season and kurtosis which showed a low, but significant, 

correlation coefficient (Pearson correlation = 0.18 p<0.0001) and both showed low but 

significant correlation with median EVI (Pearson correlation = 0.30 p<0.0001) but no significant 

relationship to maximum or minimum EVI. The end of growing season, last 10th and 30th 

percentiles positively correlated with the start of growing season (Pearson correlation = 0.55 

p<0.0001), negatively correlated with minimum EVI value (Pearson correlation = -0.22, 

p<0.0001), but did not correlate with maximum or median EVI values. 

3.3 Which phenological metrics show distinct values before and after restoration 

Restored wetlands showed significant differences in their phenological indicators before and 

after restoration, with the start of the growing season (Kruskall-Wallis χ2=37.551, p<0.0001; Fig. 

5A), first 50th percentile (Kruskall-Wallis χ2=23.482, p<0.0001; Fig. 5C), first 75th percentile 

(Kruskall-Wallis χ2=25.9, p<0.0001), first 90th percentile (Kruskall-Wallis χ2=27.027, p<0.0001), 

timing of peak biomass (Kruskall-Wallis χ2=34.418, p<0.0001; Fig. 5D), last 90th percentile 

(Kruskall-Wallis χ2=30.095, p<0.0001), last 50th percentile (Kruskall-Wallis χ2=23.657, 

p<0.0001), end of growing season (Kruskall-Wallis χ2=25.04, p<0.0001; Fig. 5B) occurring at a 

later date after restoration than before restoration intervention. Restoration also seems to have a 
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significant impact on the shape of growing season curves, with wetland sites showing a lower 

median (Kruskall-Wallis χ2=4.7292, p=0.0335; Fig. 5E), mean EVI (Kruskall-Wallis χ2=4.3226, 

p=0.0396), and integrated EVI (Kruskall-Wallis χ2=4.5739,p=0.03424; Fig. 5F) after restoration, 

but no significant impact on their maximum EVI (Kruskall-Wallis χ2=2.8987, p=0.0976), 

minimum (Kruskall-Wallis χ2=0.4134, p=0.5202), standard deviation (Kruskall-Wallis 

χ2=0.9063, p=0.3411). or skewness (Kruskall-Wallis χ2=0.8082, p=0.3687).  

3.4 How phenology metrics change with time 

Across the global sample, we observed significant differences in the timing of phenological 

events with site age, but no significant differences in the shape of growing season curves 

(significance level of 0.05). Sites generally showed an earlier greening in their early stages of 

restoration (<5) than at later stages or than reference sites (significance level = 0.05). Site age 

had a significant effect on the end of the growing season as well (Kruskall-Wallis χ2=16.9477, 

p=0.0007) with sites at an early stage of development showing an earlier end of growing season 

than older sites (significance level of 0.05). Consequently, younger sites reached their peak 

greenness earlier than sites that were 10-15 years old (p=0.0255) or more than 15 years old 

(p=0.0129). While the differences in the shape of the growing season curves were overall non-

significant among the different age classes, older sites (>15 yr) showed more kurtosis in their 

EVI values than younger sites (p=0.0284).  

We also used Kruskall-Wallis tests and linear regressions to assess, at the individual site level, 

whether sites significantly differed in their phenological metrics at early versus later stages of 

restoration. Few sites (except Blacklock Tidal, restored in 2006, and River Island, restored in 

2009) showed a monotonic trend in their phenological metrics, as evidenced by a Mann-Kendall 

test with a significance level of 0.05. However, all but two sites showed significant changes in 

their phenological metrics over time, as indicated by linear regressions using time as an 

explanatory variable (Table 2). Specifically, we observed four different types of phenological 

changes in our study area: (A) no phenological change; (B) decrease in greenness; (C) increase 

in greenness with changes in the timing of phenological events, and (D) increase in greenness 

with no phenological changes. 

The no phenological change category included two older sites — Ryer Island, restored in 2000, 

and Kimball, restored in 2000.The decrease in greenness category included the three oldest sites 

in our sample (Point Buckler restored in 1993 as well as West Pond and East Pond two adjacent 

sites restored in 1997), which all showed significant decreases in their maximum EVI and the 

relative range of their EVI. Nine sites —Blacklock (2006), Liberty Conservation (2010), Decker 

(2002), East End (2014), Fern (1999), Medford (2012), River Island (2009), and Sherman 

(2005), and Wheeler (2006)— showed significant increases in their productivity as well as a 

delay in the start, peak, and end of their growing season. Lastly, three sites —US Administration 

Marsh, Mayberry Farms, and French Camp Conservation Bank— showed significant increases 

in their productivity, but no linear increase in the timing of their phenological events. However, 

in all three cases, the first five years were significantly distinct from the following years by 

showing earlier start, peak, and end of their growing season. 



79 

 

3.5 Reference versus restored 

Overall, restored sites showed phenological characteristics significantly distinct from reference 

sites, but these differences were mainly attributable to significant differences between younger 

sites (<5 yrs) and reference sites. Both the less than 5 years and 5-10 years old classes started 

their growing season earlier (<5yr — p=0.0050; 5-10 — p=0.0412; Fig. 6A). Sites at an early 

stage of restoration (<5 yr old), reached the first 50th percentile of their EVI (p=0.0024) and the 

last 50th percentile faster (p<0.0001), and ended their growing season earlier (p=0.0161; Fig. 6D) 

than reference sites. Meanwhile, older sites (i.e., sites within the 10-15 and more than 15 years 

old) did not significantly differ from reference sites. 

3.6 Sensitivity to climate 

Overall, sites showed significant differences in the timing of phenological events and shape of 

phenological curves during wetter years and dry years, as determined by the Palmer Drought 

Severity Index. Both restored and reference sites showed lower maximum greenness during dry 

years (F=32.088, p<0.0001; Fig.7A), Consequently, the range of EVI values was reduced during 

dry years (F=32.088, p<0.001; Fig. 7B), but this contrast was only significant during the early 

stage of restoration (p=0.0355). In terms of timing of phenological events, the start of the 

growing season occurred later during drought years than wetter years (F=4.854, p=0.0282; Fig. 

7C), as well as the timing of the first 50th percentile (F=2.929, p=0.05; Fig. 7D). In addition, all 

the 19 sites showing a significant linear relationship between phenological metrics and time also 

showed a significant positive linear relationship between one of the clusters of phenological 

metrics and annual precipitations (significance level=0.05). An ANOVA test revealed that in 10 

of these sites, including annual precipitations as a covariate significantly increased the fit of 

linear relationships between time since restoration and phenological metrics. 

4 Discussion 

Our analysis of landscape phenology in 25 wetland sites over a 17-year period reveals a 

significant phenological response of wetland sites to restoration treatments, although the nature 

of this response varied with the characteristics of individual sites. Across the study area, 

wetlands showed distinct phenological characteristics after restoration, which reflects for some 

of these sites a transition in land cover from previous crop or pasture to current wetland. 

Restored sites showed after restoration a delay in their growing season with their start, peak, 

midpoints, and end of growing season occurring later. This change in the timing of phenological 

events was accompanied by lower maximum, median, and integrated EVI values. Variations in 

the shape of growing season curves after restoration likely resulted from a change in species 

composition but also in certain sites from an increase in the prevalence of open water which is 

likely to decrease the magnitude of spectral vegetation indices (Kearney et al. 2009). Sites 

continued to experience phenological changes for up to 20 years after restoration. Sites at an 

early stage of restoration showed earlier start, midpoints, peak, and end of growing season than 

older wetlands or reference sites. In addition to changes in the timing of key phenological events, 

most sites also showed significant changes in the shape of their growing seasons, as revealed by 

their mean, maximum, and integrative EVI.  
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Our analyses suggest that using a subset of non-redundant phenological metrics responsive to 

restoration treatments and annual climatic fluctuations might help monitor vegetation dynamics 

following restoration treatments. The different phenological metrics of the productivity cluster 

(i.e., mean, median, minimum, maximum EVI, IEVI; Table 1) showed across all sites the most 

consistent response to time since restoration, likely as they reflect changes in the spatial 

distribution and productivity of vegetation. In addition, phenological metrics of the productivity 

cluster showed similar responses to data gaps, suggesting that any of these phenological metrics 

could be used to track vegetation dynamics. Among phenological metrics of the peak of growing 

season cluster (Table 1), metrics associated with the midpoints of growing seasons (i.e., first and 

last 50th percentile) showed a significant response to time since restoration, while appearing to be 

less sensitive to data gaps. Meanwhile, the peak of the growing season, as well as the DOY 

associated with the first and last 90th percentiles in EVI, showed the greatest phenological 

mismatches between Landsat and MODIS, which highlights the impact of both temporal and 

spatial resolution on the time needed to observe peak greenness in time series of satellite images. 

Lastly, phenological metrics included in the start and end of growing season clusters showed 

similar responses to data gaps, lower mismatches between Landsat and MODIS-based 

phenological metrics, and significant responses to time since restoration, suggesting that 

phenological metrics of these clusters could all provide valuable information on phenological 

changes in restored wetlands. 

4.1 Trends and factors of phenological changes 

While very few sites in our study area showed a monotonic phenological response to time, time 

since restoration nonetheless seems to have an impact on the timing of key phenological events 

and the shape of annual growing season curves as suggested by significant linear relationships 

between time since restoration and phenological metrics in all but two sites. In the global sample, 

sites at an early stage of restoration (i.e., less than 10 years old) maintained earlier start, peak, 

midpoints, and end of growing season than sites at a later stage of development (i.e., more than 

15 years old) or reference sites. These phenological changes likely reveal the influence of plant 

growth and succession on site characteristics and satellite-based observations of wetland 

greenness.  

As vegetation develops in these restored sites, plant expansion might impact site characteristics 

further modulating phenology and the surface reflectance of wetlands. Across our dataset, 

differences in phenological metrics between age groups were mostly attributed to contrasts 

between recently restored sites (<10 years) and the oldest sites (>15 years). At the site level, 

however, most restored wetlands experienced changes in the shape of their growing season 

curves, as revealed by significant responses of their minimum, maximum, median EVI, and 

integrative EVI to time since restoration. Changes in the shape of growing season curves likely 

reflect the incidence of restoration interventions and species succession on patterns of vegetation 

distribution and productivity. As revealed by previous studies, and further suggested by linear 

increases in phenological metrics observed here, plant succession in wetlands impacts their 

surface reflectance and, incidentally, the spectral vegetation indices used to measure vegetation 

cover (Zhao et al. 2009). At the scale of the Landsat dataset (30m) used in this study, the spectral 
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signature of vegetation in mixed pixels can be attenuated by the background effect of water or 

mudflat exposure where vegetation is absent or sparse (Zhao et al. 2009; Bradley 2014). As 

vegetated patches expand in some of these sites (Chapter 2) reducing the ratio of open water to 

vegetation, sites accumulate vegetation biomass which can in turn better mask water and soil 

background effects (Kearney et al. 2009; Mo et al. 2018). 

Changes in the timing of the first and last 50th percentile of greenness, the timing of peak 

biomass, maximum, and mean EVI could also reveal temporal changes in biomass production 

consistent with previous studies observing an increase in vegetation cover over the first 5-10 

years following restoration treatments (Matthews et al. 2009; Berkowitz 2013). This increase in 

biomass production will likely impact maximum EVI values but also the time needed to reach 

this maximum EVI, as it requires more biomass production. In some of these sites, however, this 

initial increase in biomass production might eventually plateau or even decrease as a result of 

competition, the depletion of legacy nutrients, or shading via litter accumulation impacting 

biomass production and seedling recruitment (Raab and Bayley 2012; Berkowitz 2013; 

Anderson et al. 2016), which might explain why three of the oldest sites monitored here 

observed a decrease in phenological metrics of the productivity cluster. The impact of litter 

accumulation in one of these sites has been documented in a previous study monitoring gross 

primary productivity over time (Anderson et al. 2016). While not explored in this study, it is 

possible that phenological changes in some of these sites are caused by a transition in species 

dominance, particularly where non-native species with distinct phenological characteristics 

proliferate (Hestir et al. 2008; Bradley 2014). 

Litter accumulation in some of these sites, as documented in previous studies (Schile et al. 2013; 

Anderson et al. 2016; Dronova and Taddeo 2016), could impact annual values of spectral 

vegetation indices, but also the timing of phenological events. The impact of litter is most 

noticeable in early spring and fall as standing litter or tick litter mats are more likely to mask the 

spectral signal of green emerging vegetation (Li and Guo 2018). This could partially explain why 

young sites were characterized by an earlier start and peak of the growing season; their green 

vegetation might simply be observable sooner as they have not yet accumulated a large quantity 

of litter. The abundance of litter might also delay plant phenology by shading seedlings (Xiong et 

al. 2003). The accumulation of litter in some of these sites might further impact minimum and 

maximum EVI values and the integrated EVI. Furthermore, the accumulation of senescent 

material (or litter) in wetlands can impact the strength of relationships between field observations 

of plant biomass or coverage and the values of satellite-based spectral indices, particularly when 

litter is taller or more abundant than green biomass (Schile et al. 2013; Dronova and Taddeo 

2016).  

Phenological changes in our study area were not perfectly linear. Significant increases in model 

fit with the inclusion of precipitation data and significant phenological contrasts among years 

with different PDSI are consistent with previous papers reporting that increased precipitation 

reduces salinity and promotes plant productivity (Buffington et al. 2018). In turn, prolonged 

droughts decrease plant productivity and can delay phenological events (Mo et al. 2015; 

Buffington et al. 2018). Throughout our study area, increased drought intensity, as determined by 
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the PDSI, was associated with lower maximum, standard deviation, and range of EVI values. 

Fluctuations in precipitation and drought severity impacted the phenological characteristics of 

almost all sites, modulating both the shape of their growing season curves and the timing of 

different phenological events. This impact of climatic characteristics might partially explain why 

very few sites showed monotonic trends in their phenological metrics, despite many of them 

showing a sensitivity to time since restoration. This reinforced the observation noted in local 

studies (Chapple et al. 2017; Chapple and Dronova 2017) and elsewhere (Matthews et al. 2009; 

Meyer et al. 2010; Brudvig et al. 2017) that post-restoration trajectories are not linear but may 

rather fluctuate in response to climatic fluctuations or change in management. 

4.2 Sensitivity of phenological metrics to data frequency and gaps 

In our dataset, the timing of key phenological metrics (e.g., start of growing season, end of 

growing season, position of peak) differed between Landsat (characterized by a revisit time of 16 

days), MODIS (one image every day), and Sentinel-2 (one image every 5 days). These contrasts 

reveal the effect of temporal resolution on landscape phenology. For example, Villa et al. (2018) 

showed that decreasing the temporal frequency of satellite data could impact the timing of 

phenological events by up to seven days. Furthermore, significant differences among sites in the 

degree of phenological schedule mismatches suggest that the latter are not only attributable to 

issues of temporal resolution, but also to the spatial resolution of these different datasets and the 

spatial distribution of vegetation within test sites, consistent with observations made by Villa et 

al. (2018). As cells are larger in the MODIS dataset, the spectral signal of vegetation is more 

likely to be attenuated by the spectral influence of water, aquatic floating vegetation, or other 

land covers (roads, bare soil) which might impact the time needed to observe a significant 

change in greenness indicating the start of the growing season or its end. 

Similarly, our results suggest that the strength of relationships between phenocam and satellite 

observations may be highly site-specific and impacted by site heterogeneity (i.e., variation in 

species density and open water) and litter accumulation. The site at an intermediate level of 

restoration —and characterized by a greater water-to-vegetation ratio— showed a greater 

discrepancy between phenocam and Landsat, which parallels observations made by Knox et al. 

(2017). This difference may be triggered by a greater variability in vegetation density and litter 

accumulation patterns in the site at an intermediate level of restoration. Presence of a dense layer 

of litter may explain the later start of the growing season observed within phenocams, as the 

satellite will not detect green vegetation growing under the canopy until it has emerged from the 

litter layer.  

4.3 Phenological outliers 

Basing phenological assessments on Landsat satellite images can be challenging due to gaps 

between acquisition dates and cloud cover. Landsat remains nonetheless very useful in tracking 

temporal changes in site phenology as one of the few sensors to provide repeated data prior to 

the 2000s. Furthermore, detecting phenological indicators at the scale of Landsat images (30m) 

can be particularly challenging in wetlands where some pixels overlap vegetation and open 

water. We somewhat circumvented this limitation by masking Landsat pixels labeled as “water” 
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in the quality assessment band, but smaller patches of open water or pixels overlapping 

vegetation and open water likely remain. Our analyses of outlier sites (i.e., sites in which 

phenological events occurred outside of the interquartile range of other sites) further reveals 

challenges in the use of phenological indicators in restored wetlands. In particular, few sites 

found themselves outside of the interquartile range during the year of their restoration or the first 

year following restoration treatments. This likely highlights challenges in accurately detecting 

growing season curves of fluctuations in greenness when sites are poorly vegetated. When sites 

are poorly vegetated, the background effect of water and bare soil likely decrease the value of 

vegetation indices including EVI, making it difficult to identify significant seasonal changes in 

site greenness. An additional issue with newly restored sites is that some transitioned from 

grasslands or crops into wetlands. During their restoration year(s), some of these sites maintained 

two or more different land covers (e.g., crops, wetlands) likely with different phenological 

schedules. In the year of restoration or the following one, it is possible that the signal of this 

other ecosystem type is stronger, explaining why some outlier site/year experienced earlier start, 

peak, and end of growing season. Despite these challenges, even sites with outlier phenological 

responses showed significant patterns of change in greenness, reflecting plant growth and 

succession. 

5 Conclusion 

Our analyses of 20 restored wetlands of the Sacramento-San Joaquin Delta in California showed 

a significant phenological response of sites to restoration interventions and interannual variation 

in climatic conditions. This phenological response might be best described by a set of non-

redundant phenological indicators showing less sensitivity to data availability or the temporal 

resolution of datasets. Our analyses of outlier sites revealed challenges in the phenological-based 

analysis of newly restored sites with a very low vegetation cover, as many outlier sites where 

found during the year of their restoration when they were either flooded or mainly covered by 

bare soil. To further the use of phenological analyses in future studies, more near-surface 

phenological analyses or high-resolution and high-frequency analyses are needed to identify 

intrinsic site variables impacting site-wide growing season curves and facilitate their 

interpretation at broader scales. 
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7 Table and figures 

 

Figure 4. Phenological indicators commonly used in the literature. 
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Figure 2. Study area including restored wetlands (in black) and reference sites (in dark grey). 
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Figure 3. Flowchart of methodological steps for the phenological analyses of restored wetlands 

and reference sites and validation using phenocams, Sentinel-2, and MODIS images. 
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Figure 4. Example of generating a site-average phenological trajectory by applying a smoothing 

spline to all cloud-free Landsat 8 OLI pixels overlapping a restored wetland site. 

 

Figure 5. Phenological indicators before and after restoration. (A) Start of the growing season, in 

day of the year, before and after restoration. (B) End of the growing season, in day of the year, 

before and after restoration. (C) First 50th percentile of greenness, in day of the year, before and 

after restoration. (D) Peak of the growing season, in day of the year, before and after restoration. 

(E) Median EVI before and after restoration. (F) Integrative EVI before and after restoration.  
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Figure 6. Difference between reference sites and restored sites grouped by age classes (i.e., less 

than 5 years old, 5-10 years old, 10-15 years old, and more than 15 years old). (A) Difference in 

the start of the growing season. (B) Difference in the first 50th percentile. (C) Difference in the 

last 50th percentile. (D) Difference in the end of the growing season. 
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Figure 7. Phenological differences between dry years (i.e., years showing a negative Palmer 

Drought Severity Index value) and wetter years (i.e., years showing a positive Palmer Drought 

Severity Index value) across the entire dataset. (A) Difference in annual maximum EVI value 

between years showing a drought severity below normal or above normal. (B) Difference in 

annual range of EVI value between years showing a drought severity below normal or above 

normal. (C) Difference in the start of the growing season (in number of days) between years 

showing a drought severity below normal or above normal. (D) Difference in integrative EVI 

value between years showing a drought severity below normal or above normal. 
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Table 1. Cluster of phenological metrics, as identified by a hierarchical clustering using Ward’s 

method (Ward 1963) 

End of Growing Season MidPoint Productivity Range of EVI 

End of Growing Season 

Last 10th percentile 

Last 30th percentile 

First 25th percentile 

First 30th percentile 

Minimum EVI value 

Maximum EVI 

Median EVI value 

Mean EVI value 

IEVI 

Relative EVI 

Range 

Standard deviation 

Peak of Growing Season Start of Growing Season Skewness Length of Growing 

Season 

First 50th percentile 

First 90th percentile 

First 75th percentile 

First 80th percentile 

Last 90th percentile 

Last 80th percentile 

Last 50th percentile 

Last 25th percentile 

Peak of Growing season 

Start of Growing Season 

First 10th percentile 

Skewness Kurtosis 

Length of growing season 

 

Table 2. Trends in phenological indicators over time by site, as described by linear regressions 

where time since restoration is used as the explanatory variable. Arrows represent significant 

linear relationships (signif. level =0.05) between time since restoration and a given phenological 

metric. 

Region Sites Restoration 

Year 

Productivity Start of 

Growing 

Season 

Peak of 

Growing 

Season 

End of 

Growing 

Season 

Length of 

Growing 

Season 

Standard 

deviation 

Suisun 

Marsh 

Blacklock 2006 ↑ ↑ ↑ ↑   

Chipp 2004 ↑ ↓ ↓    

Point Buckler 1993 ↓      

Ryer Island 2000       

US Administration 
Marsh 

2006 ↑ ↑     

Wheeler 2006 ↑  ↑ ↑   

North 
Delta 

Beach Lake 2008       

Liberty 
Conservation 

2010 ↑ ↑ ↑    

Liberty Island 1998 ↑      

Central 

Delta 

Decker 2002 ↑ ↑  ↑ ↑  

East End 2014 ↑ ↑ ↑ ↑   

East Pond 1997 ↓    ↓  

Fern 1999 ↑ ↑ ↑ ↑   

Kimball 2000  ↑  ↑   

Mayberry Farms 2010 ↑      

Medford 1 2012 ↑ ↑ ↑  ↑  

River Island 2009 ↑  ↑   ↑ 

Sherman 2005 ↑ ↑ ↑ ↑  ↑ 

West Pond 1997 ↓   ↑ ↑  

South 

Delta 

French Camp 

Conservation Bank 

2006 ↑   ↑   
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8 Supplemental information 

Table S1. Study sites surveyed in this study. Dominant adjacent land covers and land uses are 

based on the MODIS land cover product and were identified within a 500m radius around every 

wetland. 

Region Temperature and 

precipitation 

(CalAtlAs) 

Dominant adjacent 

land uses (MODIS) 

Sites Area 

(acres) 

Restoration 

Year 

Suisun 

Marsh 

Min=8.6 oC, 

Max = 24.0 oC, 

0.36 mm/day 

 

Crops (15%), Wetlands 

(23%), Open water 

(19%), Urban (4%) 

Hill Slough 275 Reference 

Peytonia 63 Reference 

Blacklock 26 2006 

Chipp 60 2004 

Point Buckler 20 1993 

Ryer Island 376 2000 

US Administration 

Marsh 

28 2006 

Wheeler 40 2006 

North 

Delta 

Min = 8.8 oC, 

Max = 24.9 oC, 

0.32 mm/day 

Crops (78%), Urban 

(2%), Open Water (2%) 

Calhoun Cut 1,112 Reference 

Beach Lake 31 2008 

Liberty 

Conservation 

166 2010 

Liberty Island 1,706 1998 

Skyracker 137 2005 

Central 

Delta 

Min = 10.0 oC, 

Max = 24.3 oC, 

0.28 mm/day 

Crops (63%), Urban 

(10%), Water (3%) 

Brown 305 Reference 

Lower Sherman 

Island 

1,754 Reference 

Decker 11 2002 

East End 740 2014 

East Pond 7 1997 

Fern 79 1999 

Kimball 109 2000 

Mayberry Farms 307 2010 

Medford 1 60 2012 

River Island 316 2009 

West Pond 8 1997 

South 

Delta 

Min = 9.4oC, 

Max = 24.6 oC, 

0.27 mm/day 

Crops (88%), Urban 

(11%) 

French Camp 

Conservation Bank 

40 2006 
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Chapter 4 
Spectral vegetation indices of wetland greenness and their response to 

vegetation structure, composition, and spatial distribution 

Abstract 

Land conversion and fragmentation threaten the resilience and biodiversity of wetland 

ecosystems which further hinders their provision of ecosystem services. Remote sensing datasets 

can provide frequent and consistent data to support wetland conservation efforts and facilitate 

monitoring from regional to national scales. However, wetlands present unique characteristics 

limiting the efficacy of remote-sensing based metrics developed for terrestrial ecosystems. 

Challenging characteristics of wetlands include land cover heterogeneity, soil and water 

exposure in less vegetated pixels, and dead biomass accumulation. To identify the factors 

impacting satellite-based measurements of wetland greenness, we tested how six spectral 

vegetation indices responded to the land surface characteristics and regional climatic and edaphic 

context of 1,138 wetlands sites surveyed by the U.S EPA’s National Wetland Condition 

Assessment. Spectral vegetation indices (SVI) were estimated using all cloud-free surface 

reflectance data captured in 2011 by Landsat 5 TM and 7 ETM+. We tested two aggregation 

metrics —maximum and median greenness— for each vegetation index to facilitate the analysis 

of such a large dataset of satellite images. Using univariate and multivariate ordinary least square 

regression models, we assessed how the annual maximum and median value of each SVI 

responded to indicators of vegetation structure and composition, the presence of dead biomass, 

open water, bare soil, and climatic/edaphic variables. Results show that, in the global sample, 

NDVI and GNDVI are most responsive to field-based metrics of vegetation structure and 

composition. However, the responses of vegetation indices differed significantly among wetland 

types, suggesting that their use should be tailored to the specific characteristics of the wetland 

being monitored. Aggregation metrics showed different sensitivity to multivariate models, with 

median greenness being more sensitive to structure and composition, but also to confounding site 

variables including litter, open water, and bare soil. This study represents a first-time effort to 

study relationships between the on-site properties of wetlands and their spectral characteristics at 

a national scale.  

1 Introduction 

Long understudied (Dixon et al. 2016; Kingsford et al. 2016), wetland ecosystems provide 

critical ecological and human benefits (Chmura et al. 2003; Zedler 2003; Callaway et al. 2012; 

Pedersen et al. 2019); yet they have only recently gained consistent public awareness due to their 

dramatic loss and degradation (Bedford 1999; Davidson 2014). The extensive worldwide loss 

and fragmentation of wetlands threatens key ecosystem services including flood control, carbon 

sequestration, and water filtration (Nicholls et al. 1999; Chmura et al. 2003). These ecosystem 

services will become essential with climate changes exacerbating the vulnerability of coastal 

human populations to sea level rise and flooding (Nicholls et al. 1999) which, in turn, will 
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increase the need for carbon sequestration. The long-term, detailed, and consistent monitoring of 

wetlands is pivotal to the targeted conservation of their biological resources but is made difficult 

by challenging field conditions and a lack of accessibility to isolated sites (Adam et al. 2010; 

Klemas 2013). Wetlands warrant frequent monitoring due to their substantial spatiotemporal 

variability in plant composition and abundance (Zedler et al. 1999; Wilcox et al. 2002) resulting 

in sizeable logistical costs.  

Readily available remote sensing datasets could increase the frequency and scope of current 

wetland monitoring efforts (Adam et al. 2010; Klemas 2013) to help prioritize conservation 

interventions and measure ecosystem functions at a large scale. However, wetland ecosystems 

present unique challenges limiting the efficacy of remote sensing tools and techniques developed 

for terrestrial ecosystems (Gallant 2015). Steep gradients in salinity, topography, and water level 

result in a high heterogeneity of plant cover and composition (Adam et al. 2010; Mishra and 

Ghosh 2015). The spectral properties of vegetation in pixels with a patchy plant distribution can 

be obscured by the absorption of visible light by open water or bare soil (Dronova 2015; Gallant 

2015), which can negatively impact the value of spectral indices typically used to quantify 

wetland vegetation. Attenuation factors specific to aquatic ecosystems can further obscure the 

spectral signal of vegetation (Spanglet et al. 1998; Kearney et al. 2009; Schile et al. 2013). For 

example, litter accumulation (i.e., dead plant biomass) in sites with a lack of tidal flushing or 

with an abundant reed cover can attenuate the spectral signal of green vegetation, reducing the 

strength of linear relationships between ground biomass and spectral indices (Turner et al. 1999; 

Rocha et al. 2008; Schile et al. 2013; Dronova and Taddeo 2016). Similarly, fluctuations in water 

level impact the reflectance of vegetated surfaces in the red and infrared portions of the 

electromagnetic spectrum, particularly in pixels with a lower vegetation cover, low leaf area 

index, or erected leaves (Spanglet et al. 1998; Kearney et al. 2009; Byrd et al. 2014). 

Furthermore, the relationship between spectral indicators of vegetation (such as vegetation 

indices quantified from spectral reflectance in relevant electromagnetic regions) and field 

biomass varies with growth forms and canopy structure as they impact light scattering and 

absorption, exposure to non-vegetated background (Spanglet et al. 1998; Ollinger 2011), or the 

abundance of non-photosynthetically active plant material (Asner 1998).  

In addition to these factors, wetlands often exhibit a substantial heterogeneity in growth forms 

and canopy structure, particularly where a coarse pixel overlaps low and high marshes, or where 

tall emergent species are found next to floating or submerged vegetation (Spanglet et al. 1998). 

Differences among wetland types may pose additional challenges. For example, estuarine 

wetlands tend to be more sparsely vegetated than inland wetlands due to their increased salinity 

resulting in difficult growing conditions. In these less vegetated sites, absorption of solar 

radiation by bare soil can reduce the value of vegetation indices (Spanglet et al. 1998). Dominant 

woody species in forested swamps might mask the spectral signal of the understory, impacting 

the strength of relations between plot-level diversity (Taddeo et al. in revision), coverage (Turner 

et al. 1999), and spectral vegetation indices. As such, it is critical to understand how 

relationships between spectral data and field-based indicators of plant coverage and biomass vary 

with the characteristics of dominant species, their spatial distribution, and density (Mishra and 

Ghosh 2015). 
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Spectral vegetation indices (here after SVIs), capturing differences in vegetation reflectance 

throughout the electromagnetic spectrum, are commonly used to map dominant vegetation types 

and estimate plant coverage and biomass (Huete et al. 1997; Gould 2000; Nagler et al. 2004) as 

they have shown significant relationships to indicators of plant vigor and productivity including 

leaf area index, biomass, and the fraction of absorbed photosynthetically active radiation 

(Myneni and Williams 1994; Gamon et al. 1995a; Nagler et al. 2004). Vegetation reflectance is 

influenced by both leaf-scale properties, such as chlorophyll and water content, and plant- and 

canopy-level structure, including leaf angle and density, the proportion of woody parts (Myneni 

and Williams 1994; Turner et al. 1999; Ollinger 2011). Plant chlorophyll, a green pigment 

responsible for photosynthesis, absorbs a strong proportion of light in the red portion of the 

electromagnetic spectrum (Sims and Gamon 2002; Blackburn 2006). Two plant pigments, 

carotene and xanthophyll, strongly absorb light in the blue portion of the electromagnetic 

spectrum which is noticeable during leaf senescence when plants lose chlorophyll (Jensen 2007). 

The green band has shown sensitivity to chlorophyll content across a greater range of chlorophyll 

a concentration than the red band (Gitelson et al. 1996; Gitelson and Merzlyak 1998). This band 

also shows sensitivity to plant stressors including pests, herbicides, and salinity (Carter 1993). 

The near-infrared light (NIR) is reflected by mesophyll cells but strongly absorbed by water, 

providing in heterogeneous wetlands a sharp contrast between green vegetation and water (Phinn 

et al. 1999; Lang et al. 2015). Lastly, the shortwave infrared portion of the electromagnetic 

spectrum (SWIR) is sensitive to soil and vegetation moisture, helping distinguish wet vegetation 

from senescent plant parts (Asner 1998; Jensen 2007). The shortwave infrared also shows a 

greater sensitivity to variations in woody species than NIR or visible bands (Asner 1998). 

To better utilize the potential of wetland greenness to indicate associated ecosystem functions, it 

is critical to study how SVIs are impacted by the unique properties of wetlands and whether they 

perform consistently across wetland types, climates, and dominant growth forms (Huete et al. 

1997; Turner et al. 1999). The normalized difference vegetation index (Rouse et al. 1973; NDVI; 

Table 1) is one of the most commonly used spectral vegetation indices. It determines the 

proportion of red light absorbed by plant chlorophyll to NIR light scattered by mesophyll cells 

(Tuker et al. 1979; Huete et al. 1985). Previous studies showed that NDVI saturates at medium to 

high leaf area index while at low leaf area index it is negatively impacted by soil brightness 

(Huete et al. 1997; Todd and Hoffer 1998; Pettorelli et al. 2005). The Enhanced Vegetation 

Index (EVI; Table 1) addresses these shortcomings by applying a soil adjustment factor and an 

atmospheric correction to the red and blue bands to minimize the incidence of atmospheric 

scattering and background noise (Huete et al. 2002). Similarly, the Soil-Adjusted Vegetation 

Index (SAVI; Table 1) incorporates a soil adjustment factor (Huete 1988) which proved useful in 

mapping low coverage vegetation in wetlands (Poulin et al. 2010). The green chromatic 

coordinate (GCC; Table 1) has been repeatedly used in studies leveraging near-surface remote 

sensing to characterize vegetation phenology (Sonnentag et al. 2012a; Keenan et al. 2014; 

Browning et al. 2017) or upscale ground-level phenocam data into site estimates of vegetation 

productivity (Knox et al. 2015; Browning et al. 2017). It also offers the advantage of using bands 

solely from the visible portion of the electromagnetic spectrum. Near-surface GCC showed 

strong relationships to eddy covariance-based gross primary productivity in previous studies 

(Browning et al. 2017; Knox et al. 2017). However, GCC computed from satellite data can be 
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highly sensitive to atmospheric scattering (Brown et al. 2017). The Green Normalized Difference 

Vegetation Index (GNDVI; Table 1), based on the normalized difference between the green and 

NIR bands, has been predominantly used to estimate crop productivity as it shows significant 

correlations to leaf chlorophyll, crop yield, and biomass in a variety of cultures (Shanahan et al. 

2001; Eldaw Elwadie et al. 2005). The Land Surface Water Index (LSWI; Table 1), based on the 

SWIR and NIR portions of the electromagnetic spectrum (Tucker 1979), is sensitive to canopy 

water content (Toomey and Vierling 2005) and has consequently been successfully used to map 

rice paddies (Dong et al. 2016).  

The central objective of this study was to identify the field characteristics (e.g., vegetation cover, 

composition, litter accumulation, proportion of open water) impacting wetland greenness as 

measured from broadband multispectral satellite images. At the resolution of Landsat pixels 

(30m), the spectral signature of vegetation in mixed pixels likely gets obscured by the 

background effects of water and soil. Despite this challenge, Landsat remains frequently used in 

regional and global wetland studies (e.g., Baker et al. 2007; Adam et al. 2010; Dronova et al. 

2011) for its unparalleled spatiotemporal extent and temporal frequency compared to coarser 

(e.g., Moderate Resolution Imaging Spectroradiometer; MODIS), less frequent (e.g., National 

Agriculture Imagery Program; NAIP) or more costly (e.g., WorldView instruments) archival 

datasets. While certain vegetation properties might best be monitored at a finer spatial resolution, 

Landsat data present the undoubtable advantage of being globally and openly accessible at a 

scale relevant to policy-makers and landscape planners. Developing a better understanding of 

how land surface properties impact vegetation indices at the resolution of Landsat pixels would 

help produce more accurate estimation of vegetation extent and productivity and their related 

ecosystem functions.  

To address this need, we tested across a sample of 1,138 wetland sites in the conterminous 

United States the response of six vegetation indices to the surface properties of wetlands. We 

considered three indices based on the normalized difference between the NIR band and the red, 

green, and SWIR bands, respectively (i.e., NDVI, GNDVI, LSWI; Table 1). We examined two 

vegetation indices that include a soil adjustment factor (i.e., EVI, SAVI; Table 1). Lastly, we 

included one index (i.e., GCC; Table 1) based solely on the visible portion of the electromagnetic 

spectrum. To reduce this national-wide dataset of Landsat images (>3,500 images) to a more 

computationally manageable dataset, we tested two aggregation metrics for these six SVIs (i.e., 

annual maximum and median greenness).   

2 Methods 

2.1 Study sites and area 

We used field data from the U.S Environmental Protection Agency’s National Wetland 

Condition Assessment (NWCA) to assess the relationships between vegetation properties (e.g., 

coverage, height, composition), non-photosynthetically active plant material (e.g., litter height 

and density), confounding site variables (e.g., proportion of open water, bare soil, and exposed 

gravel), climatic conditions, edaphic variables (Table 2) and SVIs (Table 1). The NWCA 

surveyed plant composition and abundance in 1,138 wetland sites of the conterminous United 
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States (Fig. 1; US EPA 2016a). It provides information on additional land covers including open 

water, exposed soil and gravel, as well as climatic, edaphic, and topographic data (Table 2). This 

wetland sample is stratified by state and wetland type to represent the broader population of 

wetlands in the conterminous United States (US EPA 2016b). Each state counts a minimum of 

eight sites sampled during the spring and summer of 2011 within five 100m2 plots included in a 

0.5-hectare assessment area (US EPA 2016a). Sites are clustered by wetland types, classified on 

the basis of their hydrological characteristics and dominant growth form as follows (Figure 1): 

estuarine herbaceous (EH; n=272) and inland herbaceous (PRLH, n=358) dominated by 

emergent herbaceous species; estuarine woody (EW, n=73) dominated by small trees and shrubs 

(<6m tall), and inland woody forested and scrub-shrub wetlands (PRLW, n=435). Finally, sites 

are clustered in three groups along a disturbance gradient (i.e., least, intermediate, most) based 

on anthropogenic infrastructures, hydrologic disturbances, heavy metals, and alien species (US 

EPA 2016b). In this study, unless otherwise mentioned, we used the mean site value of land 

cover characteristics averaged across all five sampling plots.  

2.2 Spectral data and vegetation indices 

We used satellite images from the Landsat sensors 5 TM and 7 ETM+ (30m resolution and 16 

days revisit) to estimate SVIs (Table 1). Both sensors have the same bandwidths and have been 

successfully combined in previous studies (e.g., Fernandes et al. 2003). We leveraged the surface 

reflectance products of these sensors which in previous studies showed a stronger correlation 

between field-based leaf area index and SVIs than top of atmosphere data (e.g., Turner et al. 

1999). SVIs were calculated in the cloud-based programming interface Google Earth Engine 

(Gorelick et al. 2017) for all Landsat scenes overlapping the NWCA sites (Taddeo et al., in 

revision) between January 1 and December 31, 2011 and across 299 tiles (>3,500 scenes). We 

excluded pixels covered by clouds or cloud shadows using the quality assessment band of both 

Landsat 5 TM and 7 ETM + surface reflectance products. We obtained an average of 24 cloud-

free images per pixel and year with a standard deviation of 12 images. We generated SVIs for the 

nine Landsat pixels included in a 3by3 window roughly corresponding to the 40m circular radius 

assessment area of each NWCA site. We then computed for each site (1) the spatial average of 

the annual maximum for each SVI (i.e., maximum SVI value averaged across all nine Landsat 

pixels overlapping a site; hereafter termed SVI year-maximum), and (2) the spatial average of 

the annual median value for each SVI (i.e., median SVI value averaged across all nine Landsat 

pixels overlapping a site, hereafter termed SVI year-median) (Taddeo et al., in revision).  

2.3 Statistical analyses 

All statistical analyses were conducted in R 3.4.2 (R Core Team 2017). We used the Shapiro-

Wilk test to assess whether SVI year-maximums and year-medians were normally distributed 

across the global sample. We performed a series of ordinary least square linear regressions to 

assess the capacity of different explanatory variables (Table 2) to predict variations in SVI year-

maximums and year-medians across the global sample and within specific wetland types. We 

used the Shapiro-Wilk test to measure the normality of residuals and applied log transformations 

to response variables when the residuals where not normally distributed. We tested the capacity 

of multivariate models including indicators of vegetation structure, composition, confounding 
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site variables, and landscape factors (Table 2) to predict variations in SVI year-maximums and 

year-medians. To construct these multivariate models, we began by measuring the correlation 

between each pair of variables using the Pearson’s product moment correlation test of the cor.test 

function. We solely included in multivariate models the variables showing a coefficient of 

correlation inferior to 0.7. We identified four multivariate models: vegetation structure, 

vegetation composition, confounding site variables, and landscape factors. The vegetation 

structure multivariate model includes the following variables: total coverage by native species, 

total coverage by non-native species, mean plant height, number of canopy layers, maximum 

canopy height, coverage by forbs, coverage by shrubs, and coverage by trees. The composition 

multivariate model includes Shannon-Wiener diversity index, total species evenness, richness of 

graminoids, richness of forbs, richness of herbaceous species, richness of shrubs, and richness of 

trees. The confounding site variable multivariate model incorporates coverage by algae, coverage 

by submerged aquatic vegetation, coverage by floating aquatic vegetation, litter depth, litter 

coverage, open water coverage, bare group coverage, and exposed soil coverage. The landscape 

variable model includes mean elevation, maximum elevation, mean annual precipitation, 

coefficient of variation in total monthly precipitation, mean maximum precipitation, mean 

minimum precipitation, mean annual maximum air temperature, and standard deviation in mean 

annual air temperature. Lastly, we used analysis of variance (ANOVA) tests to assess whether 

certain models differed significantly in their capacity to predict variation in SVIs. 

3 Results 

3.1 Distribution by wetland types and correlation among SVIs 

According to a Shapiro-Wilk normality test, none of the SVI year-maximum values were 

normally distributed (sign. level=0.05; SI Fig. S1A-F), but the low skewness value of EVI year-

maximum (-0.22) suggested that its distribution was the closest to normality. NDVI, EVI, 

GNDVI, and LSWI year-maximum were all skewed towards larger values, with NDVI year-

maximum (-1.04) and GNDVI year-maximum (-1.03) showing the most important skewness. 

Meanwhile, GCC year-maximum was positively skewed, indicating that a greater frequency of 

sites was included within the left tail of its distribution. NDVI, SAVI, EVI, and GNDVI all had 

low kurtosis values, while LSWI year-maximum (1.52) and GCC year maximum (105.37) both 

showed a greater kurtosis. While all SVI year-medians also failed the Shapiro-Wilk normality 

test, the low absolute skewness values (<|0.5|) of NDVI, LSWI, EVI, SAVI, and GCC year-

medians suggested that their distributions were close to normality, while GNDVI year-median 

was moderately skewed (-0.651; SI Fig. S1 G-L). All SVI year-medians had an absolute kurtosis 

inferior to 1. All SVIs were significantly correlated (SI Table S1) but the year-median values of 

SVIs generally showed greater correlations than did their year-maximums. NDVI, GNDVI, 

SAVI and EVI were correlated particularly strongly, while both LSWI and GCC show lower 

correlations to other SVIs (SI Table S1). 

ANOVA tests with Tukey Honest Significant Posthoc tests revealed significant contrasts among 

wetland types in their NDVI (F3,1134=218.6, p<0.0001; Fig. 2A), GNDVI (F3,1134=227.8, 

p<0.0001; Fig. 2B), LSWI (F3,1134=47.01, p<0.0001; Fig. 2C), EVI (F3,1134=251, p<0.0001; Fig. 
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2D), SAVI (F3,1134=286.1, p<0.0001; Fig. 2E), and GCC (F3,1134=57.52, p<0.0001; Fig. 2F) year-

maximums, with inland woody wetlands showing greater SVI year-maximums, followed by 

inland herbaceous, estuarine woody, and estuarine herbaceous (sign.level=0.05) for all SVIs 

year-maximum except LWSI, which did not show significant differences between inland 

herbaceous sites and estuarine woody wetlands. Similarly, wetland types showed significant 

contrasts in their NDVI (F3,1134=255.6, p<0.0001; Fig. 2G), GNDVI (F3,1134=206.1, p<0.0001; 

Fig. 2H), LSWI (F3,1134=94.72, p<0.0001; Fig. 2I), EVI (F3,1134=245.1, p<0.0001; Fig. 2J), SAVI 

(F3,1134=190.1, p<0.0001; Fig. 2K), and GCC (F3,1134=165.4, p<0.0001; Fig. 2L) year-medians, 

with inland woody wetlands showing the greatest SVI year-median and estuarine herbaceous the 

lowest SVIs (sign.level=0.05), while the difference between inland herbaceous sites and 

estuarine woody wetlands was not significant.  

3.2 General models 

3.2.1 Univariate models of vegetation structure 

The different indicators of canopy structure we considered (SI Table S2) differed in their 

capacity to explain variations in SVI year-maximums and year-medians. They had, overall, a 

greater capacity to explain variations in SVI year-medians than year-maximums (SI Table S2). 

Structural indicators had a better capacity to explain variation in NDVI year-maximum and year-

median than any other SVIs (SI Table S2). The number of layers in the canopy and maximum 

canopy height showed the strongest explanatory power of all structural variables (SI Table S2) 

explaining 12 to 35% of variation in SVI year-maximums and 24 to 44% of variation in SVI 

year-medians, but both variables are categorical which partially explains the strength of their 

linear relationships to SVIs. Total species coverage could explain 4 to 19 % of variance in SVI 

year-maximums and 13 to 25% of variance in SVI year-medians (Fig. 3). NDVI, GNDVI, and 

LSWI all appear to show a saturation in the relationship between their year-maximum and total 

vegetation coverage (Fig.3 A-C), with index values no longer sensitive to changes in coverage 

beyond ~200% (in this dataset, vegetation coverage is measured as the sum of percent vegetation 

coverage in individual canopy layers, explaining why some sites exceed 100% coverage). 

Graminoid and herb covers both negatively affected SVIs, explaining 10-26% of variation in 

their year-maximums and 19-29% of variation in their year-medians (SI Table S2). This might 

be due to a negative correlation between graminoid and tree cover (Pearson correlation 

coefficient=-0.5394, p<0.0001, df=1136) and herb and tree cover (Pearson correlation 

coefficient=-0.7274, p<0.0001, df=1136). Tree cover had a positive effect on SVIs, explaining 9-

22% of variation in their year-maximums and 19-31% of variation in their year-medians. 

Similarly, shrub cover had a small but positive effect on SVIs, explaining 1-2% of variation in 

their year-maximums and 4-8% of variation in their year-medians. Vegetation cover among the 

>5 to 15m and 15 to 30 m classes consistently showed a greater explanatory power than other 

height classes, explaining 1 to 17% variation in year-maximums and 12 to 23% variation in year-

medians (SI Table S2). 
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3.2.2 Univariate models of species composition 

Total species diversity, evenness, and median species richness showed greater adjusted R2 in 

their linear relationship to SVI year-medians than SVI year-maximums (SI Table S3). 

Meanwhile, the standard deviation in species richness across the five sampling plots of NWCA 

sites had a greater incidence on SVI year-maximums, explaining 3-16% of their variation, than 

their year-medians (3-12% of variation). The richness of forbs, graminoids, and herbs had a 

greater effect on SVI year-maximum, while the richness of taller growth forms (i.e., shrubs, 

trees) had a greater effect on SVI year-median (SI Table S3). Indicators of species composition 

had, overall, a greater capacity to explain variation in GNDVI and SAVI year-maximums and 

year-medians than other SVIs. Total species diversity showed the greatest explanatory power of 

all composition indices (Fig. 4). Evenness could explain 1-9% of the variation in year-

maximums and 3-10% of variation in SVI year-medians. Lastly, of all growth forms, tree 

richness had the greatest explanatory power, explaining 9 to 33% of variation in year-maximums 

and 23 to 33% in year-medians. 

3.2.3 Univariate models of confounding site variables 

Overall, confounding site variables had a greater impact on the year-medians of SVIs than on 

their year-maximums (SI Table S4). Mean litter coverage could explain a significant proportion 

of variation in all SVI year-maximums (1 to 9%; SI Table S4) except LSWI. It had a significant 

impact on all SVIs year-medians, explaining 1 to 11% of their variation (SI Table 4). The 

proportion of bare ground explained a significant proportion of variation in all SVI year-

maximums (0.3 to 6%) and year-medians (3 to 6%; SI Table S4). The proportion of open water 

significantly affected all SVIs year maximums except GCC year-maximum and all SVI year-

medians except LSWI (SI Table S4). The coverage of submerged and floating vegetation did not 

significantly impact SVI year-maximums, except for LSWI year-maximum. However, it 

explained 0.2 to 1% of variation in NDVI, GNDVI, EVI, and SAVI year-medians. Algae 

coverage had a significant incidence on all SVIs year-maximums and year-medians except for 

LSWI, explaining up to 1% of their variation. 

3.2.4 Univariate models of landscape variables 

Across all climatic, edaphic, and topographic variables, the coefficient of variation in monthly 

precipitation, mean annual maximum air temperature, mean annual maximum air temperature, 

and mean site pH had the highest adjusted r-square for their linear relationship to SVIs (SI Table 

S5). The coefficient of variation in monthly precipitation and mean annual maximum air 

temperature had a greater incidence on SVI year-maximum than their year-median (SI Table S5). 

3.2.5 Multivariate models 

Overall, multivariate models of species composition and structure explained the greatest 

proportion of variation in SVI year-medians and year-maximums (Fig. 5; SI Table S6). 

Multivariate models of canopy structure had a greater explanatory power in the NDVI, LSWI, 

EVI, and GCC models, while indicators of species composition had a greater incidence on 

variation in the EVI and GNDVI models. (Fig. 5; SI Table S6). Multivariate models of 

vegetation structure and composition explained a greater proportion of variation in SVI year-

medians than their year-maximums. The confounding site variable model explained 12 to 14 % 
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of variation in NDVI, GNDVI, EVI, and SAVI year-maximums, but a much smaller proportion 

of variation (1-2%) in GCC and LSWI year-maximums. The landscape models explained 13 to 

24% of variation in SVI year-maximums and 11 to 20% of variation in SVIs year-medians.  

3.3 Differences between different wetland types 

In wetlands dominated by herbaceous species (i.e., estuarine and inland herbaceous wetlands), 

multivariate models of canopy structure, species composition, and confounding site variables 

explained a greater proportion of GNDVI year-maximums than any other SVIs (Fig. 6A and B, 

SI Table 7). Multivariate models of vegetation structure and landscape factors explained a 

greater proportion of variation in NDVI year-median within herbaceous-dominated wetlands 

than any other SVIs, while multivariate models of vegetation composition and confounding site 

variables were stronger with GNDVI year-medians as response. In estuarine woody wetlands, 

vegetation structure was a better predictor of LSWI and GCC year-maximums than any other 

SVIs (Fig. 6A), while the multimeric model of vegetation composition was a better predictor of 

GNDVI year-maximums than any other indices. Meanwhile, vegetation composition and 

structure had a greater capacity to explain variation in the LSWI year-median of estuarine woody 

wetlands than any other SVIs (Fig. 6B). In inland woody wetlands, multivariate models of 

vegetation structure explained a greater proportion of variation in NDVI year-maximum than any 

other SVIs while variations in SAVI year-maximums were best predicted by multivariate model 

of species composition. Overall, multivariate models of vegetation structure, composition, and 

confounding site variables explained a greater proportion of variation in NDVI year-median than 

any other SVI year-medians (Fig. 6B). Structure and landscape multivariate models had the 

greatest explanatory power on SVI year-maximum and year-median in inland woody wetlands, 

while abiotic multivariate models explained a small to non-significant portion of variation in SVI 

year-maximums (<3%) and year-medians (4-8%) (Figure 6A and B, SI Table S7).  

3.4 Difference between high and low coverage 

A partition of sites that showed lower total vegetation coverage than the sample average 

(<117%) and higher than average coverage (>117%) revealed significant differences in the 

predictive capacity of multimeric models at low versus high coverage, although responses were 

not consistent between the year-maximum of SVIs and their year-medians. Multivariate model of 

structure and confounding site variables (Table 3) had a greater explanatory power on SVI year-

median at low total coverage than high coverage, while at high coverage, multivariate models of 

vegetation structure and composition had a greater incidence on SVI year-median than other 

multivariate models (Table 3). 

4 Discussion 

The substantial loss and degradation of wetlands has negatively impacted their ecosystem 

functions and contribution to global biological diversity (Gibbs 2011; Kingsford et al. 2016). 

Remote sensing datasets can provide frequent and consistent data to support conservation efforts 

at both national and continental scales. To ensure the accurate characterization of wetland 

properties, it is crucial to study how spectral vegetation indices respond to the land surface 
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characteristics of wetland sites including heterogeneity in land covers. We observed across a 

sample of 1,138 NWCA sites significant differences among wetland types in how SVIs respond 

to vegetation properties (e.g., coverage, height, composition), water and bare ground exposure, 

and landscape edaphic and climatic variables.  

4.1 Variation among different SVIs in sensitivity to wetland ecosystem properties  

SVIs showed significant contrasts in their responses to site and landscape characteristics, likely 

reflecting different spectral sensitivities to land surface properties. In the global sample of 

NWCA sites, NDVI and GNDVI, based on the normalized difference reflectance between the 

NIR and the red or green bands, were the most responsive SVIs to the surface properties of 

wetlands, with NDVI showing the greatest sensitivity to univariate and multivariate models of 

vegetation structure (e.g., height, cover). Meanwhile, univariate and multivariate models of 

species composition showed a greater capacity to predict variation in GNDVI year-maximum 

and year-median which reflects the sensitivity of the green band to fluctuations in chlorophyll a 

throughout a greater range of chlorophyll concentrations (Gitelson et al. 1996; Gitelson and 

Merzlyak 1998) and, consequently, the impact of vegetation diversity on GNDVI (Taddeo et al. 

in revision). The sensitivity of NDVI to wetland properties in our sample parallels observations 

by Mo et al. (2018) in which NDVI derived from Landsat ETM+ data showed a higher 

correlation to the leaf area index of marshes in Louisiana than EVI or SAVI. However, the shape 

of linear relationships between total species coverage and the year-maximum of NDVI and 

GNDVI suggest that both indices might saturate at high vegetation biomass or coverage. The 

saturation of NDVI under high coverage is well documented (Huete et al. 1997; Todd and Hoffer 

1998; Pettorelli et al. 2005). Gamon et al. (1995b) also observed a saturation of the NIR band in 

dense vegetation which might impact GNDVI year-maximums under high coverage values. This 

indicates that for sites with a high biomass or leaf area index, it might be preferable to select an 

SVI that does not show the same saturation pattern. Alternatively, studies in high biomass areas 

could focus on the year-median of NDVI or GNDVI which does not show the same saturation 

pattern. 

While the two indices incorporating a soil adjustment factor (EVI, SAVI) performed well, 

multivariate models of structure, composition, and confounding site variables could explain a 

lower proportion of their variance (between 1-16% less variance) than for NDVI or GNDVI. 

However, multivariate models of vegetation structure and composition showed a greater capacity 

to predict variations in EVI and SAVI at lower coverage, similar to observations made by Mo et 

al. (2018). Both EVI and SAVI year-maximums showed more sensitivity than NDVI to 

multivariate models of structure and composition in estuarine herbaceous wetlands, the wetland 

type characterized by the lowest vegetation coverage and SVI values. This suggest that under 

lower vegetation coverage, the use of a soil adjustment factor might help circumvent the effects 

of soil background on the reflectance of vegetation, as shown in wetlands (Mo et al. 2018) and 

terrestrial ecosystems (Huete et al. 1997; Huete et al. 2002; Pettorelli 2013). 

While the relationship between GCC and vegetation coverage did not saturate at high values, its 

year-maximum showed less sensitivity to vegetation structure and composition than did other 

SVIs leveraging the NIR band. GCC has been previously used in near-surface phenology 
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analyses (Sonnentag et al. 2012b; Keenan et al. 2014; Knox et al. 2017), where it demonstrated 

significant correlations to leaf area index, plant biomass, and gross primary productivity. 

However, GCC computed from satellite-based surface reflectance data is sensitive to 

atmospheric scattering in the blue band (Brown et al. 2017). While EVI also includes the blue 

band, its use of a correction factor might reduce the incidence of atmospheric scattering, 

explaining why it performed significantly better than GCC.  

LSWI showed less sensitivity to vegetation structure and composition. In univariate models, 

linear relationships between total vegetation coverage, species diversity and LSWI year-

maximum or year-median showed the smallest slopes of all SVIs which may partially explain its 

lack of sensitivity to vegetation structure and composition. However, of all SVIs, LSWI was the 

least impacted by confounding variables including litter. This likely stems from its use of the 

SWIR band which is strongly reflected by cellulose and lignin in litter (Asner 1998; Nagler et al. 

2000) facilitating the separation of wet vegetation from dead biomass (Adam et al. 2010). 

These results show the importance of selecting the SVI most responsive to wetland properties of 

interest. In our dataset, NDVI showed greater sensitivity to structure, while GNDVI was most 

responsive to species composition. SVIs leveraging a soil adjustment factor (e.g., EVI, SAVI) 

offered a stronger signal of vegetation biomass at low coverage. Lastly, GCC and LSWI showed 

in the global sample a lower sensitivity to vegetation structure, composition, and confounding 

site variables than other SVIs. 

4.2 Sensitivity of aggregation metrics to field characteristics 

We observed significant differences in the capacity of models to predict SVI year-maximums 

and year-medians, which for some SVIs differed by as much as 24%. These contrasts may 

highlight the influence of atmospheric conditions and site properties on SVIs, with important 

implications for the use of aggregation metrics in future regional or global studies. Overall, 

multivariate models showed a more consistent capacity to predict year-medians across SVIs than 

their year-maximums. This might result from a greater contrast among SVIs in the distribution of 

their year-maximums: while most SVI year-medians showed similar skewness and kurtosis, 

year-maximums were characterized by lower correlations to one another and greater contrasts in 

the shape of their distribution. NDVI and GNDVI year-maximums showed the greatest skew 

towards higher values, likely highlighting their saturation at high vegetation coverage, while the 

distribution of EVI year-maximums was close to normality, consistent with Pettorelli (2013). 

Variations in the capacity of multivariate models to predict the different SVI year-maximums 

may also reflect different sensitivities to atmospheric conditions. While the annual median value 

of an SVI depends on its entire annual distribution, its maximum solely depends on the date, or 

Landsat image, that contains the greenest pixel of the time series highlighting the impact of 

atmospheric interference on certain SVIs (e.g., GCC; Brown et al. 2017). 

Furthermore, models differed in their capacity to predict variations in the year-maximum of SVIs 

versus their year-medians. Structural and composition models had, overall, a greater capacity to 

predict variations in year-medians than year-maximums. However, at high vegetation coverage, 

species composition explained a greater proportion of fluctuations in both year-maximums and 



109 

 

year-medians than the multivariate model of vegetation structure. This suggests that, in wetlands 

with higher vegetation coverage, the identity of species may have more impact on their 

aggregated spectral characteristics than their coverage alone. This is likely due to species-

specific differences in leaf structure, predominance of woody parts, and photosynthetic capacity 

affecting their reflectance in different portions of the electromagnetic spectrum. The role of 

species composition in modulating site greenness may also highlight the sensitivity of SVIs to 

diversity-productivity relationships as discussed in previous publications (e.g., Taddeo et al. in 

revision). Although the exact strength and shape of the diversity-productivity relationship varies 

among ecosystem types and disturbance levels, previous studies have shown that increased 

diversity can stimulate ecosystem productivity through a more effective partitioning of resources 

(Tilman et al. 1996; Hooper et al. 2005), which amounts to higher SVI values (Higgins et al. 

2012; Maeda et al. 2014; Schweiger et al. 2018). At low coverage, it is possible that confounding 

factors, resulting in a greater occurrence of mixed pixels, mask the role of species identity in 

modulating SVIs. Lastly, the landscape model had a greater capacity to predict year-maximums 

than year-medians. This suggest that for a given vegetation coverage or diversity level, climatic 

and topographic controls are important in modulating maximum greenness. This result is 

consistent with previous studies showing in estuarine wetlands that increased precipitations can 

reduce salinity favoring productivity (Buffington et al. 2018) while higher temperatures 

positively impact NDVI values (Ichii and Yamaguchi 2001). 

4.3 Confounding factors 

The multivariate model of confounding site variables had a greater impact on SVIs at low 

vegetation coverage where gaps in between vegetated patches likely leave more bare ground, 

open water, and litter exposed (Myneni and Williams 1994; Spanglet et al. 1998; Kearney et al. 

2009; Ollinger 2011). Similarly, the multivariate model of confounding site variables explained a 

greater proportion of variability in estuarine herbaceous wetlands (7-22% of year-maximum and 

7-26% of year-median), characterized by a lower vegetation coverage, but a smaller proportion 

of variability in inland woody wetlands (<7% of year-maximum and 5-10% of year-median), the 

wetland type with the highest vegetation coverage. Overall, both univariate and multivariate 

models of confounding site variables had a greater capacity to explain variation in the year-

medians of SVIs than on their year-maximums. This shows that at peak biomass, the influence of 

confounding factors is lessened as the vegetation is tall or dense enough to mask soil and water 

background effects. For example, litter coverage explained a greater proportion of variation in 

SVI year-median (2-11%) and a lower (<8%) to non-significant proportion of variation in SVI 

year-maximum. This is consistent with previous work showing that litter is more easily 

detectable at an early or late phenological state before peak greenness interferes with its 

reflectance in the SWIR (Li and Guo 2018). Similarly, the coverage of submerged vegetation and 

algae could explain a greater proportion of variation in SVI year-medians than SVI year-

maximums and the proportion of bare ground had a greater incidence on the year-medians of 

SVIs than on their year-maximums. These results highlight the sensitivity of SVIs to both 

vegetation cover and productivity, but also to patterns of vegetation distribution in less vegetated 

sites. Stressors including salinity in estuarine wetlands or heavy metals in most disturbed sites 

can limit the lateral expansion of vegetation. When the spatial distribution of vegetation is 



110 

 

restricted, our analyses suggest that SVIs become increasingly sensitive to the presence of non-

vegetated land covers, revealing that they indicate at the same time vegetation production and the 

extent of vegetation distribution within mixed pixels.  

Spectral indices also showed significant differences in their sensitivity to univariate and 

multivariate models of confounding site variables including litter, open water, or bare soil 

exposure as the explanatory variable. NDVI, GNDVI, EVI, and SAVI all showed greater 

sensitivity than GCC and LSWI to the “confounding site variable” multivariate model. NDVI, 

GNDVI, EVI, and SAVI all seemed to be sensitive to litter coverage which explained 7-11% of 

the variation in their year-median and year-maximum. Litter accumulation impacts surface 

reflectance in visible bands thereby affecting SVI based on a ratio between visible bands and the 

NIR band (Todd and Hoffer 1998).  

4.4 Differences among wetland types 

Significant differences among SVIs in their response to the specific characteristics of wetland 

types identified here and in previous studies (Mo et al. 2018) suggest that future research efforts 

should select the SVIs most sensitive to the specific type of wetlands they are studying. These 

contrasts among relationships between site variables and SVIs likely result from differences 

among wetland types in their vegetation density, distribution, and the proportion of non-

photosynthetically active plant parts (e.g., litter and woody parts).  

In herbaceous-dominated sites (i.e., estuarine herbaceous and inland herbaceous), multivariate 

models of species composition, canopy structure, and confounding site variables explained a 

greater proportion of variation in GNDVI and NDVI than any other SVIs. Multivariate models in 

herbaceous-dominated sites showed, overall, a greater capacity to predict fluctuations in GNDVI 

year-maximums than other SVIs, and a greater capacity to predict variation in NDVI year-

medians than other SVIs. This difference may stem from a contrast among GNDVI and NDVI in 

their sensitivity to vegetation properties. Overall, GNDVI is more sensitive to species 

composition as shown in previous studies (Gitelson et al. 1996; Gitelson and Merzlyak 1998; 

Taddeo et al. in revision), while composition generally had a greater contribution to maximum 

greenness than structure in the global model and under high vegetation coverage. GNDVI has 

shown better correlation to leaf chlorophyll, N content, and yield than other SVIs including 

NDVI and EVI in previous studies mapping productivity in diverse cultures including corn and 

wheat (e.g., Gitelson and Merzlyak 1998; Shanahan et al. 2001). Gitelson et al. (1996) showed 

that the green band is sensitive to chlorophyll a within a greater range of concentration than the 

red band. Similarities between the structural characteristics of some crops (i.e., erect leaves) and 

the herbaceous species dominating estuarine and inland herbaceous wetlands might partially 

explain the performance of GNDVI in these wetland types. Meanwhile, NDVI seemed to be 

more sensitive to vegetation structure which was a greater contributor to median greenness in the 

global sample, in sites dominated by herbaceous species, and at low vegetation coverage.  

LSWI year-maximums and year-medians were, among all SVIs, the most responsive to 

indicators of canopy structure and composition in estuarine woody wetlands as evidenced by 

larger adjusted r-squares for their structure and composition multivariate models. The strength of 
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relationships between species composition and LSWI in sites dominated by woody species is 

consistent with observations made by Asner (1998) revealing a greater variability among woody 

species in SWIR reflectance. Furthermore, woody vegetation generally has a lower reflectance in 

visible bands than herbaceous species (Asner 1998), explaining the poor performance of 

vegetation indices leveraging visible bands in wetlands dominated by woody vegetation. 

However, LSWI previously showed limited efficiency in canopies with high density (Davranche 

et al. 2010) which might explain why LSWI performed better in estuarine woody wetlands than 

in the other, much denser, woody wetland type (i.e., inland woody wetlands). Interestingly, GCC 

year-maximum was strongly responsive to the multimeric model of vegetation structure in 

estuarine woody wetlands, but not to other site variables including species composition. 

In inland woody wetlands, NDVI and EVI year-maximums and NDVI and GNDVI year-medians 

showed the greatest sensitivity to field variables (structure, composition). Yet the landscape 

multivariate model showed in inland woody wetlands the greatest explanatory power of all 

multivariate models and across all SVI year-maximums and year-medians. This 

highlights challenges in accurately detecting the full extent of vegetation richness and coverage 

in sites dominated by woody species which, when dominant, can obscure the spectral signal of 

understory species (Turner et al. 1999). This suggests that remote sensing of vegetation in inland 

woody wetlands might especially benefit from active remote sensing data which could help 

distinguish understory species below denser woody vegetation. In regions where such data is not 

available, our results indicate that the use of ancillary climate or elevation data, which can be 

found through free public databases, can improve the strength of linear relationships between 

field variables and SVIs. 

4.5 Differences among disturbance gradient 

Global, structure, composition, confounding site variable multivariate models generally showed 

a greater predictive capacity in the least disturbed sites than in intermediate and most disturbed 

ones. However, these models showed a greater capacity to predict variations in LSWI year-

median and year-maximum in intermediate and most disturbed sites. This result might partially 

reflect the incidence of environmental stress on chlorophyll and water content, which impacts 

reflectance in the blue, red, NIR, and SWIR bands (Jensen 2007). As such, stressed vegetation – 

at a given coverage or leaf area index – should show lower SVI values than “healthy” plant 

communities. 

Previous studies focusing on crops (Serrano et al. 2000) and grasslands (Wang et al. 2016) have 

shown that plant stress triggered by varying nitrogen exposure or water stress can impact the 

strength of relationships between field vegetation properties and SVIs. Differences in spectral 

properties and field composition among these three groups might further explain significant 

contrast in the predictive capacity of these different models. While least disturbed sites showed 

significantly lower SVIs year-maximum than intermediate and most disturbed sites, least 

disturbed sites also showed the greatest range in SVI year-maximum values. This could indicate 

a better capacity of SVIs to capture site variation in coverage and composition. Intermediate and 

most disturbed sites are characterized by a greater coverage and richness of native species, which 

in some cases might be spectrally dominant and negatively impact the strength of relationships 
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between field richness and SVIs (Taddeo et al. in revision). Lastly, most disturbed sites showed 

significantly greater litter and bare soil coverage (sign level=0.05) which might increase 

attenuation and reduce the strength of relationship between field-based vegetation characteristics 

and SVIs. 

4.6 Implications for wetland monitoring and management 

Vegetation structure and composition were, overall, the best predictors of wetland greenness as 

measured by SVIs estimated from broadband multispectral data. This reveals that both 

vegetation biomass and species identities modulate the overall greenness of wetland sites. While 

structure and composition were generally the best predictors of greenness, confounding site 

variables and landscape factors significantly impacted both median and maximum site greenness. 

The effect of confounding site variables, including litter coverage, bare ground exposure, algae, 

and submerged vegetation coverage was salient at low vegetation coverage and in wetland types 

in which stressors (e.g., salinity, inundation) limit vegetation productivity and lateral expansion. 

Meanwhile, at high vegetation coverage and in more productive wetland types, landscape 

climatic and edaphic variables described a substantial proportion of variability in site greenness 

sometimes explaining a greater percentage of variability than multivariate models of structure 

and composition (e.g., for some SVIs in estuarine and inland wetlands dominated by woody 

vegetation). 

The importance of confounding site variables and landscape factors reveals strong regional 

controls on vegetation productivity, spatial distribution, and composition. Greenness is limited in 

some wetlands by the presence of stressors —including salinity and prolonged flooding— which 

restrict vegetation expansion in space and, consequently, its capacity to occupy large portions of 

pixels. In these wetlands, SVIs may never meet values recorded in inland sites because their 

SVIs are controlled by both the properties of vegetation and its spatial distribution. Meanwhile, 

in more productive wetlands or at peak greenness, climatic and edaphic factors can contribute to 

higher SVIs values. These patterns highlight the importance of interpreting SVIs patterns in their 

context; estuarine wetlands may not meet the SVI levels of inland woody wetlands but may 

nonetheless provide key ecosystem functions. As such, it is critical for future studies mapping 

vegetation properties at a regional or national scale to use previous SVIs values or the SVIs 

values of similar wetland sites as a reference to separate low values stemming from 

environmental constraints to vegetation distribution and significant responses to disturbances. 

These results also suggest that including regional variables (e.g., elevation, precipitation, 

temperature) within studies modeling vegetation characteristics at a large scale might enhance 

the robustness of models and their interpretation. 

Our results also highlight the potential of broadband multispectral satellite data to track 

vegetation characteristics in wetlands at regional or national scales. In both highly and less 

productive wetlands, spectral vegetation indices were significantly impacted by indicators of 

vegetation abundance, composition, and spatial distribution. This shows that even coarser 

resolution data (30m) from Landsat sensors can be sensitive to changes in vegetation 

characteristics and their responses to environmental stressors. Furthermore, our study highlights 

the potential of aggregation metrics (in this case, mean and maximum greenness) as a mean to 
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reduce a large array of satellite images into a more computationally-efficient dataset. In our 

study area, mean and maximum greenness showed different sensitivities to site properties, 

indicating that they can be used in tandem for a thorough representation of wetland 

characteristics or by themselves in studies targeting a characteristic to which they are sensitive. 

5 Conclusions 

This study represents a first-time effort to assess relationships between the surface properties of 

wetlands and their spectral signature at a national scale. Our results indicate that vegetation 

properties and abundance may be best quantified using a spectral vegetation index sensitive to 

the specific properties of wetlands of interest. Important factors to identify the best vegetation 

index include dominant growth form, total vegetation cover, presence of open water and bare soil 

patches, and litter accumulation. In addition, the aggregation metrics studied here (i.e., maximum 

and median greenness) showed different responses to field characteristics, suggesting that their 

use should also be tailored to study objectives as they show different sensitivities to confounding 

factors and atmospheric conditions. Finally, our results support the need and opportunity to 

develop new vegetation indices or adapt existing ones to the specific properties of wetland 

ecosystems. For example, while indices including a soil adjustment factor (EVI and SAVI) 

performed well, they nonetheless showed less sensitivity to wetland properties than NDVI or 

GNDVI. Future research could assess whether the soil adjustment factor used by these two 

indices could be tailored to the soil properties of wetlands. 
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6 Table and figures 

Table 1. Vegetation indices used in this study and their formula. Spectral bands are based on the 

Landsat ETM+ designation, with the following bandwidths: ρB (B1 - blue; 0.45-0.52), ρG (B2 - 

green; 0.52-0.60); ρR (B3 - red; 0.63-0.69); ρNIR (B4 - near infrared – 0.77-0.90); ρSWIR (B5 - 

short-wave infrared; 1.55-1.75). The formulae for EVI and SAVI are based on USGS (2017). 

Vegetation index Formula Range 

Normalized Difference Vegetation Index (NDVI) ρNIR −  ρR

ρNIR + ρR 
 -1, +1 

Green Normalized Difference Vegetation Index (GNDVI) ρNIR −  ρG

ρNIR + ρG 
 -1, +1 

Land Surface Water Index (LSWI) ρNIR −  ρSWIR

ρNIR + ρRSWIR 
 

-1, +1 

Enhanced Vegetation Index (EVI) 2.5 ∗  
ρNIR −  ρR

(ρNIR +  6 x ρR −  7.5 x ρB + 1)
 -1, +1 

Soil-adjusted Vegetation Index (SAVI) ρNIR −  ρR

(ρNIR +  ρR + L)
∗ (1.5) -1, +1 

Green Chromatic Coordinate (GCC) ρG

ρG + ρR +  ρB

 0,1 

 

Table 2. Field-based explanatory variables and their sources, by multivariate model. 

Category Variable Units Source 

Structural Total coverage by native species: sum of 

native vegetation percentage coverage by layers 

Percentage  NWCA 

Total coverage by alien species: sum of alien 

vegetation percentage coverage by layers 

Percentage 

Coverage by submerged aquatic vegetation: 

mean proportion of coverage by submerged 

aquatic vegetation 

Percentage 

Coverage by floating aquatic vegetation: 

mean proportion of coverage by floating aquatic 

vegetation 

Percentage 

Coverage by algae: mean proportion of 

coverage by floating aquatic vegetation 

Percentage 

Mean height: mean height, by height class Height 

class 

Number of Layers: number of distinct height 

class 

Height 

class 

Max height; highest height class observed Percentage 

Coverage of Forbs: Total absolute coverage by 

forb species 

Percentage 

Coverage of Shrubs: Total absolute coverage 

by shrub species 

Percentage 

Coverage of Trees: Total absolute coverage by 

tree species 

Percentage 

Composition Total Species Diversity: Shannon-Wiener 

Diversity Index (calculated using all species) 

Unitless 

Evenness: evenness of all species Unitless 

Richness of Graminoids: number of graminoid 

species 

Unitless 

Richness of Forbs: number of forb species Unitless 
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Richness of Herbaceous: number of 

herbaceous species 

Unitless 

Richness of Shrubs: number of shrub species Unitless 

Richness of Trees: number of tree species Unitless 

Confounding site 

variables 

Litter depth: Mean depth of litter across all 

plots 

cm NWCA 

Litter coverage: Mean percent cover by litter Percentage 

Open water coverage: Mean percent cover by 

open water 

Percentage 

Bare ground coverage: Mean percent cover by 

bare ground 

Percentage 

Exposed soil coverage: Mean percent cover by 

exposed soil 

Percentage 

Landscape Mean elevation m National Elevation Dataset 
(USGS) Maximum elevation m 

Mean annual precipitation, averaged over 30 

years 

cm Parameter-elevation Relationships 

on Independent Slopes Mode 

(PRISM) 
Coefficient of variation in total monthly 

precipitations, over 30 years 

cm 

Mean maximum precipitation, averaged over 

30 years 

cm 

Mean minimum precipitation, averaged over 

30 years 

cm 

Mean annual maximum air temperature, 

average d over 30 years 

 

Standard deviation of mean annual air 

temperature  

Celsius 

    

 

Table 3. Adjusted R2 for the linear relationship between multivariate models and the year-maximum and 

year-median of spectral vegetation indices, for low vegetation coverage plots (<117%) and high 

vegetation coverage plots (>117%). 

  Year-maximum Year-median 

Group of 

variables 

NDVI GNDVI LSWI EVI SAVI GCC NDVI GNDVI LSWI EVI SAVI GCC 

Low vegetation coverage 

Structure 0.2968*

** 

0.2681**

* 

0.0952*

** 

0.2437*

** 

0.2395*

** 

0.166**

* 

0.4063*

** 

0.3014*

** 

0.253**

* 

0.326**

* 

0.2803*

** 

0.3371*

** 

Compositi

on 

0.2693*

** 

0.2958**

* 

0.0509*

** 

0.2907*

** 

0.3105*

** 

0.0898*

** 

0.3717*

** 

0.3559*

** 

0.1767*

** 

0.3288*

** 

0.33*** 0.2987*

* 

Confoundi

ng 

0.125**

* 

0.1326**

* 

0.0568*

** 

0.0996*

** 

0.1058*

** 

0.0299*

* 

0.153** 0.1459*

** 

0.0774*

** 

0.1536*

** 

0.1335*

** 

0.0902*

** 

Landscape 0.2151*

** 

0.1968**

* 

0.1036*

** 

0.1206*

** 

0.1641*

** 

0.0522*

** 

0.173**

* 

0.1318*

** 

0.1561*

** 

0.1028*

** 

0.1144*

** 

0.139**

* 

High vegetation coverage 

Structure 0.3243*

** 

0.3051**

* 

0.1872*

** 

0.2343*

** 

0.2237*

** 

0.0426*

* 

0.3929*

** 

0.2392*

** 

0.2556*

** 

0.2905*

* 

0.2025*

** 

0.2073*

** 

Compositi

on 

0.305**

* 

0.3456**

* 

0.2012*

** 

0.2951*

** 

0.3296*

** 

0.0435*

** 

0.3837*

** 

0.2982*

** 

0.2811*

** 

0.3005*

** 

0.2481*

** 

0.2349*

** 

Confoundi

ng 

0.0305* 0.0638** 0.0050 0.0382*

* 

0.0493*

* 

-0.0083 0.0366* 0.0811*

** 

-0.0057 0.0483*

** 

0.0567*

* 

-0.0065 

Landscape 0.2425*

** 

0.2425**

* 

0.1428*

** 

0.1311*

** 

0.1841*

** 

0.1214*

** 

0.1653*

* 

0.0712*

** 

0.14*** 0.0789*

** 

0.0402*

* 

0.1678*

** 
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Figure 1. Spatial distribution of the 1,138 National Wetland Condition Assessment survey sites, 

by wetland type. 

 

 

Figure 2. Distribution of year-maximum (top row) and year-median (bottom row) in site 

greenness by spectral vegetation indices (i.e., NDVI, GNDVI, LSWI, EVI, SAVI, GCC) and 

wetland types, where EH are estuarine herbaceous wetlands, EW are estuarine woody wetlands, 

PRLH are inland herbaceous wetlands, and PRLW are inland woody wetlands. 
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Figure 3. Linear relationships between total vegetation coverage and the year-maximum (top row) and 

year-median (bottom row) of spectral vegetation indices. Total coverage is measured as the sum of 

vegetation coverage in different layers (i.e., proportion of a layer occupied by photosynthetically-active 

vegetation) and can consequently exceed 100%.

 

Figure 4. Linear relationships between the Shannon-Wiener Diversity Index and the year-maximum (top 

row) and year-median (bottom row) of spectral vegetation indices. 
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Figure 5. Adjusted R2 for the linear relationships between multivariate models of canopy structure, 

vegetation composition, confounding site variables, and landscape variables and the year-maximum (left) 

and year-median (right) of spectral vegetation indices. 

 
 

 

Figure 6A. Adjusted R2 for the linear relationships between multivariate models of canopy structure, vegetation 

composition, confounding site variables, landscape variables and SVI year-maximum for estuarine herbaceous 

(red), estuarine woody (orange), inland herbaceous (green), and inland woody (blue) wetlands 
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Figure 6B. Adjusted R2 for the linear relationships between multivariate models of canopy structure, vegetation composition, 

confounding site variables, landscape variables and SVI year-median for estuarine herbaceous (red), estuarine woody (orange), 

inland herbaceous (green), and inland woody (blue) wetlands 
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7 Supplemental information 

 

 

Figure S1. Distribution of site average of SVI year-maximum (histograms A-F) and year-median 

(G-L) across the global sample of NWCA sites. 

 

Table S1. Pearson’s correlation coefficient describing the correlation between each pair of SVI 

year-median (bottom half of table) and their year-maximum (upper half) 

  NDVI GNDVI LSWI EVI SAVI GCC 

NDVI 
 

0.9174*** 0.4774*** 0.8453*** 0.8714*** 0.5165*** 

GNDVI 0.8854*** 
 

0.3774*** 0.8628*** 0.9180*** 0.4897*** 

LSWI 0.7219*** 0.5406*** 
 

0.4634*** 0.4622*** 0.3908*** 

EVI 0.9285*** 0.8763*** 0.6820*** 
 

0.9527*** 0.4727*** 

SAVI 0.8659*** 0.9396*** 0.6513*** 0.9291*** 
 

0.4769*** 

GCC 0.8593*** 0.6513*** 0.8103*** 0.8212*** 0.7375*** 1.0000 

 

Table S2. Adjusted R2 for the linear relationship between structural explanatory variables and 

spectral vegetation indices, across all study sites. 

 Year-maximum Year-median 

 NDVI GNDVI LWSI EVI SAVI GCC NDVI GNDVI LWSI EVI SAVI GCC 

Total canopy height and coverage 

Number 

of Layers 

0.3545*

** 

0.3442*

** 

0.0939**

* 

0.3106**

* 

0.3055*

* 

0.1138*

** 

0.4358*

** 

0.344**

* 

0.2426*

** 

0.3675*

** 

0.3115*

** 

0.2878*

** 

Max 

height 

0.3534*

** 

0.3249*

** 

0.1215**

* 

0.2946**

* 

0.2835*

** 

0.1195*

** 

0.4448*

** 

0.3138*

** 

0.2747*

** 

0.3570*

** 

0.2863*

** 

0.3127*

** 

Total 

species 

coverage 

0.1945*

** 

0.1857*

** 

0.0358**

** 

0.1918**

* 

0.1915*

** 

0.0977*

** 

0.2481*

** 

0.1851*

** 

0.1288*

** 

0.2343*

** 

0.1831*

** 

0.1837*

** 

Coverage by growth form 



127 

 

Forbs 

cover 

-0.0004 -0.000 0.0131**

* 

0.0031* 0.0060*

* 

-0.0004 0.0069*

** 

0.0000 0.0057*

* 

0.0015 0.0004 0.0021 

Graminoi

ds Cover 

0.2388*

** 

0.2016*

** 

0.1492**

* 

0.2551**

* 

0.2472*

** 

0.0952*

** 

0.2663*

** 

0.2128*

** 

0.1892*

** 

0.2387*

** 

0.2007*

** 

0.2219*

** 

Herb 

Cover 

0.2327*

* 

0.2016* 0.0938**

* 

0.2201** 0.199** 0.0919*

* 

0.2353*

** 

0.2426*

** 

0.2545*

** 

0.2862*

** 

0.2342*

** 

0.2725*

** 

Shrubs 

cover 

0.0463*

** 

0.0467*

** 

0.0050** 0.02327*

** 

0.0279*

** 

0.0096*

** 

0.0778*

** 

0.0591*

** 

0.0362*

** 

0.0486*

** 

0.0383*

** 

0.0450*

** 

Trees 

cover 

0.2153*

** 

0.2035*

** 

0.0914**

* 

0.1935**

* 

0.1874*

** 

0.0687*

** 

0.3114*

** 

0.2116*

** 

0.1931*

** 

0.2461*

** 

0.1899*

** 

0.228**

* 

Coverage by layer 

< 0.5m  0.0087*

* 

0.0042* 0.0231**

* 

0.0060** 0.0031* 0.0062*

* 

0.0032* -0.0007 0.0178*

** 

0.0007 0.0002 0.0073*

* 

 0.5 to 

2m  

-0.0005 0.0005 0.0076**

* 

0.0009 0.0006 0.0017 -0.0002 0.0000 -0.0007 -0.0001 0.0004 -0.0006 

2m to 5  0.1082*

** 

0.0905*

** 

0.0269**

* 

0.0793**

* 

0.077**

* 

0.0406*

** 

0.105**

* 

0.0705*

** 

0.0650*

** 

0.0874*

** 

0.0618*

** 

0.0713*

** 

5m to 

15m  

0.1659*

** 

0.148**

* 

0.0800**

* 

0.15*** 0.1413*

** 

0.0623*

** 

0.2284*

** 

0.1517*

** 

0.1588*

** 

0.1957*

** 

0.1493*

** 

0.176**

* 

15m to 

30m  

0.1415*

** 

0.1379*

** 

0.0694**

* 

0.1396**

* 

0.1285*

** 

0.0523*

** 

0.2003*

** 

0.1162*

** 

0.1256*

** 

0.176**

* 

0.1126*

** 

0.151**

* 

> 30m  0.0198*

** 

0.0183*

** 

0.0144**

* 

0.0214**

* 

0.0183*

** 

0.0052*

* 

0.0334*

** 

0.0234*

** 

0.0240*

** 

0.0318*

** 

0.0227*

** 

0.0234*

** 

 

Table S3. Adjusted R2 for the linear relationship between different indicators of plant 

composition and spectral vegetation indices, across all study sites. 

 Year-maximum Year-median 

Explanato

ry 

variables 

NDVI GNDVI LSWI EVI SAVI GCC NDVI GNDVI LSWI EVI SAVI GCC 

Total 

Diversity 

0.2932*

** 

0.3289*

** 

0.0341*

** 

0.2953*

** 

0.326**

* 

0.1734*

** 

0.3103*

** 

0.3355*

** 

0.0942*

** 

0.3093*

** 

0.2955*

** 

0.1926*

** 

Evenness  0.0938*

** 

0.0965*

** 

0.0069*

* 

0.0859*

** 

0.0884*

** 

0.0051*

** 

0.0978*

** 

0.1135*

** 

0.0314*

** 

0.0912*

** 

0.0920*

** 

0.0585*

** 

Median 

Species 

Richness 

0.254**

* 

0.2901*

** 

0.0385*

** 

0.2248*

** 

0.2917*

** 

0.0742*

** 

0.2774*

** 

0.2757*

** 

0.0927*

** 

0.2776*

** 

0.252**

* 

0.2044*

** 

Standard 

Deviation 

in Species 

0.1306*

** 

0.1479*

** 

0.0277*

** 

0.1561*

** 

0.166**

* 

0.0325*

** 

0.1029*

** 

0.1198*

** 

0.0265*

** 

0.1211*

** 

0.1132*

** 

0.0623*

** 

Forb 

richness 

0.1508*

** 

0.1769*

** 

0.0162*

** 

0.1754*

** 

0.2301*

** 

0.0423*

** 

0.122**

* 

0.129**

* 

0.0292*

** 

0.1471*

** 

0.1244*

** 

0.102**

* 

Graminoi

d richness 

0.0583*

** 

0.0781*

** 

-0.0008 0.0598*

* 

0.0791*

** 

0.0062*

* 

0.0309*

** 

0.0609*

** 

-0.0008 0.0479*

** 

0.0524*

** 

0.0102*

** 

Herb 

richness 

0.1336*

** 

0.1617*

** 

0.0133*

* 

0.1511*

** 

0.1803*

** 

0.0315*

** 

0.0990*

** 

0.1199*

** 

0.0144*

** 

0.1255*

** 

0.1125*

** 

0.0716*

** 

Richness 

of Shrubs 

0.12*** 0.1241*

** 

0.0203*

** 

0.0826*

** 

0.0897*

** 

0.0328*

** 

0.1741*

** 

0.1344*

** 

0.0897*

** 

0.1173*

** 

0.1023*

** 

0.1127*

** 

Richness 

of Trees 

0.2681*

** 

0.2861*

** 

0.0948*

** 

0.2653*

** 

0.2702*

** 

0.0861*

** 

0.3824*

** 

0.3242*

** 

0.2343*

** 

0.3339*

** 

0.3064*

* 

0.2722*

** 

 

Table S4. Adjusted R2 for the linear relationship between confounding site variables and spectral 

vegetation indices, across all study sites. 

 Year-maximum Year-median 
Explanato

ry 

variables 

NDVI GNDV

I 

LSWI EVI SAVI GCC NDVI GNDV

I 

LSW

I 

EVI SAVI GCC 

Litter 

coverage 

0.0794*

** 

0.0896*

** 

-0.0008 0.0744*

** 

0.0787*

** 

0.0123*

** 

0.09*** 0.11*** 0.01**

* 

0.11*** 0.0781*

** 

0.02*** 

Litter 

depth 

-0.0008 -0.0006 0.0025 -0.0006 -0.0009 -0.0008 -0.00 -0.00 0.0011 -0.00 -0.0009 0.002 

Proportio

n of bare 

ground 

0.0451*

** 

0.0310*

** 

0.0027* 0.0105* 0.0159*

** 

0.0073*

* 

0.06*** 0.04*** 0.04**

* 

0.03*** 0.0261*

** 

0.03*** 

Proportio

n of 

exposed 

gravel 

-0.006 0.002 -0.0008 0.0004 0.0009 -0.0009 -0.0008 -0.0007 0.000 -0.0008 -0.0007 0.0000 
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Proportio

n of open 

water 

0.0284*

** 

0.0548*

** 

0.0068*

* 

0.0356*

** 

0.0453*

** 

0.0012 0.0450*

** 

0.0688*

** 

0.0016 0.0687*

** 

0.0624*

** 

0.0155*

** 

Submerge

d cover 

0.0008 0.0003 0.0140*

** 

0.0018 0.0000 -0.0009 0.0026* 0.0072*

* 

0.0002 0.0033* 0.0028* 0.0001 

Floating 

vegetation 

cover 

0.0017 -0.0001 0.0093*

** 

0.0023 0.0030* -0.0006 0.0007 0.0029* 0.001 0.0020 -0.0008 -0.0008 

Algae 

cover 

0.0072*

* 

0.0117*

** 

-0.0005 0.0118*

** 

0.0112*

** 

0.0013 0.0114*

** 

0.0092*

** 

0.0017 0.0147*

** 

0.0099*

** 

0.0053*

* 

 

Table S5. Adjusted R2 for the linear relationship between climatic, topographic, and edaphic 

explanatory indices and spectral vegetation indices, across all study sites. 

Explanator

y variables 

Year-maximum Year-median 

NDVI GNDVI LWSI EVI SAVI GCC NDVI GNDVI LWSI EVI SAVI GCC 

Maximum 

elevation 

(m) 

0.0004 -0.0008 0.0125*

** 

0.0005 -0.0008 0.0009 0.0060*

* 

-0.0004 0.0351*

** 

-0.0002 0.0009 0.0073*

* 

Mean 

annual 

precipitati

on 

0.0035* 0.0002 0.005** 0.0022 -0.0005 0.0125*

** 

0.0398*

** 

0.0217*

** 

0.0739*

** 

0.0131*

** 

0.0217*

** 

0.0316*

** 

Coefficient 

of 

variation 

in monthly 

precipitati

ons 

0.0953*

** 

0.0939*

** 

0.0507*

** 

0.0564*

** 

0.0649*

** 

0.0136*

** 

0.0993*

** 

0.0521*

** 

0.0727*

** 

0.0446*

** 

0.0337*

** 

0.0614*

** 

Mean 

maximum 

precipitati

on 

0.0000 0.0021 0.0062*

* 

0.0012 0.0057*

* 

0.0132*

** 

0.0097*

** 

0.0035* 0.0405*

** 

0.0003 0.0038* 0.0110*

** 

Mean 

minimum 

precipitati

on  

0.0022 0.0002 0.0000 0.0026* -0.0009 0.0000 0.0158*

** 

0.0073*

* 

0.0258*

** 

0.0020 0.0055*

* 

0.0047* 

Mean 

annual 

maximum 

air 

temperatur

e  

0.0910*

** 

0.0948*

** 

0.0327*

** 

0.0469*

** 

0.0798*

** 

0.0222*

** 

0.0269*

** 

0.0162*

** 

0.0051*

* 

0.0221*

** 

0.0099*

** 

0.0327*

** 

Standard 

deviation 

of mean 

annual air 

temperatur

e 

0.0137*

** 

0.0126*

** 

0.0049* 0.0052*

* 

0.0135*

** 

0.0031* 0.0070*

* 

0.0029* 0.001 0.0036* 0.0017 0.0168*

** 

Mean pH 0.0481*

** 

0.0410*

** 

0.0185*

** 

0.0104*

** 

0.0122*

* 

0.0158*

** 

0.0615*

** 

0.0421*

** 

0.0369*

** 

0.0114*

** 

0.0170*

** 

0.0194*

** 

 

Table S6. Adjusted R2 for the linear relationship between different multivariate models and 

spectral vegetation indices, across all study sites. 

 Year-maximum Year-median 

Group of 

variables 

NDVI GNDVI LSWI EVI SAVI GCC NDVI GNDVI LSWI EVI SAVI GCC 

Structure  0.3968*

** 

0.377**

* 

0.1467*

** 

0.3494*

** 

0.3433*

** 

0.1361*

** 

0.4931*

** 

0.3987*

** 

0.3116*

** 

0.4202*

** 

0.3433*

** 

0.3545*

** 

Compositi

on 

0.3692*

** 

0.405**

* 

0.1214*

** 

0.386**

* 

0.4105*

** 

0.1093*

** 

0.4608*

** 

0.4182*

** 

0.2633*

** 

0.416**

* 

0.3808*

** 

0.3384*

** 

Confoundi

ng 

0.1327*

** 

0.1469*

** 

0.0294*

* 

0.1178*

** 

0.1255*

** 

0.0191*

** 

0.1536*

** 

0.16*** 0.0529*

** 

0.1568*

** 

0.1376*

** 

0.0702*

** 

Landscape 0.2352*

** 

0.2163*

** 

0.1321*

** 

0.14*** 0.1815*

** 

0.1032*

** 

0.1964*

** 

0.1204*

** 

0.1794*

** 

0.1089*

** 

0.1815*

** 

0.1817*

** 

All 0.5912*

** 

0.5852*

** 

0.2752*

** 

0.5092*

** 

0.5548*

** 

0.2009*

** 

0.6296*

** 

0.511**

* 

0.4313*

** 

0.5308*

** 

0.4621*

** 

0.4925*

** 
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Table S7. Adjusted R2 for the linear relationship between different multivariate models and 

spectral vegetation indices, by wetland type. 

 Year-maximum Year-median 

Group of 

variables 

NDVI GNDVI LSWI EVI SAVI GCC NDVI GNDVI LSWI EVI SAVI GCC 

Estuarine herbaceous 

Structure 0.2071**

** 

0.2252*

** 

0.1084*

** 

0.2218*

** 

0.223** 0.0072 0.2771*

** 

0.2241*

** 

0.07889

** 

0.2332*

** 

0.2074*

** 

0.176**

* 

Compositi

on 

0.1487**

* 

0.2021*

** 

0.0713*

** 

0.1788*

** 

0.1874*

** 

-0.0008 0.1477*

** 

0.1818*

** 

0.0475*

* 

0.1327*

** 

0.1478*

** 

0.0640*

** 

Confoundi

ng 

0.1719**

* 

0.2215*

** 

0.1291*

** 

0.2031*

** 

0.2285*

** 

0.0738** 0.2069*

** 

0.2562*

** 

0.0783*

** 

0.2072*

** 

0.2054*

** 

0.0697*

** 

Landscape 0.2636**

** 

0.2366*

** 

0.0230* 0.1756*

** 

0.2285*

* 

0.06171*

** 

0.1162*

** 

0.0930*

** 

0.0515*

* 

0.1137*

** 

0.1272*

** 

0.1277*

** 

All 0.4809**

* 

0.5136*

** 

0.3083*

** 

0.4453*

** 

0.4979*

** 

0.0992**

* 

0.3938*

** 

0.3829*

** 

0.2666*

** 

0.3589*

** 

0.3613*

** 

0.273**

* 

Estuarine woody 

Structure 0.2631** 0.1593*

* 

0.4327*

** 

0.0658 0.0901 0.7661**

* 

0.241** 0.1202* 0.3796*

** 

0.1445* 0.0576 0.3448*

** 

Compositi

on 

0.0698 0.2394*

** 

0.1876*

* 

0.0246 0.1849*

* 

-0.015 0.0359 0.1369* 0.3095*

** 

-0.0244 0.0289 0.1505* 

Confoundi

ng 

0.2077** 0.3183*

** 

-0.0379 0.1491* 0.2012*

* 

-0.0736 0.142* 0.2423*

* 

-0.084 0.1491* 0.1537* -0.0361 

Landscape 0.304** 0.2478*

* 

0.4724*

** 

0.0520 0.1441*

* 

0.1233* 0.1952*

* 

0.1141* 0.595**

* 

0.1462*

* 

0.116* 0.4801*

** 

All 0.4499**

* 

0.5504*

** 

0.521**

* 

0.2596* 0.3637*

* 

0.7799**

* 

0.3859*

* 

0.4196*

* 

0.6592*

** 

0.3351*

* 

0.3106* 0.5698*

** 

Inland herbaceous 

Structure 0.3336**

* 

0.352**

* 

0.0801*

** 

0.2912*

** 

0.3071*

** 

0.1677**

* 

0.3432*

** 

0.3075*

** 

0.2002*

** 

0.3083*

** 

0.2652*

** 

0.2107*

** 

Compositi

on 

0.1609**

* 

0.1974*

** 

0.0206* 0.178**

* 

0.1685*

** 

0.0561**

* 

0.2466*

** 

0.2539*

** 

0.1235*

** 

0.2106*

** 

0.2233*

** 

0.1252*

** 

Confoundi

ng 

0.1647**

* 

0.2331*

** 

0.0706*

** 

0.1463*

** 

0.1882*

** 

0.0441** 0.1944*

** 

0.2242*

** 

0.1436*

** 

0.2124*

** 

0.2027*

** 

0.1478*

** 

Landscape 0.3338**

* 

0.2524*

** 

0.2768*

** 

0.215**

* 

0.2158*

** 

0.1911**

* 

0.3855*

** 

0.2294*

** 

0.3596*

** 

0.2259*

** 

0.211**

* 

0.3306*

** 

All 0.5052**

* 

0.5073*

** 

0.3134*

** 

0.4324*

** 

0.4509*

** 

0.2551**

* 

0.5717*

** 

0.4625*

** 

0.4419*

** 

0.4474*

** 

0.4121*

** 

0.4375*

** 

Inland woody 

Structure 0.315*** 0.2382*

** 

0.2218*

** 

0.2434*

** 

0.2207*

** 

0.0273* 0.2885*

** 

0.1269*

** 

0.2059*

** 

0.2355*

** 

0.1144*

** 

0.1419*

** 

Compositi

on 

0.1854**

* 

0.1975*

** 

0.1476*

** 

0.201**

* 

0.2126*

** 

0.0033 0.2222*

** 

0.1823*

** 

0.2143*

** 

0.1712*

* 

0.1532*

** 

0.1478*

** 

Confoundi

ng 

0.0711**

* 

0.0408*

* 

0.0061 0.0239* 0.0171* -0.0068 0.1045*

** 

0.0665*

** 

0.0536*

** 

0.0623*

** 

0.0495*

** 

0.0474*

** 

Landscape 0.4211**

* 

0.3212*

** 

0.2451*

** 

0.2646*

** 

0.2686*

** 

0.1242**

* 

0.3674*

** 

0.2713*

** 

0.3903*

** 

0.1776*

** 

0.1876*

** 

0.2388*

** 

All 0.6058**

* 

0.4789*

** 

0.3812*

** 

0.4436*

** 

0.4717*

** 

0.127*** 0.5463*

** 

0.3559*

** 

0.4377*

** 

0.3452*

** 

0.2698*

** 

0.3662*

** 

 

Table S8. Adjusted R2 for the linear relationship between different multivariate models and 

spectral vegetation indices, by disturbance levels. 

  Year-maximum Year-median 

Group of 

variables 

NDVI GNDVI LSWI EVI SAVI GCC NDVI GNDVI LSWI EVI SAVI GCC 

Least disturbed 

Structure 0.4392*

** 

0.4054**

* 

0.114**

* 

0.4071*

** 

0.4248*

* 

0.3427*

** 

0.531**

* 

0.3791*

** 

0.2915*

** 

0.4743*

** 

0.3744*

** 

0.4051*

** 

Compositi

on 

0.4742*

** 

0.5252**

* 

0.1067*

** 

0.4801*

** 

0.5192*

** 

0.1522*

** 

0.5534*

** 

0.4805*

** 

0.2478*

** 

0.4991*

** 

0.4429*

** 

0.4316*

** 

Abiotic 0.2723*

** 

0.2909**

* 

0.0314* 0.293**

* 

0.2895*

** 

0.0900*

** 

0.3155*

** 

0.312**

* 

0.0963*

** 

0.3384*

** 

0.3171*

** 

0.2063*

** 

Landscape 0.2567*

** 

0.2682**

* 

0.0799*

** 

0.1874*

** 

0.247**

* 

0.0695*

* 

0.1804*

** 

0.135**

* 

0.0945*

** 

0.1294*

** 

0.1075*

** 

0.1734*

** 

All 0.6676*

** 

0.6682**

* 

0.231** 0.6145*

** 

0.6609*

** 

0.3836*

** 

0.7023*

** 

0.5794*

** 

0.3609*

** 

0.6349*

** 

0.5451*

** 

0.5522*

** 

Intermediate 

Structure 0.3882*

** 

0.3534**

* 

0.1623*

** 

0.3685*

** 

0.3658*

** 

0.1948*

** 

0.5514*

** 

0.4108*

** 

0.3689*

** 

0.4494*

** 

0.3661*

** 

0.4185*

** 

Compositi

on 

0.3635*

** 

0.3902**

* 

0.1455*

** 

0.3168*

** 

0.3138*

** 

0.1811*

** 

0.5061*

** 

0.3717*

** 

0.3308*

** 

0.4234*

** 

0.3479*

** 

0.3784*

** 
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Abiotic 0.1529*

** 

0.1531**

* 

0.0249*

* 

0.1198*

** 

0.1233*

** 

0.0310*

** 

0.1658*

** 

0.1586*

** 

0.0704*

** 

0.1623*

** 

0.1319*

** 

0.0708*

** 

Landscape 0.2183*

** 

0.2022**

* 

0.154**

* 

0.1162*

** 

0.1547*

* 

0.1537*

** 

0.2288*

** 

0.1341*

** 

0.2224*

** 

0.1194*

** 

0.1085*

** 

0.1995*

** 

All 0.5667*

** 

0.5569**

* 

0.3094*

** 

0.447**

* 

0.5106*

** 

0.2971*

** 

0.635**

* 

0.4952*

** 

0.4615*

** 

0.5242*

** 

0.4478*

** 

0.5139*

** 

Most disturbed 

Structure 0.4028*

** 

0.4106**

* 

0.1902*

** 

0.3918*

** 

0.3648*

** 

0.06339

** 

0.4532*

** 

0.3503*

** 

0.3507*

** 

0.4062*

** 

0.3278*

** 

0.3121*

** 

Compositi

on 

0.2551*

** 

0.2925**

* 

0.0863*

** 

0.3375*

** 

0.3276*

** 

0.0174 0.3539*

** 

0.3318*

** 

0.1917*

** 

0.323**

* 

0.3017*

** 

0.2328*

** 

Abiotic 0.0361*

* 

0.0549** 0.0722*

* 

0.0333* 0.0372*

* 

-0.0178 0.0645*

** 

0.0716*

** 

0.0466*

* 

0.0589*

* 

0.0526*

* 

0.0276* 

Landscape 0.293**

* 

0.2148**

* 

0.1596*

** 

0.1807*

** 

0.2047*

** 

0.1309*

** 

0.2213*

** 

0.1456*

** 

0.2126*

** 

0.122**

* 

0.1304*

** 

0.2114*

** 

All 0.549**

* 

0.5242**

* 

0.324**

* 

0.5324*

** 

0.5283*

** 

0.1368*

** 

0.5814*

** 

0.4692*

** 

0.4797*

** 

0.5024*

** 

0.4416*

** 

0.4748*

** 

 

Table S9. Multivariate models and their adjusted R2 by spectral vegetation indices. Variables in 

each multivariate model are selected using a forward selection aiming to identify the most 

parsimonious multivariate model. 

 Year-maximum Year-median 

 Multivariate model AdjR2 Multivariate model AdjR2 

NDVI Native species richness + Tree coverage + mea

n precipitation + Mean precipitation + Medium 

vegetation coverage + bare ground coverage + 

Forb coverage + Litter coverage + Minimum el

evation + Minimum precipitation + Average pr

ecipitation + Total diversity + Maximum preci

pitation + Vine richness + Graminoid coverage 

+ Open water coverage + Shrub richness + Ver

y small vegetation coverage + Tall vegetation c

overage + Shrub coverage + Alien species cov

erage + Standard deviation in maximum tempe

rature 

0.6366 Tree richness + Native species di

versity + Coverage Bare Ground 

+ Coverage Tree species + Cover

age Median Vegetation Layer + 

Standard deviation in mean temp

erature + Mean precipitation + M

ean temperature + Minimum elev

ation + Maximum temperature + 

Coverage Open water + Gramino

id coverage + Tall Vegetation Co

verage + Coverage High Mediu

m Vegetation Layer + Minimum 

precipitation + Maximum precipi

tation + Coverage small vegetati

on + Coverage litter + mean elev

ation + coverage aquatic vegetati

on + coverage shrubs 

0.6659 

GNDVI Mean precipitation + Vine richness + Minimu

m elevation + Minimum precipitation + Liana 

coverage + Standard deviation in mean temper

ature + Forb coverage + Tall vegetation covera

ge + Small vegetation coverage + Shrub richne

ss + Medium vegetation coverage + Standard d

eviation in maximum temperature + Maximum 

elevation + Upper tree layer coverage + soil p

H 

0.5703 Native species richness + Tree 

richness + Bare ground coverage 

+ Open water coverage + Very 

small vegetation coverage + 

Litter coverage + Mean 

precipitation + Minimum 

temperature + Total species 

diversity +  Forb coverage + 

Aquatic vegetation coverage + 

Shrub coverage + Minimum 

precipitation + Maximum 

precipitation + Maximum 

temperature + Minimum 

elevation + Standard deviation in 

species richness + Liana 

coverage + Water depth 

0.5811 

LSWI Tree richness + Graminoid coverage + Coeffici

ent of variation in monthly precipitation + Min

0.3726 Tree richness + Graminoid cover

age + Coefficient of variation in 

0.5084 
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imum precipitation + Mean precipitation + Av

erage precipitation + Minimum elevation + Mi

nimum temperature + Medium-high vegetation 

coverage + Shrub richness + Vine richness + O

pen water vegetation coverage + Native specie

s coverage + Alien species coverage 

monthly precipitation + Minimu

m precipitation + Mean precipita

tion + Average precipitation + M

inimum elevation + Medium-hig

h vegetation coverage + Shrub ri

chness + Vine richness + Open w

ater coverage + Native species co

verage + Alien species coverage 

 

EVI Total species diversity + Tree coverage + mea

n precipitation + Minimum elevation + Alien s

pecies coverage + Vine richness + Mean preci

pitation + Graminoid coverage + Litter covera

ge + Native species coverage + Minimum prec

ipitation + Maximum precipitation + Maximu

m temperature + Open water coverage + Stand

ard deviation in species richness + Very small 

vegetation coverage + Tall vegetation coverage 

+ Bare ground coverage + Shrub richness 

0.4922 Native species richness + Tree 

coverage + Alien species 

coverage + Bare ground 

coverage + Species richness + 

Open water coverage + Very 

small vegetation coverage + 

Graminoid coverage + Native 

species coverage + Tree richness 

+ Tall vegetation coverage + 

Standard deviation in mean 

temperature + Mean precipitation 

+ Minimum precipitation + 

Maximum precipitation + Litter 

coverage + Native species 

richness 

0.5772 

SAVI Total species richness + Tree richness + Mean 

precipitation + Minimum elevation + Litter co

verage + Forb coverage + Mean precipitation + 

Vine richness + Open water coverage + Very s

mall coverage + Minimum temperature + Tall 

vegetation coverage + Alien species coverage 

+ Maximum temperature + Exposed soil cover

age + Liana coverage + Medium vegetation co

verage + Shrub richness + Forb richness + Nati

ve species richness + Shrub coverage + Aquati

c species coverage 

0.6362 Native species diversity + Tree 

richness + Bare ground coverage 

+ Open water coverage + Shrub 

coverage + Mean precipitation + 

Litter coverage + Forb coverage 

+ Graminoid coverage + Native 

species coverage + Total species 

diversity + Very small vegetation 

coverage + Minimum 

temperature + Maximum 

elevation + Open water coverage 

+ Maximum temperature + 

Minimum precipitation + 

Maximum precipitation + 

Standard deviation in species 

richness   

0.5802 

GCC Tree richness + TIP_PT + Maximum 

precipitation + Medium vegetation coverage + 

Minimum elevation + Native species coverage 

+ Graminoid coverage + Minimum 

temperature + Shrub richness + Small 

vegetation coverage 

0.2206 Tree richness + Maximum 

temperature + Mean precipitation 

+ Native species coverage + 

Graminoid coverage + Minimum 

precipitation + Alien species 

coverage + Maximum 

precipitation + Bare ground 

coverage + Standard deviation in 

temperature + Minimum 

elevation + Forb coverage + 

Forb richness + Submerged 

aquatic coverage + Vine richness 

+ pH + Exposed gravel coverage 

+ Mean temperature + Total 

species diversity + Herb richness 

+ Tall vegetation coverage 

0.5524 
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Conclusion 

Summary of findings 

The earth has lost over 50% of its historical wetland extent (Davidson 2014; Kingsford et al. 

2016). Remaining wetlands are subject to increasing ecosystem stress generated by droughts, 

biological invasions, and pathogens (Bedford 1999; Allan et al. 2013). This critical loss and 

degradation of wetlands has serious consequences on key ecosystem services. These beneficial 

services include water filtration, climate regulation, and flood protection among many others 

(Almeida et al. 2016; Zedler 2003; Chmura et al. 2003). The role of wetland ecosystems in 

sustaining human quality of life will become even more important as a growing number of cities 

are threatened by sea level rise or floods increasing in frequency and magnitude (Nicholls et al. 

1999). Wetlands will also play a significant role in mitigating the impacts of climate changes and 

water pollution (Chmura et al. 2003; Zhang et al. 2016). 

In response to these environmental issues, governments are dedicating substantial effort to the 

restoration of wetland ecosystems. However, recent local studies and global meta-analyses have 

revealed a high variability in restoration outcomes (Matthews et al. 2009; Meli et al. 2014; 

Moreno-Mateos et al. 2015). To halt the degradation of wetland resources and better target 

limited conservation budgets, it is necessary to maintain a long-term and consistent monitoring 

of wetland resources. This dissertation explored novel ways of monitoring wetland ecosystems 

using open source remote sensing data, which could help expand the spatiotemporal extent of 

current monitoring efforts for a better landscape planning and conservation of resources. 

Research was conducted at two different scales. At the regional scale, I used aerial images from 

the National Agriculture Inventory Program and satellite data from Landsat sensors to 

characterize the long-term trajectories of restored wetlands in the Sacramento-San Joaquin Delta 

of California. At the national scale, I assessed which spectral vegetation indices could best 

describe wetland properties across different wetland types of the conterminous United States. 

In chapter 1, I surveyed 42 monitoring plans for wetland restoration projects implemented in the 

San Francisco estuary. This effort showed that current wetland monitoring in the San Francisco 

estuary is predominantly achieved through field observations of vegetation cover and 

composition, but that very few projects are leveraging geospatial tools to monitor the progress 

made towards regional or site-specific goals. In response, chapter 1 explored potential 

applications of geospatial tools for regional wetland monitoring through a review of recent 

studies conducted in the estuary and elsewhere. The literature review suggests that several 

geospatial tools could help measure the combined contribution of individual projects towards 

regional wetland conservation goals. For example, plant biomass estimation using LiDAR or 

multispectral data could be utilized to upscale field observations into regional estimates of 

ecosystem services. Additionally, ecological niche models could be implemented to help target 

field monitoring efforts by identifying habitats where non-native species or species with critical 

ecological value are likely to occur. Some wetland properties might still be best monitored in the 
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field due to tradeoffs among satellite datasets in resolution and extent. Such properties include 

species richness and the spatial distribution of individual species unless these species are 

dominant. 

Chapter 2 and 3 sought to address some of the methodological gaps identified in the first chapter 

by testing novel approaches to wetland monitoring in the Sacramento-San Joaquin Delta. 

Chapter 2 assessed whether landscape metrics describing the shape, distribution, and 

heterogeneity of land cover patches could be used to characterize vegetation response to 

restoration treatments in wetlands. Landscape metrics were computed for 21 restored sites across 

an 11-year period. Changes in landscape metrics over time were linked to vegetation dynamics, 

via an analysis of time series of site greenness describing changes in vegetation extent and 

productivity over time. Results showed that fluctuations in landscape metrics followed 

successional patterns in restored wetlands, demonstrating a significant response of landscape 

metrics to time and restoration interventions. These results indicate that landscape metrics are 

useful in simply quantifying habitats in addition to tracking vegetation dynamics in restored 

wetlands. 

Chapter 3 compared the phenological characteristics of 20 restored wetlands and 5 reference 

sites across a 17-year window. Results suggest that wetlands have a significant phenological 

response to restoration treatments. More recently restored sites maintained an earlier phenology 

than older restored wetlands or reference sites. Restored wetlands continued to observe changes 

in their growing season curves over time. Most sites studied in this chapter experienced an 

increase in mean, maximum, and integrated enhanced vegetation index, which likely result from 

an increase in vegetation cover reducing the background effect of water and soil. Three of the 

older wetlands, however, experienced a decrease in greenness over time, likely as a result of 

changes in land management and accumulation of litter. This chapter shows that phenological 

assessments in restored wetlands can highlight patterns of vegetation succession and growth in 

addition to serving as base data for estimating the provision of ecosystem services at a large 

spatial extent. 

In chapter 4, I strived to advance the use of remote sensing in wetlands by measuring the 

sensitivity of six spectral vegetation indices to different field characteristics of wetlands 

including: vegetation structure, species composition, and confounding variables. Spectral 

vegetation indices were estimated from Landsat 5 TM and 7 ETM+ and summarized across 

1,138 wetland sites of the conterminous United States using two aggregation metrics (maximum 

and mean). Results show that, in the global sample, NDVI is most responsive to field indicators 

of vegetation structure while GNDVI is most responsive to indicators of vegetation composition. 

However, in estuarine wetlands dominated by woody vegetation, LSWI is most responsive to 

vegetation structure and composition — likely because it is the only index to leverage 

information in the shortwave infrared band which best discriminates woody species. Aggregation 

metrics showed different sensitivities to multivariate models, with median greenness being more 

sensitive to structure and composition, but also to confounding site variables including litter, 

open water, and bare soil. This study highlights that the selection of a spectral vegetation index 

should be tailored to the type of wetland monitored and to the wetland property of interest. 
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Implication for wetland management 

Chapter 1 suggests that remote sensing analyses and geospatial tools are sparsely used in the San 

Francisco estuary. This dissertation demonstrates the potential of remote sensing analyses to 

assist restoration and conservation efforts. Through a long-term survey of different vegetation 

properties including plant composition, structure, and dynamics, I showed that a significant 

signal of site change can be achieved using open source medium-high resolution remote sensing 

data. This shows the invaluable potential of remote sensing data to monitor the progress made 

towards regional conservation goals. It also suggests that project managers could leverage open 

source remote sensing dataset to track site dynamics through space and time in order to rapidly 

identify signs of ecosystem stress requiring adaptive management. Luckily, as discussed in 

Chapter 1, several platforms make the access to and analysis of satellite images more convenient 

and time-efficient. 

The long-term analyses of vegetation dynamics conducted for this dissertation revealed a 

substantial variability in site properties, even among older restored sites. This result further 

demonstrates the importance of maintaining a consistent monitoring of restoration projects, as 

discussed in previous studies (Matthews et al. 2009; Berkowitz 2013; Laughlin et al. 2017). 

Fortunately, many of the methodological approaches developed and discussed in this dissertation 

are economical could be readily applied by site managers and conservation practitioners to 

maintain this long-term, consistent monitoring. 

While remote sensing data provides an invaluable potential to assist wetland monitoring, there 

are limitations to the application of open source datasets, which are typically coarser, for the 

monitoring of certain wetland properties For example, Chapter 1 discusses challenges inherent to 

the mapping and monitoring of individual species using medium-high resolution remote sensing 

data. Chapter 3 shows that monitoring vegetation properties is also challenging during the first 

post-restoration year, when vegetation is still sparse. This highlights the potential to complement 

field observation of wetland properties with remote sensing analyses. Field observations are 

critical to monitoring properties that would otherwise be too challenging to track using remote 

sensing alone. They are also important for collecting ground-truth data that can help better 

interpret and validate patterns observed from remote sensing data. In turn, remote sensing 

analyses can assist in targeting field monitoring efforts to substantially reduce cost. These 

analyses can also provide continuous data in between field surveys. 

Future research needs 

Use landscape metrics to measure ecosystem services. Chapter 2 demonstrates the potential 

application of landscape metrics for the low-cost monitoring of vegetation dynamics in wetlands. 

Landscape metrics are already widely applied to map wildlife habitats in wetlands and other 

ecosystems. Few studies published to date have measured the relationships between landscape 

metrics and ecosystem services in wetlands, although two previous papers showed their potential 

to help measure water quality (Moreno-Mateos et al. 2008) and erosion control (Almeida et al. 

2016). Developing a more thorough understanding of how landscape metrics modulate the 

provision of ecosystem services would further show their significance for wetland monitoring. 
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This research would also help landscape managers assess multiple wetland properties (e.g., 

vegetation dynamics, ecosystem services, habitat availability) using fewer, non-redundant 

analyses of landscape patterns. 

Use near-surface remote sensing data or frequent high-resolution datasets to study the specific 

characteristics impacting the growing season curves of wetlands. Chapter 3 shows a significant 

phenological response of wetland sites to restoration treatments, however, it is difficult to 

identify the specific characteristics that modulate the shape of growing season curves due to the 

scale of Landsat data. A detailed investigation of how different growing season curves of 

wetlands respond to changes in species composition, proliferation of non-natives, litter 

accumulation, and vegetation expansion would provide critical knowledge and help future 

studies interpret phenological patterns observed from coarser resolution data. 
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