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ABSTRACT OF THE DISSERTATION

Electromechanical Resonators in Graphene Nanoribbons

by

Yi Wu

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, March 2017

Dr. Marc Bockrath , Co-Chairperson
Dr. Shan-Wen Tsai, Co-Chairperson

Graphene is a carbon based material that has only one atomic layer. It has ex-

ceptional electronic and mechanical properties which makes itself an ideal system to study

nanoelectromechanical behaviors. In this work I present the fabrication techniques to create

a suspended graphene device. Other than the traditional e-beam lithography, I also present

shadow mask technique, a fabrication method enables lithography-free and rapid fabrica-

tion. I fabricated single layer graphene resonators in nanoribbon geometry and studied the

nonlinear damping oscillation at different temperatures.
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Chapter 1

Introduction

1.1 Introduction

Graphene is a novel material made of only one layer of carbon atoms. Different

from the bulk form of three-dimensional(3D) materials, this new form is called a two-

dimensional(2D) material. Due to its reduced dimensionality, people expect such materials

to open new opportunities to probe the material science, build a novel platform for physics

research and create dedicated industrial applications.

The theoretical study on graphene can be dated back to 1940s [31][42][46]. But it

was long ignored by the mainstream physics community and even predicted that 2D mate-

rials cannot exist in the free state because thermal fluctuations should destroy long-range

order, resulting in melting of a 2D lattice at any finite temperature [24]. However, graphene

was unexpectedly discovered in 2004 [36], and has been the hottest topic in condensed

matter physics since then.

Carbon atoms form very strong bonds in the layers and weak bonds between layers.
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Figure 1.1: Graphene can is the building block for carbon materials of all other dimensions.
It can be warped to 0D balls, rolled to 1D nanotubes or stacked to 3D graphite. The graph
is adapted from paper [16].

Weak interlayer interactions ensure a single layer of carbon atoms can be isolated from the

bulk. And strong intralayer ensure the single layer of atoms can exist in free stand and can

even be warped to other dimensions (Figure 1.1).

The graphene ’gold rush’ not only reveals the condensed matter physics on a

small scale, but also leads to discovery and research on many other 2D materials and

heterostructures, too. It’s safe to say that the emergence of graphene results in many active

and prosperous material studies and applications nowadays.
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Figure 1.2: Graphene lattice and its Brillouin zone. (a) Graphene lattice structure. A,
B are the two non-equivalent atoms, ~a1 and ~a2 are the two lattice vectors. (b) Graphene
Brillouin zone. ~b1 and ~b2 are the two reciprocal vectors. K and K’ are Dirac points.

1.2 Graphene Electrical Properties

Graphene is made of carbon atoms arranged in repeated hexagonal structures,

shown as Figure 1.3. There are two atoms in each unit cell. The lattice vectors can be

written as

~a1 =
a

2
(3,
√

3), ~a2 =
a

2
(3,−

√
3) (1.1)

where a ≈ 1.42Åis the carbon-carbon distance. The reciprocal vectors can be easily calcu-

lated to be

~b1 =
2π

3a
(1,
√

3), ~b2 =
2π

3a
(1,−

√
3) (1.2)

Corresponding to A and B in real space lattice, K and K’ are two distinct posi-
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tions in reciprocal lattice. They are call Dirac points because, according to tight-binding

calculation results, the valence band and conduction band touch at these two points. The

energy spectrum is [46]

E±(k) = ±t
√

3 + f(k)− t′f(k) (1.3)

where the plus sign refers to the upper band and the minus sign refers to the lower band,

and

f(k) = 2cos(
√

3kya) + 4cos(

√
3

2
kya)cos(

3

2
kxa) (1.4)

The dispersion can be obtained by expanding the energy in a vicinity of K or K’ and leads

to

E±(q) ≈ ±vF |q|+O[(q/K)2] (1.5)

where q is the momentum measured relatively to the Dirac points and vF is the Fermi

velocity. The most remarkable result from this equation is that the energy is a linear

function of the momentum q. The conduction band and valence band intersect at q = 0,

which makes graphene a zero-gap semiconductor. The carrier density can be tuned by

an external electrical field. When the external field changes, the carrier density changes

accordingly, and causes a change in the graphene conductivity.
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Figure 1.3: Calculated graphene band structure according to tight-binding model. The
inset is the zoom in view of one of the Dirac points. The graph is adapted from paper [35].

1.3 Graphene Mechanical Properties

Though it contains only one atom layer, graphene exhibits extremely strong me-

chanical properties. Measurements confirmed graphene has a tensile strength of 130 GPa,

which corresponds to a Young’s modulus of 1 TPa [26]. This value is higher than any

other known materials. Graphene has a flexural rigidity of 3.18 GPa·nm3 [45] and breaking

strength of 130 GPa, while the mass density is only 7.4×10−19 kg/µm2. With a thickness of

regular kitchen towel, graphene sheet would be able to hold an elephant standing on top of a

pencil. The high stiffness and low mass of graphene lead to a high resonant frequency. The

way people exploit graphene’s good mechanical properties is to make nanoelectromechanical

systems (NEMS) out of it.

NEMS are the successor of microelectromechanical systems (MEMS). With the

device scale down from micrometers to nanometers, the system consumes less power, has

higher integrity abilities and is able to perform more precise measurements. NEMS have

5



been proven useful particularly in ultrasensitive mass sensing [9][25] and exploring quantum

phenomena at low temperature [23][38][44].

1.4 Linear Damping and Oscillations

The simple harmonic oscillator is the simplest and coarsest estimation to any

oscillation system. We usually use it to approximate small oscillations in frictionless en-

vironments. People made use of the stable frequency in those oscillations and invented

numerous tools and changed our life profoundly. For example, pendulum clocks have been

the world’s most precise timekeeper for three centuries [30], and is continuing to be an

important furniture in many homes. And in the Foucault pendulum experiment, people

proved that earth is spinning for the first time.

The equation of motion of a simple harmonic oscillator is

mz̈ +mω2
0z = F (1.6)

where m is the mass of the oscillator, z̈ is the acceleration, mω2
0z is the restoring force and

F is the external force.

If we consider a linear friction, i.e. a friction depends on the velocity, we have an

extra term in the equation of motion and it becomes

mz̈ +mω2
0z + Γż = F (1.7)

where Γż is the friction.

In NEMS, the damped oscillator is driven by an external AC force. Assume F =

6



F0 cos(ωt), where ω is the AC frequency. Consider its complex form F = F0e
iωt and let

γ = Γ/m, we have

z̈ + ω2
0z + γż =

F0

m
eiωt (1.8)

The solution to the above equation has two parts, a transient part zt and a steady-

state part zs. We first set the driving force to be 0 and solve the homogeneous equation to

find zt

z̈ + ω2
0z + γż = 0 (1.9)

Assume z = Aeiωt and yield

−ω2 + ω2
0 + iγω = 0 (1.10)

Solve the above equation and we find

ω = ±
√
ω2

0 − γ2/4 + iγ/2 (1.11)

This leads to

zt = Ae−
γ
2
tcos(

√
ω2

0 −
γ2

4
t+ φt) (1.12)

where A and φt is determined by initial conditions. Clearly, the oscillation decays with rate

γ
2 .

Now we assume z = Beiωt and insert it into equation 1.8 to find zs.

B(−ω2 + ω2
0 + iωγ) =

F0

m
(1.13)

This yields

B =
F0/m

−ω2 + ω2
0 + iωγ

(1.14)
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Express B in exponential notation, |B|eiφs , with φs is the phase of the response relative to

the driving force, we have

|B| = F0/m√
(ω2

0 − ω2)2 + ω2γ2
(1.15)

tan(φs) =
γω

ω2 − ω2
0

(1.16)

It can be shown that

Q =
ω0

γ
(1.17)

where Q is the quality factor of the oscillator. Therefore, we have the final form of the

steady state solution zs.

zs =
F0/m√

(ω2
0 − ω2)2 + (ωω0/Q)2

cos(ωt+ φs) (1.18)

Harmonic oscillator is the simplest approximation to the practical resonator in na-

noelectromechanical systems when the resonator is driven with small amplitude. When the

amplitude is driven large, it will enter nonlinear oscillation regime, which will be discussed

later in the thesis.
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Chapter 2

Device Fabrication

2.1 Introduction

Nanoelectromechanical systems (NEMS), is considered the next generation of mi-

croelectromechanical systems (MEMS). Compared to MEMS, NEMS not only cut down

the cost, consumes less power, can to be integrated to more sophisticated circuits, but also

is more sensitive to small signals. However, smaller scale fabrication techniques has to be

introduced to create nano-scale systems.

Among many geometries of NEMS (Figure 2.1), we choose doubly clamped beam

to be our research object because its fabrication technique is relatively straightforward. To

eliminate edge modes and focus on the fundamental mechanical mode, we further decrease

the graphene width and create nanoribbons. In this chapter we will discuss the fabrication

techniques and procedure of making a doubly clamped graphene nanoribbon.

9



Figure 2.1: Different geometries of suspended NEMS. (a) Drum structure [33]. (b) Doubly
clamped beam structure [14]. (c) Cantilever structure [21]. (d) Paddle structure [47].

10



Figure 2.2: An optical image of graphene on Si/SiO2 substrate. The darkness of purple
color indicates the number of layers of graphene.

2.2 Silicon Wafer

Graphene is a one-atom thick material that is nearly transparent. It can not be

seen by naked eye in most circumstances, and people have to use sophisticated equipment

like SEM or TEM to see them. However, when graphene is supported by a silicon wafer

with 300 nm silicon-dioxide (SiO2) layer, it appears to be light purple in optical microscope.

People can even estimate the number of layers based on how dark the purple is.

Silicon wafers are cut from the no-oxide side with diamond pen into small pieces,

usually 1 cm × 1 cm. Then they are cleaned in an ultrasonic bath in acetone followed by

isopropyl alcohol (IPA). Finally they are blown dried with nitrogen gas.

11



2.3 Graphene Exfoliation

People often use transfer or direct exfoliation to put graphene on a wafer. When a

large area of graphene is required in the experiment, for example, research on large domain

size crystals based on CVD graphene [28], or when graphene has to be put on a specified

location, transfer technique serves the purpose best. However, when the required graphene

size is small and graphene quality is crucial, people often use direct exfoliation. The easiest

and most widely used method is the ”scotch tape method”.

To perform scotch tape method, Kish graphite is placed on a strip of scotch tape.

We fold the tape repeatedly to distribute the graphite evenly on it. We then put a piece

of cleaned wafer on the tape, press and scratch them from the back. After that, wafers are

removed from the tape carefully and annealed with oxygen at 350 ◦C for 3 hours to remove

the tape residue.

2.4 Graphene Geometry Definition

As shown in Figure 2.2, exfoliated graphene is usually too large or not a geometry

we can directly make use of. We can use inductively coupled plasma (ICP) to etch the

graphene to be the desired geometry. The process is shown in Figure 2.3.

2.4.1 Landmark

To reference the etching location and the electrode location (later in the chapter),

a set of landmarks is often created near the graphene. The fabrication procedure is the same

as the procedure for the electrodes, which will be discussed in detail later in the chapter.

12



Figure 2.3: A schematic diagram of the fabrication process of etching graphene to the
desired geometry. (a) Bare Si/SiO2 wafer. (b) Exfoliate graphene on the wafer. (c) Spin
coat e-beam resist on the wafer. (d) Define the pattern in resist using EBL. Develop the
pattern in developer. (e) Etch the exposed graphene with ICP. (f) Remove the resist with
hot acetone bath.
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2.4.2 Spin Coating

When performing an etching or metal deposition, we use e-beam lithography to

open a window in the resist layer, and use the resist as a mask to allow etching plasma or

metal atoms to contact only the graphene in the window. We use a bilayer of Poly(methyl

methacrylate) (PMMA) as the resist mask. PMMA is a widely used e-beam lithography

resist which allows finer structures than other resists. We use PMMA/PMMA layers, as

opposed to MMA/PMMA layers, to achieve uniform exposure.

Each layer is spun at 1000 rpm/s ramp-up rate and 4000 rpm rotational speed to

ensure a thickness of 180 nm. After each spin coating, the wafer is baked at 180 ◦C for 10

minutes.

2.4.3 Pattern Defining

We use e-beam lithography to draw patterns on e-beam resist. The procedure is

the same as defining electrodes, which will be discussed later in the chapter.

We draw etch patterns to cover the unwanted graphene. If the unwanted graphene

area is large, we need to use two or more sets of current and dose based on pattern size and

distance to the desired graphene position, so as to balance between lithography speed and

pattern resolution.

The wafer is then developed in MIBK/IPA (1:3) solution for 70 seconds and rinsed

in IPA solution for 70 seconds to allow the exposed resist to be washed away.

14



Figure 2.4: A SEM images of graphene from Figure 2.2 after ICP etching. It is etched to
several nanoribbons.

2.4.4 Graphene Etching

We use inductively coupled plasma (ICP) to etch the exposed graphene. The

recipe we use is to supply 50 sccm oxygen for 10 seconds under 15 mTorr pressure, 30

Watts forward power and 300 Watts ICP power.

10 seconds is usually long enough to etch up to few layers of graphene. We can use

longer etching time to etch thicker graphene, however, too long etching time could dissolve

PMMA and etch the graphene that is not supposed to be etched.

The unexposed PMMA is removed by an overnight 65 ◦C acetone bath followed

by a IPA rinse. We can also anneal the wafer with oxygen at 350 ◦C to ensure complete

removal of any resist residue.

15



2.5 Electrode Fabrication

To probe graphene properties electrically, we need to contact the graphene we find

in the optical microscope with metallic electrodes. The pattern usually consists of small

contacting electrodes and large bonding pads that connects to the measurement circuit.

The fabrication process is shown in Figure 2.5.

2.5.1 Spin Coating

We use a bilayer of copolymer poly(methylmethacrylate-methacrylic acid) (MMA)/

PMMA. Both MMA and PMMA are spin coated at 1000 rpm/s ramp-up rate and 4000 rpm

rotational speed, followed by hot plate baking at 150 ◦C and 180 ◦C for 10 minutes, respec-

tively.

As opposed to the double PMMA layers used in section 2.4.2, we use MMA as the

bottom layer. It’s because MMA is more sensitive to e-beam exposure so we can produce

an undercut in MMA. After depositing metal, it will act as an anchor point to prevent the

metal to be lifted off.

2.5.2 Pattern Definition

There are usually two lithography methods people use to define patterns on resist,

photo lithography and e-beam lithography. Photo lithography is good for rapid and large

area patterns, but the fine structure size is limited by the light wavelength. We use e-beam

lithography throughout this dissertation due to its high resolution.

The e-beam resist is exposed as the electron beam scans over the sample. We can

16



Figure 2.5: A schematic diagram of the fabrication process to create electrodes and suspend
graphene. (a) Si/SiO2 wafer with graphene on top. (b) Spin coat resist on the wafer. (c)
Pattern the resist with e-beam lithography and develop to remove the exposed resist. (d)
Deposit metal in evaporator. (e) Lift-off to remove the metal deposited on resist. The metal
deposited on wafer stays. (f) Etch SiO2 with buffered oxide etchant to suspend graphene.
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Figure 2.6: The comparison between using PMMA/PMMA and MMA/PMMA as e-beam
lithography resist layers. Since MMA is more sensitive to e-beam exposure, more MMA
will be washed away after develop. The space will be filled up with metal after metal
evaporation, and the extra metal in MMA will act as an anchor point to secure the metal
to stay on the wafer.

determine the size and shape of the scanned area by importing a CAD file to the e-beam

controlling software. Two types of e-beam resist is usually used in experiments, positive

and negative resist. In the case of positive resist, the exposed resist will stay in developer

and the unexposed resist will be washed away by the developer. Negative resist behaves in

the opposite way. As a result, positive resist is often used when people want to expose a

large area of wafer. In our experiments, we want to expose a small area of wafer for metal

deposition, so negative e-beam resist is used in the experiment.

As mentioned above, the wafer is then developed in MIBK/IPA (1:3) solution for

70 seconds and rinsed in IPA for another 70 seconds to allow the exposed resist to be washed

away. The wafer is then blown dry with nitrogen gas.

2.5.3 Metal Deposition

Gold is the most often used material for electrodes due to its high electrical con-

ductivity. However, even with the anchor point created by MMA, the adhesion between

gold and silicon dioxide is not strong enough to allow the metal to survive the following lift

off step. We use a third material which is adhesive to both gold and silicon dioxide, while
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Figure 2.7: A schematic diagram of the wafer after metal deposition. Blue: SiO2, pink:
resist, yellow: metal. Metal in some areas is contacting the wafer, while in other areas is
contacting the resist. The resist is resolved by acetone during lift-off, and the metal on the
resist can be blown off. The metal contacting the wafer can stay in place after lift-off.

has relatively high electrical conductivity at the same time, as a ”wetting layer”. The most

widely used wetting layer materials are chromium and titanium. The difference between

these two is not crucial in our experiments.

We deposit a thin chromium layer (5 to 10 nm) at 1 Å/s followed by a 100 nm

thick gold layer at 2 Å/s to the wafer.

2.5.4 Lift-off

As shown in Figure 2.7, the wafer is now completely covered with metal, with some

areas contacting the wafer directly, some areas contacting the resist.

The purpose of lift-off is to remove the metal on the resist. The whole process

needs to be done with the wafer completely submerged in acetone. To perform lift-off, we

take the wafer out from the evaporator and put it directly in acetone, leave it overnight on

a 65 ◦C hot plate. After resist is dissolved, blow the wafer carefully from the side through

a pipette until the metal is completely detached from the wafer. Only until then the wafer

can be taken out of acetone and rinsed with IPA.
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2.6 Suspension

Graphene nanoribbons will not have mechanical motions when supported by sub-

strate. In order to detect the mechanical resonance, we need to suspend the graphene

nanoribbons.

A wet etching technique is introduced to etch SiO2 in areas not protected by the

metal electrodes. We put the wafer in the buffered oxide etchant to remove 120 nm thick

SiO2. It typically can be finished in 70 seconds. Now the graphene is clamped by metal

electrodes and the SiO2 underneath, while the SiO2 between the electrodes are etched,

forming a structure for the graphene to suspend. Then the sample is dried in a critical

point dryer (CPD). The suspended graphene nanoribbon can easily break when leaving

liquid environment because of liquid surface tension. Thus, the sample should be kept in

liquid until it is transferred to the CPD chamber.

We use a small container to transfer the wafer to DI water and rinse the wafer 7

times. We then rinse the wafer in high quality IPA another 7 times. Now the wafer is ready

to be placed in the CPD chamber.

Suspended graphene is much more fragile than substrate supported devices. After

the sample is dried by CPD, it should be kept in a vacuum box to minimize the possibility

of breaking.

Figure 2.8 and Figure 2.9(c) show SEM images of a suspended doubly clamped

graphene nanoribbon and a suspended doubly clamped graphene sheet.
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Figure 2.8: A SEM image of a suspended graphene nanoribbon.
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2.7 Current Annealing

Compared to substrate supported devices, suspended devices are free from impu-

rity and phonon scattering from the substrate, so people expect much higher mobility in

those devices. Surprisingly, they don’t show much difference until current annealing. It

turns out the impurities that limit the transport performance of graphene are not coming

from the substrate, but many are stuck on the graphene sheet. These impurities can be

removed by driving a large current through the graphene sheet [5][34]. For unsuspended

devices, the large current heats the graphene sheet locally to an estimated temperature of

600 ◦C and removes most of the residues remaining on the surface of graphene sheet from

the previous fabrication steps. So current annealing has became a standard technique to

remove the charge puddles and improve the device’s response to the gate voltage. Literature

reports up to ten fold mobility improvement can be achieved by current annealing [6].

Current annealing on suspended graphene must be performed in low temperatures,

and the current must not exceed the break down current, which is reported as 1.6 mA/µm

per graphene layer for exfoliated graphene [43]. In practice, to tolerate inaccurate graphene

width measurement and non-perfect graphene quality, the maximum current is usually set

to be much lower than the critical value. We set the maximum current value to be 0.2

mA/µm per graphene layer. In each current annealing cycle, we slowly increase the current

through the graphene sheet to 0.1 mA/µm, 0.12 mA/µm, 0.14 mA/µm, 0.16 mA/µm, 0.18

mA/µm and 0.2 mA/µm, respectively, wait for several minutes and decrease the current

to zero. We check the gate response after each cycle. The procedure is applied repeatedly

until the gate response signal changes.
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Figure 2.9: A SEM image of a typical suspended graphene sheet before current annealing
and transport properties before and after current annealing. (a) Measured four-probe resis-
tivity ρxx as a function of gate voltage Vg for a device before (blue) and after (red) current
annealing. Data from a traditional high-mobility device on the substrate (gray dotted line)
shown for comparison. (b) Mobility µ as a function of carrier density n for the same device.
(c) Impurities can be clearly seen on the surface of suspended graphene sheet. Figure (a)(b)
are adopted from [6].
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Chapter 3

Shadow Mask

3.1 Introduction

In the last chapter, we discussed the fabrication techniques used to make most

of the devices worldwide. Graphene devices usually contain only one or a few layers of

carbon atoms, as a result, they are sensitive to external contaminations. while the e-beam

lithography has a high resolution and been proven to be a robust method, it introduces

polymers and chemical fluids, including resist residues to the devices, and it will modify

graphene’s electrochemical potential and generate extra charge puddles. To improve device

quality, people often use thermal annealing and current annealing. However, at the same

time, people have to live with the risk of burning the device to break.

In this chapter, we introduce a lithography-free fabrication technique, shadow

mask technique. It is a simple and inexpensive technique which requires metal evaporation

through a pre-defined silicon mask. In the whole process, the graphene device doesn’t

contact any resist or chemical fluid. Once the shadow mask is made, it can be re-used for
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over 50 times. Since metal evaporation is already one of the steps in the standard e-beam

lithography method, so overall, the shadow mask technique increases device throughput

and fabrication speed. Using this technique, people fabricated both substrate-supported

and suspended devices [1][2].

3.2 Mask Fabrication

The shadow mask is a piece of patterned silicon wafer. The general idea of the

mask fabrication is to define a pattern on a piece of hard wafer, then transfer the pattern to

the wafer. The approach we take is to define a pattern on a polymer resist layer by e-beam

lithography, and use the resist layer as a mask to tranfer the pattern to chromium layer

which is pre-deposited on a silicon wafer, then use the chromium layer as a mask to etch

the silicon wafer so that the pattern is transferred to the silicon wafer.

3.2.1 Silicon Wafer

Mask patterns are defined on hard wafers. The wafers need to be easy to cut to

small pieces and easy to etch. They also need to be high in strength, Young’s modulus,

flexural modulus, shear modulus, high in thermal conductivity, chemical inert and low

in thermal expansion to ensure the masks are robust to use and hard to deform during

experiment, so that patterns do not shift or distort when metal is evaporated through

shadow masks. Here we use 300 µm thick, single-side-polished, {100} orientation silicon

wafers. Note the wafer we use here doesn’t contain an oxide layer.

To prepare the shadow masks, we cut the wafer into about 1 cm × 1.5 cm pieces
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(larger than the wafer size we use for graphene samples), clean the wafer thoroughly with

acetone and rinse it with IPA and deionized water (DI water).

3.2.2 Pattern Definition

1. Chromium deposition.

A 200 nm layer of chromium is evaporated on the polished side of the silicon

wafer. If the chromium layer is too thick, it will be hard to transfer the pattern. Also, as

the chromium etching time becomes longer, the pattern on the chromium mask will diffuse.

On the other hand, if the chromium layer is too thin, it will crack easily and will not survive

the later ICP etching step.

2. PMMA spin coating.

Two PMMA layers are spun on top of the chromium layer. We use a rotational

speed of 4000 rpm and a ramp-up rate of 1000 rpm/s to make each layer 180 nm thick.

Wafer is baked at 180 ◦C for 10 minutes after spinning coat each PMMA layer.

3. Pattern definition.

The wafer is placed in a scanning electron microscope to define the pattern on

PMMA with e-beam lithography. The electrodes are usually made no narrower than 1 µm

to ensure the plasma can go through the chromium pattern during the later ICP etching

step. The electrodes features also need to avoid sharp corners to minimize the cracking

possibilities of the chromium mask. The e-beam exposed PMMA resist is then developed

in MIBK/IPA (1:3) solution for 65 seconds.
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3.2.3 Etching

1. Chromium etching.

Now the pattern is in the PMMA layer. We use the pattern on PMMA layer as

a mask to etch chromium. We soak the wafer in chromium etchant for about 90 seconds.

The exact time depends on the etchant quality and it can vary from sample to sample. We

need to take the wafer out of the etchant and check if the chromium is etched completely

frequently. The chromium layer should not be over-etched, otherwise the pattern will blur

in the chromium layer and significantly affect the device quality. Then the wafer is soaked

in acetone at 65 ◦C for 30 minutes to completely remove PMMA.

2. Silicon etching.

The wafer is then placed in inductively coupled plasma (ICP) system and the

chromium layer is used as a mask to transfer the pattern to the silicon wafer. It is etched

by several cycles of SF6 and C4F8. In each cycle, we inject 70 sccm SF6 for 8 seconds under

25 mTorr pressure, 50 W forward power and 450 W ICP power, followed by 50 sccm C4F8

for 6 seconds under 30 mTorr pressure, 20 W forward power and 400 W ICP power.

The chromium layer is not durable under long plasma etching times. We first use

thermal tapes to expose a square window on the back of the wafer and etch the silicon from

the back. The window need to cover the pattern area on the front. However, too large

window size will leave too small portion of the wafer un-etched and leave the whole wafer

unsupported. We usually use the tape to cover at least 0.5 cm on each wafer edge to ensure

good support.

We use a Dektak Surface Profilometer to examine the etched thickness and etch
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the silicon wafer from back until about 50 µm is left. Then we flip the wafer and etch it

from the front. The chromium mask protects the wafer and only the pattern part is etched.

The chromium mask is very fragile to plasma etching so the etching is divided into small

cycles, usually 30 seconds, to prevent over-etching. The mask is finished when the pattern

is completely etched through.

The yield of the shadow mask fabrication can reach 70% if each step is conducted

carefully.

3.3 Mask Usage

Even though fabricating shadow masks themselves involves lithography and etch-

ing, using them to fabricate devices is totally lithography free and can be quickly done. We

simply align the shadow mask to the desired location on the sample and evaporate metal

onto the sample surface through the mask.

We use a three-axis stage, shown in Figure 3.3, to secure the shadow mask and the

sample to achieve perfect alignment. The shadow mask is clamped on the top of the side

pillar of the stage with the chromium side facing down. The sample is put on a electrical tape

glued to the top of the stage main body. The X, Y and Z knobs are turned to achieve good

alignment and contact between the shadow mask and the sample. Sometimes it’s helpful

to etch alignment windows in addition to the real pattern to allow better look through and

result in a better alignment.

The stage is then put in the evaporator upside down to allow metal to be evapo-
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Figure 3.1: A schematic diagram of the fabrication process of shadow masks. (a) Deposit
200nm chromium layer on top of a piece of Si wafer(no silicon dioxide layer), then spin coat
two layers of PMMA on top of chromium. (b) Use E-beam lithography to define the desired
pattern in PMMA, then develop to wash away the exposed PMMA. (c) Soak the wafer in
chromium etchant to etch the exposed chromium. (d) Remove PMMA in acetone bath. (e)
Use thermal tape to define a window on the back of the wafer and etch the exposed silicon
using ICP. (f) Etch the wafer from the front. Chromium mask protects the un-patterned
silicon.
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Figure 3.2: Pictures of finished shadow masks. (a)Optical microscope images of finished
shadow mask. The wide electrodes, extra square opening on the top and the tip on the
bottom side of the square help to provide better view through the mask and can results
in a better alignment. (b) A zoom in view of the electrodes in (a). (c)(d) Front and back
views of a finished mask after being installed to a bar wafer.
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Figure 3.3: A side view of the alignment stage. Shadow mask is clamped on the top of the
stage pillar. Sample wafer is placed on the top of the stage main body. After installing the
mask and the sample wafer, X, Y and Z knobs are tuned to achieve good alignment and
contact between the shadow mask and the sample wafer.

rated through the mask and land on the graphene wafer.

The relative position between the evaporation mask and the sample wafer is crucial

for determining where the pattern is deposited. In traditional fabrication method, we use

developed photo resist or e-beam resist as the mask. Because the resist is spin-coated on

the wafer, the relative position is fixed. While shadow mask is clamped on the stage, and

the relative position to the sample wafer can change, so extra care has to be taken to better

secure them. We glue padding foams on the stage base to provide cushion between the

stage and the evaporator sample holder. When evaporating metal in traditional methods,

we often rotate the evaporator sample holder to achieve uniform evaporated metal surface.

However, we need to turn this function off when using shadow masks to eliminate abrupt

motions which could cause the relative position to change. We also glue sand paper on

both stage and the wafer bar at the mask clamping point to provide greater friction. The
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Figure 3.4: Usage of shadow masks and a optical image of finished devices. (a) Graphene
devices can be fabricated by direct deposition of metallic electrodes through shadow masks
[2]. (b) An example of finished devices. Figure (a) is adapted from paper [2]

electrical tape which holds the sample wafer needs to be replaced every few depositions.

Overall, careful handling during the whole process will both secure the relative position and

protect the shadow mask from breaking.

Though taking special cares can improve alignment accuracy dramatically, it’s

still inevitable due to mechanical motions and thermal expansions. We usually use it when

alignment accuracy is not crucial or it’s larger than 1 µm and the desired pattern size is

larger than 200 nm. With careful handling, a shadow mask can be re-used by more than

50 times.

3.4 Conclusion

Shadow mask technique has been proven to be a clean, fast and robust technique to

fabricate both wafer supported and suspended devices on various two-dimensional materials

[1][2]. We successfully fabricated various devices with pattern as small as 200 nm and

achieved alignment accuracy up to 1 µm.
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Chapter 4

Measurement Techniques and

Setup

4.1 Introduction

To study the resonating system, we need to induce and detect their mechanical

motion. Among various techniques, the essential idea is the same – we introduce an oscil-

lating force on the device, and tune the frequency to be the same as the intrinsic resonance

frequency of the device, we then either detect the mechanical motion directly or detect a

converted low frequency signal. The often used actuation techniques include peizo induced

oscillation [27], magnetic actuation [10][18], electrostatic actuation [11][12], thermal fluctu-

ation induced resonance [4] and optical actuation [19]. The detection can also be carried

out with various techniques, for example, optical imaging [15][39], magnetomotive [10][41],

electrostatic [33] and piezoelectric methods [3].
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Each actuation and detection has its own advantages and disadvantages. For ex-

ample, electrostatic method requires small current but high voltage, magnetomotive method

requires a small voltage but a high magnetic field, and piezoelectric method requires a so-

phisticated piezo stage and a very stable base station. After careful consideration, we

decided to use the electrostatic actuation and detection technique due to its simplicity and

high accuracy in measuring signals. At the same time, it allows us to explore the field-effect

transistor properties, which is an exceptional and interesting phenomenon in graphene de-

vices. However, the resistance in graphene devices is not fixed due to fabrication process

and field effect, and it’s usually much higher than the typical transmission line impedance

of 50 Ω. We need to overcome the impedance mismatch to minimize the signal loss. We

analyze the system following closely to Dr. Tengfei Miao [32] and Dr. Hsin-Ying Chiu’s [8]

dissertations.

4.2 Electrical Actuation

The graphene nanoribbon resonator system we work with is shown in Figure 4.1.

A capacitor is formed by the graphene plane and the back gate. So we can approach the

system in a classical parallel plane capacitor method. By varying the back gate voltage, we

can tune the electrical field between the gate and the graphene. When a current is flowing

through the graphene device, the change of electrical field results in a change in electrical

force on graphene. Therefore, the graphene is actuated, and a resonance can be excited

when the gate voltage is varied at the resonance frequency.

To find the driving force in electrostatic system, we derive starting with the energy
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Figure 4.1: A schematic diagram of the graphene nanoribbon resonator system as a parallel
plate capacitor. The graphene and the back gate forms a parallel plate capacitor.

in the system. To move a unit charge dq to the plate at voltage Vg, the elementary energy

is

dUs = Vgdq =
q

C
dq (4.1)

where Us is the energy in the system, q is the charge and C is the capacitance. To find the

total system energy with charge Q, we integrate q from 0 to Q.

Us =

∫ Q

0

q

C
dq =

1

2

Q2

C
=

1

2
CV 2

g (4.2)

With gate voltage Vg, the charge on graphene is

Q = −CVg (4.3)

If we fix the gate voltage Vg and change the distance from graphene to back gate by dz, the

electrostatic energy change is

dUs =
1

2
dCV 2

g (4.4)

and the work done by the battery is

dUb = VgdQ = −dCV 2
g (4.5)
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Combine equation 4.4 and equation 4.5, we find the total energy change in the system if we

change the distance by dz

dU = dUs + dUb = −1

2
dCV 2

g (4.6)

The electrostatic force on the graphene can be easily found by take the derivative.

Fes = −dU
dz

=
1

2

dC

dz
V 2
g (4.7)

The resonance is actuated when there is AC current flowing across the graphene

sheet. The source-drain bias voltage we apply contains a DC component Vsd and an AC

component Ṽsd. The effective potential on graphene is half of the source-drain voltage. So

the electrostatic force becomes

Fes =
1

2

dC

dz
[Vg −

1

2
(Vsd + Ṽsd)]

2 (4.8)

we can omit Vsd if it’s small compared to Vg. So we find the final expression for electrostatic

force

Fes =
1

2

dC

dz
(Vg −

1

2
Ṽsd)

2 (4.9)

and the ac driving force

F̃es = −1

2

dC

dz
VgṼsd (4.10)

4.3 Electrical Readout

As we know, the modulation in graphene conductance can be tuned by a modula-

tion in charge density in graphene,

G̃ =
dG

dq
q̃ (4.11)
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and charge density can be tuned by capacitance.

q̃ = C̃Vg (4.12)

So if the graphene nanoribbon oscillates, it will cause a change in the conductance. We can

notice the change by measuring the current.

Suppose the distance between the graphene sheet and the back gate is z. It

oscillates with amplitude δz and frequency ω.

z = z0 + δz(ω) (4.13)

Where z0 is the equilibrium distance. Perform a Taylor expansion on conductance at z0.

We find the modulated conductance is

C̃ = C ′δz(ω) (4.14)

Inserting equation 4.14 into equation 4.12, then into equation 4.11, we get

G̃ =
dG

dq
C ′δz(ω)Vg (4.15)

Therefore, the conductance is tuned at frequency ω. Because the mechanical motion is

driven by external force, the displacement frequency is the same as the force frequency.

From equation 4.10 we know the force is induced by Ṽsd, force frequency is the same as Ṽsd

frequency. Therefore, the frequency of modulated conductance equals the frequency of ac

bias voltage.

In this dissertation, we mainly study the mechanical motion on a monolayer

graphene nanoribbon of 0.2 µm wide and 2 µm long. The resonance frequency of the
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fundamental mode is typically 100 MHz ∼ 200 MHz. Direct detection of such a high fre-

quency signal is challenging due to impedance mismatch and parasitic capacitance. And

a highly dedicated matching circuit is often required. However, high frequency signals can

also be detected indirectly through signal mixing. We can use a mixer to convert a high

frequency signal to a low frequency signal without losing information about its amplitude.

As a result, the detection circuit can be kept simple, robust and low cost. This technique

successfully detects NEMS signals on various geometries and materials [9][13][20][22][33][37].

In the following sections, we introduce two types of one source mixing techniques,

amplitude modulation (AM) and frequency modulation (FM). In both cases, we use ω to

represent resonance frequency, which is on the order of 100 MHz, and ωL to represent the

low frequency we mix with high frequency. ωL is the target frequency we want to measure.

4.4 Amplitude Modulation

In the amplitude modulation (AM) technique, we apply an AM signal as the source

drain bias voltage. The amplitude of Vsd is modulated by an amplitude of A at frequency

ωL

Ṽsd = Vsd[1 +A cos(ωLt)] cos(ωt) (4.16)

where A is the modulation amplitude. We assume it to be 100% for simplicity. Inserting it

into equation 4.10, we get the ac driving force to be

F̃ = −1

2
C ′VgVsd[1 + cos(ωLt)]cos(ωt) (4.17)
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Inserting it into 1.18, we find

z̃ = δz(ω)[1 + cos(ωLt)] cos(ωt+ φM ) (4.18)

where the vibration amplitude

δz(ω) =
−C ′VgVsd/2m√

(ω2
0 − ω2)2 + (ωω0/Q)2

(4.19)

and φM is the phase of mechanical response relative to the drive.

The total displacement can be expressed as

z = z0 + δz (4.20)

with z0 6= 0 due to the electrostatic bending toward the gate induced by Vg

The current flowing through graphene is a function of bias voltage Vsd and the

displacement z. We perform a Taylor expansion on I(Vsd, z) at Vsd = 0 and z = z0.

I(Vsd, z) =I(Vsd = 0, z = z0)

+
∂I

∂Vsd
Ṽsd +

∂I

∂z
z̃

+
1

2

∂2I

∂V 2
sd

Ṽ 2
sd +

∂2I

∂Vsd∂z
Ṽsdz̃ +

1

2

∂2I

∂2z
z̃2

(4.21)

In the above formula, the low frequency term cos(ωLt) in Ṽsd and z̃ cannot be

singled out, so they will not be picked up by the low frequency detection circuit. We can

safely neglect the first order terms ∂I
∂Vsd

Ṽsd and ∂I
∂z z̃.

The current does not exist when there is no source-drain voltage. So the zero order

term I(Vsd = 0, z = 0) and 1
2
∂2I
∂2z

z̃2 can also be neglected.
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Let’s take a close look at the remaining two terms 1
2
∂2I
∂V 2

sd
Ṽ 2
sd and ∂2I

∂Vsd∂z
Ṽsdz̃.

1

2

∂2I

∂V 2
sd

Ṽ 2
sd =

1

2

∂2I

∂V 2
sd

V 2
sd[1 + cos(ωLt)]

2 cos2(ωt)

=
1

2

∂2I

∂V 2
sd

V 2
sd[1 + 2 cos(ωLt) + cos2(ωLt)]

1

2
[1 + cos(2ωt)]

(4.22)

The low frequency component is

I(1)
ωL

=
1

2

∂2I

∂V 2
sd

V 2
sd cos(ωLt) (4.23)

and

∂2I

∂Vsd∂z
Ṽsdz̃ =

∂2I

∂Vsd∂z
Vsd[1 + cos(ωLt)] cos(ωt)δz[1 + cos(ωLt)] cos(ωt+ φM )

=
∂2I

∂Vsd∂z
Vsdδz[1 + cos(ωLt)]

2 cos(ωt) cos(ωt+ φM )

=
∂2I

∂Vsd∂z
Vsdδz[1 + 2 cos(ωLt) + cos2(ωLt)]

1

2
[cos(φM ) + cos(2ωt+ φM )]

(4.24)

The low frequency component is

I(2)
ωL

=
∂2I

∂Vsd∂z
Vsdδz cos(ωLt) cos(φM ) (4.25)

The total low frequency mixing current is

IAMωL = I(1)
ωL

+ I(2)
ωL

(4.26)

Among the total low frequency current, I
(1)
ωL is the background signal and I

(2)
ωL is

due to the mechanical motion.

4.5 Frequency Modulation

In frequency modulation (FM) technique, we instead apply a FM signal as the

source drain bias voltage. We follow paper [17] to derive the theory. The instantaneous
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frequency ωi is modulated by an amplitude of ω∆, in frequency ωL

ωi = ωc + ω∆ cos(ωLt) (4.27)

where ωc is the carrier frequency. Usually ωc � ω∆ � ωL. Integrate ωi over time, we find

the instantaneous phase to be

φi(t) = ωct+
ω∆

ωL
sin(ωLt) (4.28)

therefore, the expression for bias voltage is

Ṽsd = Vsd cos[ωct+
ω∆

ωL
sin(ωLt)] (4.29)

We adopt the same analytical approach and perform a Taylor expansion on current I like

equation 4.21

I(Vsd, z) =I(0, z0)

+
∂I

∂Vsd
Ṽsd +

∂I

∂z
z̃

+
1

2

∂2I

∂V 2
sd

Ṽ 2
sd +

∂2I

∂Vsd∂z
Ṽsdz̃ +

1

2

∂2I

∂2z
z̃2

(4.30)

Out of the same reason as before, there is no current when in the absence of source-drain

voltage, so

I(0, z0) = 0

∂I

∂z
z̃ = 0

1

2

∂2I

∂2z
z̃2 = 0

(4.31)

and ∂I
∂Vsd

Ṽsd gives only high frequency signal.
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Let’s take a close look at the remaining terms 1
2
∂2I
∂V 2

sd
Ṽ 2
sd and ∂2I

∂Vsd∂z
Ṽsdz̃. It’s useful

to decompose the applied FM signal with Jacobi-Anger expansion:

Ṽsd = Vsd × [J0(
ω∆

ωL
) cos(ωct) +

∞∑
n=1

Jn(
ω∆

ωL
)(cos((ωc − nωL)t) + (−1)n cos((ωc + nωL)t))]

= Vsd × [J0(
ω∆

ωL
) cos(ωct) +

∑
n=odd

Jn(
ω∆

ωL
)2 sin(ωct) sin(nωLt)

+
∑

n=even

Jn(
ω∆

ωL
)2 cos(ωct) cos(nωLt)]

(4.32)

Vsd is a constant, so we only need to look at the terms in the parenthesis. We use Vk to

represent the k-th order expansion term and Ak to represent the constant coefficient in that

term. To find the low frequency terms in Ṽ 2
sd, we first look at the square terms.

When k = 0,

V0,0 = J2
0 (
ω∆

ωL
) cos2(ωct) (4.33)

There is no ωL terms.

When k = odd

Vk,k = Ak,k sin2(ωct) sin2(kωLt)

= Ak,k
1− cos(2ωct)

2

1− cos(2kωLt)

2

(4.34)

When k = even

Vk,k = Ak,k cos2(ωct) cos2(kωLt)

= Ak,k
1 + cos(2ωct)

2

1 + cos(2kωLt)

2

(4.35)

Since k is an integer, the lowest frequency term we can get is cos(2ωLt). So there is no low

frequency signal from these terms.
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We then look at the cross terms. Clearly, the cos(ωLt) term can only be produced

by the cross multiplication of two adjacent expansion terms, so we only need to examine

Vk,k−1. First let k = 1

V0,1 = A0,1 cos(ωct)[cos(ωct− ωLt)− cos(ωct+ ωLt)]

= A0,1[
cos(2ωct− ωLt) + cos(ωct)

2
− cos(2ωct+ ωLt) + cos(ωct)

2
]

(4.36)

We then write out the expression for Vk,k−1 when k 6= 1. Without losing generality, let k

be even.

Vk,k−1

Ak,1
= [cos(ωct− kωLt) + cos(ωct+ kωLt)][cos(ωct− (k − 1)ωLt)− cos(ωct+ (k − 1)ωLt)]

= cos(ωct− kωLt) cos(ωct− (k − 1)ωLt)− cos(ωct− kωLt) cos(ωct+ (k − 1)ωLt)

+ cos(ωct+ kωLt) cos(ωct− (k − 1)ωLt)− cos(ωct+ kωLt) cos(ωct+ (k − 1)ωLt)

=
cos(2ωct− (2k − 1)ωLt) + cos(ωLt)

2
− cos(2ωct− ωLt) + cos(ωLt)

2

+
cos(2ωct− ωLt) + cos(ωLt)

2
− cos(2ωct+ (2k − 1)ωLt) + cos(ωLt)

2

(4.37)

Clearly, cos(ωLt) terms cancels each other in both cases. Together with the square terms,

we conclude there is no low frequency contribution from 1
2
∂2I
∂V 2

sd
Ṽ 2
sd.

Now let’s take a look at ∂2I
∂Vsd∂z

Ṽsdz̃. Remember equation 4.29

Ṽsd = Vsd cos[φ(t)] (4.38)

φ(t) = [ωct+
ω∆

ωL
sin(ωLt)] (4.39)

and equation 4.10

F̃ = −1

2
C ′VgṼsd (4.40)
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We’d like to Taylor expand φ(t + ∆t). The time interval ∆t we are interested in

is of the order or smaller than the timescale of the oscillator Q/ω0, where Q is the quality

factor of the resonator. If the oscillation frequency is much larger than the modulation

magnitude, i.e. ωc � ω∆, we can safely ignore the higher order terms. If the oscillation

timescale is much smaller than the modulation timescale, i.e. ω0/Q � ωL, we can again

ignore the transient oscillation. The electromechanical current is only significant at the

resonant frequency ω0 so approximately we consider ωc ≈ ω0. In experiment, the typical

values are:

ωc ∼ 100MHz

ω∆ = 100KHz

ωL ∼ 1KHz

The above requirements are easily met. So we expand φ(t+ ∆t)

φ(t+ ∆t) = φ(t) + ωi∆t (4.41)

where φ(t) is a constant, and the instantaneous frequency

ωi =
∂φ

∂t
= ωc + ω∆ cos(ωLt) (4.42)

so

Ṽsd = Vsd cos[φ(t) + ωi∆t] (4.43)

F̃ = F0 cos[φ(t) + ωi∆t] (4.44)

where

F0 = −1

2
C ′VgVsd (4.45)
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Inserting F̃ into equation 1.18, we get

z̃ = δz cos[φ(t) + ωi∆t+ φM ] (4.46)

where δz is the displacement magnitude and φM is the phase delay of mechanical response

relative to the drive. Therefore,

z̃Ṽsd = δz cos[φ(t) + ωi∆t+ φM ]Vsd cos[φ(t) + ωi∆t]

=
1

2
δzVsd[cos(φM ) + cos(2ωi∆t+ 2φ(t) + φM )]

=
1

2
Re(δ∗z)Vsd +

1

2
δzVsd cos[2ωi∆t+ 2φ(t) + φM ]

(4.47)

where δ∗z is the complex displacement.

δz∗ = δz[cos(φM ) + i sin(φM )] (4.48)

The second term in z̃Ṽsd contains high frequency signal.

We use equation 4.42 and perform a first order Taylor expansion of Re(δz∗) for

ω∆ � ωc.

Re(δz∗(ωi)) = Re(δz∗(ωc)) +
∂Re(δz∗)

∂ω
ω∆ cos(ωLt) (4.49)

Therefore, the low frequency current

IFMωL =
1

2

∂2I

∂Vsd∂z
Vsd

∂Re(δz∗)

∂ω
ω∆ cos(ωLt) (4.50)

The above formula can be further simplified. If we ignore the nonlinearity between

I and Vsd,

∂I

∂Vsd
=

1

R
= G (4.51)

The conductance G is a function of the charge q on the graphene-gate capacitor. And q is

a function of gate voltage Vg and distance between the graphene sheet and the back gate z.
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Since Vg is fixed, z is the only variable.

G(Vg, z) = G(Vg, zs) +
∂G

∂q

∂q

∂z
z̃ (4.52)

Because

∂G

∂q
=
∂G

∂Vg

∂Vg
∂q

=
∂G

∂Vg

1

C
(4.53)

and

∂q

∂z
=

∂q

∂C

∂C

∂z
= VgC

′ (4.54)

so

G(Vg, z) = G(Vg, zs) +
∂G

∂Vg

C ′

C
Vg z̃ (4.55)

Plug equation 4.51 and equation 4.55 into equation 4.50, we find the final expres-

sion for the low frequency current signal in FM technique.

IFMωL =
1

2

∂G

∂Vg

C ′

C
VgVsd

∂Re(δz∗)

∂ω
ω∆ cos(ωLt) (4.56)

Remarkably, unlike the IAMωL which has an undesirable background term, IFMωL gives

a pure electromechanical signal. Also note that the current magnitude is proportional to the

transconductance ∂G
∂Vg

, which can be greatly improved at low temperature and after current

annealing, as mentioned in section 2.7. So it’s a good practice to cool down the sample to

liquid helium temperature and do a current anneal before taking real measurements.

4.6 Experimental Setup

The circuit and experimental setup is first designed by Dr. Hsin-Ying Chiu [8] and

later modified by Dr. Tengfei Miao [32]. We follow their thesis to introduce the design.
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Figure 4.2: A schematic diagram of the measurement circuit.

4.6.1 Circuit Design

The circuit design is shown in Figure 4.2. As mentioned before, the biggest chal-

lenge in the design is to match the impedance. The impedance in the transmission line is

typically 50 Ω, but the resistance in graphene nanoribbon is on the order of KΩ. To match

the impedance in order to maximize the power transmitted to the device, we connect a 50

Ω resistor R1 in parallel to the device. Therefore, the impedance Vsd sees is 50 Ω. To route

V DC
sd to go through the device rather than go through resistor R1 to the ground, we add a

capacitor C1 to stop the DC signal.
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After the signal is mixed by the graphene nanoribbon, we use a capacitor C2 to

short the high frequency signal. In the experiment, the typical resonance frequency is 100

MHz and the modulation frequency is 1 KHz. The impedance of the capacitor C2 respect

to the two signals are

Xhf =
1

iωhfC2
=

1

i× 100Mhz × 0.1µF
∼ 0.1Ω

and

Xlf =
1

iωlfC2
=

1

i× 1Khz × 0.1µF
∼ 104Ω

Therefore, the high frequency signal is effectively routed to the ground, and the low fre-

quency signal is routed to the current preamplifier.

The gate voltage Vg is usually on the order of 10 V, which can generate a large

current if the circuit is shorted. We use a large resistor R2 for protection.

The configuration of C3 and R3 is symmetric to C1 and R1. It’s not necessary in

this thesis. However, it’s useful if we want to fix Vsd and put a AC signal on Vg.

4.6.2 Equipment Setup

Because graphene resonance cannot be observed in the atmosphere because of air

friction, and as mentioned in section 4.5, the signal is more prominent at low temperature,

the system needs to be operated at high vacuum and low temperature. After careful design,

we home made a cryostat as our measurement system. The whole system is about 140 cm

in length. The sample is mounted on the sample holder shown in Figure 4.3. The whole
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Figure 4.3: A picture of the internal stick of the home made cryostat.
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stick below the top cap is enclosed in a one-piece sample chamber which can be pumped to

high vacuum.

The system contains six DC wires. Two of the DC wires are connected to a thermal

diode attached to the sample holder. The other four are connected to the sample holder.

The system also include two AC wires, which are also connected to the sample holder. The

DC and AC wires are soldered the sample holder, so we need to keep those pin locations

in mind when bonding the device to the chip carrier. We connect two of the DC wires to

a thermal diode to monitor the device temperature in situ. We connect the other two DC

wires to the device.

To cool down the system, we first pump the sample chamber to high vacuum, then

inject exchange gas to the chamber and slowly insert the system into liquid Helium. We use

the thermal diode to monitor the temperature. When the temperature is stable at liquid

Helium temperature, we pump out the exchange gas to allow a friction free environment for

mechanical vibration. During the measurement, both mechanical motion and Joule effect

generate heat. We further added the BeCu fingers and copper mesh to conduct the heat

out of the system. The fingers are flexible that can easily slide in and out in the sample

chamber and simultaneously contact the chamber firmly. The mesh contacts the bottom

of the chamber and can provide cushion when loading the stick in the chamber. They are

both below the liquid Helium level to allow optimal heat conduction.
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Chapter 5

Nonlinear Dynamics at Various

Temperatures

5.1 Introduction

We viewed the linear oscillator in section 1.4. The restoring force is linear elastic

and the oscillator obeys Hooke’s law. And the friction is a linear function of the velocity.

m
d2z

dt2
+mω2

0z + Γ
dz

dt
= F0cos(ωt) (5.1)

The above equation is a good approximation of the mechanical motion when the

oscillation amplitude z is small. However, when we increase the drive, the system can be

driven into the nonlinear regime and we need to consider the Duffing term αz3 and nonlinear

damping term ηz2 dz
dt .
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m
d2z

dt2
+mω2

0z + Γ
dz

dt
+ αz3 + ηz2dz

dt
= F0cos(ωt) (5.2)

In this chapter, we discuss the nonlinear mechanical motion in graphene nanorib-

bons, and how the nonlinearity changes with temperature.

5.2 Nonlinear Dynamics

There are two additional terms shown in 5.2, the Duffing term and the nonlinear

damping term. There are two main sources of nonlinearities: the external potential and

tension change caused by geometry [29].

5.2.1 Nonlinearity Due to External Potential

We consider the potential energy of the resonator [29] in the following form

U(z) =
1

2
Kz2 − C

d+ z
(5.3)

where K is the effective elastic spring constant, C is a constant, d is the equilibrium sepa-

ration between the resonator and the back gate when Vg = 0, z is the deviation from the

equilibrium position. When we apply a voltage to the back gate, the graphene nanoribbon

is pulled towards the gate and results in a new equilibrium position z0. We consider an

oscillation with amplitude δz. δz = z − z0.

U(δz) ' U(z0) +
1

2
(K − 2C

(d+ z0)3
)δ2z +

C

(d+ z0)4
δ3z +

C

(d+ z0)5
δ4z

= U(z0) +
1

2
kδ2z +

1

3
βδ3z +

1

4
αδ4z

(5.4)
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It yields a nonlinear equation of motion by solving dU
dδz = 0

m
d2δz

dt2
+ kδz + βδ2z + αδ3z = 0 (5.5)

5.2.2 Nonlinearity Due to Geometry

The graphene nanoribbon is clamped at both ends, so its length changes when it

oscillates. (We don’t consider the case where the nanoribbon is not securely clamped, which

can lead to parametric oscillation.) This effect can be neglected if oscillation amplitude is

smaller than the nanoribbon width. However, as graphene is atomically thin, when the

drive is strong, the oscillation amplitude can easily exceed its width. For a transverse

displacement X(z, t) from equilibrium, the Euler-Bernoulli equation is

ρS
∂2X

∂t2
= −EI ∂

4X

∂z4
+ T

∂2X

∂z2
(5.6)

where ρ is the mass density, S the cross-section area, E the Young’s modulus, I the moment

of inertia, T the tension in the ribbon, z the coordinate along the ribbon. The equilibrium

length of the ribbon is L, and the elongation due to oscillation is ∆L.

L+ ∆L =

∫ L

0
dz

√
1 + (

∂X

∂z
)2

' L+
1

2

∫ L

0
dz(

∂X

∂z
)2

(5.7)

Clearly, ∆L introduces nonlinear term in equation 5.6
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5.2.3 Nonlinear Behavior

Adding the Duffing term and nonlinear damping term to the linear oscillation

equation yields the nonlinear equation of motion.

m
d2z

dt2
+mω2

0z + Γ
dz

dt
+ αz3 + ηz2dz

dt
= F0cos(ωt) (5.8)

Solving this equation [29] gives the relation between the maximum response fre-

quency ωmax and the oscillation magnitude z0.

ωmax = ω0 +
3

8

α

mω0
z2

0 (5.9)

where ω0 is the linear response peak frequency.

When the oscillation magnitude z0 increases, the peak frequency shifts. If α > 0,

the frequency shifts to a larger value. This corresponds to the oscillation on a more tensioned

string, and is called stiffening. On the other hand, if α < 0, the frequency shifts to a smaller

value. This corresponds to the oscillation on a less tensioned string, and is called softening.

The two cases are both very common in experiments, and sometimes can happen on the

same device with different drive Vsd, as shown in Figure 5.1.

We can also plot the oscillation magnitude and phase versus frequency as in Figure

5.2. The plot shows an example of Duffing oscillator response with positive α, therefore

the peak shifts to the right. Line traces are plotted with different source-drain voltage. In

the plot, we use a set of dimensionless parameters. The conversion between the regular

parameters and dimensionless parameters can be found in the original paper [29].
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Figure 5.1: Duffing coefficient sign changes at different source-drain voltage. We see a α
sign change from negative to positive when increasing the source-drain voltage continuously.
As a result, the peak frequency ωmax first decreases, then increases, which is consistent with
equation 5.9.
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Figure 5.2: Magnitudes |a| (top) and phases φ (bottom) of the response of a Duffing res-
onator as a function of the frequency Ω at different Vsd, without nonlinear damping (η = 0).
Solid curves indicate stable solutions of the response function, while dashed curves indicate
unstable solutions. (a) The blue arrow indicates the observation in a frequency up sweep.
The oscillation magnitude follows the upper branch of the peak, increases up to a critical
point and abruptly drops. The red arrow indicates the observation in a frequency down
sweep. The oscillation magnitude follows the lower branch of the peak, increases up to a
critical point and abruptly jumps to the upper branch, then follow the upper branch all the
way to the left. The plots are adopted from paper [29].
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Solving the nonlinear equation at large drive gives a saddle-node bifurcation in

the solution. When the drive frequency is much smaller than the resonance frequency, we

see only one solution. After the drive frequency increases up to a critical point, where we

see two solutions, we see three solution. Among the three solutions, two are stable while

the middle one is unstable. One of the stable solutions will be observed when we adopt a

frequency sweeping direction. We see the upper branch solution and an abrupt oscillation

magnitude drop when we sweep the frequency up. We see the lower branch solution and an

abrupt oscillation magnitude increase when we sweep the frequency down.

We observe a frequency shift with positive α on most devices. We plot the mixing

current as a function of frequency at different source-drain voltage in Figure 5.3.

5.3 Nonlinear Parameters

Revisiting the nonlinear equation of motion

m
d2z

dt2
+mω2

0z + Γ
dz

dt
+ αz3 + ηz2dz

dt
,= F0cos(ωt) (5.10)

the nonlinearity is described by two parameters, α and η. By solving the above equation,

we find the expression for them in terms of the known parameters [33]. We first find the

resonance amplitude |δz|.

|δz| = 4dδIδf
∂G
∂Vg

VsdVgf∆

(5.11)
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Figure 5.3: FM mixing current magnitude verses frequency at different source-drain voltage.
We see a symmetric line trace at small Vsd. When drive increases, we see a transition from
the linear regime to the nonlinear regime, and the line trace becomes more asymmetric.
Measurement is taken at Vg = 11 V and temperature = 4 K.
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Figure 5.4: The transconductance at Vg = 11 V. It can be found by taking the derivative of
the I-Vg curve then divided by Vsd. The source-drain voltage Vsd = 10 mV. Measurement
is performed at 4.6 K.

where d the equilibrium separation between the back gate and the graphene nanoribbon

(300 nm in our experiment, which is the thickness of SiO2 layer), δI the mixing current,

δf the width of the resonance peak, Vsd the source-drain voltage, Vg the gate voltage, f∆

is frequency modulation amplitude (100 KHz in our experiment).

We use a fixed gate voltage Vg for simplicity and consistency of the dataset. We

can find the transconductance ∂G
∂Vg

at the Vg value we choose. In Figure 5.4 we find the

transconductance at Vg = 11V.

Once we find the oscillation amplitude |δz|, we can use it to find the Duffing

parameter α.
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fres = f0 +
3α|δz|2

32π2f0m
(5.12)

where fres the resonance peak frequency, f0 the linear response resonance frequency, m the

mass of the graphene sheet. We etch the graphene to be nanoribbon with length 2 µm and

width 0.2 µm. The mass density of graphene is ρs = 7.6× 10−7 kg/m2 [7].

We linear fit fres vs. |δz|2 to first find y-intercept f0, then plug the value into the

fitted slope to find α.

α

η
= 4π

d∆f

dδf
f0 (5.13)

Once α is obtained, we can plug it in equation 5.13 to find η, where ∆f = fres−f0

is the frequency shift and δf is the width of the resonance frequency.

5.4 Nonlinear Mechanics at Various Temperatures

The temperature plays an important role in NEMS. Low temperatures not only

usually give a larger transconductance dG
dVg

, resulting in a more prominent resonance signal,

but also brings in thermal expansion effects and introduces less electron-phonon scattering.

We expect the nonlinear behaviors are different at different temperatures.

Due to the increased dG
dVg

and increased quality factor, the resonance signal is much

stronger at lower temperatures. As shown in Figure 5.5, the resonance amplitude is much

larger at a lower temperature, indicating a much stronger resonance. By linear fitting the

data, we can use equation 5.12 to find the Duffing coefficient α. α equals 2.1×1011 N/m3 at
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Figure 5.5: The figure shows the resonance frequency fres is a linear function of squared
resonance amplitude |δz|2, and the inset is the zoom-in view of the data at 8K. Both data are
measured with Vsd in range [-22 dBm (17.8 mV), -20 dBm (22.3 mV)]. At lower temperature,
the resonance amplitude is much larger, indicating a much stronger resonance. We can use
equation 5.12 to find the Duffing coefficient α by linear fit the data. α(4K) = 2.1 × 1011

N/m3, α(8K) = 5.5× 1012 N/m3.
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Figure 5.6: The figure shows the resonance frequency fres is a linear function of the reso-
nance peak width. Both data are measured with Vsd in range [-22 dBm (17.8 mV), -20 dBm
(22.3 mV)]. At lower temperature, the quality factor Q (defined as 2fres

fwidth
) is higher. We

can find the nonlinear damping coefficient η by linear fit the data. η (4K) = 288 Ns/m3, η
(8K) = 4421 Ns/m3.

4K, and 5.5×1012 N/m3 at 8K. The value increases by 20 times at the higher temperature.

We can also plot the resonance frequency as a function of the resonance peak

width, as shown in Figure 5.6. Linear fit the data gives the d∆f
d∂f term in equation 5.13.

Together with the Duffing coefficient α we find in Figure 5.5, we can find the nonlinear

damping coefficient η. With η equals 288 Ns/m3 at 4 K and 4421 Ns/m3 at 8 K, we see a

20 times increase of η at the higher temperature, which aligns very wells with the change

of α.
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Chapter 6

Conclusions

6.1 Conclusion

In this thesis, we combined the electrical and mechanical properties of graphene

and fabricated nano-scale mechanical resonators. We drove the source-drain voltage suffi-

ciently large to saw the transition from the linear resonance regime to the nonlinear res-

onance regime. We applied frequency modulation technique and measured the Duffing

coefficient and nonlinear damping coefficient at different temperatures. We also observed a

sign change of the Duffing coefficient when applying different source-drain voltage.

In addition, we developed shadow mask, a super clean technique enables rapid and

lithography-free device fabrication. We developed a stable recipe that has 70% throughout

yield ratio. The alignment precision can be as accurate as 1 µm.
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6.2 Future Work

People usually see positive α (Duffing coefficient) or negative α on different devices.

We reported the sign change of α for the first time. The cause of the change is not yet clear.

More devices and more careful measurements need to be done to confirm this behavior.

Theoretical work also need to be developed for better understanding.

There are two sources contributing to the quality factor in mechanical resonators:

energy dissipation and phase decoherence. The quality factor obtained in spectral response

is sensitive to both dissipation and dephasing, while the quality factor obtained in ringdown

measurement is sensitive to only dephasing. With increased driving power, both quality

factors will be affected by the nonlinear effect [40]. It will be interesting to investigate these

two quality factors’ dependence on temperature in the nonlinear resonance regime.
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[37] E Ollier, C Dupré, G Arndt, J Arcamone, C Vizioz, L Duraffourg, E Sage, A Koumela,
S Hentz, G Cibrario, et al. Ultra-scaled high-frequency single-crystal si nems resonators
and their front-end co-integration with cmos for high sensitivity applications. In Micro
Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on,
pages 1368–1371. IEEE, 2012.

[38] Aaron D OConnell, Max Hofheinz, Markus Ansmann, Radoslaw C Bialczak, Mike
Lenander, Erik Lucero, Matthew Neeley, Daniel Sank, H Wang, M Weides, et al.
Quantum ground state and single-phonon control of a mechanical resonator. Nature,
464(7289):697–703, 2010.

[39] Philippe Poncharal, ZL Wang, Daniel Ugarte, and Walt A De Heer. Electrostatic deflec-
tions and electromechanical resonances of carbon nanotubes. science, 283(5407):1513–
1516, 1999.

[40] Ben H Schneider, Vibhor Singh, Warner J Venstra, Harold B Meerwaldt, and Gary A
Steele. Observation of decoherence in a carbon nanotube mechanical resonator. arXiv
preprint arXiv:1503.06815, 2015.

[41] K Schwab. Spring constant and damping constant tuning of nanomechanical resonators
using a single-electron transistor. Applied physics letters, 80(7):1276–1278, 2002.

[42] JC Slonczewski and PR Weiss. Band structure of graphite. Physical Review, 109(2):272,
1958.

[43] Brian Standley, Wenzhong Bao, Hang Zhang, Jehoshua Bruck, Chun Ning Lau, and
Marc Bockrath. Graphene-based atomic-scale switches. Nano letters, 8(10):3345–3349,
2008.

[44] JD Teufel, T Donner, MA Castellanos-Beltran, JW Harlow, and KW Lehnert. Nanome-
chanical motion measured with an imprecision below that at the standard quantum
limit. Nature nanotechnology, 4(12):820–823, 2009.

[45] Georgia Tsoukleri, John Parthenios, Konstantinos Papagelis, Rashid Jalil, Andrea C
Ferrari, Andre K Geim, Kostya S Novoselov, and Costas Galiotis. Subjecting a
graphene monolayer to tension and compression. small, 5(21):2397–2402, 2009.

[46] Philip Richard Wallace. The band theory of graphite. Physical Review, 71(9):622,
1947.

[47] XC Zhang, EB Myers, JE Sader, and ML Roukes. Nanomechanical torsional resonators
for frequency-shift infrared thermal sensing. Nano letters, 13(4):1528–1534, 2013.

68




