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Task-sensitive retrieval from semantic memory
Andrew Z. Flores (azf2@illinois.edu)
Department of Psychology, 603 E Daniel St

Champaign, IL 61820 USA

Jon A.Willits (jwillits@illinois.edu)
Department of Psychology, 603 E Daniel St

Champaign, IL 61820 USA

Abstract
This study investigates the interaction between semantic relat-
edness and goals or task on memory retrieval. We used varied
tasks and concepts to explore how task influences how differ-
ent kinds of semantic relatedness influences semantic process-
ing. Our findings reveal a task-dependent interaction with se-
mantic relatedness. Specifically, in similarity judgement tasks
(experiments 1a and 1b), participants’ ratings closely aligned
with taxonomic relatedness, influenced by abstract visual and
linguistic similarity dimensions. In discrimination tasks (ex-
periments 2a and 2b), where participants distinguished a tar-
get from a semantically related distractor, visual characteris-
tics explained a greater amount of variance. These results sug-
gest semantic memory representations are dynamic and task-
dependent, supporting theories of a distributed semantic mem-
ory system.
Keywords: semantic relatedness; memory retrieval; distribu-
tional learning; eye-tracking

Introduction
The structure of semantic memory has been a long-standing
question in cognitive science. A primary means by which this
has been studied is the presentation of stimuli varying in se-
mantic relatedness, and using response accuracy and reaction
time to make inferences about the system’s representations
and processes. The underlying assumption of this approach
is that related concepts are represented in a manner that af-
fects retrieval.

For example, semantic priming (Hutchison, 2003) involves
presenting participants with pairs of words (prime and tar-
get) and observing responses to the target word. Reaction
times are often faster for related prime-target pairs, and by
manipulating the prime-target relationship, this can be used
to study the types of relationships encoded in semantic mem-
ory. In addition to priming, other tasks like self-paced reading
(Jegerski, 2013), and list memory tasks (Bower, Clark, Les-
gold, & Winzenz, 1969; Roediger & McDermott, 1995), and
semantic feature verification judgments (McRae, Cree, Sei-
denberg, & McNorgan, 2005) have all been used to study the
structure and function of semantic memory.

However, using these techniques to analyze the semantic
relationship between two words is not straightforward. Con-
sider banana and a strawberry, which share many relation-
ships. They are both members of the same taxonomic cat-
egory, share many semantic features, and have overlapping
sets of associations and roles they can fill. The fact that straw-
berry might prime banana could be explained by any of these
factors, and attempts to determine which kinds of relation-
ships do and do not lead to priming have not met with success
(Hutchison, 2003). An additional problem has been that there
has been inconsistencies in which studies find facilitated se-
mantic processing for different kinds of relationships (Willits,
Amato, & MacDonald, 2015).

One possible explanation for the problems above is that the
picture is overly simplistic. Perhaps semantic memory is not
organized in a static structure with a set of semantic relation-
ships that are always activated and always lead to facilitated
processing. This simple picture does not take into account the
context, goals, or other top-down constraints on a person in-
teracting with those objects or words. They may be engaged
in a task that requires the activation of specific features (e.g.,
shape, flavor, color), specific functions (e.g., juiciness, tasti-
ness), specific roles (e.g., for eating, or as a decoration), or
specific associative relationships (e.g., strawberry jam, where
the bananas are in a grocery store). Different features or rela-
tions may be activated differentially as a function of the top-
down context, leading to disparate patterns of facilitation if
these factors are not taken into account.

Rather than viewing semantic memory as a static set of
relationships, an alternative perspective is to treat semantic
memory as a dynamical system that is sensitive to the task
being performed. The idea of semantic memory structure
as a dynamical system that integrates and differentially ac-
tivates various modality specific information has long been
examined in the context of neuroscience research (Binder &
Desai, 2011; Ralph, Jefferies, Patterson, & Rogers, 2017).
The perspective also has historical support within cognitive
psychology. For example, in the classic ”Transfer Appropri-
ate Processing” experiment, Morris, Bransford, and Franks
(1977) showed that retrieval from memory could be better
explained by whether a memory retrieval task matched the
memory encoding task, rather than how ”deeply” the stimu-
lus was processed during encoding. Barsalou (1983) demon-
strated that human categorization abilities are extremely dy-
namic, and that the features used for categorization change
dramatically depending on the context. In related research,
Nosofsky (1986) demonstrated in category learning exper-
iments that different similarity structures are for exemplar
recall and categorization. Willits et al. (2015) showed that
whether participants were activating linguistic knowledge or
world event knowledge could be shifted dramatically based
on whether the task was better performed with one kind of
information or the other.

Current Research
Our current research builds on the previous research suggest-
ing task sensitive retrieval from semantic memory. Central
to our investigation is the hypothesis that the nature of the
task and semantic relatedness between concepts interact dur-
ing semantic memory retrieval. In order to test this notion, we
use a set of concepts (described below) that are paired so as to
vary their degree of semantic relatedness. Using these pairs of
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concepts, we quantify their semantic relatedness along three
primary dimensions: 1) low-level visual features, 2) high-
level visual features used for object recognition and clas-
sification, and 3) linguistic distributional semantic features.
We use these three types of features to investigate the extent
to which they predict unique or overlapping information in
different behavioral tasks. Our two main experiments are a
semantic similarity rating task (Experiment 1), and a visual
object identification task (Experiment 2). This manipulation
was designed to elicit the activation of different semantic fea-
tures. Within each experiment, we also performed additional
task manipulations designed to shift the relative importance
of different features.

I: Stimuli
Our stimulus set consisted of 128 concepts from two top-level
categories (natural and human-made), four superordinate cat-
egories (animals, foods, room objects, tools), and four sub-
ordinate categories from each superordinate categories(e.g.,
from animals, birds, insects, mammals, and sea creatures). .
The items were used to create sets of pairings such that words
were always paired with a word matched in frequency (high
vs. low), and each concept participated in each of the follow-
ing pairings that manipulated strength of relatedness. Level
4 (most related) pairs were the most similar pairs from the
same subordinate categories, with high visual and linguistic
feature overlap. Level 3 pairs were less similar concepts from
the same subordinate category. Level 2 pairs were from the
same superordinate category but from different subordinate
categories. Level 1 (least related) pairs were from different
superordinate categories.

The pairings were counterbalanced such that each concept
occurred in all four conditions. For each concept, simple im-
ages were selected that showed the object on a white back-
ground. Examples of the images and their pairings are shown
in Figure 1 below.

Figure 1: Example pairings from the four semantic related-
ness conditions and their corresponding word frequencies.

II: Measures of Semantic Relatedness
This section focuses on deriving metrics of semantic related-
ness in terms of low level visual similarity, high level visual
features useful for object categorization, and distributional
linguistic similarity. The hypothesis was that different tasks
would engage these features to different degrees, and thus the
similarity of the concepts in terms of the different kinds of
features would have different degrees of predictive power on
different experiments.

Low-Level Visual Features
Lower level features of images such as shape and color have
previously been shown to impact memory retrieval. For in-
stance color relations have been shown to influence allocation
of attention in visual world paradigms (Huettig & Altmann,
2011) (i.e., hearing the word lime diverts looks toward a sim-
ilarly colored frog). Thus, we examined three measures em-
phasizing lower-level perceptual information:
Histogram of Oriented Gradients (Edge-Detection): Uti-
lized for object detection in computer vision. It calculates
gradient orientation in image parts, capturing local shape
characteristics (Dalal & Triggs, 2005).
Histogram of Color Similarity (RGB Histogram): Ana-
lyzes the color distribution in images to assess color similarity
(Stricker & Orengo, 1995).
Structural Similarity Index (Struct-Similarity): Measures
perceived image quality compared to a reference, focusing on
structural changes, luminance, and texture, rather than pixel
differences (Wang, Bovik, Sheikh, & Simoncelli, 2004).

High Level Visual Features for Object Classification
There are many ways one could go about identifying visual
features useful for object recognition and categorization. We
chose to use the internal representations of convolutional neu-
ral networks, which are both very good at object classifica-
tion, and have been shown to be correlated with human be-
haviors (Van Dyck, Kwitt, Denzler, & Gruber, 2021). We
used ResNet-50 v1.5 (He, Zhang, Ren, & Sun, 2016) to trans-
form visual stimuli into high-dimensional feature vectors. In
particular we were interested in contrasting initial and deeper
layers in the CNN, due to research which has found that ear-
lier layers (L0) primarily encode basic visual elements such
as brightness, hue, and contours, and later layers (L7 ResNet)
encode abstract object features and relationships useful in ob-
ject categorization (Yosinski, Clune, Nguyen, Fuchs, & Lip-
son, 2015; Zeiler & Fergus, 2014).

Distributional Linguistic Similarity
A popular approach to quantifying the semantic similarity
between two words has been the extent to which the two
words share linguistic contexts (Burgess & Atchley, n.d.).
Distributional semantic models have yielded many insights
into the kinds of concept representations which are predic-
tive of semantic memory retrieval performance (McDonald
& Lowe, 2022). In this study, we used the similarity of
two words according to the Word2Vec Skip-Gram model
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(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). This
model constructs a high-dimensional semantic space by min-
imizing the error predicting words near the target word.

Comparing Semantic Relatedness Measures
Our first analysis examined the similarity distribution of the
different relatedness measures across our four stimulus relat-
edness conditions. For each of our concepts, we created a
feature vector based on each of the six above-described mea-
sures of semantic similarity. We then computed the similarity
scores of these measures for all the pairs in our four related-
ness conditions. These results are shown in Figure 2

We found that similarity in terms of lower level vi-
sual measures (RGB Histogram, Structural Similarity and
ResNet Layer 0) had overlapping distributions and did not
vary significantly across relatedness conditions. In contrast
Word2Vec and ResNet Layer 7 better captured the graded lev-
els of relatedness across our conditions. This is in some re-
spects expected given how both Word2Vec and ResNet Layer
7 each encode information that has been used for semantic
categorization of images and words respectively, which is em-
bodied in the nature of our different conditions. But it is no-
table and important for interpreting the later results, that the
lower level features did not vary.

Figure 2: Violin plots showing the distribution of cosine sim-
ilarity scores across all item-pairs and taxonomic relatedness.

We were also interested in knowing the intercorrelations of
our similarity measures. Because the nature of the distribu-
tions of the different measures varied considerably, we com-
puted a Spearman rank correlations for each measure (e.g.,
did the similarity rank of pairs in terms of their Resnet Layer
7similarity predict their similarity rank in terms of Word2Vec
similarity). Overall the pattern of results show greater cor-
relations within lower-level visual features and higher level
(linguistic and visual) features, rather than between high and
low level features. As shown in Figure 2, the strongest cor-
relation was between Structural Similarity and ResNet layer
0, both measures that encode low level features of images.
Similarly we observed a negative correlation between Struc-
tural Similarity and Edge Detection (-0.28), which may be
attributable to the nature of each method. Structural Simi-
larity encodes aspects of image quality that focus on broader
textural features while Edge Detection focuses on pixel-wise

properties. The higher level features were also correlated with
each other. The distributional linguistic semantic measures of
Word2Vec were correlated with Resnet layer 7 (0.45).

Figure 3: Correlation matrix of semantic relatedness mea-
sures, bolded values indicate significance after Bonferroni
correction. p<0.05, ** p<0.01, *** p<0.001

However, exceptions to this pattern emerged. For instance,
the Spearman rank correlation between Edge-Detection and
Word2Vec were low but significant (0.23). One possibility
may regard the prominent role that shape plays in concep-
tual representations (Landau, Smith, & Jones, 1988). Edge-
Detection was also highly correlated with ResNet layer 7
(0.57), also not surprising how important shape might be to
object categorization.

To summarize, our concept pairs varied considerably along
all six feature measures. This provide ample variance along
visual and linguistic dimensions that may be useful for pre-
dicting behavioral data in the following experiments. Some
of the similarity measures (Word2Vec, Resnet Layer 7) cor-
related strongly with the differences in semantic relatedness
defined in our design. Others (low level visual features) did
not. In the following we examine how these disparate mea-
sures are recruited during semantic memory retrieval.

Experiment 1: Semantic Similarity Judgement
Across two sub-experiments (1a and 1b) we asked partici-
pants to provide semantic similarity judgements. Participants
in both experiments saw all the same items, but their simi-
larity distribution varied across conditions. In experiment 1a
participants were shown a series of images with an equal dis-
tribution across all four levels of taxonomic relatedness (i.e.,
one quarter of their items from relatedness conditions 1, 2, 3,
and 4). In experiment 1b, participants saw only image pairs
from a single relatedness condition (i.e., all of their items
from either condition 1, 2, 3, or 4).

Hypotheses. We hypothesize that the nature of the task will
significantly impact which dimensions of meaning matter.
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Specifically, we expect that lower level visual features will
account for a significant portion of the variance, due to the na-
ture of the tasks and the use of visual stimuli across all exper-
iments. In tasks that rely on complex evaluations of meaning
(like similarity ratings) we predicted that Word2Vec would
account for more variance than Resnet Layer 7. In tasks that
are more similar to object recognition tasks, we predicted that
Resnet Layer 7 would predict more variance than Word2Vec.

For experiment 1a in which all four relatedness conditions
are present, we hypothesized participants will closely align
to these categories in their judgements, further we expect se-
mantic relatedness measures which correlate highly with tax-
onomic relatedness (Resnet Layer 7 and Word2Vec) to ac-
count for most variance in this task, with the linguistic fea-
tures predicting more variance than the visual features. In
contrast, we hypothesize that experiment 1b will require par-
ticipants to adjust the kinds of relationships which are diag-
nostic of similarly paired items. That is if participants contin-
ually see pairs that are highly semantically related (e.g dog-
cat, tiger-lion, guitar-violin, clarinet-flute) in which broad
category memberships are less useful we may see a more
prominent role for visual information. This is largely due to
the visual features in Resnet Layer 7 being highly biased to-
wards features that help discriminate easily confusable items.

Methods
We recruited 70 participants for experiment 1a and 120 for
experiment 1b from the University of Illinois student partic-
ipation pool. We asked the participants to rate the seman-
tic relatedness of two presented images using a 5 point lik-
ert scale. Participants were provided the following definition
of semantic relatedness: ”Semantic relatedness refers to the
degree to which the concepts represented by the images are
similar or share meaning. Consider factors such as similarity
in category, function, or appearance”. We intended these in-
structions to be broad so as to not bias the participant to con-
sider any one aspect of meaning to heavily. During the test-
ing phase each trial initially began with the slider positioned
in the neutral center position of the likert scale, participants
were then free to indicate each image pairs judged semantic
relatedness. All image positions were randomized across all
participants and all stimuli pairs.

Results
For each of the experiments, we aim to characterize the in-
teraction between semantic relatedness and memory retrieval
processes. Using the measures of semantic relatedness from
the previous section, we aim to predict the performance in
each behavioral experiment using a statistical modeling ap-
proach that allows us to quantify the unique contribution of
each measure to each task. For each experiment we build
a progression of hierarchical models in which the response
variable (e.g., similarity rating, reaction times, etc.) are pre-
dicted by each measure of semantic relatedness from section
I. Notably we took an approach that allows us to measure how
the addition of each predictor influences the overall model fit

using the Akaike Information Criterion (AIC). This involves
first building a model with a single predictor (i.e RGB Hist)
and successively adding each one while measuring model fit.

In each experiment, we always first built a model that
added the low-level visual features one at a time, resulting
in a model with all low level visual features. We then created
one model that first added Resnet L7 (high level visual fea-
tures) and then Word2Vec (linguistic features), and a second
model that added Word2Vec first and Resnet Layer 7 second.
Because these two measures were correlated, and we were
particular interested in the relative importance of visual and
linguistisc features across tasks, we wanted to see if they ex-
plained different and more variance on different tasks.

Our initial analysis examined the relationship between the
similarity ratings given by participants and taxonomic relat-
edness. A high correlation between these ratings and related-
ness condition would suggest that participants’ judgments are
influenced by these semantic relationships. Conversely, low
correlations, where ratings vary significantly and don’t align
with taxonomic groups, could imply that other factors influ-
ence how participants perceive similarity. We also considered
how different conditions might affect these ratings. In ex-
periment 1a, participants encountered a variety of relatedness
levels. In experiment 1b, they were exposed to only one level
of relatedness. Our hypothesis was that the dynamic nature of
the task – encountering different levels of relatedness – would
impact the ratings. Specifically, we expected that in experi-
ment 1b, where participants experience less variation in tax-
onomic relatedness, their judgments might rely more on indi-
vidual interpretations and less on clear taxonomic categories.
This could lead to a greater focus on visual aspects or other
non taxonomic factors. As depicted in Figure 4 in experiment

Figure 4: Average norming across taxonomic relatedness
condition for all item pairs.
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1a, where participants saw a full range of relatedness levels,
their ratings more closely aligned with relatedness condition
(r=.88). In experiment 1b, with limited exposure to related-
ness variety, the ratings were more diverse and less aligned
with semantic relatedness(r=.78). This suggests that expo-
sure to a wider range of relationships might make those re-
lationships more prominent in participants’ judgments, and
may have shifted which features they were attending to.

To further investigate this possibility we built a series of
hierarchical models predicting a given similarity judgement
response using each relatedness measure. These modeling re-
sults are displayed in Table 1, where the ∆ AIC indicates the
difference in terms of raw AIC scores between each model
and the model with the smallest overall AIC value. The χ2

values reflect the model comparison of each simple model
with the next more complex model in sequence (i.e M0 vs
M1, M1 vs M2, etc). For experiment 1a, each predictor ex-
plained additional significant variance, even the lowest level
visual features. In the critical contrast where Word2Vec
and Resnet Layer 7 were added in different orders, Resnet
Layer 7 and Word2Vec predicted some of the same variance,
but more was explained by Word2Vec than Resnet Layer 7.
When Word2Vec was added first, little AIC change was seen
from then adding Resnet Layer 7, whereas in the other order,
adding Word2Vec changed AIC by a large amount even after
Resnet Layer 7 was added.

In contrast for experiment 1b, in which participants saw a
consistent range of similarity (some saw all highly related,
some medium, some all low related), we found that the in-
clusion of lower level feature predictors including RGB His-
togram and Edge-Detection did not improve model fit. Like
1a, we found that both Resnet Layer 7and Word2Vec ex-
plained larger amounts of variance. But the relative impor-
tance of Resnet Layer 7 was even lower in 1b than in 1a.

Discussion
The patterns of results found in both experiments 1a and 1b,
showcase the multiple dimensions of meaning which under-
lie semantic similarity judgements. As expected, higher level
linguistic semantic features dominated the models in terms
of what predicted similarity ratings. Visual features mattered
to a small extent when participants where shifting from high
similarity to low similarity comparisons across trials, and var-
ied much less when they were fixated on similarity compar-
isons of consistent similarity. One potential reason we saw a
reduced role of lower level visual features across both tasks
may be due to the nature of the task, in which participants
are allowed to consider the extent to which two items are re-
lated with no time constraints. Given unlimited time, partici-
pants initial considerations of these lower level features may
be replaced by more abstract and retrievable kinds of mean-
ing which are more categorical in nature . Overall, in both
experiment 1a and 1b we found a consistent set of results that
highlight the role of more conceptually driven, abstract mea-
sures compared to lower level visual feature information.

Experiment 2: Semantic Discrimination

In Experiment 2 we asked participants to identify a referent
target when in competition with a competitor that varied in
terms of its semantic relatedness. Experiment 2a was a re-
action time task where participants where asked to click on
the identified object. Experiment 2b was an eye-tracking task
where they were asked to look at one of the objects. We in-
vestigated how the distinct measures of semantic relatedness
impacted performance in these task. Both tasks utilized the
same paradigm, pairs of images varying in similarity and an
outcome that captures the cognitive processing of semantic
memory retrieval. What differed between these tasks was the
difference in the nature of the outcome measures. Experi-
ment 2a measures reaction times, a summary measure. In
turn, experiment 2b captures moment by moment cognitive
processing allowing us to measure the relative importance of
the varied semantic relatedness measures over time.

Methods
The experimental paradigm was the same for both 2a and 2b.
Each involved the presentation of pairs of pictures, along with
an auditory cue asking the person to select via button press
(Experiment 2a) or ”look at” (Experiment 2b) one of the two
pictures. The image pairs shown were the same as those pre-
viously described in our stimuli section. Each participant saw
64 total image pairs distributed evenly across the four taxo-
nomic relatedness levels. Across participants the presentation
(i.e left or right) of the target image, as well as the overall or-
der of trials was randomized. The items were put onto coun-
terbalanced lists such that each picture in each pair appeared
as a target and a distractor for different participants.

Experiment 2a (Button Press) Design. We re-
cruited 480 participants from the University of Illinois
from a student subject pool. Participants were in-
structed to access an online version of the experiment
(https://run.pavlovia.org/azf2/visual/semantics), which im-
plemented the task using the JavaScript library JSpsych
(De Leeuw, 2015). Precautions to ensure data quality
included providing participants with an opportunity to check
whether their audio was working, providing instructions
that specified how to enter each choice using the keyboard
and practice trials prior to starting the experiment. During
a single trial participants were able to input a decision via
button press at any point during the trial, with trials ending
once a response was recorded.

Experiment 2a Results and Discussion. As predicted, re-
action times varied significantly as a function of relatedness,
with slower reaction times observed in higher relatedness
conditions (Table 2). To understand how distinct similar-
ity measures predicted behavior in experiment 2a, we again
applied our model comparison approach. As shown in Ta-
ble 1, we found that low level visual features explained rel-
atively little variance. In contrast, the higher level features
Resnet Layer 7and Word2Vec explained considerably more
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Model Experiment 1a Experiment 1b Experiment 2a Experiment 2b
∆ AIC χ2

(sig.) ∆ AIC χ2
(sig.) ∆ AIC χ2

(sig.) ∆ AIC χ2
(sig.)

M0: + Rand.Eff 8864 1560 149 11740076
Time: M0 + Time 7611 895055
M1: Time + RGB Hist 8733 139 1567 2 150 0 7440 1357
M2: M1 + Struct Sim 8636 105 1576 0 149 3 6169 93
M3: M2 + L0 ResNet 8397 246 1549 36 151 0 6154 19
M4: M3 + Edge-Det 7639 767 1490 68 129 24 5357 800
M5a: M4 + L7 ResNet 4600 3048 1253 246 29 102 960 4401
M6a: M5a + Word2Vec 0 4612 0 1263 0 31 0 964
M5b: M4 + Word2Vec 836 6814 150 1349 33 98 1939 3423
M6b: M5b + L7 ResNet 0 845 0 160 0 35 0 1943

Table 1: Note—∆ AIC = [AICi – min(AIC)]. χ2 values represent the comparison of the simpler vs complex model in succession.
Bolded χ2 values are significant at the p < 0.001.

and highly overlapping variance. Whichever one was put in
the model first explained the most (∆AIC near 100, vs. 30).

Experiment 2b (Eye Tracking) Design We recruited 320
participants from the University of Illinois student partici-
pant pool. All participants were required to report English
as their first language. During the experiment, participants
were seated in front of a 16-inch LCD monitor with an SR
Research EyeLink 1000 eye tracker. The monitor was posi-
tioned a 600 from the participant’s forehead, and the auditory
stimuli were presented through a speaker below the monitor.
Before starting the experiment, a calibration procedure was
performed. Each trial started with a 50x50 central fixation
point that disappeared once fixated for 50 ms. This was fol-
lowed by the presentation of the target and distractor image
for 2000 milliseconds in silence. Then, the auditory stimu-
lus (variable length) was played, and both images remained
on the screen. After the audio offset, the target and distractor
remained on the screen for another 4,000 milliseconds.

Experiment 2b Results and Discussion The data was di-
vided into 8ms intervals for analysis. The areas of interest
were defined as two 300x300 pixel regions surrounding the
target and distractor images. All fixations to the target or
distractor were coded as either 1 (fixation toward target) and
0 (fixation toward distractor). All statistical analysis is de-
rived from eye movements that occurred between 150 mil-
liseconds and 2000 milliseconds after the onset of the tar-
get label. As we predicted based on previous research using
the visual world paradigm, participants were faster to look at
objects the more semantically unrelated the target (Table 2).
To understand how distinct similarity measures predicted be-
havior in experiment 2b, we once again applied our model
comparison approach, this time putting in each predictor as
an interaction with time since target onset. Here we found
that all the predictors accounted for significant variance (the
first being very high because of the time interaction). For
models contrasting Resnet 7 and Word2Vec, both models still
predicted relatively high variance when entered first, but this

time, in the most visual-feature sensitive task, Resnet 7 was
the clear winner compared to Word2Vec.

Relat. Experiment 2a Experiment 2b

Mean RT [95% CI] Mean Acc. [95% CI]

1 835 [828, 842] 0.753 [0.753, 0.754]
2 842 [835, 849] 0.778 [0.778, 0.779]
3 859 [851, 866] 0.782 [0.782, 0.783]
4 873 [865, 881] 0.781 [0.780, 0.781]

Table 2: Reaction times (Exp 2a) and target fixation (Exp 2b)
across semantic relatedness conditions. Note: RT is the time
required to identify target after noun onset. Accuracy reflects
the proportion of fixations towards target vs distractor item.

General Discussion
Utilizing a wide range of concepts and a variety of naturalistic
semantic memory tasks, we examined how semantic related-
ness, defined multiple ways, impacted memory retrieval, and
how the task affected how those different kinds of relatedness
affected semantic processing. When asked to judge the sim-
ilarity between concepts (Exp 1a and 1b), participants judg-
ments were highly correlated with measures of relatedness
reflecting the taxonomic organization of the stimuli, with lin-
guistic features predicting the most variance. In experiments
where participants were asked to discriminate a target refer-
ent from a semantically related distractor (Exp 2a and 2b),
we found an overall pattern of increasing interference with in-
creased semantic relatedness. These interference effects were
characterized in our modeling work, which showed that the
more ”visual” the task, the more visual rather than linguistic
semantic features predicted the behavior.

These findings that retrieving concepts from memory acti-
vates qualitatively distinct sets of features across distinct di-
mensions of meaning supports the notion of a highly dynamic
representational system that is sensitive to the relations high-
lighted or available within the current task demands.

4877



References

Barsalou, L. W. (1983). Ad hoc categories. Memory & cog-
nition, 11, 211–227.

Binder, J. R., & Desai, R. H. (2011). The neurobiology of
semantic memory. Trends in cognitive sciences, 15(11),
527–536.

Bower, G. H., Clark, M. C., Lesgold, A. M., & Winzenz, D.
(1969). Hierarchical retrieval schemes in recall of cat-
egorized word lists. Journal of verbal Learning and
verbal Behavior, 8(3), 323–343.

Burgess, C., & Atchley, R. A. (n.d.). Semantic and associative
priming in high-dimensional semantic space.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In 2005 ieee computer so-
ciety conference on computer vision and pattern recog-
nition (cvpr’05) (Vol. 1, pp. 886–893).

De Leeuw, J. R. (2015). jspsych: A javascript library for
creating behavioral experiments in a web browser. Be-
havior research methods, 47, 1–12.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the
ieee conference on computer vision and pattern recog-
nition (pp. 770–778).

Huettig, F., & Altmann, G. T. (2011). Looking at anything
that is green when hearing “frog”: How object surface
colour and stored object colour knowledge influence
language-mediated overt attention. Quarterly Journal
of Experimental Psychology, 64(1), 122–145.

Hutchison, K. A. (2003). Is semantic priming due to as-
sociation strength or feature overlap? a microanalytic
review. Psychonomic bulletin & review, 10, 785–813.

Jegerski, J. (2013). Self-paced reading. In Research meth-
ods in second language psycholinguistics (pp. 36–65).
Routledge.

Landau, B., Smith, L. B., & Jones, S. S. (1988). The im-
portance of shape in early lexical learning. Cognitive
development, 3(3), 299–321.

McDonald, S., & Lowe, W. (2022). Modelling functional
priming and the associative boost. In Proceedings of
the twentieth annual conference of the cognitive sci-
ence society (pp. 675–680).

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C.
(2005). Semantic feature production norms for a large
set of living and nonliving things. Behavior research
methods, 37(4), 547–559.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean,
J. (2013). Distributed representations of words and
phrases and their compositionality. Advances in neural
information processing systems, 26.

Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Lev-
els of processing versus transfer appropriate process-
ing. Journal of verbal learning and verbal behavior,
16(5), 519–533.

Nosofsky, R. M. (1986). Attention, similarity, and the
identification–categorization relationship. Journal of

experimental psychology: General, 115(1), 39.
Ralph, M. A. L., Jefferies, E., Patterson, K., & Rogers, T. T.

(2017). The neural and computational bases of seman-
tic cognition. Nature reviews neuroscience, 18(1), 42–
55.

Roediger, H. L., & McDermott, K. B. (1995). Creating false
memories: Remembering words not presented in lists.
Journal of experimental psychology: Learning, Mem-
ory, and Cognition, 21(4), 803.

Stricker, M. A., & Orengo, M. (1995). Similarity of color
images. In Storage and retrieval for image and video
databases iii (Vol. 2420, pp. 381–392).

Van Dyck, L. E., Kwitt, R., Denzler, S. J., & Gruber, W. R.
(2021). Comparing object recognition in humans and
deep convolutional neural networks—an eye tracking
study. Frontiers in Neuroscience, 15, 750639.

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P.
(2004). Image quality assessment: from error visibility
to structural similarity. IEEE transactions on image
processing, 13(4), 600–612.

Willits, J. A., Amato, M. S., & MacDonald, M. C. (2015).
Language knowledge and event knowledge in language
use. Cognitive psychology, 78, 1–27.

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., & Lipson, H.
(2015). Understanding neural networks through deep
visualization. arXiv preprint arXiv:1506.06579.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and under-
standing convolutional networks. In Computer vision–
eccv 2014: 13th european conference, zurich, switzer-
land, september 6-12, 2014, proceedings, part i 13 (pp.
818–833).

4878




