
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Uncovering the Metricity of Representational Spaces in the Brain:  Evidence from Colors and 
Letters

Permalink
https://escholarship.org/uc/item/6r11x1md

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

ISSN
1069-7977

Authors
Caglar, Leyla
Hanson, Catherine
Hanson, Stephen Jose

Publication Date
2021
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6r11x1md
https://escholarship.org
http://www.cdlib.org/


Uncovering the Metricity of Representational Spaces in the Brain:  
Evidence from Colors and Letters  

Leyla Roksan Caglar (lcaglar@andrew.cmu.edu) 
Department of Psychology, Carnegie Mellon University, 4909 Frew Street 

Pittsburgh, PA 15213 USA 
Department of Psychology, University of Coimbra, R. Inácio Duarte 65 

Coimbra, 3000-481 Portugal 

Catherine Hanson (cat@rubic.rutgers.edu) 
Department of Psychology, Rutgers University Brain Imaging Center (RUBIC), Rutgers University, 197 University Avenue 

Newark, NJ 07102 USA 

Stephen José Hanson (jose@rubic.rutgers.edu) 
Department of Psychology, Rutgers University Brain Imaging Center (RUBIC), Rutgers University, 197 University Avenue 

Newark, NJ 07102 USA 
 
 

Abstract 
An ongoing debate about the structure of conceptual space is 
based on two competing mathematical theories of similarity 
that make distinct predictions about the structure of mental 
representations and how to model the representational space 
they are stored in. These are known as metric (Shepard, 1962) 
and ultrametric (Tversky, 1977) theories, modeled by 
multidimensional scaling and additive trees respectively. 
Turning to the brain to resolve this conflict, we propose a 
computational framework to assess behavioral and neural 
data’s underlying structure and investigate whether the 
behaviorally known spaces for colors (metric) and letters 
(ultrametric) can be reproduced from neural data. Our results 
show that the metric color wheel can be reproduced from 
brain area V4, but that neural activations of the letters from 
extrastriate cortex (V2-V5) are also metric instead of being 
ultrametric. Finally, we discuss three possibilities for the 
brain’s similarity structure, including a potential metric bias. 

Keywords: additive tree; concepts, MDS; metricity; 
representational spaces; similarity structure, ultrametric 

Introduction 
The brain can represent a vast amount of information about 
objects, concepts, and categories at different levels of 
abstraction while also preserving their individuality and 
relationships to one another. Understanding how the brain 
solves such fundamental problems of representation is still 
subject to avid debate. Our approach in tackling these 
queries is to characterize different properties of the 
conceptual (or psychological) space, thought to store all 
representations of object, concept, and category knowledge. 

Central to this endeavor is the notion of similarity – a 
relation between two perceptual or conceptual objects – 
which fundamentally underlies our understanding of 
concepts and categories and their mental representations 
(Edelman, 1998; Hahn & Chater, 1997; Shepard, 1980, 
Tversky, 1977). Perceived similarity has classically been 
measured using behavioral tasks, such as similarity 
judgments, object sorting, substitution errors, or 

identification/discrimination errors. This idea of measuring 
an item’s internal representation via its relation/similarity to 
other items is based on a second-order isomorphism of 
internal representations (Shepard & Chipman, 1970). A 
second-order isomorphism - also used in representational 
similarity analysis (RSA; Kriegeskorte et al., 2008) - 
assumes no direct correspondence of properties between an 
object’s external and internal relationship, allowing for 
measurements of similarity without prior knowledge about 
the physical stimuli’s structure or properties. 

Mathematical Models of Similarity 
In the past century, two prominent mathematical theories 
have made distinct predictions about the organization of 
mental representations and how to model the psychological 
(or conceptual) space they are stored in. 

Metric theories (Shepard, 1962; Thurstone, 1927) propose 
that concepts are represented as points in a continuous 
metric space. The similarity (or dissimilarity) between 
concepts is argued to be a function of the distance between 
all other concepts, with more similar concepts being 
represented by closer points in the space. Proposed as a 
Universal Law of Generalization, Shepard (1987) argues 
that perceived similarities are inversely related to 
psychological distances via an exponential decay function of 
form s(A,B)=e−d(A,B), where A and B are two percepts (e.g. 
objects or concepts). This metric psychological space can be 
modeled and visualized using a technique called non-metric 
multidimensional scaling (MDS) (Kruskal & Wish, 1978). 
The goal of MDS is to reconstruct a k-dimensional 
geometric space that preserves the distances of perceived 
(dis)similarities. 

Ultrametric theories (Tversky, 1977; Tversky & Gati, 
1978), on the other hand, propose that similarity is a 
function of both common and distinctive features. Here, 
perceived similarities are a result of a feature matching 
process of common and distinctive features that are 
differentially weighted, leading to a concept with more 
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common and less distinctive features to increase in 
similarity. Tversky’s contrast model expresses this as a 
linear combination, where the similarity of stimuli A and B 
is s(A, B) = α g(A ∩ B) – β g(A – B) – γ g(B – A), with the 
constants α, β, and γ being subject to contextual change. 
Tversky’s contrast model can visually be represented in a 
variety of different tree structures (i.e., hierarchical 
clustering schemes, and ultrametric or additive trees). Yet, 
Sattath and Tversky (1977) directly extended the contrast 
model through the construction of additive feature trees in a 
method called Addtree, which is an unrooted binary additive 
tree, where concepts (and their shared features) are 
represented as nodes in a connected graph and relations 
between nodes reflect the observed proximities. 

Metric and ultrametric theories (also referred to as spatial 
and tree models respectively) describe different cognitive 
processes involved in determining two objects’ similarity. 
Detecting whether a dataset is better fit by a metric or 
ultrametric model can consequently be informative about 
the cognitive processes that underly object perception, 
similarity, categorization, and representation.  

Behavioral Evidence 
Ample behavioral evidence supports both metric and 
ultrametric theories as a characterization of psychological 
space (Pruzansky, Tversky, & Carroll, 1982; Shepard, 1980) 
and as a tool to reveal the underlying structure and 
dimensions of various representational spaces. Shepard 
(1964), for example, showed that a 2D MDS solution of 
Ekman’s (1954) color data recovers the well-known color 
wheel (Newton, 1704). Meanwhile, researchers were also 
testing the ultrametric theory and the fit of tree models 
(Tversky & Gati, 1982). Sattath and Tversky (1977) 
compared the MDS and Addtree solutions of visual 
similarity judgments of Swedish letters, originally collected 
by Kuennapas and Janson (1969). While the MDS solution 
reveals one possible dimension of round vs. straight letters, 
the other dimensions remain ambiguous. The Addtree 
solution however reveals very distinct and easily 
interpretable clusters (e.g., vertical, arched, etc.).  

To date, the investigation and comparison of metric and 
ultrametric theories has exclusively been based on 
behavioral data and researchers were not able to resolve the 
conflict, concluding that both the task and the stimulus 
structure determine what the structure of the 
representational space will be (Pruzansky, Tversky, & 
Carroll, 1982). This might be because behavioral similarity 
data is biased and subjective, subject to change based on the 
context and stimulus sample, and limited in dimensionality. 
Furthermore, behavioral similarity data might be a more 
indirect way of measuring representations, as it is the output 
of a sequence of decision processes that can undergo a 
variety of cognitive transformations before being measured 
as behavioral output. Turning to the brain could provide 
new constraints in differentiating between these theories, 
offer higher dimensionality and degrees of freedom, and 
constitute a more direct way of measuring representations 

and their representational spaces before undergoing some of 
the cognitive processes. 

Consequently, our goal was to experimentally investigate 
whether known similarity representations underlying 
psychological space can be reproduced from neural data. 
Using functional magnetic resonance imaging (fMRI), we 
investigated whether the known psychological spaces of 
colors (metric) and letters (ultrametric) can be modeled 
from neural activations, predicting that their representational 
spaces will be congruent. 

Detecting Similarity Structures 
To evaluate the representational structure of conceptual 

spaces, we propose a computational framework that assesses 
the performance of the metric and ultrametric theories’ 
modeling tools (i.e., MDS and Addtree). In addition to 
providing reliable measures of whether a given data is better 
represented in a metric or an ultrametric space, this 
framework also needs to be applicable to both behavioral 
and neural data.  

The proposed similarity structure analysis (SSA) consists 
of three different measures and is an extension of the 
comparative methods proposed by Pruzansky, Tversky, and 
Carroll (1982). The first measure is a visual examination 
and interpretability of the data in the metric space using 
nonmetric MDS (Kruskal & Wish, 1978; Kruskal, 1964) 
and in the ultrametric space using least square fits of 
Addtree (Sattath & Tversky, 1977). Despite the lack of 
explicit feature dimensions, these visualizations can be 
examined for shared features to identify the data’s 
underlying dimensions. The second measure evaluates the 
models’ goodness of fit. Model fits are determined based on 
the r2-value based on a linear regression between observed 
proximities and model distances as well as by computing 
and comparing the Akaike Information Criterion (AIC) of 
each model. The third measure examines the data’s 
skewness based on standardized and centered frequency 
distributions. This is based on Sattath & Tversky’s (1977) 
Skewness Theorem, which shows that left-skewed data is 
better modeled by ultrametric spaces and right-skewed data 
is better modeled by metric spaces.  

To demonstrate the SSA’s validity we used two different 
data types with a known structure: real-world metric 
distances between US cities and taxonomic data of plants 
(Oksanen et al., 2019). The SSA shows an accurate 
detection of the underlying similarity structure in both cases 
(Table 1). Visually, MDS scales the US city distances into 
their correct positions on a map of the US, while Addtree 
separates the cities into east and west coast locations. While 
Addtree shows a relatively good r2 fit as well, only MDS is 
able to uncover the underlying latent structure of the US 
map, highlighting the importance of considering all three 
tests in conjunction. For the taxonomic data of plants, on the 
other hand, Addtree outperforms MDS and provides a 
perfect fit to the data (r2=1) and groups them by their 
ecological constraints.  
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Second, we tested the SSA’s performance on behavioral 
similarity judgments with an unknown structure, using the 
well-known case of colors and letters (Table 1). As 
expected, the SSA reveals a better metric fit for the colors 
and produces the well-known color wheel (Ekman, 1954; 
Newton, 1704; Shepard, 1964), while the letters are better 
fit in an ultrametric space with Addtree separating the letters 
into clusters based on their visual shapes (Kuennapas & 
Janson, 1969; Sattath & Tversky, 1977). 

Behavioral Experiments 

Participants & Stimuli 
Participants Fifteen participants (mean age = 26.3, SD; 
female = 6) were recruited to perform a behavioral version 
of the Ekman (1954) color experiment. All participants were 
prescreened for normal color vision using the Ishihara 
colorblindness test (Ishihara, 1917). Six participants (mean 
age = 25.1, female = 2) were recruited to perform a 
behavioral version of the Kuennapas and Janson (1969) 
letter experiment. Participants were prescreened for dyslexia 
and provided behavioral similarity ratings while performing 
an fMRI experiment. All participants gave informed consent 
in accordance with the Rutgers University Institutional 
Review Board and either volunteered or received course 
credit for their participation.  
 
 Color Stimuli Fourteen square color stimuli (31x31 pixels) 
were created based on the original wavelengths (434nm, 
445nm, 465nm, 472nm, 490nm, 504nm, 537nm, 555nm, 
584nm, 600nm, 610nm, 628nm, 651nm, 674nm) used in the 
Ekman (1954) study. To digitalize the color stimuli, we 
converted the wavelength values into the tristimulus color 
space CIE XYZ to closely resemble the perception of colors 
by the human eye. 
 
 Letter Stimuli The letter stimuli consisted of the same set 
of lowercase Latin alphabet letters as in the Kuennapas and 
Janson (1969) study, with the exception of three Swedish 
letters (å, ä, ö) that do not exist in the English alphabet and 
“w”, which is not part of the Swedish alphabet.  

Experimental Procedure 
 

Table 1: Results of the SSA for US cities, plants, and the 
original color (Ekman, 1954) and letter (Kuennapas & 

Janson, 1969) data, as well as their behavioral replications.  

 
To get a sense of the distribution of colors, participants were 
First familiarized with all color stimuli and performed a 
warm-up task identical to the experimental task using four 
shades of grey tones. For the main experiment, participants 
were instructed to rate the similarity between all possible 
color pairs presented in a random order. A fixation cross 
was coupled with an ISI jitter (1-2s), followed by a 6s 
presentation of color pairs (first 2s by itself, then 4s with the 
similarity scale) and a similarity scale that appeared after the 
first two seconds of the color pair presentation (2s; 1-5 with 
1 = no similarity; 5 = identical). The order of pairs was 
randomized for each participant. All experimental tasks 
were presented using the experimental presentation software 
PsychoPy2. 

The letter task was identical to the design of the color 
task, except that participants were instructed to rate the 
visual similarity between all possible letter pairs on a Likert 
scale of 1-10 (1 = no similarity; 10 = identical) in 
accordance with the original study design. 

Analysis 
Each participant’s similarity judgments were converted into 
a distance (or dissimilarity) matrix to serve as input to the 
SSA. A group average was computed by taking the mean 
over participants’ distance matrices. Additionally, Kendall’s 
Tau was used to facilitate a direct comparison between our 
replications and the original study data. 

Results 
Color Experiment Both within single subjects and the 
group mean, all participants’ MDS configurations exhibited 
a concentric structure and correct ordering of the color 
wheel (Figure 1A). The results of the SSA shows that the 
MDS’ metric space is a better fit to the data. A comparison 
of the group dissimilarity matrix based on the behavioral 
data and the dissimilarity matrix of the original Ekman data 
using Kendall’s Tau rank correlation coefficient further 
reveals that they are highly and significantly similar (rτ = 
0.75, p < .0001).  

 
Letter Experiment Participants’ Addtree representations, 
both on the individual and on the averaged group level, 
exhibited a clustering congruent with the different shape 
categories of letters (Figure 1B), replicating the results of 
the original letter data. The SSA results confirm that the 
ultrametric space is a better fit (Table 1) and significantly 

Data MDS 
r2 

Addtree 
r2 

Data 
Skew 

MDS 
AIC 

Addtree 
AIC 

US Cities 1 0.97 0.27 260 567 
Plants 0.82 1 0.9 4563 -27509 
Colors 0.94 0.86 -1.16 -247 -171 
Letters 
Beh. Data 
Colors 
Letters  

0.55 
 
0.96 
0.65 

0.77 
 
0.84 
0.75 

1.36 
 
0.7 
-0.75 

-433 
 
27 
949 

-631 
 
92 
845 

Figure 1: Grouped averaged behavioral results for the color 
MDS (A) and letter Addtree (B) solutions. 
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similar to the original Kuennapas and Janson data (1969) (rτ 
= 0.68, p <.0001).  

fMRI Experiments 
The results of the behavioral experiments show a successful 
replication of the color and letter experiments conducted 
half a century prior. Next, we adapted the same experiments 
for fMRI data collection to examine whether the brain 
represents colors and letters in the same similarity structure.  

Participants & Stimuli 
Four participants were recruited for the color study and 

prescreened for possible colorblindness using the Ishihara 
color test. Another four participants (mean age = 37.5; 
female = 3) with no history of dyslexia or reading 
impairments participated in the letter study. 

Experimental Procedure 
Colors To assure that participants were familiar and 
consistent enough with using the similarity scale, they 
received 2-3 training runs of the task prior to performing it 
in the fMRI scanner. The task consisted of two parts 
presenting the color stimuli with different experimental 
designs. In the first part, participants saw each color 
stimulus individually in a block design. Each trial consisted 
of first seeing either a cross or a hash (coupled with an ISI 
of 3-4s) and then a color stimulus (6s). As an attention 
check, participants were instructed at each trial to indicate 
whether they had seen a cross or a hash by button press. The 
order of both the colors and the cross/hash presentations was 
randomized and repeated over two separate runs. The 
second part was identical to the behavioral experimental 
design and consisted of rating the similarity between all 
possible color pairs. 
 
Letters The letter task consisted of two parts, in which 
participants were first asked to rate the similarity of 
randomized letter pairs (4s of simultaneously presented 
pairs and rating scale). Then, after a fixation cross combined 
with a jitter (0.5s), one of the letters in the pair was 
presented in the center of the screen and participants had to 
indicate the previous position of the stimulus in the letter 
pair (4s). There were 13 individual presentations per letter 
and the side of presentation in each letter pair was 
counterbalanced.  
 
fMRI Data Acquisition All neuroimaging data was 
collected at the Rutgers University Brain Imaging Center 
with a Siemens Trio 3T scanner and a 32-channel head coil. 
The experimental tasks were presented using PsychoPy3 
and displayed on a screen visible during fMRI scanning. 
Participants’ responses were collected via presses on a fMRI 
compatible button box. We collected anatomical MRI data 
(T1-weighted 176 1mm slices) as well as functional data, 
based on 35 contiguous slices (1mm3 voxel resolution) set 
parallel to the AC-PC plane during the experimental task, 
and using a multiband sequence (TR = 1s). Preprocessing 

(spatial normalization to standard MNI space) and analysis 
of fMRI data was conducted in FSL and R.   

Analysis 
Anatomically defined region of interest (ROIs) masks were 
created using the Juelich Historical atlas and thresholded at 
60% probability. Based on their association with color 
representation (Bohon et al., 2016) and single letter 
representation (Flower et al., 2004), we chose the target 
ROIs of V4 and extrastriate cortex (V2-V5) respectively. 
The auditory cortex served as a control ROI for both studies. 
We extracted the time series activations for each ROI and 
averaged over the third 2s of presentation associated with 
each condition’s individual stimulus presentation. This 
resulted in a single activation vector per stimulus, capturing 
the spatial activations over all voxels of the ROI. Since all 
activation vectors were highly correlated with each other, 
we applied a novel two-step de-noising method to enhance 
the signal to noise ratio described (see Hanson, Caglar, & 
Hanson (2020) for details). In the first step, we created an 
independent noise sample using the neural activity 
associated with the fixation time points immediately 
preceding the individual stimulus presentations. Then, we 
used this independent noise sample and applied it as an 
orthogonal voxel filter to the stimulus voxel matrix. This 
procedure successfully de-correlated the original stimuli 
from their background by more than 80%, allowing for 
accurate stimulus decoding. We then computed Euclidean 
distance matrices to input to the SSA. To compare the 
representational shapes and organizations we used 
entanglement values, cophenetic correlation coefficients, 
and Procrustes analysis.   

Results 
Colors For all four subjects, individual MDS solutions 
based on the neural activations of V4 revealed the expected 
color wheel with continuous and correct ordering of hues 
(Figure 2A). The model fits of the SSA further reveal that 
the metric MDS space is a better fit to the data in all cases 
(Table 2). This was also confirmed by an average Kendall’s 
Tau coefficient of 0.57 when compared to the original 
Ekman data. Importantly however, the same color wheel-
like structure could not be found for the fixation activations 
in the auditory cortex control ROI (Figure 2A).   
 
Letters Contrary to the behavioral data, the representational 
space derived from activations in extrastriate cortex do not 
show the expected clustering based on visual shape. Instead, 
the letters are ordered continuously and according to the 
alphabet in each participant’s MDS and Addtree spaces 
(Figure 2B). Interestingly, the Addtree clustering of the 
space is in line with the phrase structure of the alphabet 
song, a common mnemonic used to learn the alphabet at a 
young age (see Hanson, Caglar, & Hanson, 2020 for details 
and discussion). Also diverging from the behavioral data, 
the neural representation of letters is better fit in a metric 
space than in an ultrametric space (Table 2). Unsurprisingly,  

2291



Table 2: SSA results for the color and letter fMRI studies. 
 

Subjects MDS 
r2 

Addtree 
r2 

Data 
Skew 

MDS 
AIC 

Addtree 
AIC 

Colors1 0.89 0.77 1.01 2394 2458 
Colors2 0.94 0.84 0.41 2031 2115 
Colors3 0.9 0.82 0.63 1471 1525 
Colors4 
Letters1
Letters2 
Letters3 
Letters4 

0.88 
0.90 
0.89 
0.88 
0.85 

0.79 
0.75 
0.77 
0.70 
0.68 

0.8 
1.23 
1.12 
1.85 
1.89 

1372 
4781 
4724 
4693 
7475 

1423 
5048 
4935 
4957 
7701 

 
the average Kendall’s Tau also reflects this lack of 
congruency between the behavioral and the neural data (rτ = 
0.11, p = 0.06). 
 
Higher Dimensional Tests Even though the letters’ 2D 
MDS solution looks circular and similar in shape to the 
MDS configurations of the colors (Figure 2B), plotting the 
first three dimensions of a 6D MDS solution clearly reveals 
a consistent shape across participants that is not circular, but 
forms a figure eight (Figure 2B). This choice of 6D is based 
on the number of clusters produced by Addtree. The 
geometry and curvature of the helical folding follows the 
phrase structure of the alphabet song as apparent by the 
color coding of the clusters (Figure 2B). This is in contrast 
to the color data, which, plotted as a 3D projection of a 6D 
MDS solution, does not produce the same helical shape but 
maintains the data’s more circular shape even in higher 
dimensions (Figure 2A).  

To further exclude the possibility of an artifact, we ran a 
simulation by sampling from a Gaussian random variable. 
We matched the average mean and standard deviation of the 
subjects' denoised fMRI letter data, computed a distance 
matrix, and scaled it into 6D using MDS. Resampling over 
six separate simulations, the resultant plotting of a 3D 
projection of the 6D space shows that neither the sequential 
ordering of the letters, nor the helical structure is present 
(Figure 2C).  

 
Control ROIs Although not as clean as in extrastriate 
cortex, the letter stimulus activations in auditory cortex also 
show an alphabetical organization in Addtree, probably 
because of the strong association with the alphabet song. 
Plotted as a 2D MDS configuration (Figure 2C), the letters 
at first look out of order. However, closer investigation 
reveals that it is a flattened spiral structure, which causes the 
letters to be intertwined in their order when projected on top 
of each other in 2D. A 6D MDS solution plotted in 3D 
enables clear identification of this shape (Figure 2C). 
Importantly however, neither the alphabetical ordering, nor 
the geometric structure can be found in the fixation 
activations of the auditory cortex (Figure 2A & B). 

Contrary to the extrastriate results, in the auditory cortex 
the ultrametric space is a slightly better fit to the data (r2 = 
0.45; AIC = 4025.0; skew = 0.923) than the metric space (r2 
= 0.51; AIC =3987.75). We suspect that this is because the 
2D MDS solution necessarily conflates the distance between 
letters, while Addtree is still able to draw up clusters. 

The overlap between representations from extrastriate 
cortex and auditory cortex is characterized by low 
entanglement coefficients both across individual subjects 
(Emean = 0.23) and on the group average (E = 0.33). A 
cophenetic correlation matrix further reveals stronger 
average correlations in clustering within the extrastriate 
cortex (CPCC = 0.67) and the auditory cortex (CPCC = 
0.445), than between the two ROIs (CPCC = 0.376).  

Lastly, we performed Procrustes analyses of the MDS 
configurations’ shapes both across subjects within the same 
ROI and within subjects across ROIs. All analyses were run 
over 999 permutations to help determine significance in the 
shape’s correlations. Within ROIs, all subjects were 
compared to each other, revealing that their representations 
in extrastriate cortex were 0.973 correlated (rmsemean = 
0.054; pmean < 0.001). Even though some of the subject’s 
representational shapes in auditory cortex did show 
concordance, the correlations were significantly lower at 
~0.5 (rmsemean = 0.691; pmean = 0.075). Contrary to the 
within subjects’ analysis of each ROI and with an average 

Figure 2: MDS and Addtree representation for a single subject of the color (A) and letter (B) study. 2D and 6D (plotted in 
3D) MDS solutions of the letter data in auditory cortex showing a helical shape. 
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of only 0.33 correlation, none of the subjects except for one 
showed a significant correlation between the shape of their 
representation in extrastriate cortex and auditory cortex 
(rmsemean = 0.852; pmean = 0.455). 

Discussion 
 
To resolve the longstanding conflict between the metric and 
ultrametric theories, we examined whether known 
psychological spaces from behavioral data can be 
reproduced from neural fMRI data. We accomplished this 
by developing a computational framework that can 
successfully detect the underlying metricity of 
representational spaces across brain and behavior. 

Using the behavioral case of metric colors (Ekman, 1954; 
Shepard, 1962) and ultrametric letters (Kuennapas & 
Janson, 1969; Sattath & Tversky, 1977), our behavioral 
studies show half a century later that their representational 
spaces and similarity structures can successfully be 
replicated in a computerized version. 

Using the same color stimuli, we further show in the color 
fMRI study that the known metric similarity structure of 
colors can also be reproduced from neural data in V4. 
Confirming our hypothesis, the behavioral and neural 
representational spaces of color are both better fit in a 
metric space and show high congruency. Surprisingly, 
however, extrastriate cortex neural activations of the 
behaviorally ultrametric case of letters exhibit an 
alphabetical ordering with a better metric fit. This shows a 
strong incongruency of behavioral and neural metricity for 
the letters, leading both neural datasets to exhibit a metric 
favoring.  

We first address potential alternative causes for the neural 
letter data’s metricity, before providing various 
interpretations and implications of these results. An initial 
concern is related to the difference in task demands in the 
behavioral and neural experiments. While the behavioral 
task involved participants providing similarity judgments, 
neither of the fMRI tasks modeled activations from 
similarity comparisons. Instead, the activations were 
obtained either during passive viewing of individual color 
stimuli or while viewing individual letter stimuli and 
indicating their previous position. Despite the difference in 
behavioral and neural tasks, the color condition nevertheless 
shows equivalent representational spaces. While this does 
not exclude potential effects that different experimental 
tasks might have on the shape and organization of the 
representational space, it does provide evidence that the 
metricity results of the neural letter task might not be due to 
such task difference. In order to assure that the better metric 
fit and alphabetical ordering of the neural letter data is not 
caused by task modulation, follow up experiments should 
include an identical paradigm to the neural color 
experiment, as well as other experimental designs such as 
using rotated or inverse letters to enhance the saliency of the 
letters’ visual shapes.  

A second concern is related to the appropriateness of 
using metric and ultrametric spaces. It is important to point 
out that an ultrametric space is a special case of a metric 
space that is more restrictive by strengthening the triangle 
inequality through either the ultrametric or additive 
inequality. Consequently, a good ultrametric fit would 
always imply a metric space, whereas a good metric fit does 
not necessarily entail an ultrametric space. While this might 
be a crucial detail for interpreting results of other datasets, 
we do not believe that it holds explanatory power in the case 
of the neural letter results, which was hypothesized to be 
better fit in an ultrametric space but instead is better fit in 
the less restrictive metric space.  

Relatedly, the appropriateness of both the metric and 
ultrametric models has been questioned and contented in the 
past - amongst others, for assuming symmetry (Tversky, 
1977) or for not adequately distinguishing between 
relational and feature similarity (Goldstone, Medin, & 
Gentner, 1991). These critiques are most pertinent with 
different task demands and the relation between different 
category and exemplar sets (Medin, Goldstone, & Gentner, 
1993; Roth & Shoben, 1983) and thus will play an 
important role in more complex experimental designs than 
those used in the here presented studies. Additionally, it 
should not affect the consistency of representational spaces 
between the behavioral and neural data, which was our main 
focus of comparison. 

We offer three possible interpretations of the neural 
results.  A first possible interpretation could be that the brain 
generally represents concepts in a metric similarity 
structure. The ultrametric spaces observed in behavior data 
could be a result of behavioral data being a more indirect 
measure of representations and undergoing transformations 
by other task-related cognitive processes. 

A second interpretation relates to claims made by 
Pruzansky and colleagues (1982), who proposed a 
perceptual-conceptual dichotomy. Based on a near equal 
numbers of datasets with perceptual (e.g., forms, colors, and 
sounds) and conceptual content (e.g., animals, tools, sports), 
the authors claimed that overall, perceptual data tends to be 
better represented in a metric space, while conceptual data 
tends to favor an ultrametric space. The metric results of the 
color and letter datasets, which are both of perceptual 
nature, would be in line with this claim. Additional 
behavioral and neural data from other perceptual and 
conceptual datasets would be necessary to confirm this 
possibility.  

A third interpretation is that the brain does contain 
(perceptual or conceptual) ultrametric representational 
spaces congruent to behavioral data, but that the behavioral-
neural letter mismatch is an exceptional case. As we have 
suggested before (Hanson et al., 2020), this mismatch 
appears to be caused by a mnemonic encoding process due 
to the alphabet’s association with the alphabet song. 
Alternatively, the metric scaling could be due to an artifact 
in the data or methodology. Next, we present multiple 
pieces of evidence that speak against this possibility.   
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Both the color and letter 2D MDS solutions produce a 
circular shape with linear ordering, which could be concern 
for a possible artifact. However, a closer examination 
reveals distinct geometries that seem to be characteristic of 
the dataset’s and ROI’s representations. Even though both 
2D MDS solutions are circular, the MDS solutions of the 
color data are an open circle and accurately represent the 
larger gap between the wavelengths of 434nm and 674nm. 
Higher dimensions further reveal a figure eight shape with 
directional shifts of the alphabet for the letters, further 
strengthening the mnemonic encoding hypothesis. 
Meanwhile, the colors maintain their open circle geometry 
even in higher dimensions. Also distinct from the colors, the 
representations in auditory cortex resemble a helix shape. 
The lack of geometry in the control data of the fixation 
activations in auditory cortex and in the Gaussian 
simulations further show that the observed shapes are not a 
product of randomness. Furthermore, all of the geometries 
show consistency across subjects and within ROIs.  
Therefore, we believe that the behavioral-neural mismatch 
is caused by the mnemonic encoding of the letters in the 
brain. This does not exclude the possibility of ultrametric 
spaces in the brain, but future studies are needed to explore 
the possibility of a metric preference or a perceptual-
conceptual dichotomy. Future research should also 
investigate whether mnemonically assisted learning can lead 
to other behavioral-neural representational discrepancies.  

To our knowledge, this is the first work that extends the 
study of metric and ultrametric theories to the brain. Taken 
together, our results provide evidence that psychological 
spaces measured by behavior are also encoded in neural 
activations of the brain and that they sometimes, as in the 
case of colors, have equivalent representational spaces. 
Further investigation of the brain’s representational 
metricity holds the exciting potential of providing new 
evidence to uncover the underlying cognitive processes of 
how object similarity is encoded.   
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