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Abstract

Motivation: We introduce PRINCESS, a privacy-preserving international collaboration framework

for analyzing rare disease genetic data that are distributed across different continents. PRINCESS

leverages Software Guard Extensions (SGX) and hardware for trustworthy computation. Unlike a

traditional international collaboration model, where individual-level patient DNA are physically

centralized at a single site, PRINCESS performs a secure and distributed computation over en-

crypted data, fulfilling institutional policies and regulations for protected health information.

Results: To demonstrate PRINCESS’ performance and feasibility, we conducted a family-based

allelic association study for Kawasaki Disease, with data hosted in three different continents. The

experimental results show that PRINCESS provides secure and accurate analyses much faster than

alternative solutions, such as homomorphic encryption and garbled circuits (over 40 000� faster).

Availability and Implementation: https://github.com/achenfengb/PRINCESS_opensource

Contact: shw070@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The past decade has witnessed rapid advances of human genomic

sequencing technologies and their wide applications to healthcare

and biomedicine (Sudmant et al., 2015). The effective and efficient

utilization of human genomic data in biomedical research, in par-

ticular for devising novel diagnostic, therapeutic, and prognostic
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tools tailored to individual patient was laid out in the Precision

Medicine Initiative (Collins and Varmus, 2015). An important con-

sideration in using these data is the privacy concern of data donors,

because genomic data carry sensitive information that may reveal

identity (Gymrek et al., 2013), predisposition to diseases (McGuire

et al., 2008) and even facial features (Claes et al., 2014) of data

donors. Such disclosure of human genomic data may have negative

impact on people beyond the individual from whom the data were

collected, and may propagate the privacy risks to blood relatives

(Bloss, 2013). Individuals have marked differences in the way they

want their data utilized for research (Kim et al., 2015, 2016). More

importantly, data are irrevocable once they are disseminated, and

new privacy threats may emerge over time with new discoveries of

human genetics and the advance of attack methods (Shringarpure

and Bustamante, 2015). Due to these concerns (Homer et al., 2008),

many aggregate results have been removed from the public domain

hosted by NIH (2007).

Security researchers have made significant progress on crypto-

graphic techniques to support secure genomic data analyses (Ayday

et al., 2014; He et al., 2014; Kamm et al., 2013; McLaren et al.,

2016; Shimizu et al., 2016b; Xie et al., 2014; Zhao et al., 2015) as

well as on approaches that compute with horizontally (Wang et al.,

2013; Wu et al., 2012) and vertically partitioned data (Li et al.,

2016). For example, homomorphic encryption (HME) (Halevi and

Shoup, 2014) allows data owners to securely outsource genomic

data analysis. However, HME-based techniques are demanding in

both computation and storage. It is also challenging for HME to

handle complicated genomic analysis tasks, as it only supports a lim-

ited set of arithmetic operations (i.e. addition and multiplication).

Several HME-based approaches have been developed using HElib

(Halevi and Shoup, 2014) for association tests (Lauter et al., 2014)

and exact logistic regression model learning (Wang et al., 2016), but

these methods are only applicable to small datasets. Another popu-

lar approach, secure multiparty computation (SMC), was proposed

more than three decades ago (Yao, 1982), primarily for secure col-

laboration. Despite its great promise in various applications, very

few garbled circuit-based methods have been implemented in prac-

tice (e.g. garbled circuit-based FlexSC (Wang et al., 2015)) and even

fewer have been applied to support privacy-preserving genomic data

analysis (Constable et al., 2015; Zhang et al., 2015). Despite the

lower computational complexity, garbled circuit-based solutions

usually require sophisticated circuit design and optimization for

each specific task, which limits flexibility. Finally, secret sharing-

based secure genome-wide association methods (Kamm et al., 2013)

show better performance than HME and garbled circuit-based

methods. However, they still impose significant computation over-

head when compared to the same analyses over plaintext.

Preserving privacy in genomic data analysis while enabling scien-

tific discovery via cross-institutional collaborations remains a big

challenge. Collaborations among countries are further complicated

by governmental policies that may prohibit sharing of individual-

level genomic data. A key challenge is how to perform the necessary

analyses on large genomic data and satisfying security and policy

constraints. More importantly, recent efforts in secure genomic data

analysis have only been tested on simulated data and environments

(Chen et al., 2016; Lauter et al., 2014; Wang et al., 2016; Zhang

et al., 2015), but not in the real-world settings. In this study, we

introduce the PRINCESS framework for Privacy-protecting Rare

disease International Network Collaboration via Encryption

through Software guard extensionS. We have evaluated PRINCESS

in a real-life study of family-based transmission tests used to under-

stand the genetic basis of Kawasaki Disease (KD) (Khor et al.,

2011). KD is a self-limited acute vasculitis that is the most common

cause of acquired pediatric heart disease. Up to 25% of untreated

children will develop coronary artery aneurysms. While the etiology

is unknown, it is possible that an environmental factor initiates an

immunologic reaction in genetically susceptible hosts. Although epi-

demiologic studies have shown that the relative risk of KD is two

times higher in African American (AA) children than the risk in

European descent individuals (Abuhammour et al., 2005), no KD

genetic study to date has included AA children. Unlike KD children

of Asian or European descent, limited sample size (especially from

trios) has been a major bottleneck for research on the increased sus-

ceptibility of AA children to KD. In collaboration with the

International Kawasaki Disease Genetic Consortium (IKDGC), we

utilized cohorts associated with AA children from the U.S., the UK

and Singapore to conduct jointly analysis using the TDT (transmis-

sion disequilibrium test, see Section 2.3 for details).

Unlike existing solutions, which rely on heavyweight crypto-

graphic techniques, our PRINCESS framework takes advantage of

Software Guard Extensions (SGX) (Anati et al., 2013), a suite of

hardware and software architectures (publicly released in December

2015) that provide isolation of sensitive data analysis within a pro-

tected enclave. Solutions based on SGX are not expected to intro-

duce significant computational overhead or big restrictions on data

analysis operations that are common to software-based techniques

such as the garbled circuit-based FlexSC framework (Wang et al.,

2015) and homomorphic encryption based HElib framework

(Halevi and Shoup, 2014), and thus are expected to make secure

large-scale, inter-continental, genetic analysis feasible in practice.

Our proposed framework has three key contributions (Fig. 1). First,

within our framework for secure collaboration for genomic data

analysis, we implemented a secure TDT module for studying KD

and demonstrated that it can be highly efficient. Second, by jointly

utilizing the SGX suite lightweight cryptographic primitives and

data compression techniques, our framework achieves efficient se-

cure computation and communication of sensitive genomic data.

For example, PRINCESS was more than 40 000 times faster than

HElib (Halevi and Shoup, 2014) and FlexSC (Wang et al., 2015)

based methods we implemented for protecting data privacy, and

Fig. 1. Overview of the PRINCESS framework that supports secure communication

of several sites to an untrusted server to conduct secure genomic data analysis

through SGX. (1) The inputs from each participating site in the PRINCESS framework

are local aggregates in the PLINK format (Purcell et al., 2007), compressed and en-

crypted before transfer to the untrusted server. (2) All local aggregates are securely

processed within an enclave to compute global TDT statistics on the untrusted ser-

ver. (3) Only the top K most significant SNPs (encrypted) will be returned to each

site in the PLINK format and only authorized clients with the secret keys can decrypt

the results (Color version of this figure is available at Bioinformatics online.)
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provided accurate outcomes (see Fig 4(b) and Section 3.3 for de-

tails). Third, we designed and executed real life experiments involv-

ing family trio genetic data from three international institutions (UC

San Diego, Imperial College London and Genome Institute of

Singapore) to demonstrate how well PRINCESS enables a secure

international collaboration to conduct TDT analysis of KD without

compromising individual participants’ privacy. The individuals

whose data were used provided broad consent for use of these data.

2 Methods

In this section, we introduce the proposed SGX based framework,

data source and statistical model.

2.1 Overview
Fig. 2 illustrates the system architecture of the proposed

PRINCESS framework for secure collaboration using the SGX

model (See Supplementary Note 1 for an overview). Our architec-

ture supports secure transmission and analyses of sensitive gen-

omic data, and joint analyses without compromising either control

over personally identifiable data (privacy) or disclosure of inter-

mediary results (confidentiality), whether deliberate or accidental.

The PRINCESS system is designed to be scalable and easy to ex-

tend with support of plug-in modules for new features/new tasks.

These modules include analysis algorithms, data management

tools, compression methods, etc. In PRINCESS, we provide base

classes for these modules and define common application program-

ming interfaces (APIs). Thus, when new modules are implemented

based on APIs, they can be easily integrated into the system. In

PRINCESS, the data management module on the client side recog-

nizes the standard PLINK format in the input file (See

Supplementary Note 2 for details of data format) and can parse in-

put data into memory so that the compression module or encryp-

tion module can process parsed data accordingly. The compression

module provides an interface to client sites (data owners) to trans-

fer compressed data using range coding (Martin, 1979) to the ser-

vice provider, which has a static decompression library running

inside the enclave (since the range-coding algorithm is lightweight,

it is feasible to implement it inside the enclave). Compression per-

formance is good (See Fig. 4(a) and Section 3.3 for details). When

the enclave at the server receives the encrypted data from all client

sites, it can decrypt the data inside the enclave (this step is blind

even to the platform at the service provider). Then, the TDT is per-

formed securely according to data owners’ instructions.

2.2 Security framework
(1) The remote attestation protocol allows multiple data owners and

an enclave to verify each other’s authenticity and integrity. After an

enclave is built, each data owner can obtain a unique signature of

the enclave (a 256-bit hash), in which any falsification (e.g. the en-

clave has been modified unwillingly before the execution) on the en-

clave will result in an invalid signature. An enclave can also

challenge the data owners’ identity through the Elliptic Curve

Digital Signature Algorithm (ECDSA) (Locke and Gallagher, 2009),

which can prevent the server from receiving fake or malicious data

from unauthorized clients. In addition, PRINCESS allows Secure

Sockets Layer (SSL) protection to enable an encrypted link between

server and clients.

(2) After attestation, data owners send encrypted data obtained

by the Advanced Encryption Standard (AES) in Galois Counter

Mode (GCM) (Dworkin, 2007) to the PRINCESS data processing

enclave hosted by an untrusted computation service provider. The

encryption key of AES-GCM is derived from the key obtained by the

Elliptic Curve Diffie–Hellman (ECDH) protocol (Barker et al.,

2007) between the enclave and each data owner. To maximize se-

curity protection, we incorporated a time varying initialization vec-

tor; this ensures that even the same plaintext inputs in different

encryption phases cannot generate the same ciphertext outputs, to

avoid replay attacks (Syverson, 1994). One of the big challenges in

developing the analysis module for the TDT algorithm is memory;

the SGX enclave has a memory restriction so a limited amount of

data can be processed inside the enclave. Unfortunately, the size of

genomic data can be much larger, especially when a large number of

sites are involved in a study. As a result, the required memory to

process multi-million SNPs from multiple sites can easily exceed this

memory restriction. To address this limitation, we performed batch

evaluation and kept a global queue for the top K SNPs to reduce un-

necessary memory footprint in the enclave. Large genomic data also

pose challenges to secure data transmission over the network. Data

compression algorithms can be applied to reduce the data size and

speed up the transmission process. An overall description of step (2)

where data compression and batch evaluation schemes are applied

within the PRINCESS framework is shown in Fig. 3. Data from

each client site are first segmented into small chunks. The range

coding-based compression algorithm is then used to reduce the data

size of each small chunk. Following this, the compressed data are

Fig. 2. PRINCESS system architecture for secure collaboration. The steps are

described in the Section 2.2 (Color version of this figure is available at

Bioinformatics online.)

Fig. 3. Streaming compression algorithms to improve secure communication

and improve data analysis efficiency (Color version of this figure is available

at Bioinformatics online.)
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encrypted and securely transmitted to the data enclave hosted by an

untrusted computation service provider through multiple threads

and secure communication channels. When the encrypted data are

received, the data processing enclave decrypts each segment and

decompresses the data to recover the original data segment (e.g.

8000 SNPs). This is followed by a batch evaluation over each seg-

ment while keeping an updated global queue for the top K SNPs in

the enclave. All the operations within the enclave are secured by

SGX. The proposed secure TDT algorithm in the PRINCESS frame-

work running inside the enclave is completely self-contained and

does not leave the enclave for system services, ensuring good secure

computing performance.

(3) Finally, the results are returned to the data owners in a secure

manner, through an AES-GCM encrypted format at the 128-bit se-

curity level, ensuring their confidentiality and integrity.

2.3 Experimental setup
The following experimental environment was used to generate our

results.

• The PRINCESS server was hosted on a machine with 6th

Generation Core i7-6820HQ CPU at 3.60 GHz with SGX sup-

port and 48 GB Memory. We used SGX Windows software de-

velopment kit (SDK) v1.1. All the clients were connected to the

PRINCESS server hosted at UCSD through a 1 GB Ethernet

connection.
• For simulated data analysis in PRINCESS, we launched up to 12

instances on Amazon Web Services (AWS) of type ‘t2.micro’

with 3.3 GHz CPU and 1 GB memory and single core virtual

CPUs running a 64-bit window 2012 server to act as clients. We

generated synthetic datasets based on the distribution of real KD

data. We enabled Secure Sockets Layer (SSL) transmission, set-

ting the data segmentation size to 8000 and reporting the top K

¼ 100 most significant SNPs in these experiments.
• For real KD data analysis in PRINCESS, three institutions, the

University of California San Diego (UCSD), the Imperial College

in London (ICL) and the Genome Institute of Singapore (GIS)

participated. The top K ¼ 1;000 SNPs were returned. For client

sites, we used Xeon E5-1680 v2 CPUs at 3.00 GHz with 16 GB

memory at UCSD, i7-3770 CPU at 3.90 GHz with 16 GB mem-

ory at ICL, and i7-6700HQ at 3.50 GHz with 16 GB memory at

GIS.
• Our HElib-based HME implementation was based on the fol-

lowing parameter settings: p¼401,r ¼ 2,d ¼ 1,c ¼ 2,L ¼ 38,s

¼0,m ¼ 38677 to allow a potential large circuit depth for further

computation over HME encrypted data, which resulted in 1172

slots for parallel computation in SIMD mode. The computation

time includes key generation time, encryption/decryption times,

ciphertext operation time and compression/decompression times.

As HME does not support division and sorting operations, the

computation time only measured the addition and multiplication

operations in TDT. The performance was evaluated on a Ubuntu

14.04 machine with Xeon E5-2687W CPU at 3.10 GHz with 96

GB memory.
• For FlexSC-based implementation, communication and compu-

tation costs were averaged over two parties. There was no data

compression for FlexSC. The performance was evaluated on a

MAC OS 10.11 machine with I7-4870HQ CPU at 2.5 GHz with

16 GB Memory. In addition, there were also no sorting of top

SNPs in the FlexSC implementation.
• All results for PRINCESS using simulated and real data were

based on the average of 10 and 3 trials, respectively. All results

for HME and FlexSC implementations were based on the aver-

age of 5 trials, as both methods were very time consuming.
• All above implemented algorithms are availabe at https://github.

com/achenfengb/PRINCESS_opensource.

2.4 Statistical models
A genome wide study of KD, using TDT, was used to illustrate the

practical use of our proposed framework. TDT is a family-based test

for disease traits that uses the genotype information from both par-

ents and a child. TDT measures the transmitted and untransmitted

allele counts from heterozygous parents (denoted by B and C, re-

spectively) to their affected child. The TDT statistic can be expressed

as ðB� CÞ2=ðBþ CÞ, which will approximately follow a chi-square

distribution with one degree of freedom (Spielman et al., 1993). The

advantage of the TDT, when compared to a case/control study de-

sign, is to avoid errors due to the population stratification. This is

important to our study, which has a large degree of genetic admix-

ture (see Supplementary Table 1). The TDT data used in this study

were derived from complete parent-child trios.

Suppose that M sites across the world plan to jointly compute

global TDT statistics over their own confidential SNP data. Let us

denote by Bs
m, and Cs

m the transmitted and untransmitted allele

counts from a site m for a SNP with rs number s. Then, the global

TDT statistic ts can be evaluated as follows:

ts ¼

PM
m¼1

Bs
m �

PM
m¼1

Cs
m

� �2

PM
m¼1

Bs
m þ

PM
m¼1

Cs
m

: (1)

Because of the horizontal data splitting, alleles 1 and 2 may differ

among local sites in distributed TDT. For this reason, we also col-

lected allele frequencies to determine globally the minor allele fre-

quency (MAF) for data integration in a secure manner using SGX.

After securely calculating all SNPs, a list of encrypted top K (most

significant) SNPs is returned to each site. The P-value is calculated

using a v2 distribution with one degree of freedom. The odds ratio is

obtained by dividing B by C.

3 Results

3.1 Subjects and samples
Seventy two Kawasaki disease (KD) children and their biological

parents were recruited from Rady Children’s Hospital San Diego

(RCHSD) (N ¼ 45), Emory University (N ¼ 21) in Atlanta, and

Imperial College in London (N ¼ 6); here, N indicates the number

of families. The ancestry analysis of 216 individuals from 72 trios

can be found in Supplementary Note 3. Subjects had previously pro-

vided consent for reuse of data. Kawasaki disease was diagnosed ac-

cording to the criteria of the American Heart Association (AHA), as

previously described (Khor et al., 2011).

3.2 Genotyping
For the KD families, the blood or mouthwash/Oragene samples

from each subject were used to generate the genomic data with

Illumina Human OmniExpress 24 BeadChips following the manu-

facturer’s instructions. Genotype data from RCHSD were hosted at

University of California, San Diego (UCSD) and the UK data were

hosted at the Imperial College London (ICL). Genotype data from

Emory University were hosted at the Genome Institute of Singapore

(GIS).
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3.3 Experimental results
The experiments were designed in four phases (a–d) (Supplementary

Note 4), where we set K ¼ 100 in experiments (a–c) using simulated

data and K ¼ 1;000 in experiment (d) using real data. We first com-

pared the performance of PRINCESS by securely computing on 5 mil-

lion SNPs from three geographically distributed locations with or

without compression (Fig. 4(a)). With compression, PRINCESS

reduced the data volume to 54.6% of the original size and saved 45.2

% of the transmission time in communications (see Supplementary

Table 2). Data compression at the client and decompression at the ser-

ver introduced a small computational overhead. As a result, the overall

average execution time was reduced from 126.1 s (without compres-

sion) to 74.8 s (with compression). Fig. 4(b) shows a comparison of

PRINCESS, HElib (Halevi and Shoup, 2014) and FlexSC (Wang et al.,

2015) implementations done by our team and running in the hardware,

network and software environment described in Section 2.2, using syn-

thetic data with sizes varying from 1� 104 to 5� 106 in a two-site set-

ting. The proposed PRINCESS framework was>40 000 times faster

than our HElib and FlexSC implementations (see Supplementary Table

3). In addition, the cost in terms of data transmission and execution

time increased linearly with the size of input, taking less than 3.6 s to

securely compute 5 million SNPs from two sites. The plaintext proto-

col with data compression is also illustrated in Fig. 4(b), where the

PRINCESS framework shows a small overhead on data transmission

(0.02%) and in computation (17.92%). To demonstrate scalability, we

evaluated PRINCESS with communication and computation costs

(Fig. 4(c)) using 1 million SNPs and varying number of participating

sites (i.e. 3, 6, 9 and 12 sites across different countries as illustrated in

Supplementary Fig. 2). The data transmission between clients and the

server was the most time consuming part (i.e. 62–77%) in all settings,

when compared to the execution time at the clients or at the server.

Table 1 shows the top 10 SNPs identified by PRINCESS.

4 Discussion

4.1 KD associated genetic variations
PRINCESS applies lightweight cryptographic technologies to tackle

secure genomic data computation, providing computation efficiency

for real-world, secure, international collaboration. Using 72 trios

and 695 784 SNPs across three continents, PRINCESS identified the
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Table 1. The top 10 SNPs identified by TDT analysis of genetic variants and KD susceptibility in the International Kawasaki Disease Genetic

Consortium (IKDGC) cohorts for a total of 72 trios among UC San Diego (UCSD), the Imperial College in London (ICL) and the Genome

Institute of Singapore (GIS). Lists of top 252 SNPs can be found in Supplementary tables 6.1 to 6.3

GENE CHR SNP ID BP Allele 1/2 T U OR CHISQ p-value

75kb 5’ of PLEKHA5 12 rs7976757 19207948 A/G 9 44 0.20 23.11 1.53E-06

144kb 5’ of RP11-347L18.1 6 rs10455943 164914089 G/A 7 38 0.18 21.36 3.82E-06

CNTNAP5 2 rs1504016 125368982 G/A 10 42 0.24 19.69 9.10E-06

131kb 5’ of GNPDA2 4 rs10517120 44859761 A/G 15 51 0.29 19.64 9.37E-06

FMN1 15 rs12592701 33307752 G/A 36 8 4.50 17.82 2.43E-05

FBN1 15 rs6493328 48819502 G/A 34 7 4.86 17.78 2.48E-05

ZNF280D 15 rs7168178 57012816 A/G 45 13 3.46 17.66 2.65E-05

LAMC3 9 rs869457 133924451 A/G 39 10 3.90 17.16 3.43E-05

FBN1 15 rs683282 48847733 A/G 35 8 4.38 16.95 3.83E-05

FBN1 15 rs668842 48891965 G/A 35 8 4.38 16.95 3.83E-05

CHR: Chromosome; BP: base position; T: Transmitted, U: Untransmitted; OR: Odds Ratio; CHISQ: v2statistics.
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top 10 SNPs from 5 genes (CMNTMAP5, FMN1, FBN1,

ZNF280D, LAMC3), which are displayed in Table 1. Lists of top

252 SNPs can be found in Supplementary Tables 6.1 to 6.3. The dis-

cussion of KD associated genetic variations can be found in

(Shimizu et al., 2016a).

4.2 Efficiency of the proposed PRINCESS framework
The proposed PRINCESS framework uses the SGX computing

architecture. This hardware architecture provides isolation of the

sensitive data analysis within a protected enclave. Our results indi-

cate that this architecture did not introduce significant computa-

tional overhead and restrictions on data analysis in this study. We

performed efficiency analysis with respect to varying segment

lengths during batch evaluation in the enclave. In Table 2, we show

the steps and execution time of the TDT analysis algorithm with

and without the enclave. In both experiments, we conducted the

computation of TDT statistics over 1 million SNPs from 3 local sites

to identify the top 100 SNPs. We can see that the proposed frame-

work imposed a small computation overhead (i.e. additional 0.0258

s on average) in our study.

In addition, we set up 3 local sites, each with a dataset of 5 mil-

lion SNPs, to study the efficiency in terms of memory footprint and

run time using different segment lengths (Table 3). When we exe-

cuted batch analyses inside the enclave, buffers containing encrypted

and decrypted segment data were allocated in the enclave heap.

Different segment lengths resulted in different peak memory usage.

With the compression flag turned on, extra buffers containing com-

pressed data were allocated. During the decompression of each seg-

ment data in the enclave, we built a lookup table of size 500 KB,

which is reflected by an increased heap space usage when the com-

pression flag is turned on. The lookup table was designed to speed

up the decompression process. Supplementary Figure 3 compared

the performances between an ‘on-the-fly’- based implementation

and a lookup table-based implementation using different number of

sites (varying from one to four sites) and different number of SNPs

(ranging from 1 to 5 million). Without using the lookup table, the

program needs to perform repeated computation on the fly, which

led to 41.8% computational overhead on average over different

number of sites (see Supplementary Figure 3). The lookup table-

based implementation shows the computational advantage over the

on-the-fly implementation.

4.3 Comparison with existing genomic data protection

methods
The existing genome privacy-preserving technologies can be catego-

rized into protection of (1) genomic data dissemination and (2) gen-

omic data analyses. Differential privacy (Dwork, 2006) (DP) is a

popular perturbation technology with provable privacy guarantees

and has been widely used in protection genomic data dissemination.

It generally requires adding noise to the data in order to satisfy the

DP requirement, which will reduce data utility. For the genomic

data analyses, security researchers have made significant progress in

cryptographic techniques such as HME and SMC to facilitate secure

outsourcing and secure collaboration in genomic research. HME

methods allow data owners to directly analyze encrypted data using

public cloud computing resources. However, HME-based tech-

niques (Halevi and Shoup, 2014) are heavy-weighted in both com-

putation and storage. In addition, it is challenging to handle

complicated genomic analysis tasks, as HME only supports limited

arithmetic operations (i.e. addition and multiplication). SMC-based

methods such as garbled circuits (Chen et al., 2014; Wang et al.,

2015) and secret sharing (Chen et al., 2015; Kamm et al., 2013) can

securely perform collaborative computation among multiple parties,

as long as the underlying algorithms can be expressed by logical op-

erations. However, the high computational and design complexity

of garbled circuits and secret sharing is still a bottleneck for the cor-

responding applications to handle large-scale data and complicated

algorithms (see Table 4 for the side-by-side comparison among

HME, SMC and SGX frameworks). In addition, Canim et al. also

studied hardware-based protection on biomedical data analysis

(Canim et al., 2012), where genomic data were securely joined and

queried. This framework demonstrated that oblivious algorithms

could be developed for secure genomic data analysis on secure hard-

ware without requiring generic oblivious RAM solutions. However,

it required additional cryptographic coprocessors with relative low

computational power and memory. In contrast, the proposed

PRINCESS framework can be directly utilized on SGX-enabled

CPUs without requiring additional coprocessors.

In the SGX framework, the operating system (OS) or other

hypervisors cannot detect the precise memory access patterns within

one page (i.e. 4KB). However, the OS may be able to detect the page

access pattern by observing page-fault through a controlled-channel

attack (CCA) (Xu et al., 2015). To achieve efficient oblivious mem-

ory access, we have forced the data used for updating the global

queue of top K SNPs to reside within one page (4 KB memory). This

was achieved by blocking larger input data, such that both the glo-

bal queue and segment of data could be restricted within one page.

However, within a 4KB page, we can only handle the sorting of

1024 SNPs at most using a 4-byte single precision floating format.

4.4 Limitations
PRINCESS has some limitations. For example, the current frame-

work does not support secure storage outsourcing, which means all

clients need to be synchronized during the collaborative analysis.

This restriction might be mitigated by adopting a data sealing pro-

cess in SGX to enable asynchronized secure collaboration. In the

current experiment, we only developed the secure TDT enclave

module. Extending this to additional genomic data analysis methods

will broaden the impact and adoption by the biomedical research

community. In the current version of PRINCESS, we used the same

compression scheme for different fields of the PLINK inputs. The

compression performance could be further improved by adopting

different compression schemes based on the characteristics of the

different fields in PLINK inputs. The adoption of compression

scheme significantly reduced the amount of data to be transferred,

and also reduced transmission time and overall processing time. The

secure decompression module in the enclave also increased the en-

clave memory footprint as well as the server side execution time. .

To protect against the controlled side channel attack, we needed to

implement all the sorting operations within a 4 KB page, which re-

stricted the maximum number of top K results to 1024. SGX has

Table 2. Tasks and run time of the TDT algorithm with and without

enclave where we used 1 million SNPs from 3 local sites and iden-

tified the top 100 SNPs

Steps Enclave Non-enclave

AES-based decryption � �

Batch execution (segment length of 8000) � �

TDT computation � �

Computing the top 100 SNPs � �

Average run time over 10 trials (s) 0.1303 0.1045
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limitations on the total amount of secure memory, which may pre-

vent its application in large-scale datasets. To mitigate this bottle-

neck, we can use data paging or sealing technologies to securely

store additional data through encryption in the untrusted memory

or disk space, respectively. However, the data paging or sealing pro-

cess will impose additional computational overhead, which might

slow down certain data intensive applications. We plan to investi-

gate efficient solutions for such applications in future work. Finally,

SGX is a proprietary solution that may or may not be affordable to

users. The costs and benefits of running the same analyses in other

hardware while maintaining the same level of protections will also

be investigated in future work.

5 Conclusion

In this paper, we presented the PRINCESS framework, which en-

sures a high security level for privacy-preserving international col-

laboration on rare disease analysis. In PRINCESS, all genomic data

are encrypted with AES-GCM. We utilized a time-varying initializa-

tion vector to enhance the protection of encrypted data, where the

attacker cannot gain more information based on multiple encrypted

messages than a single encrypted message by using the same encryp-

tion key. In addition, our framework ensures that the same message

under different encryption instances will yield completely different

ciphertexts. As both the client and the server have a synchronized

time-varying initialization vectors, the proposed framework can de-

tect replay attacks (Syverson, 1994). Furthermore, encrypting data

using AES-GCM supports authenticity and integrity checks. When

compared with other state-of-the-art trustworthy computation

schemes (i.e. homomorphic encryption and garbled circuits),

PRINCESS took advantage of a software-and-hardware based hy-

brid solution to achieve more than 40 000 times performance gain

in our specific example.
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