
Lawrence Berkeley National Laboratory
LBL Publications

Title

A 3D Parallel Algorithm for QR Decomposition

Permalink

https://escholarship.org/uc/item/6qz3r1gf

Authors

Ballard, Grey
Demmel, James
Grigori, Laura
et al.

Publication Date

2018-07-11

DOI

10.1145/3210377.3210415

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6qz3r1gf
https://escholarship.org/uc/item/6qz3r1gf#author
https://escholarship.org
http://www.cdlib.org/

ar
X

iv
:1

80
5.

05
27

8v
1

 [
cs

.D
C

]
 1

4
M

ay
 2

01
8

A 3D Parallel Algorithm for QR Decomposition

Grey Ballard
Wake Forest University

Winston Salem, NC, USA
ballard@wfu.edu

James Demmel
University of California

Berkeley, CA, USA
demmel@berkeley.edu

Laura Grigori
INRIA Paris-Rocquencourt

Paris, France
laura.grigori@inria.fr

Mathias Jacquelin
Lawrence Berkeley Natl. Lab.

Berkeley, CA, USA
mjacquelin@lbl.gov

Nicholas Knight
NYU–Courant

New York, NY, USA
nknight@nyu.edu

ABSTRACT

Interprocessor communication often dominates the runtime
of large matrix computations. We present a parallel algo-
rithm for computing QR decompositions whose bandwidth
cost (communication volume) can be decreased at the cost of
increasing its latency cost (number of messages). By varying
a parameter to navigate the bandwidth/latency tradeoff, we
can tune this algorithm for machines with different commu-
nication costs.

1. INTRODUCTION
A common task in numerical linear algebra, especially

when solving least-squares and eigenvalue problems, is QR-de-
composing a matrix into a unitary Q-factor times an upper
trapezoidal R-factor. We present a QR decomposition al-
gorithm, d-caqr-eg, whose bandwidth and latency costs
demonstrate a tradeoff.

We model the cost of a parallel algorithm in terms of
the number of arithmetic operations, the number of words
moved between processors, and the number of messages in
which these words are moved. These three quantities, mea-
sured along critical paths in a parallel schedule, characterize
the algorithm’s arithmetic cost, bandwidth cost, and latency
cost, respectively.

Theorem 1. An m × n matrix, m ≥ n, can be QR-de-
composed on P processors with these asymptotic costs:

operations #words #messages

mn2/P n2/ (nP/m)δ (nP/m)δ (logP)2
(1)

where δ can be chosen from [1/2, 2/3], assuming

P / (logP)4 = Ω
(

m / n
)

, and

P · (logP)2 = O
(

m
δ

1+δ · n
1−δ
1+δ

)

.
(2)

This arithmetic cost is optimal [DGHL12]. For the small-
est δ = 1/2, the latency cost is optimal, and for the largest

ACM ISBN .

DOI:

δ = 2/3, the bandwidth cost is optimal [BCD+14]. How-
ever, these bandwidth and latency lower bounds are not
attained simultaneously: the bandwidth-latency product is
O(n2(logP)2). We conjecture that this product must be
Ω(n2), meaning the tradeoff is inevitable.

Our main contribution is the presentation and analysis
of d-caqr-eg, which extends Elmroth-Gustavson’s recur-
sive algorithm [EG00] to the distributed-memory setting
and uses communication-efficient subroutines. The induc-
tive cases feature 3D matrix multiplication (dmm) [ABG+95],
which incurs a smaller bandwidth cost than conventional
(2D) approaches. The base cases feature a new variant of
communication-avoiding QR (caqr) [DGHL12]. caqr in-
curs a smaller latency cost than conventional (Householder)
QR. Our variant further improves the bandwidth cost. We
chose the name ‘d-caqr-eg’ to reflect this lineage.

For tall-and-skinny matrices whose aspect ratio is at least
P , it’s best to directly invoke d-caqr-eg’s base-case sub-
routine, d-caqr-eg. d-caqr-eg also demonstrates a band-
width/latency tradeoff, albeit less drastic, which we can nav-
igate to derive the following bounds.

Theorem 2. An m×n matrix can be QR-decomposed on
P ≥ m/n ≥ 1 processors with these asymptotic costs:

operations #words #messages

mn2/P n2 (logP)2
(3)

assuming P · (logP)2 = O(n2).

The rest of this work is organized as follows. We start
by summarizing relevant mathematical background on com-
puting QR decompositions (Section 2). We then introduce
our parallel machine model, formalizing how we quantify the
costs of communication and computation (Section 3). Next
we review the communication-efficient subroutines mentioned
above, dmm (Section 4) and caqr (Section 5). With this
background in place, we present and analyze the new algo-
rithms, d-caqr-eg (Section 6) and d-caqr-eg (Section 7),
proving Theorems 1 and 2, in reverse order. We conclude
by discussing limitations and extensions and comparing with
related work (Section 8).

2. QR DECOMPOSITION
In Section 2, we summarize the relevant background con-

cerning computing QR decompositions.
After formalizing the problem in Section 2.1, we present a

recursive template algorithm, called rec-qr (Algorithm 1 in

http://arxiv.org/abs/1805.05278v1

Section 2.2), which includes many well-known algorithms as
special cases. We then specialize rec-qr to utilize compact
matrix representations (Section 2.3) and a simpler recursive
splitting strategy (Section 2.4). The result of these special-
izations, called qr-eg (Algorithm 2), serves as a template
for our two new algorithms, d-caqr-eg and d-caqr-eg.

2.1 QR Preliminaries
A QR decomposition of a matrix A is a matrix pair (Q,R)

such that A = QR, the Q-factor Q is unitary, meaning
QHQ = QQH = I, and the R-factor R is upper trapezoidal,
meaning all entries below its main diagonal equal zero. To
specialize for real-valued A, simply substitute (·)T for (·)H

and ‘orthogonal’ for ‘unitary’.
We will always assume that A has at least as many rows

as columns. (This implies that R has the same dimensions
as A and is upper triangular.) When A has more columns
than rows, we can obtain a QR decomposition by splitting
A =

[

A1 A2

]

with square A1, decomposing A1 = QR1,

and computing R =
[

R1 QHA2

]

.

2.2 Recursive QR Decomposition
We consider QR decomposition algorithms based on rec-

qr (Algorithm 1), which split A vertically (Line 4), QR-de-
compose the left panel (Line 5), update the right panel (Line 6),
QR-decompose the lower part of the (updated) right panel
(Line 7), and then assemble a QR decomposition from the
smaller ones (Lines 8 and 9).

Algorithm 1 (Q, R) = rec-qr (A)

1: if base-condition then
2: (Q, R) = base-QR (A).
3: else

4: split A =

[

A11 A12

A21 A22

]

with A11 square.

5: (QL, RL) = rec-qr

([

A11

A21

])

.

6:

[

B12

B22

]

= QH
L ·

[

A12

A22

]

.

7: (QR, RR) = rec-qr (B22).

8: Q = QL ·

[

I 0
0 QR

]

.

9: R =

[

RL

[

B12

RR

]]

.

10: end if

We call rec-qr a ‘template’ because it leaves several de-
tails unspecified. To instantiate this template and obtain
an algorithm, we must pick a base-case condition (base-
condition, Line 1), a base-case QR-decomposition subrou-
tine (base-QR, Line 2), and a splitting strategy (Split,
Line 4). Additionally, we must specify how the operations
are scheduled and how the data are distributed.

2.3 Compact Representations
In practice, a QR decomposition (Q,R) of anm×nmatrix

(m ≥ n) is typically not represented as a pair of explicit
matrices. In Section 2.3 we specialize rec-qr to represent
Q and R more compactly.

Since an R-factor is upper triangular, it is identifiable by
just its superdiagonal entries. Subsequently, the symbol R
may either denote (1) the actual R-factor, an m× n upper-

triangular matrix; (2) the leading n rows of the R-factor, an
n × n upper-triangular matrix; or (3) the upper triangle of
the R-factor, a data structure of size n(n+1)/2. When pre-
senting algorithms, we will prefer convention (2); to obtain
an n × n upper-triangular R from rec-qr, we agree that
base-QR (Line 2) returns such an R, and we rewrite the
R-factor assembly (Line 9) as

R =

[

RL B12

0 RR

]

.

Any unitary matrix Q can be written as Q = I−VTVH:
the matrix pair (V,T) is called a basis-kernel representa-
tion [SB95] of Q. If Q is the Q-factor of a QR decomposi-
tion of an m × n matrix (m ≥ n), then there exists such a
representation where the basis V is m×n and the kernel T
is n× n.

Modifying rec-qr to use basis-kernel representations, Line 6
becomes

[

B12

B22

]

=

[

A12

A22

]

−VLT
H
L VH

L

[

A12

A22

]

, (4)

and Line 8 becomes

V =

[

VL

[

0
VR

]]

T =





TL −TLV
H
L

[

0
VR

]

TR

0 TR



 ,

(5)

where (VL,TL) and (VR,TR) represent QL and QR.
To simplify the presentation without affecting our asymp-

totic conclusions, we will not exploit the block-lower-trape-
zoidal and block-upper-triangular structures of the bases
and kernels. With this understanding, it minimizes arith-
metic to evaluate the quadruple matrix product in Equation (4)
from right to left, and the quadruple product in Equation (5)
from inside-out (two possibilities).

Whenm is close to n, a general basis-kernel representation
may require more storage than the explicit (m×m) Q-factor.
The QR decomposition algorithms in (Sca)LAPACK use
a variant [Pug92] of compact WY representation [SVL89],
which we call Householder representation in this work. In
Householder representation, V is unit lower trapezoidal and
T is upper triangular. These properties enable an in-place
implementation, where V’s strict lower trapezoid and R’s
upper triangle overwrite A and where T need not be stored,
since in this case

T =
(

triu(VHV,−1) + diag(diag(VHV))/2
)−1

,

using the MATLAB operations ‘triu’ and ‘diag’.
Our algorithms will construct, store, and apply Q-factors

in Householder representation. This choice is motivated by
our practical goal of integration into the ScaLAPACK li-
brary [BCC+97]; from a theoretical standpoint, any basis-
kernel representation (with m × n basis) would yield the
same asymptotic costs.

2.4 Elmroth-Gustavson’s Approach
The recursive framework of rec-qr is quite general. We

will obtain our desired algorithmic costs by following an ap-
proach of Elmroth-Gustavson [EG00] (implemented in LA-
PACK’s _geqrt3), in which we split A vertically (roughly)
in half, until the number of columns drops below a given

threshold b ≥ 1. The recursive calls define a binary tree
whose ⌈log2(n/b)⌉ levels are complete except possibly the
last. (We always suppose b ≤ n; when b ≥ n, the tree
has just one node.) We call this specialized template qr-eg

(Algorithm 2); qr-eg utilizes the compact representations
as explained in Section 2.3.

Algorithm 2 (V, T, R) = qr-eg (A, b)

1: if n ≤ b then
2: (V, T, R) = base-QR (A).
3: else

4: split A =

[

A11 A12

A21 A22

]

so A11 is ⌊n/2⌋ × ⌊n/2⌋.

5: (VL, TL, RL) = qr-eg

([

A11

A21

]

, b

)

.

6: M1 = VH
L ·

[

A12

A22

]

.

7: M2 = TH
L ·M1.

8:

[

B12

B22

]

=

[

A12

A22

]

−VL ·M2.

9: (VR, TR, RR) = qr-eg (B22, b).

10: V =

[

VL

[

0
VR

]]

.

11: M3 = VH
L ·

[

0
VR

]

.

12: M4 = M3 ·TR.

13: T =

[

TL −TL ·M4

0 TR

]

.

14: R =

[

RL B12

0 RR

]

.

15: end if

We mention that [EG00] actually proposes a hybrid of
the stated approach and an iterative approach, switching
between the two for a constant-factor improvement in the
arithmetic cost. (It still fits in the rec-qr framework.)
While our algorithms can also benefit from this optimiza-
tion, we omit further discussion in the present work since it
does not affect our asymptotic conclusions.

3. COMPUTATION MODEL
We model a parallel machine as a set of P interconnected

processors, each with unbounded local memory. Processors
operate on local data and communicate with other proces-
sors by sending and receiving messages. A processor can per-
form at most one task (operation/send/receive) at a time.
A (data) word means a complex number; operations are the
usual field actions, plus complex conjugation and real square
roots. Messages are point-to-point and asynchronous. Each
operation takes time γ, while sending or receiving a message
of w words takes time α + wβ, α being the latency and β
the inverse of the bandwidth.

We model an execution as a DAG whose vertices are tasks
and whose edges define P paths, one for each processor’s
task sequence, plus an inter-path edge for each send/receive
pair. Weighting vertices by their tasks’ durations, we define
runtime as the maximum weight of any path. Therefore,
if every path includes at most F operations and at most S
messages, containing at most W words in total, the runtime
is bounded,

runtime ≤ γ · F + β ·W + α · S.

When multiple processors send/receive messages simulta-
neously, it can be more efficient to split the messages into
more messages of smaller sizes, to coalesce them into fewer,
larger messages, or to route them through intermediate pro-
cessors. These lower-level implementation details are often
irrelevant to our asymptotic analyses, motivating us to ex-
press our algorithms’ communication patterns abstractly, in
terms of collectives.

In the rest of Section 3 we define the eight different col-
lectives appearing in this work, collecting in Table 1 their
costs.

A general scenario, called an all-to-all, is when every
processor p initially owns a block of data, containing Bpq

words, destined for every processor q, including itself. All
other collectives we use can be interpreted as special cases of
an all-to-all. Four of these distinguish a ‘root’ processor
r: scatter, where only r’s outgoing blocks are nonempty;
gather, where only r’s incoming blocks are nonempty; broad-
cast, a scatter where r’s outgoing blocks are identical; and
reduce, a gather where r’s incoming blocks have same size
and are added entrywise. Four others, including all-to-

all, can be constructed from the first four: all-gather,
P gathers with same outgoing blocks but different roots;
all-reduce, P reduces with same outgoing blocks but
different roots; all-to-all, P gathers with different out-
going blocks and different roots; and reduce-scatter, P
reduces with different outgoing blocks and different roots.
(Since the three ‘reduce’ collectives perform arithmetic,
they are technically not all-to-alls.)

Lemma 1. There exist algorithms for the eight collectives
satisfying the upper bounds in Table 1.

Proof. For all but all-to-all we use a binomial-tree
and possibly a bidirectional-exchange algorithm: see, e.g.,
[TRG05, CHPvdG07]. In particular, for (all-)gather and
(reduce-)scatter we use binary tree algorithms, and for
broadcast and (all-)reduce we use whichever of the two
minimizes all three costs, asymptotically. For all-to-all

we use the (radix-2) index algorithm [BHK+97], possibly
performed twice using the load-balancing approach of [HBJ96].
(For a more detailed proof, see Section A.)

Note that when the number of processors is not too large
w.r.t. the block size, the bidirectional-exchange algorithm
for broadcast, built from scatter+all-gather, is asymp-
totically cheaper than the corresponding binary tree algo-
rithm in terms of bandwidth. Similarly, the bidirectional-
exchange algorithm for (all-)reduce), built from reduce-

scatter+(all-)gather, improves both arithmetic and band-
width.

4. 3D MATRIX MULTIPLICATION
The key to reducing d-caqr-eg’s bandwidth cost be-

low that of previous approaches is 3D matrix multiplica-
tion (dmm) [ABG+95]. Here, 3D refers to the paralleliza-
tion of the operations and distribution of data over a three-
dimensional (logical) processor grid. d-caqr-eg will also
exploit two special cases, dmm, performed on a one-dimensional
grid, and mm, performed locally on one processor.

For concreteness, consider multiplying an I×K matrix A
with a K×J matrix B to obtain an I×J matrix C, via the

#operations #words #messages

scatter 0 (P − 1)B logP
gather 0 (P − 1)B logP

broadcast 0 min(B logP, B + P) logP
reduce min(B logP, B + P) min(B logP, B + P) logP

all-gather 0 (P − 1)B logP
all-reduce min(B logP, B + P) min(B logP, B + P) logP

all-to-all 0 min(BP logP, (B∗ + P 2) logP) logP
reduce-scatter (P − 1)B (P − 1)B logP

Table 1: Asymptotic costs of the collectives defined in Section 3. P is the number of processors involved, B = maxp,q Bpq

is the largest block-size, and B∗ = max
(

maxq

∑

p Bpq, maxp

∑

q Bpq

)

is the maximum number of words any processor holds

before/after. Any P can be replaced by |{p, q : Bpq > 0}| for a possibly smaller (valid) bound.

usual (entrywise) formula:

for all (i, j) ∈ [I]× [J], Cij =
∑

k∈[K]

AikBkj . (6)

We identify each of the IJK (scalar) multiplications with a
point (i, j, k) in three-dimensional Euclidean space, so the
set of multiplications defines a discrete I×J ×K brick. We
point the reader to [BDKS16, SVdGP16] for further discus-
sions of this geometric terminology.

Lemma 2. Suppose input matrices A and B are initially
owned by processor p, and output matrix C is to be finally
owned also by processor p. C = A ·B can be computed with
runtime

γ ·O (IJK) . (7)

Proof. Directly evaluating the sums-of-products in Equation (6)
on processor p involves IJK multiplications and IJ(K−1)
additions; no communication is necessary.

Lemma 3. Suppose I, J, K, and P satisfy

P = O

(

IJK

max(I, J,K)

)

and P = O (max(I, J,K)) .

If K = max(I, J,K), suppose that matrices AT and B are
initially distributed in matching row-wise layouts where each
processor owns O(K/P) rows, and that matrix C is to be
finally owned by a single processor r. Alternatively, if I =
max(I, J,K), suppose that matrices A and C are initially/finally
distributed in matching row-wise layouts where each proces-
sor owns O(I/P) rows, and that matrix B is initially owned
by a single processor r. C = A · B can be computed with
runtime

γ ·O

(

IJK

P

)

+ β ·O

(

IJK

max(I, J,K)

)

+ α ·O (logP) , (8)

Proof. In the first case, each processor performs a local
mm and then all processors reduce to processor r. In the
second case, processor r broadcasts B to all processors and
then each processor performs a local mm. The hypotheses
guarantee that P is not too large for these collectives can
leverage the bidirectional-exchange algorithms. (For a more
detailed proof, see Section B.)

The bound of Equation (8) also holds in a third case, when
J = max(I, J,K) and the distributions are symmetric to the
second case, but we will not need this result.

Lemma 4. Suppose I, J, K, and P satisfy

c ·
IJK

min(I, J,K)3
≤ P ≤ IJK.

There exists a data distribution of A, B, and C such that
each processor initially owns at most O((I+J)K/P) entries
of A and B, and finally at most O(IJ/P) entries of C,
where C = A ·B can be computed with runtime

γ ·O

(

IJK

P

)

+ β ·O

(

(

IJK

P

)2/3
)

+ α · O (logP) . (9)

Proof. Pick Q = ⌊I/ρ⌋, R = ⌊J/ρ⌋, and S = ⌊K/ρ⌋,

where ρ = (IJK/P)1/3. Under the hypotheses, Q,R, S are
positive integers with QRS ≤ P , thus define a validQ×R×S
processor grid. Moreover, QRS = Ω(P). Pick partitions
{Iq}q , {Jr}r, and {Ks}s of [I], [J], and [K] which are bal-
anced, meaning their parts differ in size by at most one. Pick
a partition {Aq,r,s}q,r,s of [I]× [K] to be a union of balanced
R-way partitions of the sets Iq × Ks ((q, s) ∈ [Q] × [S]),
and similarly for partitions {Bq,r,s}q,r,s and {Cq,r,s}q,r,s of
[K] × [J] and [I] × [J]. Distribute entries Aq,r,s of A to
each grid processor (q, r, s), and similarly for B and C: this
distribution satisfies the balance constraint in the theorem
statement. The algorithm proceeds with all-gathers of
blocks of A and B along processor grid fibers in the Q- and
R-directions. then local mms, then finally reduce-scatters
of blocks of C along processor grid fibers in the S-direction.
(For a more detailed proof, see Section B.)

We denote by mm, dmm, or dmm an algorithm that
satisfies Lemma 2, Lemma 3, or Lemma 4, resp.

5. COMMUNICATION-AVOIDING QR
Our new algorithms d-caqr-eg and d-caqr-eg are

closely related to communication-avoiding QR (caqr) and
tall-skinny QR (tsqr) [DGHL12]: we explore this relation-
ship in Section 8. For now we remark that d-caqr-eg spe-
cializes qr-eg to use d-caqr-eg as a base-case, and that
d-caqr-eg specializes qr-eg to use tsqr (the variant in
[BDG+15]) as a base-case.

On input, the m×n matrix A is partitioned across the P
processors so that each processor p owns mp ≥ n rows, not
necessarily contiguous. Thus we require A be sufficiently
tall and skinny: m/n ≥ P . A single processor r, which
owns A’s n leading rows, is designated as the root processor.

On output, the Q-factor is stored in Householder repre-
sentation (V, T), where V has the same distribution as A.

Both T and the R-factor are returned only on the root pro-
cessor.

Lemma 5. tsqr’s runtime is

γ · O

(

max
p

mpn
2 + n3 logP

)

+ β ·O
(

n2 logP
)

+ α ·O (logP)

Proof. It is crucial to use the tsqr variant in [BDG+15].
(See also Section C for a proof.)

Recall from Section 3 that when the block-size is suffi-
ciently large, reduce and broadcast can be performed
more efficiently, by reduce-scatter+gather and scat-

ter+all-gather, resp. Unfortunately, tsqr’s reduce-
and broadcast-like collectives preclude these optimizations.
Next in Section 6, we will show how similar savings are
achievable.

6. 1D-CAQR-EG
We now present a new algorithm, d-caqr-eg, an instan-

tiation of the template qr-eg (Algorithm 2). d-caqr-eg
effectively reduces tsqr’s bandwidth cost by a logarithmic
factor, at the expense of increasing its latency cost by a
comparable factor.

The input/output data distributions are the same as for
tsqr, so we continue notation from Section 5. We specify
d-caqr-eg by stepping line-by-line through qr-eg — base
case in Section 6.1 and inductive case in Section 6.2 — then
prove Theorem 2 in Section 6.3.

6.1 Base Case
d-caqr-eg’s base-case QR decomposition subroutine (Line 2)

is tsqr (Section 5), using the same root processor. Note
that A’s distribution satisfies tsqr’s requirements, and V,
T, and R are returned distributed as required by d-caqr-
eg.

6.2 Inductive Case
Let us walk through the inductive case line-by-line. All al-

gorithmic costs are incurred in the two recursive calls (Lines 5
and 9) and the six matrix multiplications (Lines 6 to 8 and 11
to 13).

(Line 4): the splitting involves no computation nor com-
munication.

(Line 5): the left recursive call is valid since
[

A11
A21

]

still sat-
isfies the data distribution requirements (only n decreases).

(Line 6): this is a dmm with matrix dimensions I = ⌊n/2⌋,
J = ⌈n/2⌉, and K = m. We choose a (1D) processor grid
with Q = R = 1 and S = P , thus T = 0 and the partitions
{Iq}q = {[I]} and {Jr}r = {[J]} are trivial. We pick the
partition {Ks}s to match the distribution of A’s rows, and
pick {Aq,r,s}q,r,s = {[I] × Ks}s and {Bq,r,s}q,r,s = {Ks ×
[J]}s. Additionally, we set Cq,r,s = ∅ for all (q, r, s) but the
root processor.

(Line 7): this is an mm on the root processor with matrix
dimensions I = K = ⌊n/2⌋ and J = ⌈n/2⌉.

(Line 8): this is a dmm with matrix dimensions I = m,
J = ⌈n/2⌉, and K = ⌊n/2⌋, followed by a matrix subtrac-
tion. We choose a (1D) processor grid with Q = P and
R = S = 1, thus T = 0 and the partitions {Jr}r = {[J]} and

{Ks}s = {[K]} are trivial. We pick the partition {Ir}r to
match the distribution of A’s rows, and pick {Aq,r,s}q,r,s =
{Ir × [K]}r and {Cq,r,s}q,r,s = {Ir × [J]}r . Additionally, we
set Bq,r,s = ∅ for all (q, r, s) but the root processor. The row-
wise distribution {Cq,r,s}q,r,s enables the subsequent matrix
subtraction to be performed without further communica-
tion.

(Line 9): the second recursive call is valid since B22 still
satisfies the data distribution requirements: the number of
rows owned by the root processor decreases by the same
amount that n does, while all other processors keep the same
number.

(Line 10): each processor assembles its local rows of V: no
computation nor communication is required.

(Line 11): this is a dmm with matrix dimensions I =
⌊n/2⌋, J = ⌈n/2⌉, and K = m−⌊n/2⌋; we choose a proces-
sor grid and partitions as in Line 6.

(Line 12): this is an mm on the root processor with the
same dimensions as Line 7.

(Line 13): this is an mm on the root processor with the
same dimensions as Lines 7 and 12.

(Line 14): each processor assembles its local rows of R: no
computation nor communication is required.

Verify that V, T, and R are distributed as desired.

6.3 Concluding the Analysis
d-caqr-eg is valid for any P,m,n, b ≥ 1 such that P ≤

m/n, and there is no loss of generality to suppose b ≤ n.
When b = n, d-caqr-eg reduces to tsqr. As we will see,
picking b < n allows us to reduce d-caqr-eg’s arithmetic
and bandwidth costs — while increasing its latency cost
— to appear as if we had used bidirectional exchange re-

duce and broadcast algorithms (Section 3) within tsqr,
despite the fact that these algorithms are inapplicable, as
we lamented at the end of Section 5. We will navigate the
tradeoff with a nonnegative parameter ǫ, taking

b = Θ(n/(log P)ǫ) . (10)

We will show that taking ǫ = 1 yields Theorem 2.

Lemma 6. If P = O(b2), d-caqr-eg has runtime

γ ·

(

mn2

P
+ nb2 logP

)

+ β ·O
(

n2 + nb logP
)

+ α ·O
(n

b
logP

)

. (11)

Proof. Here we give an expanded proof of Lemma 6.
Let us derive an upper bound T (m,n) on the runtime

of an d-caqr-eg invocation. (The unchanging parameters
P, b are implicit.) We will now assume a balanced data dis-
tribution, meaning the numbers of rows any two processors
owns differ by at most one.

When P = 1, the runtime of d-caqr-eg for any b is
just γ · O

(

mn2
)

, which satisfies the conclusion, so we may
assume P > 1 hereafter.

In the base case (n ≤ b), the algorithmic cost is the d-
caqr-eg call, so by Lemma 5 we conclude that

T (m,n) = γ ·O

(

mn2

P
+ n3 logP

)

+ β ·O
(

n2 logP
)

+ α · O (logP) .

In the inductive case, the algorithmic cost is due to the
two recursive calls, the three dmm calls (Lines 6, 8 and 11,
performed on 1D processor grids, and the three (local) mm

calls (Lines 7, 12 and 13), performed by the root.
The local mms have runtime γ ·O

(

n3
)

.
To apply Lemma 3 to the dmm calls, let us now suppose

that P = O
(

n2
)

and P = O(m), Actually, only the first
assumption is new: we already know that P ≤ m/n for the
initial m,n, and when P > 1 we see that in any recursive
call the current m is within a factor of two of the initial m,
hence P = O(m) in any recursive call. Confirming that the
data distributions chosen in Section 6.2 match those in the
proof of Lemma 3, the dmms’ runtime is

γ ·O

(

mn2

P

)

+ β ·O
(

n2)+ α ·O (logP) .

Overall, we have found that

T (m,n) = T (m, ⌊n/2) + T (m−⌊n/2⌋, ⌈n/2⌉)

+ γ ·O

(

mn2

P

)

+ β · O
(

n2
)

+ α ·O (logP) .

By induction we may take T (m,n) to be nondecreasing
in both m and n. The former property justifies replacing
m−⌊n/2⌋ by m in the second recursive call. Hence, we will
takem to be its initial value in the analysis of every recursive
call.

Supposing n = b2L for a nonnegative integer L, T (m,n)
is bounded by Equation (11).

Now observe that n = b2L+1 reproduces the asymptotic
bound Equation (11), and since T (m,n) is nondecreasing in
n, this bound also holds when b2L < n < b2L+1.

Requiring P = O(b2) suffices to ensure that P = O(n2)
at every inductive case.

Proof of Theorem 2. Substituting Equation (10) into
Equation (11),

γ ·

(

mn2

P

(

1 +
nP

m
(logP)1−2ǫ

))

+ β · O
(

n2
(

1 + (logP)1−ǫ
))

+ α ·O
(

(logP)1+ǫ
)

,

thence the hypothesis is P (logP)2ǫ = O
(

n2
)

. We conclude
by taking ǫ = 1.

This argument extends to any ǫ ≥ 0, assuming P (logP)2ǫ =
O(n2), but the asymptotic tradeoff vanishes when ǫ > 1. For
1/2 ≤ ǫ ≤ 1 the tradeoff is only between bandwidth and la-
tency. A sensible interpretation of the case ǫ < 0 is b = n,
meaning tsqr is invoked immediately. In this case, the costs
are given directly by Lemma 5.

7. 3D-CAQR-EG
We now present our second new algorithm, d-caqr-eg,

another instantiation of the template qr-eg (Algorithm 2).
On input, the m × n matrix A (m ≥ n) is partitioned

across the P processors row-cyclically: thus, each processor
owns at most ⌈m/P ⌉ rows.

On output, the Q-factor is stored in Householder repre-
sentation (V, T), where V has the same distribution as A.
Both T and the R-factor have the same distribution, match-
ing the top n× n submatrix of A.

After walking through d-caqr-eg in a similar fashion as
we did for d-caqr-eg in Section 6, we collect the results
to prove Theorem 1.

In the following, Td-caqr-eg denotes an upper bound on
the runtime of d-caqr-eg, a function of P,m, n, b.

7.1 Base Case
Recall that b denotes the recursive threshold for d-caqr-

eg. d-caqr-eg’s base-case QR decomposition subroutine
(Line 2) is d-caqr-eg, with a fixed recursive threshold b∗.

To satisfy d-caqr-eg’s data distribution requirements,
we convertA from row-cyclic to block-row layout, distributed
over

P ∗ = min (P, ⌊m/n⌋)

processors, ensuring each owns at least n rows and one owns
the top n rows (and perhaps others).

Initially, P ′ = min(m,P) processors own rows ofA. (Clearly
P ′ ≤ P with equality just in case P ≤ m; note further that
P ∗ ≤ P ′ with equality just in case P ≤ m/n.) Number
these processors from 0 to P ′−1 according to the cyclic lay-
out of A, so that processor 0 owns the top row of A. Deal
these processors among P ∗ groups, so processor 0 goes into
group 0, processor 1 goes into group 1, and so on. Represent
each group by its lowest-numbered processor and within each
group, gather A’s rows to the representative. Since each
group contains at most ⌈P ′/P ∗⌉ processors and each pro-
cessor initially owns at most ⌈m/P ′⌉ rows of A, the largest
block-size in any gather is at most ⌈m/P ′⌉n.

Each of the P ∗ representatives (including processor 0) now
owns at least ⌊m/P ∗⌋ ≥ n rows of A, satisfying the first part
of d-caqr-eg’s data distribution requirements: it remains
to ensure processor 0 owns the top n rows of A. These
rows are currently owned by the first P ′′ = min(P ∗, n) rep-
resentatives. (Clearly P ′′ ≤ P ∗ with equality just in case
P ≤ n.) We next perform a gather over the representa-
tives of groups 0 through P ′′−1, taking processor 0 to be the
root so that afterwards it owns the top n rows of A (and
perhaps others). We also perform a scatter with the op-
posite communication pattern so that the overall number of
rows per representative is unchanged. The largest block-size
in both the gather and the scatter is at most ⌈n/P ′′⌉n.

We can now invoke d-caqr-eg, with parameters P ∗, b∗.
After it returns, we redistribute V, T, and R by reversing
the preceding gathers/scatters, so thatV is (resp., T and
R are) distributed over all P processors like A was (resp.,
A’s first n rows were) initially.

7.2 Inductive Case
Let us walk through the inductive case line-by-line, as we

did for d-caqr-eg. All algorithmic costs are incurred in
the two recursive calls (Lines 5 and 9) and the six matrix
multiplications (Lines 6 to 8 and 11 to 13).

(Line 4): the splitting involves no computation nor com-
munication.

(Line 5): the left recursive call is valid since
[

A11
A21

]

still sat-
isfies the data distribution requirements (only n decreases).

(Line 6): this is a dmm with matrix dimensions I = ⌊n/2⌋,
J = ⌈n/2⌉, and K = m. We do not yet specify the proces-
sor grid, but we do suppose that d-caqr-eg uses a bal-
anced parallelization and data distribution as in the proof
of Lemma 4: this is possible for any processor grid.

To match this data distribution, we perform an all-to-

all before and after the dmm invocation, each time using
the two-phase approach [BHK+97]. The first all-to-all

redistributes the input matrices from column- and row-cyclic
to dmm layout (the left factor is row-cyclic, transposed);
the maximum number of input matrix entries any processor
owns before or after this collective is at most

max



I

⌈

K

P

⌉

+

⌈

K

P

⌉

J,









⌈

I
Q

⌉

⌈

K
S

⌉

R









+

⌈

⌈

J
R

⌉ ⌈

K
S

⌉

Q

⌉



 ,

where the processor grid is Q × R × S. The second all-

to-all converts the output matrix from dmm layout to
row-cyclic layout; the maximum number of output matrix
entries any processor owns before or after this collective is
at most

max













⌈

I
Q

⌉

⌈

J
R

⌉

S









,

⌈

I

P

⌉

J



 .

(Line 7): this is a dmm with matrix dimensions I = K =
⌊n/2⌋ and J = ⌈n/2⌉. We pick a 3D processor grid and
partitions satisfying the same constraints as for Line 6, and
perform similar all-to-alls before and after, so we can
reuse the preceding analysis, substituting I , J , and K.

(Line 8): this is a dmm with matrix dimensions I = m,
J = ⌈n/2⌉, and K = ⌊n/2⌋, followed by a matrix subtrac-
tion. We proceed similarly to Lines 6 and 7, except that the
left factor is initially in row-cyclic layout, so the first sum-
mand in the first term of the maximum becomes ⌈I/P ⌉K
(vs. I⌈K/P ⌉).

(Line 9): the second recursive call is valid since B22 still
satisfies the data distribution requirements: in particular,
unlike d-caqr-eg there is no requirement that a fixed pro-
cessor owns the first n rows or that every processor owns at
least n rows.

(Line 10): each processor assembles its local rows of V: no
computation nor communication is required.

(Line 11): this is a dmm with matrix dimensions I =
⌊n/2⌋, J = ⌈n/2⌉, and K = m−⌊n/2⌋; we choose a proces-
sor grid, partitions, and all-to-alls as in Line 6.

(Line 12): this is a dmm with the same dimensions, pro-
cessor grid, partitions, and all-to-alls as Line 7.

(Line 13): this is a dmm with the same dimensions, pro-
cessor grid, partitions, and all-to-alls as Lines 7 and 12.

(Line 14): each processor assembles its local rows of R: no
computation nor communication is required.

Verify that V, T, and R are distributed as desired.

7.3 Concluding the Analysis
d-caqr-eg is valid for any P,m, n, b, b∗ ≥ 1, and there

is no loss of generality to suppose b∗ ≤ b ≤ n. Taking b =
n simplifies d-caqr-eg to d-caqr-eg with parameters
P ∗, b∗ and additional data redistributions. As in the case
of d-caqr-eg, picking b < n allows us to reduce d-caqr-
eg’s arithmetic and bandwidth costs, while increasing its
latency cost.

We will navigate this tradeoff with two nonnegative pa-
rameters δ, ǫ, taking

b = Θ
(

n/ (nP/m)δ
)

, b∗ = Θ(b/(logP)ǫ) . (12)

We prove Theorem 1 with δ ∈ [1/2, 2/3] and ǫ = 1.

Lemma 7. If P = O(b2) and P ∗ = O(b∗2), d-caqr-eg
has runtime

T (m,n) = γ ·

(

mn2

P
+ nb∗

2
logP

)

+ β · O

(

mn

P
+ nb+ nb∗ logP +

(

mn2

P

)2/3

+

(

(mn

P
+ n

)

log
n

b
+

nP 2

b

)

logP

)

+ α · O
(n

b∗
logP

)

. (13)

Proof. Here we give an expanded proof of Lemma 7.
Let us derive an upper bound T (m,n) on the runtime

of a d-caqr-eg invocation. (The unchanging parameters
P, b, b∗ are implicit.)

When P = 1, the runtime of d-caqr-eg is just γ ·
O
(

mn2
)

, which satisfies the conclusion, so we may assume
P > 1 hereafter.

In a base case (n ≤ b), the algorithmic costs are due to the
d-caqr-eg invocation and the four communication phases.

The first communication phase, involving P ∗ independent
gathers, has runtime bounded by

β · O
(

(⌈P ′/P ∗⌉ − 1)⌈m/P ′⌉n
)

+ α ·O
(

log⌈P ′/P ∗⌉
)

= β · O
(

mn/P + n2
)

+ α · O (logP) ,

and the same bound applies for the last phase (matching
scatters). (Recall that P ∗ = min(P, ⌊m/n⌋) and P ′ =
min(P,m).) The fact that no communication happens when
m ≥ nP (and thus P ∗ = P) is evident in the first bound
but not the second.

The second communication phase, a simultaneous gather/
scatter, has runtime bounded by

β · O(
(

(P ′′ − 1)⌈n/P ′′⌉n
)

+ α ·O
(

logP ′′
)

= β ·O
(

n2
)

+ α · O (logP) ,

and the same bound applies for the third phase (matching
scatter/gather). (Recall that P ′′ = min(P ∗, n).)

A runtime bound for the d-caqr-eg invocation is given
by Theorem 2, supposing now that P ∗ = O(b∗2). Actually
we use the more refined bound of Equation (11), substitut-
ing P ∗, b∗ for P, b.

Altogether, in a base case,

T (m,n) = γ ·O

(

mn2

P
+ nb∗

2
logP

)

+ β ·O
(mn

P
+ n2 + nb∗ logP

)

+ α ·O
(n

b∗
logP

)

In the inductive case (n > b), the algorithmic cost is due
to the two recursive calls, the six dmms, performed on 3D
processor grids, and the twelve all-to-alls, performed be-
fore and after each dmm.

To apply Lemma 4 to the dmms, let us now suppose that
P ≥ (3c)3/4 for some c > 1 and b ≥ 2P 1/3: since m ≥ n at
every recursive call and since n ≥ b+1 in the inductive case,
c ·IJK/min(I, J,K)3 ≤ P ≤ IJK for each dmm. Thus the

dmms’ overall runtime is

γ ·O

(

mn2

P

)

+ β · O

(

(

mn2

P

)2/3
)

+ α · O (logP) .

Moreover, the inequalities derived at the beginning of Lemma 4’s
proof also yield the following upper bound on the overall
runtime of the all-to-alls,

β ·O
((mn

P
+ n+ P 2

)

logP
)

+ α · O (logP) .

Overall, we have found that

T (m,n) = T (m, ⌊n/2⌋) + T (m−⌊n/2⌋, ⌈n/2⌉)

+ γ ·O

(

mn2

P

)

+ β · O

(

(

mn2

P

)2/3

+
(mn

P
+ n+ P 2

)

logP

)

+ α ·O (logP) .

By induction we may take T (m,n) to be nondecreasing
in both m and n. The former property justifies replacing
m−⌊n/2⌋ by m in the second recursive call. Hence, we will
takem to be its initial value in the analysis of every recursive
call.

Supposing n = b2L for a nonnegative integer L, T (m,n)
is bounded by Equation (13).

Now observe that n = b2L+1 reproduces the asymptotic
bound of Equation (13), which thus holds when b2L < n <
b2L+1 since T (m,n) is nondecreasing in n.

In conclusion, d-caqr-eg’s runtime T (m,n) satisfies Equation (13)

if P ≥ 3, b ≥ 2P 1/3, P = O(b2), and P ∗ = O(b∗2).

Proof of Theorem 1. Consider picking b, b∗ as in Equation (12).
The constraints relating P and b are satisfiable if

P = O
(

m
2δ

1+2δ · n
2−2δ
1+2δ

)

, (14)

and the constraint relating P ∗ and b∗ is satisfiable if

P · (logP)
2ǫ

1+2δ = O
(

m
2δ

1+2δ · n
2−2δ
1+2δ

)

, (15)

a stronger condition than Equation (14).
Substituting Equation (10) into Equation (11),

γ ·

(

mn2

P

(

1 +

(

nP

m

)1−2δ

(logP)1−2ǫ

))

+ β ·O

(

n2

(

nP
m

)δ

(

1 + (logP)1−ǫ)+W

)

+ α ·O
(

(nP/m)δ(logP)1+ǫ
)

,

where W denotes the sum of three terms associated with the
all-to-alls,

mn

P
log

nP

m
logP , n log

nP

m
logP , P 2

(

nP

m

)δ

logP ,

plus a term n2/(nP/m)2/3 associated with the dmms. We
obtain the stated arithmetic and latency costs by taking
δ ≥ 1/2 and ǫ = 1. To suppress the bandwidth term W ,
it suffices to require that there exists δ′ ∈ (0, 1−δ), hence

δ < 1, such that

P / (logP)
ǫ

1−δ−δ′ = Ω
(

m / n
)

,

P · (logP)
ǫ

δ+δ′ = O

(

m · n
1−δ−δ′

δ+δ′

)

,

P · (logP)
ǫ

2+2δ = O
(

m
δ

1+δ · n
1−δ
1+δ

)

.

(16)

The dmms’ bandwidth cost cannot be reduced, but it is
lower-order if δ ≤ 2/3.

The hypotheses of Theorem 1, δ ∈ [1/2, 2/3] (and tacitly
ǫ = 1) and Equation (2), imply Equations (14) to (16).

This argument extends to a larger range of nonnegative
δ, ǫ. Assuming fixed ǫ, for δ > 2/3 the dmm invocations
dominate the bandwidth cost, whose bound remains as if δ =
2/3, no longer a tradeoff, at least asymptotically. In the case
0 ≤ δ < 1/2, the additive term in the arithmetic cost, due to
the small (mostly) triangular matrix operations on tsqr’s
critical path, possibly dominates. (A sensible interpretation
of the case δ ≤ 0 is b = n, in which case d-caqr-eg is
invoked immediately.) Assuming fixed δ, the tradeoffs due
to varying ǫ ∈ [0, 1] are just as in the proof of Theorem 2,
except now the factor in the arithmetic cost is suppressed
by increasing δ.

8. DISCUSSION
We have presented two new algorithms, d-caqr-eg and

d-caqr-eg (Sections 6 and 7), for computing QR decom-
positions on distributed-memory parallel machines. Our
analysis (e.g., Equations (11) and (13)) demonstrates trade-
offs between arithmetic, bandwidth, and latency costs, gov-
erned by the choice of one (d-caqr-eg) or two (d-caqr-
eg) block sizes. We navigated these tradeoffs in Theorems 1
and 2 by asymptotically minimizing arithmetic, as well as
bandwidth in Theorem 2.

8.1 Comparison With Similar Algorithms
Here we compare the two new algorithms with four other

instances of the rec-qr framework, deriving Tables 2 and 3.
Let us review the other algorithms.

An early and well-known instance of rec-qr (Algorithm 1)
was proposed by Householder [Hou58]. It features a split-
ting strategy (Line 4) where A11 is b × b (right-looking) or
n−b× n−b (left-looking); a base case threshold (Line 1) as-
serting n ≤ b; and a base case subroutine (Line 2) gener-
ating a product of b Householder reflectors. Householder’s
proposal was right-looking and unblocked, meaning b = 1
(vs. blocked, b > 1).

Let d-house and d-house denote the un/blocked right-
looking variants, specialized to use compact representations
(Section 2.3); their costs are summarized in the first rows
of Tables 2 and 3. d-house invokes d-house as its base
case. For d-house we use a 1D processor grid and for d-
house we use a 2D processor grid. For d-house we dis-
tribute matrices similar to d-caqr-eg and for d-house we
distribute matrices (2D-) block-cyclically with b× b blocks:
the distribution block size matches the algorithmic block
size. We parallelize d-house and the base case of d-
house to match the distribution of A, analogous to d-
caqr-eg. We parallelize d-house’s inductive-case matrix
multiplications to match the output matrix distribution (a
2D parallelization). In the case of d-house we assume

algorithm #operations #words #messages

d-house mn2/P n2/(nP/m)1/2 n logP

caqr mn2/P n2/(nP/m)1/2 (nP/m)1/2(logP)2

d-caqr-eg mn2/P n2/(nP/m)δ (nP/m)δ(logP)2

Table 2: Comparison of approaches for square-ish matrices (m/n = O(P)). The algorithms and the assumptions that support
these bounds are explained in Section 8.1. (In line 3, δ varies from 1/2 to 2/3.)

algorithm #operations #words #messages

d-house mn2/P n2 logP n logP
tsqr mn2/P + n3 logP n2 logP logP

d-caqr-eg mn2/P + n3(logP)1−2ǫ n2(logP)1−ǫ (logP)1+ǫ

Table 3: Comparison of approaches for tall/skinny matrices (m/n = Ω(P)). The algorithms and the assumptions that
support these bounds are explained in Section 8.1. (In line 3, ǫ varies from 0 to 1.)

P = O(m). In the case of d-house, we choose an r × c

processor grid with c = Θ((nP/m)1/2) and r = Θ(P/c),
and we choose b = Θ(1). Assuming P = Ω(m/n) and
P · (logP)2 = O(m · n), these choices are valid and simulta-
neously minimize all three costs, asymptotically.

caqr [DGHL12] modifies d-house to invoke tsqr (Section 5)
in the base case. Our algorithms make crucial use of the
tsqr enhancements in [BDG+15]; additionally, we use that
paper’s improved caqr in the following comparison. We
parallelize and distribute data for tsqr as discussed in Section 5,
and for caqr’s inductive case as we did for d-house’s.
tsqr and caqr’s costs are summarized in the second rows
of Tables 2 and 3. In the case of tsqr we assume P ≤ m/n.
In the case of caqr we use the same r × c grid as for d-
house but now pick b = Θ(n/(nP/m)1/2). Assuming P/
(logP)2 = Ω(m/n) and P · (logP)2 = O(m · n), these
choices are valid and simultaneously minimize all three costs,
asymptotically.

The costs of the new algorithms, d-caqr-eg and d-
caqr-eg appear in the third rows of Tables 2 and 3. To
make the comparison between tsqr and d-caqr-eg more
clear, for the latter we use b = Θ(n/(logP)ǫ) in Theorem 2’s
proof, allowing the parameter ǫ to vary over [0, 1], justified
by the stronger constraint P (logP)2ǫ = O

(

n2
)

. For d-
caqr-eg we follow Theorem 1’s proof and hypotheses.

8.2 Elimination By Blocks
Tiskin [Tis07], working in the BSP model [Val90], pro-

posed an algorithm outside of the rec-qr framework which
demonstrates a similar bandwidth/latency tradeoff as d-
caqr-eg. Tiskin’s algorithm was designed only for square
matrices, but it has been extended to rectangular matrices,
using the original algorithm as a black-box [SBDH17]. This
extension achieves BSP bandwidth cost O

(

n2/(nP/m)δ
)

and BSP synchronization cost O
(

(nP/m)δ(logP)2
)

. De-
spite the fact that, in BSP, d-caqr-eg achieves these same
communication costs, we still believe d-caqr-eg is a valu-
able contribution for multiple reasons. Defining a data dis-
tribution is a nontrivial and crucial step in developing a
distributed-memory implementation using, e.g., MPI. The
aforementioned BSP algorithms do not (and need not) ex-
plicitly specify their data distributions. Second, our algo-
rithms are based on Householder’s algorithm and use House-
holder representation. Thus, they are readily assembled
from robust, tuned subroutines in standard libraries like

(P)BLAS and (Sca)LAPACK. Additionally, all interproces-
sor communication in our algorithms is expressed in terms
of standard MPI collectives. Lastly, we feel that Tiskin’s
recursive scheme, based on a slope-2 wavefront and ‘pseu-
dopanels’, is much more demanding from an implementa-
tion perspective than Elmroth-Gustavson’s (qr-eg). To our
knowledge no one has implemented Tiskin’s algorithm.

8.3 Lower Bounds
Let us continue the notation from Section 8.1. The algo-

rithms studied there are all subject to an arithmetic lower
bound of Ω(mn2/P) [DGHL12].

In the tall-skinny case, we have bandwidth and latency
bounds Ω(n2) and Ω(logP) [CHPvdG07, BCD+14]. d-
house attains the arithmetic lower bound, but misses the
bandwidth and latency lower bounds by Θ(logP) and Θ(n).
tsqr attains the arithmetic lower bound assuming P logP =
Ω(m/n), but misses the bandwidth and latency lower bounds
both by Θ(logP). d-caqr-eg attains the latency lower
bound when ǫ = 0, the arithmetic lower bound when ǫ ≤
1/2, and the bandwidth lower bound when ǫ ≥ 1.

In the (close to) square case, we have bandwidth and la-

tency bounds Ω(n2/(nP/m)2/3 and Ω((nP/m)1/2) [BCD+14].
We restrict parameters so that both caqr and d-caqr-
eg attain the arithmetic lower bound, like d-house. d-
house and caqr exceed the bandwidth lower bound both by
a factor of Θ((nP/m)1/6) and they exceed the latency lower

bound by factors of Θ
(

n/(nP/m)1/2 logP
)

and Θ
(

(nP/m)1/6(logP)2
)

,

resp. d-caqr-eg attains the bandwidth lower bound when
δ = 2/3, and exceeds the latency lower bound by just Θ((logP)2)
when δ = 1/3.

We did not prove that d-caqr-eg’s bandwidth-latency
product is optimal — i.e., that the tradeoff is inevitable —
although we conjecture this to be the case. Our intuition
is based on bandwidth/latency tradeoffs observed in com-
putations whose dependence graphs have similar diamond-
shaped substructures: see, e.g., [PU87, SCKD16].

8.4 Limitations and Extensions
Our main upper bound Theorem 1 is substantially limited

by its restrictions on permissible parallelism: see Equation (2).
d-caqr-eg’s all-to-alls are responsible for these con-
straints: if we supposed the all-to-alls had zero cost,
Equation (2) could be weakened to Equation (15). We make
three remarks about improving this aspect of our work.

First, the bound used is worst-case; our knowledge of
(and control over) data distribution could lead to stronger
bounds. Second, it may be that the index algorithm is sub-
optimal for the data distribution, e.g., many Bpq = 0 and
a specialized algorithm would perform less communication,
or at least yield sharper cost bounds. Third and more gen-
erally, we should optimize for the data distribution before
and after each subroutine. The constraints are the balance
assumptions to invoke Lemma 4 and d-caqr-eg. This is a
difficult combinatorial problem.

The constants hidden in our asymptotic analysis are prac-
tically important, and the precise choices of parameters for
particular machines warrants further study. We have also
omitted a number of practical optimizations that do not
affect our asymptotic analysis. For example, recall from
Section 2.3 that T can be reconstructed from V. If the full
T is not desired, by replacing the top level of recursion with
a right-looking iterative qr-eg variant, we can avoid ever
computing superdiagonal blocks of T; this does, however,
restrict the available parallelism [EG00].

Acknowledgments

G. Ballard was supported by the National Science Founda-
tion (NSF) Grant No. ACI-1642385. The work of L. Grigori
was supported by the NLAFET project as part of the Euro-
pean Union’s Horizon 2020 research and innovation program
under grant 671633. Support for M. Jacquelin was provided
in part through the Scientific Discovery through Advanced
Computing (SciDAC) program funded by the US Depart-
ment of Energy (DOE), Office of Science, Advanced Scien-
tific Computing Research under Contract No. DE-AC02-
05CH11231.

9. REFERENCES
[ABG+95] Ramesh C Agarwal, Susanne M Balle,

Fred G Gustavson, Mahesh Joshi, and
P Palkar. A three-dimensional approach to
parallel matrix multiplication. IBM Journal
of Research and Development, 39(5):575–582,
1995.

[BCC+97] L. S. Blackford, J. Choi, A. Cleary,
E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. SIAM,
Philadelphia, PA, USA, May 1997. Also
available from
http://www.netlib.org/scalapack/.

[BCD+14] Grey Ballard, E Carson, J Demmel,
M Hoemmen, Nicholas Knight, and Oded
Schwartz. Communication lower bounds and
optimal algorithms for numerical linear
algebra. Acta Numerica, 23:1–155, 2014.

[BDG+15] Grey Ballard, James Demmel, Laura Grigori,
Mathias Jacquelin, Nicholas Knight, and
Hong Diep Nguyen. Reconstructing
Householder vectors from tall-skinny QR.
Journal of Parallel and Distributed
Computing, 85:3–31, August 2015.

[BDKS16] Grey Ballard, Alex Druinsky, Nicholas
Knight, and Oded Schwartz. Hypergraph
partitioning for sparse matrix-matrix

multiplication. ACM Transactions on
Parallel Computing (TOPC), 3(3):18, 2016.

[BHK+97] Jehoshua Bruck, Ching-Tien Ho, Shlomo
Kipnis, Eli Upfal, and Derrick Weathersby.
Efficient algorithms for all-to-all
communications in multiport
message-passing systems. IEEE Transactions
on parallel and distributed systems,
8(11):1143–1156, 1997.

[CHPvdG07] E. Chan, M. Heimlich, A. Purkayastha, and
R. van de Geijn. Collective communication:
theory, practice, and experience.
Concurrency and Computation: Practice and
Experience, 19(13):1749–1783, 2007.

[DGHL12] J. Demmel, L. Grigori, M. Hoemmen, and
J. Langou. Communication-optimal parallel
and sequential QR and LU factorizations.
SIAM Journal on Scientific Computing,
34(1):A206–A239, 2012.

[EG00] Erik Elmroth and Fred G Gustavson.
Applying recursion to serial and parallel qr
factorization leads to better performance.
IBM Journal of Research and Development,
44(4):605–624, 2000.

[HBJ96] David R Helman, David A Bader, and
Joseph JáJá. Parallel algorithms for
personalized communication and sorting with
an experimental study. In Proceedings of the
eighth annual ACM symposium on Parallel
algorithms and architectures, pages 211–222.
ACM, 1996.

[Hou58] Alston S Householder. Unitary
triangularization of a nonsymmetric matrix.
Journal of the ACM (JACM), 5(4):339–342,
1958.

[PU87] Christos H Papadimitriou and Jeffrey D
Ullman. A communication-time tradeoff.
SIAM Journal on Computing, 16(4):639–646,
1987.

[Pug92] Chiara Puglisi. Modification of the
Householder method based on the compact
WY representation. SIAM Journal on
Scientific and Statistical Computing,
13(3):723–726, 1992.

[SB95] Xiaobai Sun and Christian Bischof. A
basis-kernel representation of orthogonal
matrices. SIAM journal on matrix analysis
and applications, 16(4):1184–1196, 1995.

[SBDH17] Edgar Solomonik, Grey Ballard, James
Demmel, and Torsten Hoefler. A
communication-avoiding parallel algorithm
for the symmetric eigenvalue problem. In
Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures,
SPAA ’17, pages 111–121, New York, NY,
USA, 2017. ACM.

[SCKD16] Edgar Solomonik, Erin Carson, Nicholas
Knight, and James Demmel. Trade-offs
between synchronization, communication,
and computation in parallel linear algebra
computations. ACM Transactions on Parallel
Computing (TOPC), 3(1):3, 2016.

http://www.netlib.org/scalapack/

[SVdGP16] Martin D Schatz, Robert A Van de Geijn,
and Jack Poulson. Parallel matrix
multiplication: A systematic journey. SIAM
Journal on Scientific Computing,
38(6):C748–C781, 2016.

[SVL89] Robert Schreiber and Charles Van Loan. A
storage-efficient WY representation for
products of Householder transformations.
SIAM Journal on Scientific and Statistical
Computing, 10(1):53–57, 1989.

[Tis07] A. Tiskin. Communication-efficient parallel
generic pairwise elimination. Future
Generation Computer Systems,
23(2):179–188, 2007.

[TRG05] Rajeev Thakur, Rolf Rabenseifner, and
William Gropp. Optimization of collective
communication operations in MPICH.
International Journal of High Performance
Computing Applications, 19(1):49–66, 2005.

[Val90] Leslie G Valiant. A bridging model for
parallel computation. Communications of the
ACM, 33(8):103–111, 1990.

APPENDIX

A. PROOF OF LEMMA 1
In Section A we give a more detailed proof of Lemma 1.

First in Section A.1 we review the binomial-tree algorithms
for scatter, gather, broadcast, reduce, and all-re-

duce. Then in Section A.2 we review the bidirectional-ex-
change algorithms for reduce-scatter, all-gather, broad-
cast, reduce, and all-reduce. Finally in Section A.3 we
review the (radix-2) index algorithm for all-to-all, and
a two-phase variant that admits sharper bounds when the
block sizes vary widely. For the four collectives with two
algorithmic variants, we report the smaller of the two upper
bounds in Table 1.

We do not claim the chosen algorithms are optimal in our
model or in practice. When developing a high-performance
implementation we would invoke the corresponding subrou-
tines in a tuned MPI library.

A.1 Binomial Tree Algorithms
The binomial-tree scatter algorithm proceeds as follows.

The algorithm terminates immediately when P = 1; when
P > 1, we split the P processors into two sets, of size ⌈P/2⌉
and ⌊P/2⌋, and pick a processor r′ in the set not containing
processor r. Processor r sends all blocks it owns destined
for the opposite subset to processor r′. Processors r and r′

then become the roots of two smaller scatters among their
respective processor subsets, which proceed in parallel. An
upper bound on the runtime satisfies

T (P,B) ≤ T (⌈P/2⌉, B) + β · ⌈P/2⌉B + α · 2,

which simplifies to

β · O ((P − 1)B) + α ·O (logP) . (17)

The binomial tree broadcast algorithm is an optimiza-
tion of the scatter algorithm when all blocks are identical:
each message contains exactly one block, so the upper bound
simplifies to

β ·O (B logP) + α ·O (logP) . (18)

The binomial tree gather algorithm reverses the scat-

ter’s communication pattern, using head- (vs. tail-) recur-
sion. That is, after the recursive gathers with roots r and
r′ complete, processor r′ sends processor r all blocks it owns.
An upper bound on the runtime satisfies the same recurrence
as before, reproducing Equation (17)

The binomial tree reduce algorithm is an optimization
of the gather algorithm when blocks are added as soon as
they are received: each message contains exactly one block,
so the upper bound simplifies to

γ · O (B logP) + β ·O (B logP) + α ·O (logP) . (19)

The binomial tree all-reduce algorithm is a reduce fol-
lowed by a broadcast, so its runtime also satisfies Equation (19).

A.2 Bidirectional Exchange Algorithms
The bidirectional exchange reduce-scatter algorithm

proceeds as follows. The algorithm terminates immediately
when P = 1; when P > 1, we split the P processors into two
sets, of size ⌈P/2⌉ and ⌊P/2⌋, and pair each processor with
a processor in the other set. Each processor sends its paired
processor all blocks it owns destined for the other set. If the
sets differ in size, one processor p in the smaller set is paired
with two processors q, q′ in the larger set: processor p only
sends to one of the two, but receives from both. After each
exchange, each processor adds the blocks it receives to the
ones it already owns with the same destinations. Each set
then performs a smaller reduce-scatter. An upper bound
on the runtime satisfies

T (P,B) ≤ T (⌈P/2⌉, B)

+ γ · 2⌊P/2⌋ + β · (⌈P/2⌉ + 2⌊P/2⌋) + α · 3,

which simplifies to

γ ·O ((P − 1)B) + β · O ((P − 1)B) + α · O (logP) .

The bidirectional exchange all-gather algorithm reverses
the reduce-scatter’s communication pattern, using head-
(vs. tail-) recursion. That is, after the recursive all-gathers
complete, each processor sends its paired processor all blocks
it owns destined for the other set, and if the sets differ in size,
processor p only receives from one of q, q′, but sends to both.
Since blocks with the same sources are identical, each pro-
cessor only sends only one copy of each. An upper bound on
the runtime satisfies the same recurrence as before, except
without the arithmetic cost, reproducing Equation (17).

When B is sufficiently large with respect to P , it is benefi-
cial implement broadcast, reduce, and all-reduce with
the preceding bidirectional exchange algorithms, splitting
the original blocks into new blocks of size at most ⌈B/P ⌉.
The bidirectional exchange broadcast algorithm is a scat-

ter followed by an all-gather, with runtime

β ·O ((P − 1)⌈B/P ⌉) + α ·O (logP) . (20)

The bidirectional exchange reduce algorithm is a reduce-

scatter followed by a gather, with runtime

γ · O ((P − 1)⌈B/P ⌉) + β ·O ((P − 1)⌈B/P ⌉)

+ α ·O (logP) . (21)

The bidirectional exchange all-reduce algorithm is a re-

duce-scatter followed by an all-gather, so its runtime
also satisfies Equation (21).

A.3 All-to-All
We consider an all-to-all algorithm called the radix-2

index algorithm [BHK+97]. Processors are numbered from
0 and P−1, and each block is labeled q−p mod P , where
p is the source processor number and q is the destination
processor number. Block labels are encoded in binary, as
bit-strings of length d = ⌈log2 P ⌉, starting from their least
significant bit. For each step i = 0, 1, . . . , d−1, each pro-
cessor p sends processor p+2i mod P a single message con-
taining all blocks it currently owns whose labels’ i-th bits
are nonzero, at most ⌈P/2⌉ blocks. After d steps, all blocks
have arrived at their destination. The runtime is thus

β · O (BP logP) + α ·O (logP) .

All all-to-alls in this work use a two-phase approach [HBJ96]
that explicitly addresses variable block-sizes. Each proces-
sor p starts by balancing its outgoing blocks, dealing the Bpq

elements of its original block destined for each processor q
into new blocks destined for processors p+q, p+q+1, . . .,
and so on, cyclically. The processors then perform two all-

to-alls, the first to route the new blocks to intermediate
processors, and the second to route elements to their origi-
nal destinations. The largest block-sizes B′ and B′′ in the
first and second all-to-alls are bounded,

B′ ≤
P − 1

2
+ max

q

∑

p

Bpq

P

B′′ ≤
P − 1

2
+ max

p

∑

q

Bpq

P
.

The overall runtime is thus bounded by

β · O
((

B∗ + P 2) logP
)

+ α ·O (logP) ,

where B∗ ≤ BP is the maximum number of words any pro-
cessor holds before or after the collective,

B∗ = max

(

max
q

∑

p

Bpq , max
p

∑

q

Bpq

)

.

B. PROOF OF LEMMAS 2, 3, AND 4
Here we provide a more comprehensive analysis of matrix

multiplication than in Section 4.

B.1 Generic Algorithm
Consider multiplying an I × K matrix A with a K ×

J matrix B to obtain an I × J matrix C, via the usual
(entrywise) formula: for all (i, j) ∈ [I]× [J],

Cij =
∑

k∈[K]

AikBkj .

We identify each of the IJK (scalar) multiplications with
a point (i, j, k) in three-dimensional Euclidean space, so the
set of multiplications defines a discrete I×J ×K brick. We
will parallelize the multiplications by arranging the proces-
sors in a three-dimensional grid and assigning each processor
a sub-brick.

A complication is that the admissible processor grids de-
pend on the integer factorizations of the number P of proces-
sors: for flexibility, we will allow some processors to remain
idle. That is, writing P = QRS+T for any positive integers
Q, R, and S and nonnegative integer T , we arrange QRS

processors in a Q × R × S grid, indexing each by a triple
(q, r, s), and set the remaining T processors aside.

Having fixed a processor grid, let {Iq}q∈[Q], {Jr}r∈[R],
and {Ks}s∈[S] denote partitions of [I], [J], and [K]. As-
sign each grid processor (q, r, s) the sub-brick Iq ×Jr ×Ks,
meaning the (sub-) matrix product

ZIq ,Jr ,s = AIq ,Ks ·BKs,Jr .

Slices of the I×J×S tensor Z are partial sums of the output
matrix: in particular, for all (q, r) ∈ [Q]× [R],

CIq ,Jr =
∑

s∈[S]

ZIq ,Jr,s.

We will parallelize these remaining IJ(S−1) additions as
part of data redistribution.

The initial distributions of A and B, and the final distri-
bution of C, are chosen as follows. For each (q, s) ∈ [Q]×[S],
AIq ,Ks is partitioned entrywise across the grid processors
(q, ·, s), and, for each (r, s) ∈ [R]× [S], BKs,Jr is partitioned
entrywise across the grid processors (·, r, s). We identify the
matrix entries that grid processor (q, r, s) owns with the sets
Aq,r,s ⊆ Iq ×Ks and Bq,r,s ⊆ Ks × Jr.

During the computation, each of the matricesA, B, andC
undergoes a redistribution, using all-gathers or reduce-

scatters along fibers of the processor grid.
First, for each (q, s) ∈ [Q] × [S], we perform an all-

gather among the grid processors (q, ·, s) so that each ob-
tains a copy of AIq ,Ks ; these QS all-gathers, each in-
volving a disjoint set of R processors, occur simultaneously.
Next, for each (r, s) ∈ [R]× [S], we perform an all-gather

among the grid processors (·, r, s) so that each obtains a copy
of BKs,Jr ; similarly, these RS all-gathers, each involving
a disjoint set of Q processors, occur simultaneously.

At this point, each grid processor (q, r, s) can evaluate
its local matrix product, obtaining the matrix ZIq ,Jr ,s as
explained above.

Finally, to construct the output matrix, for each (q, r) ∈
[Q] × [R], we perform a reduce-scatter among the grid
processors (q, r, ·), computing CIq ,Jr while partitioning it
entrywise across these processors; these QR reduce-scat-

ters, each involving a disjoint set of S processors, can oc-
cur simultaneously. We identify the matrix entries that grid
processor (q, r, s) owns after these collectives with the set
Cq,r,s ⊆ Iq × Jr.

B.2 Analysis
We denote by mm the multiplication of an I × K matrix

with a K × J matrix, both stored locally on one proces-
sor: this is the special case of dmm on a 1× 1× 1 proces-
sor grid. Using the conventional algorithm, which involves
IJK multiplications and IJ(K−1) additions, mm’s runtime
is bounded,

Tmm (I, J,K) = γ ·O (IJK) .

(This was Lemma 2.)
The algorithmic costs of dmm are due to the mms, all-

gathers, and reduce-scatters. The costs of these sub-
routines, in turn, depend on the splitting P = QRS+T and
the six partitions,

{Iq}q of [I], {Aq,r,s}q,r,s of [I]× [K],
{Jr}r of [J], {Bq,r,s}q,r,s of [K]× [J],
{Ks}s of [K], {Cq,r,s}q,r,s of [I]× [J].

Lemma 8. dmm’s runtime is bounded by

max
q,r,s

Tmm (|Iq|, |Jr|, |Ks|)

+ max
q,s

Tall-gather ({Aq,r,s}r)

+ max
r,s

Tall-gather ({Bq,r,s}q)

+ max
q,r

Treduce-scatter ({Cq,r,s}s) .

Upper bounds on Tall-gather and Treduce-scatter are given in
Lemma 1. However, those results are pessimistic when the
block-sizes vary. For example, on a one-dimensional proces-
sor grid, an all-gather or reduce-scatter simplifies to
a broadcast or reduce and sharper bounds apply. This
situation arises in d-caqr-eg, in whose analysis we will
additionally constrain the number of processors to ensure
that the arithmetic and bandwidth costs of the broadcast/
reduce are independent of P . Lemma 3 is a corollary of
Lemma 8 that summarizes this special case.

Proof of Lemma 3. Suppose first thatK = max(I, J,K).
Pick Q = R = 1 and S = P , which is a valid Q×R×S pro-
cessor grid since Q,R, S are positive integers with QRS ≤
P . Fix any balanced partitions {Iq}q , {Jr}r, and {Ks}s.
Take the partition {Aq,r,s}q,r,s (resp., {Bq,r,s}q,r,s) to be a
union of balanced R-way (resp., Q-way) partitions of the sets
Iq×Ks ((q, s) ∈ [Q]× [S]), resp., Ks×Jr ((s, r) ∈ [S]× [R]).
Finally, take Cq,r,s = ∅ for all but one (q, r, s). In this sce-
nario, the all-gathers are trivial (involving one processor
each), and the single reduce-scatter is just a reduce.
The arithmetic cost (mms and reduce) is

γ ·O

(

IJ

⌈

K

P

⌉

+min(IJ logP, IJ + P)

)

= γ · O

(

IJK

P

)

.

The bandwidth cost (reduce) is

β ·O (min(IJ logP, IJ + P)) = β ·O (IJ) .

The latency cost (reduce) is α ·O (logP).
Now suppose that I (resp., J) = max(I, J,K) Pick R =

S = 1 andQ = P (resp., Q = S = 1 andR = P). Again take
any balanced partitions {Iq}q , {Jr}r, and {Ks}s. Similarly
to before, take the partitions {Aq,r,s}q,r,s and {Cq,r,s}q,r,s
(resp., Bq,r,s and Cq,r,s) to be unions of balanced R- (resp.,
Q-) and S-way partitions, while taking take Bq,r,s (resp.,
Aq,r,s) = ∅ for all but one (q, r, s). In this scenario, the all-
gathers of the left (resp., right) factor and the reduce-

scatters are trivial (involving one processor each), and the
single all-gather of the right (resp., left) factor is just a
broadcast. The arithmetic cost is γ ·O (⌈I/P ⌉JK), resp.,
γ · O (I ⌈J/P ⌉K), which = γ · O (IJK/P). Similar to the
first case, the bandwidth cost is β ·O (JK), resp., β ·O (IK),
and the latency costs are both α · O (logP).

Lemma 4 is another corollary of Lemma 8, applicable for
matrix and processor grid dimensions sufficiently large to
admit parallelizations where each processor is assigned a
roughly cubical sub-brick of the I × J × K computation
brick. This situation arises in d-caqr-eg.

Proof of Lemma 4. Pick Q = ⌊I/ρ⌋, R = ⌊J/ρ⌋, and

S = ⌊K/ρ⌋, where ρ = (IJK/P)1/3. Then

(1− 1/c)3 P ≤ QRS ≤ P

1 ≤ ρ ≤
I

Q
,
J

R
,
K

S
≤

c

c− 1
ρ.

This defines a valid Q×R× S processor grid, since Q,R,S
are positive integers with QRS ≤ P . Take any balanced
partitions {Iq}q , {Jr}r, and {Ks}s. Take the partition
{Aq,r,s}q,r,s to be a union of balanced R-way partitions of
the sets Iq × Ks ((q, s) ∈ [Q] × [S]), and similarly for the
partitions {Bq,r,s}q,r,s and {Cq,r,s}q,r,s. The arithmetic cost
(from mms and reduce-scatters) is

γ · O





⌈

I

Q

⌉⌈

J

R

⌉⌈

K

S

⌉

+ (S − 1)









⌈

I
Q

⌉

⌈

J
R

⌉

S













= γ ·O

(

IJK

P

)

,

where a left-to-right reading of this equality introduces the
assumption on P from the theorem statement and fixesQ,R, S
as in the preceding paragraph. The bandwidth cost (from
all-gathers/reduce-scatters) is

β · O

(

(R − 1)









⌈

I
Q

⌉

⌈

K
S

⌉

R









+ (Q− 1)

⌈

⌈

J
R

⌉ ⌈

K
S

⌉

Q

⌉

+ (S − 1)









⌈

I
Q

⌉

⌈

J
R

⌉

S









)

= β · O

(

(

IJK

P

)2/3
)

,

where a left-to-right reading is as before. The latency cost
(from all-gathers/reduce-scatters) is

α ·O (logR + logQ+ log S) = α ·O (logP) .

C. PROOF OF LEMMA 5
Here we provide relatively self-contained description of

tsqr. To establish our asymptotic claims it suffices to use a
simplified version of tsqr, which we present in Sections C.1
and C.2 and analyze in Section C.3. Proofs of correctness
and numerical stability can be found in [BDG+15].

Recall that on input, the m × n matrix A is partitioned
across the P processors so that each processor p owns mp ≥
n rows, not necessarily contiguous. Thus we require A be
sufficiently tall and skinny: m/n ≥ P . A single processor r,
which owns A’s n leading rows, is designated as the root
processor.

On output, the Q-factor is stored in Householder repre-
sentation (V, T), where V has the same distribution as A.
Both T and the R-factor are returned only on the root pro-
cessor.

Looking just at its communication pattern, tsqr resem-
bles a reduce followed by a broadcast, the distinction
being the local arithmetic performed before and after each
exchange.

C.1 Upsweep
At the start of tsqr each processor p performs a QR

decomposition of Ap, its mp × n submatrix of A.
(

V(0)
p , T(0)

p , R(0)
p

)

= local-QR (Ap) .

The subroutine local-QR is unspecified other than that
it computes a QR decomposition of an µ × ν matrix (µ ≥
ν), stored locally, in O(µν2) operations, and returns the Q-

and R-factors in the compact representations described in
Section 2.3.

Next, the processors perform a reduce using the bino-
mial tree algorithm (Section A.1) with root r and blocks
{Rp}p, meaning the block-size is n(n + 1)/2. However, in-
stead of adding the blocks elementwise after each exchange,
we perform local QR decompositions:

(

V(ℓ)
p , T(ℓ)

p , R(ℓ)
p

)

= local-QR

([

R
(ℓ−1)
p

R
(ℓ−1)
q

])

,

where R
(ℓ−1)
p is processor p’s R-factor from its previous QR

decomposition and R
(ℓ−1)
q is the R-factor it just received

from some other processor q 6= p. Each processor p keeps the
Q-factors (in basis-kernel representation) it produces — they
will be used subsequently — but the R-factors are destroyed
once they are sent on to another processor. At the end of the
reduce, each processor stores between 1 and L = ⌈log2 P ⌉

intermediate Q-factors, and processor r also stores R
(L)
r , an

R-factor of a QR decomposition of A.

C.2 Downsweep
In principle, we can recover the Q-factor (in Householder

representation) almost directly from A and the R-factor: see
[BDG+15, Section 4.4] for a survey of approaches. However,
numerical issues motivate taking an additional step, recov-
ering the leading n columns of the Q-factor, which can be
done stably and efficiently by applying the tree of Q-factors
to a set of n identity columns [DGHL12]. This resembles a
broadcast using the binomial tree algorithm (Section A.1)
with root r and block-size n2, reversing the communication
pattern of the reduce. Unlike a typical broadcast, how-
ever, the block’s contents change each time it is sent to an-
other processor. That is, whenever processor p received a
block from processor q during the reduce, processor p now
computes,

[

B
(ℓ−1)
p

B
(ℓ−1)
q

]

=
(

I−V(ℓ)
p T(ℓ)

p (V(ℓ)
p)H

)

[

B
(ℓ)
p

0

]

and then sends B
(ℓ)
q to processor q. To start, the root pro-

cessor r sets B
(L)
r = I.

Next, each processor p computes

Wp =
(

I−V(0)
p T(0)

p (V(0)
p)H

) [

B
(0)
p

0

]

.

The matrix W, defined by the submatrices {Wp}p just as
A is defined by {Ap}p, is the rightmost m × n submatrix
of the Q-factor associated with the R-factor obtained by the
reduce.

It remains to recover a Householder representation of the
Q-factor from W. For numerical stability, we exploit the
non-uniqueness of a QR decomposition (Q,R) ofA: (QZ,ZHR)
is also a QR decomposition of A for any unitary matrix Z
with 2 × 2 block-diagonal structure whose leading block is
an n × n diagonal matrix. Processor r row-reduces X, the
upper n × n submatrix of Wr, in the usual approach —
working left-to-right, eliminating each column below the di-
agonal by premultiplying with a unit lower triangular ma-
trix — but with a modification to simultaneously populate
an n × n diagonal matrix S. For each j ∈ [n], before

the j-th column is eliminated, letting X̂ denote the cur-
rent partially reduced matrix, compute Sjj = sgn(X̂jj),

add Sjj to X̂jj , and then proceed as usual. (Here sgn(z)
means z/|z| for z 6= 0 and an arbitrary unit complex num-

ber when z = 0.) Since X̂jj + Sjj 6= 0, pivoting is un-
necessary to avoid breakdown, thus this procedure termi-
nates with both S and a matrix pair (L,U), where L is unit
lower triangular, U is upper triangular, and LU is invert-
ible. It is shown in [BDG+15, Lemma 6.2] that X+S = LU
and, moreover, that partial pivoting is obviated (or per-
formed implicitly): at each step, the diagonal element’s mag-
nitude is at least that of each element in the column below.
Processor r then computes T = USHL−H , Vr = L, and

R = −SHR
(L)
r . The processors then perform a broadcast

of U, with root r, after which each recipient processor p 6= r
computes Vp = WpU

−1.
We are done: the Q-factor’s basis V is partitioned as

{Vp}p across the processors commensurately with A, and
the root processor stores both the kernel T and the R-factor
R.

C.3 Concluding the Analysis

Proof of Lemma 5. The runtime of the local-QRs, per-
formed in parallel, is γ ·O

(

maxp mpn
2
)

, and the runtime of
the subsequent ‘reduce’ is

γ ·O
(

n3 logP
)

+ β · O
(

n2 logP
)

+ α ·O (logP) .

ComputingW asymptotically matches the current total run-
time. Computing U on the root processor adds γ · O

(

n3
)

,
then the subsequent broadcast and computing V matches
computing W.

Note that in Section C.2 it is possible to avoid the second
broadcast and computing most of W by starting the first

broadcast with B
(L)
r = U−1 [BDG+15].

	1 Introduction
	2 QR Decomposition
	2.1 QR Preliminaries
	2.2 Recursive QR Decomposition
	2.3 Compact Representations
	2.4 Elmroth-Gustavson's Approach

	3 Computation Model
	4 3D Matrix Multiplication
	5 Communication-Avoiding QR
	6 1D-CAQR-EG
	6.1 Base Case
	6.2 Inductive Case
	6.3 Concluding the Analysis

	7 3D-CAQR-EG
	7.1 Base Case
	7.2 Inductive Case
	7.3 Concluding the Analysis

	8 Discussion
	8.1 Comparison With Similar Algorithms
	8.2 Elimination By Blocks
	8.3 Lower Bounds
	8.4 Limitations and Extensions

	9 References
	A Proof of Lemma 1
	A.1 Binomial Tree Algorithms
	A.2 Bidirectional Exchange Algorithms
	A.3 All-to-All

	B Proof of Lemmas 2, 3, and 4
	B.1 Generic Algorithm
	B.2 Analysis

	C Proof of Lemma 5
	C.1 Upsweep
	C.2 Downsweep
	C.3 Concluding the Analysis

