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ABSTRACT OF THE THESIS 
 

Movement Anticipation and EEG: Implications for BCI-Contingent Robot Therapy 
 

By 
 

Sumner Lee Norman 
 

Master of Science in Mechanical and Aerospace Engineering 
 

 University of California, Irvine, 2014 
 

Professor David J Reinkensmeyer, Chair 
 
 
 

 Brain-computer interfacing is a technology that could potentially be used to 

improve patient effort in robot-assisted rehabilitation therapy. For example, movement 

intention reduces mu (8-13 Hz) oscillation amplitude over the sensorimotor cortex, a 

phenomenon referred to as event-related desynchronization (ERD). In an ERD-contingent 

assistance paradigm, initial BCI-enhanced robotic therapy studies have used ERD as a 

trigger signal for providing robotic assistance to limb movement.  Here we investigated 

how ERD changed as a function of audio-visual stimuli, overt movement from the 

participant, and robotic assistance. Eight unimpaired subjects played a musical computer 

game designed for rehabilitation therapy using the FINGER robotic exoskeleton.  In the 

game, the participant and robot matched finger movement timing to audiovisual stimuli in 

the form of notes approaching a target on the screen set to the consistent beat of popular 

music.  The audiovisual stimulation of the game alone did not cause ERD, before or after 

training. In contrast, overt movement by the subject caused ERD, whether or not the robot 

assisted the finger movement.  Notably, ERD was also present when the subjects remained 

passive and the robot imposed movement. This ERD occurred in anticipation of the passive 
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finger movement with similar onset timing as for the overt movement conditions. These 

results demonstrate that ERD can be contingent on expectation of robotic assistance; that 

is, the brain generates an anticipatory ERD in expectation of a robot-imposed but 

predictable movement.  This is a caveat that should be considered in designing BCI 

interfaces for enhancing patient effort in robotically-assisted therapy.  
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INTRODUCTION 

Robotic devices, such as powered exoskeletons, have been shown to have utility for 

rehabilitation therapy of the upper extremity for individuals with stroke and other neurologic 

impairments [1-3].  In the most commonly used paradigm, the robotic therapy device physically 

assists the patient in completing repetitive desired movements that are pre-specified by a 

computer game that provides audio-visual cues [1, 4]. Physical assistance is thought to enhance 

proprioceptive input, which may aid neural reorganization [5]. In past studies, robotic therapy 

has been shown to match or better the results obtainable with conventional rehabilitation 

movement therapy [1, 6, 7]. 

It is thought that an important factor for ensuring the effectiveness of robotic therapy is active 

effort by the patient [8-13]. In a key study, it was shown that repetitive robotic movement of 

the upper extremity with a passive stroke patient has little therapeutic effect compared to 

robotic therapy in which the patient and robot work together [9]. Another study found no 

improvements in clinical movement scales following continuous passive range of motion 

therapy of the stroke-impaired arm [14]. It has also been found that physically assisting in 

movement with a robot can trigger slacking by the motor system, which is an automatic and 

subconscious reduction in patient effort [1, 5, 15, 16].  Thus it is important in designing robotic 

therapy systems to develop methods that encourage patient effort during the therapy and 

prevent slacking, since robotic assistance may in some cases innately encourage slacking. 

Electroencephalography (EEG) based Brain Computer Interface (BCI) systems have been 

proposed for the purpose of enhancing robot-assisted rehabilitation training [17-20]. It is yet 

unclear how best to harness the strengths of these systems together, but one rationale focuses 

on promoting engagement.  A BCI could be used to detect movement intention, and the robotic 

therapy system could be programmed to provide assistance contingent on the sensed 

movement intention.  For this purpose, mu and beta frequency bands (8-12, and 13-35 Hz) have 

been suggested for identifying brain states associated with movement intention [17-27].  Mu 

and beta sensorimotor rhythm (SMR) oscillatory amplitude is known to attenuate during 

preparation for an overt movement or motor imagery, a phenomenon referred to as event 

related desynchronization (ERD) [27].  

ERD has been used successfully as a control signal for BCI applications, including, recently, 

robot-assisted therapy [17, 20, 28-31].  However, use of ERD as a contingent control signal for 

robotic therapy has not been shown to decisively improve motor outcomes for robotic therapy 

after stroke. One study that employed a BCI-contingent orthosis movement paradigm found no 

significant improvement in clinical scales used to rate hand function after the study [17]. 

Another, larger study found modest improvements in motor outcome measures comparable 

with previous studies of robotic therapy that did not use BCI-contingent control [20].  
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It is possible that the use of ERD as a control signal for robotically assisted therapy is suboptimal 

because ERD is not tied to movement intention alone. Indeed, previous research has suggested 

that ERD occurs during passive movements driven by a robotic orthosis or an experimenter, 

similar to when the subject performs overt movement or motor imagery [18, 20, 22-25] (see ).  

For example, Alegre et al. [25] studied beta band desynchronization in six healthy volunteers 

during passive wrist extensions performed with the help of a pulley system at random intervals. 

The passive movements were found to induce ERD after the movement onset. The authors 

concluded that proprioceptive inputs induce ERD similar to that observed during voluntary 

movements. Another study analyzed beta ERD during passive and attempted foot movements 

in unimpaired subjects and subjects with paraplegia after spinal cord injury (SCI) [22]. Passive 

motions were controlled using a custom foot release mechanism at eight second intervals. The 

feet were shielded from view. A significant ERD was found to occur ~500ms before movement 

onset in the unimpaired participants.  Thus, in this case, ERD was found to anticipate 

predictable passive movement of the foot. These findings suggest that ERD is not solely related 

to the intention to move, but is also influenced by proprioceptive input and/or the expectation 

of imposed movement. Therefore, these findings have implications for the use of ERD as a 

control signal for detecting patient engagement during robot-assisted therapy. If the user's 

expectation and subsequent somatosensory preparation for passive motion is sufficient cause 

to trigger an ERD, the user might no longer need to actively engage in overt movement to cause 

the ERD trigger signal and the contingent imposed robotic movement. 

The purpose of this study was to determine the effect of passive movement and subject effort 

on sensorimotor ERD within the context of a robot-assisted therapy paradigm we previously 

developed for retraining finger individuation after stroke [4]. Robotic assistance and motor 

activity were treated as binary categorical design factors in a 22 factorial experiment, resulting 

in four primary conditions: 1) active subject/active robot, 2) active subject/passive robot, 3) 

passive subject/active robot, and 4) passive subject/passive robot. Audio-visual stimulation 

without subject or robot movement was also tested to identify any changes in ERD that may be 

elicited by the robotic-therapy computer gaming paradigm itself. 

Table 1: Passive Movement Oscillatory Modulation Publications 

Study Limb Device  Interval Predictability ERD/ERS Timing 

Alegre '02  wrist proctor enabled 11-16 sec n/a - random post onset ERD 

Formaggio '13 arm robotic  1 sec metronome 1Hz - 

Formaggio '14 arm robotic 1 sec metronome 1Hz pre onset ERD 

Muller-Putz '07 foot robotic  8 sec timing -no view pre onset ERD 

Cassim '01 index proctor enabled  8-12 sec n/a - random post offset ERS 
Ramos-Murguialday '12 hand robotic  10 sec aural cue - 
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METHODS 

EXPERIMENTAL SETUP 

The Finger Individuating Grasp Exercise Robot or "FINGER", described at length in [4], was used 

as the robotic therapy device in this study (See ). This robot facilitates the naturalistic grasping 

patterns of the index and middle finger together or individuated. Finger movements were 

mapped to corresponding cues on a screen in front of the participant and set to popular music 

in the form of a custom video game similar to Guitar Hero© (). The gaming environment and 

user interface software were developed specifically for this study, but we previously found a 

therapeutic benefit to playing a similar version of the game after stroke [32]. 

 

Figure 1: Experimental Setup: A user is shown using the robot to play the game used in this study. The Finger 

individuating Grasp Exercise Robot (FINGER) appears in the foreground. FINGER makes use of two stacked, single 

degree-of-freedom eight-bar mechanisms designed to assist the user in naturalistic grasping trajectories for each, 

or both of the index and middle fingers. FINGER is backdriveable. Robotic forces were held constant for active 

robot conditions. FINGER did not provide any assistance during the passive robot cases.  

In the game, a note appears for two seconds on screen. The note moves down, reaching a 

target near the bottom of the screen. An on-screen marker represents the position of the 

robot. The participant matches the speed and timing of the note to complete the flexion 

portion of the grasping trajectory just as the note reaches the target. If the participant attains 

the desired amount of flexion and accurately matches the timing of the note, the game 

considers this a "hit" and provides visual feedback in the form of fire on the target and a 

progress bar counter increase (See ). In some experimental conditions, we used the robot to 

assist in completing the movement with the correct finger at the correct time.  More details of 
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the assistive control algorithm can be found in [4], but essentially the algorithm guides the 

subject along an appropriate trajectory to hit the note using a position feedback controller. 

 

Figure 2: Example of gaming environment: Notes stream down the screen in sync with popular music. The user 

matches a finger flexion to the timing of the note crossing the target at the bottom of the screen. Fire when a note 

is hit, and a score bar at the top of the screen give visual performance feedback. Green notes indicate a desired 

index finger movement, yellow notes a middle finger movement, and blue notes indicate that both fingers should 

grasp together. Orange and red notes were not used.  Red spheres above the three virtual “strings” on the right 

are mapped to actual robot finger positions in real time, and are intended to be matched to note timing on screen. 

In this example, the user has just executed a hit with the yellow note/middle finger. A second note has just 

appeared on screen, and will reach the target 2 seconds later. 

256-channel EEG data was collected using the EGI Clinical Geodesic hydrocel EEG System. 

Impedance values were kept below 100kOhm. Raw EEG data was exported for offline analysis 

in MATLAB. Marker timing data was captured from the gaming environment. Robot position, 

velocity, and controller gains were sampled and recorded at 1kHz.  

PARTICIPANTS 

Twelve unimpaired participants took part in this study (6 male; 6 female). All participants 

provided written informed consent and the study was approved by the Institutional Review 

Board of UC Irvine. A prerequisite for study inclusion was naivety to the experiment and gaming 

environment. All participants were considered healthy, and had no history of neurologic injury.  

EXPERIMENTAL DESIGN  

We used a two factor, two level (22) factorial design (Table 2).  The two factors were robot 

assistance (on or off), and overt motor activity (on or off). We will use the term “overt” to refer 

to a willed, voluntary, finger movement by the subject.  In the factorial part of the experiment, 

each subject experienced each of the four conditions.  We also tested the effect of audiovisual 

stimulation alone before and after the four conditions. 
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Table 2: Factor Combinations 

 

 

 

The subjects’ fingers were first fastened to the robot as they sat comfortably in front of the 

screen. The gaming environment was loaded and the test song ("Blackbird" by The Beatles, 62 

notes) played while the participant watched. Participants were instructed to remain as still as 

possible during this audio-visual only condition. The robot did not provide any assistance. At the 

conclusion of the experiment, the participant was then asked to complete this same task again.  

After the initial audio-visual only session, the participants were allowed to familiarize 

themselves with the robot and gaming environment during a short training session. Robot 

assistance was included during the training period, but limited to small forces that could not 

successfully complete the movement without the overt movement of the subject. Subjects 

were instructed to actively participate in the motor task to the best of their ability. All 

participants trained on the same song ("Gold on the Ceiling" by The Black Keys) until both the 

participant and experimenter felt comfortable in the participant's ability to understand the 

gaming environment and perform to an acceptable level. All participants exceeded an 80% note 

"hit" rate in the gaming environment during the training period. All participants gained 

proficiency within three test songs, and most within two.  

The factorial part of the experimental session was divided into eight runs consisting of two runs 

per each of the four experimental conditions, for each participant. Inter-participant session 

order was randomized using a Williams Design Latin Square to minimize first order carryover 

effects. Factor combinations were explained to the participant by the test proctor using 

standardized scripts. Participants were allowed to ask clarification questions regarding their 

role during the current factor combinations, but  were not privy to why the combination was 

being tested. During all combinations, participants completed one song, consisting of 62 notes 

(trials) each. The song, "Blackbird" by The Beatles, was the same for all participants and all 

conditions. 

  

  

Robot 

  
passive active 

Participant 
active A B 

passive C D 
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DATA ANALYSIS 

Raw EEG data was exported for offline analysis in MATLAB. Trials were manually screened for 

artifacts such as eye blinks and discarded when necessary. A low pass filter of 50Hz was applied 

as well as a surface LaPlacian filter to reduce effects of volume conduction. Eighteenth order 

Legendre polynomials were used with a smoothing factor of 1x10-6. Mu power topography was 

averaged across notes (trials) for each condition and all subjects. A combination of electrodes 

that exhibited time-locked motor behavior were selected for inter-subject analysis. These 

electrodes encompass the medial area between Cz and Pz and extend laterally. The selected 

electrodes can be visualized by topography in . For time-frequency decomposition, a Morlet 

wavelet transformation was chosen. Wavelet cycles varied from 5-12 cycles as a function of 

frequency. Wavelet analysis was applied from 5-40 Hz at 1Hz steps. The wavelet transformation 

was performed before any segmentation took place to eliminate any possibility of edge effects. 

The resulting time-frequency data was segmented into three-second epochs occurring 1.5 

seconds before and 1.5 seconds after the note passed the target on each trial.  

 

 

Figure 3:  Topography of sensorimotor channels: Channels selected for inclusion in processing. Topographical 

activity of sensorimotor rhythms was analyzed for each subject. Channels exhibiting time-locked modulation were 

selected for further analysis. Channels were found to stem from the medial area between Cz and Pz, extending 

laterally towards C6/P6.  

Power within a frequency bin was calculated as the magnitude of the complex coefficient result 

of the wavelet transformation. Power was then normalized using the decibel normalization 

method outlined in [33], and described by  Equation 1. 

 

              
          

                     
 
   (1) 
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  is the scalar mean power taken across the baseline time period, the initial 250ms of 

each note (trial). t and f are time and frequency points, respectively. The baseline period began 

500ms after the note initially appears on screen. The baseline period ended approximately 

800ms before movement, and 1250ms before the note reaches the target (end of flexion). 

A 2x2 ANOVA was conducted on the max pre-movement decibel normalized desynchronization 

value and max post-movement offset decibel normalized synchronization value. Robot 

assistance and overt movement (i.e. active movement by the subject) were treated as binary 

categorical design factors.  

RESULTS  

None of the 12 subjects exhibited ERD during the audio-visual only condition presented at the 

beginning and end of the experiment (). Consistent with this, no ERD was seen in the audio-

visual only condition in the factorial part of the experiment (passive subject/passive robot, ).  

 

Figure 4: Audio-visual only condition: Group-level mean power amplitude time-frequency map. Results are shown 

at pre-exam and post-exam tests. No significant power modulation was recorded in either test.  Time = 0 

corresponds to the moment when the moving note crossed the target location. 

In contrast, ERD was observed in the three conditions that involved physical movement of the 

fingers, including the condition in which the subject remained passive and the robot moved the 

subjects’ fingers (Figure 4). In all, 10 out of 12 subjects exhibited ERD during active 

subject/passive robot movements. 11 out of 12 exhibited ERD during active subject/active 

robot movements. 10 out of 12 exhibited ERD during the passive subject/active robot 

movements. All 12 subjects exhibited ERD within at least one of the physical movement 

conditions. There was also evidence of event-related synchronization (ERS) in these three 

conditions, as seen by a rebound in power occurring at the end of the initial finger flexion, 

approximately 200 ms after movement offset ().  
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Figure 5: Mean mu band (8-13 Hz) power across subjects:  Time = 0 corresponds to the moment when the moving 

note crossed the target location. Thin blue traces represent individual participant means.  Thick red trace 

represents group-level mean. Red shading indicates amplitude significance (t-test) for each condition compared to 

the Audio-Visual only (passive subject/passive robot) condition. Significant ERD and ERS were seen in all three 

conditions in which a movement occurred. ERD preceded movement in all cases. Peak ERS values occurred just 

after finger flexion. A second ERS following finger extension appears during the active robot conditions. Green 

traces show mean robot trajectory, with flexion being defined downward. A smooth grasping movement consisting 

of a flexion followed immediately by an extension with no pause between is seen in the active subject/passive 

robot condition. The robot is seen to discretize the flexion/extension portions of the grasping trajectory, with a no-

movement interval occurring at the target time (t=0), as illustrated by the passive subject/active robot condition. 

There was no movement in the passive subject/passive robot condition. 

The timing of the ERD and ERS were similar in the three experimental conditions in which they 

occurred (Figure 4,  

Table 3) with some minor differences.  ERD began approximately 600-900 msec before the start 

of movement in all three conditions, including when the subject remained passive but the robot 

moved. ERD in the active subject/passive robot condition preceded that of the remaining two 

movement conditions. Secondary ERS can be seen following the finger extension period in  in 

the active robot conditions. These secondary ERS signals were not statistically significant from 

the active subject/passive robot condition. However, the mean secondary ERS value was largest 

in the passive subject/active robot condition (2.19 dB), followed by the active subject/active 

robot condition (1.96 dB). No secondary local maxima were seen in the active subject/passive 

robot condition. ERS was also seen to last longest in the active robot conditions, likely due to 

the secondary ERS feature. In these conditions, ERS extends to approximately 1000 ms after 

finger-extension was complete.  

 

 



9 
 

Table 3: Significant Modulation Timing: Periods in which event related desynchronization and synchronization 

achieved statistical significance relative to baseline, via pointwise t-test (p < 0.05). All times are in milliseconds 

relative to mean movement onset. 

 

ERD ERS 

Condition start end start end 

robot+motor (active) -682 263 323 1258 

motor only (active) -854 333 405 1169 

AV only (passive) N/A N/A N/A N/A 

robot only (passive) -642 266 333 1287 

 

Robotic assistance increased ERD magnitude for the pre-movement onset ERD, but it only 

approached significance (ANOVA, p = 0.07).  It also increased the magnitude of the post-

movement, but again it only approached significance ERS (p = 0.06). Overt movement did not 

significantly alter ERD amplitude (p = 0.66) or ERS amplitude (p = 0.88). Interaction effects 

between robotic assistance and overt movement were not significant for ERD (p = 0.59) or ERS 

(p = 0.99).  A comparison of each time point revealed no significant differences in the passive 

subject/active robot condition compared to the active subject conditions as well (t-test, p > 

0.05). The maximum across-subject ERD value seen in the passive subject/active robot 

condition was found to reach 3.68 (+/- 2.96) dB. The maximum across-subject ERD value seen in 

the active subject/passive robot condition was larger at 4.35 (+/- 3.71) dB, but the difference 

was not significant (t-test, p = 0.63).  

9 out of 12 subjects showed ERD primarily within the mu band (8-13 Hz). The remaining 

exhibited primarily beta-focused desynchronization (13-30 Hz). Two of the these subjects 

exhibited ERD from 17-22 Hz, and the remaining subject showed ERD from 12-18 Hz. An 

example of broadband power amplitude can be seen for one subject in . Again, no significant 

modulation was seen in the passive subject/passive robot, audio-visual stimulation only 

condition. Mu-rhythm specific ERD was seen prior to movement onset with a peak at 

approximately  -500ms and 10 Hz. This subject also exhibited prominent beta rebound at the 

end of finger flexion. These were especially noticeable in the active subject/active robot 

condition where beta ERS can be seen after flexion at approximately 12-28 Hz.  



10 
 

 

Figure 6: Single subject example of power: Time-frequency maps during the four conditions. Time = 0 corresponds 

to the moment when the moving note crossed the target location. This subject showed mu band (8-12 Hz) ERD and 

beta band (13-30 Hz) ERS in the three movement cases. Mu ERD preceded movement in all conditions. Beta ERS 

followed the completion of finger flexion, occurring at t=0 in the subject active conditions. A second, smaller ERS 

was seen in the robot active conditions. ERS appeared only after finger extension in the passive subject/active 

robot condition. 

DISCUSSION 

In a robotic neurorehabilitation setting, the patient is often faced with the task of mixing overt 

movement, robotic assistance, and external audio-visual stimuli associated with a computer 

game. The effects of these stimuli and interaction with one-another on ERD have not yet been 

well defined. The aims of this study were to identify the effects of these factors on ERD using a 

prototypical robotic therapy paradigm. ERD was found to precede movement during all three 

movement conditions, and notably even in the passive subject/active robot condition. No 

significant power modulation was seen in the audio-visual only condition before or after the 

factorial conditions were completed. ERS was identified during post-movement periods, with a 

tendency toward a secondary ERS in the robotically assisted conditions. Next we discuss the 

effects of robotic assistance on ERD and ERS. We will highlight the implications of these effects 

with regard to patient engagement in therapy and future BCI-robot therapy paradigms.  

EFFECTS OF ROBOT ASSISTANCE ON ERD 

This study identified pre-movement ERD during passively imposed movement, suggesting that 

ERD during passive movement is not tied solely to proprioceptive feedback, but is likely the 

result of cortical preparation for the impending somatosensory input the movement will 

produce.  In many past studies, ERD has been found to follow imposed movement onset, and 
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has been attributed to proprioceptive feedback [24, 25, 29]. During self-paced movements 

however, ERD has been observed to precede movement onset [27, 34-36]. Pre-movement ERD 

has also been observed previously before cued predictable movements [21, 26], including 

passive movements imposed on the subject [22, 23]. This study verified these findings, showing 

that ERD appeared in advance of a predictable imposed movement from a robotic orthosis 

operating within a robotic therapy paradigm, when the subject was instructed to remain 

passive. Because proprioceptive feedback is not yet affected by the imposed movement during 

the pre-movement interval, these findings suggest there is a cortical preparation of the 

somatosensory system in advance of an imposed movement. The existence of ERD before 

movement onset, comparable to that found preceding overt movement, suggests that ERD can 

become contingent on the expectation of robotically-imposed movement. That is, ERD is not 

uniquely tied to active movement but can reflect preparation for movement, whether active or 

passive.  

ERD preceding both active and passive movements may be explained by two physiological 

mechanisms: the efference copy and anticipatory attention. Unlike other studies, which used 

random movement intervals [24, 25], participants in the present experiment were aware of the 

existence and timing of oncoming notes. Participants had sufficient time to prepare for the 

movement, whether active or imposed by the robot. Past studies have found that the brain 

predicts oncoming sensory information related to an intended movement so that the system 

can learn and adapt to changes [37-39]. When a command is sent to the motor system to 

generate movement, an internal copy of the command is created to predict sensory 

consequences of the movement. This phenomenon is referred to as an efference copy. The 

efference copy is collated with sensory inputs produced by the movement, allowing a 

comparison of the expected movement (forward model) and the actual movement. In one 

study, subjects performed a self-paced finger-tapping task that alternated hands [40].  ERD was 

observed to occur up to two seconds before movement over the contralateral hemisphere 

during dominant hand movements, and bilaterally during non-dominant hand movements. The 

authors suggest that while ERD of the contralateral sensorimotor cortex is an excitatory 

process, ERD of the ipsilateral hemisphere may be the result of an efference copy reflecting 

inhibition of movement. During the passive subject/active robot condition of the current 

experiment, participants expected movement but suppressed overt intention of that 

movement. Although the descending motor command was inhibited, the internal network 

requires the efference copy to predict the sensory input of the imposed movement [41]. 

Therefore, in the current experiment, ERD preceding movement may be the EEG correlate of 

the efference copy sent in preparation for predictable imposed movement. Others have 

suggested that contralateral beta ERD may be a corollary of anticipatory attention to a future 

motor stimulus [42]. It may be the case that ERD measured here is  the result of maintained 

attention to the oncoming note stimulus. Examination of the effects of predictable and 
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unpredictable cueing would be necessary to further explore the roles of the efference copy and 

movement inhibition on the magnitude and temporal features of ERD. 

IMPLICATIONS FOR PATIENT ENGAGEMENT IN BCI-ROBOT THERAPY 

Although ERD has been shown to be a reliable control signal for BCI applications, the use of BCI-

contingency in robot therapy has not yet been proven superior to traditional or robotic therapy. 

One important rationale for using BCIs in robotic therapy is ensuring the active effort of the 

patient in the movement task [5, 9]. This study shows that ERD can be contingent on the 

expectation of passive, imposed robotic movement. Therefore, in a predictable task therapy 

environment, the use of ERD as an orthosis control signal does not necessarily require the 

patient's active engagement in the motor task, but simply the expectation of robotic 

movement. As such, ERD may be suboptimal in the context of patient engagement in BCI-

contingent robot therapy. 

ABSENCE OF EFFECTS OF AUDIO-VISUAL STIMULI  

Power modulation did not appear in any of the audio-visual only condition exams. The final 

audio-visual only condition is of particular interest, as it occurred after repetitive conditioning 

of motor activity to the audio-visual stimuli. The gaming environment in this study utilized very 

engaging visual and aural cueing matched to overt movement and haptic feedback. Popular 

music with a consistent beat was chosen for maximum influence on the participant; and indeed 

the game paradigm used here is similar to the third most popular game in video game history. 

By repeatedly matching hundreds of individuated finger movements to the audio-visual cues on 

screen, the participant was placed in a scenario that one might expect would lead to classical 

conditioning. However, the lack of activity in the final audio-visual condition suggests an 

insusceptibility of EEG power modulation to conditioning based on audio-visual cueing or 

gaming environments commonly seen in robot therapy. This finding also rules out the 

possibility that the gaming environment affected ERD in the remaining conditions. This is an 

important null result for ERD-based BCIs relying on aural and/or visual cues, as it suggests that 

the cueing environment alone is unlikely to falsely trigger a BCI contingent robot; rather the 

imposed movement by the robot plays a key role. 

EFFECTS OF ROBOTIC ASSISTANCE ON SYNCHRONIZATION AFTER MOVEMENT 

Event related synchronization or "rebound" occurred following finger flexion offset in all three 

movement conditions. These findings agree with Pfurtscheller et al. , who characterized the 

temporal traits of ERS, finding that a burst of beta power appeared within a one second interval 

following movement offset [35]. Post movement beta ERS has since been shown to follow 

voluntary hand movements [36, 43-45], as well as passive movements [24, 43]. ERS following 
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movement matches previous findings, with the exception of a second, smaller synchronization 

that was more prominent in the robot active conditions.  

The presence of a secondary synchronization in the two active robot conditions may be a result 

of the discrete flexion/extension forces applied by the robot. Secondary synchronizations seen 

in the active robot conditions were not statistically significant from the active subject/passive 

robot case. However, the group-level mean ERS was larger in the active robot conditions and 

ERS significance periods ended later. The mean secondary synchronization was greatest in the 

passive subject/active robot condition, followed by the active subject/active robot condition. 

ERD and ERS in relation to kinematic and kinetic hand movements were recently characterized 

by use of a 3x4 factorial design experiment in which the subjects repeated hand grasping 

movements at different speeds and forces [21]. The authors found that although grasping force 

did not affect the magnitude or time course of ERD/ERS, repeating grasping motions caused 

repeated up-modulation of the signal power. This supports our findings, because in the present 

experiment the robot assistance for flexion and extension were separated by approximately a 

~200ms interval in which no movement occurred, thereby creating two distinct motions 

(flexion, pause, extension), and therefore two distinct synchronization features. In contrast, in 

the active subject/passive robot condition the finger extension occurred immediately after the 

finger flexion without a pause, and therefore did not show a secondary ERS.  

LIMITATIONS AND FUTURE RESEARCH 

One caveat of the current study is that we studied unimpaired subjects.  Our rationale for this 

selection was exclusion of the confounding influence of a brain lesion on EEG activity, allowing 

us to gain insight into the normative interaction between robotic assistance and brain activity.  

In a study of event-related beta EEG modulation during passive and attempted foot 

movements, Müller-Putz et al. found that individuals with paraplegia after SCI did not exhibit a 

significant ERD or ERS during the passive movement condition [22]. Another study found that 

peak ERD during attempted shoulder-elbow movements was significantly smaller in individuals 

with a stroke compared to unimpaired subjects [19]. Neither study tested passive movements 

in people with a stroke. However, their findings suggest that robot-contingent triggering of ERD 

during passive movements may be diminished in people with neurological impairment. A future 

aim of this research is the replication the experiment utilizing participants with a stroke.  

This study used a factorial combination of overt movement and robot assistance, rather than 

online BCI contingent control of the robot to study the potential effects of robotic therapy on 

event related EEG features. The observation that the pre-movement ERD was contingent on the 

robotic assistance has implications for using contingent-BCI to improve patient engagement. 

However, it will be important to verify the results presented here in an online BCI-contingent 

robot therapy paradigm in future work.  
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Fine motor tasks such as finger individuation are important for daily function. Furthermore, it 

has been suggested that isolated, individualized movement deficit also affects impairment in 

gross movements, such as elbow extension [46]. A recent study employed an EEG based BCI in 

decoding individuated finger movements, and achieved accuracy significantly above chance 

level [47]. It may therefore be possible to decode EEG-based signals in real time for the online 

BCI-contingent control of individual fingers in the FINGER robotic orthosis, which may improve 

outcome after therapy.  

A logical progression of this work would be the identification of an event-related brain state 

robust to the effects of robot-contingent triggering. Functional connectivity has been shown to 

vary between active and passive movements during motor tasks [23], and therefore may be 

useful as an indicator for active engagement in the context of BCI-robot therapy. A second 

approach might forego a-priori feature selection altogether, using machine learning algorithms 

to decode movement intention. Past studies have used similar approaches to classify resting 

state versus active or imagined movements [28, 48]. To our knowledge, no such approach has 

been applied to the classification of passive versus active movements. Such an approach may 

be able to isolate the spatio-spectral EEG features associated with active engagement in the 

motor task. This would circumvent the robot-contingency observed in ERD preceding passive 

movements. If patients are indeed slacking in the current BCI-contingent robotic therapy 

paradigms, a passive/active classification BCI paradigm might encourage patient engagement in 

the motor task, improving motor outcomes after therapy.  
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