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ABSTRACT OF THE DISSERTATION 

Applications of Molecular Theory in Solvation of Pharmaceutical Solutes, Ions and 
Amine-Grafted Silica Gel 

by�  

Shijie Sheng 

Doctor of Philosophy, Graduate Program in Chemical and Environmental Engineering�  
University of California, Riverside, December 2017  

Dr. Jianzhong Wu, Chairperson 

 

Solvation and solvent effects play an important role in diverse chemical processes 

ranging from reaction kinetics to molecular recognition, solubility, solvato- chromism 

and phase separations. Despite enormous activities in this field, quantitative solvation 

calculations remain an enormous intellectual challenge.  

My thesis is focused on development and application of molecular density 

functional theory (MDFT) and molecular dynamics (MD) simulation to predicting 

solvation properties. Accomplishments include 1) improved the average unsigned error of 

MDFT predictions for the room-temperature solvation free energies (SFE) of 504 

pharmaceutical molecules in water from 1.04 kcal/mol to 0.66 kcal/mol; 2) established a 

more reliable numerical procedure to calculate the direct correlation functions (DCF) of 

solvent from MD simulations; 3) extended MDFT prediction of SFE to different 

temperatures and calibrated the theoretical results with experimental data for the 

hydration free  energies of 5  nitrotolunenes and a library of 197 solutes at  277 K,  298 K  
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and 313 K. In addition, I investigated the 3-dimensional (3D) solvation structure of 

amine-grafted silica gel in liquid water by applying a spherical harmonics expansion 

method to the MD trajectories. The simulation results provide evidence on the strong 

influence of the silica surface on hydration structure, which is often ignored in the 

theoretical analysis of surface reactions. Furthermore, I developed a hybrid method for 

predicting the SFE of spherical ions by combining MDFT with MD simulations. The 

numerical analysis justifies the universality of the bridge functional that can be 

reasonably approximated by the modified fundamental measure theory (MFMT) for hard-

sphere systems. 

Results from this thesis demonstrate that the DCFs are important in application of 

MDFT to SFE predictions. Based DCF from on integral-equation methods, MDFT can 

also capture the temperature effect on SFE in good agreement with experiment. In 

addition, the hybrid MDFT-MD method  provides accurate predictions of hydration free 

energies for charged solutes and the numerical analysis sheds light on future theoretical 

development. The efficient sampling method for generating 3D density profiles from MD 

may open up opportunities for application of MDFT to more complex systems, for 

example, protein solvation and enzyme kinetics. By studying the solvation structure of 

amine-grafted silica shell, I found that the silica surface affects not only the distribution 

of surrounding water but also the hydrogen-bonding network. This surface effect is long-

ranged and can be reduced with longer grafted amine chains.   
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Chapter 1.  Introduction 

1.1. Molecular Theories of Solvation 

Solvent effects are fundamental to understanding chemical processes in many 

ways. The presence of a solvent can alter the color of a solute, which is known as 

solvato-chromism. Marini et al.1 explained this phenomenon with time-dependent density 

functional theory (TDDFT) calculations. The formation of hydrogen bonds with solvent 

molecules changes the configurations of proteins, which is important, for example, for 

understanding protein folding. Piana et al2 tested 4 common force fields on protein 

folding and demonstrated that molecular dynamics (MD) simulation could capture the 

solvent behavior. The polarity of solvent molecules could not only affect solvent-solute 

interactions but also change the rates of chemical reactions due to its strong influence on 

electronic structure of the solute. Polarizable continuum model (PCM) was first 

introduced into ab initio calculations by Foresman et al3. Recent theoretical interest has 

been mostly devoted to understanding the microscopic details of solute-solvent 

interactions and the effects of local solvent structure on the chemical and biochemical 

affinities of dissolved species. Such information is key to studying the chemical and 

biochemical processes in organic or aqueous systems including chemical reactions and 

relation dynamics, stability of bio-macromolecules, and ‘lock-key’ interactions for 

rational drug design.  

Despite enormous activities in this field, it remains a theoretical challenge in 

some quantitative calculations, for example, in high-throughput solvent screening and 
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predictions of solvation free energies. Approximately, molecular theories to investigate 

SFE may be classified into three categories: continuous approaches, molecular 

simulations, and liquid-state theories. With solvent molecules depicted as a dielectric 

medium, a continuous model describes the solvation free energy in terms of the 

geometric measures of the solute-solvent boundary, such as the solute size, solvent-

accessible surface area, surface curvature and various energetic contributions due to 

solute-solvent electrostatic and van der Waals interactions. Neglecting the microscopic 

details of solvent molecules makes the phenomenological approach computationally 

extremely efficient and thus convenient for practical applications. 

Simulation methods have been a popular choice to study solvent effects over the 

past few decades. Nowadays many molecular simulation packages (LAMMPS, 

GROMACS, AMBER, NAMD) are readily available.  The simulation results can be 

analyzed with many open-source tools in this large community. The development of 

general force fields (e.g., GROMOS, OPLS and GAFF) further widens the applications of 

simulation methods.  However, in spite of the growing of computation power, 

simulations of SFE with the standard thermo-integration method are computationally 

demanding. As a result, simulation results for the SFE of a large library of chemicals are 

rarely reported.  

Liquid-state theories represent a compromise between continuum models and 

molecular simulations. Next section will provide a brief introduction of the liquid-state 

method used in this thesis. 
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1.2. Molecular Density Functional Theory (MDFT) 

MDFT is established on the Hohenberg-Kohn-Mermin (HKM) theorem. The 

basic idea is that the free energy can be expressed as a functional of the atomic/site 

density profile. In the grand canonical ensemble, the grand potential is given by 

 
		
Ωv =Ωv ρi r( )⎡⎣ ⎤⎦   (1) 

where 	ρi  is the one body density of site 	i  at position 	r . Conventionally, the grand 

potential is split into three terms 

 
		
Ωv = F

id ρi r( )⎡⎣ ⎤⎦+ dr Vi
ext r( )− µi⎡⎣ ⎤⎦ρi r( )∫

i
∑ +Fex ρi r( )⎡⎣ ⎤⎦   (2) 

where 	F id  is the intrinsic Helmholtz free energy for an ideal-gas system of the same 

atomic density profiles; 	Vi
ext  is the external potential; 	µi  is the chemical potential; and 

	F ex  is the excess intrinsic Helmholtz free energy. The ideal-gas term can be derived as  

 			F
id = kBT dR lnρMΛM

3 −1( )ρM + WρM dR∫∫   (3) 

Similar to ideal-gas term in atomic system, 		ρM R( )  is the molecular density at 

configuration 		R = r1 ,r2 ,r3 ,...( )  ; 	W  is the intra-molecular potential; and 	ΛM  is the 

molecular thermal wavelength. Unlike atomic system, there is an extra term accounting 

for bonding energy.  

An exact formula for the excess free energy 	F ex  of an inhomogeneous molecular 

system is not available. In practical applications, we seek to approximate this functional 
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with perturbation methods or by expanding the functional with respect to site density 	ρi  

at the homogeneous condition, 

 
			
Fex = Fb

ex + drµi ,b
exΔρi r( )− 12∫

i
∑ dr dr'cij r− r'( )Δρi r( )Δρ j r'( )∫∫

i , j
∑ +FB   (4) 

where subscript 	b  stands for bulk properties, 			Δρi r( ) = ρi r( )− ρb ,i , 	
cij  is the direct 

correlation functions of site 	i  and 	j , and 	FB  is the bridge functional. Effectively, the 

bridge functional represents all higher-order terms. The detail discussion of DCF is given 

in the next two Chapters. According to the universality ansatz of bridge functional, 	FB  

can be approximated by that of a reference hard-sphere system with same density profiles. 

In this work, the bridge functional is formulated with the modified fundamental measure 

theory (MFMT)4:  

 	 FB ! FB
MFMT   (5) 

1.3. Dissertation Organization 

This dissertation is focused on the application of molecular density functional 

theory (MDFT) and molecular dynamics (MD) simulations to solvation calculations. 

Special attention is given to hydration of small pharmaceutical solutes, ions and amine-

grafted silica gels. The rest of dissertation is organized as follows. 

Chapter 2 describes the numerical procedure for sampling the site-site direct 

correlation functions (DCF) for 3-site and 4-site water models. It is demonstrated that 

accurate evaluation of DCF improves the theoretical performance in application of 
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MDFT to predicting the solvation free energies (SFE). In the Appendix for Chapter 2, I 

provide a generalized method for sampling DCFs of solvents with arbitrary molecular 

configurations.  

Chapter 3 incorporates DCFs into MDFT and applies it to solvation systems at 

different temperatures. The theoretical method is calibrated with experimental data for 5 

nitro-toluenes and 197 solutes at three temperatures 

Chapter 4 examines the surface effect on the solvation structure of amine-grafted 

silica amines. Both the pH of solution and chain length of grafted amines are 

investigated. In sampling 3-dimentional density profiles, I used an efficient sampling 

method based on the spherical-harmonics expansion. 

Chapter 5 provides a hybrid method for SFE calculation by combing MDFT and 

MD simulation. This method is firstly tested with water self-solvation to reproduce the 

experiment value and further calibrated with the hydration free energies of 32 ions of 

different valences. With the 3D density profiles as input, I demonstrate that the bridge 

functional is essential for quantitative prediction of hydration free energies.  The 

numerical results may shed light on future liquid-state theory development.  

Finally, in Chapter 6 I summarize the main conclusions of the thesis and provide 

perspective for future work. 
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Chapter 2.  Direct Correlation Functions for Three-site and Four-site Water Models 

Direct correlation functions (DCFs) play a pivotal role in modern liquid-state 

theories and are often indispensable for non-mean-field implementation of the classical 

density functional theory (cDFT). Whereas analytical expressions have been derived for 

the DCFs of simple fluids and electrolytes, DCFs for molecular systems are attainable 

only through numerical solution of the integral-equation theories in combination with 

molecular simulation or an approximate closure.  Unlike radial distribution functions 

(RDFs), DCFs reflect the variational of the local chemical potential of individual 

atoms/interaction sites with the density-profile fluctuations, which are difficult be 

sampled from the simulation trajectory. This article presents an improved numerical 

procedure to calculate the DCFs of 3-site (SPC/E, TIP3P) and 4-site (TIP4P-Ew) water 

models based on the Reference Interaction Site Model (RISM) and molecular dynamics 

(MD) simulations. In combination with the modified fundamental measure theory for the 

bridge functionals, the DCFs have been utilized to predict the hydration free energies of 

504 small organic molecules and yield an average unsigned error of 0.66 kcal/mol in 

comparison with the simulation data, better than that (~1 kcal/mol) reported in previous 

cDFT calculations. 

2.1. Direct Correlation Functions (DCF) 

In classical density functional theory (cDFT) for molecular fluids5, the grand 

potential  of a one-component open system at temperature , volume  and chemical 

potential  is defined as a functional of the molecular density profile, : 

Ω T  V

µ   ρ(x)
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  (6) 

where  is a composite vector specifying the molecular configuration (i.e., the atomic 

positions of individual molecules),  stands for the Boltzmann constant, and  is an 

effective thermal wavelength. In Eq.(6), the first term on the right side corresponds to the 

intrinsic Helmholtz energy of an ideal system with the molecular density profile the same 

as that of the real system under consideration; the second term accounts for a one-body 

energy for each molecule due to external potential ; and the last term, , 

defines the excess intrinsic Helmholtz energy, i.e., the deviation from that of the ideal 

system due to intermolecular interactions. At equilibrium, the grand potential is 

minimized with respect to the molecular density profile, leading to the Euler-Lagrange 

equation for the molecular density profile 

   (7) 

where , and the proportionality constant is fixed by the average molecular 

density of a bulk system at the same temperature and chemical potential. Eq.(7) is 

formally exact. With analytical expressions for the external potential and the excess 

intrinsic Helmholtz energy, I can calculate the molecular density profile and, 

subsequently, all thermodynamic properties of the molecular system under 

consideration6-7.  

To a good approximation, the molecular configuration is fixed for a system of 

polyatomic molecules with low molecular weight so that the molecular density profile 

   

Ω[ρ(x);µ,V ,T ]= kBT dxρ(x){ln[ρ(x)Λ3]−1}∫
+ dx∫ [Ψext (x)− µ]ρ(x)+ F ex[ρ(x)]

 x

 kB Λ

   Ψ
ext (x) [ ( )]exF ρ x

    ρ(x)  exp[−βΨext (x)−δβF ex / δρ(x)]

  β = 1/ (kBT )
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can be expressed as a function of the molecular position and orientation8. For flexible 

polyatomic molecules in general, the high-dimensional function is most conveniently 

expressed in terms of the atomic (or site) density profiles9-10   

  (8) 

where  is the number density of atom  in the bulk,  represents the Boltzmann 

average over the molecular configurations with the position of atom  fixed at , and 

 corresponds to a reduced one-body potential for atom . This one-body potential 

arises from the external field, here designated as , and the deviation of the local 

excess chemical potential from its bulk value:    

	 	 	 (9)	

where  stands for the atomic excess chemical potential in the bulk. For a uniform 

polyatomic system at given temperature and chemical potential, both the atomic density 

and the atomic excess chemical potential can be fixed from the stoichiometric relations10. 

In writing Eq.(9), I assume that the external molecular potential can be formally 

decomposed into contributions from the individual atoms 

		 .	 		 	 	 	 (10)	

Eq.(10) is fully consistent with the pairwise additivity assumption as typically adopted in 

a conventional non-polarizable molecular force field.  

   
ρi(r) = ρi

0 exp[−λi(r)]< exp{− λ j (rj )
j≠i
∑ }>x '

  ρi
0  i    <>x '

 i  r

   λi(r)  i

   ϕ i
ext (r)

   λi(r) = βϕ i
ext (r)+δβF ex / δρi(r)− βµi

ex

  µi
ex

   
Ψext (x) = ϕ i(ri )

i
∑
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The essential task in applications of the cDFT is to formulate an analytical 

expression for the excess intrinsic Helmholtz energy as a functional of atomic or 

molecular density profiles. Without loss of generality, I may express the unknown excess 

intrinsic Helmholtz energy relative to that of a bulk system of the same temperature, 

volume, and chemical potential  

	 		 (11)	

In Eq.(11),  represents the deviation of the local atomic density from 

the bulk value;  denotes the direct correlation function (DCF) between atoms i and j 

for the bulk system, and  stands for the bridge functional, i.e., all higher-order 

terms beyond the quadratic functional expansion.  

Even though the site-site DCFs appeared in Eq.(11) are independent to molecular 

orientations, the cDFT procedure outlined above is formally exact, immaterial to the 

specific forms of the intermolecular potential. In cDFT, the orientational effects are 

implicitly accounted for in computation of the atomic density profiles as shown in Eq.(8). 

In other words, cDFT is able to describe angular correlations that are intrinsically 

neglected in the reference interaction site model (RISM). Mathematically, the first three 

terms on the right side of Eq.(11) correspond to a functional quadratic expansion of the 

excess intrinsic Helmholtz energy, and the bridge functional accounts for all high-order 

terms in the functional Taylor expansion. Without the bridge functional, Eq. (11) is often 

   

F ex[ρi(r)]= F ex[ρi
0]+ µi

ex drΔρi(r)∫
i
∑

                 −
kBT

2
dr dr 'Δρi(r)Δρ j (r ')cij (| r − r ' |)∫∫

i, j
∑ + FB[ρi(r)]

   Δρi(r) ≡ ρi(r)− ρi
0

  
cij (r)

[ ( )]B iF ρ r
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referred to as the hypernetted chain approximation (HNC)11, the homogeneous reference 

fluid (HRF) approximation12, or the Chandler-McCoy-Singer (CMS) theory13. It has been 

shown that the quadratic expansion conforms to the exact results at both the “ideal gas” 

and “ideal liquid” limits for the long-range components of the intermolecular potentials14. 

Besides, it has been well documented that HNC (and similar approximations) performs 

rather well for systems in which thermodynamic non-ideality is dominated by long-range 

interactions. The good performance for HNC to account for long-range interactions 

implies that the bridge functional is mostly affiliated with short-range interactions, 

insensitive to the mathematical details of the long-range components of intermolecular 

forces15. The insensitivity of the bridge functional to the precise form of intermolecular 

potentials was recognized first by Rosenfeld for simple fluids16-18. Using the fundamental 

measure theory (FMT) as an input, Rosenfeld demonstrated that the universality of bridge 

functional performs well for a wide variety of thermodynamic systems, including charged 

Yukawa fluids and plasma mixtures (see ref18 for an overview).  

The universality ansatz allows us to represent the bridge functional with that of a 

hard-sphere (HS) reference system  

  (12) 

where  is the excess Helmholtz energy functional of the HS system;   and 

 are, respectively, the excess chemical potential and the excess Helmholtz energy 

   

FB[ρi(r)]≈ F HS[ρi(r)]− F HS (ρi
0 )− µi

HS drΔρi(r)∫
i
∑

+
kBT

2
dr1∫ dr2Δρi(r1)∫ Δρi(r2 )ci, j

HS (| r1 − r2 |)
i, j
∑

   F
HS[ρi(r)]

  
µ0,i

HS

  FHS
ex (ρi

0 )
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of the HS system at bulk density ; and  is the HS direct correlation 

functions in the bulk. In the previous work4, 19-20, I have developed accurate expressions 

for the excess Helmholtz energy functional and the direct correlation functions of 

inhomogeneous hard-sphere systems. 

With a good expression for the bridge functional at hand, an important task in 

application of the cDFT is to obtain the direct correlation functions (DCFs) of uniform 

bulk systems. Historically, DCFs were introduced within the framework of the integral-

equation theories following the diagrammatic expansion of the grand partition function15. 

Within the framework of cDFT, DCFs can be succinctly expressed as the second-order 

functional derivatives of the reduced excess intrinsic Helmholtz energy13  

  . (13) 

For an isotropic system, the density profiles are uniform and the functional derivative 

takes the uniform limit. In that case, the DCF depends only on the center-to-center 

distance between atoms, i.e., . As the local excess chemical 

potential corresponds to the first-order functional derivative of the excess intrinsic 

Helmholtz energy,  reflects the change in the one-body potential for atom i at 

position  in response to a variation of the local density of atom j at position  or vice 

versa.  

  ρi
0

   
cij

HS (| r1 − r2 |)

   
cij (r,r ') = − δ 2βF ex

δρi (r)δρ j (r ')

   cij (r,r ') = cij (| r − r ' |;ρi
0 )

   cij (r,r ')

 r   r '
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For a uniform system, the responses in the one-body atomic potential are formally 

connected with the two-body density-density correlation functions through the Reference 

Interaction Site Model (RISM)21 

   (14) 

 where  stands for the molecular number density of the bulk system;  represent, 

respectively, the matrix forms of the site-site total correlation functions (TCFs), 

intramolecular correlation functions (ICFs), and DCFs; and  is the wavenumber (i.e., 

the magnitude of the wave vector) introduced from the 3-dimensional Fourier transforms 

of the two-body correlation functions. For a polyatomic system containing identical rigid 

molecules, ICFs are known exactly, independent of the thermodynamic conditions of the 

system,  

   (15) 

where is the Kronecker delta function,  is the distance between atoms i and j. TCFs 

are related to the site-site radial distribution functions (RDFs), , 

   (16) 

If each molecule is represented by a spherical particle, there is only one element in each 

correlation function matrix and . In that case, the RISM equation reduces to the 

Ornstein-Zernike equation (OZ) for simple fluids.  

  
ĉ(k) = ω̂ −1(k)ĥ(k) ω̂ (k)+ ρbĥ(k)⎡⎣ ⎤⎦

−1

 ρb   ĥ, ω̂ , ĉ

 k

  
ω ij (k) = δ ij + 1−δ ij( ) sin klij

klij

 δ ij  lij

  gij (r)

  hij (r) = gij (r)−1

  ω̂ (k) = 1
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             I may follow two complementary procedures to calculate the DCFs of a uniform 

system. One is the so-called “closure” approach, which introduces an additional relation 

among the total and direct correlation functions. Like those for the OZ equation for 

simple fluids, the RISM “closures” can be partially justified with diagrammatic 

expansions of the total and direct correlation functions 22-24. Alternatively, I can evaluate 

the DCFs by combining the RISM equation with molecular simulations25-26. While the 

closure approach has the advantage of numerical efficiency, most RISM closures fail to 

account for the effects of intramolecular correlations and may lead to erroneous 

predictions of the dielectric constant27. Despite the caveat, the closure approach provides 

a reasonable description of the TCFs of polyatomic systems and has been a popular 

choice in the literature28-29. Conversely, molecular simulation provides an accurate 

description of TCFs but has numerical issues in calculation of the DCFs from the RISM 

equation. In previous publications25, 30, I proposed a hybrid procedure to calculate the 

DCFs by combing an asymptotic analysis of the two-body correlation functions with 

molecular dynamics (MD) simulations. The main purpose of this work is to further 

improve the hybrid procedure for generating the DCFs of different water models and to 

calibrate their utility in cDFT predictions of hydration free energies for a large library of 

small organic molecules. The DCFs for both 3-site and 4 site models are compared with 

those predicted by a modified HNC (MHNC) approximation.  

            The rest of this article is organized as follows. Section II describes the asymptotic 

behavior for the long-range components of DCFs. In Section III, I introduce an improved 

procedure to calculate the DCFs by a combination of MD simulation, asymptotic analysis, 
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and the RISM equation. In Section IV, the DCFs from the hybrid method are compared 

with those from the RISM/MHNC integral-equation theory. In Section V, the numerical 

performance of the new DCFs for cDFT calculations was tested with MD simulation data 

for the hydration free energies of 504 small molecules. Finally, Section VI summarizes 

the main conclusions from this work and offers some perspectives for future 

developments.  

2.2. Long-range Behavior of DCFs 

At large distance, the DCFs of simple fluids are known to be proportional to the 

reduced pair potential 31  

   (17) 

where  is the pair potential between particles i and j. Because of intramolecular 

correlations, a similar asymptotic relation for molecular systems would lead to a bulk 

dielectric constant the same as that of an ideal gas 32-33. Such a trivial result for molecular 

systems can be avoided by a semi-empirical modification of the long-range component of 

the DCFs 25, 34-35 

   (18) 

where  are coefficients chosen to be consistent with the bulk dielectric constant. 

Strictly speaking, the simple scaling of the electrostatic interactions is not valid for 

systems containing polyatomic molecules with highly symmetric structures (e.g., linear 

triatomic molecules such as CO2). Neither is Eq.(18) applicable to solutions with a solute 

  
cij (r) = −βuij (r), when r →∞

( )iju r

  
cij (r) = −Aij / r, when r →∞

ijA
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of finite concentration in a molecular solvent. In the latter case, the asymptotic behavior 

of the DCFs can be captured with the dielectrically consistent reference interaction site 

model (DRISM) theory36. In this work, I are concerned primarily with a pure liquid (viz. 

water) and solvation of individual solute molecules. For a 3-site water model, it has been 

shown that the long-range component of the DCFs is proportional to the reduced 

Coulomb potential25   

   (19) 

where  stands for the atomic charge,  is the permittivity in vacuum, and the pre-factor 

 is related to static dielectric constant  and molecular dipole moment   

   (20) 

and . Eqs.(19) and (20) are not applicable to 4-site water models like 

TIP4P-Ew. Due to the increase in the dimensionality of the two-body correlation function 

matrices, there is no generic relationship between coefficients  and the bulk dielectric 

constant . In that case,  may be calculated through numerical extrapolations as 

detailed in Section III. 

2.3. Evaluation of DCFs through MD Simulations 

The TCFs for liquid water can be calculated from MD simulations. While MD 

simulation is presumed to be reliable for TCFs in the real space, direct Fourier transforms 

   
Aij = ζ

βqiq j

4πεo

 q   εo

ζ  ε  d

   
ζ = 1+ 1

ε −1
− 1

3y

  y = 4πρbd
2 / (9kBT )

ijA

 ε ijA
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of TCFs are numerically problematic owing to the long-range nature of integration and 

the limited box size used in MD simulations. In particular, molecular simulation provides 

little information on TCFs in the Fourier space at the long-wavelength limit, i.e., as 

wavenumber kà0.  

The near zero k behavior of TCFs is affiliated with the compressibility and the 

dielectric constant of the bulk system15. Two complementary procedures can be used to 

calculate the long-wavelength limit. One procedure, first proposed by Salacuse37, is to 

remove the finite size effects by adding a correction term to TCFs in the Fourier space  

   (21) 

where  is the spherical Bessel function of the first kind,  is the total number of 

water molecules within the cutoff, and  is the Fourier integration of TCF within 

the cutoff distance   

   (22) 

Because the size correction depends on the cutoff distance , a large simulation box is 

typically required to get converged results for the TCFs. Another way to calculate the 

long-wavelength limit of TCFs is through MD sampling of the partial structure factors 

(PSFs) 38  

   (23) 

  
hij (k, R) = hij

MD (k, R)+
4πR3 1+ ρbhij

MD (0, R)⎡⎣ ⎤⎦
3N − 4πρbR3

3 j1(kR)
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The PSFs and TCFs related through    

   (24) 

In Eqs.(23) and (24),  represents the partial structure factor for a pair of atoms i and 

j (e.g., O and H atoms for liquid water); superscripts M and M’ denote different 

molecules;  and  are the local coordinates of the interaction sites. To simplify 

notation, I refer to the Fourier transform of TCFs directly from real space sampling as 

TCF-F, and those obtained from the partial structure factor as TCF-D. In this work, 

 at small k values are obtained by sampling the partial structure factor because it is 

relatively easy to implement and has less numerical uncertainties. 

            The PSFs and TCFs at  cannot be calculated directly from MD simulation.  

In the limit of small k values ( ), I may express the TCFs as a low-order 

polynomial30 

   (25) 

where  is related to the isothermal compressibility  of the bulk system15 

  . (26) 

As shown in our previous work25, 30, the second-order coefficients in Eq. (25) can be 

related to the static dielectric constant  and dipole moment : 

  
S ij (k) = ρbhij (k)

  S ij (k)

  ri
M

  rj
′M

  
hij (k)

  k = 0

  k → 0
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(4)k 4 + ...

  hij (0)  χT
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   (27) 

Eq.(27) is applicable to both 3-site and 4-site water models. While the molecular dipole 

moment is model specific, the dielectric constant and density are bulk properties 

accessible via experiments. In this work, I use  0.997 g/cm3 and  for bulk 

water at the ambient condition.  

With the simulation results for  at small  as the input, I can estimate the 

coefficients in the polynomial expansion. It is worth noting that the numerical values for 

these coefficients, and DCFs in subsequent inverse Fourier transform, are highly sensitive 

to the range of  values and the order of the polynomial used in the numerical fitting. To 

minimize numerical uncertainties, I fix  based on the simulation results for the 

isothermal compressibility and the bulk density of the liquid water (see Table 2-1). The 

second-order coefficients are obtained by best linear fitting subject to the constraint given 

by Eq.(27).  Finally, the fourth-order coefficients are obtained by another linear fitting of 

 in terms of  for  0.8 Å-1. Different from direct polynomial 

fitting, the coefficients from the two-step linear correlations are relatively insensitive to 

the range of . 

For convenience, I refer to the TCFs obtained from the 4th-order polynomial 

equation as TCF-fit. In combination with the Fourier transform of  directly from 

MD simulations, I now have a full spectrum of TCFs in the Fourier space, i.e., TCF-fit 

   
Δh(2) ≡ qiq jhij
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4πβρb
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for  from 0 to 0.8 Å-1, TCF-D for  from 0.8 Å-1 to 1.4 Å-1, and TCF-F for  1.4 Å-

1. In stark contrast to direct fitting of  from Fourier transform in the full range as 

proposed by Chuev et al 26, 35, the additional results from PSFs and the asymptotic 

analysis lead to numerical values for  more reliable at small .  For each k value, I 

then calculate the DCFs from the TCFs using the RISM equation. Similar to , 

 can also be expressed as a polynomial (starting from the  term due to the 

long-range behavior Coulomb interactions). 

               (28) 

Once I have DCF data for small k values, the long-range asymptotic coefficients  

could be calculated from zero-point extrapolation. For a 3-site water model,  could 

be alternatively calculated from Eq.(19).   

I calculated the RDFs and PSFs using MD simulation in the NPT ensemble. The 

simulations were based on cubic simulation boxes of 28.8 Å, 32.7 Å and 56.0 Å for 

SPC/E, TIP3P and TIP4P-EW water models, respectively. For the purpose of conformity, 

all simulations are carried out at bulk water density 0.997 g/cm3. The temperature is 

controlled with a Nose-Hoover thermostat at 298 K. The particle mesh Ewald summation 

is used for solving the Coulomb potential. All MD simulations are carried out with 1 fs 

step length and the trajectories are generated every 100 time steps for over 2 ns after the 

system reaches equilibrium. The trajectory files are analyzed through a C++ parallel 

computing toolkit developed in this group. In order to examine the effects of bulk density 

 k  k  k >
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and the box size, I checked the DCF results corresponding to two box sizes (box length 

28.8 Å and 33.0 Å for SPC/E water) and two densities (0.986g/cm3 and 0.997g/cm3) for 

TIP/3P water.  

2.4.  Correlation Functions in Real and Fourier Spaces  

 I first present the radial distribution functions (RDF) for each water model and 

compare the results with the experimental data and pervious simulations from the 

literature. As shown in Figure 2-1, the RDF between oxygen atoms predicted by the 

TIP4P-Ew and SPC/E models agree well with the experimental results except that both 

slightly underestimate the first-peak position. As expected, the TIP3P model misses 

slightly the height and the position of the first peak and flattens at the second peak for the 

RDF between oxygen atoms.  

 In order to evaluate the TCFs in the small k region, I calculate the partial 

structural factors (PSFs) directly through MD simulations. As shown in Figure 2-2A and 

2B, the TCFs calculated from PSFs (TCF-D) compare well with those from the Fourier 

transform (TCF-F) for both TIP3P and SPC/E water models when k is not too small. 

However, for the reasons discussed above, the TCF-F curves do not satisfy the 

compressibility condition given in Eq.(26), and exhibit unphysical undulations at very 

small values of k. Conversely, the TCF-D curves show no oscillations at small k values.  

By a linear fitting of the TCF-D data from 0 to 0.8 Å-1 according to Eq.(25), I obtain a 

polynomial representation of the TCFs (shown as dashed lines in Figs. 2C and 2D and 

Table 2 presents the coefficients).  
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 Figure 2-3 shows the DCFs calculated from Eq.(14), based on the TCFs at 

different regions of k values. While the three regions of DCFs link well at the boundaries, 

I find significant uncertainties in the intermediate region. To attain a smooth function for 

each pair of DCFs, I interpolate the numerical results at low and high values of k:  

   (29) 

where  are the first three asymptotic coefficients of DCFs,  is calculated from 

TCFs at high k values, and  is a tuning parameter. Because the interpolation does not 

change the first 3 coefficients in the asymptotic expansion of DCFs (Eq.(28)), such a 

procedure is numerically more reliable than the DCFs directly obtained from fitting TCFs 

in the whole range of k.  

 Figure 2-4 shows the DCFs in real space obtained from the reversed Fourier 

transformation and results from previous calculations. In general, the DCF curves 

correspond well with each other, in particular for HH and OH pairs. The long-range 

components of the DCFs are virtually the same because the same density and dielectric 

constant are used in the asymptotic analysis. The main difference lies in the short-range 

component of the DCF between oxygen atoms. The discrepancy arises from different 

numerical procedures for fitting the simulation data. 

 Unlike the 3-site water models, TIP4P-Ew includes a pseudo-site M at the 

bisector of HOH angle. The M site bears a negative partial charge to account for the 

decentralized distribution of electrons in the oxygen atom. In the TIP4P-Ew water model, 

the oxygen site is neutral, interacting through the Lennard-Jones potential.  
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The 4 interaction sites affiliated with the TIP4P-Ew model result in 6 pairs of 

inter-related TCFs. As shown in Figure 2-7, the RDFs for MM, MO and OO pairs 

virtually identical due to the closeness of M and O sites. Similarly, the RDFs for OH and 

MH pairs are close to each other and differ only in the height of the first peak, i.e., the 

first peak of  is slightly higher than that of . Figure 2-8 shows the TCFs in 

the Fourier space. Following the same procedure for the 3-site water models, I calculate 

 by a combination of the Fourier transform for large k and the direct sampling of 

the partial structural factors (PSFs) in the small k region. Figure 2-9 shows the 

asymptotic limit of  near  obtained from a linear fitting with Eq.(25), subject 

to the constraint on the bulk compressibility.  

With the TCFs at different regions of k, I can readily calculate the corresponding 

DCFs using the RISM equation. Figure 2-10 shows the DCFs in the Fourier space for the 

TIP4P-Ew model. To connect the numerical values at different regions of k, I again use 

Eq.(29) to obtain a smooth fitting of the simulation data before the DCFs in the Fourier 

space are transformed into real space.  The specific values of  are also tabulated in 

Table 2-2. As aforementioned, Eq.(19) is not valid for a 4-site water model; otherwise, 

zero values would be expected for ,  ,  because the TIP4P-Ew model 

gives no partial charge on the oxygen site.  

Figure 2-11 shows the DCFs in real space according to the TIP4P-Ew model. 

Unlike the RDF curves, the DCF curves for OO, MO and MM pairs are clearly separated. 

  gOH (r)   gMH (r)
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The distinction of DCFs among these sites can be attributed to the intramolecular 

correlation functions  as given by Eq.(15). 

2.5. DCFs from Modified HNC Closure 

The modified HNC closure (MHNC) accounts for the long-range limit of the 

DCFs using an effective potential 39 

   (30) 

where 

   (31) 

As shown in Eq.(19), the long-range limits of the DCFs for 3-site water models are 

proportional to the negative of the Coulomb potential times a pre-factor . According to 

Eq.(20), the  values for SPC/E and TIP3P are 0.9604 and 0.9594, respectively. Because 

of the long-range correction, I expect that the DCFs from MHNC be more accurate than 

those from the original RISM/HNC or RISM/KH theory. 

I use the Picard iteration to solve Eq.(30) together with the RISM equation for the 

TCFs and DCFs. Figures 12 and 13 compare the DCFs for two 3-sites water models with 

the results from MD simulations. The difference between the DCFs calculated from the 

(semi-) analytical and numerical methods mainly lies in the short range. Overall, the 

DCFs from RISM/MHNC correspond well with those from MD simulations, suggesting 

that the DCFs obtained from the numerical procedure may provide a valuable alternative 

to time-consuming MD simulation.    
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2.6.  DCFs for Solvation Free Energy Predictions 

DCFs are not directly measureable through experiments or simulations. To 

validate the reliability of DCFs obtained from this work, I test their applicability to 

solvation free energy calculations using cDFT. As in our previous publications40-42, I 

define the solvation free energy as the reversible work to transfer a solute molecule from 

a vacuum into the pure solvent at fixed temperature and the chemical potential of solvent 

molecules. For a given conformation of the solute molecule , the solvation free energy 

can be related to the change in the grand potential of the pure solvent upon inserting the 

solute molecule 43 

  (32) 

where  is the grand potential of the pure solvent. If the solute molecule takes multiple 

conformations, the overall solvation free energy is given by  

   (33) 

where   denotes an ensemble average of the solute conformations in vacuum. In 

this work, I confine our interest in the solvation free energies of small molecules so that 

the solvation free energy can be estimated based on a single solute conformation. With 

the solute-solvent interactions treated as an external potential, I solve the site 

distributions of the solvent molecules from Eq.(8) and, subsequently, calculate the 

solvation free energy from  

 x

   Fs [ρ(x);µ,V ,T ]= Ω[ρ(x);µ,V ,T ]−Ω0 [µ,V ,T ]

 Ω0

   
βFs = − ln exp[−βFs(x)]

0

  <>0
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 (33) 

where  stands for the number of interaction sites, and  is the bridge function of 

site i  

	 .	 (34)	

The exact expressions for  and the selection of an effective hard-sphere diameter for 

the reference system can be found in our previous publications40-42.  

As a benchmark to test the DCFs obtained from in this work, I compare the 

hydration free energies of 504 small organic molecules predicted from cDFT with MD 

simulations and experimental data 44. The solute force fields used in cDFT and MD 

simulations are identical44. Figure 2-14 shows that the new DCFs improve the theoretical 

predictions from an average unsigned error of ~1 kcal/mol as reported in a previous 

publication42 using the same data set to 0.66 kcal/mol. For comparison with the 

experimental data, however, the new DCF yields a similar level of cDFT performance, 

indicating that the main limitation in hydration free-energy calculations is related to the 

accuracy of the semi-empirical force field for solute-solvent interactions rather than 

approximations introduced in cDFT. Because the cDFT calculations are far more efficient 

than MD simulations, I conjecture that cDFT provides a valuable alternative to 

   

βFs[ρi(r)]= − 1
Ms

drΔρi(r)∫
i
∑

+ 1
2

drdr'cij
(2) (| r − r' |)[ρi(r)ρ j (r ')− ρi

bulkρ j
bulk ]∫∫

i, j
∑

+βF B[ρi(r)]− drρi(r)Bi(r)∫
i
∑

 Ms    Bi(r)

   Bi(r) ≡ δ FB / δρi(r)

 FB



 26 

simulation methods for high-throughput prediction of solvation free energies as required 

in many practical applications28.  

2.7.  Conclusions 

In this work, I propose a numerical procedure for accurate evaluation of the direct 

correlation functions (DCFs) for liquid water using MD simulation and the reference 

interaction site model (RISM). Along with the DCF calculations, I present the site-site 

radial distribution functions (RDFs), the partial structural factors (PSFs), and the total 

correlation functions (TCFs) for two 3-site (SPC/E, TIP3P) and one 4-site (TIP4P-Ew) 

water models. The DCFs for the 3-site models can be reproduced near quantitatively with 

the modified hypernetted chain (MHNC) closure for the RISM equation.  

One of the foremost important applications of the DCFs is to use them as an input for 

formulation of the excess intrinsic Helmholtz energy functional in the classical density 

functional theory (cDFT). When the new DCFs obtained from this work are employed in 

the cDFT predictions of the hydration free energies of 504 small molecules, the average 

unsigned error is 0.66 kcal/mol in comparison with the simulation data, better than ~1 

kcal/mol reported in our earlier publication42. The improved performance suggests that 

the newly derived DCFs are more reliable. Because the DCFs generated from MD 

simulation compare fairly well with the RISM/MHNC predictions, I expect that the 

integral-equation theory will play a significant role in broader applications of the cDFT to 

molecular systems. 
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2.8. Appendix: Generalized Method of Direct Correlation Functions 

This appendix will discuss the details of how to sample DCFs of any arbitrary 

molecules without specific symmetry. 

Reference Interaction Site Model (RISM) 

RISM was first proposed by Chandler and Anderson45 and was based on site-site 

Ornstein-Zernike (OZ) equation as pointed out later by Cummings and Stell46. This 

equation relates the direct correlation functions (DCF) to total correlation functions 

(TCF) and thus provide a method to sample DCF from MD simulations. To understand 

this, first consider an inhomogeneous grand canonical one-component molecular system. 

The grand partition function Ξ  can be written as 

    
			
Ξ=Tr exp − βVi
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In the equation,	Tr  is the trace on the Hilbert space of Mayer function in the grand-

canonical ensemble and 

			
Tr = 1

vΛ( )NN=0

+∞

∑ dri
m

m,i
∏∫ , where 	N  is the number of molecules in 

the grand canonical ensemble, 	v  is the symmetry number of molecule, Λ  is the 

molecular thermo wavelength, subscript 	m  stands for molecule id, 	i  is the molecular 

site, β  is 		1/kBT , 	Vi
ext  is the external potential on site 	i , Γ  is the two-body interaction 

potential, and	VB  is the intra-molecular bonding potential. In statistic mechanics, density 

can be expressed as fluctuations of summation of Dirac delta functions 
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ρi r( ) = δ r− ri

m( )
m
∑   (36) 

where 
		
δ r− ri

m( )  is the Dirac delta function of site 	i  at position 		ri
m . Combing Eq.(35) 

and (36), one find relation between grand potential 		Ω= −kBT lnΞ   and density as  

 
		
ρi r( ) = δΩ

δVi
ext r( )   (37) 

Performing functional derivative on both sides of Eq.(37) and define 	
χ ij  as 
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where 		ρij
2( )  is the two-body distribution function and 	ρb  is the bulk density. This equation 

shows that the functional derivative of density profile with external potential is related to 

two-body distribution function. It will later be demonstrated that the inverse functional is 

actually related to DCF.  

Breaking Ω  into three terms with respect to a reference ideal atomic system, 

which has the same site density but has no intra or inter interactions.  
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where 	F  is the intrinsic Helmholtz free energy, superscript	ia stands for the reference 

ideal atomic system. For ideal atomic system, 	F ia  is analytical. 
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i
∑   (40) 

At equilibrium,  
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Performing functional derivative on both sides and define 		Dij r( )   
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Inserting the definition of 	
χ ij , equation above reduces to  
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where 		χ ij
−1  is the inversion of functional derivative and has the formula 
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In homogeneous limit 		ρi r( )→ρb , Eq.(43) becomes 
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Similarly, we consider an ideal chain in homogeneous limit, 

 
			
Dij
id r− r'( ) = δ ijδ r− r'( )

ρb
− χ ij

id ,−1 r− r'( )   (46) 

Substract Eq.(46) from (45),  
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According to the definition of DCF, intra-molecular correlation (ICF) and TCF, and 

rewrite Eq.(47) in matrix format in Fourier space 

 		ρbc =ω
−1 − ω + ρbh( )−1   (48) 

where 	c  is DCF, ω  is ICF in ideal chain condition (or single chain), 	h  is TCF. With 

simple algebra, Eq.(48) leads to the well know RISM equation. 

Asymptotic Behavior of DCF 

As pointed out by the previous chapter, the asymptotic behavior of DCF in 

molecular system is different from that in atomic system. And result from MD simulation 

of TIP4P-Ew water model proves that the ‘scaling method’ doesn’t work any more. 
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 In order to get the correct asymptotic relation of DCF, DCF is spited into three 

terms  

 	
cij = cij

S + cij
L +bij   (50) 



 31 

where 	
cij
S ,	
cij
L  ,	
bij are short range, long range and correction parts, respectively.  

 
	
cij
L = −

βqiqj
r

  (51) 

And RISM is rewritten in a more general way 

 	
h−ζd = ω + ρbζd( ) c −b( ) ω + ρbζd( )+ ω + ρbζd( ) c −b( )ρb h−ζd( )   (52) 

where 	ζd  is the screened dielectric correction function47 which renormalizes TCF 	h  and 

ICF ω . By equating the original RISM and generalized RISM equations, 

 		b=ω
−1 − ω + ρbζd( )−1   (53) 

As demonstrated by Perkyns and Pettitt36, the correct dielectric constant of 

electrolyte solution can be achieved if correction term 	ζd is written in Fourier space as  

 

		 

ζ ij
d k( ) = j0 kxi( ) j0 kyi( ) j1 kzi( ) ε−1y −3⎛

⎝⎜
⎞
⎠⎟

exp −s2k2 /4( ) j0 kx j( ) j0 ky j( ) j1 kz j( )
  (54) 

where  are the coordinates of solvent molecule site , and ,  are spherical 

Bessel functions,  ε  is the dielectric constant of the solution, ,  is 

the separation parameter and does not affect the final result. To be noted is that this 

relation works only for rigid molecules.  

   (55) 

( ), ,i i ix y z i 0j 1j

24 / (9 )b By d k Tπρ= s

  
ω ij (k) = δ ij + 1−δ ij( ) sin klij

klij
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where is the Kronecker delta function,  is the distance between interaction sites i and 

j.  

With molecular structure as an input into Eq.(54) and Eq.(53), the asymptotic 

limit of DCF can be derived. And this method can be generally applied to all rigid 

molecular solutions.  

General Method to DCF 

This section discusses a practical way to sample DCF from MD simulations of 

arbitrary molecular solution, including flexible solvent like octanols. As explained above, 

the asymptotic behavior of DCF for rigid molecules can be analytically derived. For non-

rigid molecules, the task is much simpler.  

According to the definition, ICF of flexible molecules can be directly sampled in 

Fourier space from a single chain simulation, which is trivial to implement. 

TCF is sampled from a standard homogeneous bulk solution simulation. And by 

using the technique described in the previous Chapter, small k values of TCF can be 

directly sampled.  

Insert the values of ICF and TCF into Eq.(53) , one may get raw values of DCF. 

The asymptotic behavior of DCF can be numerically derived by a linear fitting of a small 

k range in 		k
2cij . 

 		k
2cij ≈ cij

−2( ) + cij
0( )k2   (56) 

Finally, after subtracting the long-range part of DCF from the raw DCF data, a 

smooth function is used to link the remaining short-range part. And DCF can be sampled. 

 δ ij  lij
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The whole procedure is similar to sample DCF in TIP4P-Ew except for that ICF is 

sampled from a single chain simulation instead of using Eq.(55). 

This method is general and one can sample DCF even without pre-knowledge of 

the asymptotic behavior of DCF. The long-range part of DCF can be sampled from 

simulations. 
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Table 2-1. Properties of different water models 

 
χ(10-6 bar-1) ρb(g/cm-3) Dipole (D) qH (e)  

SPC/E 44.97 0.997 2.350688 0.4238 0.9604 
TIP3P 50.57 0.997 2.346846 0.417 0.9594 

TIP4P-EW 45.78 0.997 2.320908 0.52422 \ 
 

  

ζ
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Table 2-2. Coefficients for the polynomial expansions of TCFs and DCFs at small k 

  

	,	Å3	 	,	Å5	 	,	Å7	 	,	Å	

SPC/E OO -28.155 0.3879 1.2172 -4862.0 

 
OH -28.155 5.3472 0.8002 2431.0 

 
HH -28.155 7.148 0.0498 -1215.5 

TIP3P OO -27.9238 0.3493 1.1299 -4702.14 

 
OH -27.9238 4.8359 0.8102 2351.07 

 
HH -27.9238 6.0707 0.3196 -1175.53 

TIP4P-Ew OO -28.168 0.1070 1.3664 -12598.80 

 
OH -28.168 4.6868 1.0554 4769.80 

 
HH -28.168 6.0129 0.5649 -1978.98 

 
MM -28.168 0.2176 1.3544 -5042.25 

 
MH -28.168 4.1216 1.1091 -2790.04 

 
MO -28.168 0.2366 1.3556 7830.72 

 

  

  hij
(0)

  hij
(2)

  hij
(4)

  cij
(−2)
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Figure 2-1 

 

The radial distribution function between oxygen atoms according to SPC/E, TIP3P and 
TIP4P-Ew water models. For comparison, the experimental results 48 are shown in open 
circles.  
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Figure 2-2 

 

 
 

Site-site total correlation functions in the Fourier space for SPC/E and TIP3P models. 
Here the solid lines are from the Fourier transforms of the radial distribution functions 
(TCF-F), circles are from the direct sampling of the partial structure factors (TCF-D), and 
the dashed lines are polynomial fitting curves (TCF-fit). 
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Figure 2-3 

 

The Fourier transforms of the direct correlation functions for SPC/E water calculated 
from the total correlation functions according to the RISM equation (dashed line). The 
smoothed lines are obtained by an interpolation function, Eq.(29). Depending on the k 
values, the inputs for the RISM equation are from TCF-fit (k<0.8 Å-1), TCF-D (0.8  
1.4   Å-1), and TCF-F (k > 1.4 Å-1). 

 

  

 ≤ k ≤
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Figure 2-4 

 

 

Direct correlation functions for SPC/E water from this work (solid lines) in comparison 
with those from Zhao et al (dashed lines)25 and Chuev et al (dash-dotted lines)35. Panel A 
shows the DCFs up to 2 nm and panel B is the short-range component of the DCFs.  



 40 

Figure 2-5 

 
The same as Fig. 2-3 but for the TIP3P model.   
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Figure 2-6 

 

 
 

The same as Fig. 2-4 but for the TIP3P model.  
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Figure 2-7 

 

The site-site radial distribution functions according to the TIP4P-Ew model. For 
comparison, the experimental data are shown as circles 48. 
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Figure 2-8 

 

The site-site total correlation functions for the TIP4P-Ew model calculated from the 
RDFs (solid lines) and from the partial structure factors (circles).  
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Figure 2-9 

 

The asymptotic behavior of the TCFs for TIP4P-Ew from MD sampling (symbols), the 
Fourier transform (solid lines) and polynomial fitting (dashed lines).  
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Figure 2-10 

 

 The Fourier transforms of the direct correlation functions for TIP4P-Ew calculated from 
the total correlation functions according to the RISM equation (dashed line). The 
smoothed lines are obtained by an interpolation function, Eq.(29).   
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Figure 2-11 

 

 

 
The direct correlation functions of TIP4P-Ew water in the real space. The upper panels 
are the DCFs for the entire range, the middle panels are the short-range component of the 
DCFs, and the bottom panels correspond to the long-range component of DCFs.  
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Figure 2-12  

 

 

A comparison of DCFs from RISM/MHNC(dashed lines) and from MD simulation (solid 
lines) for SPC/E water. Panel A shows the DCFs over the entire range of separation, and 
panel B magnifies the short-range part of the DCFs. 
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Figure 2-13 

 

 

The same as Fig. 2-12 but for the TIP3P model. 
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Figure 2-14 

 

Theoretical predictions of the hydration free energies of 504 small organic molecules in 
comparison with the MD simulation (A) and experimental data (B) 44. 
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Chapter 3.  A Molecular Theory of Hydration at Different Temperatures 

Solvation plays an important role in diverse chemical processes ranging from 

reaction kinetics to molecular recognition, solubility and phase separations. Despite a 

long-history of theoretical exploration, quantitative prediction of solvation remains a 

theoretical challenge without relying on the macroscopic properties of the solvent as an 

input. Here I present a molecular density functional theory that provides a self-consistent 

description of the solvation structure and thermodynamic properties of small organic 

molecules in liquid water at different temperatures.  Based on the solute configuration 

and force-field parameters generated from first-principles calculations, the theoretical 

predictions are found in good agreement with experimental data for the hydration free 

energies of 197 organic molecules in a temperature range from 0 to 40 °C. In addition to 

calibration with experimental results, the theoretical predictions are compared with recent 

molecular dynamics simulations for the hydration of five highly explosive nitrotoluenes. 

This work demonstrates the potential of the liquid-state theory for high-throughput 

prediction of solvation properties over a broad range of temperatures.   

3.1. Solvation at Different Temperatures 

Solvation is a fundamental chemical process involving the interaction of a solute 

with a large number of solvent molecules. The multi-body effect is pertinent not only to 

the solubility and the phase behavior of diverse chemical species in liquid solutions but 

also to the self-organization of biomacromolecules including protein folding49-50, the 

chemical kinetics of liquid-phase reactions51, protein-ligand associations52, and 

solvatochromism1, 53, to mention but a few applications. Among various thermodynamic 
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quantities commonly used to assess the solvent effects, the solvation free energy has been 

a focal point of theoretical and experimental studies54-56. Not only is such knowledge 

essential in solution chemistry but it is critically needed from a practical perspective for 

solvent design and selection important for many engineering applications57. 

The solvation free energy is commonly defined as the reversible work to transfer 

a solute molecule from the vacuum into a liquid at given temperature and pressure. To 

predict the solvation free energy and its dependence on temperature and other 

thermodynamic conditions, I may use a wide variety of implicit and explicit solvent 

models58. In general, different solvation methods are complementary and their selection 

often reflects a compromise of the computational cost and the degree of microscopic 

details. An implicit solvent model neglects the microscopic structure of solvent 

molecules, which makes the theoretical analysis of the solvated molecules convenient and 

computationally efficient. Although the local solvent properties and structure are 

distinctively different from those in the bulk, implicit solvent models are able to provide 

accurate prediction of the solvation properties using few semi-empirical parameters59-61. 

For example, Chamberlin et al.62 demonstrated that SM6T (solvation model 6 with 

temperature dependence) predicts the hydration free energies of 181 organic compounds 

over the temperature ranging from the freezing to the boiling point of liquid water (273 K 

to 373 K) with a remarkably small mean unsigned error (~0.08 kcal/mol). While the 

superior computational efficiency makes implicit solvent models a popular choice, one 

caveat is that they require the macroscopic properties of the solvent as an input, which 

may not be readily available under diverse thermodynamic conditions. Besides, an 
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implicit solvent model provides no information on the solvation structure important for 

understanding the chemical activity of the solvated molecules. Furthermore, the 

usefulness of macroscopic solvent properties and the validity of semi-empirical 

parameters can be questionable beyond the training set. To address these short-comings, 

recent continuum models that combines electron density functional theory requires only 

two or three parameters. For example, Andreussi et al.63 applied their self-consistent 

continuum model predicts mean error of 1.3 kcal/mol over 240 neutral solutes with only 

2 parameters. Furthermore, Sundararaman et al.’s empirical-parameter-free SaLSA64 

model reaches a RMS error of 1.3 kcal/mol in water and 0.8 kcal/mol in chloroform and 

carbon tetrachloride.    

Explicit-solvent modeling of solvation is mostly based on molecular dynamics 

(MD) simulations54. While the procedure is in principle exact, MD simulation is 

computationally demanding even with modern computers, in particular if one is 

interested in high-throughput evaluation of solvation free energies. Unlike properties 

directly accessible from molecular configurations, the free-energy calculation relies on 

alchemical methods to sample a large number of microstates along various 

thermodynamic pathways to connect the vacuum and liquid states65-66. Although 

advanced simulation techniques are available to reduce the computational cost67-73, 

simulation data for the solvation free energies of a large library of chemical systems are 

scarce74. One notable exception is the Monte Carlo (MC) simulation for the solvation 

properties of over 200 organic solutes in aqueous and organic solutions reported by Duff 

and Jorgensen75. More recently, Mobley et al.44 simulated the hydration free energies of 
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504 small organic molecules at room temperature. The MD simulation yields a root-

mean-square error (RMSE) of 1.24 kcal/mol in comparison to experimental data. The 

temperature effect on solvation free energies is less known. Paschek76 investigated the 

hydration free energies of 4 noble gases and methane using MD and found that the results 

were in good agreement with experimental data. To our knowledge, no MD studies have 

been previously reported to investigate the temperature dependence of the solvation free 

energy for a large library of chemical compounds.  

Liquid-state theories provide a valuable alternative to simulation methods for 

solvation calculations. Like MD simulations, liquid-state theories are able to predict both 

solvation structures and free energies with an explicit consideration of the solvent 

molecules. Over the past decades, there have been tremendous progresses in both 

integral-equation theories and classical density functional methods5, 22, 28, 77-81. The 

theoretical approaches have been demonstrated to yield accurate predictions of the 

hydration free energies for a large library of small organic molecules at room 

temperature. For example, Palmer et al.82 reported that, with the partial molar volume 

(PMV) correction, the 3D-RISM (3-dimensional reference interaction site model) 

predictions yield a RMSE of 0.99 kcal/mol for 120 organic molecules at 298 K. 

Sergiievskyi et al.83 suggested that the universal PMV correction may be justified in 

terms of different thermodynamic constraints underlying theoretical and experimental 

considerations. Although concerns were raised on the theoretical derivations84, 3DRISM 

with the PMV correction has been successfully implemented by Palmer et al.85 to predict 

the hydration free energies for 181 solutes from 278 K to 368 K with good accuracy in 
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comparison to the experimental data (RMSE of ~1.5 kcal/mol). In addition to the integral 

equations, the molecular density functional theory (MDFT)43, 80, 86-91 is also able to 

provide fast predictions of the hydration free energies while capturing the microscopic 

details of the solvation shell. For example, MDFT predicts the hydration free energies of 

over 500 small organic molecules at 298 K with an average unsigned error of ~1 kcal/mol 

83, 86. It has also been used to investigate the performance of different force fields for 

predicting the solvation free energies of over ~2500 organic solutes in liquid water87. In 

contrast to the 3D-RISM model, MDFT takes proper account of the intramolecular 

correlations that are essential to describe the long-range nature of angular correlations 

between water molecules92.  

 In this work, I propose a molecular density functional theory (MDFT) suitable for 

predicting solvation structure and thermodynamic properties of small organic molecules 

from first principles. I formulate the free energy functional following the universality of 

the bridge functional and the direct correlation functions (DCFs) of the bulk solvent. In 

combination with quantum-mechanical (QM) calculations for the solute structure and 

force-field parameters, the theoretical performance has been tested with the 

thermodynamic properties of solvation for 5 nitrotoluenes recently studied by MD 

simulations93 and with the experimental data for the hydration free energies of 197 

chemical species over a broad range of temperatures94. I demonstrate that the multi-scale 

procedure, i.e., a combination of QM calculations for the solute structure and partial 

charges of the solute atoms and the MDFT calculations of the thermodynamic properties 

of the solvent, is both computationally efficient and theoretically reliable for hydration 
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free energy predictions. For predicting the hydration free energies of the large library of 

chemical species, it yields an average unsigned error of ~1.3 kcal/mol over the entire 

range of temperatures (277-313 K).  

The remainder of this article is organized as follows. Section II explains elements 

of the molecular density functional theory and theoretical justifications for formulation of 

the free energy functional employed in this work. In Section III, I give the computational 

details, in particular, the numerical methods to calculate the direct correlation functions at 

different temperatures, a key input for our MDFT predictions. In Section IV, I discuss the 

DCFs for pure water at different temperatures and the theoretical predictions of solvation 

in comparison with the experimental values. Finally, Section V summarizes the main 

results. 

3.2.  Molecular Density Functional Theory of Solvation  

In this work, I confine our interest to solvation of small organic molecules in 

liquid water. As demonstrated in our previous work86, the flexibility of the solute 

molecules can be taken into account by considering an ensemble average of different 

solute configurations and is relatively unimportant for small molecules.   

With the assumption of a rigid configuration for each solute, the solvation free 

energy can be conveniently calculated in the context of the molecular density functional 

theory (MDFT). The solvent molecules surrounding the solute may be considered as an 

inhomogeneous system where the solute-solvent interaction is represented by an external 

potential. At given temperature , system volume , and chemical potential  in the  T  V µ



 56 

bulk, the grand potential is a functional of the molecular density profile  of the 

solvent molecules43: 

                          (1) 

In Eq.(1),  is the Boltzmann constant; x is a composite vector specifying the atomic 

positions of a solvent molecule;  represents an effective thermal wavelength which is 

irrelevant to this work;  and  are, respectively, the intramolecular bond 

potential and the external potential on a solvent molecule due to the presence of the 

solute. In MDFT calculations, the intra- and inter- molecular potentials are specified by a 

semi-empirical force field as in typical MD simulations. 

The first term on the right side of Eq.(1) corresponds to the intrinsic Helmholtz 

energy of a non-interacting reference system, i.e., an ideal-gas system of the solvent 

molecules with the density profile the same as that of the real system under consideration 

(but without intermolecular interactions); the second term accounts for the one-body 

potential for each solvent molecule; and the last term, excess intrinsic Helmholtz energy, 

, represents the thermodynamic non-ideality arising from intermolecular 

interactions. At equilibrium, the grand potential is minimized with respect to the 

molecular density profile, leading to the Euler-Lagrange equation  

   (2) 
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where . Eq.(2) is formally exact in the context of the classical density 

functional theory5. With an explicit expression for the excess intrinsic Helmholtz energy, 

it allows us to calculate molecular density profiles and, subsequently, thermodynamic 

properties of solvation6-7.  

 The dimensionality of the molecular density profile  grows rapidly with the 

number of atoms. If the solvent molecule has a rigid configuration, Eq.(2) can be 

numerically implemented by expressing the molecular position in terms of the center of 

mass and the orientation8. Alternatively, I can solve for the atomic density profiles of the 

solvent molecules10, 95  

   (3) 

 where  is the number density of atom  in the bulk solvent,  stands for the 

Boltzmann average over all possible intramolecular configurations with atom i fixed at 

position r,  stands for the atomic excess chemical potential in the bulk, and 

accounts for the external potential on atom i. In writing Eq.(3), I assume that the pair 

potential between solute-solvent molecules can be decomposed into contributions from 

individual atoms:  

   (4) 

The pairwise additive assumption is commonly used in a non-polarizable force field.  

 The essential task in application of MDFT is to establish an explicit expression 

for the excess intrinsic Helmholtz energy as a functional of the molecular density profile, 

  β = 1/ (kBT )
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. Without loss of generality, an analytical expression for the excess intrinsic 

Helmholtz energy can be expressed relative to that of a uniform reference system  

   (5) 

where  stands for the deviation of the local density of atom i from the 

bulk value; 
 
is the direct correlation function (DCF) between atoms i and j of the 

uniform reference system; and  represents the bridge functional, i.e., all higher-

orders terms beyond the quadratic functional expansion of  relative to that of a 

uniform system. Eq.(5) remains formally exact, independent of the specific form of 

intramolecular interactions. It is worth noting that, without the bridge functional 

, Eq.(5) reduces to the excess free-energy used in the Chandler-McCoy-Singer 

(CMS) theory22. The approximation is also equivalent to the hypernetted-chain 

approximation (HNC) for atomic systems or the homogeneous reference fluid (HRF) 

approximation proposed by Borgis and coworkers90.  

In our previous publications43, 92, I demonstrated that the bridge functional, 

, can be estimated from the universality ansatz for simple fluids16-18. 

Specifically, the bridge functional is approximated with that of a hard-sphere reference 

system  of the same atomic density profiles:  
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   (6) 

where  and  are, respectively, the HS excess intrinsic Helmholtz 

energy at bulk density  and at density ;  is the HS excess chemical potential; 

and  is the HS direct correlation functions. Accurate expressions for the 

Helmholtz energy and the DCFs of hard-sphere systems have been developed in the 

previous work4, 19-20.  

 As mentioned above, the solvation free energy is defined as the reversible work to 

transfer a solute molecule from the vacuum to a bulk solvent at constant temperature  

and solvent chemical potential . The reversible work corresponds to the difference 

between the grand potentials of the solvent system before and after the solute transfer 

  (7) 

where  stands for the grand potential of a bulk solvent of the same volume. By 

combing Eqs.(1) and (5)-(7), I derive an analytical expression for the solvation free 

energy  

   (8) 
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   (9) 

To calculate solvation free energy from Eq.(8), I need in advance the atomic density 

profiles of solvent molecules and the HS diameter for each atom that is used to estimate 

the bridge functional. The atomic density profiles can be obtained from Eq.(3), which is 

used for all solvation free energy calculations discussed in this work, or alternatively 

from molecular simulations96. For solvation in liquid water, the HS diameter of hydrogen 

atoms is chosen to be zero, which is consistent with many water models97. The HS 

diameter for oxygen atoms can be fixed by using either the self-solvation free energy or 

the hydration free energy of a single solute. In this work, I use = 2.91 Å for the HS 

diameter of oxygen atoms, which is obtained by reproducing the hydration free energy of 

benzene at 298 K. This value is close to the Barker-Henderson diameter98 (2.97 Å) of  the 

oxygen atom according to the SPC/E model. 

3.3.  Direct Correlation Functions at different temperatures 

Our MDFT calculations require an explicit expression for the direct correlation 

functions (DCFs) of the pure solvent as an input. For interaction sites i and j from 

different solvent molecules, the DCF is defined as a second-order functional derivative of 

the reduced excess Helmholtz energy with respect to their density profiles: 

   (10) 

Note that for a uniform system, each pair of DCF is a function of the center-to-center 

distance between sites i and j as well as of the thermodynamic variables defining the bulk 
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system. Physically,  represents the response of the local excess chemical 

potential of site i  at position  to the variation of the local density of site  j  at position 

 or vice versa.  

 As reported in a previous publication99, I can evaluate the DCFs of a bulk 

molecular fluid using MD simulation in combination with the Reference Interaction Site 

Model (RISM)32: 

   (11) 

where  represents the molecular number density of the bulk solvent;  are, 

respectively, the matrix forms of the site-site total correlation functions (TCFs), 

intramolecular correlation functions (ICFs), and DCFs in the Fourier space ( ). For the 

SPC/E model considered in this work, the configuration of the solvent molecules is fixed. 

In that case, the intramolecular correlation functions are exactly known  

   (12) 

where stands for the Kronecker delta function,  is the distance (or bond length) 

between interaction sites i and j from the same molecule.  With the site-site total 

correlation functions  calculated from MD simulation, I can obtain DCFs from the 

RISM equation, Eq.(11).   

MD simulation is in general time-consuming even for calculating the bulk correlation 

functions. To minimize the computational cost, I can alternatively solve the TCFs and 
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DCFs together by combining the RISM equation with the modified HNC (MHNC) 

closure39 

   (13) 

In Eq.(13), represents the effective pair potential between sites i and j, which 

consists of a direct Coulomb energy  and the Lennard-Jones (LJ) potential 

: 

  . (14) 

The scaling factor  is introduced such that the asymptotic limit of the DCF conforms to 

the exact result95.  

Because this work is concerned with solvation for a large library of chemical 

species at different temperatures, I use the DCFs calculated from the MHNC instead of 

from MD simulations. The RISM/MHNC calculations were performed with a homemade 

program. At each temperature,  is obtained in advance using the static dielectric 

constant of the bulk solvent, , and the molecular dipole moment, , 

  (15) 

where , and  is the number density of the bulk solvent.  

3.4.  Results and Discussions 

The systems considered in this work include 5 nitrotoluenes as a test case for 

comparison with simulation results and a larger library of experimental data that consists 
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of 197 small organic molecules of different genres. Similar to MD simulations, 

application of MDFT to solvation requires as the input the solute structure as well as the 

force-field parameters to represent solute-solvent and solvent-solvent interactions. For all 

hydration free energy calculations, I use the SPC/E model for liquid water and assume 

that the solute configurations are assumed rigid. The non-bonded intermolecular 

interactions are described in terms of the Lennard-Jones (LJ) plus Coulomb potential. 

The solute structure and atomic partial charges were generated from various quantum-

mechanical (QM) calculations as discussed in our earlier publications87, 100.  

DCFs of water at different temperatures 

 I calculated the DCFs for SPC/E water at seven temperatures (273K, 277K, 290K, 

298K, 310K, 313K, 330K) using the RISM/MHNC equations. For numerical efficiency, 

the DCFs are divided into a long-range (LR) and a short-range (SR) component as 

discussed in our previous work95. The LR component conforms to the asymptotic limit  

   (16) 

where a dampening factor ,  =1 Å-1, was introduced to avoid divergence 

at .  The SR component of the DCFs, defined as 

   (17) 

is solved by the Picard iteration. 

  Figure 3-1 shows the site-site DCF between oxygen atoms from different water 

molecules. When the site-site distance is larger than the Lennard-Jones diameter for the 

SPC/E water  (  =3.166 Å), the DCF is essentially the same as the effective pair 
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potential in the reduced form, .  The asymptotic limit is consistent with the 

prediction of Eq.(13). The long-range behavior of the DCF conforms to the exact sum 

rules and has been thoroughly discussed in our previous work95, 101.  As shown in Table 

3-1, both the dielectric constant and the liquid density of the bulk fluid are approximately 

fixed in the temperature range considered in this work. To a good approximation, the 

long-range component of the DCF is inversely proportional to temperature. At short 

distance (  3.166 Å), the DCF between oxygen atoms is not much different from that 

for a hard-sphere fluid4.  In both cases, the DCF falls monotonically to a maximum 

negative value as the site-site distance approaches zero. Notwithstanding the similarity, 

the absolute value of the maximum DCF between oxygen atoms is about one order of 

magnitude larger than that for hard spheres. While the hard-sphere system is athermal, 

i.e., the DCF and other thermodynamic quantities in dimensionless units are independent 

of temperature, the DCF between oxygen atoms is noticeably reduced when the 

temperature increases.  

 Figure 3-1(B) presents the short-range component of the DCF as defined by 

Eq.(17). It shows a non-monotonic dependence on r at short distance and vanishes 

beyond the Lennard-Jones diameter. The non-monatomic behavior implies that the short-

range component of the DCF does not disappear simply by adjusting the screening 

parameter  in Eq.(16). Interestingly, the short-range DCF is relatively insensitive to 

temperature except near its minimum at an intermediate distance.  Besides, the minimum 

value (~-50) is not much different from that for a hard-sphere system of similar packing 

density. These similarities suggest that the short- and long-range components of DCF 

  
−βuij

eff (r)

 r <

κ
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may be represented by that for an effective hard-sphere system and that by hard-sphere-

electrostatic correlations as predicted by the analytical solutions of mean spherical 

approximation (MSA) for simply electrolytes102.   

 Figure 3-2 shows the three pairs of the DCFs predicted by the RISM/MHNC 

equations in comparison with MD simulation101.  Here I present only the short-range 

component of the DCFs because the long-range component is represented by the same 

analytical equation, viz., Eq. (16). While there are discrepancies between theory and 

simulation near zero separation, I consider the RISM/MHNC predictions satisfactory 

because the maximum error, typically on the order of 10, is relatively small in 

comparison to the absolute values of the DCFs in the same range (>300).    

Hydration of nitrotoluenes 

 Nitrotoluenes are important industrial agents used as pigments, photographic 

chemicals, pesticides, and explosives. I test our theoretical procedure against the 

hydration free energies of nitrotoluenes not only because of the practical relevance of 

such properties for environmental regulations but also for the readily availability of such 

results from previous experiment and simulation93. Specifically, I consider solvation of 

five nitrotoluenes in water from 273 K to 330 K. Figure 3-3 illustrates schematically the 

chemical structure of these nitrotoluenes: 2-nitrotoluene (2-NT), 4-nitrotoluene (4-NT), 

2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), and 2,4,6-trinitrotoluene 

(2,4,6-TNT). In our MDFT calculations, the molecular parameters for each nitrotoluene 

molecular were generated according to a combination of quantum/statistical procedure 

optimized for nitro-compounds100. The atomic partial charges are generated through the 
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AM1-BCC model103, and the Lennard-Jones parameters are taken from GAFF104 using 

the convenient Antechamber tool kit105.  

Figure 3-4 compares the theoretical predictions of the hydration free energies for 

the five nitrotulenes with MD simulation and experimental values at four different 

temperatures (273 K, 290 K, 310 K and 330 K). Using the experimental data as a 

benchmark, I find that the average unsigned error (AUE) of the theoretical predictions is 

0.74 kcal/mol, which is comparable to the AUE of 0.68 kcal/mol for MD simulation93. 

The magnitude of the solvation free energy increases with the number of nitro groups due 

to more extensive hydrophilic hydration. Both theory and experiment indicate that the 

hydration free energy is relatively insensitive to the positions of the nitro groups. While 

the hydration free energies for 2-NT and 4-NT are virtually identical, MDFT predicts that 

the hydration free energy for 2,4-DNT is slightly more negative than that for 2,6-DNT, 

which is in good agreement with both experimental and simulation data. The small 

difference may be attributed to somewhat enhanced van der Waals interaction between 

2,4-DNT and water molecules due to its slightly more extended molecular structure.       

Based on the hydration free energy data at different temperatures, I can estimate 

the hydration enthalpy using the van’t Hoff equation 

  . (18) 

The hydration entropy for each solute is simply related to the difference between the free 

energy and the enthalpy, . Figure 3-5 presents the temperature 

dependence of the hydration free energies of the five nitrotoluenes from experimental 
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data, MD simulation, and the theoretical predictions. The linear correlation between the 

hydration free energy and the reverse temperature suggests that the enthalpy of solvation 

is approximately constant within the range of temperatures considered in this work. 

Unlike hydrophobic solutes such as alkanes, the hydration enthalpies of nitrotoluenes are 

relatively insensitive to temperature because of the presence of both hydrophobic and 

hydrophilic groups.      

 Figure 3-6 presents the enthalpy and the entropy of hydration obtained from the 

van’t Hoff equation. The hydration enthalpy becomes noticeably more negative as the 

number of nitro groups increases due to their favorable interactions with water molecules. 

However, the hydration energy does not linearly depend on the number of nitro groups 

due to the interference of neighboring groups. The spatial interference of hydration for 

different functional groups is evident in the distribution of water molecules in the 

solvation shell. As shown in Figure 3-7, the local density of oxygen atoms is strongly 

correlated with the position of nitro groups. Although the solvation energies of 2NT and 

4NT are similar, their solvation structures are noticeably different, in particular for 

oxygen density near the nitro group. The oxygen density in the hydration shell becomes 

more localized as the number of nitro groups increase.  Both MD and MDFT predict the 

enthalpy of solvation with about 1 kcal/mol deviation in comparison to the experimental 

data. Except for 2,4,6-TNT, both theory and simulation underestimate the enthalpy of 

solvation in absolute values. The discrepancy may be attributed to strong conjugation 

between the nitro group with the π-electrons of the benzene ring that is not adequately 

captured by conventional force fields93.  
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 Figure 3-6(B) and (C) show the entropic contributions to the hydration free 

energies of the five nitrobenzenes at two representative temperatures. In both cases, the 

entropic contributions rise only slightly as the number of nitro groups increases, implying 

that the hydration entropies are dominated by hydrophobic effects. Although the MDFT 

predicts different solvation structures for different isomers, the variations in hydration 

entropies are relatively insignificant.       

High-throughput solvation calculation 

A major objective of liquid-state methods, MDFT included, is to provide fast 

prediction of solvation free energies that otherwise are too time-consuming for MD 

simulations. Computational efficiency is important not only for high-throughput 

calculations but also for validation of molecular models/force fields with extensive 

experimental data. In addition to the five nitrobenzenes discussed above, I have also 

tested the MDFT performance with the hydration free energies for a large library of 

chemicals that consists of 197 small neutral organic compounds94. Since the solutes are 

small, and relatively rigid temperature-triggered conformational change is neglected. To 

generate the solute structure and the molecular parameters, I carried out quantum-

mechanical (QM) calculations using the Hartree-Fock (HF) method with the SVP basis 

set at the vacuum condition (Vac). The partial charges are parameterized with the ChelpG 

scheme and the Lennard-Jones parameters are taken from the OPLS-AA force field106. 

This combination HF/SVP/Vac/OPLS-AA/ChelpG was found to give the best overall 

performance. ORCA 3.0.1107 software package was used to perform all QM calculations. 
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Once the force field is assigned, the hydration free energies are predicted for each solute 

in the temperature range from 0°C to 40°C.  

 Figure 3-8 compares the MDFT predictions with experimental data for the 

hydration free energies of 197 organic compounds at three representative temperatures 

(277 K, 298 K and 313 K). Here the experimental results were obtained from Henry’s 

constants at different temperatures. In general, the AUE values, from 1.08 kcal/mol at 

313 K to 1.22 kcal/mol at 277 K, are comparable with 1.19 kcal/mol reported in our 

previous work for the hydration free energies of 512 compounds at room temperature99. 

The good correlation indicates that MDFT is able to provide reasonable prediction of the 

hydration free energies of small organic molecules at different temperatures.   

 Like MD simulation, the MDFT predictions are sensitive to the molecular 

model/force field parameters and its performance varies significantly with different 

groups of chemical species. On average, non-polar molecules have better prediction than 

polar molecules. Figure 3-9 presents the distributions of the AUE values based on 

different functional groups in the test set. I see that the MDFT predictions are poorest for 

peroxides with AUE around 3 kcal/mol, while the predictions for hydrophilic compounds 

such as phenols, alcohols, acids and nitrates are less than 2 kcal/mol.  The MDFT 

performs best for small hydrophobic chemicals like alkanes, alkenes, ketones, with AUE 

all around 0.5 kcal/mol. The performance for different chemicals is partially related to the 

effective hard-sphere diameter used in the bridge functional, which was calibrated with 

the hydration free energy for methane. As demonstrated in our earlier work, the 
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theoretical performance can be further improved by calibrating the force field parameters 

for chemical species with a similar type of functional groups.  

3.5.  Conclusions 

In this work, I have established a molecular density functional theory (MDFT) that is 

able to predict the solvation structure and corresponding thermodynamic properties using 

the site-site direct correlation functions (DCFs) of the pure solvent and the bridge 

functional of a reference hard-sphere fluid as the input. The DCFs can be calculated from 

molecular dynamics (MD) simulations in combination with the reference interaction site 

model (RISM) or from the numerical solution of the integral-equation theory 

(RISM/MHNC). I show that, to a good approximation, the long-range component of the 

DCFs for liquid water are can be represented by an effective pair potential similar to the 

mean-spherical approximation (MSA) for ionic systems. The short-range components of 

the DCFs are significant only when the site-site distance is smaller than the solvent 

diameter, and they are relatively insensitive to temperature changes. With the DCFs as 

the input, the molecular density functional theory (MDFT) is able to predict the hydration 

free energies of small organic compounds in good agreement with molecular dynamics 

simulations and experimental data over a broad range of temperatures.  

The reduced hydration free energies of nitrotoluenes show a linear dependence on 

the inverse temperature, suggesting that their hydration enthalpies are relatively 

insensitive to temperature changes.  Different from typical hydrophobic hydration such as 

those for alkanes that are entropy dominant, hydration of nitrotoluenes is dominated by 

hydrophilic interactions between the nitro groups and water molecules. While the 
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hydration entropies remain little changed as the number of nitro groups increases, the 

hydration enthalpies of nitrotoluenes become significantly more negative as the solute 

becomes more hydrophilic. The hydration energies and entropies of are similar for 

different isomers of nitrotoluenes, even though their local solvation structures are 

noticeably different.    

I demonstrated that MDFT is able to predict hydration free energies of 197 small 

organic molecules from 0 to 40 °C with the absolute unsigned error (AUE) slightly 

higher than 1 kcal/mol. Through categorizing the error according to the functional groups 

of different chemical species, I find that peroxides have the worst performance with an 

AUE at ~3 kcal/mol. This analysis provides the possibility for customized optimization 

of the molecular models/force field parameters for chemicals with similar functional 

groups. In combination with the customized model, the MDFT provides an alternative to 

predict solvation properties of chemical species for which experimental data are scarce or 

unavailable108.   
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Figure 3-1 

 

 
(A) The site-site direct correlation function (DCF) between the oxygen atoms of water 
molecules predicted from the RISM/MHNC equations. From bottom to top, the 
temperature varies from 277 K to 330 K. (B) The short-range (SR) component of the 
DCF at different temperatures.   
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Figure 3-2 

 

Comparison of the RISM/MHNC predictions with MD data for the short-range (SR) 
components of the site-site direction correlation functions of the SPC/E water, , 

 and . The RISM/MHNC predictions indicate that  is relatively 
intensive to temperature changes.  
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Figure 3-3 
 
 

 

 

 

       2-NT     4-NT  2,4-DNT 2,6-DNT         2,4,6-TNT  

Chemical structures of five nitrotoluenes: 2-nitrotoluene (2-NT), 4-nitrotoluene (4-NT), 
2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrotoluene 
(2,4,6-TNT). 
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Figure 3-4 

 
Comparison of theory (DFT), MD simulation (SIM) and experiment (EXP) for the 
solvation free energies of five nitrotoluenes at 273 K, 290 K, 310 K and 330 K.   
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Figure 3-5 

 
Linear fitting of the reduced solvation free energy  versus . The points are 
from A) DFT predictions, (B) experimental data and (C) MD data93  

  ΔGsol / RT   1/ T
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Figure 3-6 

 

 
Comparison of theory (DFT), MD simulation (SIM) and experiment (EXP) for the 
hydration enthalpies of five nitrotoluenes (A) and the corresponding hydration entropies 
at 273 K (B) and 330 K (C). 
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Figure 3-7 

 

   

The density profiles of water molecules (at the position of the oxygen atom) near 5 
solvated nitrotoluenes at room temperature. The sidebars show the ratio of the local 
oxygen density to the bulk density, .     ρO (r) / ρO

b
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Figure 3-8 

 
Comparison between theory (DFT) and experiment (EXP) for the hydration free energies 
of 197 organic solutes. The average unsigned errors (AUE) are 1.22, 1.11 and 1.03 at 277 
K (A), 298 K (B) and 313 K (C), respectively. 
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Figure 3-9 

 
The average unsigned error corresponding to molecules with different functional groups. 
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Table 3-1 The scaling factor as a function of temperature for the SPC/E water 

Temperature Density* Dielectric Constant** Scaling Factor 

T(K) ρ(g/cm3) Ɛ ζ 

273 999.84 88.2 0.9626 
277 999.97 86.406 0.9621 
290 998.77 81.53 0.9604 
298 997.05 78.408 0.9594 
310 993.33 74.69 0.9577 
313 992.22 73.176 0.9574 

330 984.71 67.63 0.9550 
* From G. S. Kell’s (1975) compilation109 
** From D. P. Fernández’s (1995) compilation110 
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Chapter 4.  Solvation of Amine-grafted Silica Gel 

 Amine-grafted silica gel is an efficient heterogeneous catalyst for the 

Knoevenagel condensation and draws much attention in green chemistry for applications 

like heavy metal adsorption and CO2 fixation. Despite its successful usage in diverse 

areas, fundamental questions remain on how the silica substrate affects the local chemical 

environment of the tethered amines. In this work, I use all-atom molecular dynamics 

simulation to investigate the solvation structures of two primary amines tethered onto a 

silica surface at different pHs of aqueous solutions. The atomic density profiles in the 

solvation shell are analyzed with a spherical harmonics expansion method for both 

isolated and silica-supported amines in different aqueous environments.  The simulation 

results show that the hydration structure is influenced by the presence of surface but is 

rather insensitive to the surface charge. In addition, the surface effect is less prominent on 

tethered amine of longer chain length. Further hydrogen bonding analysis agrees with the 

conclusion.   

4.1. Silica Gel 

Recent advances in the synthesis of nanostructures offer a new paradigm for 

constructing catalyst systems to effectively achieve multistep reactions through spatial 

and temporal control of reaction pathways and transport of reactants, intermediates, and 

products. While interaction among the reactive species in a highly-coordinated system 

may be distinctively different from those in vacuum or corresponding to a bulk phase, 

relatively little is known on how the nanostructures affect the local chemical 

environment, molecular transport, and the reactivity of tethered functional groups. In this 
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work, I are interested in the difference between the solvation structures of freestanding 

amines and those tethered at a silica surface at different solution conditions. The solvent 

effect is often not explicit in conventional studies of surface reactions60. 

The amine functional group finds many applications in asymmetric reactions111, 

heavy metal sequestering112, and carbon dioxide fixation113. In particular, it is an efficient 

catalyst for the Knoevenagel condensation, viz., dehydration of aldehydes with active 

hydrogen compounds in a basic environment to produce ketones. The C-C bond-forming 

reaction follows the green chemistry principles with water as its only co-product and thus 

draws much research attention. In practical applications, amines are often grafted to a 

support to form a heterogeneous catalyst for the purposes of recycling and preventing 

instability and micelle formation114. Due to its chemical stability and synthetic simplicity, 

silica gel is often used as the catalyst support. The amine-functionalized silica gel catalyst 

system is reported to achieve fast Knoevenagel reactions at room temperature115. Similar 

catalyst systems have been demonstrated to function as adsorbents of heavy ions116, 

CO2
117, and formaldehyde vapor118. In this work, I limit our discussion to amine-

functionalized silica systems despite the success of other catalyst supports like ZrO2
119-120 

or TiO2
121. Towards a rational design to improve the catalytic performance, I are 

interested in understanding how the silica surface affects the local chemical environment 

of a tethered amine molecule in comparison to that of its molecular counterpart in the 

bulk. Although the electronic structure of amine molecules in vacuum is well understood, 

the solvent and surface effect has not yet drawn much research attention122.  
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 Molecular dynamic simulations (MD) and integral-equation theories are 

commonly used for the computational studies of the structures of inhomogeneous fluids. 

Many high-performance packages like AMBER, GROMACS, and LAMMPS have made 

MD easily applicable to solving realistic problems including large biological systems123. 

One major limitation of MD is the computational cost, in particular for the accurate 

description of the 3-dimensional structure124. For example, up to 60 ns simulation time is 

required for sampling 3D atomic density profiles in an aqueous system with 0.5 Å of 

mesh resolution. Liquid-state theory provides an alternative to study the density 

profiles87, 125.  

 In this work, I investigate the solvation structure of free and tethered amines 

based on MD simulations. The spherical harmonics expansion method is used for 

efficient sampling of the density profiles. I compare the difference in the local solvent 

density between silica-supported amines and corresponding amine molecules in the bulk 

solution. The rest of the article is structured as below. Section II provides the details of 

MD simulations. Section III explains the method of sampling spherical harmonics 

coefficients. Section IV discusses the results from MD simulations. Section V provides 

the conclusion.  

4.2. MD Simulations of Amine-grafted Silica Gel 

Recent years have witnessed many successful generalized force fields for different 

purposes, like the general AMBER force field (GAFF)104, CHARMM general force field 

(CGenFF)126, and the optimized potential for liquid simulations (OPLS)127. However, 

challenges remain to simulate aqueous silica interfaces reasonably accurate in order to 
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reproduce experimentally measured surface properties, such as the heat of immersion, 

contact angle and adsorption isotherm. This leads to the development of a number of 

specialized force fields for silica surface128-132. Among those, CLAYFF128 gains 

popularity due to both simplicity and accuracy. CLAYFF has only two terms of bonding 

energy to maintain proper silanol bond and angles, one for O-H bond and the other for Si-

O-H angle. And the lattice in CLAYFF is fixed to save computational time. In contrast, 

the force field used in this work from Emami et al132 has full atomic mobility. Emami et 

al’s force field claims to reproduce experimental heat of immersion in water and water 

contact angles and is compatible with commonly used force field such as AMBER, 

CHARMM, CVFF, PCFF, COMPASS and INTERFACE. According to Kroutil et al133, 

both CLAYFF and Emami et al’s force field yield good agreement with X-ray 

experimental data for water, metal ions (Na+,Rb+,Sr2+) and negatively charged quartz 

(101) surface system. 

From Emami’s database, I prepared a slab of α-cristobalite silica. The surface 

contains only single silanols (Q3) in contact with liquid water. The number density of 

silanol groups at the surface is 4.7 per nm2. The slab size is nm with x-y 

as the facet surface. In the z-axis, the box is extended to 6.69 nm and filled with 1542 

water molecules. One of the silanol groups from the surface is chemically bonded with a 

primary amine. Both the water molecules and amines are parameterized using the 

INTERFACE force field134, which is compatible with Emami’s silica model. By 

comparison, the primary amine without silica support is also simulated in a cubic box of 

35 Å in side length. Figure 4-1 shows the scheme of the MD simulation.  

3.483.34 2.39× ×
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To investigate the chain-length effect on the solvent structure, I compare the 

solvation structures for methyl (C1) amine and n-propyl (C3) amine. The pH effect on the 

solvation is implemented by deprotonation of surface silanol groups with the surface 

charge balanced by ionic species from the NaCl electrolyte. In this work, I consider two 

pH conditions, pH = 3 and 5, corresponding to, respectively, deprotonation of 0% and 5% 

of the surface silanol groups132. The amine groups, either tethered on the silica or free in 

the bulk, are assumed to be protonated at these conditions ( ).  

After adding water molecules in the simulation box, I first perform energy 

minimization for the entire system by quenching the amine configuration. Then MD runs 

are carried out under the NPT (isothermal-isobaric) ensemble at 298 K and 1 atm with 1 

fs time step for 0.5 ns using the Nosé-Hoover style thermostat and barostat. After that, the 

system is equilibrated in the NVT ensemble at 298K for 1 ns, followed by 2 ns trajectory 

production for post-analysis under the same NVT ensemble. All MD simulations are 

carried out in the LAMMPS package through a velocity-Verlet integrator135.  

4.3. Sampling with Spherical Harmonics Expansion 

Sampling 3D Density Profile 

I follow a spherical harmonics expansion (SHE) method originally proposed by 

Garde and coworkers136  to improve the efficiency of sampling for the 3D density profiles 

of solvent atoms. Instead of directly sampling on a 3D mesh grid, SHE allows us to 

calculate 1D coefficients for a limited number of spherical harmonics. In practice, the 

convergence time of both SHE and 3D mesh grid sampling depends on the grid spacing. 

3 4bpK ≈ −
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The higher the resolution is, the longer the trajectory is needed. The reduction in 

dimensionality from 3D to 1D significantly shortens the sampling time.  

 It is worth noting that the definition of spherical harmonics is slightly different in 

different fields. In this work, I pick the real value form defined in the geodesy:   

   (1) 

where  is the Kronecker delta function,  is the associate Legendre polynomial,  

and  are polar and azimuth components of solid angle  , respectively; n, m are integer 

indices ; superscripts c and s represent the cosine and sine parts 

of spherical harmonics. The orthonormal condition requires 

   (2) 

where  , subscript  denotes either  or . Expanding the normalized 

density profile in spherical harmonics gives 

   (3) 

where  is the bulk solvent density,  and  are coefficients depending on the 

distance of an atom from the coordinate center. Apparently,  is not of interest since 
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SHE reduces the problem of sampling the 3D profile to that for sampling 1D 

functions  and . To derive the explicit equations for sampling the coefficients in 

Eq.(3), I may compare it with how the 3D density profile is normally calculated by an 

ensemble average:  

   (4) 

where  is the instantaneous local density of atom i, i.e., . For a 

system with spherical symmetry, calculating the local density is similar to sampling the 

RDF:  

   (5) 

where the instantaneous local density is  with  being the distance 

between atom  and the coordinate center. Sampling the ensemble average of Dirac-delta 

functions requires drawing mesh grids on the radial axis and counting the number of 

atoms located between them. By integrating Eq.(5) over one radial mesh grid , I 

get 

    (6) 
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counting the number of atoms located in the interval. After simplification, Eq.(6) can be 

rewritten as 

   (7) 

where  is the number of atom located within the radial mesh grid  . 

 Now multiply both sides of Eq.(4) with  and integrate over the radial 

mesh grid : 

   (8) 

By substituting SHE (Eq.(3)) and utilizing the orthonormal condition (Eq.(2)), I find  

   (9) 

Where the summation in the angular bracket is operated over all atoms located in the 

radial mesh grid. After simplification, I obtain the final equations for sampling the 

density profiles:  
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It is worth noting that the zeroth coefficient for  is  

   (12) 

Eq.(12) indicates that  is identical to the radial distribution function (RDF) if the 

system is homogeneous. In most applications, SHE is truncated at N primary indices and 

any coefficients higher than that is assumed negligible. For systems considered in this 

work, I find that N = 10 is sufficient to reproduce the density profiles. To further reduce 

the dimensionality, I assume that pure C1 and C3 amines are solvated in water as rod-like 

molecules. As a result, I only need to sample the isotropic coefficients with regard to the 

azimuth angle (m=0). For amines tethered to silica surface, the full set of spherical 

harmonics coefficients are sampled.  

4.4. Results and Discussions 

I have sampled the solvent structure for isolated amines and silica-supported amines 

from the MD simulation trajectories by applying the SHE method to the atomic density 

profiles. Figure 4-2a shows the simulation results for methylamine (C1 amine) solvated 

in pure liquid water at 298 K. Water molecules are enriched near both the C terminal and 

the N terminal of the amine molecule but with different preferential angles. The water 

molecules close to the amino group are more organized than those around the methyl 

group because the amino group forms a hydrogen bond to water molecule. Because of the 

small separation between these two functional groups, the hydrogen bonding and 

hydrophobic hydration appears highly correlated, engendering higher density of water 
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molecules near the methyl group. Such correlation diminishes as the chain length 

increases from C1 to C3 (n-propylamine) (Panel c). In this case, water molecules are 

distributed more uniformly in the hydration shell and are slightly depleted from the 

boundary of the hydrophobic and hydrophilic domains. The segregation of hydrophilic 

and hydrophobic hydrations becomes more distinctive at low pH when the amines are 

protonated as shown in Panels c and d. At an acidic condition (here pH=3), the amino 

group gets protonated and attracts more water molecules due to more hydrogen bonding 

and ion-dipole interactions. Panel b shows that water molecules are highly packed in the 

first hydration shell followed by a deep void (white blue) before the next hydration shell. 

Interestingly, the local water density near the C-terminal is noticeably increased due to 

Coulombic attraction. In comparison to that near a neutral amine, more water molecules 

are accumulated at the pinnacle of the CH3 group. A comparison of Panels c and d 

indicate that the solvation structure for the protonated amine is similar, albeit the local 

water density near the C-terminal domain is much reduced as the chain length increases. 

I analyze the solvent structure near a silica-supported amine by first considering the 

orientation of a tethered amine relative to the surface normal. Taking C3 as an example, 

Figure 4-3 shows the probability distribution function of the angle between the main axis 

of amine backbone (C-N) and the normal direction of surface. At pH=3, the main axis 

exhibits a Gaussian-like distribution for the orientation at the surface with an average 

angle of 37° that is related to the local bond structure. At pH=5, however, some of the 

surface silanol groups become deprotonated in the less acidic solution yielding a negative 

surface charge density. The surface charges appear to have a strong influence on the 
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orientation of a tethered amine. For example, Figure 4-3 shows a bimodal distribution of 

the orientation when the tethered amine is close to two neighboring charge sites.  

For an easy comparison of the solvation structure at the silica surface with that in the 

bulk, I re-cast the main axis of the amine molecule (C-N) as the new z-axis. Together 

with the orthogonal directions of the surface, it constitutes a z-x plane with the x-axis 

pointing out of the surface. The y-axis is defined by a cross product of the x and z 

directions. Slicing into the z-x and z-y planes along the main axis of amines provides the 

solvent structure in two representative directions. As shown in Figure 4-4, the silica 

surface restricts the accessibility of water molecules near the methyl group, resulting in a 

hydration structure drastically different from that in the bulk (Figure 4-2b and 2d).  While 

the hydration structure of the protonated amine group is very much distorted, I can 

identify up to four hydration shells along the direction perpendicular to the surface 

(yellow area). For hydration of the tethered C3 amine, the longer carbon chain allows for 

more water molecules to bind with the N terminal. As a result, the surface exclusion 

effect becomes less prominent. A comparison of Figures 4(a,b) and 4(c, d) indicates that 

the water density in the second hydration shell for the C3 amine is slightly higher and 

broader than that corresponding to C1 amine. Figure 4-4(e, f) shows the solvation 

structure for the tethered C3 amine at pH=5. While deprotonation of silanol groups has a 

major influence on amine orientation (see Figure. 3), it appears that this effect is much 

less pronounced on the solvation structure, indicating that sovlation on surface is 

localized and thus is not much influenced by surrounding surface charge.     
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Figure 4-5 presents the radial distribution functions (RDF) of oxygen atoms near C1 

and C3 amines in bulk water and at silica surface. As discussed above, the RDF curves 

are the same as the coefficient  in the spherical harmonic expansion. Consistent 

with the density profiles shown in Figure 4-2, the RDFs are near uniform beyond the 

excluded volume for non-protonated amines in the bulk water (thin red lines). The 

increase in the chain length shifts the position of the second peak further away from the 

molecular center due to the segregation of hydrophobic and hydrophilic hydrations for 

the C3 amine. The size effect disappears for protonated amines (black solid lines) 

because the local density is dominated by the strong accumulation of water molecules 

near the charged group. When the amine molecules are tethered at the silica surface 

(black dashed lines), the RDFs are similar to those in the bulk but the magnitude is 

significantly reduced after the second peak. In this case, the spherically averaged density 

does not converge to 1 because the silica surface excludes almost half of the water 

molecules at large distance. The RDF of oxygen atoms near the tethered C3 amine is 

higher than that corresponding to C1 amine, indicating that the surface effect is less 

prominent for longer chains. In good agreement with the local density profiles (Figure 4-

4), Figure 4-6 shows that tuning pH from 5 to 3 only slightly changes the radial 

distribution functions. 

To further investigate the surface effect, I have calculated the number of hydrogen 

bonds among water molecules as a function of distance from the N terminal. Following 

Luzar and Chandler,137 I identify hydrogen bonds using the criterion that the O-O 

distance is less than 3.5 Å and the angle between intramolecular O-H bond and O-O is 

  C00(r)
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less than 30°. Figure 4-7 shows the number of hydrogen bonds per water molecule at 

different conditions. For neutral C1 and C3 amines in the bulk (thin red lines), the 

number of hydrogen bonds near the solute (~3 Å) is slightly higher than that in the bulk 

(>6 Å). When the amines are protonated at an acidic condition, the number of hydrogen 

bonds near the solute (black solid lines) falls significantly. The reduction in hydrogen 

bonding between water molecules is a direct consequence of stronger solute-solvent 

interactions, in particular formation of hydrogen bonds between the charged solute and 

water molecules. For amines tethered at the silica surface, the number of hydrogen bonds 

decreases due to the surface restrictions. This surface effect is long-ranged and persists 

even beyond 6 Å (around 3 hydration shells). Comparing C1 and C3 amines at the 

surface, I see that the reduction in hydrogen bonding is more prominent for the smaller 

amine.   

Finally, Figure 4-8 compares the hydrogen bonding for tethered C3 amine at pH=3 

and 5. In agreement with the local density profiles, it seems that the local hydrogen 

bonding is rather insensitive to long-range ion-ion interactions introduced by surface 

protonation. 

4.5. Conclusions 

Amines have found broad applications in industrial reactions and are commonplace 

in both prokaryotic and eukaryotic cells for the regulation of template-dependent 

biosynthesis. The physicochemical properties of amines tethered on a surface are 

expected to be different from those in aqueous solutions. In this work, I have analyzed 

the hydration structures of amine molecules in the bulk and their analogs tethered at a 
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silica surface using classical molecular dynamics (MD) simulations. The 3D solvent 

structures have been effectively sampled through the spherical harmonics expansion 

method. I find that hydrophobic and hydrophilic hydrations are strongly correlated for 

methylamine in bulk water and such correlation quickly diminishes as the chain length 

increases.  

While the hydration structure of the protonated nitrogen atom is virtually 

independent of the amine size, protonation has a strong impact on water distribution near 

the hydrophobic group. Compared with amine hydration in pure water, the silica surface 

has a profound influence on the local distribution of water molecules near a tethered 

amine. The surface almost completely excludes water molecules from the hydrophobic 

group and promotes the formation of additional solvation shells along the direction 

perpendicular to the surface. While the surface charging has strong effects on the 

orientation of the tethered amine, its influence on the hydration structure is relatively 

insignificant, suggesting the hydration is localized on the surface and thus not much 

affected by surface charge.. By analyzing the number of hydrogen bonds per water 

molecule near free and tethered amines, I find that the silica surface also interrupts the 

hydrogen-bonding network. The surface effect becomes less significant as the chain 

length increases. Because the solvation structure could potentially play an important role 

in chemical reactivity and transportation, it is our hope that the results reported in this 

work would be useful to further fundamental understanding of confinement effects on 

surface properties of amine groups. 
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Figure 4-1 

 
Schematic of n-propylamine with its carbon end tethered at a silica surface (vicinal Q3). 
Silicon: yellow spheres, oxygen: red spheres, hydrogen: blue spheres, carbon: teal 
spheres. Water molecules are not shown.    
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Figure 4-2 

 

 
 
Solvent structure near a) a C1 amine in pure liquid water, b) a C1 amine in an aqueous 
solution at pH=3, c) a C3 amine in pure liquid water, d) a C3 amine in an aqueous 
solution at pH=3. The color in the side bar gives the reduced density of oxygen in water 
(Atom N is marked as blue and C as black for the amine).  
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Figure 4-3 

 
Orientation distribution for C3 amine tethered on a silica surface (black solid: pH=3, red 
dashed: pH=5); two boxed locations (bottom left and top right) show deprotonated silanol 
charged sites that alter the orientation of the tethered amine (middle).  
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Figure 4-4 

 

 

 
Density profiles of oxygen atoms of water molecule near a silica-supported amine a) and 
b) C1 amine at pH=3, c) and d) C3 amine at pH=3, e) and f) C3 amine at pH=5. All 
panels on the left side are the atomic density profiles in the x-z plane, and those on the 
right side are the corresponding results in the y-z plane. The coordination system is 
explained in the main text.  
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Figure 4-5 

 
The radial distribution functions of oxygen atom near an amine molecule in the bulk and 
that tethered at the silica surface.  Black solids: protonated in the bulk, thin red lines: 
neutral in the bulk, black dashed lines: protonated amine at the silica surface. 
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Figure 4-6 

 
The radial distribution functions of oxygen atom near a propylamine tethered at the silica 
surface (solid line: pH=3, dashed line: pH=5) 
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Figure 4-7 

 
The number of hydrogen bonds per water molecules near hydrated amines (black solid: 
protonated amine in bulk water, red thin: neutral amine in bulk water, black dashed: 
protonated amine at the silica surface pH=3). Here  represents the distance from the 
oxygen site of each water molecule to the N terminal of the amine.  
  

 r
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Figure 4-8 

 
 

The pH effect on hydrogen bonding among water molecules in the solvation shell of 
tethered propylamine (solid line: pH=3, dashed line: pH=5). 
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Chapter 5.  Hybrid Method for Ion Solvation 

This chapter proposes a hybrid molecular density functional theory (MDFT) for 

studying solvation by cooperating accurate direct correlation functions of the bulk solvent 

with molecular dynamic simulation for the atomic density profiles of the solvent 

molecules. The new computational procedure requires only the 3-dimensional (3D) 

atomic density profiles of the solvent molecules near the solute as the input, and offers an 

accurate yet efficient alternative to the thermodynamic integration or perturbation 

methods for simulation of solvation free energies. The hybrid MDFT is fully compatible 

with conventional atomistic force fields and thus can be easily integrated with standard 

simulation packages. Illustrative examples are given for predicting the self-solvation free 

energies of water and hydration free energies of ions. 

5.1. Introduction of Hybrid Method 

In a recent work138, Zhao proposed a theoretical procedure to predict the solvation 

free energy in liquid water by combining molecular dynamics (MD) simulation and the 

classical density functional theory (DFT). The work was built upon the framework of 

molecular DFT (MDFT) that incorporates the fundamental measure theory (FMT) for the 

excluded volume effects and a homogeneous reference fluid approximation (HRFA) 

introduced by Borgis and coworkers for the van der Waals attraction and long-range 

electrostatic interactions.12, 139-141 Different from the conventional implementation of 

DFT5, 78, 142, they used MD simulation to generate the density profiles of the solvent 

molecules surrounding each solute, and the solvation free energy is then calculated from 

the change in the grand potential of the solvent owing to the insertion of a solute 
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molecule. Because the DFT links the microscopic structure (at equilibrium state) directly 

with thermodynamic variables, such a hybrid method eliminates lengthy simulation of 

intermediate states and thus offers a computationally much efficient alternative to 

thermodynamic integration and perturbation methods in molecular simulation of 

solvation free energies. This hybrid method predicts the solvation free energies of halide 

and alkali ions in excellent agreement with the simulation/experimental results.138  

Whereas the hybrid method combines the merits of DFT and molecular simulation 

and is promising for broad applications, several challenges remain to be addressed for 

systems without spherical symmetry. First, their version of MDFT relies on a rigid model 

for solvent molecules and the solvent density profile is generally expressed as a 6-

dimensional function of the molecular position and orientation (for a linear model of the 

solvent molecules, the dimensionality reduces to 5). An accurate evaluation of the 6-

dimensional density profile by molecular simulation imposes a severe numerical 

constraint and limits application of hybrid MDFT to large biological systems. Second, the 

direct correlation function embedded in their MDFT functional depends on the separation 

as well as the relative orientations between two solvent molecules, i.e., it is a 12-

dimensional function at a given thermodynamic condition for the solvent like water. For a 

conventional three-site model for water molecules, we need a 6-dimensional function to 

characterize the position and orientation of each molecule. Evaluation of the solvation 

free energy involves a double convolution of the high-dimensional direct correlation 

function with the 6-dimensional solvent density profile that demands large computer 

memory and thus further hampers its many practical potentials.  
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           The dimensionality of the DFT calculations can be drastically reduced by using 

the Chandler-McCoy-Singer (CMS) theory for molecular systems. Unlike the MDFT, the 

CMS theory is formulated in terms of the atomic (site) density profiles and the site-site 

direction correlation functions are one-dimensional depending only on the corresponding 

pair distances. With a hypothesis on the universality of the bridge functional for the 

excluded-volume effects14 and the site-site direct correlation functions of the pure solvent 

evaluated from MD simulation101, 143, we extended the CMS theory into a 3D molecular 

density functional theory (3D-MDFT) for solvation calculations.144 With the bridge 

functional represented by the modified fundamental measure theory, we have 

demonstrated that the 3D-MDFT enables us to predict the solvation free energy and the 

solvent structure simultaneously. Similar to the CMS theory, the 3D-MDFT theory is 

capable of treating both rigid and chain-like molecular fluids.10, 145-146 Besides, it does not 

involve angular variables, and thus is simpler to implement and computationally more 

efficient in comparison with the high-dimensional approach.  

          Whereas the 3D-MDFT is computationally efficient, we found that the universal 

bridge functional is not applicable to the site-site interactions and formulation of such 

contributions remains a theoretical challenge. Besides, numerical convergence can be an 

issue in minimization of the free energy with respect to the site densities. Motivated from 

the virtues of the site description and MD simulation, here we introduce a hybrid 3D-

MDFT/MD protocol to predict solvation free energy. Because the 3D-MDFT is based on 

the density profiles of individual atoms (site) and the site-site direct correlation functions 

of the bulk solvent, the new computational procedure requires sampling of only 3-
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dimensional density profiles and evaluations of 3-dimensional integrals pertinent to the 

atomic positions and the one-dimensional direct correlation functions. The reduction of 

dimensionality drastically improves the computational efficiency and the combination 

with MD also avoids the inconvenient numeric iteration treatment to get the density 

profile in 3D-MDFT, thus the hybrid method opens the potential to solvation of large 

molecular systems. The method is first tested for self-solvation calculations of rigid 

TIP3P and is then applied in ion solvation. The computational procedure can be readily 

extended to other more complex solvation systems.   

5.2. Derivations of Hybrid Method 

The solvation free energy is defined as the reversible work to transfer a solute 

molecule at a given position in vacuum into a given position in a pure solvent at fixed 

temperature and pressure or equivalently, at fixed solvent temperature and chemical 

potential. The solvation free energy is immaterial to the solute translational degree of 

freedom. Within the framework of the classical density functional theory5, 78, 142, the 

solvation free energy is given by the change in the grand potential of the solvent due to 

the transfer of the solute molecule 

  (1) 

where  stands for the local density profile of site (atom) of the solvent molecule 

near the dissolved solute molecule. If the solvent is represented by the TIP3P model, i = 

O or H designating for oxygen or hydrogen atoms, respectively. In Eq.(1),  is the 

average atomic density of the pure solvent; and  are, respectively, the solvent 
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chemical potential and absolute temperature; and  is the system volume. In numerical 

implementation of Eq.(1), the system volume should be sufficiently large such that the 

properties of water molecules remote from the solute are the same as those corresponding 

to the pure solvent in the bulk. For solvation free energy calculations, parameters 

 are fixed and thus, for the sake of simplicity, they are suppressed in the 

equations below.    

          The solvated system can be regarded as an inhomogeneous system of the solvent 

subject to an external potential due to the solvent-solute interaction. The grand potential 

of such inhomogeneous system is given by 

              . (2) 

Here  represents the ideal part of the intrinsic Helmholtz energy functional, 

i.e., it is the same as that of an ideal-gas system of the solvent molecules with the same 

temperature, chemical potential and inhomogeneous site density profiles. The second 

term  denotes the excess Helmholtz energy that arises from the intermolecular 

interactions. The one-body potential  follows its usual definition, i.e., 

, where  is the external potential exerting on site  due to the 

presence of the solute molecule, and  stands for a nominal chemical potential of site 

. The nominal chemical potentials of individual sites satisfy the stoichiometric relation13 
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As shown below, the nominal chemical potential of each site is irrelevant to the final 

expression for the solvation free energy functional. 

 The excess Helmholtz energy functional can be formally expressed relative to that 

of the bulk solvent at the system temperature and chemical potential plus additional terms 

due to the density inhomogeneity5, 15 

  (4) 

where  stands for the Boltzmann constant, and  is the deviation of 

local site density to bulk density. In Eq.(11),  represents the nominal excess chemical 

potential of site  in the bulk solvent, and  is the bulk site-site direct correlation 

function. The final term in Eq.(11), , consists of a definition of the bridge 

functional, i.e., it accounts for all contributions to the excess Helmholtz free energy 

beyond the quadratic expansion.  

Substituting Eq.(11) into Eq.(2), and thereafter into Eq.(1), yields a close form for 

the solvation free energy: 
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where . In deriving Eq.(5), we have used the identity

.  

To find an explicit expression for , we can consider the solvation in a reference 

ideal-gas system that has the same site density  as that of the real system under 

consideration (see Figure 1(a)(c) for illustration of both systems). We denote the 

corresponding one-body potential in such ideal reference system as (in 

corresponding to in Eq.(2)), and then the ideal solvation free energy functional can 

be expressed as, similar to Eq.(5),  

 . (6) 

In comparison to Eq.(5), Eq.(6) does not contain the site-site direct correlations and the 

bridge functional due to the absence of intermolecular interactions. On the other hand, 

starting from the partition function, we can prove the solvation free energy in the ideal-

gas reference system is fully determined by the atomic density profiles144  

   (7) 

where is the total number of sites within the solvent molecule. For the TIP3P model, 

. In the above equation,  represents the difference in the average number of 

solvent molecules before and after the solvation.  
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Although the ideal reference system shares the same bulk and inhomogeneous 

solvent densities as the real system, Eq.(5) and (6) describe the solvation free energies of 

two unrelated solutes: one corresponds to that of the real system under consideration and 

the other is for an undefined solute that gives rises to . Nevertheless, the real and 

ideal systems consist of the same molecule species and share the same density profiles 

and thus they have the same ideal part of the intrinsic Helmholtz energy functional:  

  (8) 

Eq.(8) holds for an arbitrary set of atomic density profiles .  

With the help of Eq.(8), we can subtract Eq.(6) from Eq.(5). After some 

rearrangement, we derive 

         (9) 

The bridge potential  is introduced as the functional derivative of  with respect 

to   

   (10) 

At the equilibrium condition, the formula of solvation free energy is 
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where . As expected, the solvation free energy 

is independent of the nominal excess chemical potential of individual sites.  

      Whereas Eq.(11) is formally exact, the generalized bridge functional  

associated with the bridge functional  is generally not accessible. By simply 

dropping the bridge functional, Eq.(11) reduces to the solvation free energy expression 

from the CMS theory13, 147 

   (12) 

Because the CMS theory is equivalent to truncate the functional expansion of excess 

Helmholtz energy in 3D-MDFT up to the second order, Eq.(12) is also referred to 

quadratic expansion approximation (QEA). To account for higher order terms, bridge 

term is approximated with a reference hard sphere system according to the universal 

ansatz.  

   (13) 

where  is the input parameter, representing the reference hard sphere diameter of site 

. For TIP3P water model, reference hard sphere diameter of hydrogen site  is fixed as 

1Å, and  is calibrated against experiment values.  

For the hybrid site DFT proposed here, we calculate the site density profile from 

simulation, thus the minimization issue of 3D-MDFT is irrelevant.  
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5.3. Efficient Sampling of 3D Density Profiles 

Standard grid-method to sample 3D density profiles136, 148 in MD simulation is 

time-consuming. Here, we utilize spherical harmonics (SH) expansion method to boost 

the calculation efficiency. The density profile around a tagged molecule can be expressed 

as ensemble average of the Dirac delta functions 

   (14) 

where  is the ensemble average,  is the Dirac delta function and stands for 

local density of site  in molecule . Expanding density profile into spherical harmonics 

yields  

   (15) 

where  is the spherical coordinate,  is spherical harmonics,  are indices (

) , and  is corresponding coefficients.  Insert Eq.(15) into (14), and 

perform a integration  on both sides gives 

   (16) 

where  stands for the number of site  located in the shell . After 

simplification, Eq.(16) becomes 

		
ρi r( ) = δ r− rc

i( )
c
∑

	 ... 		δ r− ri( )

	i 	c

			
ρi r( ) = ρnm

i r( )Ynm θ ,φ( )
nm
∑

		 r ,θ ,φ( ) 	Ynm 		n,m

	−n≤m≤n 	ρnm
i

		 r2dr dφ dθYnm θ ,φ( )cosθ0

π

∫0

2π
∫r

r+Δr

∫

		
ρnm
i r( )r2dr

r

r+Δr

∫ = Ynm θc
i ,φci( )

Nr

∑

	Nr 	i 		rc
i ∈ r ,r +Δr( )



 114 

   (17) 

which provides a way to reduce 3D sampling into 1D. In theory, sampling an infinite 

number of SH coefficients is unrealistic and unnecessary. In fact, only coefficients of 

smaller than 10 are sampled and the summation in Eq.(15) converges within the accuracy 

of later computation.  

5.4. Water Self-solvation  

This hybrid method is first tested with water self-solvation. The atomic density 

profiles are extracted from MD simulation of a bulk TIP3P water model by using the 

efficient sampling method discussed in the previous section. Figure 5-1 shows the 

average radial distribution of oxygen (OW) and hydrogen (HW) sites. Since the distance 

is from the center of the tagged molecule instead of its oxygen site, curves are different 

from oxygen-oxygen and oxygen-hydrogen radial distribution function in the literature.  

Two peaks of OW curve represent two different type of surrounding oxygen 

connected by hydrogen bonds. 3D density profile of oxygen is plotted in Figure 5-2. For 

better demonstration, only reduced density higher than 2 is visible. The area shows the 

first hydration shell structure of the tagged water molecule. Contour maps are also 

presented and clearly show 4 hydrogen-bonding sites. Similarly Figure 5-3 provides the 

3D density information of hydrogen site. Unlike oxygen site whose reduced density can 

reach over 30, hydrogen sites are less packed.  

		
ρnm r( ) =

Ynm θc
i ,φci( )

Nr

∑
r2Δr

	n
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With the 3D density and the reference hard sphere diameter  (2.65 Å, close to 

the Lennard-Johns parameter 3.15Å) as input into Eq.(11), DFT reproduces the 

experiment value of self-water solvation free energy -6.32 kcal/mol. The result shows 

that the hybrid method works for water self-solvation with a reasonable choice of 

reference hard sphere diameter .  

5.5. Ion Solvation 

Self-consistent DFT calculation of SFE for ions are challenging due to the high 

packing density from Coulomb interactions. When the peak is high in density profile, 

calculations become more sensitive and require more iterations for convergence. 

However, the hybrid method circumvents the iteration step and thus provides a useful 

tool in charged system. Here, we investigate SFE of 34 ions, 9 monovalent ions from 

Cheatham149, 22 divalent ions from Babu150, and 4 trivalent Lanthanide ions from 

Reinhoudt151. 

Each ion is first solvated in a TIP3P water box of 30Å length in size, and then 

equilibrated in a NPT ensemble at room temperature and 1 bar for 5 ns, followed by 

another 5 ns in NVT ensemble. A total of 10,000 configurations are sampled in the 

following trajectory production step of 10 ns in NVT ensemble. In the simulations, Nose-

Hoover style barostat and thermostat are used. All simulations are carried in GROMACS.  

Due to symmetry, only radial distribution is sampled to calculate the density 

profile for ions. In order to calculate SFE from hybrid method, a reasonable value for the 

reference hard sphere diameter  needs to be chosen. The choice for each set of ions 

	σ O

	σ O

	σ O
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based on its charge is shown in Table 5-1. It is worth noting that  does not necessarily 

have to be the same. For different ions, the reference hard sphere systems can vary. For 

ions of the same charge, the nuance may be small and thus the same  may be chosen. 

However, this difference can no longer be ignored for ions of different charges.  

With density profile and  as input, we calculated the DFT prediction and HNC 

prediction of SFE for ions. To be noted, the Born correction term has been added to both 

theoretical predictions due to limited size effect.  

 
		 
ΔGsol

born = −322 1− 1
ε

⎛
⎝⎜

⎞
⎠⎟
/ 2rcut( )   (18) 

where  ε  is the dielectric constant of water model, 	rcut  is the half the simulation size (15 

Å), and the unit for free energy is kcal/mol, Å for distance. 

Results for monovalent ions are presented in Figure 5-4. For simplicity of 

comparison, the negative sign for SFE is omitted. Both DFT and HNC predictions are 

close to experimental values. With increasing size of ions, SFE decreases for both cations 

and anions. DFT overestimates SFE for monovalent cations, while HNC underestimates 

SFE for anions. It shows the higher order term 	
Γ ρi⎡⎣ ⎤⎦  is not import for monovalent ions.  

The situation is different for divalent and trivalent ions. Without 	
Γ ρi⎡⎣ ⎤⎦ , HNC 

considerably underestimates SFE. In fact, the higher order term contributes more and 

more with increasing ion charge. And it can easily reaches to 200-300 kcal/mol 

contribution. This demonstrates the importance of high-order terms in DFT calculation. 

	σ O

	σ O

	σ O



 117 

On the other side, the reference hard sphere system can actually captures the bridge 

functional even for charged system. However, DFT predictions are also not perfect. The 

prediction error can reach ~20% for Co2+. This is due to the strong inhomogeneity of 

water density near ions.  

5.6. Conclusions 

In this Chapter, I propose a hybrid method by combing MDFT and MD 

simulations and test its performance for solvation free energies calculations. Different 

from an earlier version of MDFT, only 3D site density profiles are required, instead of 

the 6-dimensional molecular density profile. The dimensionality reduction opens up the 

opportunities to applications of the hybrid method to complex biological systems.  

The hybrid method is first tested with water self-solvation free energy. With 

reasonable choice of a reference hard-sphere diameter, MDFT reproduces the 

experimental value. The good performance demonstrates the feasibility of hybrid method.  

Further, the hybrid method is applied to ions of different charges. From fitting 

with experimental data, the reference hard-sphere diameter varies with the ion charge. 

DFT captures how SFE decreases with increasing ion size for monovalent ions. In 

addition, the bridge functional has much smaller contribution to SFE for monovalent ions 

than that for divalent or trivalent ions. In fact, it can make up 200-300 kcal/mol to SFE. 

Thus, it demonstrates that reference hard-sphere system can be applied to charged 

systems and its contribution cannot be ignored especially for systems of large charges.  
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Table 5-1. Hard sphere diameter for different systems 

HS Diameter(Å) O H 

water 2.65 1.0 

mono-valent 2.68 1.0 

di-valent 2.84 1.0 

tri-valent 2.84 1.0 
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Figure 5-1 

 

Radial average density of site O, H from the center of tagged water molecule  
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Figure 5-2 

 

3D density and contour map of oxygen sites  
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Figure 5-3 

 

3D density and contour map of hydrogen sites   
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Figure 5-4 

 

Comparison of solvation free energies for monovalent ions  
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Figure 5-5 

 

Comparison of solvation free energies for divalent ions  
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Figure 5-6 

 

Comparison of solvation free energies for trivalent ions   
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Chapter 6.  Conclusions 

In this dissertation, I have investigated solvation systems by applying molecular 

dynamics (MD) simulations and molecular density functional theory (MDFT).   

To refine MDFT predictions, I have developed new numerical methods to sample 

site-site direction correlation functions (DCF) from MD. With the new DCF as input, the 

mean error of solvation free energy (SFE) predictions for 504 small solutes improve from 

1.04 kcal/mol to 0.66 kcal/mol when compared with MD simulation results. In addition, 

the new method is not limited to 3-site or 4-site water models but all molecules without 

special symmetries.  

 In cases when the solvation system is not at room temperature, for example, the 

storage of highly explosive nitro-toluenes, I extended the MDFT calculation by using 

DCFs from the integral-equation theory and calibrated according to experimental data 

along with 197 solutes at 277K, 298K and 313K. The mean error is slightly higher than 1 

kcal/mol and is comparable with MD simulation results. Molecules with peroxide 

functional groups have the highest prediction error, which is consistent with the fact that 

no peroxide models have been systematically validated with available thermodynamic 

properties. 

In studying the hydration structure of amine-grafted silica gels, MD simulation 

provides direct evidence of strong surface effect on grafted amines. The presence of 

surface can not only repel water due to volume exclusion, but also affect the hydrogen-

bonding network. This surface effect is long-ranged and can take place even after three 

hydration shells. For amines of longer chain length, the surface effect is less prominent. 
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Even though changes in pH can alter the orientation of grafted-amine on the surface, the 

surface effect is relatively invariant to pH. 
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