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ABSTRACT OF THE DISSERTATION

Essays on Behavior and Infectious Disease

By

Anne Carpenter

Doctor of Philosophy in Economics

University of California, Irvine, 2016

Professor Michael T. McBride, Chair

Although individuals have the potential to significantly impact the magnitude of epidemics,

understanding individual responses to disease remains relatively understudied. One problem

with studying behavioral responses to disease is obtaining individual level data on actions

taken to protect against disease prior to, during, and after an outbreak. Using an evolu-

tionary game with the replicator dynamic, I endogenize the decision to treat water in an

epidemiological model of cholera. I calibrate the model to generate aggregate predictions

for the cholera epidemic magnitude and the share of the population treating their water

during the 2008-2009 Zimbabwe cholera epidemic. I show that the model captures both the

2008-2009 outbreak magnitude and the share of the population treating their water after the

outbreak. To examine individual level disease prevention decisions, I use this model to simu-

late a disease environment in an economics laboratory experiment using students as human

subjects. In the experiment, subjects are told that an infectious disease has been discovered

in the environment. Subjects must decide whether to invest in a disease prevention technol-

ogy. Subjects that choose to invest in the disease prevention technology are fully protected

against infection. Subjects that choose not to invest in the disease prevention technology

are at risk of infection. The payoffs from the experiment are taken from the epidemiological

model of cholera with endogenous water treatment. I compare the model predictions with

observed experimental data. In this way, I generate the individual level panel data necessary

x



to explore the impact of prevention costs, outbreak information, and social exclusion costs

on the probability of investing in disease prevention.
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Chapter 1

Behavior in the Time of Cholera:

Evidence from the 2008-2009 Cholera

Outbreak in Zimbabwe

Water transmitted diseases are the fifth leading cause of global mortality. According to

World Health Organization (WHO) estimates, 94% of water transmitted diseases could be

prevented with access to clean water and sanitation (World Health Organization, 2007).

Despite the promising returns to investment in clean water and sanitation, individual use of

disease prevention products, like water chlorination tablets, is low in developing countries

(Dupas, 2011b). If on average individuals in developing countries were forced to spend their

entire income on subsistence, then this would explain the low investment in disease prevention

products. However, individuals living on less than $1 a day spend an average of 10%-18%

of their income on alcohol, tobacco, and local festivals (Banerjee and Duflo, 2007). This

suggests that even the very poor have some discretion in the way they spend their income.

So, why is investment in water treatment products so low despite the potential for water

transmitted disease? While many factors likely explain low water treatment levels, some
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researchers have indicated that individuals may exhibit prevalence dependent behavior, and

therefore, may base decisions to treat water on the incidence of water transmitted diseases

in the environment (Geoffard and Philipson, 1997; Philipson, 2000).

This paper explores the dynamic relationship between cholera incidence and water treatment

behavior. The hypothesis is that if individuals exhibit prevalence dependent water treatment

behavior, then there should be an increase in the share of the population treating their

water during a cholera outbreak. However, theoretical research on prevalence dependent

behavior suggests that outbreak induced behavior change will not be sufficient to eliminate

an outbreak (Geoffard and Philipson, 1997; Philipson, 2000). The key finding of this paper

is that prevalence dependent water treatment behavior is a factor contributing to endemic

cholera. Furthermore, in absence of the WHO interventions during the 2008-2009 cholera

outbreak in Zimbabwe, the share of the population treating their water would have converged

to a level that would have allowed a high cholera incidence to persist. Therefore, these

results support theoretical model predictions regarding the inability of individuals exhibiting

prevalence dependent behavior to coordinate their individual actions to eliminate disease.

1.1 Related Work

Microeconomic research has focused on the individual level barriers to water treatment that

may explain low investment in water treatment products in developing countries. Through

the use of randomized controlled trials factors such as information, credit constraints, and

product pricing have been varied to explore the role of such factors in individual water treat-

ment decisions (Madajewicz et al., 2007; Devota et al., 2012; Ashraf et al., 2007). However,

this research typically ignores the fact that water treatment decisions take place in a dynamic

disease environment. The idea that individuals might exhibit prevalence dependent behav-

ior with regard to prevention of certain diseases has been demonstrated in several empirical

2



studies (Philipson, 2000). However, these studies do not explore the role of prevalence de-

pendent behavior in the decision to treat water. Although some mathematical models have

incorporated behavioral responses to disease (Geoffard and Philipson, 1996; Hyman and Li,

1997; Klein et al., 2007; Kremer, 1996; Auld, 2003; Valle et al., 2005), the primary focus of

these models is sexually transmitted diseases, with a few exceptions. This model is the first

of my knowledge to explore the dynamic relationship between water treatment behavior and

cholera incidence.

Furthermore epidemiologists have developed mathematical models of cholera that incorpo-

rate biological realism in an effort to provide more accurate forecasts of epidemic magnitudes

(Anderson and May, 1991; Andrews and Basu, 2011; Mukandavire et al., 2011). These mod-

els are used to explore potential epidemics both in the absence of and in the presence of

potential interventions in order to determine the best policy response to an outbreak. How-

ever, these models assume that individual decisions, including water treatment decisions, are

constant over time and exogenous to the disease environment.

This paper contributes to the literature in both economics and mathematical epidemiology

by combining the behavioral focus of economic models with the biological focus of the math-

ematical epidemiology models. By modeling the decision to treat water as a function of

the share of the cholera infected population, I endogenize the decision to treat water. This

enables me to explore the influence of the dynamic disease environment on water treatment

decisions and the ability of individuals to coordinate prevention measures to eliminate an

outbreak.
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1.2 Model

1.2.1 Water Treatment Game

To model changes in population water treatment behavior, I use an evolutionary game (Sand-

holm, 2010). In the game, agents have two possible strategies: treat water (T) or do not

treat their water (NT). Table 1.1 provides the game.

Table 1.1: Water Treatment Game

T NT
T β − C β − C(I(t))
NT β − C(I(t)) −C(I(t))

In this evolutionary game, α represents the share of the population not treating their water,

and (1− α) represents the share of the population treating their water. Here, β is the benefit

from treating water, and C is the cost of treating water. The variable I(t) represents the

number of infected individuals which changes over time, t. Additionally, C(I(t)) is the cost

of not treating water and is an increasing function of I(t). Therefore, the cost of not treating

water increases as the number of cholera infected individuals increases.

Because individuals’ payoffs depend upon the aggregate share of individuals making each

choice, this model has the nice property that it can account for the role that externalities

might play in behavior change. In table 1.1, it is easy to see that if C > C(I(t)), then the

game is a hawk-dove game. In this case, a portion of the population will free-ride on the

water treating group in equilibrium. When cholera infection is unlikely, a larger portion of

the population will not treat water in equilibrium. However, if C < C(I(t)), then the game

is a coordination game where the dominant strategy is to treat water. Therefore, at higher

infection levels, the positive externality imposed by the water treating group is not sufficient

to allow free-riding to exist in the population.
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The replicator dynamic presented in equation 1 captures the evolution of the population

water treatment over time, t.

dα(t)

dt
= α

[
Π(NT )− Π̄

]
. (1.1)

Here, α represents the share of the population not treating their water, Π(NT ) is the pay-

off from not treating water, and Π̄ is the average payoff for all strategies. Equation 1

demonstrates that the change in the share of the population not treating their water moves

according to the changes in the underlying payoffs. If the payoff from not treating water is

larger than the average payoff, then the share of the population not treating their water will

grow. Conversely, if the average payoff is larger than the payoff for not treating water, then

the share of the population not treating their water will shrink. Equation 2 provides the

final derivation for the change in the share of the population not treating their water (proof

see S.I. 1.1).

dα(t)

dt
= α(1− α) {(1− α) [C − C(I)]− αβ} . (1.2)

1.2.2 Cholera Outbreak System

Following standard epidemiological practice, I use an SIR model to model the cholera out-

break (Anderson and May, 1991; Andrews and Basu, 2011; Mukandavire et al., 2011). The

population can be divided into 3 categories: susceptible individuals, S(t); infected individu-

als, I(t); and recovered individuals with temporary cholera immunity, R(t). The change in

5



the cholera susceptible population is

dS(t)

dt
= µN + ωR(t)− qα(t)S(t)

B(t)

k +B(t)
− µS(t). (1.3)

Here, N represents the entire population, µ represents the birth and deaths rates, µN rep-

resents the number of individuals born into the population, and µS(t) the number of deaths

in the susceptible population unrelated to cholera. In this model, the number of recovered

individuals with temporary cholera immunity is R(t), ω is the rate at which people lose

their temporary immunity, and ωR(t) is the number of individuals that lose their temporary

immunity and again become susceptible to cholera. Here, k is the level of bacteria in the

environment necessary for a 50% probability of cholera infection, B(t) is the level of bacteria

that exists in the aquatic environment, and B(t)
k+B(t)

is the probability that consumption of

cholera contaminated water leads to cholera infection (Codeco, 2001).

Standard models of cholera outbreak assume the fraction of the population that consumes

contaminated water, qα(t) , to be a constant. To incorporate changes in water treatment

behavior, I break up the consumption of cholera contaminated water into the share of the

population not treating their water, α(t), times the probability that untreated water is

cholera contaminated, q. This model assumes that the probability that untreated water is

cholera contaminated is constant and exogenous. Although q is assumed to be constant, it

is possible that the infection rate influences the probability that untreated water is cholera

contaminated. Unfortunately, no data exists at this time to explore this relationship. In this

model, the assumption of a constant and exogenous q provides a considerable simplification of

the model analysis; however, future research should seek to determine how the infection rate

influences the probability that untreated water is cholera contaminated. It follows from the

variable definitions that the product qα(t)S(t) B(t)
k+B(t)

is the number of susceptible individuals

6



that become cholera infected in time, t. The change in population infected with cholera is

dI(t)

dt
= α(t) ∗ q ∗ S(t)

B(t)

k +B(t)
− (µc + µ+ γ)I(t) (1.4)

Here, µc is the cholera death rate, γ is the cholera recovery rate, µcI(t) is the number of

infected individuals that die from cholera, γI(t) is the number of infected individuals that

recover and receive temporary immunity to cholera, and µI(t) is the number of infected

individuals that die from causes unrelated to cholera. The change in the recovered and

temporarily cholera immune population is

dR(t)

dt
= γI(t)− (µ+ ω)R(t). (1.5)

The change in V. cholerae bacteria in the aquatic reservoir is

dB(t)

dt
= θI(t)− δB(t). (1.6)

Here, θ is the rate at which infected individuals shed V. cholerae bacteria into the environ-

ment through defecation, δ is the death rate of V. cholerae bacteria in the aquatic environ-

ment, θI(t) is the number of bacteria that are shed into the aquatic environment, and δB(t)

is the number of bacteria in the aquatic environment that die. The water treatment behavior

discussed in section 3.1 is the new dynamic being explored in this paper. Equation 2 provides

the change in the population share not treating their water. For simplicity, I assume that

7



C(I(t)) = λ I(t)
N

, a linear function of the infection rate. Here, λε[0,∞) is a scalar that can

be interpreted as the intensity with which the outbreak is perceived. Therefore, the change

in the population share not treating their water is

dα(t)

dt
= α(1− α)

{
(1− α)

[
C − λI(t)

N

]
− αβ

}
. (1.7)

1.3 Selected Calibration

To test the ability of the model to fit water treatment behavior during a cholera outbreak,

I calibrated the model to the 2008-2009 cholera outbreak in Zimbabwe. To do so I use data

on cholera incidence, outbreak induced changes in water treatment behavior, and cholera

biology (see S.I. 2.1 for data description).

The calibrations for Mashonaland West illustrate the ability of the model to fit observe

cholera incidence and water treatment behavior (see S.I. 2.2 for all provinces). In figure 1.1,

the first graph provides the observed weekly cholera incidence and the calibrated incidence

for the same period. The second graph demonstrates that the model can capture changes

from the pre-outbreak behavior to the 2010 post-outbreak behavior.
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To calibrate the model, I chose the parameters β, C, and λ that best fit the observed data

(for parameters see S.I. 2.2). I vary the costs and benefits for each province separately to

determine calibration sensitivity to parameters chosen (see S.I. 3). I find that when the costs

of water treatment are higher than the perceived benefits, the share of the population treating

their water converges to a level that allows cholera to persist in the environment. However,

when the costs of water treatment are sufficiently low relative to the benefits, cholera will

be eliminated due to a greater increase in water treatment within the population. Prior

research has explored the ability of V. cholerae bacteria to survive in the aquatic reservoir as

an explanation for endemic cholera. This paper demonstrates that even when incorporating

the persistence of bacteria in the aquatic environment, a cholera outbreak will be minimal

if the costs of water treatment are sufficiently low. Thus, an explanation of endemic cholera

should include prevalence dependent water treatment behavior as a contributing factor.

A drop in cholera incidence occurs in the data around week 7 that is not matched by the

model predictions. However, around week 7, the WHO had partnered with multiple organi-

zations working in Zimbabwe to provide clean water, water purification tablets, and cholera

prevention information free of charge (UN OCHA, 2009b,a). This intervention effectively

reduced the cost of water treatment to zero, which allowed benefits of water treatment to

outweigh costs of treatment thereby ending the outbreak. Thus, the model prediction should

be viewed as the level of cholera incidence that would have persisted in absence of the in-

tervention. This model suggests that because the costs of water treatment were higher than

the perceived benefits, the increases in cholera incidence would not have induced a sufficient

share of the population to treat their water. Therefore the outbreak would have persisted.

This finding is consistent with theoretical research that suggests that if individuals exhibit

prevalence dependent behavior, then they will be unable to coordinate individual actions to

eliminate outbreaks (Geoffard and Philipson, 1997).
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1.4 Discussion

This paper explores the issue of low water treatment in developing countries considering

the disease environment in which these choices take place. I find that high water treatment

costs and low perceived water treatment benefits cause the share of the population treating

their water to be low despite the persistence of cholera. Model calibrations of the 2008-2009

cholera outbreak in Zimbabwe demonstrate two important implications of this modeling

approach. First, cholera incidence can be eliminated with low water treatment costs relative

to perceived benefits despite the presence of V. cholerae bacteria in the aquatic environment.

Second, without the WHO interventions in Zimbabwe during the 2008-2009 cholera outbreak,

the share of the population treating their water would have converged to a level that would

have enabled a high cholera incidence to persist.

Previous research has focused on the ability of V. cholerae bacteria to survive in the aquatic

environment as an explanatory factor in endemic cholera (Codeco, 2001). However, this pa-

per demonstrates that cholera incidence can be eliminated when the costs of water treatment

are sufficiently low relative to the benefits of water treatment regardless of the level of V.

cholerae bacteria in the aquatic environment. Thus, prevalence dependent water treatment

behavior coupled with high costs of water treatment can allow the population to converge to

a level of water treatment that enables cholera to persist. Therefore, policy focused on elim-

inating endemic cholera should not only consider persistence of V. cholerae bacteria in the

aquatic environment, but also should acknowledge that changes in water treatment behavior

are likely prevalence dependent. Furthermore, policy makers should also consider that it

may be very difficult, if not impossible, for individuals acting independently to coordinate

actions to eliminate water transmitted diseases.

During the 2008-2009 cholera outbreak in Zimbabwe, the Zimbabwean government was re-

luctant to acknowledge or act to end the cholera epidemic (UN OCHA, 2009a). Fortunately,
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the WHO acted to coordinate actions to provide clean water, water purification tablets, and

cholera prevention information free of charge to individuals in affected regions (UN OCHA,

2009a). This model demonstrates that although individuals may respond to outbreaks by

changing outbreak related behaviors, the changes in behavior may not be sufficient to elim-

inate the outbreak. In the case of Zimbabwe, without the interventions by the WHO, the

share of the population treating their water would have converged to a level that would

have enabled a high cholera incidence to persist. Therefore, policy makers should not rely

on individual behavioral responses to end epidemics. Instead, there is significant scope for

policy makers to aid individuals in coordinating actions to eliminate outbreaks.

While this model provides a first pass at incorporating outbreak related behavior into a

model of cholera outbreak, it does not provide a full biological analysis of a cholera epi-

demic. Future research should seek to incorporate more biological realness into the model of

cholera incidence to provide better analysis of potential epidemic magnitudes. Specifically,

incorporating the highly infectious cholera state and the associated health behavior, post-

defecation hand-washing, will provide a more thorough analysis of the impacts of behavior

change on cholera epidemics.
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Chapter 2

Modeling Behavior During Epidemics:

Understanding Behavioral Responses

to Disease

2.1 Introduction

It seems likely that individuals respond to disease outbreaks by taking various measures to

prevent themselves and others from contracting a particular disease. These measures have

been reported anecdotally in the media during many different epidemics: the wearing of

face masks during the 2003 SARS epidemic in China, the avoidance and ultimate closure of

public places during the 2009 H1N1 epidemic in Mexico, and the self-imposed quarantines of

returning U.S. health workers during the 2014 Ebola epidemic. If individuals engage in self-

protective or other-protective behaviors during epidemics, then epidemiological models that

ignore behavioral responses to disease could overestimate the epidemic magnitude. However,

individuals could exhibit behavioral biases that prevent them from accurately assessing their
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own risk during an epidemic. If epidemiological models ignore the unwillingness to engage in

self or other protective behaviors, then predictions of epidemic magnitude could be under-

estimated. Despite the potential impacts of such changes in behavior on disease dynamics,

incorporating endogenous behavioral responses into mathematic models of disease is a rela-

tively new area of study (Klein et al. (2007); Ferguson (2007); Carpenter (2014); Funk et al.

(2015)).

One potential reason that incorporating individual responses to disease into epidemiological

models is relatively new is the lack of individual level data on epidemic induced behavior.

The ideal dataset would be available at the individual level, and it would include all potential

actions taken by individuals to protect themselves and others from illness. We would need

data both prior to an outbreak and during an outbreak to determine how the outbreak

changed behavior. Furthermore, we would like data collection to extend beyond the cessation

of the outbreak to determine the persistence of behavioral responses to disease. While it is

useful to think about the ideal dataset for the study of behavior during epidemics, collection

of such data is typically not the primary goal of public health officials during an outbreak.

Instead, public health efforts typically focus energy and resources on preventing the spread of

disease through information and disease prevention products. So, although data on behavior

during epidemics may be available in some instances, it typically is not the ideal individual

level panel including all disease prevention behaviors over time. This makes it difficult to test

models incorporating endogenous behavioral responses to disease against actual individual

behavior during epidemics (Funk et al. (2010); Manfredi and d’Onofrio (2013); Carpenter

(2014); Wang et al. (2015)).

Researchers engaged in modeling endogenous behavioral responses to disease recognize this

challenge and have provided some solutions to test model assumptions for behavior against

observed behavior during epidemics. First, some researchers have suggested testing the

models against data on historical epidemics when such data does exist (Ferguson (2007)).
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Second, some researchers have proposed using non-traditional sources such as digital media

to gather information on individual behavior during epidemics (Funk et al. (2015)). While

both of these methodologies can provide useful data for the testing of model assumptions on

individual behavior, the non experimental nature of this data means that researchers may not

always be able to obtain the specific types of data desired. I provide an additional method

for obtaining data on epidemic induced individual behavior: a laboratory experiment.

Conducting a laboratory experiment provides advantages over traditional data collection,

because it enables researchers to obtain data that directly answers their research questions

with minimal cost. Using an experiment to study disease induced behavior allows researchers

to randomize exposure to different policy treatments, capture individual level data on be-

havior over time, and collect detailed demographic information on experiment participants.

While the laboratory experiment does provide benefits over other types of data collection,

a potential drawback of the method is the issue of external validity. It is unclear whether a

simulated disease environment induces the same behavioral responses as would be observed

in an actual disease environment. In this paper, I use a laboratory experiment to create a

simulated disease environment in which to test an epidemiological model with endogenous

behavioral response to disease. I address the issue of external validity by comparing individ-

ual behavior in the experiment with reported real world engagement in disease prevention

behaviors to determine whether the abstract laboratory environment captures real world

attitudes towards disease prevention.

I use a modified version of the evolutionary game presented in Carpenter (2014) to endogenize

disease prevention behavior in a mathematical model of disease. Existing research suggests

that demand for disease prevention is prevalence elastic (Geoffard and Philipson (1996), Ge-

offard and Philipson (1997), Philipson (2000), Ahituv et al. (1996), Philipson (1996), Gold-

stein et al. (1996), and Philipson (2000)). Prevalence elastic demand is characterized by an

increase in demand for disease prevention technologies when disease incidence increases and
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a decrease in demand for disease prevention technologies when disease incidence decreases.

In this model, the dynamic for behavior is derived from underlying individual payoffs which

are a function of the infection level. In this way, I endogenize behavioral response to disease

by incorporating current research on prevalence elastic demand for disease prevention. I

calibrate the model in the experiment using parameters taken from the infectious disease

modeling literature. Building on the experimental work of Chen et al. (2013), experiment

subjects are framed to consider an infectious disease environment, and they are faced with

a decision each round: invest in disease prevention or do not invest in disease prevention.

The payoffs from each choice are taken from the evolutionary game and investing in disease

prevention provides full protection against disease. By comparing choices made by subjects

in the experiment with model predictions for investment in disease prevention, I test the

model predictions for investment in disease prevention.

There are two primary hypotheses from this model. First, I expect subjects to exhibit

prevalence elastic demand for disease prevention. This hypothesis is an assumption of the

mathematical model, but it is based on the limited theoretical and empirical work on the

behavioral responses to disease outbreaks. Second, I expect that when the cost of investing

in disease prevention is sufficiently low, investment in disease prevention will be high enough

to eliminate an outbreak. This hypothesis is a direct prediction of the mathematical model

of disease with endogenous investment in disease prevention. I find support for both hy-

potheses: subjects exhibit prevalence elastic demand for disease prevention and investment

in disease prevention is high enough to eliminate an outbreak when the cost of investing

is sufficiently low. Although I do find that subjects exhibit prevalence elastic demand for

disease prevention, I find that this effect diminishes as infection levels rise. Furthermore,

I find that there is persistence in the impact of disease incidence on investment in disease

prevention. Interestingly, I find that being infected in the previous round significantly re-

duces the probability that an individual invests in disease prevention. To address the issue

of external validity, I compare subjects reported real-world engagement in disease prevention
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behaviors with behavior in the experiment. I find that subjects who report free-riding on

the disease prevention investments of others in reality are significantly less likely to invest in

disease prevention in the experiment. This suggests that subjects behavior in the experiment

is correlated with real world disease prevention behavior.

This paper proceeds as follows: Section 2 provides the model used in the experiment. Section

3 describes the experimental design, Section 4 provides the results, and Section 5 concludes.

2.2 Epidemiological Model

2.2.1 Model

The purpose of this model is twofold: to endogenize individual responses to disease in an

SIR model in a manner consistent with evidence on behavior during disease outbreaks and to

develop a model that captures aggregate investment in disease prevention. In other words,

the goal here is to use information on individual decisions during an outbreak to develop a

model that captures aggregate investment in disease prevention. While it seems reasonable

that individuals may exhibit sophisticated behavior regarding investment in disease preven-

tion, it is not clear how sophisticated a model of individual behavior needs to be in order to

capture aggregate investment in disease prevention.

While behavior could be endogenized using N-player game with the standard Nash solution

concepts, there are a couple of problems with this approach. First, the susceptible popula-

tion for infectious diseases is usually large meaning that computing the strategies for each

individual player is prohibitively time consuming without necessarily adding insight into the

aggregate effects of individual behavior. Second, standard game theory assumes that indi-

viduals have full knowledge of the game and the equilibrium. Players in a standard game
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are assumed to know the strategies available, the payoffs from every strategy profile, and to

correctly anticipate the actions of all other players in the game. In the context of disease, this

means an individual would have full knowledge of the disease dynamic, and the individual

would know the prevention strategies taken by all individuals susceptible to a disease. Even

epidemiologists do not have full knowledge of all the factors that influence disease dynamics;

instead, they approximate the underlying dynamic using SIR models. Furthermore, indi-

viduals do not know every person who is susceptible to a particular disease let alone every

action taken by each susceptible person to prevent a disease. So, it is unreasonable to assume

that they can correctly anticipate the actions of all the players in the game. While these

assumptions may be reasonable in smaller games, they require a high level of knowledge that

individuals generally do not possess in a disease context.

To avoid unreasonable assumptions on players’ knowledge in the game, I use an evolutionary

game with the replicator dynamic to endogenize individual responses to disease. Evolution-

ary games were developed to incorporate strategic interaction in large populations where

traditional game theoretic assumptions may be too strong. The replicator dynamic requires

two assumptions: an infinite population and random interaction between individual players

in the game. This particular dynamic determines how the share of the population using

a strategy evolves over time, but it does not provide information about the way in which

individual players make decisions. Although the replicator dynamic does not explicitly state

how the players determine their strategies, it can be derived from several types of imitative

behavior.

Using an evolutionary game with the replicator dynamic efficiently captures aggregate be-

havior in large populations, and it relaxes the assumptions regarding individual knowledge

of the game and the equilibrium. Since the population is assumed to be infinite with the

replicator dynamic, the simple dynamic captures aggregate strategies without requiring the

computation of each individual strategy, which is cumbersome in large populations. For
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populations that are large but finite, the replicator dynamic can be seen as an approxima-

tion of the aggregate strategies. This dynamic does not require individual players to have

knowledge of the game or knowledge of the equilibrium; instead, individual players do not

need to have any information about the game. Therefore, the replicator dynamic determines

how the share of the population engaged in a strategy evolves over time, but it does not

provide information about the way in which individual players make decisions. The dynamic

simply captures the fact that a given strategy will grow in the population when the payoff

from that strategy is higher than the average payoff from all strategies.

A drawback of the replicator dynamic is that individual players are not modeled as exhibit-

ing sophisticated behavior. In addition to knowledge of the game and knowledge of the

equilibrium, information regarding the efficacy of each strategy is not important for individ-

ual decisions in the game. While individuals may exhibit more sophisticated behavior like

using information on strategy efficacy to make their decisions, this dynamic does not require

this. While this is a drawback of modeling individual behavior, it is not clear whether it is

necessary to model individuals as sophisticated decision makers to capture the share of the

population engaging in each strategy in aggregate. In other words, using the replicator dy-

namic enables me to test whether it is necessary to model sophisticated individual behavior

to capture aggregate investment in disease prevention.

In this paper, I use a model based on the model presented in Carpenter (2014) where the

dynamic for aggregate investment in disease prevention is derived from individual payoffs

that underlie the decision to invest in disease prevention. While some models of disease have

started to incorporate endogenous individual response to disease, theory is largely unclear

on the ways in which individuals might respond to disease. One channel through which

disease has been shown to alter behavior is through the disease incidence or prevalence

elastic demand for disease prevention. Prevalence elastic demand for disease prevention is

characterized by an increase in demand for disease prevention as disease incidence increases
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and a decrease in demand for disease prevention as disease incidence decreases. While

there are many different ways that this behavior could be endogenized, this model assumes

that individuals change their behavior in response to their payoffs which are influenced by

the infection level. In this way, I incorporate individual response to disease in a manner

consistent with the evidence that suggests individuals exhibit prevalence elastic demand for

disease prevention.

I modified the Carpenter (2014) model to simplify the experimental design and analysis. Due

to the limited size of the experimental lab, it was necessary to have all subjects making a dis-

ease prevention investment decisions each round. Three simplifications of the original model

allow the same subjects to make decisions each round for the duration of the experiment.

First, I omit the possibility of a natural birth and death cycle in the population. Second,

I remove the possibility that an infection could “kill” an infected individual. Instead, sub-

jects can be infected but infection does not cause subjects to leave the population through

death. These two simplifications ensure that the population of subjects is fixed throughout

the experiment. Finally, although many diseases confer temporary immunity, I remove the

possibility of temporary immunity to the disease. This enables subjects to make decisions

each round thereby increasing the amount of data I was able to collect. Future research can

and should explore the impacts of changes in the population, infection induced removal from

the experiment, and infection induced immunity on the likelihood of investment in disease

prevention. Equations 1-4 present the modified version of Carpenter (2014).

dS(t)

dt
= I(t)− qα(t)S(t)

B(t)

k +B(t)
(2.1)

The change in the susceptible population, dS(t)
dt

, is provided in equation 1. The susceptible

population, S(t), is increased by the number of individuals that were disease infected, I(t),
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and have recovered. The susceptible population is decreased by the number of individuals

that become disease infected, qα(t)S(t) B(t)
k+B(t)

. The share of the population not investing

in disease prevention is α(t), and the probability that not investing in disease prevention

leads to disease exposure is q. The quantity qα(t) is the share of the population that is

actually exposed to the disease. This exposure occurs through consumption of bacteria, but

it does not necessarily result in infection. The probability that consuming bacteria results in

infection depends upon the amount of bacteria consumed. The number of bacteria that must

be consumed to give a 50% probability of infection is given by k, and B(t) is the number

of bacteria in the environment. Thus, the value B(t)
k+B(t)

is the time dependent probability of

infection. So, the quantity qα(t) B(t)
k+B(t)

is the share of the population that becomes disease

infected.

dI(t)

dt
= qα(t)S(t)

B(t)

k +B(t)
− I(t) (2.2)

The change in the infected population, dI(t)
dt

, is given by equation 2. The infected population

is increased by the number of individuals that become disease infected, qα(t)S(t) B(t)
k+B(t)

.

These infected individuals are removed from the susceptible population and included in the

infected population. The infected population is decreased by the number of individuals that

were disease infected, I(t), and have recovered. These recovered individuals are removed

from the infected population and included in the susceptible population.

dB(t)

dt
= θI(t)− δB(t) (2.3)

The change in the bacteria population in the environment, dB(t)
dt

, is displayed in equation
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3. The rate at which infected individuals shed bacteria into the environment is given by

θ. The population of bacteria in the environment is increased by the number of bacteria

shed by infected individuals, θI(t). The death rate of bacteria in the environment is δ. The

population of bacteria in the environment is decreased by the number of bacteria that die

in the environment, δB(t).

dα(t)

dt
= α(t)(1− α(t)) [c− c(I(t))− α(t)b] (2.4)

The change in the share of the population not investing in disease prevention, dα(t)
dt

, is shown

in equation 4. The cost of investing in disease prevention is given by c, and investing in

prevention provides full protection against disease. The benefit from avoiding infection is

represented by b. The cost of not investing in disease prevention is c(I(t)). In this paper,

c(I(t)) is assumed to be a linear function of the infection level. For a description of the

underlying evolutionary game and a step-by-step derivation of the dynamic see appendix

A.1.

2.2.2 Model Calibrations

To generate model predictions, I calibrate the model using the biological parameters given

in table 2.1. Since the original model in Carpenter (2014) is a model of cholera incidence,

the biological parameters used here represent the biology of a cholera epidemic. Although

the biological parameters of a cholera outbreak typically fall within a range of values, I

assume the biological parameters for the SIR model are fixed at a value that falls within

the biological range. I make this assumption, because I am interested in individual behavior

during an outbreak and not the biology of the outbreak.
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Table 2.1: Model Parameters

Treatments
Parameters High Cost Low Cost Footnotes

N 40 40 1

k 103 103 2

q .99 .99 3

θ 70 70 3

δ 7
30

7
30 3

Start Values

S(t) 40 40 1

B(t) 103 103 2

α(t) 0.525 0.1125 4

I(t) 0 0 5

Payoff Values

b 10
10

10
10 6

c 20
10

1
10 6

c(I(t)) I(t)
10

I(t)
10 6

1. The number of subjects that participated in each experiment

session. 2. These numbers give a high probility of infection if

not investing to induce subjects to care about infection. 3. Based

on models of cholera outbreak taken from Carpenter (2014).

4. Based on subjects initial experiment investment level. 5. Nobody

was initially infected with the disease. 6. Experimental units were

converted to money at a rate of 10 experimental units per 1 USD
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The predictions for individual behavior are derived by varying the parameters that influ-

ence the payoffs for the two available strategies: invest in prevention and do not invest in

prevention. Specifically, I explore the role of the cost of investing in prevention in the deci-

sion to invest in disease prevention. Policy makers typically attempt to change prevention

investment behavior during an outbreak by changing the cost of investment. For example,

during a cholera outbreak public health officials might intervene by providing clean water

free of charge to individuals in the affected area. Policy makers are less likely to to be able

to influence the benefit from prevention investment during an outbreak since the benefits

from disease prevention products are typically fixed. For this reason, I fix the benefit from

investing in disease prevention and vary the cost of investing in disease prevention.

Table 2.1 provides the parameters used to calibrate the payoffs for the evolutionary game

under different scenarios. The only difference between the two calibrations occurs for the

value c. The value c represents the cost of investing in disease prevention. The high cost

column provides the model parameter values used to calibrate the model when the cost of

investing in disease prevention is high. The low cost column provides the model parameter

values used to calibrate the model when the cost of investing in disease prevention is low.

Thus, the two different model calibrations provide predictions for prevention investment and

disease incidence under different costs of prevention investment.

Figure 2.1 gives the model predictions when the model is calibrated using different costs of

investing in disease prevention. It is easy to see that the model predicts that investment

in disease prevention will be high and disease incidence low under low costs of investing

in disease prevention. Conversely, under high costs of investing in disease prevention, the

model indicates that investment in disease prevention will be low and disease incidence high.

Using the model calibrations, I generate predictions for individual behavior in an infectious

disease laboratory experiment.

23



Figure 2.1: Model Predictions Under Different Costs of Prevention Investment
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2.2.3 Hypotheses

I identified 2 hypotheses to test in this experiment based on the calibrated SIR model.

Hypothesis 1. High costs of prevention investment will have a significant negative impact

on the probability that an individual invests in disease prevention.

This hypothesis comes from the difference in the percent of the population investing in disease

prevention when the cost of investing in prevention is high rather than low. When calibrating

the model using high costs of prevention investment, the model predicts that approximately

50% of the population will invest in disease prevention. However, when calibrating the model

using low costs of prevention investment, the model predicts that approximately 90% of the

population will invest in disease prevention. Thus, on an individual level, I expect that

experiencing high costs of prevention investment will significantly reduce the probability

that an individual invests in disease prevention.
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Hypothesis 2. Subjects will exhibit prevalence elastic demand for disease prevention.

The model presented in section 2.2.1 assumes that subjects will exhibit prevalence elastic

demand for disease prevention, a behavior that has been observed empirically. Prevalence

elastic demand for disease prevention products is characterized by an increase in demand for

prevention products as disease incidence increases and a decrease in demand for prevention

products as disease incidence decreases. One purpose of the following experiment is to test

the model assumption that subjects exhibit prevalence elastic demand for disease prevention.

2.3 Experiment Design

2.3.1 Basics

I conducted two experiment sessions in a computer laboratory in a large public university

with undergraduate students as human subjects. Students learned of the experimental sub-

ject pool through classroom advertisements. Students registered to be a part of the subject

pool through an online registration system. Several days before each session an email was

sent to randomly selected subjects in the pool notifying them of the upcoming experiment

session. Students interested in participating were instructed to register for a specific session

in the online registration system. Those who signed up received an e-mail reminder both

the day before and the day of the planned session. Subjects were not allowed to participate

in more than one session.

The susceptible population size for many diseases is typically very large. Unfortunately, the

lab in this is experiment is much smaller than the susceptible population for most diseases

with a total of 40 computers. To obtain the largest possible population size for this exper-

iment, I had to ensure that the lab was filled to capacity during each experimental session.
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In order to ensure the computer lab was filled to the maximum capacity of 40 subjects,

more than 40 subjects were recruited for each session. Subjects received $7 for showing up

regardless of their participation in the experiment. Subjects that showed-up but were not

needed for a given session were paid the show-up fee and told they were eligible to partici-

pate in future sessions. In this way, I obtained the largest possible population size given the

laboratory’s computer constraints.

2.3.2 Design

To test the two hypotheses presented in section 2.2.3, I conducted a within subject experi-

ment. The treatment variable was the cost of investing in disease prevention (cost of preven-

tion). The cost of prevention variable took on two values: high cost and low cost. Subjects

participated in a total of 50 experiment rounds. In the first session, subjects participated in

the high cost treatment for the first 25 rounds and participated in the low cost treatment for

the last 25 rounds. To control for order effects, I conducted an additional session where the

order of exposure to the treatment variables was reversed. In the second session, subjects

participated in the low cost treatment for the first 25 rounds and participated in the high

cost treatment for the last 25 rounds.

I used the calibrated SIS model presented in section 2 to generate the disease outbreak

dynamic. To program the SIS model presented in section 2.2 and conduct the experiment,

I used the z-tree software package (Fischbacher (2007)). Since the maximum susceptible

population size was 40 subjects and I conducted a total of 2 sessions, I had a total of 80

participants in the experiment. Each subject participated in a disease environment with

40 potentially susceptible individuals; so, each experiment session was its own independent

disease environment and, therefore, outbreak. The parameters presented in Table 2.1 were

used to calibrate the SIS model at the start of each experiment session.
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Although the model and parameters used were consistent with a model of a cholera outbreak,

the instructions presented the disease environment in general terms such that the disease

could have been any infectious disease. At the start of the experiment, subjects were told

that there was the possibility of contracting an “infectious disease”. They were informed

that there was a “disease prevention technology” that would provide full protection against

disease. Subjects were told that each round they would choose whether to “invest” in the

“disease prevention technology.” Subjects were instructed that if they chose not to invest in

the disease prevention technology, then they would be susceptible to infection. Screen shots

of the full experiment, including instructions, are available in the appendix A.4.

Each round, subjects chose between investing in a disease prevention technology and not

investing in a disease prevention technology. Subjects had 30 seconds to make a decision in

the first two rounds of each of the two treatments. Subjects were given 15 seconds to make

a decision for the remaining 23 rounds. If a subject failed to make the decision within the

allotted time, then her default choice was “do not invest” in disease prevention.

Subjects’ investment decisions were fed into the SIS model equation for α(t) to generate an

aggregate infection level. The aggregate infection level was used to determine the number

of subjects that were selected as “infected.” Only subjects that did not invest in disease

prevention during the round could be selected as “infected.” Since not all subjects that

chose not to invest in disease prevention became “infected,” a random number generator

was used to select “infected” subjects. Infection lasted only for the current round after

which subjects were again susceptible to infection.

After all subjects had made their decisions, subjects received information about the round

in the form of a results screen. The results screen provided subjects with their own decision,

their own infection status, their own round payoff, the total number of subjects infected, the

population percentage investing in disease prevention, the payoff from investing in disease

prevention, the payoff from not investing in disease prevention and not becoming infected,
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Table 2.2: Experimental Payoffs- Vari-
ables

Not Infected Infected
Invest E+b-c —–

Do Not Invest E+b-c(I(t)) E-c(I(t))

Table 2.3: Experimental Payoffs- Values

Not Infected Infected
Invest 40+10-20(1) —–

Do Not Invest 40+10-I(t) 40-I(t)

and the payoff from not investing in disease prevention and becoming infected. Beginning in

round 2, subjects were provided with a history box that provided the information from the

results screen. It is important to note that subjects were not provided with their objective

probability of infection in any of the treatments. This feature of the experiment mimics the

environment in which individuals make disease prevention investment decisions in reality.

Individuals do not know their objective probability of infection for any particular disease;

instead, they form a belief about their probability of infection. This is capture by the

information environment in this experiment.

Decisions in the experiment were incentivized to encourage subjects to seriously consider

their choices. Tables 2.2 and 2.3 provide the experimental payoffs. A subject’s payoff in the

round was jointly determined by their own strategy and by their own infection status. The

left hand side (LHS) of the tables indicates the two potential strategies: invest in disease

prevention or do not invest in disease prevention. The column headers indicate the potential

outcomes for each strategy: not infected with disease or infected with disease. A subject’s

payoff in the experiment was based off the evolutionary disease prevention game and the

subject’s own endowment, E. Each round every subject was endowed with 40 experimental

units to prevent them from earning a negative payoff.

Since investment in disease prevention provides full protection against disease, subjects that

invest in disease prevention can not become infected. If a subject chose to invest in disease

prevention, she receive a benefit of avoiding infection, b, of 10 experimental units. The cost

of investing in disease prevention, c, was 20 experimental units in the high cost treatment

and 1 experimental unit in the low cost treatment. In table 2.3, the cost of investing in
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disease prevention in the low cost treatment is given in parentheses.

If a subject chose not to invest in disease prevention, she was susceptible to infection. If a

subject chose not to invest in disease prevention and she was not infected, then she received

a benefit of avoiding infection, b, of 10 experimental units. If a subject did not choose to

invest in disease prevention and she was infected, then she received no benefit. All subjects

that did not invest in disease prevention paid a cost of not investing in disease prevention,

c(I(t)), equal to the number of infected individuals, I(t), in the round.

I interpret the cost of not investing in disease prevention differently based upon a subject’s

infection status. For the subjects selected for infection, this cost of not investing in the disease

prevention technology is the cost of becoming infected. In reality, this would include missing

time from work or school, going to the doctor, and paying for medication. For the subjects

not selected for infection, this cost of not investing in the disease prevention technology is

the cost of social exclusion. Individuals in the real world arguably pay costs for choosing

not to invest in disease prevention regardless of whether they become infected. These costs

can include increased time spent monitoring the disease, avoidance of places most likely to

increase the chance of infection, and being banned from public places. Because such factors

are difficult to capture in this environment, I simply assume that subjects choosing not to

invest in disease prevention pay a cost regardless of their infection status.

Subject payments were based on the the disease experiment and an incentivized lottery

conducted after the disease experiment. One round from the high cost treatment and one

round from the low cost treatment were randomly selected for payment for the disease

experiment. Payoffs in the rounds were measured in experimental units which were converted

to dollars at a rate of 10 experimental units per 1 USD. At the end of the 50 rounds,

subjects were asked to participate in a simple incentivized lottery of their choice to measure

risk preferences. Following Caldara (2013) who modified the approach used by Eckel and

Grossman (2008), each of three lotteries corresponded to a type of risk preferences: risk
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loving, risk neutral, or risk averse. Subjects chose one of three lotteries allowing for a rough

elicitation of risk preferences. The incentivized lottery was also conducted in experimental

units which were converted at a rate of 2 experimental units per 1 USD. Subjects were aware

of conversion rates prior to their decisions. The payouts for the rounds and lottery were

added to the $7 show-up fee for their total payment. The total payments were rounded up

to the nearest quarter. Subjects received on average $17.50 for 60 minutes of participation.

2.4 Results

2.4.1 Descriptive Statistics

Table 2.4 provides general descriptive statistics for subjects in the experiment. There were

more female subjects than male subjects in the overall experiment; however, being female is

not significant in explaining behavior in the experiment. There were more subjects of Asian

decent than subjects of other races which reflects the general student population at the large

public university where this experiment was conducted. Similarly, being of Asian decent was

not significant in explaining behavior in the experiment.

Table 2.4: Descriptive Statistics

Statistics
Male 30%
Female 70%
White (not hispanic) 9%
Hispanic 24%
Asian 60%
Black 1%
Mixed Race 4%
Undisclosed 2%
Average Payment $17.30
Number of Subjects 80

Figure 2.2 demonstrates the differences across treatment in the percent of the population
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investing in disease prevention. Hypothesis 1 suggests that when the costs of investing in

disease prevention are high, the probability of investing in disease prevention will be low. In

the high cost treatment, the percentage of subjects investing in the disease prevention tech-

nology ranges from 40%-70%. In the low cost treatment, the percentage of subjects investing

in the disease prevention technology ranges from 80%-98%. Average investment is 56% in the

high cost treatment and 92% in the low cost treatment. Disease incidence ranges from 10 to

19 subjects in the high cost treatment and from 1 to 4 subjects in the low cost treatment. In

the low cost treatment, the epidemic is nearly eliminated. Although regression analysis will

show that this difference is statistically significant, the graph clearly demonstrates that high

costs of investing in prevention are important in explaining prevention investment decisions.

Figure 2.2 show the relationship between the model prediction and experimental results for

the high cost treatment. Though subjects are more responsive to changes in the infection

level than the model predicts, the model does a decent job of predicting the experimental

data. In the high cost treatment, the model predicts that average investment will be 52% over

25 rounds. In the experiment, I observed an average investment of 56% over 25 rounds. In

the high cost treatment, the model predicts that 15.32 people will be infected on average each

round. In the experiment, I observed an average infection of 14 people each round. These

predictions are closed to the observed values with the observed infection slightly lower than

the predicted infection. Although there are small differences between predicted and observed

behavior, it is interesting that the replicator dynamic does relatively well at approximating

aggregate behavior even in this small, finite population.

Figure 2.2 provides the comparison for the model prediction and experimental results for the

low cost treatment. In the low cost treatment, the model predicts that over 25 rounds average

investment will be 94%, and I observed an average investment of 92%. The model predicts

that over 25 rounds the average infection will be .56 of a person, and I observed an average

infection of 1.34 people each round. These predictions are closed to the observed values with
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Figure 2.2: Model Prediction vs. Experimental Results
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the observed infection slightly higher than the predicted infection. The difference between

the observed and predicted values are due to the model prediction that disease prevention

investment will approach 100% and infections will fall to 0 beginning in the 10th round.

However, in the experiment, at least 1 person each round chose not to invest in disease

prevention causing at least 1 infection each round. The motivations of the subjects that

choose not to invest in disease prevention are not clear. Since these subjects make up such a

small part of the sample, it is difficult to determine whether any factors might explain their

behavior. Future research could use larger samples to determine what factors drive such

subjects’ behavior.

2.4.2 Treatment Results

The results reported in this section use a linear probability model with corrections for error

term correlations. Since subjects make repeated decisions over time in this experiment,

I have an individual level panel dataset. This means that the error terms are likely not

independent, but instead, they are correlated within an individual. I control for this using

fixed and random effects model specifications, and I report clustered, robust standard errors.

Since the dependent variable of interest is investment in disease prevention, the dependent

variable is binary. Although the correct model specification is non-linear, I report a linear
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probability model for ease of interpretation. The results reported in this paper are robust

to non-linear model specifications. A full discussion and the results of a non-linear model

specification are provided in appendix A.2.

Result 1. The probability that a subject invests in disease prevention is significantly lower

in the high cost treatment.

Hypothesis 1 states that high costs of investment will significantly reduce the probability of

investing in the disease prevention product. As the costs of protecting against disease rise,

subjects should be less likely to invest in disease prevention. Thus, being in the high cost

treatment should reduce the probability that subjects invest in disease prevention relative to

the low cost treatment. To test this I control for a dummy variable that indicates whether

subjects are in the high cost treatment.

Table 2.5 demonstrates that being in the high cost treatment significantly reduces the prob-

ability that a subject invests in disease prevention. Being in the high cost treatment is

associated with a 36% reduction in a subject’s probability of investment. This effect is sig-

nificant at the 1% level even when controlling for order and round effects. Similarly, table

2.6 shows that the magnitude of this effect increases when controlling for other factors that

impact the probability of investing in the disease prevention technology including infection

levels, prior infection status, and historical infection levels. Since subjects are exposed to

both high and low cost treatments, this finding demonstrates that an important driver of

investment in disease prevention is the cost of investing in disease prevention.

Result 2. Subjects exhibit prevalence elastic demand for disease prevention.

Hypothesis 2 suggests that subjects will exhibit prevalence elastic demand for disease pre-

vention. In other words, if disease incidence increases, the probability a subject invests in
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Table 2.5: Effect of Treatments on Decision to Invest in Disease Prevention

Investment in Disease Prevention
RE

(1) (2) (3)
High Cost Treatment -0.36∗∗∗ -0.36∗∗∗ -0.36∗∗∗

(0.03) (0.05) (0.05)

Order Effects -0.01 0.00 0.00
(0.04) (0.04) (0.04)

High Cost Treatment * Order Effects -0.01 -0.01
(0.06) (0.07)

Round Effects No No Yes
Observations 4000 4000 4000
R2 0.17 0.17 0.18

Clustered robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

disease prevention will also increase. Since I am interested in the impact of disease prevalence

on the probability of investing in disease prevention, I use a 1 round lag in disease incidence

to measure disease prevalence. To show that subjects are responding to the aggregate infec-

tion level and not changes in their own infection status, I control for each subjects infection

status in the previous round.

Table 2.6 equations 1-6 demonstrate that subjects do exhibit prevalence elastic demand for

disease prevention. Equation 1 shows that an increase in disease prevalence (incidence: 1

lag) alone is not significant in explaining the probability of investing in disease prevention.

However, a subjects infection status in the prior round, the history of the outbreak, and the

possibility that subjects react differently to the outbreak at different aggregate infection levels

likely also impact an individual’s probability of investing in disease prevention. Equations 2-

6 control for these relevant factors and demonstrate that an increase in the disease incidence

in the previous round is associated with an increase in the probability of investing in disease

prevention. This effect is significant at the 1% level.
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Table 2.6: Effect of Changes in Disease Incidence on Decision to Invest in Disease Prevention

Investment in Disease Prevention
FE RE

(1) (2) (3) (4) (5) (6)
Incidence: 1 Lag 0.003 0.01 0.01∗ 0.03∗∗∗ 0.05∗∗∗ 0.05∗∗∗

(0.00) (0.00) (0.00) (0.01) (0.01) (0.01)

Infected: 1 Lag -0.15∗∗∗ -0.15∗∗∗ -0.15∗∗∗ -0.15∗∗∗ -0.20∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04)

Incidence: 2 Lags 0.01∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.01) (0.01) (0.01)

Squared Incidence: 1 Lag -0.001∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.00) (0.00) (0.00)

Free Rider Factor -0.06∗∗

(0.02)

High Cost Treatment -0.43∗∗∗ -0.43∗∗∗ -0.62∗∗∗ -0.55∗∗∗ -0.84∗∗∗ -0.83∗∗∗

(0.07) (0.07) (0.10) (0.08) (0.11) (0.12)

Round Effects Yes Yes Yes Yes Yes Yes
Observations 3552 3552 3404 3552 3404 3358
R2 0.22 0.24 0.24 0.24 0.24 0.19

Clustered robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Result 3. Being infected in the previous round reduces the probability of investing in disease

prevention in the current round.

It is not immediately clear how subjects should be expected to change their decisions, if

at all, in response to becoming infected in the previous round. If the outbreak was worse

than anticipated, then a subject might respond to becoming infected by investing in disease

prevention in the next round. Similarly, if a subject dislikes the lower payoff from becoming

infected, then she might respond by investing in disease prevention in the next round. How-

ever, if a subject plays the odds or probability matches, then she might respond to becoming

infected by not investing in disease prevention in the next round (Vulkan (2000)). Similarly,

if a subject is risk seeking in losses, then she might try to make up for the lower payoff by

not investing in disease prevention in the next round (Tversky and Kahneman (1986)). To

test the direction of this effect, I used a dummy variable as an indicator for subjects that

were infected in the prior round.

Table 2.6 equations 2-6 provides the results for the effect of a prior round infection (infected:

1 lag) on the probability of investing in disease prevention. I find that being infected in

the previous round significantly reduces the probability of investing in disease prevention.

This effect is significant at the 1% level. While I demonstrate that subjects are less likely

to invest in disease prevention after being infected in the previous round, I can not offer a

definitive explanation for this behavior. It could be that subjects are probability matching

or it could be that in the abstract disease environment, subjects are just trying to make up

for receiving a lower payoff.

Future research should seek to determine whether individuals do probability match in an

infectious disease context and the relative frequency of this behavior. In a public health con-

text, probability matching is particularly problematic for diseases that do not confer life-long

immunity. If individuals probability match after an infection, public health officials could
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have difficulty eliminating an outbreak due to reinfection of those individuals. Understand-

ing the frequency of probability matching and the conditions under which it occurs during

an outbreak could be useful in eliminating future epidemics.

Result 4. As disease incidence increases, the probability of investment increases at a de-

creasing rate.

Since the probability of becoming infected is higher at higher levels of infection, I expected

that the probability of investing in disease prevention would be greater at higher levels of

infection. In other words, I expected an increase of 1 infection when 14 people are infected

to increase the probability of investing in disease prevention more than an increase of 1

infection when only 1 person is infected. To test this, I create a 1 round lagged squared

disease incidence variable.

Table 2.6 equations 4-6 show that I actually find the opposite effect. The lagged, squared

disease incidence (squared incidence: 1 lag) has a negative impact on the probability of

investing in disease prevention. This means that as infection levels rise, an increase in the

infection level has a smaller impact on the probability of investing in disease prevention.

This effect is significant at the 1% level. A potential explanation for this result is that

some subjects exhibit herd behavior by mimicking the investment decisions of other sub-

jects. While this behavior has been theorized and reported in other experimental contexts

(Shiller (1995),Bikhchandani et al. (1998), and Hirshleifer and Teoh (2003)), this experiment

demonstrates that herd behavior may be important in explaining prevention investment in

a disease context. At the end of each experiment round, subjects were told both the number

of subjects infected in the round and the percentage of the population investing in disease

prevention during the round. Higher infection levels in the experiment were caused by fewer

subjects investing in disease prevention. If subjects placed more weight on information about

actions taken by others than they did on the private information about their own infection
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status, then higher disease incidence would reduce the probability of investing in disease

prevention.

This result is in direct conflict with the model assumption that subjects exhibit prevalence

elastic demand for disease prevention. Prevalence elastic demand suggests that higher disease

incidence will cause an increase in the probability of investing. While I do find evidence of

prevalence elastic demand, I also find evidence that indicates subjects may exhibit herd

behavior. This suggests that there is a trade-off between prevalence elastic demand and

herd behavior at high levels of infection. Understanding the conditions under which this

trade-off exists and the implications of this trade-off for disease dynamics is an important

area for future study.

Result 5. There is persistence in the impact of disease incidence on investment decisions.

I expected higher past levels of infection to increase the probability of investing in disease

prevention. There are a couple possible channels through which historical infection levels

may influence current behavior. The first is that higher levels of infection in the past may

make a subject less likely to stop investing in disease prevention. Since fewer subjects stop

investing in disease prevention, higher historical infection levels may increase the probability

that a subjects invests in disease prevention. Another possibility is that a subject may

begin to understand the pattern for the disease outbreak after several rounds. Thus, she

may recognize that higher infection levels in the past make a current infection more likely. A

subject may be more likely to invest in disease prevention in response to this realized pattern.

To test whether disease incidence has a persistent impact on the probability of investing in

disease prevention, I control for a 2 round lag in disease incidence. This control does not

indicate the channel through which historical disease incidence impacts current behavior,

but it does illustrate the direction of the effect.
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Table 2.6 equations 3, 5, and 6 give the impact of historical infection levels (incidence: 2

lags) on the probability of investing in disease prevention. I confirm that higher historical

infection levels do have a significant positive impact on the probability of investing in disease

prevention. This effect is significant at the 1% level. Furthermore, although higher infection

levels 1 round and 2 rounds ago both increase the probability of investing in disease pre-

vention, the impact of higher infections 2 rounds ago is smaller than the impact of higher

infections 1 round ago. This suggests that the most recent infection levels impact prevention

investment decisions more than historical infection levels.

Further research should explore the conditions under which disease incidence has a long

term effect on the probability of investment in disease prevention and the channels through

which this behavior change occurs. From a health policy perspective, it is important to

understand how long certain health behaviors persist to determine when a population might

again be susceptible to illness. This can aid public health officials in targeting disease

response. Additionally, it would be useful to understand why higher historical infection

levels increase the probability of investing in disease prevention. If this change occurs due

to pattern recognition, then perhaps public health officials can increase individual disease

awareness to induce pattern recognition earlier in an outbreak. If this change occurs due to

an unwillingness to stop investing in disease prevention, then perhaps public health officials

should target initial adoption of disease prevention behaviors knowing that adopters will be

less likely to stop. Determining the factors that influence prevention investment persistent

and the duration of the persistence is an interesting area for future research.

2.4.3 Disease Attitudes and Investment Decisions

A potential concern with this type of research is that the results may lack external validity.

Since the subjects are university students making decisions in an abstract disease environ-
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ment, the choices made in the experiment may not accurately capture choices individuals

make during disease epidemics. To generalize the behavior in the experiment, it is necessary

that the choices made in the experiment reflect behavior during disease epidemics.

I address this concern by comparing reported engagement in real-world disease prevention

behaviors and beliefs about others’ engagement in disease prevention with behavior in the

experiment. After the experiment finished, subjects completed a questionnaire containing

questions on demographics, engagement in disease prevention behaviors, and beliefs about

others’ engagement in disease prevention behaviors. Specifically, I ask subjects to self-

report the frequency with which they wash their hands after using the restroom, wash their

hands before eating, and cover their mouth when coughing in public. These questions were

scaled ranging from 1 to 5 with 1 being every time and 5 being never. Additionally, I

ask subjects to report the percentage of the time that most people wash their hands after

using the restroom, wash their hands before eating, and cover their mouth when coughing in

public. Higher reported percentages indicate higher subjective beliefs about the engagement

in disease prevention by others. Using this data, I expect reported real-world behavior and

beliefs about others to be correlated with behavior in the experiment if the experiment has

external validity.

Interestingly, self-reported engagement in disease prevention behaviors, like hand washing

and covering coughs, by themselves are not significantly correlated with the probability of

investing in disease prevention in either experimental treatment. A potential explanation

for this is that subjects might not accurately report their own engagement in behaviors like

hand washing and covering coughs. Subjects likely know the importance of hand-washing

and covering coughs for disease prevention, and therefore, are likely to overstate their own

engagement in these behaviors. In fact, I find little variation in responses with most subjects

reporting frequent engagement in these behaviors (see appendix A.3).
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Result 6. Subjects who report free-riding off the disease prevention investments of others

in reality are less likely to invest in disease prevention in the experiment.

Since I want to isolate attitudes toward disease prevention, I can use factor analysis to weight

each question according to the unobserved latent variable: disease prevention attitudes.

Using each individual’s reported engagement in real-world disease prevention and beliefs

about others’ real-world engagement in disease prevention, I create a ’Free Rider’ factor

that captures individual responses to the questions. The six questions had solid internal

consistency with Cronbach’s alpha of 0.61. The ’Free Rider’ factor has an eigenvalue of

1.01. Subjects that scored high on the ’Free Rider’ factor report lower engagement in disease

prevention and reportedly believe a higher percentage of others engage in disease prevention

behavior. If the experiment captures real-world disease prevention behavior, then subjects

scoring high on the ’Free Rider’ factor should be more likely to free ride off the disease

prevention investments of others in the experiment. In other words, a high score on the

’Free Rider’ factor should reduce the probability of investing in disease prevention in the

experiment.

I find that reported real-world free-riding on disease prevention investments is correlated with

free-riding behavior in the experiment. Table 2.6 equation 6 demonstrates that an increase

in one standard deviation in reported real-world free riding decreases the probability of

investment in disease prevention in the experiment by 6 percentage points. This effect is

significant at the 1% level. While free-riding behavior has been well documented with regards

vaccine uptake, I demonstrate that reported free-riding behavior extends beyond vaccination

to other preventive behaviors such as hand washing and covering coughs. Furthermore, I

find that reported real-world engagement in free-riding behavior is consistent with decisions

made in the experiment. This suggests that laboratory experiments can capture real-world

engagement in disease prevention.
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2.5 Conclusion

Understanding individual behavioral responses to disease is important for understanding the

best ways in which to prevent or reduce an outbreak. Although individuals likely change their

behavior in response to infectious disease outbreaks, research in this area is relatively new.

The primary challenge for researchers has been collecting or obtaining data on individual level

behaviors during an outbreak. Since efforts are typically focused on prevention interventions

during an outbreak, there is little data on the additional actions taken by individuals to

protect themselves and others from the outbreak. This makes it difficult to endogenize

behavior in mathematical models of disease, because it is not clear how behavior should be

endogenized. Furthermore, when behavior is endogenized in mathematical models of disease,

the lack of individual level data on decisions during an outbreak makes it difficult to test

the model assumptions regarding behavior.

I provide one solution for generating individual level data with which to test behavior as-

sumptions in mathematical models of disease: a laboratory experiment. To do this, I endog-

enize behavior into a mathematical model of disease using an evolutionary game and existing

research that suggests individuals exhibit prevalence elastic demand for disease prevention.

In the game, different payoffs correspond to each choice: invest or do not invest in disease

prevention. The choice that provides the highest payoff will grow in aggregate. In the lab, I

create an artificial disease environment and allow subjects to make their disease prevention

investment decisions. Since the dynamic for aggregate investment in disease prevention is

derived from the individual payoffs underlying the decision, I am able to provide experimen-

tal subjects with payoffs from the mathematical model. I then use subjects’ choices during

the experiment to compare the model predictions with the observed experimental data.

The mathematical model provides two primary hypotheses. First, high costs of investing in

disease prevention will reduce investment in disease prevention. Second, subjects will exhibit
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prevalence elastic demand for disease prevention. In other words, as infection levels rise, the

probability of investing in disease prevention should rise. I used data from the laboratory

experiment to test these two hypotheses. Furthermore, I use the data gathered from the

experiment to explore new factors that might be relevant in explaining investment in disease

prevention during disease outbreaks.

I find support for both hypotheses, and I show that additional factors are relevant in ex-

plaining the probability of investing in disease prevention. High costs of investing in disease

prevention have a significant negative impact on the probability of investing in disease pre-

vention. Similarly, higher infection levels significantly increase the probability of investing

in disease prevention. However, I find that this effect is larger at lower infection levels than

at higher infection levels. Additionally, I find that a subject’s own infection status and

the outbreak history are significant in explaining the probability of investing in disease pre-

vention. Being infected in the previous period significantly reduces the probability that a

subject invests in disease prevention; whereas, higher historical infection levels increase the

probability that a subject invests in disease prevention.

A potential issue with this type of research is the external validity of the decisions made in

the artificial disease environment. Specifically, this abstract environment may not accurately

capture subjects real-world attitudes toward disease prevention. I address this issue by

comparing individual behavior in the experiment with reported real-world engagement in

disease prevention behaviors like hand washing and covering coughs. I find that subjects

who report free-riding off the disease prevention investments of others in reality are more

likely to free-ride off the disease prevention investment of others in the experiment. This

suggests that the abstract laboratory environment does capture real-world attitudes towards

investment in disease prevention.

Several findings in this paper are interesting areas for future research. First, it is important

to determine the conditions under which individuals probability match after an infection with
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an illness that does not confer immunity. In this context, subjects that probability match

continue to forego investing in disease prevention even after a non immunity conferring

infection. Understanding how this behavior can be mitigated is important for reducing the

magnitude of disease outbreaks.

Second, more work is needed to understand the trade-off between prevalence elastic demand

for disease prevention and other behavioral biases. Although I do find evidence of prevalence

elastic demand for disease prevention, I show that this behavior diminishes at higher infection

levels. Since subjects have information on the aggregate choices of others and higher infection

levels are caused by lower investment in disease prevention, I suggest that one potential

explanation for this is that subjects may exhibit herd behavior. If subjects exhibit herd

behavior in disease environments, then understanding the conditions that lead subjects to

follow others may help to increase investment in disease prevention when infection levels are

high.

Third, determining the length and reason that higher historical infection levels increase

investment in disease prevention can help researchers understand the causes of behavior

change. Knowing when individuals are likely to stop engaging in disease prevention can

help indicate when a population will again become susceptible to a disease. Additionally,

understanding how the information about historical infections impacts current decisions can

help researchers identify the best ways to encourage investment in disease prevention.

Finally, although I found that reported engagement in real-world disease prevention behav-

iors is correlated with disease prevention behavior in the experiment, better questionnaires

that illicit health attitudes and beliefs are needed to determine whether behavior in the

experiment reflects real-world behavior. There are actually two issues here: question design

and types of questions to ask. The challenge in designing the questions is to ask them in

such a way that an individual’s beliefs or attitudes regarding health are accurately reflected

by their response to the question. The challenge in asking the questions is knowing which
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questions should be correlated with behavior. In order to provide more tests of the external

validity of the experimental disease environment, we need to develop a better understand-

ing of the types of questions and responses that should be correlated with behavior in an

infectious disease context.
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Chapter 3

The Role of Outbreak Information

and Social Exclusion in Investment in

Disease Prevention

3.1 Introduction

The risk of infectious diseases constitutes an increasing threat to public health. The ease of

global travel enables emerging infectious diseases to be rapidly transmitted to new host pop-

ulations (Morse (2001)). Furthermore, the global changes in climate are expected to increase

the incidence and distribution of infectious diseases by increasing the range and abundance

of animal reservoirs and insect vectors, prolonging transmission cycles, and reestablishing

previously eliminated endemic, infectious diseases (Greer et al. (2008)). Despite the increas-

ing threat posed by infectious diseases, epidemic induced behavioral responses to disease

remain relatively understudied.

The primary challenge associated with studying epidemic induced behavior is collection of
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data on individual behaviors during an infectious disease outbreak. Ideally, researchers

would have access to an individual level panel dataset containing data on all actions taken

by individuals to protect against disease before, during, and after an epidemic. Since the

primary goal of public health officials during an epidemic is to end the epidemic, obtaining

such detailed data on individual behavior is rare.

To generate data on epidemic induced disease prevention behavior, I build on work by Chen

et al. (2013) and Carpenter (2016) by conducting a laboratory experiment with a simu-

lated disease environment. The experimental payoffs are given by an epidemiological model

with endogenous disease prevention investment developed by Carpenter (2014) and Car-

penter (2016). These models endogenize the decision to invest in disease prevention using

an evolutionary game with the replicator dynamic. Since the disease prevention behav-

ior dynamic is derived from underlying individual payoffs, I provide experimental subjects

with the payoffs from the evolutionary game and compare model predictions with observed

experimental behavior.

The purpose of this paper is to explore the two assumptions made regarding outbreak in-

formation and social exclusion costs in Carpenter (2014) and Carpenter (2016) to

determine their impacts on individual behavior during infectious disease outbreaks. First,

these models assume that behavior evolves according to the replicator dynamic, a technique

that allows individuals to exhibit unsophisticated decision making behavior. An implication

of this assumption is that providing subjects with outbreak information does not impact

their decision to invest in disease prevention. Second, individuals choosing to refrain from

disease prevention investment face costs of social exclusion. Social exclusion costs are a

type of ostracism or isolation imposed by society on individuals that have potentially been

exposed to a disease. These models assume that individuals that avoid investing in disease

prevention are subjected to social exclusion costs. A result of this assumption is an increase

in the probability of investing in disease prevention.
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Empirically, the role of information provision in disease prevention is mixed, but the im-

pact seems to depend crucially on the type of information and to whom it’s given (Dupas

(2011c)). In the context of HIV/AIDS, Duflo et al. (2015) find that providing HIV/AIDS

education increases self reported use of condoms, but it does not actually decrease the inci-

dence of teenage childbearing. However, Dupas (2011a) show that providing teenagers with

information that HIV prevalence is higher among adult men than among teenage boys leads

to a reduction in the incidence of teenage pregnancies with adult partners. Similarly, in the

context of water contamination, Aziz et al. (2006) demonstrate that exposure to information

about the effects of arsenic contaminated water does not increase the adoption of behaviors

to reduce exposure to contaminated water. However, Madajewicz et al. (2007) find that

providing a household with information about the arsenic contamination status of their well

water increases the probability that the household switches wells in the event of contamina-

tion. Dupas (2011c) provides a review of the literature on information provision and health

behavior changes. This paper diverges from prior literature by focusing specifically on the

provision of information regarding epidemic magnitude and the prevention investment deci-

sions of others. Since research on information provision and disease protective behaviors is

mixed, I base the hypothesized relationship between outbreak information and prevention

investment decisions on the mathematical model of disease with endogenous disease preven-

tion behavior. I hypothesize that provision of information on outbreak magnitude and on

disease prevention investment decisions of others will not impact the probability of investing

in disease prevention.

Research suggests that the presence of social exclusion costs increases investment in disease

prevention. Historically, social exclusion has been implemented as a technique to increase

adoption of disease prevention behaviors. Examples of social exclusion include disgust to-

ward disease propagating behaviors (Curtis and Biran (2001); Curtis (2011)), quarantining

potentially disease exposed individuals (Gensini et al. (2004); Tognotti (2013)), and banning

public school attendance for unvaccinated children (Orenstein and Hinman (1999); Wilson

48



et al. (2005)). For simplicity, I assume that experimental disease exposure comes only from

failure to invest in disease prevention, and therefore, individuals that choose not to invest

in disease prevention face costs of social exclusion. This paper diverges from prior research

by explicitly incorporating social exclusion costs into the payoff for not investing in disease

prevention. Like prior research, the model suggests that facing social exclusion costs for fore-

going prevention investment increases the probability of investing in disease prevention. So,

I hypothesize that enforcing social exclusion costs for individuals who fail to invest in disease

prevention will increase the probability that an individual invests in disease prevention.

I use the laboratory experiment with a simulated disease outbreak to explore the impact

of outbreak information and social exclusion on the probability of investing in disease pre-

vention. Subjects must choose whether to invest in disease prevention in each round of the

experiment. Prevention investment is costly, but provides full protection against disease.

Subjects that choose to forego prevention investment are at risk of infection. The cost of

foregoing prevention investment varies by treatment. I use a between subjects experimen-

tal design. There are 2 treatment variables: outbreak information and exclusion costs. The

outbreak information variable takes on two values: outbreak information and no outbreak in-

formation. The exclusion cost variable takes on two values: exclusion costs and no exclusion

costs. I compare the experiment results across treatments and with model predictions.

I find that outbreak information and social exclusion costs have a significant impact on

the probability of investing in disease prevention. I reject the hypothesis that outbreak

information does not have a significant effect on the decision to invest in disease prevention.

Instead, providing subjects with information on the outbreak magnitude and on the share of

the population investing in disease prevention reduces the probability of investing in disease

prevention. This effect happens through two channels: a decrease in the probability that

a subject starts investing in disease prevention and an increase in the probability that a

subject stops investing in disease prevention. I demonstrate support for the hypothesis that

49



social exclusion costs increase the probability of investing in disease prevention. This effect

happens through two channels: an increase in the probability that a subject starts investing

in disease prevention and a decrease in the probability that a subject stops investing in

disease prevention.

This paper proceeds as follows: Section 2 provides the model used in the experiment. Section
3 describes the experimental design, Section 4 provides the results, and Section 5 concludes.

3.2 Epidemiological Model

The model used in this paper is a modified version of the SIR model of cholera outbreak

developed in Carpenter (2014) and modified in Carpenter (2016). The full epidemiological

model of disease is characterized by a system of four dynamic equations. This model includes

a dynamic equation for changes in the disease susceptible population, changes in the disease

infected population, changes in the environmental bacteria population, and changes in the

share of the population not investing in disease prevention. Although I present the dynamic

equations for the biological components of the model below, the focus of this paper is on

disease prevention investment behavior.

To endogenize the decision to invest in disease prevention, I use an evolutionary game with

the replicator dynamic. Evolutionary game theory was developed to model strategic inter-

action in large populations. In an infectious disease setting, populations are generally large.

Standard game theory requires that all players have full knowledge of the underlying disease

dynamic, equilibria, and all disease prevention actions taken by others. In large populations,

like a typical population facing a disease epidemic, it is unlikely that all players have com-

mon knowledge of the game. Using an evolutionary game avoids the strong assumptions on

players knowledge of the game.
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The replicator dynamic does not provide information about the way in which individuals

make decisions. Instead, it captures the idea that a given strategy will grow when the payoff

from that particular strategy is larger than the average payoff. One way to explain individual

behavior in this dynamic is that individuals are randomly matched with another individual

each time period. If the matched individuals have different strategies, they can each compare

the payoff under the alternative strategy. When the payoff under the alternative strategy

is higher, they will adopt the other strategy with some probability. To explain the payoff

differences in the two models presented, I will use this interpretation of the replicator dy-

namic. However, it should be noted that the replicator dynamic can arise under other types

of individual behavior, as well.

Like Carpenter (2016), constraints on both the budget size and the experimental lab size

made it necessary to have all subjects making a decision in each round of the experiment. I

modify the model presented in Carpenter (2014) in three ways to achieve this experimentally.

First, I omitted the natural birth and death cycle from the model. Second, I eliminate the

possibility that disease infection can “kill” or remove a subject from the population. These

two modifications together ensure that the size of the population in the experiment is fixed.

Third, I omit the possibility that disease infection can confer temporary immunity. Removing

the possibility that the infection can provide temporary immunity to reinfection allows all

subjects to make a decision each round. This increases the amount of data that I am able

to collect with a small population size. Future research should explore the impact of these

changes on the probability of investing in disease prevention.

The change in the susceptible population is given by equation 1. The susceptible popu-

lation, S(t), is increased by the number of infected individuals that recover from disease

infection, I(t). It is decreased by the number of individuals that become disease infected,

qα(t)S(t) B(t)
k+B(t)

. The value q is the probability that not investing in disease prevention leads

to disease exposure, and α(t) is the share of the population that does not invest in disease
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prevention. In this model, exposure to the disease does not necessarily mean that an individ-

ual will become disease infected. Individuals’ probability of becoming infected is increasing

in the number of bacteria that they are exposed to. The value k is the level of bacteria

consumption that would result in a 50% probability of infection, and B(t) is the number

of bacteria in the environment at time t. So, the fraction B(t)
k+B(t)

is the time dependent

probability of infection.

dS(t)

dt
= I(t)− qα(t)S(t)

B(t)

k +B(t)
(3.1)

The change in the disease infected population is provided by equation 2. The infected pop-

ulation is increased by the number of people that become disease infected, qα(t)S(t) B(t)
k+B(t)

.

Upon becoming infected, individuals leave the susceptible population and join the infected

population. The infected population is decreased by the number of infected people that re-

cover from the disease, I(t). When subjects recover, they move from the infected population

back into the susceptible population.

dI(t)

dt
= qα(t)S(t)

B(t)

k +B(t)
− I(t) (3.2)

The change in the bacteria in the environment is given by equation 3. The bacteria popu-

lation in the environment is increased by the number of bacteria infected individuals shed

into the environment. The bacteria population in the environment is decreased by the num-

ber of bacteria that die off in the environment. Infected individuals shed bacteria into the

environment at a rate of θ. So, the quantity θI(t) is the number of bacteria shed into the

environment. The value δ is the rate at which bacteria die in the environment. Thus, the
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quantity δB(t) is the number of bacteria that die in the environment at time, t.

dB(t)

dt
= θI(t)− δB(t) (3.3)

I derive two different dynamics for changes in the share of the population not investing

in disease prevention. The first dynamic is the dynamic for disease prevention investment

behavior developed in Carpenter (2016). This dynamic is derived from an evolutionary game

where individuals that do not invest in prevention and are matched with an investor pay a

cost. I argue that this is the cost of social exclusion or social ostracism that accompanies the

decision not to invest in disease prevention. The second dynamic I develop to capture disease

prevention investment behavior relaxes this assumption. It is derived from an evolutionary

game where individuals that do not invest in prevention and are matched with an investor

do not pay a cost. Each dynamic for disease prevention investment behavior combined with

the dynamic equations 1-4 presented above represents a separate model for disease outbreak.

3.2.1 Model 1

Table 3.1: Prevention Investment Game: Model 1

Invest Do Not Invest
Invest b-c b-c

Do Not Invest b-c(I(t)) -c(I(t))

Table 3.1 provides the payoffs for the evolutionary prevention investment game. As is stan-

dard practice for evolutionary games, table 3.1 provides the payoffs for only 1 player, the

player on the left hand side. Individuals that choose to invest in disease prevention receive a

benefit of avoiding infection, b. The cost of investing in disease prevention is c. Individuals

choosing to invest in disease prevention receive this benefit and incur this cost regardless of

whether they are randomly matched with another investor.
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The payoff for individuals that choose not to invest in disease prevention depends upon

whether they are match with an investor or a non investor. Individuals that choose not to

invest in disease prevention and are matched with an investor receive a benefit of avoiding

infection, b. These individuals pay a cost, c(I(t)), which is a function of the number of

infected individuals at a given point in time. This cost is interpreted as the cost of social

exclusion. As infection levels rise, non-investors face increased costs of social exclusion or

social ostracism for choosing not to invest. For this reason, I refer to model 1 as the ’exclusion

cost’ model. Individuals that choose not to invest in disease prevention and are matched with

a non investor receive no benefit. These individuals pay a cost, c(I(t)), which is a function

of the number of infected individuals at a given point in time. This cost is interpreted as the

cost of infection. As infection levels rise, becoming infected becomes more costly as medical

resources become strained under increased use.

dα(t)

dt
= α(t)(1− α(t)) [c− c(I(t))− α(t)b] (3.4)

I used the replicator dynamic with the payoffs for each strategy reported in table 3.1 to

derive the dynamic for disease prevention investment. Equation 4 provides the dynamic for

the change in the share of the population not investing in disease prevention used in Model 1.

For the full step-by-step derivation, please see appendix A.1.1. Model 1 is fully characterized

by equations 1-4.

3.2.2 Model 2

Table 3.2 shows the payoffs for the evolutionary prevention investment game. Table 3.2

provides the payoffs for only 1 player, the player on the left hand side. It is easy to see
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Table 3.2: Prevention Investment Game: Model 2

Invest Do Not Invest
Invest b-c b-c

Do Not Invest b -c(I(t))

here that the payoff for investing in disease prevention is the same for model 1 and model

2. Individuals that choose to invest in disease prevention receive a benefit from avoiding

infection, b. Individuals that choose to invest in disease prevention pay a cost to invest, c.

The payoff for individuals that choose not to invest in disease prevention depends upon

whether they are matched with an investor or a non investor. Like model 1, individuals

that choose not to invest in disease prevention and are matched with another non-investor

pay a cost of infection that is a function of the number of infected individuals, c(I(t)), at a

given point in time. These individuals receive no benefit. The difference between models 1

and 2 occurs in the payoff for individuals that chose not to invest in disease prevention and

are matched with an investor. In both models 1 and 2, these individual receive a benefit of

avoiding infection, b. However, in model 2, there are no costs for choosing not to invest in

disease prevention and being matched with an investor. In other words, there are no social

exclusion costs in model 2. For this reason, I refer to model 2 as the ’no exclusion cost’

model.

dα(t)

dt
= α(t)(1− α(t)) [c− α(t)(b+ c(I(t)))] (3.5)

I used the replicator dynamic with the payoffs for each strategy reported in table 3.2 to

derive the dynamic for disease prevention investment. Equation 5 provides the dynamic for

the change in the share of the population not investing in disease prevention used in Model

2. For the full step-by-step derivation of the dynamic, please see appendix A.1.2. Model 2
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is fully characterized by equations 1-3 and equation 5 (given above).

3.2.3 Model Calibrations

Table 3.3: Model Parameters

Parameters Values Footnotes

N 40 1

k 103 2

q .99 3

θ 70 3

δ 7
30 3

Start Values

S(t) 40 1

B(t) 103 2

α(t) 0.525 4

I(t) 0 5

Payoff Values

b 10
10 6

c 20
10 6

c(I(t)) I(t)
10 6

1. The number of subjects that participated in each experiment

session. 2. These numbers give a high probility of infection if

not investing to induce subjects to care about infection. 3. Based

on models of cholera outbreak taken from Carpenter (2014).

4. Based on subjects initial experiment investment level. 5. Nobody

was initially infected with the disease. 6. Experimental units were

converted to money at a rate of 10 experimental units per 1 USD

To generate the model predictions, I calibrated each of the equations in the system for each

model. Table 3.3 provides both the biological parameters and the payoffs used to calibrate

the dynamic system. The biological parameters are based on a model of cholera outbreak

since the model was originally developed to capture behavior during a cholera epidemic.

The parameter values chosen for the evolutionary game payoff matrix are the values used in
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Figure 3.1: Predicted Prevention Investment and Infection Levels by Model
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Carpenter (2016).

Figure 3.1 demonstrates the predictions of the calibrated models. By comparing the share

of the population not investing in disease prevention under the two models, I generate pre-

dictions for behavior when subjects are exposed to social exclusion costs. Model 1 predicts

that approximately 50% of the population will invest in disease prevention. Model 2 predicts

that approximately 36% of the population will invest in disease prevention. Comparing these

predictions indicates that investment in disease prevention should be higher when individu-

als face costs of social exclusion (model 1) than when individuals do not face costs of social

exclusion (model 2). This seems reasonable since prediction is consistent with prior research

that suggests the presence of social exclusion costs increase investment in disease prevention.

Although figure 3.1 provides the predictions of the calibrated models, there is no distinct

prediction for the presence or absence of outbreak information. The replicator dynamic does

not allow for information to play a role in the change in the share of the population investing

in disease prevention. In other words, the presence or absence of outbreak information

available to individuals does not change the predictions of either model. Regardless of

the information available to individuals, model 1 predicts that approximately 50% of the

population will invest in disease prediction, and model 2 predicts that approximately 36%
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of the population will invest in disease prevention.

3.2.4 Hypotheses

I identified 2 hypotheses to test in this experiment based on the calibrated SIR models.

Hypothesis 1. The presence of social exclusion costs will increase investment in disease
prevention.

This hypothesis comes from the difference in the percent of the population investing in disease

prevention when individuals face social exclusion costs (model 1) versus when individuals do

not face social exclusion costs (model 2). When calibrating models 1 and 2, the percent of

the population investing in disease prevention is higher under model 1 than under model 2.

This makes sense intuitively, because the cost of foregoing investment in disease prevention

is higher in model 1. Thus, the alternative, investing in disease prevention, is relatively less

costly. This suggests that when individuals face social exclusion costs, they should be more

likely to invest in disease prevention.

Hypothesis 2. The presence of outbreak information will not impact investment in disease
prevention.

This hypothesis is based on the use of the replicator dynamic to model aggregate prevention

investment behavior. The replicator dynamic allows for unsophisticated disease prevention

investment behavior. An implication of this is that the presence of outbreak information

should not influence the decision to invest in disease prevention. Empirically, the impact

of information on investment in disease prevention is mixed. So, I hypothesize that provid-

ing subjects with outbreak information will not change their disease prevention investment
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behavior.

3.3 Experiment Design

3.3.1 Basics

I conducted 4 experiment sessions at a large public university using undergraduate students

as human subjects. Students learned of the laboratory through classroom advertisements,

and they registered for the experimental pool through an online registration system. Po-

tential subjects were selected at random and notified of the upcoming experiment session

through email a few days before the session. If a subject was interested in participating in

the experiment, she was instructed to register for the session through an online registration

system. If a student registered for a session, she received an email reminder the day before

and the day of the planned experiment session. Subjects were not allowed to participate in

more than one session.

Although the susceptible population for many diseases is very large, the laboratory where this

experiment was conducted has only 40 computers. To ensure the largest possible susceptible

population size for this experiment, I had to make sure that the lab was filled to capacity

during the experiment. To do this, I recruited more than 40 subjects for each experimental

session. Subjects that showed up but were not needed were paid the $7 show-up fee. They

were also told that they were eligible to participate in a future experiment session. This

allowed for the largest experiment sample size given the laboratory’s constraints.
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3.3.2 Design

This experiment used a 2x2 factorial design with two treatment variables: social exclusion

and information. The social exclusion variable took on two values: exclusion cost and no

exclusion cost. The information variable took on two values: outbreak information and

no outbreak information. There were a total of 4 treatments each consisting of 25 rounds.

Subjects were not allowed to participate in more than one treatment.

To generate the underlying disease dynamic, I calibrated the model presented in section 3.2

using parameter values given in table 3.3. I used the zTree software package (Fischbacher

(2007)) to program the artificial disease environment. The model was calibrated at the

beginning of each session; so, each session experienced their own independent disease out-

break. I conducted 4 experimental sessions, 1 per treatment. There were 40 subjects that

participated in each session, and there was a total of 160 subjects in the overall experiment.

Although I used a model of cholera outbreak to generate the underlying disease dynamic, the

experiment instructions were framed using disease neutral language. Subjects were told that

the government had discovered the presence of an “infectious disease” in the environment.

They were also told that there was a “disease prevention technology” that would provide full

protection against the disease. Subjects were then instructed that they must chose whether to

“invest” in the “disease prevention technology.” Choosing to invest in the disease prevention

technology provided full protection against disease. However, the protection lasted only for

the current round. Choosing not to invest in the disease prevention technology made subjects

susceptible to “infection.” If a subject was selected as “infected,” the infection lasted only

for the current round.

Each round subjects had to chose “invest” or “do not invest” in disease prevention. In the

first 2 rounds of each treatment, subjects had 30 seconds to make their decision. In the

remaining 23 rounds of each treatment, subjects had 15 seconds to make their decision.
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Subjects were informed that if they failed to make their decision in the allotted time, then

“do not invest” would be automatically selected.

I used the subjects choices to determine the value for α(t). Using the model in section 3.2,

I was then able to generate the aggregate infection level. Only subjects that chose not to

invest in disease prevention were at risk of infection in the round. However, not all subjects

that chose not to invest in disease prevention actually became infected. I used a random

number generator to assign the “infected” status to subjects that chose not to invest in

disease prevention. The “infection” lasted only for the round.

Once all subjects had made their decisions, they received information about the round in

the form of a results screen. The information provided to subjects varied by information

treatment. In the outbreak information treatment, the results screen gave subjects infor-

mation on their own decision, their own infection status, their own round payoff, the total

number of subjects infected, the population percentage investing in disease prevention, the

payoff from investing in disease prevention, the payoff from not investing in disease pre-

vention and not becoming infected, and the payoff from not investing in disease prevention

and becoming infected. In the no outbreak information treatment, the results screen gave

subjects information on their own decision, their own infection status, and their own round

payoff. In each treatment, subjects received the information provided on the results screen

as a history box beginning in round 2. Subjects were not provided with information about

their objective probability of infection in any of the treatments. This was done to better

capture real-world disease prevention investment decisions where individuals do not know

their objective probability of infection.

Following standard experimental economics practice, subjects’ decisions in the experiment

were incentivized. Tables 3.4-3.7 provide the payoffs for the experiment. Tables 3.4 and 3.5

give the experimental payoffs for the exclusion cost treatment, model 1. Tables 3.6 and 3.7

show the experimental payoffs for the no exclusion cost treatment, model 2. The left hand
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Table 3.4: Exclusion Cost- Payoff (Vari-
ables)

Not Infected Infected
Invest E+b-c —–

Do Not Invest E+b-c(I(t)) E-c(I(t))

Table 3.5: Exclusion Cost- Payoff (Val-
ues)

Not Infected Infected
Invest 40+10-20 —–

Do Not Invest 40+10-I(t) 40-I(t)

Table 3.6: No Exclusion Cost- Payoff
(Variables)

Not Infected Infected
Invest E+b-c —–

Do Not Invest E+b-c(I(t)) E-c(I(t))

Table 3.7: No Exclusion Cost- Payoff
(Values)

Not Infected Infected
Invest 40+10-20 —–

Do Not Invest 40+10-I(t) 40-I(t)

side (LHS) of each table demonstrates the choice available to each subject: invest in disease

prevention or do not invest in disease prevention. The column headers of each table show

the potential outcomes for each strategy: not infected or infected. Within a given round, a

subject’s payoff was determined by their own choice, their own infection status, and their

endowment, E. Subjects were endowed with 40 experimental units each round.

In the exclusion cost treatment, subjects payoffs depend on their own choice and their own

infection status. If a subject chose to invest in disease prevention, she received a benefit, b,

of 10 experimental units from avoiding infection. The cost of investing in disease prevention,

c, was 20 experimental units. If a subject chose not to invest in disease prevention and she

was not infected, she received a benefit, b, of 10 experimental units for avoiding infection.

If a subject chose not to invest in disease prevention and she was infected, she received no

benefit. The cost of not investing in disease prevention, c(I(t)), was equal to the number of

infected individuals in the round, I(t), regardless of a subjects infection status. For subjects

who did not invest in disease prevention and were not infected, this is the cost of social

exclusion. For subjects who did not invest in disease prevention and were infected, this is

the cost of infection.

In the no exclusion cost treatment, subjects payoff still depend on their own choice and

their own infection status. If a subject chose to invest in disease prevention, she received a
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benefit, b, of 10 experimental units from avoiding infection. The cost of investing in disease

prevention, c, was 20 experimental units. If a subject chose not to invest in disease prevention

and she was not infected, she received a benefit, b, of 10 experimental units from avoiding

infection. If a subject chose not to invest in disease prevention and she was not infected, she

paid no cost. If a subject chose not to invest in disease prevention and she was infected, she

received no benefit from avoiding infection. The cost of not investing in disease prevention

and becoming infected, c(I(t)), was equal to the number of infected individuals, I(t), in the

round. This cost is the cost of becoming infected and includes missing work, missing school,

and costs of any medical interventions.

Subjects received payment based on their choices in the disease experiment and in the in-
centivized lottery conducted after the disease experiment. One round from the experiment
was randomly selected for payment. Round payoffs were given in experimental units which
were converted to USD at a rate of 10 experimental units per USD. At the end of the 25
rounds, subjects were asked to participate in an incentivized lottery of their choice. Us-
ing an approach developed by Eckel and Grossman (2008) and modified by Caldara (2013),
each potential lottery corresponded to a type of risk preference: risk loving, risk neutral,
or risk averse. So, the lottery served as a rough elicitation of risk preferences. The lottery
was also conducted in experimental units with a conversion rate of 2 experimental units per
USD. Subjects were aware of all conversion rates prior to their decisions. The payoff for the
round and lottery were added to the $7 show-up fee for the final payment. Payments were
rounded up to the nearest quarter. Subjects were paid on average $15.00 for 40 minutes of
participation.

3.4 Results

3.4.1 Descriptive Statistics

Table 3.8 shows the descriptive statistics for this experiment. There were more females
than males that participated in the overall experiment. However, I do not find that gender
is significant in explaining behavior in the experiment. There are significanly more asian
students than students of other races that participated in the experiment. This reflects the
population of the student body at the large public university where this experiment was
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Table 3.8: Descriptive Statistics

Statistics
Male 33%
Female 67%
White (not hispanic) 9%
Hispanic 21%
Asian 60%
Black 1%
Mixed Race 6%
Undisclosed 3%
Average Payment $15.00
Number of Subjects 160

conducted. I do not find that race is significant in explaining behavior in the experiment.

Figures 3.2 and 3.3 demonstrate the differences across treatments in the percentage of the

population investing in disease prevention and disease incidence, respectively. Figure 3.2

shows that the percentage of the population investing in disease prevention was lower when

subjects were not exposed to exclusion costs than when subjects were exposed to exclusion

costs. Additionally, it appears that average investment levels are slightly higher when sub-

jects are not given outbreak information than when subjects receive outbreak information.

Figure 3.3 reveals that disease incidence is lower in the exclusion cost treatment. This is a

direct result of the higher investment in disease prevention. Additionally, average infection

levels appear to be lower when subjects are not given information about this disease out-

break than when subjects receive outbreak information. This is a direct result of the higher

investment in disease prevention in the no outbreak information treatment.

(M vs E): Like Carpenter (2016), I find that the model closely resembles the observed ex-
perimental behavior in the treatment with exclusion costs and outbreak information. Figure
3.2 provides evidence that the percentage investing in disease prevention is closely predicted
by the model. Interestingly, though the model predicts that information does not impact
investment in disease prevention, I find that providing subjects with outbreak information
appears to decrease investment in disease prevention, and therefore, increase the magnitude
of the outbreak in the exclusion cost treatment.

64



Figure 3.2: Prevention Investment: Model Prediction vs. Experimental Results
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Figure 3.3: Disease Incidence: Model Prediction vs. Experimental Results
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Figures 3.2 and 3.3 demonstrate that the no exclusion cost model is not as effective at

predicting observed experiment behavior as the model with exclusion costs. Although I

do provide evidence that removing costs of social exclusion decreases investment in disease

prevention, the magnitude of this effect is not as large as the model predicts. Furthermore,

like the exclusion cost treatment, I find that providing subjects with outbreak information

decreases investment in disease prevention thereby increasing the infection level.

3.4.2 Treatment Results

I test whether the decision to invest in disease prevention is a stationary variable. Since

subjects make repeated choices over time, it is possible that a subject’s decision to invest in
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disease prevention is not stationary. I use a panel data unit root test (Levin et al. (2002))

to determine whether the decision to invest in disease prevention is stationary. I fail to reject

the null hypothesis that the variable contains a unit root. In other words, I find that the

investment in disease prevention variable is not stationary.

To correct for this problem, I transform the variable into a stationary variable. I do this by

taking the first difference of the decision to invest in disease prevention by subject. Since

the variable is binary, the first difference is also discrete. However, the first difference gives 3

discrete outcomes rather than 2: the decision to starting investing in disease prevention, the

decision to stop investing in disease prevention, and the decision to not change the investment

decision. This means that I can not look at the probability of investing in disease prevention

directly. Instead, I look at the factors that influence a subject’s decision to start and stop

investing in disease prevention.

I adapt the hypotheses to the newly transformed dependent variable. An increase in the

probability of investing in disease prevention can happen in 2 ways: an increase in the

probability that a subjects starts investing or a decrease in the probability that a subject

stops investing. So, I hypothesize that being in the exclusion cost treatment will increase the

probability that a subject starts investing in disease prevention and decrease the probability

that a subject stops investing in disease prevention. Information is not hypothesized to

impact the probability of investing in disease prevention. So, I hypothesize that information

will not impact either the probability that a subject starts investing in disease prevention or

the probability that a subject stops investing in disease prevention.

I choose to report a linear model specification with random effects in the main paper for
simplicity. Under the linear specification, I explore 2 dependent variables of interest: the
probability that a subject starts investing in disease prevention and the probability that a
subject stops investing in disease prevention. Since these dependent variables are binary, the
correct model specification is actually non-linear. In appendix A.2, I show that the results
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Table 3.9: Effect of Treatments on Changes in Disease Prevention Investment Decisions

Decision: Start Investing Decision: Stop Investing
RE

(1) (2) (3) (4) (5) (6)

Outbreak Information -0.01 -0.03 -0.03 -0.02 -0.02 -0.02
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Exclusion Cost -0.01 -0.02 -0.02 -0.01 -0.02 -0.02
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Outbreak Information* 0.02 0.02 0.01 0.01
Exclusion Cost (0.03) (0.03) (0.03) (0.03)

Round Effects No No Yes No No Yes

Observations 3840 3840 3840 3840 3840 3840
R2 0.00 0.00 0.01 0.00 0.00 0.01

Clustered robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

reported below are robust to a non-linear specification using random effects probit.

Result 1. Social exclusion costs increase investment in disease prevention.

Hypothesis 1 indicates that social exclusion costs will increase the probability of investing

in disease prevention. Since the cost of not investing in disease prevention is higher when

subjects are forced to pay social exclusion costs than when subjects are not forced to pay

social exclusion costs, being in the social exclusion cost treatment should increase investment

in disease prevention. Thus, being in the social exclusion cost treatment should have a

statistically significant positive impact on the probability of investing in disease prevention.

I hypothesize that this increase in the probability of investing in disease prevention works

through two channels: an increase in the probability of starting prevention investment and

a decrease in the probability of stopping prevention investment. To test this hypothesis, I

use a dummy variable to indicate whether a subject was exposed to the social exclusion cost

treatment.

Table 3.9 shows that being in the social exclusion cost treatment (exclusion cost) is not
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Table 3.10: Effect of Changes in Disease Incidence on Decision to Start Investing in Preven-
tion

Decision: Start Investing
RE

(1) (2) (3) (4) (5) (6)

Incidence: 1 Lag 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.04∗∗ 0.04∗∗

(0.00) (0.00) (0.00) (0.00) (0.02) (0.02)

Infected: 1 Lag 0.35∗∗∗ 0.32∗∗∗ 0.32∗∗∗ 0.32∗∗∗ 0.32∗∗∗

(0.03) (0.02) (0.02) (0.02) (0.02)

# Decision Changes 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗

(0.00) (0.00) (0.00) (0.00)

Incidence: 2 Lags -0.00 -0.00
(0.00) (0.00)

Squared Incidence: 1 Lag -0.00 -0.00
(0.00) (0.00)

Outbreak Information -0.04∗∗ -0.04∗∗ -0.03∗∗ -0.02∗ -0.03∗∗ -0.02∗

(0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

Exclusion Cost 0.05∗∗∗ 0.05∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.06∗∗∗ 0.04∗∗∗

(0.02) (0.02) (0.01) (0.02) (0.01) (0.02)

Round Effects Yes Yes Yes Yes Yes Yes

Observations 3840 3840 3840 3680 3840 3680
R2 0.02 0.18 0.25 0.26 0.25 0.26

Clustered robust standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.11: Effect of Changes in Disease Incidence on Decision to Stop Investing in Preven-
tion

Decision: Stop Investing
RE

(1) (2) (3) (4) (5) (6)
Incidence: 1 Lag -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.02∗∗∗ -0.02 -0.01

(0.00) (0.00) (0.00) (0.00) (0.02) (0.02)

# Infections: 1 Lag -0.01∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)

# Decision Changes 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗

(0.00) (0.00) (0.00) (0.00)

Incidence: 2 Lags -0.01∗∗∗ -0.01∗∗∗

(0.00) (0.00)

Squared Incidence: 1 Lag 0.00 -0.00
(0.00) (0.00)

Outbreak Information 0.00 0.00 0.02∗∗ 0.03∗∗∗ 0.02∗∗ 0.03∗∗∗

(0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

Exclusion Cost -0.05∗∗ -0.06∗∗∗ -0.05∗∗∗ -0.07∗∗∗ -0.05∗∗∗ -0.07∗∗∗

(0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

Round Effects Yes Yes Yes Yes Yes Yes
Observations 3840 3840 3840 3680 3840 3680
R2 0.01 0.02 0.08 0.08 0.08 0.08

Clustered robust standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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significant in explaining either the decision to start or the decision to stop investing in

disease prevention when controlling only for treatment effects and round effects. However,

once I control for other factors relevant in the decision to invest in disease prevention, I

demonstrate that being in the exclusion cost treatment has a significant impact on both the

decision to start and the decision to stop investing in disease prevention. Table 3.10 equations

1-6 demonstrate that being in the exclusion cost treatment increases the probability that a

subject starts investing in disease prevention. Similarly, table 3.11 equations 1-6 show that

being in the exclusion cost treatment decreases the probability that a subject stops investing

in disease prevention. Both of these results are significant at the 1% level. This indicates

that facing social exclusion costs increases the probability of investing in disease prevention

through two channels: an increase in the probability of starting prevention investment and

a decrease in the probability of stopping prevention investment.

These results indicate that higher costs of social exclusion can increase the probability of

investing in disease prevention. This has policy implications for the prevention of infectious

diseases. If policy makers desire to increase investment in preventable diseases, one way

in which prevention investment can be increased is through an increase in the costs of non

investment. This is likely to be most effective for diseases where prevention investment is

easily monitored. However, for diseases where prevention investment is not easily monitored,

it may be possible to increase social exclusion by changing norms surrounding the disease

prevention behaviors. For more discussion see section 3.5.

Result 2. Providing subjects with outbreak information reduces investment in

disease prevention.

Hypothesis 2 states that providing subjects with outbreak information will not impact a

subject’s probability of investing in disease prevention. Since the replicator dynamic used

in the evolutionary model of disease prevention investment allows for subjects to exhibit
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unsophisticated decision making behavior, providing subjects with outbreak information

should not influence the probability of investing in disease prevention. Thus, being in the

outbreak information treatment should not have a statistically significant impact on the

probability of investing in disease prevention. To test this, I use a dummy variable to

indicate whether a subject participated in the outbreak information treatment.

Table 3.9 demonstrates that when controlling only for treatment effects and round effects,

providing subjects with outbreak information (outbreak information) is not significant in

explaining either the decision to start or the decision to stop investing in disease prevention.

However, when controlling for other relevant factors in disease prevention investment deci-

sions, I find that providing subjects with outbreak information is significant in explaining

both the decision to start and the decision to stop investing in disease prevention. Table

3.10 equations 1-6 show that being in the outbreak information treatment actually reduces

the probability that a subject starts investing in disease prevention. Furthermore, table 3.11

equations 3-6 reveal that being in the outbreak information treatment increases the proba-

bility that a subject stops investing in disease prevention. Taken together these two findings

suggest that providing outbreak information decreases the probability of investing in disease

prevention through two channels: a decrease in probability of starting prevention investment

and an increase in the probability of stopping prevention investment.

These findings suggest that more research should be done to understand how individuals

respond to information in disease contexts and how these responses can be endogenized in

mathematical models of disease. Although the dynamic used in this paper assumes that

providing subjects with outbreak information is not relevant in the decision to invest in

disease prevention, the results suggest that subjects use outbreak information when making

disease prevention investment decisions. Furthermore, figure 3.2 demonstrates that provid-

ing subjects with outbreak information is actually necessary to generate aggregate disease

prevention investment that resembles model predictions. Interestingly, when subjects are
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not provided with information regarding outbreak magnitude, the ambiguity regarding the

disease magnitude appears to dominate the high costs of investing in disease prevention. The

result is higher aggregate investment in disease prevention when subjects are not provided

with information regarding the outbreak. Future research should seek to determine whether

this result holds in a typical disease environment.

Result 3. Subjects exhibit prevalence elastic demand for disease prevention.

Based on prior research, I hypothesized that subjects would exhibit prevalence elastic demand

for disease prevention (Geoffard and Philipson (1996); Philipson (1996); Goldstein et al.

(1996); Geoffard and Philipson (1997); Ahituv et al. (1996); Philipson (2000); Chen et al.

(2013); Carpenter (2016)). Prevalence elastic demand for disease prevention is characterized

as an increase in disease prevention investment if disease incidence increases and a decrease

in disease prevention investment if disease incidence decreases. Since I can not examine the

probability of investing in disease prevention directly, I examine both the probability that a

subject starts investing and the probability a subject stops investing in disease prevention.

Although these dependent variables have not been analyzed directly in the literature, I

hypothesize that prevalence elastic demand works through two channels as disease incidence

increases: an increase in the probability a subject starts investing in disease prevention and

a decrease in the probability that a subject stops investing in disease prevention. I use a one

round lag in the number of disease infected individuals to measure disease prevalence.

Tables 3.10 and 3.11 provide the results for the impact of disease incidence (incidence: 1

lag) on the probability of starting prevention investment and the probability of stopping

prevention investment, respectively. Like prior work, I find that subjects exhibit prevalence

elastic demand for disease prevention. Table 3.10 equations 1-4 demonstrate that higher

disease incidence in the prior round increases the probability that a subject starts investing

in prevention in the current round. Table 3.11 equations 1-4 display evidence that a higher

72



disease incidence in the prior round decreases the probability that a subject stops investing

in prevention in the current round. Both of these results are significant at the 1% level.

These results contribute to prior work by showing that prevalence elastic demand for dis-

ease prevention works through two channels as disease incidence rises: an increase in the

probability of starting prevention investment and a decrease in the probability of stopping

prevention investment.

Carpenter (2016) finds that there are non-linear effects of disease incidence on the probability

of investing in disease prevention. Since I am unable to explore the impact of non-linearity

in disease incidence on the probability of investing in disease prevention directly, I hypoth-

esized that the non-linearity would work through two channels as infection levels rise: the

probability of starting prevention investment increases at a decreasing rate and the proba-

bility of stopping prevention investment increases at a decreasing rate. Tables 3.10 and 3.11

equations 5 and 6 provide the results of controls for non-linear effects of disease incidence

on the probability of starting prevention investment and the probability of stopping preven-

tion investment, respectively. In both tables, controlling for a non-linear effect in disease

incidence (squared incidence: 1 lag) creates a multicollinearity issue. In table 3.10, inclusion

of non-linear effects of disease incidence causes the coefficient on the control for lagged dis-

ease incidence (incidence: 1 lag) to lose a level of significance. In table 3.11, including the

non-linear effects of disease incidence causes the coefficient on the control for lagged disease

incidence (incidence: 1 lag) to lose significance. So, issues with multicollinearity prevent an

analysis of the non-linear impacts of disease incidence on both the probability of starting

prevention investment and the probability of stopping prevention investment.

Although this paper demonstrates that the absence of outbreak information and presence

of social exclusion costs do increase investment in disease prevention, these policies do not

eliminate prevalence elastic demand for disease prevention. Furthermore, while I do find that

subjects exhibit prevalence elastic demand for disease prevention on average, there are some
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subjects that do not change their behavior in response to the disease incidence. Instead, a

small group of subjects always choose to invest in prevention or never choose to invest in

prevention regardless of the magnitude of the outbreak. More research is need to understand

the underlying factors that cause subjects to be of the type that exhibit prevalence elastic

demand for disease prevention. With a better understanding of the type of person that

exhibits prevalence elastic demand, policies can be better targeted to reduce or eliminate

this behavior.

Result 4. Being infected in the previous round increases the probability that a

subject starts investing in disease prevention.

It is not obvious if subjects should change their behavior in response to being infected in the

previous round. If an outbreak is worse than anticipated by a subject or a subject dislikes

the lower payoff received from becoming infected, then she might respond by investing in

disease prevention. However, if a subject plays the odds or probability matches, then she

might respond to an infection by not changing her decision to not invest in disease prevention

(Vulkan (2000)). Similarly, if a subject is risk seeking in losses, then she might respond to

an infection by not changing her decision to not invest in disease prevention (Tversky and

Kahneman (1986)). Prior research suggests that on average a subject responds to an infection

by not changing her decision to not invest in disease prevention; so, being infected in the

prior round reduces the probability of investing in disease prevention (Carpenter (2016)).

Since I am unable to examine the effect of an infection in the previous on the probability

of investing in disease prevention directly, I examine the impact on the probability that a

subject starts investing in disease prevention. I do not explore the impact of being infected

in the previous round on the probability that a subject stops investing in disease prevention,

because investment in disease prevention provides full protection against disease. Based on

Carpenter (2016), I hypothesize that an prior period infection works to decrease investment
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in disease prevention by decreasing the probability that a subject starts investing in disease

prevention. To test this hypothesis, I use a dummy variable to indicate whether a subject

was disease infected in the previous round.

Table 3.10 gives the results for the impact of an infection in the prior round (infected: 1 lag)

on the probability that a subject starts investing in disease prevention. Unlike Carpenter

(2016), I find that being infected in the prior round increases the probability of investing in

disease prevention through an increase in the probability of starting prevention investment.

Table 3.10 equations 2-6 demonstrate that being infected in the previous round has a positive

impact on the probability of starting prevention investment, an effect significant at the 1%

level. This result generates debate surrounding the issue of how subjects respond, if at all,

to a prior infection.

Carpenter (2016) finds that an infection in the prior round decreases the probability that

a subject invests in disease prevention. However, I find that being infected in the previ-

ous round increases the probability that a subject invests in disease prevention through an

increase in the probability that a subject starts investing in disease prevention. I suggest

that these conflicting results are the result of obtaining a sample of subjects that is not

representative of the population’s average behavioral response to an infection in the prior

round despite the random selection of experiment subjects. Since theory is not clear on

whether subjects should change their behavior in response to an infection, more empirical

research is needed to determine which effect dominates on average. Without more research,

it is not possible to determine which of the conflicting results is not representative of the

average population behavior. Future research should seek to determine whether subjects

change their disease prevention behavior in response to an infection in the prior round.
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Result 5. A history of prior infections decreases the probability that a subject

stops investing in disease prevention.

It is not immediately clear how subjects should be expected to change their decisions in

response to a history of infections, if at all. If an outbreak is continuously worse than

anticipated, then a subject might respond to a history of infections by investing in disease

prevention. Similarly, if a subject dislikes the history of lower payoffs that result from a

history of infections, then she might respond to a history of infections by investing in disease

prevention. On the other hand, if a subject probability matches, then she might respond to a

history of infections by continuing her strategy: not investing in prevention (Vulkan (2000)).

Similarly, if a subject is risk seeking in losses, then she might respond to the history of lower

payoffs resulting from a history of infections by continuing her strategy: not investing in

prevention (Tversky and Kahneman (1986)). Since I am unable to look at the impact of

a history of prior infections on the probability of investing in disease prevention directly, I

analyze the impact of a history of prior infections on the probability that a subject stops

investing in disease prevention. Although a history of prior infections might be relevant in

the decision to start investing in disease prevention, a subject’s prior infection status is a

proxy for her history of prior infections. Therefore, I only use the actual history of infections

variable in analyzing the probability that a subject stops investing in disease prevention. I

hypothesize that a higher number of historical disease infections will decrease the probability

that a subject stops investing in disease prevention. To test this hypothesis, I construct a

count variable that indicates the total number of infections a subject has experienced in the

prior rounds.

Table 3.6 demonstrates that a history of prior infections (# infections: 1 lag) is significant

in explaining the decision to stop investing in disease prevention. Table 3.11 equations 2-6

show that as the number of infections a subject experiences increases, the probability that

she stops investing in disease prevention decreases. This effect is significant at the 1% level.
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This result indicates that increases in prior infections increase the overall probability of

investing in disease prevention through a reduction in the probability of stopping prevention

investment.

I find that the more infections a subject had historically, the greater the probability that she

continues to invest in disease prevention. Since subjects respond to a history of infections

by declining to stop investing in disease prevention, a history of prior infections works to

increase the probability that a subject invests in disease prevention. I suggest two possible

explanations for this behavior: either the outbreak is continually worse than anticipated

or subjects dislike the lower payoff that results from a history of infections. While I can’t

determine which explanation, if either, is driving this behavior, future experiments can be

designed in a way that allows the researcher to provide an explanation for this behavior.

Result 6. A willingness to change prevention investment strategies is associated

with an increase in the probability of starting and stopping investment in disease

prevention.

It seems likely that an increased willingness to test out disease prevention investment strate-

gies should result in subjects being more likely to change their decision. In other words, if a

subject is more willing to try out different disease prevention strategies, then she should be

more likely to start investing in disease prevention than other subjects. Similarly, if a subject

is more willing to try out different disease prevention strategies, then she should be more

likely to stop investing in disease prevention than other subjects. So, I hypothesize that a

willingness to try out prevention investment strategies would increase the probability that

a subject both starts and stops investing in disease prevention. To measure the willingness

to switch strategies, I use a count variable that indicates the total number of times that a

subject changed her disease prevention investment decision.

77



Tables 3.10 and 3.11 show that a willingness to test different disease prevention strategies

(# decision changes) is significant in explaining both the probability of starting prevention

investment and the probability of stopping prevention investment, respectively. Table 3.10

equations 3-6 demonstrate that a greater willingness to test different strategies increases the

probability that a subject starts investing in disease prevention. Furthermore, table 3.11

equations 3-6 provide evidence that a greater willingness to test different strategies increases

the probability that a subject stops investing in disease prevention. Both of these effects

are significant at the 1% level. These results support the hypothesis that a willingness to

test out disease prevention strategies is associated with both an increase in the probability

of starting prevention investment and an increase in the probability of stopping prevention

investment.

I show that a willingness to test out disease prevention investment strategies increases the

probability of starting prevention investment and the probability of stopping prevention

investment. In the context of a disease outbreak, this type of behavior could potentially

increase the outbreak magnitude as people switch among potential prevention strategies due

to an inability to discern a causal relationship between prevention investment and disease

prevention. Specifically, this type of behavior is likely to be problematic when investment in

disease prevention does not provide full protection against disease. Future research should

attempt to understand the individual factors that influence this type of behavior. By un-

derstanding the factors that drive this behavior, policies can be developed to encourage

individuals to adopt an effective prevention strategy rather than switching among a variety

of ineffective prevention strategies.
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Result 7. The persistence of the impact of disease incidence on the probability

of investing in disease prevention occurs through a reduction in the probability

that subjects stop investing in disease prevention.

It seems reasonable that higher historical disease levels have a persistent positive impact on

the probability of investing in disease prevention for a couple of reasons. First, people might

recognize a pattern of higher disease levels over time, and therefore, become increasingly

willing to invest in prevention. Second, people might remember the negative implications

of failing to invest in disease prevention, and therefore, may be less likely to stop investing

in disease prevention. In fact, Carpenter (2016) finds that historical disease incidence has

a persistent positive impact on the probability of investing in disease prevention. Since I

am unable to analyze the probability of investing in disease prevention directly, I explore

this effect through two channels: the probability a subject starts investing in prevention and

the probability a subject stops investing in prevention. I hypothesize that higher historical

disease incidence increases the probability that a subject starts investing in prevention and

decreases the probability that a subject stops investing in prevention. I use a two round lag

in the infection levels to measure historical disease incidence.

Tables 3.10 and 3.11 report the impact of historical disease incidence (incidence: 2 lags) on

the probability of starting prevention investment and the probability of stopping prevention

investment, respectively. Table 3.10 equations 4 and 6 provide evidence that historical disease

incidence is not significant in explaining the probability that a subject starts investing in

disease prevention. Table 3.11 equations 4 and 6 shows that a higher historical disease

incidence reduces the probability that a subject stops investing in disease prevention, an

effect significant at the 1% level. These results suggest that higher levels of historical disease

incidence increase the probability of investing in disease prevention through only one channel:

a decrease in the probability that a subject stops investing in disease prevention.

79



These results indicate that a reduction in the probability that a subject stops investing in

disease prevention is responsible for the persistent positive impact of disease incidence on the

probability of investing in disease prevention discovered in Carpenter (2016). This suggests

that after a real-world outbreak, prevention investment levels should remain elevated due to

a reduction in the number of people that stop investing in disease prevention. Future work

should seek to determine whether this pattern is observed in real-world disease prevention

investment data. Furthermore, understanding the factors that cause subjects to not ex-

hibit investment persistence is important information useful in designing policies to increase

investment in disease prevention. Additionally, knowing the duration of the investment per-

sistence is useful in determining when a population will again become disease susceptible.

Future research should explore the factors that cause subjects to fail to exhibit persistent

prevention investment and the duration of prevention investment persistence.

3.5 Conclusion

The increased ease of travel and changes in climate have increased the risk of global epidemics.

Despite the fact that infectious diseases pose an increasing threat to society, individual re-

sponses to disease epidemics remain an understudied topic.This is due in large part to a lack

of data on individual behavior during epidemics. I avoid this issue by generating data using

a laboratory experiment with a simulated disease environment. The disease environment

simulated in the experiment is based on a model with endogenous disease prevention invest-

ment. This mathematical model of disease provides testable hypotheses regarding the effect

of outbreak information and social exclusion costs on investment in disease prevention. The

purpose of this paper is to explore the impact of outbreak information and social exclusion

on the probability of investing in disease prevention.
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The hypotheses tested in this paper are generated from the mathematical model of disease

with endogenous disease prevention investment. Previous research on the role of information

in disease prevention investment suggests that the impact of information depends critically

on the type of information and to whom its given. For this experiment, I explore the im-

pact of information on outbreak magnitude and the percentage of the population investing

in disease prevention. The mathematical model of disease used in the experiment suggests

that this information should not significantly impact the probability of investing in disease

prevention. So, I hypothesize that the provision of outbreak information will not impact

disease prevention investment. Prior research on the role of social exclusion costs in disease

prevention investment indicates that social exclusion costs significantly increase the proba-

bility of investing in disease prevention. The mathematical model used in this experiment

demonstrates the same relationship between social exclusion costs and disease prevention

investment. So, I hypothesize that the presence of social exclusion costs will significantly

increase the probability of investing in disease prevention.

I find that both outbreak information and social exclusion significantly impact the proba-

bility of investing in disease prevention. In contrast to the model prediction, I show that

providing subjects with information on the outbreak magnitude and the aggregate percent

of individuals investing in disease prevention is important in explaining disease prevention

investment. This effect is negative and significant. In other words, providing subjects with

outbreak information significantly reduces the probability that they invest in disease preven-

tion. This reduction in the probability of investing in disease prevention works through two

channels: an increase in the probability of stopping prevention investment and a decrease

in the probability of starting prevention investment. Additionally, I demonstrate that the

presence of social exclusion costs is important in explaining disease prevention investment.

This effect is positive and significant. Individuals are significantly more likely to invest in

disease prevention when they face social exclusion costs for foregoing prevention investment.

This effect also works through two channels: an decrease in the probability that a subject
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stops investing in disease prevention and an increase in the probability that a subject starts

investing in disease prevention.

The models developed in Carpenter (2014) and Carpenter (2016) provide a useful method for

testing epidemic induced behavior against epidemiological models of disease. Although these

models allow individuals to exhibit unsophisticated decision making behavior, the results of

this experiment suggest that individuals may exhibit more sophisticated disease prevention

behavior than captured by these models. Future research should seek to explore alternatives

to the replicator dynamic that may better capture individual decisions in a disease context.

Furthermore, this experiment explored only one type of information: outbreak information;

however, in a typical disease environment individuals are exposed to many different types of

information. Future research should explore the impact of other types of information on the

probability of investing in disease prevention. For example, one important information type

is information on the efficacy of disease prevention technologies. Providing subjects with

information on the efficacy of prevention technologies is likely to increase prevention invest-

ment if efficacy is high but decrease prevention investment if efficacy is low. Understanding

when to provide information about the efficacy of prevention strategies is another important

area of research for the prevention of disease.

This paper provides additional support for the idea that social exclusion costs can increase

investment in disease prevention. Thus, a policy implication of this paper is that disease

prevention investment can be increased by raising the costs for failing to invest in disease pre-

vention. Admittedly, this policy will work best for diseases for which prevention investment

is easily monitored. Diseases that are preventable through vaccination fall into this category,

and laws requiring vaccination for public school attendance were effective at achieving high

levels of vaccination in the general population. However, it may be possible to raise the costs

for failing to invest in disease prevention even for diseases for which prevention investment

is not easily monitored. Diseases that are spread through the germs on your hands are an
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example of this. Hand washing to prevent the spread of disease has only been practiced since

the 19th century. Despite the fact that hand washing is relatively difficult to monitor, hand

washing has become a commonly practiced disease prevention strategy. This is likely due

to hand washing campaigns that spread the knowledge of the importance of hand washing

for disease prevention. These campaigns likely have helped to established hand washing as

a norm for disease prevention, and individuals that refuse to wash their hands are subjected

to disgust and social pressure to conform to hand washing standards. Therefore, policies

that seek to increase investment in disease prevention should explore ways to increase the

costs of failing to invest in disease prevention.

83



Bibliography

Ahituv, A., Hotz, V. J., Philipson, T., 1996. The responsiveness of the demand for condoms
to the local prevalence of aids. The Journal of Human Resources 31, 4.

Ai, C., Norton, E. C., 2003. Interaction terms in logit and probit models. Economics Letters
80 (1), 123–129.

Anderson, R. M., May, R. M., 1991. Infectious Diseases of Humans: Dynamics and Control.
Oxford University Press.

Andrews, J. R., Basu, S., 2011. Transmission dynamics and control of cholera in haiti: An
epidemic model. Lancet 377, 1248–12455.

Ashraf, N., Berry, J., Shapiro, J. M., July 2007. Can higher prices stimulate product use?
evidence from a field experiment in zambia. NBER Working Paper 13247, 1–55.

Auld, M. C., 2003. Choices, beliefs, and infectious disease dynamics. Journal of Health
Economics 22, 361–377.

Aziz, S. N., Boyle, K. J., Rahman, M., September 2006. Knowkenya of arsenic in drinking-
water: Risks and avoidance in matlab, bangladesh. Journal of Health, Population, and
Nutrition 24 (3), 327–335.

Banerjee, A. V., Duflo, E., 2007. The economic lives of the poor. Journal of Economic
Perspectives 21 (1), 141–168.

Bikhchandani, S., Hirshleifer, D., Welch, I., 1998. Learning from the behavior of others:
Conformity, fads and ininformation cascades. The Journal of Economic Perspectives 12 (3),
151–170.

Buis, M. L., 2010. Stata tip 87: Interpretation of interactions in nonlinear models. The Stata
Journal 10 (2), 305–308.

Caldara, M., 2013. Bidding behavior in pay-to-bid auctions: An experimental study. Working
Paper.

Carpenter, A., 2014. Social Computing, Behavioral-Cultural Modeling and Prediction. Vol.
8393 of Lecture Notes in Computer Science. Springer International Publishing, Ch. Behav-
ior in the Time of Cholera: Evidence from the 2008-2009 Cholera Outbreak in Zimbabwe,
pp. 237–244.

84



Carpenter, A., 2016. Modeling behavior during epidemics: Understanding behavioral re-
sponses to disease.

Chen, F., Griffith, A., Cottrell, A., Wong, Y.-L., January 2013. Behavioral responses to
epidemics in an online experiment: Using virtual diseases to study human behavior. PLOS
One 8 (1), 1–10.

Codeco, C. T., 2001. Endemic and epidemic dynamics of cholera: The role of the aquatic
reservoir. BMC Infectious Diseases 1.

Currie, J., 2000. Handbook of Health Economics. Vol. 1. Elsevier, Ch. Ch. 19 Child Health
in Developed Countries, pp. 1053–1090.

Curtis, V., 2011. Why disgust matters 366 (1583), 3478–3490.

Curtis, V., Biran, A., 2001. Dirt, disgust, and disease: Is hygiene in our genes? 44 (1), 17–31.

Devota, F., Duflo, E., Dupas, P., Pariente, W., Pons, V., 2012. Happiness on tap: Piped
water adoption in urban morocco. American Economic Journal: Economic Policy 4 (4),
68–99.

Duflo, E., Dupas, P., Kremer, M., September 2015. Education, hiv, and early fertility:
Evidence from kenya. American Economic Review 105 (9), 2257–2297.

Dupas, P., January 2011a. Do teenagers respond to hiv risk information? evidence from a
field experiment in kenya. American Economic Journa: Applied Economics 3 (1), 1–36.

Dupas, P., September 2011b. Health behavior in developing countries. Annual Review of
Economics 3, 425–499.

Dupas, P., September 2011c. Health behavior in developing countries. Annual Review of
Economics 3, 425–499.

Eckel, C. C., Grossman, P. J., 2008. Forecasting risk attitudes: An experimental study using
actual and forecast gamble choices. Journal of Economic Behavior and Organization 68 (1),
1–17.

Ferguson, N., 2007. Capturing human behavior. Nature 446 (7137), 733.

Fischbacher, U., 2007. z-tree: Zurich toolbox for ready-made economic experiments. Exper-
imental Economics 10 (2), 171–178.

Funk, S., Bansal, S., Bauch, C. T., Eames, K. T., Edmunds, W. J., Galvani, A. P., Klepac,
P., 2015. Nine challenges in incorporating the dynamics of behavior in infectious diseases
models. Epidemics 10, 21–25.

Funk, S., Salathe, M., Jansen, V. A. A., 2010. Modelling the influence of human behavior on
the spread of infectious diseases: A review. Journal of the Royal Society Interface 7 (50),
1247–1256.

85



Gensini, G. F., Yacoub, M. H., Conti, A. A., 2004. The concept of quarantine in history:
From plague to sars 49, 257–261.

Geoffard, P.-Y., Philipson, T., August 1996. Rational epidemics and their public control.
International Economic Review 37 (3), 603–624.

Geoffard, P.-Y., Philipson, T., March 1997. Disease eradication: Private versus public vac-
cination. The American Economic Review 87 (1), 222–230.

Goldstein, K. P., Philipson, T., Joo, H., Daum, R., 1996. The effect of epidemic measles on
immunization rates. The Journal of the American Medical Association 276 (1), 56–58.

Greene, W. H., 2012. Econometric Analysis, 7th Edition. Prentice-Hall, Upper Saddle River,
NJ.

Greer, A., Ng, V., Fisman, D., 2008. Climate change and infectious diseases in north america:
The road ahead. CMAJ 178 (6), 715–722.

Hirshleifer, D., Teoh, S. H., 2003. Herd behavior and cascading in capital mmarket: A review
and synthesis. European Financial Management 9 (1), 25–66.

Hyman, J. M., Li, J., August 1997. Behavior changes in sis std models with selective mixing.
SIAM Journal of Applied Mathematics 57 (4), 1082–1094.

Klein, E., Laxminarayan, R., Smith, D. L., 2007. Economic incentives and mathematical
models of disease. Environment and Development Economics 12, 707–732.

Kremer, M., May 1996. Integrating behavioral choice into epidemiological models of aids.
Quarterly Journal of Economics 111 (2), 549–573.

Levin, A., Lin, C.-F., Chu, C.-S. J., 2002. Unit root tests in panel data: Asymptotic and
finite-sample properties. Journal of Econometrics 108 (1), 1–24.

Madajewicz, M., Pfaff, A., Geen, A. V., Graziano, J., Hussein, I., Momotaj, H., Sylvi, R.,
Ahsan, H., 2007. Can information alone change behavior? response to arsenic contamina-
tion of groundwater in bangladesh. Journal of Development Economics 84, 731–754.

Manfredi, P., d’Onofrio, A. (Eds.), 2013. Modeling the Interplay Between Human Behavior
and the Spread of Infectious Diseases. Springer Science and Business Media.

Measure DHS, 2005. Available datasets: Zimbabwe.
http://www.measuredhs.com/data/available-datasets.cfm.

Measure DHS, 2010. Available datasets: Zimbabwe.
http://www.measuredhs.com/data/available-datasets.cfm.

Morse, S. S., 2001. Plagues and Politics: Infectious Disease and International Policy. Palgrave
Macmillan UK, Ch. Factors in the Emergence of Infectious Diseases, pp. 8–26.

86

h
h


Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D. L., Jr., J. G. M., May 2011.
Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in zimbabwe.
PNAS 108 (21), 8767–8772.

Orenstein, W., Hinman, A. R., 1999. The immunization system in the united states – the
role of school immunization laws 17, S19–S24.

Philipson, T., 1996. Private vaccination and public health: An empirical examination for
u.s. measles. The Journal of Human Resources 31 (3), 611–630.

Philipson, T., 2000. Chapter 33 economic epidemiology and infectious diseases. Handbook
of Health Economics 1, 1761–1799.

Sandholm, W. H., 2010. Population Games and Evolutionary Dynamics. The MIT Press.

Shiller, R. J., May 1995. Conversation, information, and herd behavior. The American Eco-
nomic Review 85 (2), 181–185.

Tognotti, E., 2013. Lessons from the history of quarantine: from plague to influenza a 19 (2),
254–259.

Tversky, A., Kahneman, D., 1986. Rational choice and the framing of decisions. The Journal
of Business 59 (4), S251–S278.

UN OCHA, November 2009a. Evaluation of the wash response to the 2008-
2009 zimbabwe cholera epidemic and preparedness planning for future out-
breaks. https://zw.humanitarianresponse.info/document/evaluation-wash-response-2008-
2009-zimbabwe-cholera-epidemic-and-preparedness-planning.

UN OCHA, January 2009b. Weekly situation report on cholera in zimbabwe no. 10, 21 jan
2009. http://reliefweb.int/sites/reliefweb.int/files/resources/A40A3859537F4E9385257546006E5B01-
Full Report.pdf.

Valle, S. D., Hethcote, H., Hyman, J., Castillo-Chavex, C., 2005. Effects of behavioral
changes in a smallpox attack model. Mathematical Biosciences 195, 228–251.

Vulkan, N., February 2000. An economist’s perspective on probability matching. Journal of
Economic Surveys 14 (1), 101–118.

Wang, X., Gao, D., Wang, J., 2015. Influence of human behavior on cholera dynamics.
Mathematical Biosciences 267, 41–52.

Wilson, T. R., Fishbein, D. B., Ellis, P. A., Edlavitch, S. A., 2005. The impact of a school
entry law on adolescent immunization rates 37, 511–516.

Wooldridge, J. M., 2012. Econometric Analysis of Cross Section and Panel Data, 2nd Edition.
MIT Press.

World Health Organization, 2007. Combating waterborne disease at the household level.
http://www.who.int/water sanitation health/publications/combating diseasepart1lowres.pdf.

87

h
h
h


World Health Organization, 2008. Zimbabwe epidemiological bulletin archive.
http://www.who.int/hac/crises/zwe.

World Health Organization, January 2009 b. Zimbabwe health cluster bulletin no 6 - 27
january 2009.
URL http://www.who.int/hac/crises/zmb/sitreps/health_cluster_bulletin_

27jan2009/en/index.html

88

h
http://www.who.int/hac/crises/zmb/sitreps/health_cluster_bulletin_27jan2009/en/index.html
http://www.who.int/hac/crises/zmb/sitreps/health_cluster_bulletin_27jan2009/en/index.html


Appendices

A Appendix

A.1 Model

The model presented in this paper is a simplification of the more biologically complex models

of cholera (Madajewicz et al., 2007; Andrews and Basu, 2011). The reason for the biological

simplification of cholera in this model is that complications of the models presented in this

paper involve multiple endogenous health behaviors that are assumed to be exogenous in the

mathematical epidemiology literature. As the first model to incorporate endogenous behavior

into a model of cholera incidence, simplifying the analysis to include only one dynamic

behavior seemed the logical first step in analyzing the role of health behavior in cholera

epidemics. However, future models should seek to incorporate the biological complications

and endogenize related health behaviors.

Water Treatment Game

Evolutionary game theory can provide insight into how prevalence dependent behavior affects

an outbreak at the aggregate level. This model uses the replicator dynamic, because a

whole class of strategy revision protocols reduce to this dynamic, including some types of
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imitative behavior (Sandholm, 2010). The main assumptions of the replicator dynamic are

that individuals interact with each other randomly and that the population is infinite. The

general description of the replicator dynamic is that individuals are programmed with a

strategy, and those strategies that provide a higher than average payoff will grow while

those strategies that provide a lower than average payoff will shrink. Although this dynamic

is vague on how the share of the population playing a given strategy changes, as stated it

can be the result of certain imitative behaviors.

Another important feature of this model is that agents are not optimizers. This assumption

is clearly an abstraction as one would expect that agents do place some weight on the future.

This differs from standard economic models were individuals are assumed to be optimizers.

However, standard models that assume agents make optimal decisions given their constraints

do not find substantial experimental support. Since the purpose of this model is to provide

specific analysis the way in which cholera incidence influences water treatment behavior, the

replicator dynamic may provide a better approximation of aggregate behavior than standard

optimization.

In this model agents begin with an initial strategy: either treat water (T) or do not treat

water (NT). Table A.1 provides the game. In this game, β is the benefit received from

water treatment. For simplicity, this model assumes that the benefit received from water

treatment is the same regardless of whether an agent is part of the water treating population.

This assumption captures the fact that households treating their water provide some level

of protection for their neighbors. If a household treats their water, then they do not become

cholera infection. This, in turn, lowers their neighbors probability of infection. Here, C

is the cost of treating water. These costs can include monetary costs, informational costs,

time costs, and preference costs. Similarly, C(I(t)) represents the cost associated with not

treating water. Since it is likely that not treating water becomes more costly as the infection

rate increases, I assume that the cost of not treating water is an increasing function of the
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infection rate. This assumption endogenizes the choice of water treatment by incorporating

prevalence dependence into the choice.

Table A.1: Water Treatment Game

T NT
T β − C β − C(I(t))
NT β − C(I(t)) −C(I(t))

Using the replicator dynamic, the share of the population not treating their water is

dα

dt
= α

(
Π(NT )− Π̄

)
. (A.1)

Here Π(NT ) represents the individual’s payoff to not treating their water, and Π̄ represents

the average payoff for all strategies. Equation 1 demonstrates that the change in water

treatment behavior moves according to the change in underlying payoffs. If the payoff for

not treating water is larger than the average payoff, then the share of the population not

treating their water will grow. Conversely, if the average payoff is larger than the payoff for

not treating water, then the share of the population not treating their water will shrink. To

illustrate these points, I must first derive the payoff for not treating water:

Π(NT ) = (1− α){β − C(I(t))}+ α{−C(I(t))} (A.2)

Equation 17 demonstrates that an individuals payoff for not treating his water depends upon

the fraction of the population that treat their water and the fraction of the population that

do not treat their water. Similarly, to determine the final behavior dynamic, I must derive
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the average payoff:

Π̄ = (1− α) [(1− α){β − C}+ α{β − C(I(t))}] (A.3)

+ α [(1− α){β − C(I(t)}+ α{−C(I(t))}]

With a little algebra, equation 18 reduces to:

Π̄ = (1− α) [β − (1− α)C − αC(I(t))] + α [(1− α)β − C(I(t))] (A.4)

Now substituting equations 17 and 19 into equation 16 and doing a little algebra, I find:

dα(t)

dt
= α(1− α) {(1− α) [C − C(I(t))]− αβ} (A.5)

Because agents payoffs depend upon the aggregate share of agents making each choice, this

model has the nice property that it can account for the role that externalities might play

in behavior change. In table A.1, it is easy to see that if C > C(I(t)), then a portion

of the population will free-ride on the water treating group in equilibrium. When cholera

infection is unlikely, a larger portion of the population will be free-riders in equilibrium.

However, at higher infection levels i.e. C(I(t)) > C, the positive externality imposed by the

water treating group is not sufficiently high to allow free-riding to exist in the population.
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Thus, periods of high infection make investments in water treatment more valuable thereby

inducing agents to treat their water.

There are a couple important things to note with this game. First this game is intended

to represent only situations where individuals must treat their water each time fresh water

is collected. It is not intended to represent situations where a third party treats and sup-

plies clean water through a water and sanitation infrastructure. Second, this game has the

implicit assumption that treating water provides full protection against contracting cholera.

Although treating water does not fully protect against contracting cholera in reality, this

assumption greatly simplifies the model.

A.2 Model Calibrations

Data

To obtain cholera incidence data, I collected weekly cholera incidence by province for Zim-

babwe from the WHO epidemiological bulletins (World Health Organization, 2008). The

cholera epidemic bulletins are available beginning December 15, 2008 through June 13, 2009.

Although the cholera outbreak in Zimbabwe began in August of 2008, weekly data on cholera

incidence is not continuously available prior to December 15, 2008.

To obtain data on the share of the population treating their water, I used data from the

Demographic Health Surveys (DHS) conducted in Zimbabwe. These surveys administer

detailed individual and household level questions on demographic characteristics and health

behaviors, including water treatment behavior. Because these surveys are conducted every

five years on average, I do not have data during the 2008-2009 cholera outbreak. However, I

am able to obtain data on water treatment in 2005 and again in 2010. Thus, data on water

treatment in Zimbabwe comes from two snapshots in time: before and after the cholera
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epidemic. Since these surveys occur at the household level, I aggregate the total number

of households treating their water as a share of the total households surveyed in a given

province for both 2005 and 2010 (Measure DHS, 2005, 2010). I used this as my estimate of

the share of the population treating their water for each province.

Data on the biological parameter values were taken from the mathematical epidemiology

literature. It should be noted that many of the parameters occur for a range of values.

However, in the literature it is standard practice to calibrate an outbreak model with a

single parameter value from within the biological range. Since the purpose of this paper is to

explore the dynamic relationship between cholera infection and water treatment behavior, I

assume a single value from within the biological range for each biological parameter. Table

A.2 provides the non province specific biological parameters used to simulate the model.

This table also provides the sources used to obtain information on the parameter values.

Table A.3 gives the province specific biological parameters. Additionally, table A.3 provides

the province specific assumed values for the benefit of water treatment, β; the cost of water

treatment, C; and the intensity of the outbreak perception, λ. To calibrate the model, I

must also use initial values for each of the dyanmic equations.

Table A.4 shows the initial values used for each dynamic equation. Data on the number of

individuals with temporary cholera immunity at the start of the outbreak, R(t), is unavail-

able. I assume that at the start of the outbreak, there are no recovered and temporarily

cholera immune individuals. The reason for this assumption is that cholera immunity last

less than a full year. At the beginning of an outbreak very few, if any, people will have

cholera immunity. For the cholera incidence, I(t), initial values, I use the number of people

infected with cholera during the week of December 15, 2008, the first week that continuous

weekly cholera incidence data is available. Because data on water treatment behavior is un-

available during the outbreak, I approximate this behavior using the share of the population

not treating their water in 2005 as the initial value for α(t). Similarly, data on the level of
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V. cholerae bacteria in the aquatic reservoir, B(t), and the number of cholera susceptible

individuals, S(t), is unavailable. So, I chose the initial values that provided the best fit

between the model calibration and the observed data.

Complete Results

Using the parameters in tables A.2 through A.4, I simulate equations 3-7 (see paper) for each

province in Zimbabwe. The first graph for each province provides the actual cholera incidence

for each week between December 15, 2008 and June 13, 2009 and the model predicted

incidence during the same time period. The second graph for each province demonstrates

the change in the proportion of the population treating their water. For the calibrations,

I assume that the initial share of the population treating their water during the week of

December 15, 2008 is the same as the share of the population treating their water in 2005. I

show for each province that incorporating the change in the share of the population treating

their water between 2005 and 2010 into the model of cholera incidence provides a calibrated

outbreak that closely matches data from the initial outbreak. This model assumes that

the full change in the share of the population treating their water occurred during the

cholera outbreak. While it is possible that this change in water treatment behavior may

have occurred at some point prior to the outbreak, it is unlikely due to the fact that there

was no other major catalyst for behavior change during this period.

It should be noted here that the model fails to match the observed drop in cholera cases

that occurred in most provinces around week 7 of the outbreak. Instead, these calibrations

demonstrate that converging to the share of the population treating their water in 2010

allows cholera to persist in the population. An explanation for the divergence between the

observed data and the model calibration will be presented in section A.3. While the benefits

and costs assumed in this calibration appear to qualitatively match the initial stages of

the observed outbreak, exploring the model under different cost and benefit structures will
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demonstrate the impact of costs and benefits of water treatment on the cholera epidemic

magnitude.

Table A.3: Province Specific Model Parameters

Parameters
µc1 N1 β C λ

Bulawayo 0.041 718,278 150 500 100
Harare 0.035 2,012,784 215 400 100
Manicaland 0.048 1,665451 140 400 100
Mashonaland Central 0.029 1,056,666 140 400 100
Mashonaland East 0.070 1,196,772 180 500 100
Mashonaland West 0.042 1,300,012 102 500 100
Masvingo 0.059 1,401,672 62 500 100
Matabeleland North 0.064 748,317 21 500 100
Matabeleland South 0.030 693,230 56 500 100
Midlands 0.045 1,554,058 110 500 100
Zimbabwe 0.046 12,347,240 135 500 100

1. World Health Organization (2013)
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Table A.4: Initial Model Values

Initial Parameter Values
S(t) I(t)1 R(t) B(t) α(t)2

Bulawayo 50 97 0 10−10 0.81
Harare 15,000 780 0 105 0.68
Manicaland 16,500 842 0 105 0.91
Mashonaland Central 25,000 291 0 10−10 0.89
Mashonaland East 3,000 199 0 106 0.92
Mashonaland West 19,500 2,650 0 10−10 0.86
Masvingo 17,500 945 0 10−10 0.90
Matabeleland North 1,000 0 0 106 0.95
Matabeleland South 2,000 146 0 106 0.91
Midlands 11,000 41 0 105 0.95
Zimbabwe 40,000 5,993 0 10−10 0.87

1. World Health Organization (2008)

2. Measure DHS (2005)
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A.3 Sensitivity Analysis

In this section, I examine the sensitivity of the simulations presented in section A.2 to

changes in both the benefits of water treatment, β, and the costs of water treatment, C.

Since changing both the benefits and costs simultaneously would create confusion about

the catalyst underlying any subsequent changes in cholera incidence or in the share of the

population treating their water, I change only one factor while holding all other model

parameters constant. Thus, the sensitivity analysis is divided into two sections: benefit

sensitivity analysis and cost sensitivity analysis.

Benefit Sensitivity Analysis

This section explores the effect of changes in water treatment benefits on both the magnitude

of a cholera outbreak and the share of the population treating their water. As in section A.2,

the non province specific model parameters used in the sensitivity analysis are provided in

table A.2, and the initial values for each of the dynamic equations used in this analysis are

listed in table A.4. The province specific parameters used in each of the calibrations in this

section are available in table A.5. From these tables, it is easy to see that the only parameters

changed for these calibrations are the values of β. Furthermore, the benefit level used in

calibration 1, provided in table A.5 column 3, is the same as the benefit level used for the

calibration in section A.2. Thus, calibrations 2-4 demonstrate the outbreak magnitude and
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the share of the population treating their water under alternative water treatment benefits.

In each calibration, the benefits of water treatment, β, are greater than the benefits of water

treatment used in the previous calibration. As an example, the benefits of water treatment

used in calibration 2 are larger than the benefits of water treatment used in calibration

1. However, the relationship between the benefits of water treatment, β, and the cost of

water treatment, C, varies by calibration. This occurs because the cost of water treatment

is non-changing across calibrations while the benefit of water treatment is increasing across

calibrations. In calibrations 1 and 2, the benefit of water treatment, β, is lower than the

cost of water treatment, C, for each province. However, the relative difference between the

benefits of water treatment and the costs of water treatment varies by calibration and by

province. In calibration 3 and 4, the benefits of water treatment, β, exceeds the cost of

water treatment, C. Again, however, the relative difference between the benefits of water

treatment and the costs of water treatment varies by calibration and by province.

Comparing the calibration 1-4 on each of the graphs, it is easy to see that increasing the

benefits of water treatment induces a greater share of the population to treat their water.

This, in turn, reduces the overall outbreak magnitude. Therefore, the benefits of water

treatment are negatively related to outbreak magnitude. However, an important finding is

that simply raising the benefits of water treatment above the cost of water treatment, as

in calibration 3 and 4, does not induce the entire population to treat their water. This is

partially due to the model structure. In this model, raising the benefits of water treatment, β,

increases the payoff for both the share of the population treating their water and the share

of the population not treating their water. As a simplifying assumption, I have assumed

that everyone recieves the same benefit of water treatment regardless of their own strategy.

However, it might be more realistic to assume that individuals treating their water recieve

a higher benefit from water treatment than those who do not treat their water. In this

case, increasing the benefits of water treatment, β, would induce greater population water
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treatment and lower outbreak magnitude than that presented in calibrations 1-4.

The role of perceived water treatment benefits in inducing water treatment behavior is

important for this model. Most previous research on low water treatment in developing

countries has focused on barriers to water treatment like information costs, time costs,

and monetary costs associated with purchasing and using water treatment products. The

underlying idea with this research is that significant barriers prevent individuals from treating

their water. However, because calibration 1 provides the best fit with the data, the analysis

suggests that the perceived benefits of water treatment are significantly lower than the costs

of water treatment. Thus, even substantial reductions in the barriers to water treatment may

not overcome the low perceived benefits of water treatment. Therefore, raising the perceived

benefits of water treatment could be important in inducing individuals to treat their water.

This could potentially be achieved through informational campaigns or by tying the benefits

of water treatment to other goods with high benefits. However, the percieved benefits of

water treatment will need to be substanitally higher than the costs of water treatment in

order to induce the population to coordinate on the level of population water treatment

necessary to prevent cholera outbreaks.
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A.4 Cost Sensitivity Analysis

This section investigates the effect of changes water treatment costs on both the magnitude

of a cholera outbreak and the share of the population treating their water. Like the Ben-

efit Sensitivity Analysis section , the non province specific model parameters used in the
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sensitivity analysis are provided in table A.2, and the initial values for each of the dynamic

equations used in this analysis are available in table A.4. The province specific parameters

used in each of the calibrations in the section are available in table A.6. From these tables,

it is easy to see that the only parameters changed for these calibrations are the values of

C. Furthermore, the cost level used in calibration 1, provided in table A.6 column 4, is

the same as the cost level used for the calibration in section A.2. Thus, calibrations 2-4

demonstrate the outbreak magnitude and the share of the population treating their water

under alternative water treatment costs.

In each calibration, the costs of water treatment, C, are less than the costs of water treat-

ment used in the previous calibration. As an example, the costs of water treatment used in

calibration 2 are less than the costs of water treatment used in calibration 1. However, the

relationship between the costs of water treatment, C, and the benefits of water treatment,

β, varies by calibration. This occurs because the benefit of water treatment is non-changing

across calibrations while the cost of water of water treatment is decreasing across calibra-

tions.In calibrations 1 and 2, the cost of water treatment, C, is greater than the benefits of

water treatment, β, for each province. However, the relative difference between the costs of

water treatment and the benefits of water treatment varies by calibration and by province.

In calibration 3, the benefit of water treatment, β, exceeds the cost of water treatment, C,

for every province except Masvingo, Matabeleland North, and Matabeleland South. Due to

extremely low benefits of water treatment in these provinces, the cost of water treatment,

C, exceeds the benefit of water treatment, β, for calibration 3. In calibration 4, the costs of

water treatment are zero. Since the benefit of water treatment is positive for each province,

the benefit of water treatment exceeds the cost of water treatment for every province in

calibration 4.

Comparing calibrations 1-4 on the graphs, it is easy to see that reducing the costs of water

treatment induces a greater share of the population to treat their water. This, in turn, re-
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duces the overall outbreak magnitude. Therefore, the costs of water treatment are positively

related to outbreak magnitude. Thus, as expected, research that focuses on eliminating the

potential costs or barriers to water treatment can have a significant impact on the level of

cholera present in the population. However, when the benefits of water treatment are close to

zero, even large reductions in the cost of water treatment will fail to greatly increase the share

of the population treating their water. This is best illustrated by calibration 3 for Masvingo,

Matabeleland North, and Matabeleland South. The cost of water treatment is substantially

reduced in this calibration. However, due to very low benefits of water treatment, the share

of the population treating their water remains substantially below 50%. This could explain

why some research has found that adoption of water treatment is significant when the price

of water treatment solution is fully subsidized. However, for small price increases, where the

price is still highly subsidized, the demand for water treatment products falls significantly

(Ashraf et al., 2007). This model suggests that these empirical findings are due to near zero

perceived water treatment benefits.

Additionally, calibration 4 provides a characterization of the outbreak magnitude and share

of the population treating their water under zero water treatment cost. As can be seen in

each of the provincial calibrations, introduction of zero costs of water treatment causes the

level of infected individuals to fall quickly. In the model, this is because the cost of infection

is higher than the cost of water treatment for any positive level of infection; thus, the water

treatment strategy grows. Interestingly, during the 2008-2009 cholera outbreak, the WHO

along with other NGOs organized and distributed clean water, water treatment solution, and

sanitation information to cholera affected areas beginning around week 7 of the calibrations

and lasting for duration of the outbreak (World Health Organization, 2009 b.). This mid-

outbreak action effectively reduced the cost of water treatment to zero for individuals located

in epidemic areas. This model assumes a positive cost of water treatment that is constant

across time. So, the change in the cost of water treatment around week 7 caused by the WHO

is not capture by this model. However, using calibration 4 it is easy to see that lowering
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the cost of water treatment to near-zero levels would induce the water treatment strategy

to immediately grow. This, in turn, would cause the epidemic to drop off as it does around

week 7 in the observed data. Therefore, calibration 4 provides support for the argument

that the drop-off in cholera cases observed in the data around week 7 is likely due to WHO

interventions. Thus, calibration 1 or the calibrations in section A.2 can be thought of as the

level of cholera that would have persisted in each province had the WHO and others not

intervened.
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Discussion

The key finding of this model is that if water treatment behavior is prevalence dependent,

then the population can converge to a water treatment share that enables cholera to persist

in the population. This result can be seen in the graphs presented in section A.2. High

costs and low benefits of water treatment enable cholera to persist in the population. This

is due to the fact that the water treatment strategy will only grow when the costs of water

treatment are less than the costs of cholera infection. However, high costs of water treatment

imply that high levels of cholera can occur before water treatment strategies will change.

Biological research on cholera has attempted to explain why cholera may persist in pop-
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ulations. While there are undoubtedly biological reasons that enable cholera to persist in

populations, section A.3 calibration 4 demonstrates that even if V. cholerae bacteria exists

in the aquatic reservior, cholera can be eliminated with zero or near zero costs of water treat-

ment. Therefore, the role of prevalence dependent water treatment behavior should not be

ignored in research and policies that aim to eliminate cholera. This seems to fit with histori-

cal evidence on the elimination of water transmitted diseases in developed countries, as well.

Historically, water transmitted diseases were eliminated through public and private water

and sanitation infrastructure not through individual water treatment (Currie, 2000). Coun-

tries that developed water and sanitation infrastructures significantly reduced the time costs

associated with water treatment thereby reducing overall costs of water treatment. This

effectively forced the population to coordinate on the water treatment equilibrium which

subsequently reduced water transmitted disease.

Additionally, the calibrations in section A.2 provide a good characterization of the initial

cholera outbreak, but they fail to match the drop-off in cholera incidence that began around

week 7 of the observed data. The free provision of clean water, water purification tablets, and

sanitation information during the outbreak effectively reduced the cost of water treatment

to zero in the middle of the outbreak. However, this change in the cost of water treatment is

not capture by the model. Therefore, the outbreak magnitude presented in the calibrations

in section A.2 should be thought of as the epidemic magnitude in absence of the WHO

interventions. Unfortunately, these interventions were short-term policies aimed at outbreak

elimination. Although they were successful in their aim, cancellation of free water provision,

without corresponding changes to the costs and benefits associated with water treatment,

will increase population susceptibility to cholera infection.

While this model provides a first pass at incorporating outbreak related behavior into a

model of cholera outbreak, it does not provide a full biological analysis of a cholera epi-

demic. Future research should seek to incorporate more biological realness into the model of
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cholera incidence to provide better analysis of potential epidemic magnitudes. Specifically,

incorporating the highly infectious cholera state and the associated health behavior, post-

defecation hand-washing, will provide a more thorough analysis of the impacts of behavior

change on cholera epidemics. Additionally, it is not clear how the promotion of one health

behavior affects engagement in other health behaviors. In this case, it is important to un-

derstand whether water treatment behavior and hand-washing behavior are substitutes or

complements. Future research examining both health behaviors should aim to understand

whether policies that promote one behavior will crowd-out the other behavior or whether

those policies that promote one behavior will work to complement existing health behaviors.

B Appendix

Behavior Dynamic Derivation

Table B.7: Disease Prevention Investment Game

Invest Do Not Invest
Invest b-c b-c

Do Not Invest b-c(I(t)) -c(I(t))

REPLICATOR DYNAMIC: I use an evolutionary game with the replicator dynamic to derive

the changes in the share of the population not investing in disease prevention. The replicator

dynamic can be derived from a variety of strategy revision protocols. However, for simplicity,

I describe the dynamic as arising from a process where individuals are randomly paired in

each time period. If an individual is paired with someone that has a different investment

strategy, then she can compare the payoffs under the two strategies. If the alternative

strategy provides a higher payoff, then she will adopt the alternative strategy with some

probability.

GAME: I provide the game and payoffs used to derive the dynamic in table B.7. Following
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convention for evolutionary games, I report only one set of payoffs in the table, the payoffs for

the left hand side (LHS) player. The row headers indicate the two possible strategies available

to the LHS player: invest in disease prevention or do not invest in disease prevention. The

column headers give the two possible strategies available to the random player with whom

the LHS player is periodically paired: invest in disease prevention or do not invest in disease

prevention.

PAYOFFS: I use the payoffs given in table B.7 to derive the dynamic for changes in the share

of the population not investing in disease prevention. In this game, b represents the benefit

from avoiding infection, and c is the cost of investing in disease prevention. The cost of not

investing in disease prevention is given by c(I(t)). For simplicity, I assume that the cost of

not investing in disease prevention is the same regardless of whether an individual is paired

with someone that invests in disease prevention. For individuals that choose not to invest in

disease prevention and are paired with someone that invests in disease prevention, the cost

of not investing in disease prevention represents the cost of increased disease monitoring and

the cost of social ostracism for non investment. For individuals that choose not to invest in

disease prevention and are paired with someone that does not invest in disease prevention,

the cost of not investing in disease prevention represents the cost of becoming infected. The

cost of becoming infected includes both the costs associated with treating the illness and the

costs associated with missing work.

dα(t)

dt
= α(t)

(
Π(NI)− Π̄

)
(B.6)

REPLICATOR EXPLANATION: Equation 5 uses the replicator dynamic to capture the

evolution of the change in the share of the population not investing in disease prevention,

dα(t)
dt

(Sandholm (2010)). It is easy to see from this equation that the change in the share of
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the population not investing in disease prevention is a function of the share of the population

not investing in disease prevention, α(t); the payoff for not investing in disease prevention,

Π(NI); and the average payoff, Π̄. This equation demonstrates that the share of the popu-

lation not investing in disease prevention will grow if the payoff from not investing in disease

prevention is larger than the average payoff. Conversely, the share of the population not

investing in disease prevention will shrink if the average payoff is larger than the payoff from

not investing in disease prevention. The payoff for not investing in disease prevention is:

Π(NI) = (1− α(t)) [b− c(I(t))] + α(t) [−c(I(t))] (B.7)

The average payoff is:

Π̄ = (1−α(t)) {(1− α(t)) [b− c] + α(t) [b− c]}+α(t) {(1− α(t)) [b− c(I(t))] + α(t) [−c(I(t))]}

(B.8)

With a little algebra, equation 7 reduces to:

Π̄ = (1− α(t)) [b− c] + α(t) {[(1− α(t))b− c(I(t))]} (B.9)
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Now substituting equations 6 and 8 into equation 5 and doing a little algebra, I find:

dα(t)

dt
= α(t)(1− α(t)) {c− c(I(t))− α(t)b} (B.10)

B.1 Non-Linear Model Specification

SPECIFICATION PROBLEMS. Determining the appropriate model specification for this

analysis is problematic, because both linear and non-linear specifications potentially violate

some specification assumptions. The linear probability model with both fixed and random

effects reported in the main body of the paper requires that the dependent variable is con-

tinuous. However, in this paper, the dependent variable is the decision to invest in disease

prevention, a binary variable. Violation of this assumption introduces heteroskedasticity

into the standard errors, an issue that can be corrected, and violates the assumption that

the errors are normally distributed, an issue that can not be corrected (Wooldridge (2012)).

Both linear and non-linear model specifications require that the model error terms are un-

correlated with each other unless the correlation structure can be specified using fixed or

random effects (Wooldridge (2012)). Since individuals make repeated decisions over time

in the experiment, the error terms are likely correlated within subject. However, it is not

clear whether the entire correlation structure can be accurately modeled using fixed effects

or random effects specifications. Although violating this assumptions is an issue for both

linear and non-linear models, violation of this assumption with a linear model only produces

inefficient standard errors, an issue that can be corrected (Wooldridge (2012)). However,

violating this assumption in non-linear models creates inconsistent parameter estimates, an

issue that can not be corrected (Wooldridge (2012)). For this reason, I test the robustness

of the reported results to both linear and non-linear specifications.
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LINEAR PROBLEMS. Using a linear specification with a binary dependent variable in-

troduces heteroskedasticity into the standard errors and violates the assumption that the

standard errors are normally distributed. I address the issue of heteroskedasticity by re-

porting clustered, robust standard errors in the linear model specification. However, I can

not control for violating the assumption that the standard errors are normally distributed.

Since the asymptotic properties of the ols estimator are derived from the assumptions on the

distribution of the standard errors, violating the normality assumption causes the typical

tests for statistical significance to be invalid (Wooldridge (2012)). Therefore, a potential

concern is that the significance of the coefficients reported in the main body of the paper

may not hold when a non-linear model is specified. Although linear probability models create

misspecification problems, the non-linear models are problematic for this analysis, as well.

NONLINEAR PROBLEMS. Although specifying a non-linear model can correct for the two

issues with linear probability models, linear, logit, and probit models all require that the

error terms be independent or uncorrelated with each other unless the correlation structure

can be modeled explicitly. This experiment considers individual choices over time which

likely causes correlation in individual errors over time. I approach this issue by explicitly

modeling the correlation structure using fixed effects and random effects in both the linear

and non-linear models. According to Greene (2012), fixed effect specifications control for

any subject specific effects that do not vary over time, and they allow the unobserved effect

to be correlated with the regressors. Random effect specifications control for an individual

specific error term, but they requires the stronger assumption that the unobserved effect is

uncorrelated with the regressors. The issue arises if the errors are still correlated with each

other after explicitly modeling the correlation structure. If the correlation among errors is

not correctly modeled using fixed or random effects in the linear model, then the coefficient

estimates are still consistent and unbiased, but the standard errors are inefficient (Greene

(2012)). I correct for this issue in the linear model by reporting clustered, robust standard

errors. However, if the correlation among errors is not correctly modeled using fixed or
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random effects in the non-linear model, then the coefficient estimates are inconsistent (Greene

(2012)). Unfortunately, I can not correct this issue by clustering the standard errors, because

the coefficient vector β is still an inconsistent estimator. For further discussion of this issue

see Greene (2012). For these reasons and ease of interpretation, I chose to report the linear

model in the main body of the paper. However, I demonstrate that the reported results are

robust to a non-linear specification.

LOGIT. For the robustness analysis, I chose to report a logit model specification over a

probit model specification. Theoretically, the logit model specification requires the assump-

tion that the standard errors are logistically distributed while the probit model requires the

assumption that the standard errors are normally distributed (Wooldridge (2012)). It is

not clear which assumption is correct in this case. Furthermore, Wooldridge (2012) argues

that explicitly modeling the error correlation structure by estimating the fixed effects pro-

duces an inconsistent and potentially biased estimation of the coefficients in both logit and

probit models. This issue is known as incidental parameter bias. However, using the con-

ditional logit estimator does not treat the unobserved effects as parameters to be estimated

(Wooldridge (2012)). Instead, conditional logit finds a conditional density that depends only

on observables and the vector of coefficients (Wooldridge (2012)). In this way, conditional

logit controls for unobserved, non time-varying effects or fixed effects and produces a consis-

tent estimation of the vector of coefficients. Although I could estimate a conditional probit

model, estimation of the conditional probit model requires that an additional assumption

be made about the distribution of the unobserved effects (Wooldridge (2012)). For further

discussion of this issue see Wooldridge (2012). Since conditional logit allows me to control for

unobserved individual effects without the incidental parameters problem, I chose to report

robustness results from the non-linear logit specification. However, it should be noted that

using a probit specification and estimating fixed or random effects (not reported) does not

change the sign or significance of these results.
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ODDS RATIO: When estimating non-linear models, it is customary to report the marginal

effect to allow for interpretation of the regression coefficients. However, the magnitude of an

interaction term in a non-linear model is not equal to the marginal effect of the interaction

term (Ai and Norton (2003)). Since the estimated model contains an interaction term, the

marginal effects will be incorrect for the regression coefficient squared incidence: 1 lag. To

avoid this issue, I follow Buis (2010) and report the odds ratios for the estimated logit model.

The odds ratios give the ratio by which the dependent variable changes for a one unit change

in an independent variable. Unlike computing the marginal effects, the odds ratio provides

the correct magnitude, sign, and significance for interaction terms.

Table B.8: Effect of Treatments on Decision to Invest in Disease Prevention

Investment in Disease Prevention
Logit RE

(1) (2) (3)
High Cost -2.74∗∗∗ -2.84∗∗∗ -2.87∗∗∗

(0.11) (0.16) (0.17)

Order Effects -0.07 -0.20 -0.21
(0.33) (0.37) (0.37)

High Cost * Order Effects 0.18 0.18
(0.22) (0.22)

Round Effects No No Yes
Observations 4000 4000 4000

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TREATMENT EFFECTS: Table B.8 provides a robustness check of result 1 to a logit

specification. This table demonstrates that being in the high cost treatment has a significant

negative impact on the probability of investing in disease prevention. This effect holds when

controlling for order and round effects. Additionally, table B.9 provides the odds ratios

for the models reported in table B.8. The coefficients and significance levels are consistent

with the linear model. This demonstrates that the odds of investing in disease prevention

for subjects in the low cost treatment are approximately 17 times higher than the odds
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Table B.9: Effect of Treatments on Decision to Invest in Disease Prevention

Investment in Disease Prevention
Logit REs Odds Ratios

(1) (2) (3)
High Cost 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(0.01) (0.01) (0.01)

Order Effects 0.94 0.82 0.81
(0.31) (0.30) (0.30)

High Cost * Order Effects 1.19 1.20
(0.26) (0.27)

Round Effects No No Yes
Observations 4000 4000 4000

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

of investing in disease prevention for subjects in the high cost treatment. This effect is

significant at the 1% level. This demonstrates that result 1 is robust to a non-linear model

specification.

PREVALENCE ELASTICITY: Table B.10 equations 1-6 show that result 2 is robust to a

logit model specification. Higher disease incidence in the prior round increases the probability

of investing in disease prevention, an effect significant at the 1% level. Thus, I find evidence

that subjects exhibit prevalence elastic demand for disease prevention. Table B.11 equation

5 demonstrates that the odds of investing in disease prevention are 1.52 times higher if there

is a one person increase in the infection level than if there is no change in the infection level.

This effect is significant at the 1% level. As in the linear specification, the effect of disease

incidence on prevention investment is not constant as infection levels rise.

SQUARED INCIDENCE: Table B.10 equations 4-6 give the results of the robustness of result

4 to a logit specification. The impact of disease incidence on the probability of investing in

disease prevention decreases as infection levels rise. This effect is significant at the 1% level.

Table B.11 equation 4 shows that for each one person decrease in the infection level, the odds
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Table B.10: Effect of Changes in Disease Incidence on Decision to Invest in Disease Preven-
tion

Investment in Disease Prevention
Logit

FE RE
(1) (2) (3) (4) (5) (6)

Incidence: 1 Lag 0.04 0.06 0.07∗ 0.29∗∗ 0.42∗∗∗ 0.42∗∗∗

(0.03) (0.04) (0.04) (0.12) (0.13) (0.13)

Infected: 1 Lag -0.53∗∗∗ -0.49∗∗∗ -0.54∗∗∗ -0.49∗∗∗ -0.59∗∗∗

(0.11) (0.12) (0.11) (0.12) (0.12)

Incidence: 2 Lags 0.08∗ 0.09∗∗ 0.09∗∗

(0.04) (0.04) (0.04)

Squared Incidence: 1 Lag -0.001∗∗ -0.01∗∗∗ -0.01∗∗∗

(0.00) (0.00) (0.00)
Free Rider Factor -0.43∗∗∗

(0.16)

High Cost Treatment -3.30∗∗∗ -3.27∗∗∗ -4.40∗∗∗ -4.41∗∗∗ -6.33∗∗∗ -6.27∗∗∗

(0.46) (0.46) (0.74) (0.73) (1.02) (1.02)

Round Effects Yes Yes Yes Yes Yes Yes
Observations 3552 3552 3404 3552 3404 3358

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.11: Effect of Changes in Disease Incidence on Decision to Invest in Disease Preven-
tion

Investment in Disease Prevention
Logit Odds Ratios

FE RE
(1) (2) (3) (4) (5) (6)

Incidence: 1 Lag 1.04 1.06 1.07∗ 1.33∗∗ 1.52∗∗∗ 1.52∗∗∗

(0.04) (0.04) (0.04) (0.16) (0.20) (0.20)

Infected: 1 Lag 0.59∗∗∗ 0.61∗∗∗ 0.59∗∗∗ 0.61∗∗∗ 0.55∗∗∗

(0.07) (0.07) (0.07) (0.07) (0.06)

Incidence: 2 Lags 1.08∗ 1.09∗∗ 1.09∗∗

(0.04) (0.04) (0.04)

Squared Incidence: 1 Lag 0.99∗∗ 0.99∗∗∗ 0.99∗∗∗

(0.00) (0.00) (0.00)

Free Rider Factor 0.65∗∗∗

(0.11)

High Cost Treatment 0.04∗∗∗ 0.04∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.02) (0.02) (0.01) (0.01) (0.00) (0.00)

Round Effects Yes Yes Yes Yes Yes Yes
Observations 3552 3552 3404 3552 3404 3358

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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of investing in disease prevention are 1.01 times larger than the odds of investing in disease

prevention if infection levels do not change. This effect is significant at the 1% level. Taken

with the findings on prevalence elastic demand for disease prevention, these results capture

the fact that the probability of investing in disease prevention increases at a decreasing rate

as infection levels rise.

PRIOR INFECTION: Table B.10 equations 2-6 demonstrate that result 3 is robust to a

logit model specification. Being infected in the previous period decreases the probability

that a subject invests in disease prevention, an effect significant at the 1% level. Table B.11

equations 1 and 4 provide the interpretation that the odds of investing in disease prevention

are 1.69 times larger for subjects that were not infected in the previous round than the odds

of investing in disease prevention for subjects that were infected in the previous round. This

effect is significant at the 1% level. This provides support for the finding that an infection

in the previous period reduces the current probability of investment.

INCIDENCE HISTORY: Table B.10 equations 3, 5, and 6 show result 5 is robust to a logit

model specification. Higher historical disease incidence has a persistent positive impact on

the probability of investing in disease prevention, an effect significant at the 5% level. Table

B.11 equations 5 and 6 give the interpretation that the odds of investing in disease prevention

are 1.09 times higher if there is a one person increase in the infection level 2 rounds prior

than if there is no change in the infection level. This effect is significant at the 5% level. This

demonstrates that disease incidence has a persistent impact on the probability of investing

in disease prevention.

FREE RIDER: Table B.10 equation 6 provides a robustness check of result 6 to a logit model

specification. Subjects that report free-riding on the disease prevention investments of others

in the real-world are less likely to invest in disease prevention in the experiment, an effect

significant at the 1% level. Table B.11 equation 6 demonstrates that the odds of investing in

disease prevention are 1.54 times higher for subjects that score lower on the free-rider factor
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than the odds for subjects who score higher on the free-rider factor. This effect is significant

at the 1% level. This finding suggests that subjects’ behavior in the experiment is correlated

with their real-world attitudes towards investment in disease prevention.

Self-Reported Disease Prevention Behaviors

Table B.12: Summary Statistics for Self-Reported Engagement in Disease Prevention Be-
haviors

Observations Median Mean Standard Deviation
Question 1 80 1 1.25 0.46

Question 2 80 2 2.44 1.04

Question 3 80 1 1.44 0.59

The questionnaire implemented at the end of the experiment asks subjects to rate the fre-

quency with with they engaged in the following behaviors:

1. How often do you wash your hands after using the restroom?

2. How often do you wash your hands before you eat?

3. How often do you cover your mouth when coughing in public?

RESPONSE: Subjects were asked to rate the frequency with which they engage in these

behaviors: Every time, Most of the time, Half of the time, Some of the Time, and Never.

These responses were scaled from 1 to 5 with 1 representing Every time and 5 representing

Never. Table B.12 provides the average numbered response for each of these questions. It

is easy to see that a high number of subjects report frequent engagement in each of these

behaviors meaning that there is very little variation in their responses.

FUTURE: In the future, a better way to ask this question would be to ask subjects what

percentage of the time they engage in each behavior. Asking the question in this way would
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avoid truncating the distribution. Thus, as long as the over reporting only results in a

shift of the distribution mean, the variables should still be correlated with behavior in the

experiment.
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Experiment Screen Shots

Part I
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Part II
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C Appendix

C.1 Behavior Dynamic Derivation

I use an evolutionary game with the replicator dynamic to derive the change in the share

of the population not investing in disease prevention. Since the replicator dynamic can be132



derived from different strategy revision protocols, I choose to describe the dynamic as arising

from process where individuals are randomly paired each time period. When an individual

is paired with someone with a different strategy, she can compare her payoff with the payoff

under the other strategy. If the other strategy provides a higher payoff, she will adopt the
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Part III

strategy with some probability.

The games underlying model 1 and model 2 are provided in table C.12 and table C.13,

respectively. As is customary for evolutionary games, the payoffs are given for the player
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Table C.13: Prevention Investment Game: Model 1

Invest Do Not Invest
Invest b-c b-c

Do Not Invest b-c(I(t)) -c(I(t))

on the left hand side (LHS). The row labels provide the two possible strategies for the LHS

player: invest in disease prevention or do not invest in disease prevention. The column

labels provide the two possible strategies for the random player with whom the LHS player

is periodically paired: invest in disease prevention or do not invest in disease prevention.

Table C.14: Prevention Investment Game: Model 2

Invest Do Not Invest
Invest b-c b-c

Do Not Invest b -c(I(t))
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Model 1 Derivation

Table C.12 provides the payoffs used to derive the changes in the share of the population

investing in disease prevention for model 1. In table C.12, b is the benefit from avoiding

infection, and c is the cost of investing in disease prevention. The cost of investing in disease

prevention represents the monetary costs and the time costs associated with investing in

disease prevention. The cost of not investing in disease prevention is given by c(I(t)). I

assume that the cost of not investing in disease prevention is an increasing function of the

infection rate. For simplicity, I assume that agents pay the same cost for not investing in

disease prevention regardless of whether they are paired with an investor or a non-investor.

For individuals that choose not to invest in disease prevention and are randomly paired

with an investor, this cost represents the cost of social exclusion, including social ostracism

for not investing in disease prevention. For individuals that choose not to invest in disease

prevention and are randomly paired with a non-investor, this cost represents the cost of

becoming infected.

dα(t)

dt
= α(t)

(
Π(NI)− Π̄

)
(C.11)

Using the replicator dynamic, the change in the share of the population not investing in dis-

ease prevention, dα(t)
dt

, is a function of the share of the population not investing in prevention,

α(t); the payoff from not investing in disease prevention, Π(NI); and the average payoff,

Π̄. Equation 6 demonstrates that the change in the share of the population not investing

in disease prevention evolves according to the underlying individual payoffs. If the payoff

from not investing in disease prevention is larger than the average payoff, then the share of

the population not investing in disease prevention will grow. Conversely, if the payoff from

not investing in disease prevention is smaller than the average payoff, the the share of the
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population not investing in disease prevention will shrink. The payoff for not investing in

disease prevention is:

Π(NI) = (1− α(t)) [b− c(I(t))] + α(t) [−c(I(t))] (C.12)

The average payoff is:

Π̄ = (1−α(t)) {(1− α(t)) [b− c] + α(t) [b− c]}+α(t) {(1− α(t)) [b− c(I(t))] + α(t) [−c(I(t))]}

(C.13)

With a little algebra, equation 8 reduces to:

Π̄ = (1− α(t)) [b− c] + α(t) {[(1− α(t))b− c(I(t))]} (C.14)

Substituting equations 7 and 9 into equation 6 and doing some algebra, I find:

dα(t)

dt
= α(t)(1− α(t)) {c− c(I(t))− α(t)b} (C.15)
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Model 2 Derivation

Table C.13 gives the payoffs used to derive the changes in the share of the population not

investing in disease prevention used in model 2. As in Model 1 Derivation section, b is the

benefit from avoiding infection, and c is the cost of investing in disease prevention. The

cost of not investing in disease prevention is, c(I(t)). I assume that this cost is an increasing

function of the infection level. Unlike model 1, an individual only pays a cost of not investing

in disease prevention if she is randomly paired with another non-investor. In this model, the

cost of not investing in disease prevention simply represents the cost of becoming infected.

dα(t)

dt
= α(t)

(
Π(NI)− Π̄

)
(C.16)

Like the derivation for the behavior dynamic presented in the Model 1 Derivation section,

I begin with the equation for the replicator dynamic. Equation 11 gives the change in the

share of the population not investing in disease prevention, dα(t)
dt

. The change in the share of

the population not investing in disease prevention is a function of the share of the population

not investing in disease prevention, α(t); the payoff from not investing in disease prevention,

Π(NI); and the average payoff, Π̄. From the replicator dynamic, it is easy to see that the

share of the population not investing in disease prevention grows if the payoff from not

investing in disease prevention is larger than the average payoff. Conversely, the share of

the population not investing in disease prevention shrinks if the average payoff is larger than

the payoff from not investing in disease prevention. The payoff for not investing in disease
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prevention is:

Π(NI) = (1− α(t)) [b] + α(t) [−c(I(t))] (C.17)

The average payoff is:

Π̄ = (1− α(t)) {(1− α(t)) [b− c] + α(t) [b− c]}+ α(t) {(1− α(t)) [b] + α(t) [−c(I(t))]}

(C.18)

With a little algebra, equation 13 reduces to:

Π̄ = (1− α(t)) [b− c] + α(t) {(1− α(t)) [b] + α(t) [−c(I(t))]} (C.19)

Substituting equations 12 and 14 into equation 11 and doing some algebra, I find:

dα(t)

dt
= α(t)(1− α(t)) {c− α(t) [b+ c(I(t))]} (C.20)
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C.2 Non Linear Model Specification

In this analysis, both linear and non-linear model specification assumptions are potentially

violated. This makes it difficult to determine the most appropriate model for analysis. The

linear probability model with random effects reported in the main body of the paper requires

that the dependent variable is continuous. However, both dependent variables of interest,

the probability of starting investment and the probability of stopping investment, are binary.

Violating the assumption that the dependent variable is continuous creates two problems:

heteroskedastic error terms and violation of the assumption that errors are normally dis-

tributed (Wooldridge (2012)). While the first problem, heterskedastic error terms, can be

corrected, non-normality of error terms is not an issue that can be correct (Wooldridge

(2012)). Furthermore, both linear and non-linear models require that the model error terms

are uncorrelated with each other unless the correlation structure can be correctly modeled

with fixed or random effects (Wooldridge (2012)). Because subjects make repeated decisions

in this experiment, the error terms are likely correlated within subject. Since the treatments

in this experiment were between subject, I can not explore the impact of the treatments

on the dependent variables while controlling for subject fixed effects. So, I can only model

the potential error term correlation structure using random effects. However, it is not clear

whether the error term structure is correctly modeled using random effects. If correlation

exists between error terms after controlling for random effects, the problem is worse for a

non-linear specification than a linear specification. Violation of the assumption that error

terms are uncorrelated with each other in a linear specification creates inefficient standard

errors, an issue that can be corrected (Wooldridge (2012)). Violation of this assumption in

a non-linear specification creates inconsistent parameter estimates, an issue that can not be

corrected (Wooldridge (2012)). For this reason, I test the robustness of the reported results

to both linear and non-linear model specifications.

Using a linear probability model creates heteroskedasticity and violates the assumption
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that the error terms are normally distributed (Wooldridge (2012)). To correct for the het-

eroskedasticity created by the linear probability model, I report clustered, robust standard

errors in the main body of the paper (Wooldridge (2012)). However, I am unable to correct

for the effects of non-normally distributed error terms in the linear model. The asymptotic

properties of the OLS estimator are derived from the distribution of the model’s error terms,

and violating the normality assumption causes the statistically tests of significance to be in-

valid (Wooldridge (2012)). Thus, the concern is that the reported significance of the results

may not hold when a non-linear model is specified.

Both linear and non-linear models such as probit and logit require the assumption that error

terms are uncorrelated with each other unless the correlation structure can be explicitly

modeled (Greene (2012)). Because individuals make repeated decisions over time in the

experiment, the error terms are likely correlated within subject. There are two ways to

explicitly model the error correlation structure: fixed effects and random effects. Since the

experimental treatments were varied between subjects, controlling for fixed effects would

eliminate all treatment effects. So, I can not model the correlation structure using fixed

effects. I attempt to model the error term correlation structure using random effects. While

a random effect specification controls for an individual specific error term, it requires the

strong assumption that the unobserved effect is uncorrelated with the independent variables

(Greene (2012)). If the error correlation structure is not correctly modeled using random

effects in the linear model, then coefficient estimates are still consistent and unbiased, but

the standard errors will be inefficient (Wooldridge (2012)). If the error correlation structure

is not correctly modeled using random effects in the non-linear model, then the coefficient

estimates are inconsistent (Greene (2012)). Unlike the linear model, this problem is can not

be corrected using clustered standard errors. For a more detailed explanation see Greene

(2012). For these reasons and ease of interpretation, I chose to report the linear specification

in the main body of the paper. However, I demonstrate below that the reported results are

robust to a non-linear specification.
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To conduct a robustness check of the linear model specification, I report a probit model spec-

ification rather than a logit model specification. Theoretically, a logit specification requires

that the error terms are distributed logistically while a probit specification requires that the

error terms are distributed normally(Greene (2012)) . It is not clear which assumption is

correct in this analysis. I report the results of a random effects probit specification in this

appendix, but both the sign and significance of coefficients are robust to a random effects

logit specification (not shown).

Table C.15: Effect of Treatments on Changes in Disease Prevention Investment Decisions

Decision: Start Investing Decision: Stop Investing
RE

(1) (2) (3) (4) (5) (6)

Outbreak Information -0.06 -0.10 -0.10 -0.07 -0.09 -0.09
(0.07) (0.10) (0.10) (0.07) (0.10) (0.10)

Exclusion Cost -0.05 -0.08 -0.08 -0.03 -0.05 -0.06
(0.07) (0.09) (0.09) (0.07) (0.09) (0.10)

Outbreak Information * 0.08 0.08 0.05 0.05
Exclusion Cost (0.14) (0.14) (0.14) (0.14)

Round Effects No No Yes No No Yes

Observations 3840 3840 3840 3840 3840 3840
ρ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.09∗∗∗

Model χ2 1.16 1.49 48.03 1.11 1.23 30.66

Clustered robust standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table C.14 provides the results of the effects of the treatments on the probability of starting

and stopping investment in disease prevention. Additionally, table C.15 gives the results for

the marginal effects of the treatments on the probability of starting and stopping investment

in disease prevention. These tables demonstrate that neither the outbreak information treat-

ment nor the exclusion costs treatment alone are significant in explaining the probability of

starting or stopping investment in disease prevention. Furthermore, the treatment effects

are not significant when controlling for interaction effects or round effects. As in the linear

model specification, this shows that there are additional relevant factors for explaining the
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Table C.16: Effect of Treatments on Changes in Disease Prevention Investment Decisions

Decision: Start Investing Decision: Stop Investing
Marginal Effects

(1) (2) (3) (4) (5) (6)

Outbreak Information -0.01 -0.03 -0.03 -0.02 -0.03 -0.03
(0.02) (0.03) (0.03) (0.02) (0.03) (0.03)

Exclusion Cost -0.01 -0.02 -0.02 -0.01 -0.02 -0.01
(0.02) (0.03) (0.03) (0.02) (0.03) (0.03)

Outbreak Information * 0.03 0.03 -0.02 -0.02
Exclusion Cost (0.03) (0.03) (0.03) (0.03)

Round Effects No No Yes No No Yes

Observations 3840 3840 3840 3840 3840 3840
ρ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.09∗∗∗

Model χ2 1.16 1.49 48.03 1.11 1.23 30.66

Clustered robust standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

decisions to start and to stop investing in disease prevention.

In tables C.16 and C.18 equations 1-6, I test the robustness of result 1 to a random effects

probit specification. I demonstrate that subjects who face costs of social exclusion for not

investing in disease prevention are significantly more likely to start investing in disease

prevention and significantly less likely to stop investing in disease prevention. These effects

are significant at the 1% level. Tables C.17 equations 1-6 give the marginal effect of exclusion

costs on the probability of starting investment in disease prevention. Table C.19 equations

1-6 provide the marginal effect of exclusion costs on the probability of stopping investment

in disease prevention.

Tables C.16 and C.18 equations 1-6 provide a robustness check of result 2 to a random effects

probit specification. I show that providing subjects with outbreak information reduces the

probability that they start investing in disease prevention and increases the probability that

they stop investing in disease prevention. These effects are significant at the 5% and 1%

levels, respectively. As in the linear model, a two period lag in disease incidence is correlated
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Table C.17: Effect of Changes in Disease Incidence on Decision to Start Investing in Pre-
vention

Decision: Start Investing
RE

(1) (2) (3) (4) (5) (6)

Incidence: 1 Lag 0.10∗∗∗ 0.09∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.26∗∗∗ 0.24∗∗

(0.02) (0.02) (0.02) (0.02) (0.10) (0.10)

Infected: 1 Lag 1.52∗∗∗ 1.43∗∗∗ 1.45∗∗∗ 1.43∗∗∗ 1.45∗∗∗

(0.11) (0.13) (0.12) (0.13) (0.12)

# Decision Changes 0.20∗∗∗ 0.20∗∗∗ 0.20∗∗∗ 0.20∗∗∗

(0.01) (0.01) (0.01) (0.01)

Incidence: 2 Lags -0.01 -0.01
(0.02) (0.02)

Squared Incidence: 1 Lag -0.01∗ -0.01
(0.00) (0.00)

Outbreak Information -0.17∗∗ -0.20∗∗ -0.10∗ -0.10 -0.10∗ -0.09
(0.07) (0.10) (0.05) (0.06) (0.05) (0.06)

Exclusion Cost 0.23∗∗∗ 0.28∗∗∗ 0.28∗∗∗ 0.24∗∗∗ 0.27∗∗∗ 0.23∗∗∗

(0.08) (0.11) (0.07) (0.09) (0.07) (0.09)

Round Effects Yes Yes Yes Yes Yes Yes

Observations 3840 3840 3840 3680 3840 3680
ρ 0.09∗∗∗ 0.20∗∗∗ 0.00 0.00 0.00 0.00
Model χ2 96.00 624.33 758.04 737.85 758.62 738.60

Cluster robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.18: Effect of Changes in Disease Incidence on Decision to Start Investing in Pre-
vention

Decision: Start Investing
Marginal Effects

(1) (2) (3) (4) (5) (6)

Incidence: 1 Lag 0.02∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Infected: 1 Lag 0.29∗∗∗ 0.26∗∗∗ 0.26∗∗∗ 0.26∗∗∗ 0.26∗∗∗

(0.02) (0.02) (0.01) (0.02) (0.01)

# Decision Changes 0.04∗∗∗ 0.04∗∗∗ 0.03∗∗∗ 0.04∗∗∗

(0.00) (0.00) (0.00) (0.00)

Incidence: 2 Lags -0.002 -0.002
(0.00) (0.00)

Squared Incidence: 1 Lag

Outbreak Information -0.04∗∗ -0.04∗∗ -0.02∗ -0.02 -0.01∗ -0.02
(0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

Exclusion Cost 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.05∗∗∗ 0.04∗∗∗

(0.02) (0.02) (0.01) (0.02) (0.01) (0.02)

Round Effects Yes Yes Yes Yes Yes Yes

Observations 3840 3840 3840 3680 3840 3680
ρ 0.09∗∗∗ 0.20∗∗∗ 0.00 0.00 0.00 0.00
Model χ2 96.00 624.33 758.04 737.85 758.62 738.60

Cluster robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.19: Effect of Changes in Disease Incidence on Decision to Stop Investing in Preven-
tion

Decision: Stop Investing
RE

(1) (2) (3) (4) (5) (6)
Incidence: 1 Lag -0.06∗∗∗ -0.06∗∗∗ -0.06∗∗∗ -0.06∗∗∗ -0.08 -0.05

(0.01) (0.01) (0.01) (0.01) (0.08) (0.09)

# Infections: 1 Lag -0.05∗∗∗ -0.04∗∗∗ -0.03∗∗∗ -0.04∗∗∗ -0.03∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

# Decision Changes 0.16∗∗∗ 0.15∗∗∗ 0.16∗∗∗ 0.15∗∗∗

(0.01) (0.01) (0.01) (0.01)

Incidence: 2 Lags -0.03∗∗ -0.03∗∗

(0.01) (0.01)

Squared Incidence: 1 Lag 0.00 -0.00
(0.00) (0.00)

Outbreak Information -0.00 0.01 0.07∗ 0.12∗∗∗ 0.07∗ 0.12∗∗∗

(0.07) (0.08) (0.04) (0.04) (0.04) (0.04)

Exclusion Cost -0.18∗∗ -0.22∗∗∗ -0.17∗∗∗ -0.27∗∗∗ -0.17∗∗∗ -0.27∗∗∗

(0.08) (0.08) (0.05) (0.06) (0.05) (0.06)

Round Effects Yes Yes Yes Yes Yes Yes
Observations 3840 3840 3840 3680 3840 3680
ρ 0.09∗∗∗ 0.10∗∗∗ 0.00 0.00 0.00 0.00
Model χ2 46.36 63.02 298.13 286.78 298.12 286.82

Cluster robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.20: Effect of Changes in Disease Incidence on Decision to Stop Investing in Preven-
tion

Decision: Stop Investing
Marginal Effects

(1) (2) (3) (4) (5) (6)
Incidence: 1 Lag -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

# Infections: 1 Lag -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)

# Decision Changes 0.04∗∗∗ 0.03∗∗∗ 0.04∗∗∗ 0.03∗∗∗

(0.00) (0.00) (0.00) (0.00)

Incidence: 2 Lags -0.01∗∗ -0.01∗∗

(0.00) (0.00)

Squared Incidence: 1 Lag

Outbreak Information -0.000 0.003 0.02∗∗ 0.03∗∗∗ 0.02∗ 0.03∗∗∗

(0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Exclusion Cost -0.04∗∗ -0.05∗∗∗ -0.04∗∗∗ -0.06∗∗∗ -0.04∗∗∗ -0.06∗∗∗

(0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

Round Effects Yes Yes Yes Yes Yes Yes
Observations 3840 3840 3840 3680 3840 3680
ρ 0.09∗∗∗ 0.10∗∗∗ 0.00 0.00 0.00 0.00
Model χ2 46.36 63.02 298.13 286.78 298.12 286.82

Cluster robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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with outbreak information causing outbreak information to lose significant when I control

for it. Tables C.17 equations 1-6 provide the marginal effect of providing subjects with

outbreak information on the probability of starting investment in disease prevention. Table

C.19 equations 1-6 shows the marginal effect of providing subjects with outbreak information

on the probability of stopping investment in disease prevention.

A robustness check of result 3 to a random effects probit specification is provided in tables

C.16 and C.18 equations 1-6. I find that higher disease incidence in the previous period make

subjects significantly more likely to start investing in disease prevention and significantly less

likely to stop investing in disease prevention. This effect is significant at the 1% level. Like

the linear model specification, table C.16 equations 5 and 6 demonstrate that controlling

for squared disease incidence, a variable found to be significant in prior work, creates a

multicollinearity problem. This causes the coefficient for a one period lag in disease incidence

to become insignificant. Table C.17 equations 1-6 provide the marginal effect for a change

in disease incidence on the probability that a subject starts investing in disease prevention.

Table C.19 equations 1-6 demonstrates the marginal effect for a change in disease incidence

on the probability that a subject stops investing in disease prevention.

I show that result 4 is robust to a random effects probit specification in table C.16 equations

2-6. As in the linear specification, a subject is only classified as stopping investment if they

invested in prevention in the previous period but not in the current period. However, if a

subject invested in prevention in the previous period, then they were fully protected against

infection. So, a prior period infection can not explain the decision to stop investing in disease

prevention. I find that being infected in the previous period increases the probability that

a subject starts investing in disease prevention. This is significant at the 1% level. Table

C.17 equations 2-6 provide the marginal effect of being infected in the previous period on

the probability that a subject starts investing in disease prevention.

A subject’s infection history is likely relevant in their decision to stop investing in disease
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prevention although a subjects that stops investing would not have been infected in the

previous period. Table C.18 equations 2-6 demonstrate that result 5 is robust to a random

effects probit specification. Having been infected more times in prior rounds decreases the

probability that a subject will stop investing in disease prevention. This effect is significant at

the 1% level. Table C.19 equations 2-6 gives the marginal effect of an increase in the number

of prior infections on the probability that a subject stops investing in disease prevention.

Subjects may have different willingness to try out disease prevention investment strategies.

I use the number of times a subject has changed their investment decision in prior rounds

as a proxy for willingness to try different strategies. Tables C.16 and 18 give the results of a

robustness check of result 6 to a random effects probit specification. I find that a willingness

to try out different prevention investment strategies is associated with a significant increase

in the probability that a subject starts investing in disease prevention and with a significant

increase in the probability that a subject stops investing in disease prevention. These effects

are significant at the 1% level. Tables C.17 and C.19 provide the marginal probability of

the willingness to switch investment strategies on the probability of starting investment in

prevention and stopping investment in prevention, respectively.

Tables C.16 and C.18 equations 4 and 6 demonstrate that result 7 is robust to a random

effects probit model specification. In table C.16, I show that historical disease incidence is

not significant in explaining the decision to start investing in disease prevention. In table

C.18, I find higher historical disease incidence is associated with a significant reduction in

the probability that a subject stops investing in disease prevention. This effect is significant

at the 5% level. Tables C.17 and C.19 provide the results of the marginal effect of increased

historical disease incidence on the probability of starting and stopping investment in disease

prevention, respectively.

Carpenter (2016) previously found that there where non-linear effect in the impact of dis-

ease incidence on the probability of investing in disease prevention. Tables C.16 and 18
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equations 5 and 6 provide the results of the random effects probit specification controlling

for non-linearity in disease incidence (squared incidence: 1 lag). Equation 5 in table C.16

demonstrates the result found in Carpenter (2016) that the probability that a subject starts

investing in disease prevention increases at a decreasing rate. However, this result is not

robust to controlling for historical disease incidence, equation 6, or the linear specification

reported in the main body of the paper. Additionally, as in the linear specification, I find

that controlling for non-linearity in disease incidence in table C.18 equations 5 and 6 causes

the coefficient for disease incidence to lose significance. While I think that disease incidence

likely has a non-linear effect on the probability of starting or stopping investment in disease

prevention, controlling for non-linearity in disease incidence creates a multicollinearity issue

in the model.
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