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 Glioblastoma, the most common and deadly form of primary brain 

cancer, is characterized by rapid progression, heterogeneity, and defiance of 

therapy. The relentless nature of glioblastoma emphasizes the urgency of 

identifying improved methods to hasten the development of tailored treatments 

for patients afflicted by this malignancy. Genetic profiling of clinical 

glioblastoma specimens has revealed that glioblastoma, like other cancers, is 

composed of many different subtypes that may possess unique sensitivities to 

therapeutics.  To improve the clinical outcome of glioblastoma patients, 
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technologies must be developed to better define and discriminate the subtypes 

of glioblastomas in an affordable, accurate, and noninvasive manner.   

 The heterogeneity of glioblastoma’s genomic and molecular 

alterations mirror the diversity of its appearance in medical imaging. The 

emerging field of radiogenomics integrates methods common to neuroimaging, 

bioinformatics, and molecular biology to identify the radiographic correlates of 

tumor cellular and molecular processes. Application of radiogenomics to the 

study of glioblastoma may facilitate its understanding, especially when 

considering that magnetic resonance (MR) imaging is required for the modern 

clinical management of this disease. Unfortunately, radiogenomic progress 

demands accurate and high-throughput methods to reliably segment features 

from vast and varied imaging archives, and the careful design of metrics which 

capture biological phenotypes. 

 In this context, we developed a robust algorithm for tumor 

segmentation and radiophenotype parameterization termed Iterative 

Probabilitic Voxel Labeling (IPVL). Application of IPVL to glioblastoma tumor 

images from The Cancer Imaging Archive (TCIA) with associated genomic 

profiling available via The Cancer Genome Atlas (TCGA) led to the 

topographic mapping of glioblastoma spatial distributions by molecular 

subtype, and the discovery of two survival-associated radiographic 

parameters. These parameters, tumor subventricular distance (SVZd), and 

lateral ventricle displacement (LVd), correlate with defined physiologic 

mechanisms, and associated genomic profiles. Together, these results provide 
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proof of principle that quantitative radiographic assessment of glioblastoma is 

a viable and effective strategy capable of augmenting the power of molecular 

and genomic research. With further study in the clinical setting, application of 

these methodologies and novel imaging parameters could impact prognostic 

evaluation, identify tumor therapeutic subgroups, and hopefully improve the 

lives of patients. 
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1. Introduction  

Glioblastoma multiforme (GBM), the most common and most lethal 

form of primary brain tumor exhibits remarkable heterogeneity and resistance 

to therapy [1]. Despite aggressive treatment which includes surgical resection, 

radiation therapy, and chemotherapy, the median survival of patients afflicted 

with this condition remains 12-15 months [2], largely a result of tumor, 

histological, and genomic heterogeneity [3]. This heterogeneity persists from 

its appearance on imaging down to the molecular alterations present in each 

constituent cell, presenting significant obstacles to those who hope to 

understand the mechanisms governing its pathophysiology. In an effort to 

better understand the variability of glioblastoma, TCGA, a worldwide 

consortium of cancer researchers and clinicians selected glioblastoma to be 

the first target for their interdisciplinary approach [4]. To date, the TCGA has 

collected over 500 clinical tumor specimens, while consolidating genomic 

profiling, clinical information, neuroimaging, and histopathology into publicly 

available databases. This work has led to the discovery of at least five distinct 

subtypes of glioblastoma characterized by genomic expression and epigenetic 

changes. These subtypes include the proneural, neural, classical, 

mesenchymal, and the glioma-methylation CpG island profile phenotype (G-

CIMP), which is associated with improved patient survival [5] 

The modern clinical management of glioblastoma requires magnetic 

resonance imaging (MRI), which is used to diagnose glioblastoma, monitor 
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therapeutic response, and aid in surgical resection. This abundance of 

MR imaging presents a potential wealth of data which may be harnessed to 

better characterize and understand the landscape of glioblastoma variation. 

Over the last decade, the rise of genomic profiling, the increase in digital 

imaging availability, and the exponential growth of computing power and data 

storage has fostered the maturation of radiogenomics [3], a field which aims to 

characterize the relationships between radiographic imaging and genomic 

alterations.   

Significant obstacles have impeded the study of tumor neuroimaging 

archives. The radical distortions that tumors cause in patients’ brains also 

wreak havoc on the majority of tools designed for neuroimaging analysis and 

processing of normal brains. Additionally, as a result of many different 

hospitals contributing to the TCIA and a more general lack of standardized 

imaging methodologies, the TCIA is a widely varied imaging cohort requiring 

careful handling to perform robust imaging analysis. 

The parameterization of glioblastoma MRI may offer a glimpse into the 

pathophysiology of a tumor and its progression, and help guide clinical 

decision making as we proceed toward more individualized approaches. In 

order to address the challenges and discover the genomic correlates of 

radiographic features in glioblastomas, new tools for both the segmentation 

and evaluation of brain tumor associated volumes were designed and are 

subsequently outlined here. The automatic preprocessing and segmentation 

method Iterative Probabilistic Voxel Labeling (IPVL) is a reliable and robust 
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tool for segmentation of glioblastoma associated volumes. Furthermore, this 

thesis will demonstrate that application of IPVL facilitated the study of the 

spatial distribution of glioblastomas by molecular subtype, and helped discover 

two novel survival-associated radiographic parameters: tumor subventricular 

distance and lateral ventricle displacement. 
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2. Iterative probabilistic voxel labeling (IPVL): 

automated segmentation for analysis of The 

Cancer Imaging Archive (TCIA) glioblastoma 

images 

BACKGROUND AND PURPOSE: Robust, automated segmentation 

algorithms are required for quantitative analysis of large imaging datasets. We 

developed an automated method that identifies and labels brain tumor–

associated pathology by using an iterative probabilistic voxel labeling using k-

nearest neighbor and Gaussian mixture model classification. Our purpose was 

to develop a segmentation method which could be applied to a variety of 

imaging from The Cancer Imaging Archive. 

MATERIALS AND METHODS: Images from 2 sets of 15 randomly selected 

subjects with glioblastoma from The Cancer Imaging Archive were processed 

by using the automated algorithm. The algorithm-defined tumor volumes were 

compared with those segmented by trained operators by using the Dice 

similarity coefficient. 

RESULTS: Compared with operator volumes, algorithm-generated 

segmentations yielded mean Dice similarities of 0.92 ± 0.03 for contrast-

enhancing volumes and 0.84 ± 0.09 for FLAIR hyperintensity volumes. These 

values compared favorably with the means of Dice similarity coefficients 
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between the operator-defined segmentations: 0.92 ± 0.03 for contrast-

enhancing volumes and 0.92 ± 0.05 for FLAIR hyperintensity volumes. Robust 

segmentations can be achieved when only postcontrast T1WI and FLAIR 

images are available. 

CONCLUSIONS: Iterative probabilistic voxel labeling defined tumor volumes 

that were highly consistent with operator-defined volumes. Application of this 

algorithm could facilitate quantitative assessment of neuroimaging from 

patients with glioblastoma for both research and clinical indications. 
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2.1. Introduction 

 Glioblastoma is the most common primary brain tumor and remains one 

of the deadliest human cancers [6]. During the past 50 years, improvement 

with regard to patient outcomes has been marginal [7]. A major barrier in 

therapeutic development is attributable to the misconception that glioblastoma 

constitutes a single disease. Molecular profiling has revealed that glioblastoma 

comprises multiple subtypes characterized by distinct molecular pathways [8]. 

To improve the clinical outcome of patients with glioblastoma, technologies 

must be developed to distinguish these subtypes. 

There are compelling reasons that MR imaging may serve as a tool for 

dissecting the variability of glioblastoma. First, radiographic data are available 

for every patient because the clinical management of glioblastoma tumors is 

largely driven by the interpretation of MR images. Second, available data 

suggest that the radiographic appearance of glioblastoma is related to its 

physiologic state [9, 10] To better define this relationship, imaging archives 

with corresponding genomic profiling, such as The Cancer Imaging Archive 

(TCIA), have been launched (http://cancerimagingarchive.net/). 

Much of the early work correlating MR imaging appearances of 

glioblastoma tumors with genomic profiling was performed by using manually 

delineated tumor volumes or qualitative assessments provided by trained 

clinicians [9, 10].  These approaches are limited by the inherent variability of 

subjective interpretation, and significant interrater discrepancies have been 
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reported [11, 12].  Additionally, manual segmentation is time-consuming for 

large datasets. This limitation is particularly apparent when multiple 

radiographic features require segmentation. To address these deficiencies, 

effort has been devoted to developing automated algorithms for segmenting 

tumor volumes [13-17]. These algorithms include clustering [18, 19], 

discriminative strategies [20], and generative approaches [16, 21, 22].  The 

success of these methods has been limited by widely differing MR imaging 

protocols for image acquisition and quality [23] and the significant overlap 

between the radiographic appearance of glioblastoma tumors and normal 

cerebrum on MR imaging. Although many of these methods can generate 

high-quality volumes from a training set, segmentation algorithms may fail 

when applied to images acquired by using different protocols. 

We hypothesized that a probabilistic approach by using subject specific 

classifiers would reliably discriminate glioblastoma from the surrounding 

cerebrum. In this algorithm, termed iterative probabilistic voxel labeling (IPVL), 

sparse, high-specificity, preliminary volumes were created for each subject by 

using a combination of region growing and K-means-based tissue 

segmentation. Sampling of these preliminary volumes trained k-nearest 

neighbor (KNN) and Gaussian mixture model (GMM) classifiers by using voxel 

intensity and spatial coordinates. Voxel labels are assigned probabilistically by 

iteratively trained classifiers. Finally, each voxel is labeled as contrast 

enhancing tumor volume (CEV), FLAIR hyperintensity volume (FHV), gray 

matter, white matter, CSF, and blood vessel (BV). Most important, our 
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algorithm reliably segments images from the TCIA that were acquired by a 

variety of scanners and protocols. 
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2.2. Materials and Methods 

2.2.1. The Cancer Imaging Archive (TCIA) 

 MR images of glioblastoma tumors from The Cancer Imaging Archive 

were downloaded in June 2013. We identified subjects who underwent MR 

imaging before surgery and had a full complement of imaging, including the 

following: T1-weighted imaging, T1-weighted imaging with contrast 

enhancement (T1wCE), T2-weighted imaging, and FLAIR. Subjects were 

excluded when images contained a prohibitive amount of motion or distortion 

artifacts.  Our algorithm was developed in a “pilot” set of 10 subjects from the 

TCIA. The algorithm was tested in 2 sets of 15 subjects selected from the 

TCIA that were not used during development. TCIA MR images were acquired 

from a number of institutions whose scanners differed by manufacturer and 

model and whose images varied by sequence, quality, and spatial resolution 

(Tables 2.1 and 2.2). 
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Table 2.1. Site, scanner, and image information for the TCIA subjects analyzed 
in the initial cohort.  
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Table 2.2. Site, scanner, and image information for the TCIA subjects analyzed 
in the validation cohort. 
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2.2.2. Preprocessing 

 Images were preprocessed by using a combination of in-house and 

external software including the FMRIB Software Library [24, 25] (FSL, Version 

5.0; http://fsl.fmrib.ox.ac.uk/fsl). Image distortions caused by gradient 

nonlinearity warping were corrected by using previous methods [26-28], 

followed by bias-field correction by using the FMRIB Automated Segmentation 

Tool (FAST) [29], and were registered to the Montreal Neurological Institute-

152 nonlinear sixth-generation standard brain image [30].  Affine registration 

was performed by using the FMRIB Linear Image Registration Tool (FLIRT) 

[31, 32]. To ensure removal of nonbrain tissues (eg, skull, optic nerve, and 

carotid arteries), we created a stringent brain mask from the T1WI by using a 

modified combination of the FSL Brain Extraction Tool [29] and the Robust 

Brain Extraction tool (https://www.nitrc.org/projects/robex) [33]. Briefly, this 

method automatically compared the resultant brain with the volume derived 

from applying the Montreal Neurological Institute brain mask. Overestimation 

of >10% would adjust the fractional intensity, resulting in more restrictive brain 

outlines. 

2.2.3. Preliminary segmentation 

 It was crucial to generate highly specific volumes that accurately 

represented the range of intensity and spatial distribution for each tissue label 

to appropriately train our segmentation algorithm to recognize each subject’s 

features. After skull stripping, initial tissue segmentation into preliminary WM, 



13 

 

GM, CSF, and CEVs was performed for the available T1WI sequences by 

using FAST [29]. The FAST-derived initial CEV consisted of both tumor-

associated CEV and BV volumes. The preliminary BV volume was 

distinguished from the FAST-derived CEV by performing 2 morphology-based 

manipulations. First, CEV objects located near the cortical surface were 

selectively removed by using a uniform spheric 3-mm erosion of the brain 

mask applied to the FAST-derived CEVs. Large vessels, such as the dural 

veins and carotid arteries, were removed by this operation due to their 

proximity to the brain surface. Second, a modified region growing algorithm 

was used to identify vessels that were continuous with the venous sinuses. 

Region-growing was seeded in the region of the torcula (confluence of the 

sinuses), which was identified on the template image, to which all images were 

registered. Voxels identified as vessels by the combination of these methods 

were labeled as preliminary BV volume, while the remaining CEV was 

assigned to preliminary tumor-associated CEV. 

The FHV preliminary volume was created by first determining and 

applying an automatic threshold for the FLAIR image by using the Otsu 

method [34] FLAIR hyperintense regions on MR imaging may be tumor-

associated or non-tumor-associated (eg, periventricular or pericortical). The 

non-tumor-associated hyperintense elements were excluded by using a 

spheric 3-mm erosion performed on the brain mask, while spheric 3-mm 

dilation was performed on the CSF volume. Together, these operations 

removed pericortical hyperintensities and the periventricular hyperintensities 
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from the remainder of the preliminary FHVs.  

Approximately 25% of voxels were labeled at this time.The voxels 

labeled were randomly sampled from regions that had the highest specificity to 

a particular volume of interest. For contrast enhancement, these included 

regions of contrast enhancement not continuous with the sagittal and 

transverse sinus. For FLAIR hyperintensity, these included regions above an 

intensity threshold >1.5 SDs above the mean intensity of the FLAIR image. 

The voxels assigned to each preliminary tissue label were used as the basis 

for training probabilistic classifiers (KNN and GMM).  Voxels that were not 

classified into these categories during preliminary volume segmentation 

remained unassigned to avoid adding noise to the classifiers.   

2.2.4. K-Nearest neighbor (KNN) and Gaussian mixture model (GMM) 

classifiers  

 The classifiers used to assign voxel membership were KNN and GMM. 

The KNN algorithm is a nonparametric method that assigns membership of a 

single datum on the basis of a number of neighboring training examples [35, 

36]. GMM allows statistical clustering of data into a predefined number of 

Gaussian distributions, which, in this case, represent distinct imaging features. 

Use of these 2 probabilistic classifiers was complementary.  

To expedite processing and improve accuracy, we used a weighted 

random sampling of the preliminary volume voxels to train both KNN and 

GMM classifiers. The weights for sampling reflected the relative distribution of 
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voxels assigned to tissue labels from preliminary segmentation. Weighting was 

performed to avoid biasing the classifiers toward any particular tissue label 

caused by overrepresentation attributed to sampling error. Training was 

performed on a subject-by-subject basis, meaning that each patient was 

segmented according to his or her own subject specific classifier by using both 

intensity and spatial data from each voxel to define labels. After training, all 

voxels, including those that were unassigned during preliminary volume 

creation, were classified independently by both KNN and GMM 

probabilistically to the 6 tissue labels: CEV, FHV, CSF, GM, WM, and BV. The 

probability of membership for each voxel was determined by a distance metric 

from classifier training. For each voxel, the greatest tissue label probability 

determined voxel labeling. Classifier consensus was resampled and used to 

re-train another iteration of KNN classification at a higher voxel sampling rate. 

This step had the benefit of reducing noise introduced during the creation of 

preliminary volumes, improving both the smoothness of the final volumes and 

the accuracy of the tissue labels. 

2.2.5. Final segmentation 

 Voxel label probabilities from all classifiers were summed, including the 

iterative KNN classification, for each tissue label, and a final segmentation 

volume was created by assigning voxels according to the highest probability 

membership to each tissue label. At this time, all voxels were probabilistically 

assigned. A voxel continuity filter was applied that removed discontinuous 
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clusters of limited connectivity (fewer than 150 contiguous voxels). To address 

voxels that had equal probabilities of belonging to ≥2 tissue labels, we set 

priority in the following manner from greatest to least: CEV > FHV > BV to 

ensure that individual voxel tissue labels were mutually exclusive. This order 

was determined by the confidence of labeling each feature. 

2.2.6. Segmentation evaluation 

 To assess segmentation quality, we drew CEVs and FHVs manually for 

2 sets of 15 subjects selected randomly from the available pool downloaded 

from the TCIA. These volumes were completed by 2 independent trained 

operators under the supervision of a neuroradiologist (N.F.) and a 

neurosurgeon (C.C.C.). Manual delineation of tumor-associated volumes was 

performed by using the software program AMIRA 

(http://www.vsg3d.com/amira/overview), using threshold-assisted 

segmentation on whole-brain T1wCE and FLAIR images that were registered 

to the Montreal Neurological Institute template. Operator-derived volumes 

were compared with IPVL-derived volumes by using the Dice similarity 

coefficient (DICE). This coefficient assesses the similarity between 2 volumes 

by dividing twice the sum of the intersection by the sum of both volumes [37]. 

Interoperator similarity was also compared by using this metric. A DICE equal 

to 1 would imply perfect similarity and overlap of 2 volumes. 
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2.2.7. Minimum image requirement for adequate segmentation 

To assess the performance of our method when fewer imaging 

sequences were available for input, we implemented IPVL on a group of 15 

subjects multiple times while removing ≥1 image, recapitulating common 

image combinations seen within the TCIA subjects. The segmentations that 

resulted from these image combinations were compared with operator 

volumes to determine their DICE similarities. FHVs were not segmented in 

image combinations that lacked FLAIR sequences. 
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2.3. Results 

2.3.1. Overview of automated segmentation algorithm 

The steps of our segmentation protocol, applied to a representative 

case, are illustrated in Fig 2.1. Generally, our segmentation work flow was 

divided into 5 stages: preprocessing, preliminary segmentation, classification, 

probability labeling, and final segmentation. In preprocessing, images were 

loaded. Bias field correction, skull stripping, and registration to the template 

were then performed. The results of preprocessing created images in standard 

space to provide input for preliminary segmentation. Preliminary segmentation 

assigned voxel labels to CEV, FHV, BV, CSF, GM, WM, and unassigned (for 

voxels with ambiguous membership) by using k-means-based tissue 

segmentation and a region-growing algorithm. During classification, voxels 

sampled from these preliminary labels were used to train the GMM and KNN 

classifiers. All voxels were then classified to independent labels to identify 

CEV, FHV, BV, CSF, GM, and WM volumes. During probability labeling, each 

voxel was assigned a probability of membership to each tissue label. In the 

last step, final segmentation, voxels were labeled according to their greatest 

probability, and a voxel continuity filter was applied to eliminate clusters of 

<150 continuous voxels. The average time required to complete segmentation 

was 11.12 ± 5.63 minutes. 
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Figure 2.1. Work flow for Iterative Probabilistic Voxel Labeling (IPVL).  (A) 
Downloaded TCIA images were preprocessed. (B) Preliminary segmentation was 
performed to generate conservative yet highly specific preliminary volumes. (C) In the 
classification step, these volumes were used to train the GMM and KNN probabilistic 
classifiers. The consensus of KNN and GMM classification was resampled and used 
to train a new classifier (KNN II), which assigned voxel tissue labels. The classifiers 
integrated their respective outputs to generate tissue-specific probability volumes. (D) 
The voxels were assigned based on their greatest probability of membership to a 
tissue label, and a voxel continuity filter was applied to eliminate clusters less than 
150 continuous voxels. 
. 
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2.3.2. Manual segmentation comparison  

 Examples from 4 subjects that represented the CEVs and FHVs with 

the highest and lowest DICE scores relative to operator 1 are shown in Fig 

2.2. Corresponding FHV segmentations for CEV and CEV segmentations for 

FHV are included to show that segmentation success for 1 feature is not 

necessarily correlated with segmentation success for corresponding features. 

Analysis showed no statistical difference among operator-derived volumes, so 

operator 1 was selected as the basis for image comparison (P = .72 for CEV 

interoperator, and P = .39 for FHV interoperator). Figure 2.2 demonstrates that 

the algorithm generates highly analogous CEVs and FHVs relative to those 

derived manually.   

IPVL CEVs were statistically indistinguishable from volumes generated 

by expert operators across all subjects (P = .93). DICE scores, for automated 

CEVs, relative to operators 1 and 2, averaged 0.923 and 0.921, respectively. 

These DICE scores were highly comparable with those obtained from 

interoperator analysis (average of 0.923, Fig 2.3A). For automated FHVs, the 

DICE scores relative to operators 1 and 2 averaged 0.851 and 0.827, 

respectively. DICE scores obtained from interoperator analysis averaged 

0.905 (Fig 2.3B). Analysis revealed that FHVs were slightly lower than 

interoperator comparison (P = .04). We observed that FHV DICE scores were 

poorer than CEV DICE scores for both the interoperator and the operator 

algorithm comparisons. Overall, the DICE scores for both CEV and FHV 
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achieved through our algorithm were improved or similar relative to those 

previously reported [19-25]. 

To ensure that these results were generalizable, we randomly selected 

15 additional subjects for analysis. The results from this analysis are highly 

comparable with those reported above. DICE scores for automated CEVs 

relative to operators 1 and 2 averaged 0.921 and 0.901, respectively. These 

DICE scores were highly comparable with those obtained from interoperator 

analysis (DICE = 0.905). For automated FHVs, the DICE scores relative to 

operators 1 and 2 averaged 0.846 and 0.823, respectively. DICE scores 

obtained from interoperator analysis averaged 0.812. 

It was possible that difficult cases, including tumors with multifocal 

patterns, or tumors with attachment to large vessels or the brain surface, may 

cause errors in automatic segmentation. Of the images analyzed, 2 

glioblastomas (The Cancer Genome Atlas [TCGA]-06–0139, TCGA-06–0166) 

were multifocal. For these subjects, IPVL-defined CEV and FHV showed mean 

DICE scores of 0.94 (range, 0.92– 0.95) and 0.92 (range, 0.91– 0.93) relative 

to expert defined volumes, respectively. Seven tumors (TCGA-02–0048, 

TCGA-06– 0164, TCGA-08– 0358, TCGA-76– 6280, TCGA-76–6192, TCGA-

76–5386, and HF1139) were located on the surface of the cerebrum. For 

these tumors, IPVL-defined CEV and FHV showed mean DICE scores of 0.92 

(range, 0.84–0.96) and 0.84 (range, 0.70–0.95). One tumor (TCGA-76–5385) 

was attached to a major vessel (the MCA). For this tumor, IPVL-defined CEV 

and FHV showed mean DICE scores of 0.90 (range, 0.89–0.91) and 0.72 
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(range, 0.70–0.75). These results suggest that our algorithm performs 

adequately in anatomic locations and in difficult cases that are historically 

challenging to previously published algorithms. 
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Figure 2.2. IPVL segments volumes that are highly analogous to operator-defined 
volumes. Results from 4 subjects representing the highest and lowest Dice similarity 
coefficient (DICE) scores for CEV and FHV segmentations are shown. (A) The 
highest DICE (top) and lowest DICE (bottom) examples of IPVL-segmented CEVs 
relative to operator-defined volumes are shown.  The corresponding FHV 
segmentation results are shown (right) to demonstrate that CEV segmentations are 
independent of FHV segmentations. (B) The highest DICE (top) and lowest DICE 
(bottom) examples of IPVL-segmented FHV segmentations relative to operator-
defined volumes are shown. The corresponding CEV segmentation results are shown 
as well (right) to demonstrate that FHV segmentations are independent of CEV 
segmentations. Yellow indicates regions of intersection between operator and IPVL-
defined volumes; red: operator-defined volume only; green, IPVL-defined volume 
only. Corresponding CEV segmentations are overlaid in blue on FLAIR images for 
clarity.  
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Figure 2.3. Quantitative comparison between IPVL-defined volumes and operator-
derived volumes compared with interoperator comparisons. (A and B) DICE 
comparisons for 2 sets of IPVL-defined and operator-defined CEVs are shown. DICE 
scores were calculated comparing CEVs generated by IPVL, operator 1, and operator 
2. (C and D) DICE score comparisons for IPVL-defined and operator-defined FHVs. 
DICE scores were calculated comparing FHVs generated by IPVL, operator 1, and 
operator 2. 
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2.3.3. Minimal image requirement for adequate segmentation 

The TCIA and other image databases include many subjects who do 

not have the full complement of T1WI, T1wCE, T2WI, and FLAIR images. In 

the TCIA, this full set of imaging was available in only 52% of subjects. 

Therefore, it was of interest to determine how our algorithm would perform 

when limited imaging modalities were available. To this end, we examined 

how the sequential removal of the various image sequences impacted 

segmentation performance. DICE scores were determined for a subject’s 

segmentations by using each combination of images relative to operator- 

defined volumes. These DICE scores were plotted compared with the DICE 

scores derived from segmentations by using all 4 imaging sequences. 

For CEV segmentations, removal of T1WI and T2WI did not 

significantly affect performance. The DICE scores obtained when comparing 

volumes delineated by using only T1wCE and FLAIR were comparable with 

those obtained when all 4 imaging sequences were processed by our 

algorithm (Fig 2.4A). Similarly, FHV segmentations were minimally impacted 

by image reduction, and DICE scores by using all 4 imaging sequences were 

comparable with those obtained when using only T1wCE and FLAIR (Fig 

2.4B). 

To further characterize the impact of reducing the number of image 

sequences on the performance of CEV and FHV segmentations, we also 

plotted the range of DICE scores that resulted from removing ≥1 image series 

for each subject. For most subjects, removing images minimally impacted 
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DICE scores—that is, the segmentation quality was not significantly altered 

(Fig 2.4C for CEV, Fig 2.4D for FHV). For FHV segmentations, removal of 

T2WI and T1WI did not significantly alter segmentation performance (Fig 2.4D 

for FHV). 

Only 2 subjects, TCGA-02–0068 and TCGA-06–0164, had increased 

vessel contamination of the CEVs when FLAIR images were removed during 

image-reduction analysis. CEV segmentations for image combinations that 

contained at least a FLAIR and T1wCE image were highly comparable across 

all subjects (Fig 2.4E). While adequate CEV segmentation required only 

T1wCE for most cases, FLAIR images improved CEV and BV discrimination 

and may be required for segmentation in a subset of subjects. Most surprising, 

CEV segmentation for T1wCE and FLAIR alone was nearly identical to CEV 

segmentation results that used all available imaging series. These results 

suggest that our algorithm requires only T1wCE and FLAIR images for robust 

volume segmentation of both tumor-associated CEVs and FHVs. 
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Figure 2.4. Effects of removing image sequences on IPVL segmentation. (A) Select 
image sequences (such as T1WI) were removed before IPVL CEV segmentations for 
each subject. The image sequences that were available during IPVL segmentation 
are indicated by a plus sign. DICE scores were calculated for the resultant CEVs 
relative to operator 1–defined CEVs. The distribution of DICE scores across all 
subjects because of image sequence removal is shown as a boxplot. (B) Select 
image sequences were removed before IPVL FHV segmentations. DICE scores were 
calculated for the resultant FHV segmentations relative to operator 1–defined FHVs. 
The distribution of DICE scores across all subjects due to image sequence removal is 
shown as a boxplot. (C) A boxplot demonstrates the range of DICE scores for IPVL-
segmented CEVs relative to operator defined CEVs per patient for all image 
combinations tested. (D) A boxplot demonstrates the range of DICE scores for IPVL-
segmented FHVs relative to operator-defined FHVs per patient for all image 
combinations tested. (E) A boxplot demonstrates the range of DICE scores for IPVL-
segmented CEVs relative to operator-defined CEVs per patient when only T1WI and 
FLAIR source images were used for IPVL segmentation. 
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2.4. Discussion 

 The success of any automated segmentation process hinges on the a 

priori definition of the features that constitute a volume of interest. Human 

vision can integrate visual data along with both experience and assumption to 

distinguish and classify independent features. This task is often challenging for 

a computer because the cross-section of data available to the computer is 

often simplified. We hypothesized that the complexity of image segmentation 

could be largely recapitulated by using iterating probabilistic classifiers trained 

on sparse subject-specific preliminary features. To test this hypothesis, we 

predefined the voxels that were most likely associated with the features of 

interest to generate preliminary volumes. We then used k-nearest neighbor 

and GMM probabilistic classifiers to refine the segmentation process. In our 

algorithm, these complementary probabilistic classifiers were integrated in an 

iterative manner to converge on a segmentation result for the various features 

of an MR image. Our results demonstrate that IPVL image segmentation is 

highly comparable with segmentations that were drawn manually. 

Most important, the time required for segmentation per subject 

averaged 11.2 minutes when all 4 image sequences were used. In contrast, 

manual segmentation by experts required 1–3 hours depending on the size 

and complexity of the volume to be segmented. As such, our method presents 

an opportunity for high-throughput quantitative analysis of TCIA images and 

other imaging databases. The insensitivity of our algorithm to interinstitutional 
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methodologic differences in MR imaging supports its utility for this application. 

Further supporting the utility of our algorithm, we demonstrated that only 2 

image sequences (the T1wCE and FLAIR images) are needed for reliable 

segmentation of tumor CEVs and FHVs. Finally, using a common template 

space will provide a platform for future analyses, intersubject comparisons, 

and longitudinal studies.  

While our study was focused on the development of an algorithm for 

research use in terms of radiographic biomarker discovery, reliable volume 

segmentation by using our algorithm may also impact clinical practice. For 

example, it is often difficult to detect subtle differences in the radiographic 

appearance of a tumor during disease progression. As a result, changes in 

serial MR imaging may be underappreciated until a patient becomes 

symptomatic. Automated segmentation and longitudinal quantitative 

comparison may help facilitate the detection of subtle radiographic changes, 

such as tumor progression, thereby allowing clinicians to perform procedures 

to prevent clinical deterioration in select patients. Application of these methods 

may also aid the evaluation of the therapeutic response in clinical trials. 

Careful study of the discrepancies between the volumes generated by 

IPVL and expert-defined volumes revealed a few limitations. The algorithm 

can fail to detect tumor contrast enhancement or FLAIR hyperintensity in 

regions of these volumes that fall below a single voxel (~1 mm). This 

limitation, a result of voxel sampling and partial volume effect, could be 

mitigated with higher resolution imaging. In a few subjects (eg, TCGA-02–
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0068, TCGA-06–0154), reliable delineation of BV volume from tumor CEVs 

remained challenging when image combinations lacking FLAIR images were 

used for segmentation, leading us to conclude that FLAIR and T1wCE are 

required for our method. Segmentation of FLAIR volumes remains a 

challenge, but this challenge is shared by the human eye as demonstrated by 

the interobserver discrepancies reported previously. The use of higher order 

image processing, such as textural analysis, may facilitate the improvement of 

our algorithm in the near future. 
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2.5. Conclusions 

We demonstrate that iterative probabilistic voxel labeling is a reliable 

and robust tool for automatic segmentation of MR images in the TCIA dataset. 

Application of this method could facilitate quantitative radiographic 

assessment of glioblastoma for both researchers and clinicians alike. 
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Carter, Anders M. Dale, Clark C. Chen. "Iterative probabilistic voxel labeling 

(IPVL): automated segmentation for analysis of The Cancer Imaging Archive 

(TCIA) glioblastoma images." The dissertation author is the primary 

investigator and author of the manuscript. 
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3. Differential localization of glioblastoma 

subtype implicates the sub-ventricular zone 

(SVZ) in glioblastoma pathogenesis 

The subventricular zone (SVZ) has been implicated in the pathogenesis 

of the molecularly diverse neoplasm, glioblastoma. Whether molecular 

subtypes arise from unique niches of the brain remains largely unknown. Here, 

we tested whether these subtypes of glioblastoma occupy distinct regions of 

the cerebrum and examined glioblastoma localization in relation to the SVZ.    

Pre-operative MR images from 217 glioblastoma patients from The 

Cancer Imaging Archive were segmented automatically into contrast 

enhancing (CE) tumor volumes using Iterative Probabilistic Voxel Labeling 

(IPVL). Tumors were subtyped as either the glioma-CpG island methylator 

phenotype (G-CIMP), proneural, neural, classical, or mesenchymal subtypes 

using published methods. Probabilistic maps of tumor location were generated 

for each and compared quantitatively. Distances were calculated from the 

centroid of CE tumor volumes to the SVZ and correlated patient survival and 

gene expression.  

Across all patients, CE tumor volumes were observed at a higher 

density near the SVZ.  Proneural and neural glioblastomas were more likely to 

be located in the left temporal lobe and be in closer proximity to the SVZ. 

Classical and mesenchymal glioblastomas were more diffusely distributed and 
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located farther from the SVZ. Irrespective of subtype, proximity to the SVZ was 

associated with poorer overall survival (p = 0.001), expression of the stem cell 

marker CD133 (p = 0.006), and a published HOX-associated glioblastoma 

stem cell signature (p=0.030). Glioblastoma subtypes occupy different regions 

of the brain and vary in proximity to the SVZ.  These findings harbor 

implications pertaining to the pathogenesis of glioblastoma subtypes. 
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3.1. Introduction 

Glioblastoma remains one of the deadliest of human cancers [2].  One 

challenge to meaningful therapeutic development is glioblastoma’s inter-

tumoral heterogeneity.  Large-scale genomic analyses of clinical glioblastoma 

samples have identified at least five distinct subtypes of glioblastoma, with 

distinct biologic and clinical behaviors [5, 8, 38, 39]. These subtypes include 

classical, mesenchymal, neural, proneural, and the glioma-CpG island 

methylator phenotype (G-CIMP). It remains unclear whether these molecular 

differences arise as a result of distinct cells of origin, genetic/epigenetic 

landscape, mutation spectrum, or microenvironment.  

The sub-ventricular zone (SVZ), which lies adjacent to the lateral wall of 

the lateral ventricle, is a site where neural stem cells (NSC) and astrocyte 

precursors are located in the adult brain [40-42]. During neural development, 

NSCs migrate radially and differentiate into various progenitor cells during this 

process [43-45].  Studies suggest that SVZ NSCs and astrocyte precursors 

may give rise to subsets of glioblastomas which demonstrate distinct 

physiological behavior [46, 47].  It is known that many primary CNS 

neoplasms, including IDH1 mutant glioma, occur in regions corresponding to 

distinct cells of origin [48-50].  We hypothesize that glioblastoma tumor 

location as a function distance from the SVZ may be indicative of its cell of 

origin and distinct molecular physiology. 
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Using Iterative Probabilistic Voxel Labeling (IPVL) [51] , a method of 

automatic tumor segmentation developed by our laboratory, and imaging data 

obtained through The Cancer Imaging Archive (TCIA), we quantitatively 

determined the geographic distribution for each of the molecular glioblastoma 

subtypes and quantified each tumor’s distance to the SVZ.  Our analysis 

indicates that proximity to SVZ is associated with poor overall patient survival, 

and gene expression associated with glioma stem cell biology. 
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3.2. Materials and Methods 

3.2.1. Data acquisition and Subtype Classification 

We searched the TCIA for subjects with at least one artifact-free pre-

operative T1 weighted MR image with contrast. In total, 217 subjects with MR 

images were downloaded from the TCIA (http://cancerimagingarchive.net) in 

November 2014.  Level 3 probe collapsed Messenger RNA (mRNA) 

expression data: Affymetrix HT-HG-U133A GeneChip and RNAseq, was 

downloaded for available patients via the TCGA Data Portal (http://tcga-

data.nci.nih.gov/tcga/).  Affymetrix expression data were normalized by robust 

multichip average (RMA) [52]. RNAseq data were RSEM normalized [53]. 

When not already available in published literature, genomic subtypes were 

determined for subjects employing single sample Gene Set Enrichment 

Analysis (ssGSEA) as described previously [8, 54].  Additionally, G-CIMP 

status was determined using methods described previously [5, 8]. 

3.2.2. Image Preprocessing and Registration 

MR images were corrected for gradient nonlinearity using previously 

described methods [27, 55]. Images were additionally preprocessed and 

intensity corrected utilizing N4 bias field correction [56], then affine and 

nonlinear registrations were performed to the Montreal Neurological Institute 

(MNI) 152 nonlinear 1 mm3 template employing methods from Advanced 

Normalization Tools (ANTS) [57]. Visual inspection of resulting images was 
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performed by three independent reviewers (T.C.S, J.M.T, & K.S.P) to ensure 

successful and accurate preprocessing was completed for all subjects. 

3.2.3. Tumor Segmentation and Probability Maps 

 Contrasting-enhancing (CE) regions of tumors were segmented using 

the iterative probabilistic voxel labeling (IPVL) algorithm developed in the 

laboratory [51] (Figure 3.1B) and the enclosed volume was filled using a 3D 

morphological open-close operation (Figure 3.1C). Tumor density maps were 

calculated as the number of observations at each voxel divided by the number 

of subjects (Figure 3.1E). Similarly, centroid density maps were generated 

using a 15-mm centroid of each filled CE volume (Figure 3.1D). Visual 

inspection by two independent operators (T.C.S, J.M.T) was performed to 

ensure adequacy of region filling and centroid estimation. Probability 

distributions were quantitatively compared using a voxel-wise two-tailed 

Fisher’s exact test [58] comparing the number of tumors observed for each 

subtype at each voxel. Only significant clusters which had a > 5% probability 

of occurring by chance were kept.  
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Figure 3.1. Workflow for generation of total CE and centroid density maps. 
Preprocessed images (A) were registered to the Montreal Neurological Institute (MNI) 
template and segmented according to the IPVL pipeline (B). CE volumes were filled 
(C) and centroid of each were calculated (D). Filled CE volumes from each subject 
were summed (E) and then converted to probabilities by dividing by the total number 
of subjects. 
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3.2.4. Subventricular Zone Distance 

To measure SVZ distance with respect to each tumor’s filled CE 

volume, the MNI template’s lateral ventricle segmentation was used as a basis 

of comparison. SVZ distances were calculated by taking the mean of the 

distance from the nearest MNI template ventricular border to each point within 

a subject’s CE volume. Statistical analyses of SVZ distance with respect to 

patient survival was performed within the statistics software package SPSS 

(IBM Corp, New York, United States). When stratification was required, tumors 

were classified by the median of the SVZ distance: low SVZ (SVZ distance < 

19.23 mm) and high SVZ (SVZ distance > 19.23 mm). 

3.2.5. ssGSEA and Statistical Analyses 

ssGSEA was employed to calculate normalized enrichment scores for 

gene signatures according to established methods [54], using custom software 

in MATLAB (Statistics Toolbox Release 2012b, The MathWorks Inc., Natick, 

MA) [59].  Statistical analysis of SVZ distance and gene expression was 

performed in MATLAB. All mRNA expression analyses were performed in the 

Affymetrix HT-HG-U133A RMA normalized data. A one-tailed t-test was 

performed to determine whether low SVZ score is associated with increased 

mRNA expression. To mitigate for type I error, during hypothesis testing 

100,000 permutation test were performed in our sample to determine the 

likelihood of the outcome measured occurring by chance. 
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3.3. Results 

3.3.1. Glioblastoma Density Map 

The workflow for CE segmentation and CE centroid placement is 

described in Methods and shown in Figure 1. Information regarding patient 

demographics, patient survival, and tumor CE volumes for each patient are 

available in Table 3.1.  The filled CE volume from all subjects are layered and 

generated in template space yielding a glioblastoma density map and shown 

as Figure 3.2.  The centroid of CE volume for each patient was similarly 

layered to create a density map, which confirmed the same distribution. The 

overall glioblastoma density map reveals a strong predilection for tumors to 

occur within the periventricular white matter near the SVZ. High tumor 

densities occur adjacent to the temporal horn and atria, bilaterally.  The 

highest probability region was observed near the right atrium MNI coordinate 

(35, -40, 6), an 18% probability.  Tumor densities are enriched around the SVZ 

which is demonstrated by the fact that 25.7% of all CE volume probabilities 

were found within 10 mm of the ventricular volume, a region representing only 

12.6% percent of the total brain volume. Our findings concerning global 

glioblastoma distribution are consistent with previous imaging based reports of 

glioblastoma in independent cohorts [55, 60]. 

 

 

 



41 

 

 

Table 3.1. Summary of demographic data, clinical outcome, and radiographic CE 
volume. 
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Figure 3.2. Radiographic glioblastoma density map. Total CE probability map 
revealed that glioblastoma, as a whole, exhibit a strong predilection occurrence in 
proximity to the SVZ. Red indicates the highest frequency of overlap and light-blue 
indicating the lowest frequency of overlap. 
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3.3.2. Glioblastoma Subtype Specific Density Maps  

We next generated CE density maps for each glioblastoma subtype. 

Using these maps, we observed that proneural and neural tumors tend to 

occur in the temporal and frontal lobe. Both of these subtypes demonstrated a 

predilection towards asymmetry, having higher densities in the left temporal 

region relative to the right (Figure 3.3). Conversely, the classical and 

mesenchymal subtypes were more diffusely distributed in the cerebrum, with 

significantly lower probabilities of overlap (p < 0.001) (Figure 3.3). The 

classical subtype had higher probability densities within the periventricular 

white matter adjacent to the right atrium. Statistical comparisons between the 

probability density maps for all subtypes using voxel-wise Fisher’s exact 

testing (see Methods) confirmed the distributions described above 

demonstrating regions that are highly specific for each subtype.  The 

statistically significant regions associated with each subtype are demonstrated 

by Figure 3.4.  
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Figure 3.3. Glioblastoma subtype density maps. Subtype-specific density maps were 
generated using total CE volume. Red indicates the highest frequency of overlap and 
light-blue indicating the lowest frequency of overlap. 
 



45 

 

 

 

 

 
Figure 3.4. Regions of statistically significant subtype localization. Axial (first row) 
and sagittal (second row) of statistically significant clusters (p < 0.05) by subtype. 
Statistical comparisons were carried out using voxel-wise Fisher’s exact tests. 
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3.3.3. The SVZ Distance 

 An illustrative example of the SVZ distance measure is demonstrated in 

Figure 3.5A.  The proneural subtype had the lowest mean SVZ distance of all 

molecular subtypes (p = 0.022).  Furthermore, there was a statistical 

difference between the combined proneural and neural subtypes against the 

mesenchymal and classical subtypes (p = 0.035) (Figure 3.5B).  There was no 

statistical difference when comparing the classical subtype to the 

mesenchymal subtype. Across all patients decreased tumor SVZ distance was 

strongly associated with decreased patient overall survival even when 

correcting for the known survival associated variables; patient age and 

Karnofsky Performance Score (KPS) (Figure 3.5C) (Cox p=0.001, log rank 

p=0.002). A Cox regression table demonstrating survival associations with the 

SVZ distance is shown in Figure 3.5D.  This effect was more pronounced for 

the mesenchymal/classical glioblastoma subtype relative to the proneural and 

neural subtypes.  
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Figure 3.5. Association of SVZ distance with overall survival and CD133 gene 
expression.  (A) Graphical illustration of the SVZ distance measurement.  SVZ 
distance is color coded so that blue indicates shorter SVZ distances while red 
indicates high SVZ distances.  (B) Kaplan Meier Survival curve demonstrating 
association of lower SVZ distance and reduced overall survival for all glioblastomas 
(n=217). Below: Cox table demonstrating association of SVZ distance and overall 
survival for glioblastoma subtypes with correction for patient age and Karnofsky 
Performance Score (KPS).  (C) Boxplot and table of SVZ distances stratified by 
subtype. Proneural/neural glioblastoma subtypes exhibit shorter SVZ distance relative 
to mesenchymal/classical subtypes. 
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3.3.4. SVZ Distance and Glioblastoma Biology 

We had hypothesized that glioblastomas arising in proximity to the SVZ 

may arise from NSCs and glial precursors that are known to reside in this 

region [44, 61].  A corollary of this hypothesis is that proximity to SVZ should 

identify with gene expression patterns that recapitulate stem-like cell 

derivation. CD133 is a glycoprotein expressed in neuronal and glial stem cells 

that reside in the SVZ [46, 62].  It is also known that some brain tumors exhibit 

expression of CD133 [62].  We therefore tested whether glioblastoma CD133 

expression correlated with SVZ distance. Realizing that the TCIA consists of a 

single dataset and validation is critical in any form of bio-statistical analysis, 

we performed our assessment with specific hypotheses in mind. Briefly, each 

patient’s glioblastoma is classified as “high” or “low” for SVZ distance based 

on the median value of SVZ for the entire cohort. A one-tailed t-test was 

performed to determine whether low SVZ score was associated with increased 

CD133 mRNA expression (as determined by the affymetrix HG U133A array) 

in our dataset. This analysis confirmed that glioblastomas located in proximity 

to the SVZ harbored a statistically significant increased expression of CD133 

(p = 0.006).           

Recent literature has suggested an important role for HOX gene 

expression in glioblastoma initiation and chemo and radiotherapy resistance 

[63, 64]. These genes are important during development, ultimately governing 

the patterning and mosaicism seen throughout the brain [65]. To further 

confirm our hypothesis, we tested whether a published HOX signature 
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associated with glioblastoma “self-renewal” is associated with SVZ distance 

[64]. Using the above methods, we found that the ssGSEA score for the HOX-

associated gene signature correlated with SVZ distance.  Specifically, high 

HOX ssGSEA score was associated with proximity to SVZ (p=0.03).  Finally, 

we specifically sought to test the association of HOXA9 with SVZ distance as 

this gene has been implicated in glioma transformation, therapeutic resistance, 

and stemness in glioblastoma [64, 65]. Using the method employed for 

CD133, we found that HOXA9 expression was higher nearer in tumors nearer 

the SVZ (p=0.012). In aggregate, these results suggest that SVZ distance may 

represent an imaging proxy for the underlying glioblastoma biology. 
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3.3. Discussion 

Tumor density mapping of glioblastoma images derived from 217 TCIA 

patients demonstrated that the CE-defined glioblastoma volumes are densely 

concentrated near the SVZ, which recapitulates the global distribution of 

glioblastomas previously observed in an independent cohort [55, 60].  Our 

study provides a quantitative tumor density map of glioblastoma subtype and 

robustly demonstrates that these subtypes occupy distinct regions of the brain 

using independent imaging methods. Intriguingly, the subtypes exhibit regional 

associations with regard to the SVZ, an area of critical importance in 

neurogenesis and glioblastoma pathogenesis. The proneural and neural 

glioblastomas exhibit similar localization and clustered around the SVZ of the 

left temporal horn.  In contrast, the classical and mesenchymal glioblastomas 

exhibit a more diffuse distribution and tend to localize farther from the SVZ.  

These pattern localizations are somewhat reminiscent of the maturation of 

NSCs during development.  In this process, stem cells migrate radially from 

the SVZ to the cortical surface and become differentiated progenitor cells. In 

this context, it is possible that the localization of glioblastoma subtypes reflect 

their cell of origin in NSC progenitor cells.  

The asymmetric distribution of proneural and neural subtypes presents 

an unexpected phenomenon.  A large body of work has documented 

asymmetry in cerebral function and activity [66], with inferred asymmetry in 

terms of anatomic substrate and physiologic circuit [67-69]. It is possible that 
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molecular microenvironment or differential cell-related asymmetry contributes 

to glioblastoma pathogenesis.  For instance, recent studies suggest that many 

neurotransmitters serve as trophic factors that mediate mitogenic signaling in 

glioblastomas [70].  Increased utilization of such neurotransmitters, or 

differential levels of adult neurogenesis may effect regional predisposition for 

glioblastoma pathogenesis. Furthermore, patients with tumors affecting the left 

temporal lobe may present with symptoms earlier, potentially increasing their 

likelihood for detection and enrollment in the TCGA. 

It is remarkable that, independent of molecular subtype, the proximity of 

a glioblastoma to the SVZ is associated with genomic and clinical differences.  

From a genomic perspective, proximity to the SVZ is associated with 

increased expression of CD133 as well as a HOX signature. From a clinical 

perspective, proximity to the SVZ is associated with decreased overall 

survival. While we cannot exclude the possibility that the survival differences 

may be related to the morbidities associated with surgical access of deep 

lesions [71], the association between SVZ distance, CD133, and the HOX 

gene signature suggest that the biology of the underlying tumor likely 

contributed to the difference in survival.     

 Chief amongst the limitations of our study is the assumption that the 

center of tumor mass approximates the site of tumor origin. This was assumed 

as our dataset does not have available prospective imaging. Another 

challenge encountered during our study involves the deformation of ventricular 

contour by glioblastoma mass effect. To address this issue, we utilized 
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established methods of non-linear registration [57] to MNI atlas to account for 

such deformations. Despite these corrections, distributions of CE tumors 

volumes derived using these methods largely recapitulated the results from 

CE volumes derived linearly (data not shown). Finally, while robust statistical 

analysis is performed in this dataset in a hypothesis-driven manner, further 

verification of our results is warranted.  

3.4. Conclusions 

Integration of quantitative MR image analysis of 217 TCIA subjects and 

molecular subtyping of glioblastoma revealed subtype specific brain 

localization and differed with regard to the SVZ.  Quantitative proximity to the 

SVZ, as determined by our methods, may be an imaging proxy for the 

underlying glioblastoma biology.  

 
 

Chapter 3, in part, is currently in preparation for submission for 

publication of the material. Tyler C. Steed, Jeffrey M. Treiber, Kunal S. Patel, 

Bob S. Carter, Anders M. Dale, and Clark C. Chen. Tentatively entitled 

“Differential localization of glioblastoma subtype implicates the sub-ventricular 

zone (SVZ) in glioblastoma pathogenesis.” The dissertation/thesis author was 

the primary investigator and author of this material.   
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4. Quantification of lateral ventricular 

displacement magnitude in glioblastoma 

imaging from the TCIA is associated with patient 

survival  

When brain tumors like glioblastoma arise, tumor mass displaces tissue 

as a function of neoplastic growth and cerebral compliance. Brain tumors of 

similar sizes can exert differential mass effect. We defined a novel parameter 

to quantify this phenomenon and serve as a proxy measurement for mass 

effect termed Lateral Ventricle displacement (LVd).  Pre-operative MR images 

from 194 glioblastoma patients from The Cancer Imaging Archive (TCIA) were 

automatically segmented using our previously reported algorithm termed 

Iterative Probabilistic Voxel Labeling (IPVL). The distance between center of 

mass of the tumor patients lateral ventricles and the normal template’s lateral 

ventricles was quantified and termed LVd. Survival and genomic associations 

with this parameter were investigated using differential gene expression and 

single sample gene set enrichment analysis (ssGSEA).  The variance of LVd 

was not explained by contrast-enhancing (CE) tumor volume and FLAIR 

volume alone. This was demonstrated by glioblastomas with similar CE 

volume, FLAIR volume, and total tumor volume (CE+FLAIR) showing varied 

LVd values. While CE, FLAIR, and total tumor volume were not associated 
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with overall survival, higher LVd in pre-operative scans, was associated with 

poorer survival (p=0.006 Cox regression, age adjusted). Glioblastomas with 

higher LVd exhibit expression of genes required for aerobic respiration, while 

tumors with lower LVd had higher expression of genes involved in neural 

differentiation. This study defines and characterizes a novel quantitative 

radiographic parameter termed LVd. This noninvasive measure, a proxy for 

mass effect, associates with poor overall survival and could be used to 

evaluate patients with glioblastoma. 
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4.1. Introduction 

 The Monroe-Kellie doctrine is a fundamental application of physical 

principals to the dynamics of the cranial compartment. It states that the sum of 

volumes attributable to CSF, parenchyma, and vasculature must remain 

constant, and therefore any changes in volume to one compartment must be 

compensated for proportionally by changes in the others. This doctrine can be 

applied to brain tumors, like glioblastoma, wherein neoplastic growth displaces 

tissue resulting in a collapse of CSF volume[72].  This phenomenon has been 

widely referred to as mass effect. Mass effect is an important factor evaluated 

during radiographic interpretation of cerebral MR images in a multitude of 

diseases[73-75]. Mass effect results in increased intracranial pressure leading 

to brain herniation which, if uncorrected, may prove fatal. Qualitative 

classification of mass effect has demonstrated prognostic significance in 

glioblastoma previously[76-78], but concrete definitions and methods of 

precisely quantifying mass effect for clinical use have not yet been described. 

Additionally, although it is evident that brain tumors of similar sizes can exert 

differential mass effects, the physiologic basis for this remains unclear. It is 

likely that mass effect in brain tumors is attributable to a balance between 

degree and rate of neoplastic tissue growth[3] and erosion/transformation of 

surrounding parenchymal tissue. 

  Here, we propose a novel radiographic parameter entitled Lateral 

Ventricle displacement (LVd) in an effort to quantify mass effect and better 
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understand the physiologic basis of this feature in glioblastoma. Applying first 

principles inspired by the Monroe-Kellie doctrine, this method measures the 

magnitude of displacement from the lateral ventricular center of mass (CoM) in 

glioblastoma patients relative to the CoM from a defined “normal” template. 

This measure accurately and reproducibly quantifies the degree of shift 

independent of tumor location. Using automatic methods of segmentation 

developed by our laboratory, LVd defines a new quantitative parameter which 

strongly associates with reduced survival glioblastoma, yielding new 

prognostic applications.     
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4.2. Materials and Methods 

4.2.1. Data acquisition and Imaging 

 Pre-operative MR images from 194 glioblastoma patients from The 

Cancer Imaging Archive (TCIA) TCGA GBM cohort and 550 non-tumor control 

subjects from University College in London were registered to a standard 

template and segmented using our Iterative Probabilistic Voxel Labeling 

(IPVL) algorithm [51]. MR images were obtained from TCIA 

(http://cancerimagingarchive.net) in June 2014. Inclusion criteria included 

patients with at least one artifact free pre-operative T1 weighted MR image 

with contrast. Patient demographic data is listed in Table 1. Level 3 probe 

collapsed Messenger RNA (mRNA) expression data (affymetrix HG U133A 

array) was downloaded for the subset of 165 patients along with Level 3 

mRNA Sequencing data for 146 patients via the TCGA Data Portal in June 

2014.  

4.2.2. Image Preprocessing and Registration 

 Spatial and intensity distortions caused by nonlinearity warping were 

corrected using previously described methods[27]. In order to compare tumor 

localization across subjects, imaging data was registered to the Montreal 

Neurological Institute (MNI) 152 nonlinear 1 mm3 template using FSL’s linear 

registration tool[32] with an affine transformation. Visual inspection was 
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confirmed by three independent reviewers to ensure successful preprocessing 

for all subjects. 

4.2.3. Tumor Segmentation and Probability Maps 

 Contrasting-enhancing regions of tumors were segmented using a fully 

automated iterative probabilistic voxel labeling (IPVL) segmentation algorithm 

developed in the laboratory (Chapter 2, in press, “Iterative Probabilistic Voxel 

Labeling: Automated Segmentation for Analysis of The Cancer Imaging 

Archive Glioblastoma Images”, Amer J Neuroradiol). Visual inspection was 

performed by our independent operators ensuring that segmentation was 

accurate.  

4.2.4. Subventricular Zone Distance 

 Tumor SVZ distances were measured as described previously. With 

respect to the tumor segmentation volumes, the template lateral ventricles 

were segmented and reflected across the midline to yield a symmetric 

ventricular segmentation. SVZ distances were calculated by taking the mean 

of the distances from the ventricles at each point contained within a subject’s 

tumor volume.  

4.2.5. Lateral Ventricular Displacement 

 To calculate lateral ventricular displacement two procedures were 

utilized during image segmentation. Non-linear diffeomorphic registration was 

performed using Advanced Normalization Tools ANTS to define a warp field to 
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apply to the lateral ventricular segmentation [57]. Lateral ventricular 

segmentation was masked to exclude regions of tumor pathology. The 

distance between the CoM of subject’s lateral ventricles and the template’s 

lateral ventricle CoM was measured. An illustrative example of LVd derivation 

for an example subject is shown in Figure 4.1. 
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Figure 4.1. Illustrative flow of Lateral Ventricular Displacement (LVd) calculation.  
Top: Images are automatically segmented into the constituent tissue compartments to 
extract the CSF volume in patients with tumor.  Bottom: The same segmentation is 
performed on the MNI template to derive a theoretical “normal” CSF volume.  The 
vector representing the displacement of the center of mass of the “normal” CSF to the 
tumor CSF is calculated. The resultant magnitude is the magnitude of LVd.  
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4.3. Results 

4.3.1. LVd shifts occur in a majority of glioblastoma tumor patients 

 We calculated LVd for 194 subjects from the TCGA cohort. An example 

of these calculations and demonstration of the range of LVd in our sample can 

be found in Figure 4.2. To better characterize our measure we performed LVd 

quantification in 550 subjects from a publically available non-tumor neuro 

imaging cohort (Information eXtraction from Images dataset, Biomedical 

Image Analysis Group, Imperial College London, 

www.biomedic.doc.ic.ac.uk/brain-development/index). Demographics for these 

subjects can be found in Table 4.1. This task was performed to characterize 

the extent of LVD in normal subjects while ensuring that the degree of LVd 

seen in non-tumor subjects was significantly different than the degree of shift 

seen in patients with glioblastoma. We found that all control subjects had an 

LVd less than 6.5 mm, while the vast majority of tumor patients (77%) had an 

LVd above 6.5 mm.  In the IXI normal imaging cohort the average LVd was 

3.22 mm ranging from 0.53 to 6.46 mm. The 194 glioblastoma subjects from 

the TCIA had significantly higher LVd measures with an average of 10.93 mm 

ranging from 1.88 to 29.11 mm (t = 30.16, p < .001). Histograms of the 

distributions of LVD from both cohorts can be found in Figure 4.3. It is 

important to point out that nearly 30% of patients with presurgical glioblastoma 

have LVds within normal ranges in our cohort. Patients with these “normal” 
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levels of LVd had more than 100 days longer median survival time relative to 

glioblastoma patients  
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Figure 4.2. Patients with similar tumor volumes can have differing levels of LVd. 
Examples from a MNI axial slice z=87 representing the range of CSF displacement 
magnitudes from the TCGA cohort. Red indicates the borders of the T1wCE CSF 
lateral ventricular segmentation, while yellow indicates the segmentation of the MNI 
lateral ventricles.  The component vector of displacement is plotted in green for each 
figure.  The sample names, contrast enhancement (CE) volume, and lateral ventricle 
(LV) displacement is printed below each figure. 
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Figure 4.3. LVds occur in a majority of glioblastoma tumor patients. Right: Boxplot 
illustrating the difference in mean and variance of LVd in both normal and tumor 
cohorts. glioblastoma tumors showed a significantly higher mean LVd. ** p < .0001.  
Left: Histogram demonstrating the distribution of LVd magnitude in a normal cohort 
(green) and glioblastoma tumor subjects (red).  
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4.3.2. The variance of LVd is not solely explained by tumor volume 

We observed that subjects displayed differential LVd with respect to 

tumor size across our cohort. In order to investigate the role of tumor size on 

LVd, we plotted LVd with respect to contrast enhancing volume (CEV), FLAIR 

hyperintensity volume (FHV), and total tumor volume (CEV+FHV) (Figure 4.4). 

Linear regression between CEV, FHV, and LVd revealed a Pearson 

correlation  value of only 0.55. These results suggest that CEV and FHV 

alone do not explain entirely the variance of the LVd measurement. 
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Figure 4.4. Subjects with similar tumor volumes can have differing levels of LVd. 
Examples a MNI axial slice z87 representing the range of CSF displacement 
magnitudes from the TCGA cohort. Red indicates the borders of the T1wCE CSF 
lateral ventricular segmentation, while yellow indicates the segmentation of the MNI 
lateral ventricles.  The component vector of displacement is plotted in green for each 
figure.  The sample names, contrast enhancement (CE) volume, and lateral ventricle 
(LV) displacement is printed below each figure. 
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4.3.3. Glioblastoma patients with higher LVd demonstrate poorer survival  

 We hypothesized that LVd, our proxy measurement for tumor mass 

effect, would associate with patient survival. To investigate this relationship, 

we first performed univariate Cox regression with respect to LVd in our TCIA 

cohort of 194 subjects. This analysis confirmed that LVd is associated with 

reduced patient survival (p = 0.007). When each patient’s age at diagnosis, a 

known survival associated measure, was added to the Cox regression model, 

LVd remained significantly associated with reduced patient survival (p = 0.006, 

Figure 4.5). This was also true while including patients’ KPS scores. When 

LVd was dichotomized by its median, Kaplan-Meier survival analysis revealed 

that high LVd was, again, strongly associated with reduced patient survival. 

(Log-rank p = 0.02, Figure 4.5). CEV was associated with survival by 

univariate Cox regression (p = 0.05), while FHV was not associated with 

survival in our cohort. When combined with LVd in a Cox model, the CEV term 

lost significance. In a prior study, we observed that patients with tumors 

adjacent to the subventricular zone (SVZ) have poorer survival than patients 

with higher SVZ distances (Chapter 3, manuscript in preparation). In order to 

confirm that the effect of mass effect on survival was independent of SVZ 

distance, we combined SVZ distance, LVD, and age into a Cox model, and all 

features remained significantly associated with survival (Table 4.1). 

Furthermore, when combined by median cutoff, patients with lower SVZ 

distance and higher LVD showed the worst survival of all groups in Kaplan-

Meier analysis (Figure 4.5) 
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Figure 4.5. Increased LVd is a strongly associated with poorer patient survival and 
increased SVZ distance is a strongly associated with longer patient survival. Left: 
Kaplan-Meier survival curve derived from a median cutoff of LVd distribution in the 
TCGA cohort.  Higher levels of LVd are associated with decreased survival (p=0.02 
log rank, n=194).  Table 4.1 contains the Cox regression analysis showing that LVd 
remains significantly associated with survival despite covarying for age (p=0.006). 
Right: Kaplan-Meier survival curve derived from a median cutoff of SVZ distance 
distribution in the TCGA cohort.  Higher levels of SVZ distance are associated with 
prolonged survival (p=0.029 log rank, n=194).  Table 4.1 contains the Cox regression 
analysis showing that LVd remains significantly associated with survival despite 
covarying for age (p=0.001). Bottom: Combined Kaplan-Meier curves for 4 groups 
based on median cut-offs of SVZd and LVD. 
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Table 4.1. Cox Regression analysis with LVd, SVZd, and age  
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4.3.4. Differential expression analysis identifies that biosynthetic 

pathways, and genes tied to oxidative phosphorylation are upregulated, 

while neural differentiation factors are downregulated in tumors with 

high LVd. 

 Differential expression analyses were performed in both the Agilent HT-

HG-U133a mRNA level III and mRNAseq expression sets. Each gene was 

independently correlated with LVd by Spearman correlation and nominal p 

values were corrected for multiple comparisons using Benjamini Hochberg 

correction[79]. Genes which showed greater than two-fold change and 

significant association with LVd were kept and consolidated into an LVd 

associated signature. Using previously published methods, single sample 

gene set enrichment analysis (ssGSEA)[54] was used to calculate enrichment 

scores for signatures pulled from MsigDB for each subject in the TCGA cohort. 

These signatures were tested for correlation with the LVD measure, along with 

the LVD identified signature (Figure 4.6).  
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Figure 4.6. Differential expression analysis reveals genes associated with LVd: 
Volcano plot illustrating the genes upregulated in high LVd (at right in red), and genes 
downregulated in high LVd (at left in green).  Log 2 of fold change is denoted on the 
x- axis. 
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4.4. Discussion 

In this study, we define and characterize a novel quantitative 

radiographic parameter termed LVd. This noninvasive measure, a proxy for 

mass effect, associates with poor overall survival and could be used to 

evaluate patients with glioblastoma.  LVd is novel quantitative measure of 

mass effect which associates with survival in the TCIA glioblastoma cohort, 

demonstrating its potential in aiding prognosis. Use of LVd in this cohort has 

identified genes which may be associated with the mass effect phenotype. 

Application of quantitative radiographic parameters, like LVd, to the study of 

glioblastoma opens up new possibilities for elucidating the complex 

mechanisms which govern this disease.   

 Glioblastoma is the most common and deadliest form of brain 

cancer[6].Chief among the challenges to glioblastoma treatment, is its 

heterogeneous multiform nature, which demands researchers pursue 

integrated approaches to unravel its complex physiology[8]. Considering that 

the clinical management of glioblastoma relies heavily on magnetic resonance 

imaging, it seems logical quantitative applications of MR parameters may help 

clinicians identify prognostic clues and begin to uncover the complexity of 

glioblastoma through the lens of observable and measurable phenotypes. One 

such radiographic parameter is presented here: LVd, a proxy for mass effect, 

is a feature which we show possesses prognostic utility. 
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To characterize the extent of LVd variation we see in non-tumor 

subjects we analyzed 550 age-matched subjects from the IXI control 

neuroimaging cohort. We found that despite the range of anatomical 

variations, normal subjects have significantly lower LVd relative to patients 

with glioblastoma tumors. These data suggest that LVd can accurately identify 

the effect of tumor on the intracranial compartments.  

The degree of displacement of the lateral ventricles may be a factor of 

more than just tumor volume. A linear regression revealed that LVd was 

weakly positively correlated with CE and FH volume. This suggests that while 

tumor volume may explain a portion of LVd, tumor volume cannot explain the 

entirety of LVd variance. Other factors that may contribute include erosion and 

transformation of surrounding parenchyma. We identified many tumors with 

low volume and high LVd as well as others with high volume and low LVd. In 

addition, 30% of patients with glioblastoma had LVds within the range found in 

our control cohort. We show that LVd is not solely explained by tumor volume. 

Furthermore, Cox analysis demonstrated that while LVd has a strong 

association with decreased survival, CE and FH volume did not have a 

significant association.  Therefore, LVd may provide additional insight into 

tumor pathophysiology than tumor volume alone. 

We found that LVD was associated with reduced patient survival 

(p=0.007). This association was independent of age, KPS score, and tumor 

volume. We have previously shown that proximity to the subventricular zone 

(SVZ) was associated with decreased patient survival. Tumors near the SVZ 
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are closer to the ventricles, may also have elevated LVd, and therefore may 

explain the survival association with LVd. However, we found that again, LVd’s 

association with decreased survival was an independent effect. Together, 

proximity to the SVZ and increased LVd both contribute to poor patient 

survival.  

The objective of our genomic analysis was to identify genes related to 

LVd and therefore mass effect. Before employing differential expression 

analysis we hypothesized generally that we would identify pro-growth genes in 

patients with high LVd, and growth arrestors in patients with lower LVd. 

Growth restricting neural differentiation cues were identified among the 

signature as down regulated in patients with high LVD. These genes included 

FOXO3, FOXN3, and BMPR2 which have been implicated as controllers of 

stem cell differentiation and reducers of glioblastoma tumorogenicity[80-82]. 

Other tumor suppressor candidates were also identified like NEO 1 

neoginin[83, 84]. To validate these results we downloaded a signature of 

genes that are significantly down-regulated by oncogenic mir-21, in a 

glioblastoma cell line A172[85]. This gene set was available from the Broad 

Institute’s curated Molecular Signatures Database and was used to perform 

ssGSEA to calculate enrichment scores for all subjects in our cohort. We 

found that LVd was significantly and negatively correlated with tumor 

suppressors that are transcriptionally repressed by mir-21.  

Surprisingly, genes related to oxidative phosphorylation, and aerobic 

respiration were up-regulated in subjects with high LVd. This result was 
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confirmed using DAVID functional annotation (http://david.abcc.ncifcrf.gov/), 

which showed a strong enrichment for genes related to processes of aerobic 

respiration.  To confirm whether the entire aerobic respiration pathway was 

enriched as a function of LVd, we pulled an aerobic respiration gene signature 

from the Molecular Signatures Database from the Broad Instistute and 

performed ssGSEA to calculate enrichment scores for all subjects within our 

cohort. We found that this entire signature correlated with LVd (r =0.15, p = 

0.04). It is possible given this result that tumors with increased aerobic 

respiration would have more efficient metabolic machinery, allowing them to 

expand at a much faster rate than tumors relying on glycolysis. Tumors of this 

rapidly dividing subtype may allow less time for the brain to accommodate 

their growing mass and exhibit greater LVd than a slower growing tumor of 

equal volume. 

Though we are thankful for the wealth of data afforded to us by the 

TCIA, our study is inherently limited by the wide variation of imaging 

availability and myriad different scans, resolutions, and protocols, that were 

employed. We addressed this limitation by employing IPVL automated 

segmentation to the data set that was designed to handle heterogenous 

datasets, and carefully reviewed all steps of or processing through image 

segmentation to ensure both accuracy and quality of our results.  Although our 

study represents 194 subjects from multiple different sites around the country, 

we would like to see further validation in other cohorts to confirm its findings.  

Ultimately, we hope the integration of parameters like LVd along with clinical 
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and genomic profiling data will furnish researchers and clinicians with the tools 

necessary to design new therapeutics, monitor treatment response and tumor 

progression, and ultimately improve the lives of patients afflicted by 

glioblastoma.  

 

Chapter 4, in part, is now in preparation for submission for publication 

of the material. Tyler C. Steed, Jeffrey M. Treiber, Kunal Patel, Bob S. Carter, 

Anders M. Dale, and Clark C. Chen (2014). Tentatively entitled “Quantification 

of lateral ventricle displacement magnitude in glioblastoma imaging associates 

with decreased patient survival. The dissertation/thesis author was the primary 

investigator and author of this material. 
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5. Conclusions and Future Studies 

 The results of this thesis establish the utility of radiogenomics to 

supplement clinical and molecular profiling data. Taken together, these results 

support the idea that radiographic features derived from glioblastoma imaging 

correlate with gene expression and molecular alterations. Additionally, we 

demonstrate that tumor imaging may prove to be a convenient, ubiquitous, 

and noninvasive tool helping to evaluate tumor biology. 

Although the entirety of the results presented here were derived from 

retrospective study, validation for research pertaining to radiogenomics will 

require prospective evaluation. It is important to remember that the biological 

state of glioblastoma is not static. It is well-known that profound molecular 

changes occur in response to immune interaction and therapeutic strategy.  

Bearing this in mind, future studies may derive benefit from following 

longitudinal changes in imaging serially.  Application of the strategy may prove 

of particular importance in the evaluation of clinical trials.  Additionally, while 

the radiographic parameters described in this thesis independently associated 

with survival, there are a number of more simple radiographic features which 

may not. Although these features may not associate with survival, they may 

nevertheless associate with patterns of differential genomic expression 

representing unique biological states. Classification, identification, and 
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combination of biologically important radiographic parameters into new 

radiophenotypes may provide added context for molecular profiling data. 

As we move forward into the era of personalized medicine, thoughtful 

extraction and careful integration of pertinent information will be required to 

make optimal decisions leading to better patient outcomes.  Ultimately, 

imaging parameters like those described herein, will provide the necessary 

metrics to help researchers and clinicians discover new therapeutics, monitor 

evaluate treatment response, and change the lives of patients afflicted with 

glioblastoma. 
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