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ABSTRACT OF THE DISSERTATION

A Tannakian Result for Profinite Groups

by

Roman Kitsela

Doctor of Philosophy in Mathematics

University of California, San Diego, 2018

Professor Claus Sorensen, Chair

The classical Tannaka reconstruction theorem [25] allows one to recover a compact group

G (up to isomorphism) from the monoidal category of finite dimensional representations of G over

C, RepC(G), as the tensor preserving automorphisms of the forgetful functor RepC(G)−→VecC.

Now let G be a profinite group, K a finite extension of Qp and BanG(K) the category of K-

Banach space representations (of G). BanG(K) can be equipped with a tensor product bifunctor

(−)⊗̂K(−) and has a forgetful functor ω : BanG(K)−→Ban(K). Then, using an anti-equivalence

of categories ([21, Thm 2.3]) between BanG(K) and the category of Iwasawa G-modules, we

prove that a profinite group G can be recovered from BanG(K) as the group of tensor preserving

automorphisms of ω, in particular G∼= Aut⊗(ω).
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Chapter 1

Introduction

Fix primes p 6= l and a finite extension K of Qp. Interest in representations of p-adic

Lie groups (groups with the structure of a manifold over a p-adic field) such as GLn(K) on

nonarchimedean Banach spaces has been motivated in large part by developments in the local

p-adic Langlands program for GLn (for a survey of known results see [3]). Loosely stated,

the local (l-adic) Langlands correspondence relates (isomorphism classes of) n-dimensional

continuous representations ρ of Gal(K/K) over Ql with (isomorphism classes of) irreducible

smooth representations π(ρ) of GLn(K). Via a (reversible) completion process due to Vigneras

([26]) one relates smooth representations π(ρ) with unitary K-Banach space representations π̂(ρ)

of GLn(K). The goal of the p-adic local Langlands programme is to extend the above to the case

l = p.

Going from l-adic to p-adic representations on the Galois side greatly increases the

complexity of the representation theory. In an attempt to enrich the representation theory on the

Banach side, Schneider and Teitelbaum, in a joint effort, began a systematic study ([24], [22],

[21], [23]) of the continuous linear action of a topological group G on various kinds of topological

vector spaces. In particular focusing on the cases of a profinite G such as compact p-adic Lie

group GLn(O); and locally profinite G such as the locally compact p-adic Lie group GLn(K), or
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more generally a locally L-analytic group (where L is finite over Qp).

Locally convex vector spaces from nonarchimedean functional analysis provides a good

technical framework for studying more general topological vector spaces. Smooth representations

of V correspond to an action map G×V −→ V with the discrete topology on V . Considering

more complex topologies on V facilitates the study of more subtle representations.

The simplest locally convex spaces are Banach spaces (complete vector spaces whose

topology is defined by a single norm) and when endowed with a continuous G-action are called

Banach space representations (of G). In [21] Schneider and Teitelbaum (extending upon a result

by Schikhof [18, Thm 4.6]) prove that the category of Banach space representations of G (for

a profinite group G) is anti-equivalent to the category of Iwasawa G-modules (flat, compact,

linearly topological O-modules with a continuous (left) action of the Iwasawa algebra Λ(G)).

This result is certainly useful in allowing one to relate questions about Banach space

representations to Iwasawa G-modules (and indeed this anti-equivalence of categories is an

essential ingredient of the main recovery theorem in this dissertation), but application to the

Langlands program is limited by the pathological nature of general Banach space representations.

For example, there exist non-isomorphic topologically irreducible Banach space representations

E and F of G for which nonetheless there exists a nonzero G-equivariant continuous linear

map E −→ F . And even the simplest profinite groups such as Zp have infinitely many infinite

dimensional, topologically irreducible Banach space representations (Diarra constructs explicit

examples in [9]).

Motivated by the need to impose additional finiteness conditions on BanG(K) to develop

a more manageable theory, Schneider and Teitelbaum introduced the concept of an admissible

Banach space representation ([21, §3]). Admissible Banach space representations correspond

(via the anti-equivalence of categories) to finitely generated K[[G]]-modules (where K[[G]] :=

K⊗O[[G]]).

One of the key results in Lazard’s seminal work on p-adic Lie groups ([15]) is that the
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Iwasawa algebra Λ(G) for a compact p-adic Lie group G is Noetherian. In particular it would

follow that K[[G]] is also Noetherian and the category of finitely generated K[[G]]-modules is

abelian. Thus the category of admissible Banach space representations is also abelian.

The proof of this result uses several important constructions due to Lazard (in the case

O = Zp). A p-valuation ω on G is a map ω : G \ {1} −→ (0,∞) satisfying some technical

conditions (cf [20, §23]). Extending ω to a map ω̃ on Zp[[G]] one can can equip Zp[[G]] with an

exhaustive filtration indexed by m ∈ N:

Zp[[G]]m/N := {λ ∈ Zp[[G]] : ω̃(λ)≥ m/N}

(here N ∈ N is a common denominator of values of ω̃ on Zp[[G]]). The associated graded ring

is isomorphic to a polynomial ring in finitely variables over a Noetherian ring and is therefore

Noetherian. Applying a lifting result ([2, Chap. III §2.9 Cor. 2]) we deduce that Λ(G) is itself

also Noetherian.

There is already some evidence that the category of admissible Banach space represen-

tations may be suitable to developing a Langlands correspondence, for instance Colmez ([5])

has constructed topologically irreducible admissible unitary Banach space representations of

GL2(Qp) that correspond to 2-dimensional irreducible Galois representations of Gal(Qp/Qp).

Although we focus entirely on Banach space representations, it is important to mention

that much of the effort by Schneider and Teitelbaum has been directed towards developing

the theory of locally analytic representations ([24], [22]). These representions are given by a

continuous action of G on V such that the orbit maps g 7−→ gv are locally analytic functions on G.

The work of this dissertation began by asking the question of whether it is possible

to recover a profinite group G from its category of Banach space representations BanG(K) by

exploiting the anti-equivalence of categories

BanG(K)≤1 ∼−→Mod f l
cpt(Λ(G))

3



due to Schneider and Teitelbaum mentioned above.

This kind of recovery theorem goes back to the work of Tannaka and Krein in the 1930s

and 1940s, and is part of a (quite general) duality principle known as Tannaka-Krein duality.

1.1 Tannaka-Krein duality

As a natural precursor to Tannaka-Krein duality, the theory of Pontryagin duality allows

one to associate to a locally compact abelian group G the dual group Ĝ consisting of continuous

characters of G (these are just the 1-dimensional unitary representations of G). Endowing Ĝ with

the topology of uniform convergence one proves that Ĝ is a locally compact topological group

and the canonical homomorphism

ev : G−→ ˆ̂G

given by evaluation at g ∈ G is an isomorphism. In this way G can be recovered from Ĝ.

The first results in what is now called Tannaka-Krein duality were Tannaka’s reconstruc-

tion theorem ([25]) in 1939 and Krein’s recognition theorem ([14]) in 1949. As a generalization

of Pontryagin duality to nonabelian (compact) groups Tannaka proved that one can recover a com-

pact group (up to isomorphism), from its category of finite dimensional complex representations

(with some additional structure). Krein’s theorem gives the complementary result; characterizing

the categories that arise as the representation category of a compact group G.

I will briefly outline Tannaka’s classical result (see [13, §1] for a more detailed account).

To generalize Pontryagin duality to nonabelian compact groups Tannaka realized that it be-

comes necessary to consider all finite dimensional representations of G (over C), not just the

1-dimensional unitary ones. These do not form a group (as in the abelian case) but rather a cate-

gory. Let RepC(G) denote the category of finite dimensional representations of G over C, these

are pairs (V,ρV ) where V is a finite dimensional complex vector space and ρV : G−→ GL(V ) is

a group homomorphism.
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RepC(G) is a monoidal category with respect to the usual tensor product over C and

forgetting the G-action on objects V in RepC(G) gives us a functor

ω : RepC(G)−→ VecC

The set of endomorphisms of ω (Definition A.5) can be endowed with a topology (the

coarsest topology with respect to which the projections End(ω)−→ End(V ) are all continuous)

and there is a continuous natural map π : G−→ End(ω) defined by multiplication by g ∈ G

π(g)V = ρV (g)

Denoting the tensor preserving self-conjugate endomorphisms of ω by T (G) (self-

conjugate here means λ ∈ End(ω) satisfies λ = λ where λ is the complex conjugate of λ),

the key observations are that T (G) is a closed subgroup of End(ω) and every π(g) is in T (G). In

fact, π is an isomorphism.

Theorem 1.1 (Tannaka). For any compact group G

π : G−→ T (G)

is an isomorphism of topological groups

So G may be recovered from RepC(G), but what if we are given an abstract (monoidal)

category C , what are necessary and sufficient conditions to recover a compact group G from C?

This question is answered by Krein’s theorem.

Theorem 1.2 (Krein). Let C be a C-linear monoidal category, equipped with a C-linear faithful

monoidal functor ω : C −→ VecC.

There is an equivalence of categories C −→ RepC(G) if and only if the following condi-

tions hold
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1. C is semisimple (every object can be decomposed as a coproduct of simple objects)

2. homC (X ,Y ) is either 1-dimensional (when X ∼= Y ) or homC (X ,Y ) = 0

It is important to remark that obviously this is a modern reformulation of the classical

results that utilizes the language of category theory. The original results were approached from

the point of view of classical harmonic analysis ([12, §30]).

The next major development in Tannaka-Krein duality theory can be attributed to Saavedra

(and Grothendieck) in the 1970s ([17]). Working as a student of Grothendieck’s, Saavedra with

some considerable effort vastly generalized Tannaka-Krein duality to recover a pro-algebraic

group (a pro-algebraic group is an inverse limit of algebraic groups), from its category of

representations. To this end Saavedra defined the notion of a rigid category; a technical condition

that at a key step in the proof ensures that Aut⊗(ω) is represented by an affine group scheme,

rather than a monoid (rigidity is carefully defined in [7]), and a Tannakian category (although his

original definition misses a necessary non-degeneracy condition k = End(1)).

Deligne and Milne ([7]) noticed the errors in Saavedra’s original work, correctly redefined

the notion of a Tannakian category and reproved the required results in the ”neutral” case ([7]).

Definition 1.1. A (neutral) Tannakian category over k is a rigid abelian tensor category (C ,⊗)

such that k =End(1) for which there exists an exact faithful k-linear tensor functor ω : C −→Veck.

Any such functor is called a fiber functor for C .

It is possible to recover an affine group scheme G from its category of finite dimensional

representations.

Theorem 1.3 (Saavedra, Deligne, Milne). Let G be an affine group scheme over k and ω be the

forgetful functor ω : Repk(G)−→ Veck. The natural map G−→ Aut⊗(ω) is an isomorphism of

functors (of k-algebras).

As before there is a recognition theorem that characterizes the categories that arise as the
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category of representations of an affine group scheme. These are precisely the (neutral) Tannakian

categories.

Theorem 1.4 (Saavedra, Deligne, Milne). Let (C ,⊗) be a (neutral) Tannakian category with

fibre functor ω : C −→ Veck, then:

1. The functor Aut⊗(ω) of k-algebras is represented by an affine group scheme G;

2. The functor C −→ Repk(G) defined by ω is an equivalence of tensor categories

It took almost 10 years for the main results to be extended to the much more general

non-neutral case by Deligne ([6]). Since then Tannaka-Krein duality has been proven to hold in a

large number of cases, and the subject has enjoyed a resurgence in popularity.

Tannakian formalism has allowed complex algebraic objects to be constructed out of

perhaps relatively simpler (Tannakian) categories. Applying this duality to the category of

motives, one constructs Grothendieck’s motivic Galois group. Tannaka-Krein duality has been

successfully applied to the study and construction of quantum groups ([27]). And there is perhaps

even some hope of constructing the (conjectural) Langlands groups with Tannaka-Krein duality,

although this is very much still hopeful.

1.2 Results in this dissertation

Having made a case for why Banach space representations are interesting and important

objects to study and provided some historical context, let us set up and state the main results of

this dissertation.

Let G be a profinite group (compact, Hausdorff and totally disconnected topological

group) and K a finite extension of Qp. Denoting the categories of K-Banach spaces and K-Banach

space representations of G by Ban(K) and BanG(K) respectively, we have a forgetful functor

7



(forgetting the G-action structure):

ω : BanG(K)−→ Ban(K)

Given K-Banach spaces E and F it is possible to endow the abstract K-vector space

E ⊗K F with a norm (cf section 3.3), denoted ‖‖E⊗F . Taking the completion with respect to

this norm allows one to define a completed tensor product ⊗̂K in the category Ban(K) (with no

G-action). By defining a suitable G-action on E⊗K F this definition extends to BanG(K).

The goal of my research was to prove a Tannaka type reconstruction result and recover G

from the data (BanG(K),⊗̂K,ω). The basic idea is straightforward; following the constructions

in other cases, one would expect to recover G as the tensor preserving automorphisms of ω. The

hope was we can prove there is an isomorphism of topological groups:

G
∼=−→ Aut⊗(ω)

There did not seem to be a clear way to proceed in BanG(K) directly, but as mentioned in

the introduction we can use an anti-equivalence of categories ([21, Thm 2.3]):

BanG(K)≤1 ∼−→Mod f l
cpt(Λ(G))

to transfer the problem of recovering G to Mod f l
cpt(Λ(G)), the category of Iwasawa G-modules

(cf section 5.1), where it would perhaps be easier to solve.

We interpret the aforementioned anti-equivalence as factoring through an intermediate

category Modϖ−cts
G (O) f l introduced by Emerton ([10, §2.4]).

BanG(K)≤1 Modϖ−cts
G (O) f l Mod f l

cpt(Λ(G))

(−)◦

(−)⊗K

(−)d

(−)d

8



To make progress towards the recovery theorem a tensor product is defined for each

category in a way that is compatible with the equivalences between them. The real technical

challenge here was with Mod f l
cpt(Λ(G)). Making use of a completed tensor product construction

due to Brumer ([4]) we first define the tensor product of objects M and N in the simpler category

Mod f l
cpt(O) by:

M⊗̂ON := lim←−
M′,N′

M/M′⊗O N/N′

Each object in Mod f l
cpt(O) comes equipped with a fundamental family of open neighborhoods of

0 by O-submodules. Here the inverse limit is taken over all the fundamental open O-submodules

M′ ⊆M and N′ ⊆ N respectively.

Since the open submodules M′ and N′ are not assumed to have a Λ(G)-module structure

it difficult to define a Λ(G)-action on M⊗̂ON directly. This issue is tackled in section 5.2.3 by

explicitly constructing G-stable submodules in every open O-submodule M′ ⊆M, then extending

the resulting O[G]-action to a Λ(G)-action structure. Combined with a ⊗̂O-coalgebra structure

we construct on Λ(G)

c : Λ(G)−→ Λ(G)⊗̂OΛ(G)

we can define a Λ(G)-action on M⊗̂ON, and thus (−)⊗̂O(−) is a completed tensor product

(bifunctor) on Mod f l
cpt(Λ(G)) as required. To make any use of the anti-equivalence of categories

between BanG(K)≤1 and Mod f l
cpt(Λ(G)) we prove two key compatibility results (cf section 5.3)

(E⊗̂KF)◦ ∼= E◦⊗̂OF◦ and (M⊗̂ON)d ∼= Md⊗̂ONd

We relate the tensor preserving automorphisms of the forgetful functors ω1 on BanG(K)≤1

and ω3 on Mod f l
cpt(Λ(G)) by proving an isomorphism (cf section 6.2.1)

Aut⊗(ω1)∼= Aut⊗(ω3)

9



which allows us to transfer the recovery problem to Mod f l
cpt(Λ(G)). Seemingly unrelated, G

coincides with the group-like elements of Λ(G), denoted Λ(G)gp

G =
Lemma 5.5

Λ(G)gp

The key lemma in chapter 6 relates (tensor preserving) automorphisms of ω3 with group-like

elements of Λ(G).

Lemma (Key Lemma).

Aut⊗(ω3)∼= Λ(G)gp (1.1)

is a continuous isomorphism of topological groups

Combining all this together we prove the main result:

Theorem 1.5 (Main Result). Let G be a profinite group, and BanG(K) be the category of K-

Banach space representations, with tensor product bifunctor ⊗̂K and a forgetful functor ω (that

forgets the G-action). There is a continuous isomorphism of topological groups:

Aut⊗(ω)∼= G

As a corollary of this result we give a mild classification result for Iwasawa algebras. By

definition Λ(G) is the completed group ring of G over the ring of integers O, defined (cf section

4.1) as the following inverse limit of group rings:

Λ(G) = O[[G]] := lim←−
N

O[G/N]

The O-algebra Λ(G) plays a role analogous to the group ring of a finite group and can be seen as

natural generalization that takes into account the topology of G. Indeed for finite groups (with the

discrete topology) we have Λ(G) = O[G].

10



The following remained a conjecture for a long time in the theory of finite groups.

Conjecture 1.1. Let G and H be finite groups. If Z[G]∼= Z[H], then G∼= H

This problem had been studied extensively, and proven to hold in a large number of cases

before a counterexample to the general statement was constructed in [11]. Being interested in

profinite groups and Iwasawa algebras, a natural question one may ask is to what extent is a

profinite group G determined by Λ(G)? More precisely, what conditions must we place on Λ(G)

and Λ(H) to guarantee G∼= H?

Being isomorphic as algebras is not enough since this is not a sufficient condition even

for finite G. Instead we prove:

Corollary 1.1. Let G, H be two profinite groups such that there exists a topological isomorphism

of O-algebras ϕ : Λ(G)−→ Λ(H) that is compatible with the ⊗̂O-coalgebra structures of Λ(G)

and Λ(H), denoted c1 and c2 respectively, such that the following diagram commutes:

Λ(G)⊗̂OΛ(G) Λ(H)⊗̂OΛ(H)

Λ(G) Λ(H)

ϕ⊗ϕ

c1 c2

ϕ

Then G∼= H.

1.3 Summary of chapters

Chapter 2 gives is a quick summary of the basic definitions and constructions from

nonarchimedean functional analysis we will need in this dissertation. Nonachimedean fields,

normed spaces (in particular Banach spaces) are defined and some of their basic properties are

given. We briefly discuss some duality theory from nonarchimedean functional analysis, in
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particular the lack of a reflexive property for (infinite dimensional) Banach spaces over spherically

complete fields.

In chapter 3 and 4 we introduce the categories: Ban(K), Ban(K)≤1, Modϖ−cts(O) f l and

Mod f l
cpt(O), defining a tensor product in each category and the functors between them. Important

compatibility results are proven in these chapters (cf section 3.4 and 4.4).

In chapter 5 we extend results from previous chapters to new categories BanG(K)≤1,

Modϖ−cts
G (O) f l and Mod f l

cpt(Λ(G)) whose objects are endowed with a continuous action by a

profinite group G. Tensor products in each category are defined in section 5.2 and in section 5.3

the compatibility results of chapter 3 and 4 are generalized to these new categories.

Finally in chapter 6 we prove the main result Theorem 1.5. First, using the work from

chapter 5 we translate the problem from BanG(K)≤1 to Mod f l
cpt(Λ(G)) (cf section 6.2.1). Then we

define a map from the ”group-like” elements in Λ(G) to automorphisms of the forgetful functor

ω3 on Mod f l
cpt(Λ(G)) and prove it is an isomorphism (cf section 6.2.2). At the end of section 6.2

we put everything together and finish off the proof of Theorem 1.5. We finish the chapter with a

corollary of the main recovery theorem and tentative suggestions for future research in this topic.

1.4 Notation

Throughout K will be a finite extension of Qp for a fixed prime p. The ring of integers

in K will be denoted O and will have ϖ as a distinguished uniformizer. In particular the natural

profinite topology on O is ϖ-adic.

G will be a fixed profinite group and O[[G]] is the Iwasawa algebra (or completed group

ring) of G over O (cf section 4.1) which we will often denote by Λ(G).
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1.5 Category definitions

1.5.1 Categories without G

Ban(K), the category of K-Banach spaces with continuous linear maps as morphisms.

Ban(K)≤1, the category of K-Banach spaces (E,‖‖) satisfying ‖E‖⊆ |K|, with continuous

norm decreasing (satisfying ‖ f‖ ≤ 1 with respect to the operator norm) linear maps as morphisms.

Modϖ−cts(O) f l , the category of flat ϖ-adically complete and separated O-modules, with

O-linear maps as morphisms.

Mod f l
cpt(O), the category of flat, compact and linearly topological O-modules, with con-

tinuous O-linear maps as morphisms.

1.5.2 Categories with G

(See section 5.1 for detailed definitions)

BanG(K), the category of K-Banach space representations of G, with G-equivariant

continuous linear maps as morphisms.

BanG(K)≤1, the category of K-Banach space representations (E,‖‖) satisfying ‖E‖⊆ |K|,

with G-equivariant norm-decreasing linear maps as morphisms.

Modϖ−cts
G (O) f l , the category of flat ϖ-adically continuous G-representations, with G-

equivariant O-linear maps as morphisms.

Mod f l
cpt(Λ(G)), the category of Iwasawa G-modules over O, with continuous G-equivariant

O-linear maps as morphisms.
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Chapter 2

Nonarchimedean functional analysis

In this chapter we begin with a brief summary of the important definitions, results, and

constructions from nonarchimedean functional analysis that will prove useful later. The full

details can be found in the excellent reference [19].

2.1 Nonarchimedean fields

Let K be any field.

Definition 2.1. A nonarchimedean absolute value (on K) is a function | | : K −→ R satisfying for

any a, b in K

1. |a| ≥ 0

2. |a|= 0 if and only if a = 0

3. |ab|= |a| · |b|

4. |a+b| ≤max(|a|, |b|)

To avoid pathological examples we will only consider non-trivial absolute values (those

for which there exists some x ∈ K such that |x| 6= 0,1).
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Example 2.1 (The p-adic absolute value on Q). Any rational x can be uniquely written as

x = p−n a
b where p - ab and n ∈ Z, then the absolute value defined by:

∣∣∣p−n a
b

∣∣∣
p

:= pn

is nonarchimedean.

The only difference between the regular definition of an absolute value and Definition 2.1

is property 4 (the strict triangle inequality). It is this property in particular that is responsible for

the terminology nonarchimedean. It is an easy consequence of the definition that |n ·1K| ≤ |1K|= 1

holds for all n ∈ N, thus p-adic fields do not satisfy the Archimedean property:

x < y =⇒ ∃n ∈ N such that n · x > y

The strange topological properties of p-adic fields and spaces over p-adic fields are all due to the

strict triangle inequality.

Definition 2.2. A field K is called nonarchimedean if it is equipped with a nonarchimedean

absolute value | | such that the corresponding metric space is complete.

Examples. 1. The field of p-adic numbers Qp with (the extension of) the p-adic absolute

value is a nonarchimedean field. More generally, given K a finite extension of Qp (say

[K : Qp] = n), the absolute value | |p extends (uniquely) to K and is given by

|x|K =

(∣∣∣NormK/Qp(x)
∣∣∣

p

) 1
n

(K, | |K) is a nonarchimedean field

2. Taking the union over finite degree extensions of all degrees we can extend the p-adic abso-

lute value uniquely to the algebraic completion Qp, which will in general not be complete
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(as a metric space). The completion Q̂p (sometimes denoted Cp) is a nonarchimedean field

that is not locally compact.

3. Let q be a power of p. The field of Laurent series Fq((T )) over the finite field Fq with the

absolute value given by ∣∣∣∣∣ ∞

∑
k=−m

akT k

∣∣∣∣∣ := qm

is a nonarchimedean field with positive characteristic.

The metric |x− y| induces a topology with respect to which addition and multiplication in

K are continuous maps, thus K is a topological field. For any a ∈ K and ε > 0 the subsets

Bε(a) := {x ∈ K : d(x,a)≤ ε} and B−ε (a) := {x ∈ K : d(x,a)< ε}

are respectively called closed and open balls in K. As a consequence of the strict triangle

inequality Bε(a) and B−ε (a) are both open and closed. This means that for any fixed a ∈ K both

the open and closed balls will form a fundamental system of (open) neighborhoods of a ∈ K.

The (closed) unit ball O := B1(0) is called the ring of integers of K. This is a ring due to

the strict triangle inequality, and has the (open) unit ball as an ideal m := B−1 (0). O is a principal

ideal domain with unique maximal ideal m for which we fix ϖ as a generator (called a uniformizer

of K). The quotient k = O/m is called the residue field of K (k is always finite in our case).

O has a canonical topology given by powers of the ideal m = ϖO called the ϖ-adic topology.

Topologically O is compact, Hausdorff and totally disconnected, in particular O is a profinite

ring:

O ∼= lim←−
n
(O/mn)

In general the topological properties of a nonarchimedean field K can be quite varied.

Often a stronger completeness condition is required for results to hold. In particular the Hahn-

Banach Theorem (Theorem 2.1) only holds for vector spaces over spherically complete fields.
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Definition 2.3. A field K is called spherically complete if any decreasing sequence of balls

B1 ⊇ B2 ⊇ B3 ⊇ ·· · in K has non-empty intersection.

Our primary interest will be the case when K is a finite extension of Qp. In this case K is

both locally compact and discretely valued (meaning |K×| is a discrete subgroup of (R>0,×)).

Both of these conditions imply spherical completeness, whereas Cp is an example of a non

spherically complete field.

2.2 Locally convex topologies and normed vector spaces

From now on K will always mean a nonarchimedean field with absolute value | | as in the

previous section.

Definition 2.4. A subset A of a vector space V is called convex if it is of the form A = v+A0

where v is a vector in V and A0 is an O-submodule of V .

Recall that we call a vector space topological if it is endowed with a topology with respect

to which addition and scalar multiplication are continuous. As we will see shortly the topology

of a locally convex vector space is defined by a family of special O-submodules called lattices

(hence open sets are convex according to the above definition).

This is quite a general class of topological vector spaces and although we will not need the

full flexibility that locally convex topologies allow for, many of the concepts and constructions

are best stated in general terms (although simplifications will be made wherever possible).

Definition 2.5. A lattice L in a K-vector space V is an O-submodule with the property that for

any v ∈V there exists a ∈ K× such that av ∈ L.

A lattice L⊆V can be characterized by the fact that the natural map K⊗O L−→V given

by a⊗ v 7−→ av (which is injective for any O-submodule) is a bijection.
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Definition 2.6. Let V be a K-vector space. A topology on V that is defined by a family of lattices

{L j} j∈J satisfying:

1. for any j ∈ J and a ∈ K× there exists a k ∈ J such that Lk ⊆ aL j

2. for any i, j in J there exists k ∈ J such that Lk ⊆ Li∩L j

is called the locally convex topology on V (defined by {L j} j∈J).

A topological vector space endowed with a locally convex topology is called a locally

convex vector space, or sometimes just locally convex space.

One can show easily that addition and scalar multiplication are continuous with respect to

any locally convex topology, so any locally convex vector space is topological. We are especially

interested in locally convex topologies that arise from a single norm.

Definition 2.7. Let V be a vector space over a nonarchimedean field K . A (nonarchimedean)

norm on V is a function ‖‖ : V −→ R satisfying for any v, w in V and a in K:

1. ‖av‖= |a|‖v‖

2. ‖v+w‖ ≤max(‖v‖,‖w‖)

3. ‖v‖= 0 if and only if v = 0

A vector space endowed with a norm is called a normed vector space.

Remark 2.1. A function (typically denoted q) that only satisfying properties 1 and 2 is called a

(nonarchimedean) seminorm. We will not need to discuss seminorms much but it is important to

at least mention the natural correspondence between lattices and seminorms. Given a collection

of seminorms {qi}i∈I on V , for any finite subset qi1, · · · ,qik and ε > 0 the O-module

V (qi1, · · · ,qik ,ε) := {v ∈V : qi1(v), · · · ,qik(v)≤ ε}
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is a lattice. On the other hand, given a lattice L we can define a seminorm called a gauge,

associated to L (Definition 2.11). One can equivalently define a locally convex topology on V

purely in terms of seminorms.

As with fields, we will always consider a normed space (V,‖‖) to be a metric space with

respect to d(v,w) := ‖v−w‖. In this way (V,‖‖) is a Hausdorff (by property 2) topological space.

For any v ∈V and ε > 0

Bε(v) := {w ∈V : ‖v−w‖ ≤ ε} and B−ε (v) := {w ∈V : ‖v−w‖< ε}

are respectively called closed and open balls in V , as before Bε(v) and B−ε (v) are both open and

closed. Both the open and closed balls will form a fundamental system of (open) neighborhoods

of v ∈V . It should be immediately clear that Bε(0) (and B−ε (0)) are lattices in V and one checks

easily that they satisfy the requirements of a locally convex topology, thus any normed vector

space is a locally convex vector space.

Definition 2.8. A normed K-vector space is called a K-Banach space if the corresponding metric

space is complete.

Remark 2.2. We will not consider a Banach space E to be equipped with any particular norm

defining its topology, when it is necessary to fix a norm we will write (E,‖‖).

Examples. 1. Kn with the norm ‖(a1, · · · ,an)‖= maxi |ai|

2. Let X be any set and denote the set of bounded functions f : X −→ K by l∞(X). This is

naturally a K-vector space with pointwise addition and scalar multiplication, but may be

endowed with a norm:

‖ f‖∞ = sup
x∈X
| f (x)|

(l∞(X),‖‖∞) is a K-Banach space.

Certain closed subspaces of l∞(X) give other important examples of Banach spaces:
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(a) c0(X) := { f ∈ l∞(X) : ∀ε > 0 | f (x)|< ε for almost all x}

(b) Assuming X is compact, C(X ,K) := { f ∈ l∞(X) : f is continuous}

Definition 2.9. Let V be a vector space, two norms ‖‖1 and ‖‖2 on V are said to be equivalent if

there exist constants c1,c2 > 0 such that

c1‖v‖1 ≤ ‖v‖2 ≤ c2‖v‖1 for all v ∈V

Remark 2.3. Equivalent norms ‖‖1 and ‖‖2 on V define equivalent topologies.

The following definition generalizes the notion of bounded sets to locally convex vector

spaces. It can be used to intrinsically characterize the locally convex vector spaces with a topology

defined by a single norm.

Definition 2.10. A subset B ⊆ V is called bounded if for any open lattice L ⊆ V there exists

a ∈ K such that B⊆ aL

It should be clear that if (V,‖‖) is a normed space we recover the usual definition of a

boundedness (i.e. supx∈B ‖x‖< ∞)

The notion of a gauge associated to a lattice will be important in later sections.

Definition 2.11. Let L be a lattice in V , then L induces a gauge seminorm on V :

pL : V −→ R

v 7−→ inf
v∈aL
|a|K

(2.1)

Remark 2.4. If L is an open bounded lattice in a Banach space V , then pL is a norm (since L is

bounded) and so we denote it by ‖‖L. The topology on V induced by ‖‖L is equivalent to the

given topology of V because L is open. In fact the topology of a Haudorff locally convex vector

space V can be defined by a single norm if and only if there exists a bounded open lattice L⊆V .
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2.3 Duality theory

In this section we state some of the basic results in the rich duality theory of locally convex

vector spaces. We will see that given a normed space V , the Hahn-Banach theorem guarantees

that the dual space V ′ is nonzero and (by Prop. 2.2) is even a Banach space. Unfortunately Prop

2.3 dispels any hope of a naı̈ve isomorphism V ∼= (V ′)′ as for vector spaces.

Proposition 2.1. Let (V,‖‖1), (W,‖‖2) be two normed vector spaces. A linear map f : V −→W

is continuous if and only if there exists c≥ 0 such that ‖ f (v)‖2 ≤ c‖v‖1 for any v ∈V

Proof. [19, Prop 3.1]

Remark 2.5. A continuous f satisfying ‖ f (v)‖2 ≤ ‖v‖1 (i.e. c≤ 1) is called norm decreasing.

Let V , W be as above. The set of all continuous K-linear maps f : V −→W form a vector

subspace of HomK(V,W ) and is denoted L(V,W ).

Proposition 2.2. L(V,W ) is a normed K-vector space with respect to the operator norm

‖ f‖ := sup
{
‖ f (v)‖2

‖v‖1
: v ∈V \{0}

}

Additionally, if W is a Banach space then so is L(V,W ).

Remark 2.6. If (V,‖‖) is a K-Banach space such that ‖V‖ ⊆ |K| then the operator norm on

L(V,W ) is given by

‖ f‖= sup
‖v‖=1

‖ f (v)‖W

Given any K-normed space V it follows from the above discussion that the vector space

V ′ := L(V,K) endowed with the operator norm is a Banach space (since K is complete and thus a

Banach space with norm | |), called the dual Banach space to V . It is not obvious a priori that

there exist any nonzero continuous linear forms on V . Fortunately over spherically complete
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fields one can use the Hahn-Banach theorem to construct nonzero continuous linear forms and so

the dual of a (nonzero) Banach space is always nonzero.

Theorem 2.1 (Hahn-Banach). Let K be a spherically complete field, (U,‖‖) a normed K-vector

space and U0 ⊆U a vector subspace. Given any linear form l0 : U0 −→ K such that |l0(v)| ≤ ‖v‖

for all v ∈U0, there exists a linear form l : U −→ K such that l|U0 = l0 and |l(v)| ≤ ‖v‖ for all

v ∈U.

For two locally convex vector spaces V and W there is a general procedure to endow the

vector space L(V,W ) with various locally convex topologies. Let B be a fixed family of bounded

subsets of V . For a given B ∈ B and open lattice M ⊆W the set

L(B,M) := { f ∈ L(V,W ) : f (B)⊆W}

is a lattice in L(V,W ) and the family of lattices

{L(B,M) : B ∈ B, M ⊆W open lattice}

defines a locally convex topology on L(V,W ). We let LB(V,W ) denote the associated locally

convex vector space.

There are two common topologies that are put on V ′ corresponding to different choices

for the set B:

1. The locally convex topology induced by B = {all one point subsets of V} is called the

weak topology. V ′ endowed with the weak topology is called the weak dual of V and is

denoted V ′s .

2. The locally convex topology induced by B = {all bounded subsets of V} is called the

strong topology. V ′ endowed with the strong topology is called the strong dual of V and is

denoted V ′b.
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Remark 2.7. The topology on V ′b is equivalent to one defined by the operator norm.

As a consequence of Remark 2.7 (at least for Banach spaces) the strong dual is the more

interesting of the two and one may hope that the duality map

δ : V −→ (V ′b)
′
b

v 7−→ δv(l) := l(v)
(2.2)

extends to an endofunctor on some category of Banach spaces. The duality map δ is always a

topological isomorphism onto its image. This motivates the following definition.

Definition 2.12. A Banach space is called reflexive if the duality map δ is a topological isomor-

phism

One could completely recover a reflexive Banach space V from its strong dual V ′b. Unfor-

tunately the situation for infinite dimensional K-Banach spaces is a little more complicated.

Proposition 2.3. Suppose that K is spherically complete and that V is a K-Banach space; then

V is reflexive if and only if V is finite dimensional.

Proof. [19, Prop 11.1]

So over spherically complete fields K, infinite dimensional K-Banach spaces are never

reflexive. As disappointing as this result is, there are two ways in which the situation can be

salvaged.

Firstly we can drop the insistence on V being a Banach space and instead consider locally

convex vector spaces of compact type. These are vector spaces V that are (locally convex)

inductive limits of Banach spaces Vn

V = lim−→
n

Vn

with transition maps in : Vn −→Vn+1 that are both injective and compact (in is called compact if

there exists an open lattice U ⊆Vn such that in(U) is compact in Vn+1).
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Despite the additional complexity inherent in their definition, vector spaces of compact

type have a well behaved duality theory, in particular both V and its strong dual V ′b are reflexive.

Moreover the strong dual V ′b is the (topological) projective limit of (Vn)
′
b

V ′b = lim←−
n
(Vn)

′
b

A countable projective limit of Banach spaces is complete, but will not in general have a topology

defined by a single norm, but rather a countable number of seminorms. Such locally convex vector

spaces are called Fréchet spaces and the Fréchet spaces that occur as strong duals of vector spaces

of compact type can be characterized by the property of being nuclear (a complicated finiteness

condition [19, Ch. IV]). The following proposition summarizes the above as an equivalence of

categories.

Proposition 2.4. The functor V 7−→ V ′b is an anti-equivalence between the category of vector

spaces of compact type and the category of nuclear Fréchet spaces.

The second way one may get around the lack of reflexivity for infinite dimensional

Banach spaces is to consider a different functor in place of the strong dual (−)′b. In particular by

restricting to the unit ball ((E)′b)
◦ ⊆ (E)′b and endowing the resulting O-module with the topology

of pointwise convergence we induce an anti-equivalence of categories

Ban(K)−→Mod f l
cpt(O)

E 7−→ (E ′b)
◦ with pointwise topology

between the categories of K-Banach spaces and flat, compact, and linearly topological modules

over O (Schikhof [18]). Schneider and Teitelbaum extend this result to an anti-equivalence

between K-Banach space representations of G and Iwasawa G-modules ([21]). These results are

central in what follows and so we postpone their discussion until Section 4.3.
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Chapter 3

K-Banach spaces and the unit ball functor

In this chapter we introduce an important category of K-Banach spaces E satisfying

‖E‖ ⊆ |K|, that have norm-decreasing continuous linear maps as morphisms. Denoting this

category by Ban(K)≤1, we prove that the functor

(−)◦ : (E,‖‖) 7−→ {e ∈ E : ‖e‖ ≤ 1}=: E◦

induces an equivalence of categories between Ban(K)≤1 and the category of ϖ-adically complete,

separated, and torsion-free O-modules. Going further, we define a tensor product in each category

in such a way that it is compatible with this equivalence.

3.1 Two categories of Banach spaces

Our natural starting point is Ban(K), the category of K-Banach spaces with continuous

linear maps as morphisms. As we mentioned in Remark 2.2 we do not consider a specified norm

to be part of the structure of a given Banach space in Ban(K), so we typically denote these objects

by E.

Closely related to Ban(K) is the category Ban(K)≤1 of K-Banach spaces (E,‖‖) that
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satisfy ‖E‖ ⊆ |K|, with norm decreasing linear maps as morphisms. The objects in this category

do come equipped with a specified norm and have an important structural result ([19, 10.2]).

Proposition 3.1. Every K-Banach space (E,‖‖) such that ‖E‖ ⊆ |K| is isometrically isomorphic

to a K-Banach space (c0(X),‖‖∞) for some set X.

Given an object (E,‖‖) in Ban(K)≤1 we can simply forget the specified norm to define a

functor
forget : Ban(K)≤1 −→ Ban(K)

(E,‖‖) 7−→ E
(3.1)

On the other hand let E be an object in Ban(K) and pick a ‖‖ norm that defines its topology. We

can construct another norm ‖‖′ on E in the following way

‖e‖′ := inf{r ∈ |K| : r ≥ ‖e‖}

that satisfies ‖E‖′ ⊆ |K| and is equivalent to ‖‖ since |ϖ| ≤ ‖v‖/‖v‖′ ≤ 1.

The main difference between these two categories is in their morphism sets between

objects. For any two Banach spaces E and F , the set of morphisms in Ban(K), which we denote

by L(E,F), has the structure of a K-vector space. In fact, as we discussed in chapter 2, endowed

with the operator norm ‖‖ L(E,F) is itself a K-Banach space.

It is immediate from the definitions that a continuous linear map f : E −→ F is norm

decreasing if and only if ‖ f‖ ≤ 1. This means that the norm decreasing linear maps are in the unit

ball { f ∈ L(E,F) : ‖ f‖ ≤ 1}. Since ‖λ f‖= |λ| · ‖ f‖ this is an O-module, but if we tensor with

Q we can recover L(E,F). To summarize, the functor (3.1) induces an equivalence of categories:

(Ban(K)≤1)Q
∼−→ Ban(K)

between Ban(K) and Ban(K)≤1 localized at Q (cf. Definition A.2).
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As a consequence we will always be able to recover the full category of K-Banach spaces

whenever necessary and otherwise we will mostly work in the category Ban(K)≤1.

3.2 An equivalence between Ban(K)≤1 and Modϖ−cts(O) f l

As mentioned in the introduction, one of the essential ingredients in the proof of the main

recovery theorem is an anti-equivalence of categories

BanG(K)
∼−→Mod f l

cpt(Λ(G))

between K-Banach space representations of G and Iwasawa G-modules (flat, compact, and

linearly topological O-modules with a continuous action of the completed group ring Λ(G), see

section 5.1).

This can be interpreted as factoring through an intermediate category introduced by Emer-

ton ([10]), denoted Modϖ−cts
G (O) f l , and consisting of flat, ϖ-adically continuous representations

of G over O (also defined in section 5.1). The unit ball of any K-Banach space representation is

an object in this category, in fact the unit ball functor induces an equivalence of categories

(−)◦ : BanG(K)
∼−→Modϖ−cts

G (O) f l

In the absence of a G-action the corresponding anti-equivalence

(−)◦ : Ban(K)
∼−→Modϖ−cts(O) f l

is between K-Banach spaces and a category which we denote (in order to match Emerton’s

notation for Modϖ−cts
G (O) f l) by Modϖ−cts(O) f l .

Definition 3.1. Modϖ−cts(O) f l is the category of flat ϖ-adically complete and separated O-
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modules with O-linear maps as morphisms (automatically continuous).

We can interpret the objects V in Modϖ−cts(O) f l as flat O-modules such that

V = lim←−
n

V/ϖ
nV

In fact here flat just means torsion-free.

Lemma 3.1. Over any principal ideal domain a module is flat if and only if it is torsion-free.

Proof. [1, I §2.4 Prop. 3(ii)]

We will prove shortly that the unit ball functor induces an equivalence of categories

between Ban(K)≤1 and Modϖ−cts(O) f l , with quasi-inverse given by extension of scalars:

(−)K : Modϖ−cts(O) f l ∼−→ Ban(K)

V 7−→VK :=V ⊗O K

The following lemma is useful in relating morphisms between the two categories.

Lemma 3.2. Given (E,‖‖E), (F,‖‖F) in Ban(K)≤1, a continuous linear map f : E −→ F is

norm decreasing if and only if f (E◦)⊆ F◦, where E◦ (resp. F◦) is the unit ball in E (resp. F).

Proof. The only if direction is obvious. For the converse implication suppose f (E◦)⊆ F◦ but f is

not norm decreasing. This means there exists e0 ∈ E such that ‖ f (e0)‖F > ‖e0‖E . Clearly ‖e0‖

must be nonzero so we can find some λe0 ∈ K such that ‖λe0 · e0‖E = 1 (here we use ‖E‖ ⊆ |K|).

Then f (λe0 · e0) ∈ F◦ and in particular we have:

‖ f (λe0 · e0)‖F = ‖λe0 · f (e0)‖F

= |λe0| · ‖ f (e0)‖F ≤ 1
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So:

‖e0‖E < ‖ f (e0)‖F ≤ |λe0 |
−1 =⇒ |λe0 | · ‖e0‖E = ‖λe0 · e0‖E < 1

Lemma 3.3. (−)◦ and (−)K are quasi-inverse functors and induce an equivalence of categories:

Ban(K)≤1 ∼−→Modϖ−cts(O) f l

Proof. Given (E,‖‖E) in Ban(K)≤1 the unit ball E◦ = {e ∈ E : ‖e‖E ≤ 1} is a torsion free O-

module with a topology induced from E. Since ‖E‖ ⊆ |K|= qZ∪{0} we can see that {ϖnE◦}n≥0

is a fundamental system of open neighborhoods of 0 in E◦. Since E◦ is a closed subset of E

(ϖ-adically complete and separated) it is also ϖ-adically complete and separated, and so is an

object in Modϖ−cts(O) f l . By Lemma 3.2 the unit ball functor acts on morphisms by restricting

its domain to the unit ball.

Given an object V in Modϖ−cts(O) f l we can tensor with K to get the vector space

VK := V ⊗O K. Since V is flat, V ⊗O O −→ V ⊗O K is injective and we view V = V ⊗O O as

sitting injectively in VK as a lattice (in fact as the unit ball).

Since V is ϖ-adically separated, the induced gauge (cf. Definition 2.11) pV is a norm on

VK with respect to which (V, pV ) is a Banach space. Rewriting pV as ‖‖V , we explicitly verify

that ‖VK‖V ⊆ |K|. Given x in VK

‖x‖V := q−max{n:x∈ϖnV} ∈ |K|

Regarding morphisms, if f : V −→W is a morphism in Modϖ−cts(O) f l , then we define fK by:

fK(v⊗ x) := f (v)⊗ x
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Extending by linearity we get a morphism fK : VK −→VK that maps (VK)
◦ into (WK)

◦ and thus

by Lemma 3.2 must be norm decreasing.

Finally we note that for any V in Modϖ−cts(O) f l and E in Ban(K)≤1 we have the following

natural isomorphisms

V ∼= (VK)
◦ and E ∼= (E◦)K

Thus (−)◦ and (−)K are quasi-inverse functors that induce an equivalence of categories

Ban(K)≤1 ∼−→Modϖ−cts(O) f l

3.3 Tensor products in Ban(K)≤1 and Modϖ−cts(O) f l

In this section we discuss how to endow the categories Ban(K)≤1 and Modϖ−cts(O) f l

with a tensor product bifunctor. Since taking a naı̈ve tensor product (over K and O respectively)

will not ensure completeness in general we will discuss how to complete the tensor product in

each case.

In nonarchimedean functional analysis there are many ways to define a completed tensor

product for two locally convex vector spaces E and F . The general idea is to take the abstract

tensor product over K, endow the resulting K-vector space E⊗K F with a locally convex topology

(this is the step that has many different constructions), and take the (Hausdorff) completion.

Since we are interested in the case when E and F are K-Banach spaces (hence have a

norm) it is possible to endow the K-vector space E⊗K F with a norm ‖‖E⊗F , then we can define

E⊗̂KF as the completion of E ⊗K F with respect to ‖‖E⊗F . The induced topology is called

the projective tensor product topology, a locally convex topology with an important continuity

property.
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Definition 3.2. The projective tensor product topology on the (abstract) vector space E⊗K F is

the finest locally convex topology such that the canonical map

E×F −→ E⊗K F (3.2)

is jointly continuous (continuous as a map between topological spaces).

We mention another way to characterize the projective tensor product topology that has

the advantage of being explicit about the open sets in E⊗K F . Suppose E (resp. F ) denote the

families of open lattices in E (resp. F) and let U ∈ E and V ∈ F . Applying Lemma 3.1 we can

deduce that the O-modules U , V are flat O-modules, thus U⊗O V −→ E⊗O F is injective. Since

E⊗O F = E⊗K F , U ⊗O V is a lattice in E⊗K F . In particular the family of all such U ⊗O V

generates the projective tensor product topology on E⊗K F .

By contrast, the inductive tensor product topology on E⊗K F is the finest locally convex

topology with respect to which (3.2) is only separably continuous, meaning for any e ∈ E the map

F −→ E⊗K F

f 7−→ e⊗ f

is continuous (similarly we can fix f ∈ F to consider a map E −→ E⊗K F). For general locally

convex spaces the inductive topology is finer than the projective one, but for K-Banach spaces,

(in fact even for Frechét spaces) the two topologies coincide.

Definition 3.3. Let (E, ‖‖E) and (F , ‖‖F ) be two normed vector spaces. The tensor product

norm ‖‖E⊗F on E⊗K F is defined as:

‖u‖E⊗F := inf

{
max
1≤i≤r

‖ei‖E · ‖ fi‖F : u =
r

∑
i=1

ei⊗ fi

}
(3.3)

Remark 3.1. The tensor product norm ‖‖E⊗F has the following properties
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1. ‖‖E⊗F is a norm on E⊗K F if and only if ‖‖E and ‖‖F are norms on E and F .

2. ‖‖E⊗F induces the projective tensor product topology on E⊗K F

3. ‖e⊗ f‖E⊗F = ‖e‖E‖ f‖F

Proof. [19, §17]

Lemma 3.4. Given objects (E, ‖‖E) and (F, ‖‖F ) in the category Ban(K)≤1, the completion

E⊗̂KF of E⊗K F with respect to the norm ‖‖E⊗F is an object in Ban(K)≤1.

Proof. Let ‖‖E⊗F also denote the extension of ‖‖E⊗F to the K-Banach space E⊗̂KF , it only

remains to verify that ‖E⊗̂KF‖E⊗F ⊆ |K|. Since u 6= 0 and |K| is discrete it will suffice to prove

that ‖E ⊗K F‖E⊗F ⊆ |K|. Let u be in E ⊗K F , by the discreteness of K we attain a minimal

expression u = ∑
r
i=1 ei⊗ fi and hence

‖u‖E⊗F = max
1≤i≤r

‖ei‖E · ‖ fi‖F ∈ |K×|

Defining a completed tensor product of two objects V , W in Modϖ−cts(O) f l is a lot more

straightforward. The tensor product over O may not be (ϖ-adically) complete so define the

completed tensor product as the ϖ-adic completion

V ⊗̂OW := lim←−
n

(
V ⊗O W

ϖn(V ⊗O W )

)

endowed with the induced topology this is an object in Modϖ−cts(O) f l

Lemma 3.5. Given objects V , W in the category Modϖ−cts(O) f l , the ϖ-adic completion V ⊗̂OW

of V ⊗O W is an object in Modϖ−cts(O) f l .
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Proof. Since O is ϖ-adically complete the ϖ-adic completion V ⊗̂OW is an O-module. By

construction this is ϖ-adically complete and separated. It is easy to see that V ⊗̂OW is O torsion-

free and therefore by Lemma 3.1 V ⊗̂OW is also flat.

3.4 Compatibility for Ban(K)≤1

We need to prove that the defined tensor products are compatible with the unit ball functor

(−)◦, which by Lemma 3.3 induces an equivalence of categories.

Theorem 3.1. For any objects (E,‖‖E), (F,‖‖F) in Ban(K)≤1

(E⊗̂KF)
◦ ∼= E◦⊗̂OF◦

is a natural isomorphism in Modϖ−cts(O) f l .

First we establish some intermediate results

Lemma 3.6. For any objects (E,‖‖E), (F,‖‖F) in Ban(K)≤1

E◦⊗O F◦ ∼= (E⊗K F)◦

is a (natural) topological isomorphism of O-modules.

Proof. Begin by observing that the map E◦⊗O F◦ −→ E ⊗K F (induced by the identity map

E◦⊗O F◦ −→ E⊗O F) is injective and its image is in the unit ball of E⊗K F with respect to the

tensor product norm. This induces an injective O-module homomorphism:

Id : E◦⊗O F◦ −→ (E⊗K F)◦
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To prove surjectivity pick a nonzero x in (E⊗K F)◦. Since ‖x‖ 6= 0 and |K| is discrete, we can

attain the infimum:

‖x‖E⊗F = min

{
max
1≤i≤r

‖ei‖E · ‖ fi‖F : x =
r

∑
i=1

ei⊗K fi

}

Let x = ∑
r
i=1 ei⊗K fi be a minimal expression and rewrite it as:

x =
r

∑
i=1

ϖ
−miei⊗K ϖ

mi fi

where the integers mi are chosen such that ‖ϖ−miei‖E = |ϖ−mi|‖ei‖E = qmi‖ei‖E = 1 for all i.

Then:

‖x‖E⊗F = max
1≤i≤r

‖ei‖E · ‖ fi‖F = max
1≤i≤r

q−mi · ‖ fi‖F = max
1≤i≤r

‖ϖmi fi‖F

Since ‖x‖E⊗F ≤ 1 we deduce that ‖ϖmi fi‖F ≤ 1 for all i, therefore ∑i ϖ−miei⊗O ϖmi fi is in

E◦⊗O F◦ and

Id

(
∑

i
ϖ
−miei⊗O ϖ

mi fi

)
= ∑

i
ϖ
−miei⊗K ϖ

mi fi = x

Thus Id is an isomorphism.

To see that Id is continuous it suffices to note that any O-linear map between modules

endowed with the ϖ-adic topology is continuous.

3.4.1 Proving Theorem 3.1

Proof. (Theorem 3.1)

Let Id be as in Lemma 3.6. We have the following commutative diagram:
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E◦⊗̂OF◦ (E⊗̂KF)
◦

E◦⊗O F◦ (E⊗K F)◦

Id∗

ι1 ι2

Id

where ι1, ι2 are injective and the bottom row O-modules are dense in the top row.

We need to first define a map E◦⊗̂OF◦ −→ (E⊗̂KF)
◦. One way to do so is to use the

universal property of the completion E◦⊗̂OF◦. Compose ι2 ◦ Id to get a continuous, injective

homomorphism µ : E◦⊗O F◦ −→ (E⊗̂KF)
◦ into the ϖ-adically complete (E⊗̂KF)

◦ which must

factor through the ϖ-adic completion of E◦⊗O F◦. This defines Id∗ as above.

Let x be in ker(Id∗), then (since ι1 is dense) there is a sequence {xn} in E◦⊗O F◦ such

that ι1(xn)−→ x in the completion E◦⊗̂OF◦. {µ(xn)} is a sequence in (E⊗̂KF)
◦ and must have

a limit by completeness. By the continuity of µ we have limn µ(xn) = µ(limn xn) and since the

diagram commutes we must have µ(x) = 0 hence (since µ is injective) x = 0.

Let y be in (E⊗̂KF)
◦, then there is a sequence {yn} in (E⊗K F)◦ such that ι2(yn)−→ y

in (E⊗̂KF)
◦. Since Id is an isomorphism xn := Id−1(yn) is a Cauchy sequence in E◦⊗O F◦, by

completeness ι1(xn)−→ x ∈ E◦⊗̂OF◦. Since the diagram is commutative we have Id∗(x) = y.

Since Id∗ is a bijective O-linear map between two O-modules (with the ϖ-adic topology)

it is an isomorphism in Modϖ−cts(O) f l in this way we see that (−)◦ is indeed a tensor functor.

From this it is easy to see that so is (−)K is also a tensor functor. Indeed given V , W in

Modϖ−cts(O) f l we know that V ∼= (VK)
◦ and W ∼= (WK)

◦. We calculate:

(V ⊗̂OW )K ∼= ((VK)
◦⊗̂O(WK)

◦)K ∼=
Thm 3.1

((VK⊗̂KWK)
◦)K ∼=VK⊗̂KWK
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Chapter 4

The Category Mod f l
cpt(O)

In this chapter we introduce a special category Mod f l
cpt(O) of topological O-modules that

is anti-equivalent to the category Modϖ−cts(O) f l from Chapter 3. We define a tensor product in

Mod f l
cpt(O) and prove a compatibility result (as we did for Ban(K)≤1 with Theorem 3.1).

Definition 4.1. A topological O-module M is called linear-topological if it has a fundamental

system of open neighborhoods of 0 by O-submodules.

Mod f l
cpt(O) will denote the category of flat, compact and linearly topological O-modules,

with continuous O-linear maps as morphisms.

Lemma 4.1. A compact linear-topological O-module M is flat if and only if M ∼= ∏i∈I O as

topological O-modules for some set I

Proof. [8, Exp. VIIB (0.3.8)]

Remark 4.1. As a consequence of Lemma 4.1 we can think of an object M in Mod f l
cpt(O) as

a (topological) direct product ∏i∈I O over some set I, with each O endowed with the ϖ-adic

topology.
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4.1 The completed group algebra Λ(G)

A profinite group G can be defined in two equivalent ways. Firstly as an inverse limit

of discrete finite groups G = lim←−Gi endowed with its profinite topology (with respect to which

the canonical projection maps pi : G −→ Gi are always continuous). In this way G becomes

a compact, Hausdorff and totally disconnected topological group. On the other hand given a

compact, Hausdorff and totally disconnected topological group we recover the inverse limit

definition since

G∼= lim←−
N∈N (G)

G/N

where N (G) denotes the set of open normal subgroups of G.

The inverse system of finite quotient groups G/N as above extends to a inverse system of

group rings O[G/N]. The inverse limit of group rings O[G/N] is called the completed group ring

of G (over O).

Definition 4.2. The completed group ring (or Iwasawa algebra) of G over O is the inverse limit:

O[[G]] := lim←−
N∈N (G)

O[G/N] (4.1)

(we will mostly denote O[[G]] by Λ(G))

Completed group rings generalize the concept of group rings to profinite groups, in partic-

ular if G is finite we have Λ(G) = O[G]. For every open normal subgroup N the corresponding

group ring O[G/N] is finitely generated and free over the profinite ring O and so are themselves

profinite in their induced ϖ-adic topology. Endowed with the inverse limit topology we see that

Λ(G) is itself a profinite ring and can be written as an inverse limit of finite rings:

Λ(G) = lim←−
N

lim←−
n
(O/ϖ

nO) [G/N] (4.2)
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The canonical map O[G] −→ lim←−N
O[G/N] is injective so we view O[G] as a subring

of Λ(G), moreover the natural profinite topology on O[G] has a fundamental system of open

neighborhoods of 0 (indexed by N and n):

ker(O[G]−→ (O/ϖ
nO) [G/N])

It follows from (4.2) that Λ(G) is the (Hausdorff) completion of O[G], thus O[G] is dense in

Λ(G). Λ(G) is O torsion-free and linearly topological with the O-submodules

IN := ker(Λ(G)−→ O[G/N]) (4.3)

forming a fundamental system of open neighborhoods of 0. In particular Λ(G) is an object in

Mod f l
cpt(O).

Proposition 4.1. Let M be any complete, Hausdorff and linearly topological O-module. Given

any continuous map f : G −→M there is a unique continuous O-module homomorphism fΛ :

Λ(G)−→M such that fΛ|G = f

Proof. [20, Prop 19.2]

For all but the simplest examples the Iwasawa algebra Λ(G) has a very complex structure.

Example 4.1. Λ(Zp) is topologically isomorphic to a power series ring in one variable over O.

More generally we have:

O[[X1, · · · ,Xd]]∼= Λ(Zd
p)

Xi 7−→ gi−1

where gi = (· · · ,0,1,0, · · ·) are the standard topological generators for Zd
p.

We collect some of the known properties of Λ(G)
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1. The map g 7−→ g−1 on G lets us identify Λ(G) and its opposite ring Λ(G)op (the same ring

with multiplication reversed). In practice this means we can assume that all Λ(G)-modules

have a left action.

2. G is contained in O[G]× and therefore in Λ(G)×. The inclusion map G ↪→ Λ(G) is a

homeomorphism onto its image ([20, Lemma 19.1]).

3. When G is a compact p-adic Lie group Λ(G) is Noetherian ([20, Thm 33.4]).

4. When G is pro-p group (an inverse limit of finite p-groups) Λ(G) is a local ring with

maximal ideal ker(Λ(G)−→ O/ϖO) ([20, Prop 19.7]).

4.2 A tensor product in Mod f l
cpt(O)

The definition of a tensor product ⊗ in this category is motivated by a desire for an

isomorphism of completed group rings

Λ(G×H)∼= Λ(G)⊗Λ(H) (4.4)

The isomorphism (4.4), combined with an O-algebra map induced by the diagonal map on G

will let us endow Λ(G) with a ⊗-coalgebra structure c : Λ(G)−→ Λ(G)⊗Λ(G). This coalgebra

structure is essential to the proof of the main recovery theorem.

The following was introduced by Brumer in [4] to define a tensor product for pseudocom-

pact modules (over pseudocompact rings). We have no need for that level of generality but the

construction is useful here.

Definition 4.3. Let M and N be linearly topological O-modules, the completed tensor product

over O is the inverse limit

M⊗̂ON := lim←−
M′,N′

M/M′⊗O N/N′ (4.5)
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taken over the open submodules M′ and N′ of M and N respectively. We endow the finite O-

modules M/M′⊗O N/N′ with the discrete topology and M⊗̂ON with the inverse limit topology.

Lemma 4.2. Let G and H be profinite groups, there is a (topological) isomorphism of O-modules

Λ(G×H)∼= Λ(G)⊗̂OΛ(H) (4.6)

Proof. By definition

Λ(G×H) := lim←−
N

O [(G×H)/N] = lim←−
N1,N2

O [G/N1×H/N2]

The first inverse limit is taken over the open normal subgroups of G×H, which we rewrite

as N1×N2 where N1CG and N2CH. Since G and H are profinite, the quotients G/N1 and H/N2

are finite and so we have a (continuous) isomorphism between the finitely generated O-modules

(each with the induced ϖ-adic topology):

O [G/N1×H/N2]∼= O [G/N1]⊗O O [H/N2] (4.7)

Passing to the projective limit gives the (continuous) isomorphism:

Λ(G×H)∼= lim←−
N1,N2

(O [G/N1]⊗O O [H/N2])

By construction (4.3) for any open subgroup N CG we have an open O-submodule IN in Λ(G)

such that O[G/N]∼= Λ(G)/IN . In particular

Λ(G×G)∼= lim←−
N1,N2

(Λ(G)/IN1⊗Λ(G)/IN2) =: Λ(G)⊗̂OΛ(G)
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Lemma 4.3. Given objects M, N in Mod f l
cpt(O), the completed tensor product M⊗̂ON is an object

in Mod f l
cpt(O)

Proof. By Remark 4.1 we may suppose

M ∼= ∏
I

O and N ∼= ∏
J

O

for some sets I and J. By the construction of the topology on ∏I O we know that the open

submodules of M all have the following form:

∏
s∈S

ϖ
nsO×∏

I\S
O

where S is a finite set and ns is some non-negative integer. By taking n = max(ns) we can see that

Un,S := ∏
s∈S

ϖ
nO×∏

I\S
O ⊆∏

s∈S
ϖ

nsO×∏
I\S

O

In particular open sets of the type Un,S form a cofinal subset of all open sets in M ordered by

reverse inclusion, thus it will suffice to take the inverse limit over these simpler open subsets.

We calculate:
M⊗̂ON := lim←−

M′,N′
M/M′⊗O N/N′

= lim←−(O/ϖ
nO)S⊗O (O/ϖ

mO)T

∼= lim←−(O/ϖ
nO⊗O O/ϖ

mO)S×T

Assuming without loss of generality that n≥ m we get

M⊗̂ON ∼= lim←−(O/ϖ
nO)S×T ∼= OI×J

O is compact and thus by Tychonoff’s Theorem, so is OI×J . It is easy to see that
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∏ϖnO×∏O form a fundamental system of neighborhoods of 0 in OI×J and finally, applying

Remark 4.1 we see that M⊗̂ON is flat.

4.3 Schikhof duality of topological O-modules

As we discussed at the end of chapter 2 one of the technical challenges in the theory of

Banach spaces is the lack of a reflexive property that would allow us to move freely between a

Banach space and its dual space. Nevertheless (as mentioned in section 2.3) there is a workable

alternative.

In the 1990s Schikhof proved there is an anti-equivalence of categories between norm-

polar Banach spaces (normed spaces E over discretely valued fields K are norm-polar if and only

if ‖E‖ ⊆ |K|) and certain kinds of compactoid spaces (a generalization of compact sets to locally

convex vector spaces). Specializing to our particular situation this the anti-equivalence between

Ban(K)≤1 and Mod f l
cpt(O) in [21, Thm 1.2].

The anti-equivalence depends on a compactness result:

Theorem 4.1 (Alaoglu’s Theorem). Let E be a K-Banach space, the unit ball of the dual space

E ′ is compact when endowed with the weak topology.

Let (E,‖‖) be a Banach space in Ban(K)≤1 and in keeping with notation from [21] for

the time being let Ed denote the unit ball of the dual space E ′ endowed with the topology of

pointwise convergence. This is flat, compact (by Theorem 4.1) and linearly topological O-module.

Moreover Ed can be written more suggestively as:

Ed = HomO(E◦,O)

Here E◦ is the unit ball in (E,‖‖). This defines a functor E 7−→ Ed between Ban(K)≤1 and
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Mod f l
cpt(O) that factors through the category Modϖ−cts(O) f l:

(E,‖‖) 7−→ E◦ 7−→ HomO(E◦,O)

On the other hand to any flat, compact and linearly topological O-module M we can

associate the Banach space:

Md := Homcts
O (M,K)

endowed with the norm ‖l‖ := maxm∈M |l(m)|. One can check that maps in the image of this

functor are naturally norm-decreasing (in fact f d : Nd −→ Md is an isometry if and only if

f : M −→ N is surjective), so M 7−→Md defines a functor between Mod f l
cpt(O) and Ban(K)≤1.

The unit ball in Md with respect to its given norm is the O-module Homcts
O (M,O), this again is an

element of Modϖ−cts(O) f l and we can recover Homcts
O (M,K) by tensoring with K (cf. section

3.2). In this way we view the functor M 7−→Md also naturally factoring through Modϖ−cts(O) f l

as:

M 7−→ Homcts
O (M,O) 7−→ Homcts

O (M,O)⊗O K

We will refer to the contravariant functor Homcts
O (−,O) as the Schikhof dual functor and

we will denote it by (−)d . In light of the equivalence between Ban(K)≤1 and Modϖ−cts(O) f l

the real content of [21, Thm 1.2] is the anti-equivalence of categories induced by (−)d (in our

notation):

Theorem 4.2 (Schikhof). The functors V 7−→V d := HomO(V,O) (equipped with the topology

of pointwise convergence) and M 7−→ Md := Homcts
O (M,O) are quasi-inverse and induce an

anti-equivalence of categories between Modϖ−cts(O) f l and Mod f l
cpt(O).
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4.4 Compatibility for Mod f l
cpt(O)

In this section we prove that the tensor product we have defined in Mod f l
cpt(O) is compati-

ble with the Schikhof duality functor.

Theorem 4.3. For any objects M, N in Mod f l
cpt(O)

(M⊗̂ON)d ∼= Md⊗̂ONd

is a natural isomorphism in Modϖ−cts(O) f l .

First we establish some intermediate results.

Lemma 4.4. There is a topological isomorphism of O-modules

Φ : Homcts
O (M⊗̂ON,O)−→ lim←−

n
Homcts

O (M⊗̂ON,O/ϖ
nO)

with the ϖ-adic topology on Homcts
O (M⊗̂ON,O), discrete topology on Homcts

O (M⊗̂ON,O/ϖnO).

Proof. The isomorphism Φ is induced by the universal property of inverse limits. First we define

Φn : Homcts
O (M⊗̂ON,O)−→ Homcts

O (M⊗̂ON,O/ϖ
nO)

Let λ∈Homcts
O (M⊗̂ON,O), then Φn(λ)= λn is defined as the composition of λ with the canonical

projection map O −→O/ϖnO. For each n notice that the kernel ker(Φn) =ϖnHomcts
O (M⊗̂ON,O)

is open, thus each Φn is continuous and the maps Φn induce a continuous homomorphism

Φ : Homcts
O (M⊗̂ON,O)−→ lim←−

n
Homcts

O (M⊗̂ON,O/ϖ
nO)

λ−→ (λn)
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For injectivity, suppose Φ(λ) = 0. Then we must have λn = 0 for all n, hence λ =

0. On the other hand, given (λn) ∈ lim←−Homcts
O (M⊗̂ON,O/ϖnO) we can define λ = lim←−λn ∈

Homcts
O (M⊗̂ON,O) by:

(
lim←−λn

)
(x) = (λn(x)n) ∈ lim←−O/ω

nO = O

Then Φ(λ) = (λn).

Lemma 4.5. There is a topological isomorphism of O-modules

Ψ : lim−→
M′,N′

HomO

(
M
M′
⊗ N

N′
,O/ϖ

nO
)
−→ Homcts

O (M⊗̂ON,O/ϖ
nO)

with the discrete topology on Homcts
O (M⊗̂ON,O/ϖnO) and HomO

( M
M′ ⊗

N
N′ ,O/ϖnO

)
Proof. The isomorphism Ψ is induced by the universal property of direct limits. First we define:

ΨM′N′ : HomO

(
M
M′
⊗ N

N′
,O/ϖ

nO
)
−→ Homcts

O (M⊗̂ON,O/ϖ
nO)

Let µ ∈ HomO
( M

M′ ⊗
N
N′ ,O/ϖnO

)
and define

ΨM′N′(µ) := µM′N′ = µ◦ prM′N′ ∈ Homcts
O (M⊗̂ON,O/ϖ

nO)

where pM′N′ are the (continuous) projections pM′N′ : M⊗̂ON −→ M
M′ ⊗

N
N′ . The O-modules

HomO
( M

M′ ⊗
N
N′ ,O/ϖnO

)
are all discrete, thus each ΨM′N′ is continuous and the maps ΨM′N′

induce the continuous O-module homomorphism:

Ψ : lim−→
M′,N′

HomO

(
M
M′
⊗ N

N′
,O/ϖ

nO
)
−→ Homcts

O (M⊗̂ON,O/ϖ
nO)

For injectivity suppose Ψ(µ) = 0. By the definition of direct limits there exists M′, N′ such that
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µ ∈ HomO
( M

M′ ⊗
N
N′ ,O/ϖnO

)
with ΨM′N′(µ) = prM′N′ ◦ µ = 0, so we must have im(prM′N′) ⊆

ker(µ). Since each prM′N′ is surjective ker(µ) = M
M′ ⊗

N
N′ , hence µ = 0.

To prove surjectivity let ν ∈ Homcts
O (M⊗̂ON,O/ϖnO). Since O/ϖnO is a discrete O-

module and ν is continuous, ν−1(0) = ker(ν) is open in M⊗̂ON. By construction M⊗̂ON has a

fundamental system of open neighborhoods of 0 by:

ker
(

M⊗̂ON −→ M
M′
⊗ N

N′

)

Thus there is a pair M′, N′ such that ker(prM′N′) ⊆ ker(ν). In particular ν must factor through

M
M′ ⊗

N
N′ which defines a map µM′N′ : M

M′ ⊗
N
N′ −→ O/ϖnO

M
M′ ⊗

N
N′ O/ϖnO

M⊗̂ON

µM′N′

prM′N′
ν

Then Ψ(µM′N′) = ν

4.4.1 Proving Theorem 4.3

Proof. Our aim is to prove

(M⊗̂ON)d ∼= Md⊗̂ONd

is an isomorphism in Modϖ−cts(O) f l . We remind the reader that the tensor product in (M⊗̂ON)d

is taken in Mod f l
cpt(O) and so is completed over the open O-modules of M and N, whereas the

tensor product in Md⊗̂ONd is taken in Modϖ−cts(O) f l and is completed ϖ-adically. It should be

clear from the context which tensor product is being used.

(M⊗̂ON)d is by definition the O-module Homcts
O (M⊗̂ON,O). We will use a sequence

of isomorphisms to reduce this to a finite problem which can be easily solved. We begin by

46



exploiting the ϖ-adic completeness of O and using Lemma 4.4:

Homcts
O (M⊗̂ON,O)∼= lim←−

n
Homcts

O (M⊗̂ON,O/ϖ
nO) (4.8)

Next we want to take advantage of the finite quotients M
M′ ⊗

N
N′ , so we use Lemma 4.5 to get:

Homcts
O (M⊗̂ON,O/ϖ

nO)∼= lim−→
M′,N′

HomO

(
M
M′
⊗ N

N′
,O/ϖ

nO
)

(4.9)

Since M
M′ ⊗

N
N′ is discrete, homomorphisms are automatially continuous. Fix M′ ∼=

(ϖsO)S×OI\S and N′ ∼= (ϖtO)T ×OJ\T and assume s≥ t, then:

HomO

(
M
M′
⊗ N

N′
,O/ϖ

nO
)
∼=

⊕
S×T

HomO (O/ϖ
sO,O/ϖ

nO)

∼= HomO

(
M
M′

,O/ϖ
nO
)
⊗O HomO

(
N
N′

,O/ϖ
nO
)

Direct products commute with tensor products, thus we can split the (double) direct product in

(4.9) as a tensor product of direct limits:

lim−→
M′,N′

HomO

(
M
M′
⊗ N

N′
,O/ϖ

nO
)

∼= lim−→
M′,N′

(
HomO

(
M
M′

,O/ϖ
nO
)
⊗O HomO

(
N
N′

,O/ϖ
nO
))

∼= lim−→
M′

HomO

(
M
M′

,O/ϖ
nO
)
⊗O lim−→

N′
HomO

(
N
N′

,O/ϖ
nO
)

Reapplying Lemma 4.5 we get rid of the direct limits above:

∼= Homcts
O (M,O/ϖ

nO)⊗O Homcts
O (N,O/ϖ

nO)
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We can rewrite this as

(
Homcts

O (M,O)⊗O Homcts
O (N,O)

)
⊗O (O/ϖ

nO)

Simplifying the notation and reintroducing the inverse limit from (4.8) finishes the proof:

(M⊗̂ON)d ∼= lim←−
n

(
Md⊗O Nd

)
⊗O (O/ϖ

nO)

∼= lim←−
n

(
Md⊗O Nd)

ϖn
(
Md⊗O Nd

)
=: Md⊗̂ONd
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Chapter 5

Extending results to new categories

In this chapter we extend the results of Chapters 3 and 4 to K-Banach spaces and topologi-

cal O-modules that carry an action of a profinite group G. These will be the categories of Banach

space representations BanG(K) and BanG(K)≤1, the category of flat ϖ-adically continuous G

representations Modϖ−cts(O) f l (over O) and the category of Iwasawa G-modules Mod f l
cpt(Λ(G))

(over O).

We will begin by defining the new categories and tensor products. The goal will be to prove{
BanG(K)≤1,⊗̂K

}
,
{

Modϖ−cts
G (O) f l,⊗̂O

}
and

{
Mod f l

cpt(Λ(G)),⊗̂O

}
are tensor categories with

tensor functors:

(−)◦ :
{

BanG(K)≤1,⊗̂K
}
−→

{
Modϖ−cts

G (O) f l,⊗̂O

}
(−)d :

{
Mod f l

cpt(Λ(G)),⊗̂O

}
−→

{
Modϖ−cts

G (O) f l,⊗̂O

}
The main result of this chapter is the generalized compatibility result:

Theorem 5.1. For any (E,‖‖E), (F,‖‖F) in BanG(K)≤1, and any M, N in Mod f l
cpt(Λ(G)), we

have natural isomorphisms:

(E⊗̂KF)
◦ ∼= E◦⊗̂OF◦

(M⊗̂ON)d ∼= Md⊗̂ONd
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in Modϖ−cts
G (O) f l

5.1 The new categories

Definition 5.1. A K-Banach space representation of G is a K-Banach space E together with a

G-action by continuous linear automorphisms such that the map G×E −→ E describing the

action is continuous.

BanG(K) will denote the category of K-Banach space representations of G, with G-

equivariant continuous linear maps as morphisms. Let BanG(K)≤1 denote the category of K-

Banach space representations (E,‖‖) satisfying ‖E‖ ⊆ |K|, with G-equivariant norm-decreasing

linear maps as morphisms.

As in section 3.1 the forgetful functor (that forgets the specified norm for objects (E,‖‖)

in BanG(K)≤1) induces an equivalence of categories:

(BanG(K)≤1)Q
∼−→ BanG(K)

Breuil introduced the concept of a unitary Banach space representation

Definition 5.2. A Banach space representation E of G is called unitary if its topology can be

defined by a G-invariant norm ‖‖, meaning ‖g · x‖= ‖x‖ for any g in G and x in E.

Lemma 5.1. For a compact group G and discretely valued field K the topology of a K-Banach

space representation E of G can be defined by a G-invariant norm ‖‖ satisfying ‖E‖ ⊆ |K|

Proof. Any open O-submodule L in E contains a G-invariant open O-submodule
⋂

g∈G gL.

It is clear that
⋂

g∈G gL is G-invariant and contained in L, so it remains to verify that it is

open. By the continuity of the G-action on E we find an open normal subgroup N CG and open

O-submodule in L′ ⊆ E such that NL′ ⊆ L. Define L′′ :=
⋂

n∈N nL
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NL′ ⊆ L implies that L′ ⊆ nL for every n ∈ N, so L′′ contains L′ and therefore L′′ itself is

open. This means we have:

⋂
g∈G

gL =
⋂

r∈G/N

⋂
n∈N

rnL =
⋂

r∈G/N

rL′′

G is compact so the quotient group G/N is both compact and discrete, therefore finite. It follows

that
⋂

g∈G gL is open and G-invariant in E. By combining with Remark 2.4 we can see that

given any open bounded lattice L⊆ E that defines the topology of E, we can construct an open

(bounded) sublattice L′′ that is also G-invariant. The induced gauge norm ‖‖L′′ is then G-invariant,

satisfies ‖E‖ ⊆ |K| (by construction) and defines the same topology on E.

Example 5.1. Recall that (C(X ,K),‖‖∞) was one of the examples of K-Banach spaces given in

Section 2.2 (provided X is compact). If we let X = G, C(G,K) is the Banach space of bounded

continuous functions f : G−→ K, with norm ‖ f‖∞ := supg∈G | f (g)|. G acts (continuously) on

C(G,K) by left translation

(λ · f )(g) := f (λ−1g)

Thus C(G,K) is a K-Banach space representation.

Emerton introduced and studied the first properties of ϖ-adically continuous

G-representations in [10, §2.4], originally defined over a wider class of rings he denoted Comp(O)

consisting of complete local Noetherian O-algebras with finite residue fields. We make use of his

definitions (with mild simplifications) here.

Definition 5.3. A ϖ-adically continuous G-representation over O is a ϖ-adically complete and

separated O[G]-module V such that the G-action map G×V −→V is continuous (with respect to

the ϖ-adic topology on V ).

Modϖ−cts
G (O) will denote the category of ϖ-adically continuous G-representations, with

G-equivariant O-linear maps as morphisms. The full subcategory of flat (torsion-free by Lemma
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3.1) ϖ-adically continuous G-representations will be denoted by Modϖ−cts
G (O) f l

Example 5.2. C(G,O), the O-module of continuous functions f : G−→ O with a G-action by

left translation is a (flat) ϖ-adically continuous representation of G over O. This is the unit ball in

(C(G,K),‖‖∞).

Following the definition in [21] we define Iwasawa G-modules over O.

Definition 5.4. An Iwasawa G-module over O is an O-module M in Mod f l
cpt(O) together with

a continuous action Λ(G)×M −→M on M such that the induced O-action on M is the given

O-module structure.

Mod f l
cpt(Λ(G)) will denote the category of Iwasawa G-modules over O, with continuous

G-equivariant O-linear maps as morphisms (any such morphism is automatically Λ(G)-linear)

Example 5.3. The compact O-algebra Λ(G) is naturally a Λ(G)-module with its multiplication

structure. In fact one can interpret Λ(G) as the ring of O-valued continuous distributions on G,

i.e.

Λ(G) = HomO(C(G,O),O)

5.2 Tensor products in the new categories

We need to endow each of the new categories with a tensor product structure. For the cat-

egories BanG(K)≤1 and Modϖ−cts
G (O) f l defining a G-action that is compatible with the previous

definitions can be proven to work with little difficulty. Defining a G-action in Mod f l
cpt(Λ(G)) will

be a little more complicated.

5.2.1 A tensor product in BanG(K)≤1

Let (E,‖‖E) and (F,‖‖F) be objects in BanG(K)≤1. The completed tensor product E⊗̂KF ,

defined in section 3.3, is a K-Banach space (by Lemma 3.4), but does not have a G-action. We
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can use the continuous G-action maps on E and F to define a (continuous) G-action on E⊗̂KF ,

by having G acts diagonally in each component.

Since the G-action is continuous on E and F we have

‖g · x‖E ≤ A · ‖x‖E and ‖g · y‖F ≤ B · ‖y‖F

Then:
‖g · (u⊗ v)‖E⊗F = ‖(g ·u)⊗ (g · v)‖E⊗F

= ‖g ·u‖E‖g · v‖F

≤ AB‖u‖E‖v‖F

= AB‖u⊗ v‖E⊗F

There is a constant C > 0 such that ‖g · (u⊗v)‖E⊗F ≤C‖u⊗v‖E⊗F , hence the G-action on E⊗̂F

is continuous.

5.2.2 A tensor product in Modϖ−cts
G (O) f l

Let V , W be objects in Modϖ−cts
G (O) f l , the completed tensor product V ⊗̂OW , defined in

section 3.3 is in Modϖ−cts
G (O) f l (by Lemma 3.5), but does not have a G-action.

Since V ⊗̂OW := lim←−(V ⊗W )/ϖn(V ⊗W ), an element x ∈V ⊗̂OW is a sequence {xn} ∈

∏n(V ⊗W )/ϖn(V ⊗W ) satisfying xn ≡ xn+k (mod ϖn) for all k ∈ N.

Since G acts by continuous linear automorphisms, the G-action commutes with the

O-module structure and hence

xn ≡ xn+k (mod ϖ
n)⇐⇒ g · xn ≡ g · xn+k (mod ϖ

n)

So the G-action is continuous, acting diagonally in each component of the inverse limit V ⊗̂OW .
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5.2.3 A tensor product in Mod f l
cpt(Λ(G))

As we have already seen, the O-module M⊗̂ON is flat, compact and linear topological, this

is the content of Theorem 4.3. It remains to show that we can endow M⊗̂ON with a continuous

Λ(G)-action in way that is compatible with its O-module structure.

The issue is that the open submodules of M and N do not come equipped with a Λ(G)-

module structure (rather they are only assumed to be O-modules), so we cannot naı̈vely en-

dow even the finite quotients M/M′, N/N′ with a (compatible) Λ(G)-action, let alone M⊗̂ON.

Nonetheless, the following result holds.

Theorem 5.2. Given objects M, N in Mod f l
cpt(Λ(G)), the completed tensor product M⊗̂ON is an

object in Mod f l
cpt(Λ(G)).

Remark 5.1. It may be useful at times to consider the G-action on objects M in Mod f l
cpt(Λ(G)),

by this we will mean the continuous action induced by the (continuous) inclusion (cf Section 4.1)

ι : G ↪→ Λ(G)

By abuse of notation we will sometimes write g for the element i(g) ∈ Λ(G), so g ·m should be

understood to mean ι(g) ·m

The proof of Theorem 5.2 will occupy most of this section.

Step 1

As a first step we prove that for each fundamental open O-module M′ in M we can

construct a open submodule M′ ⊆M′ that is G-stable.

Lemma 5.2. Let M be an object in Mod f l
cpt(Λ(G)). Given an open O-submodule M′ ⊆M, there

exists N CG open such that xM′ = M′ for all x ∈ N
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Proof. Let M′ be an open O-submodule of M. By the continuity of the G-action we find an open

normal N in G and an open O-submodule M′′ of M′ such that NM′′ ⊆M′.

Since M′/M′′ ⊆M/M′′ and M/M′′ is finite (M is profinite as an O-module). This lets us

write M′ as a (disjoint) union:

M′ =
k⋃

i=1

(mi +M′′) (5.1)

Fix an index i, by the continuity of the map G×M −→M at (e,mi) we get a subgroup

Ni ⊆ G open (without loss of generality normal and contained in N) such that Ni{mi} ⊆ mi +M′′.

Repeat for all i and define:

N′ :=
k⋂

i=1

Ni

Clearly N′ is open and normal in G, we claim that N′M′ = M′.

Let m′ ∈M′ and n ∈ N′. By (1.2) we can write m′ = mi +m′′, so nm′ = nmi +nm′′. By

construction n ∈ Ni for all i thus nmi ∈ mi +M′′ ⊆M′ and N′ ⊆ N so we have nm′′ ∈ NM′′ ⊆M′.

Thus N′M′ ⊆M′, the reverse inclusion is obvious.

Lemma 5.3. Let M be an object in Mod f l
cpt(Λ(G)). Given an open O-submodule M′ ⊆M, there

exists an open G-stable O-submodule in M′.

Proof. Fix an open O-submodule M′ ⊆M. By Lemma 5.2 we find an open normal submodule N

such that NM′ = M′. Consider the following O-submodule of M′:

M′ :=
⋂

g∈G

gM′

This is obviously G-stable and to see that it is open we can write:

⋂
g∈G

gM′ =
⋂

r∈G/N

⋂
n∈N

rnM′ =
⋂

r∈G/N

⋂
n∈N

rM′ =
⋂

r∈G/N

rM′

Using NM′ = M′ in the second equality.

55



Since G is profinite G/N is finite and so M′ is a finite intersection of open sets, hence

open.

The continuous Λ(G)-action on M induces a continuous G-action on M′. Extending

O-linearly we get an O[G]-action on M′ defined by:

(
∑
g

cgg

)
·m := ∑

g
cg(g ·m)

Since O[G] is dense in Λ(G) (cf section 4.1) the continuous O[G]-action on M′ extends

(uniquely) to a continuous Λ(G)-action. This way we can construct a fundamental system of

open neighborhoods of 0 by Λ(G)-submodules, we summarize this as a lemma.

Lemma 5.4. Any object M in Mod f l
cpt(Λ(G)) has a fundamental system of open neighborhoods

of 0 by Λ(G)-submodules.

Step 2

Now we can use the Λ(G)-action on M′ to define a continuous map Λ(G)×M/M′ −→

M/M (M/M′ is finite with the discrete topology). Writing out M/M′ = {m1, · · · ,mN} for each

index i we can find an open ideal Ii ⊆ Λ(G) that annihilates mi, Ii{mi}= {0}. This lets us define

an open ideal

I :=
k⋂

i=1

Ii

By consttruction I annihilates M/M′. Repeating the above argument N we get an open ideal

J ⊆ Λ(G) that annihilates N/N′. Thus we can define a continuous action map:

Λ/I⊗O Λ/J×M/M′⊗O N/N′ −→M/M′⊗O N/N′

(λ⊗µ,x⊗ y) 7−→ λx⊗µy
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Passing to the projective limit defines a Λ(G)⊗̂OΛ(G)-action on M⊗̂ON. Explicitly this means

Λ(G)⊗̂OΛ(G) acts on each component M/M′⊗N/N′ via the appropriate projection

pIJ : Λ(G)⊗̂OΛ(G)−→ Λ/I⊗O Λ/J

Step 3

Finally we define a ⊗̂O-coalgebra map c : Λ(G)−→ Λ(G)⊗̂OΛ(G) and use it to endow

M⊗̂ON with a Λ(G)-action.

The diagonal map ∆ : G −→ G×G and the canonical injections ι1, ι2 : G −→ G×G

given by ι1(g) = (g,1) and ι2(g) = (1,g) are all continuous group homomorphisms that induce

continuous (injective) O-algebra morphisms ∆∗, ι1∗, ι2∗ : Λ(G) −→ Λ(G×G). We can use ι1∗

and ι2∗ to make the isomorphism (4.6) from Lemma 4.2, which we now call ψ, explicit:

ψ : Λ(G)⊗̂OΛ(G)
∼=−→ Λ(G×G)

λ⊗µ 7−→ ι1∗(λ) · ι2∗(µ)

Define c : Λ(G)−→ Λ(G)⊗̂OΛ(G) as a composition of ∆∗ and ψ−1:

Λ(G) Λ(G×G) Λ(G)⊗̂OΛ(G)
∆∗

c

ψ−1

Combined with the work of Step 2 we get a continuous Λ(G)-action on M⊗̂ON which

finishes the proof of Theorem 5.2.

The ⊗̂O-coalgebra structure on Λ(G) allow us to define ”group-like” elements in Λ(G).

We say that λ ∈ Λ(G) is a group-like element if c(λ) = λ⊗ λ. Denote the set of group-like

elements {λ ∈ Λ(G)\{0} : c(λ) = λ⊗λ} by Λ(G)gp.

Lemma 5.5. G = Λ(G)gp
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Proof. In [20, §30] Schneider notes that the following simple equality holds:

G = {λ ∈ Λ(G)\{0} : ∆∗(λ) = ι1∗(λ) · ι2∗(λ)}

By a projective limit argument it will suffice to prove this for a finite group G, in which

case Λ(G) = O[G] and therefore elements λ can be expressed as finite sums

λ = ∑
g∈G

cgg

A simple calculation then shows that ∆∗(λ) = ι1∗(λ) · ι2∗(λ) implies:

cg = c2
g and cgch = 0 for g 6= h (5.2)

Since λ is assumed to be nonzero, it has at least one nonzero coefficient cg0 . Conditions (5.2)

imply cg0 = 1 and ch = 0 for h 6= g0. In particular λ = g0 ∈ G.

It follows immediately from the definition of c that for each nonzero λ ∈ Λ(G)

∆∗(λ) = ι1∗(λ) · ι2∗(λ) holds if and only if c(λ) = λ⊗λ holds

Thus G = {λ ∈ Λ(G)\{0} : c(λ) = λ⊗λ}

We will use Lemma 5.5 in the proof of Theorem 1.5.

5.3 Extending compatibility of structures

We can now prove that Theorem 3.1 and 4.3 generalize to the categories.

Theorem 5.3. Suppose (E,‖‖E), (F,‖‖F) are objects in BanG(K)≤1, and M, N are objects in
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Mod f l
cpt(Λ(G)). Then:

(E⊗̂KF)
◦ ∼= E◦⊗̂OF◦

(M⊗̂ON)d ∼= Md⊗̂ONd

are natural isomorphisms in Modϖ−cts
G (O) f l .

Remark 5.2. We know that these (topological) isomorphisms hold in Modϖ−cts(O) f l , when we

can consider the G-action to be trivial. It is enough to prove that the isomorphisms in Theorem

3.1 and 4.3 are in fact G-equivariant.

Proof. Equivariance for Theorem 3.1

Recall that the proof of Theorem 3.1 made use of the following commutative diagram:

E◦⊗̂OF◦ (E⊗̂KF)
◦

E◦⊗O F◦ (E⊗K F)◦

Id∗

ι1 ι2
µ

Id

The map Id induced by the identity and ι1 and ι2 are easily seen to be G-equivariant. In

particular µ and hence Id∗(x) must be G-equivariant.

Equivariance for Theorem 4.3

The isomorphism from Theorem 4.3 is a complicated composition of isomorphisms. It

will suffice to show each isomorphism in the proof is G-equivariant. We verify the G-equivariance

of Lemma 4.4 and 4.5

The isomorphism from Lemma 4.4 is given by:

Φ : Homcts
O (M⊗̂ON,O)−→ lim←−

n
Homcts

O (M⊗̂ON,O/ϖ
nO)

λ−→ (λn) = pn ◦λ
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where pn are the canonical projection maps pn : O −→ O/ϖnO. Let g ∈ G and x ∈M⊗̂ON, then:

(g · (pn ◦λ))(x) = pn(λ(g−1x))

(pn ◦ (gλ))(x) = pn(λ(g−1x)

Thus Φ(g ·λ) = g ·Φ(λ)

The isomorphism from Lemma 4.5 is given by:

Ψ : lim−→
M′,N′

HomO

(
M
M′
⊗ N

N′
,O/ϖ

nO
)
−→ Homcts

O (M⊗̂ON,O/ϖ
nO)

µ 7−→ µ◦ pM′N′

where pM′N′ are the canonical projection maps as before, and µ is a given map:

µ :
M
M′
⊗ N

N′
−→ O/ϖ

nO

Let g ∈ G and x ∈M⊗̂ON. We calculate:

(g · (µ◦ pM′N′))(x) = (µ◦ pM′N′)(g
−1x) = µ(pM′N′(g

−1x))

((gµ)◦ pM′N′)(x) = (gµ)(pM′N′(x)) = µ(g−1 pM′N′(x))

Since pM′N′ is G-equivariant, we get equality. Thus Ψ(g ·µ) = g ·Ψ(µ).
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Chapter 6

The Recovery Theorem

In this section we combine the work from previous chapters to prove Theorem 1.5.

6.1 The recovery theorem

Theorem. Let G be a profinite group, and BanG(K) be the category of K-Banach space repre-

sentations, with tensor product bifunctor ⊗̂K and a forgetful functor ω (that forgets the G-action).

There is a continuous isomorphism of topological groups:

Aut⊗(ω)∼= G

6.2 Proof of the recovery theorem

The proof can be broken up into 3 main steps:

Step 1 Prove

Aut⊗(ω1) ∼=
Lemma 6.1

Aut⊗(ω3)
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to transfer the problem to Mod f l
cpt(Λ(G)).

Step 2 Prove

Aut⊗(ω3) ∼=
Lemma 6.2

Λ(G)gp

to relate the (tensor preserving) automorphisms of ω3 with the group-like elements of Λ(G)

(cf section 5.2.3).

Step 3 Apply Lemma 5.5

G = Λ(G)gp

to finish the proof.

We have already discussed in Section 5.1 that we recover BanG(K) by localizing BanG(K)≤1

at Q and so we begin by transferring this problem to BanG(K)≤1 and renaming the forgetful

functor ω as

ω1 : BanG(K)≤1 −→ Ban(K)≤1

Each of the categories introduced in section 5.1 has a forgetful functor of its own that

forgets the G-action. Naming these ω1, ω2, ω3 we get the following diagram of categories and

functors:

{
BanG(K)≤1,⊗̂K

} {
Modϖ−cts

G (O) f l,⊗̂O
} {

Mod f l
cpt(Λ(G)),⊗̂O

}

{
Ban(K)≤1,⊗̂K

} {
Modϖ−cts(O) f l,⊗̂O

} {
Mod f l

cpt(O),⊗̂O

}

(−)◦

ω1

(−)K

(−)d

ω2

(−)d

ω3

(−)◦

(−)K

(−)d

(−)d
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6.2.1 Proving Lemma 6.1

Recall that a monoid is set endowed with a binary operation that is associative and has an

identity element. The set of all (tensor preserving) automorphisms of a functor naturally has the

structure of a monoid with vertical composition (cf section A.2.1) as the binary operation.

Lemma 6.1. With ω1, ω2, ω3 as above, we have isomorphisms of monoids:

Aut⊗(ω1)∼= Aut⊗(ω2)∼= Aut⊗(ω3) (6.1)

Proof. The functors ω1 and ω2 are related by the following diagram:

BanG(K)≤1 Modϖ−cts
G (O) f l

Ban(K)≤1 Modϖ−cts(O) f l

(−)◦

ω1 ω2

(−)◦

We can restrict to the unit ball then forget the G-action or forget the G-action and then restrict to

the unit ball to get the exact same element of Modϖ−cts(O) f l . This means we have an equality of

functors ω2 ◦ (−)◦ = (−)◦ ◦ω1 in the sense that, given any (E,‖‖) in BanG(K)≤1 we have:

ω2(E◦) = (ω1(E))◦ (6.2)

Since the functors (−)◦ and (−)K are quasi-inverse, there is a natural isomorphism of

functors

(−)◦ ◦ (−)K ∼= 1 (6.3)

where 1 is the identity functor on Modϖ−cts
G (O) f l . This means for any V in Modϖ−cts

G (O) f l we
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have a natural isomorphism V ∼= (VK)
◦, combining with (6.2) we get

ω2(V )∼= ω2((VK)
◦) = (ω1(VK))

◦

This is a component (at V ) of the natural isomorphism ϕ : ω2 −→ (−)◦ ◦ω1 ◦ (−)K induced by

(6.2) and (6.3) in the following way

ω2 ∼= ω2 ◦1∼= ω2 ◦ (−)◦ ◦ (−)K = (−)◦ ◦ω1 ◦ (−)K (6.4)

We can use the natural transformation ϕ and the functors (−)◦, (−)K to define:

Φ : Aut⊗(ω1)−→ Aut⊗(ω2)

λ 7−→ ϕ
−1 ◦ ((−)◦ ·λ · (−)K)◦ϕ

(6.5)

where the natural transformation (−)◦ ·λ · (−)K above is an automorphism of (−)◦ ◦ω1 ◦ (−)K

defined by:

((−)◦ ·λ · (−)K)V := (λVK)
◦ (6.6)

(We are applying (A.3) with F = (−)K and K = (−)◦). Unraveling definitions we see that

Φ(λ)V = ϕ
−1
V ◦ (λVK)

◦ ◦ϕV

ω2(V ) ω2(V )

ω1(VK)
◦ ω1(VK)

◦

Φ(λ)V

ϕV ϕ
−1
V

(λVK)
◦
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In particular, for any v ∈V

Φ(λ)V (v) := ϕ
−1
V ((λVK)

◦(ϕV (v))) (6.7)

By construction it should be clear that Φ(λ) is an automorphism of ω2. To see that Φ(λ) is tensor

preserving we note that by Lemma A.1 it suffices to prove that ϕ and (−)◦ ·λ · (−)K are tensor

preserving.

Let ω∗1 = (−)◦ ◦ω1 ◦ (−)K = (−)◦ ◦ (−)K ◦ω2, ϕ is shown to be tensor preserving by

considering the following diagram

ω2(V ⊗W ) ω∗1(V ⊗W )

ω2(V )⊗ω2(W ) ω∗1(V )⊗ω∗1(W )

ϕV⊗W

ϕV ⊗ϕW

∼=

Noting that ω∗1(V ⊗W ) = (ω2(V ⊗W )K)
◦ = ((ω2(V )⊗ω2(W ))K)

◦. Finally (−)◦ ·λ · (−)K can

be shown to be tensor preserving by applying λVK⊗WK = λVK ⊗λWK (since λ is tensor preserving).

This proves that Φ is a map Aut⊗(ω1) −→ Aut⊗(ω2), we claim that this is a monoid

isomorphism. First we show that Φ respects composition.

Let λ1, λ2 be in Aut⊗(ω1) and calculate:

Φ(λ2 ◦λ1) := ϕ
−1 ◦ (−)◦(λ2 ◦λ1)(−)K ◦ϕ

Since ((λ2)VK ◦ (λ1)VK)
◦ = ((λ2)VK)

◦ ◦ ((λ1)VK)
◦ we get:

(−)◦(λ2 ◦λ1)(−)K = (−)◦λ2(−)K ◦ (−)◦λ1(−)K

65



Simplifying the above:

Φ(λ2 ◦λ1) = ϕ
−1 ◦ (−)◦λ2(−)K ◦ (−)◦λ1(−)K ◦ϕ

= (ϕ−1 ◦ ((−)◦λ2(−)K)◦ϕ)◦ (ϕ−1 ◦ ((−)◦λ1(−)K)◦ϕ)

= Φ(λ2)◦Φ(λ1)

Finally we construct an inverse map Φ−1 in the obvious way. Now let ϕ′ be the natural

isomorphism ω1 −→ (−)K ◦ω2 ◦ (−)◦ and define:

Φ
−1 : Aut⊗(ω2)−→ Aut⊗(ω1)

µ 7−→ (ϕ′)−1 ◦ ((−)K ·µ · (−)◦)◦ϕ
′

Φ
−1

Φ(λ) = Φ
−1 (

ϕ
−1 ◦λ

∗ ◦ϕ
)

= (ϕ′)−1 ◦ (ϕ−1 ◦λ
∗ ◦ϕ)∗ ◦ϕ

′

= (ϕ′)−1 ◦
[
(−)K · (ϕ−1 ◦λ

∗ ◦ϕ) · (−)◦
]
◦ϕ
′

= (ϕ′)−1 ◦
[
(−)K · (ϕ−1 ◦ (−)◦ ·λ · (−)K ◦ϕ) · (−)◦

]
◦ϕ
′

Given an object V ∈Modϖ−cts
G (O) f l , one can explicitly verify Φ−1Φ(λ)V = λV holds for

all V and hence Φ−1Φ(λ) = λ. In particular Aut⊗(ω1)∼= Aut⊗(ω2)

Formally the argument for Aut⊗(ω2)∼= Aut⊗(ω3) is the same. The difference in this case

is that the Schikhof dual functors are contravariant and so a little care is taken with direction of

arrows.
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6.2.2 Proving Lemma 6.2

Recall that c is the ⊗̂O-coalgebra map defined in Section 5.2.3 as the composition:

c : Λ(G)
∆∗−→ Λ(G×G)

ψ−1

−→ Λ(G)⊗̂OΛ(G)

and we call the elements λ ∈ Λ(G) satisfying c(λ) = λ⊗λ the group-like elements of Λ(G)

Λ(G)gp := {λ ∈ Λ(G)\{0} : c(λ) = λ⊗λ}

Lemma 6.2. With notation as above, there is a continuous isomorphism of groups

Aut⊗(ω3)∼= Λ(G)gp (6.8)

Proof. Given a fixed λ ∈ Λ(G)gp and M in Mod f l
cpt(Λ(G)) we construct a map:

λM : M −→M

m 7−→ λ ·m

which we view as a morphism on the underlying O-modules, i.e. as a morphism in Mod f l
cpt(O).

We claim that λ = (λM) is in Aut⊗(ω3). To check the commutivity property let f : M −→ N be

a morphism in Mod f l
cpt(Λ(G)), then ω3( f ) is the underlying O-module morphism in Mod f l

cpt(O)

and we have a diagram:

ω3(M) ω3(M)

ω3(N) ω3(N)

λM

ω3( f )
λN

ω3( f )
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To show that this is commutative is a straightforward calculation:

(ω3( f )◦λM)(m) = ω3( f )(λm) = λ f (m)

(λN ◦ω3( f ))(m) = λN( f (m)) = λ f (m)

The equality ω3( f )(λm) = λ f (m) follows from the fact that ω3( f )(m) := f (m) for all m ∈M.

Since f is Λ(G)-linear f (λm) = λ f (m) and therefore ω3( f )(λm) = λ f (m).

To check that λ = (λM) is tensor preserving we verify that the following diagram is

commutative:

ω3(M⊗̂ON) ω3(M⊗̂ON)

ω3(M)⊗̂Oω3(N) ω3(M)⊗̂Oω3(N)

λM⊗N

λM⊗λM

λM⊗N(m⊗n) = λ · (m⊗n) := c(λ)(m⊗n) (6.9)

The last equality follows from the construction of the Λ(G)-action on M⊗̂ON. Since λ ∈ Λ(G)gp

c(λ)(m⊗n) = (λ⊗λ)(m⊗n) = λm⊗λn (6.10)

On the other hand

(λM⊗λN)(m⊗n) := λM(m)⊗λN(n) = λm⊗λn (6.11)

Any λ ∈ Λ(G)gp defines an element (λM) in Aut⊗(ω3) and so we have a map:

Λ(G)gp −→ Aut⊗(ω3)

λ 7−→ (λM)

(6.12)

Moreover multiplication by the identity 1 ∈ Λ(G)gp is clearly the identity automorphism (1M
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is the identity map on M for every M) and (left) multiplication by a product µλ is the same as

multiplication by λ then µ (µ ·λ 7−→ (µλ)M = µM ◦λM). Together this means that at the very least

(6.12) is an injective homomorphism of monoids. Next we prove surjectivity.

Let η be in Aut⊗(ω3), we need to show that η is given by multiplication with a group like

element of Λ(G). Let M be in Mod f l
cpt(Λ(G)) and fix an element m0 ∈M. Consider the following

morphism in Mod f l
cpt(Λ(G)):

f : Λ(G)−→M

λ 7−→ λm0

(6.13)

By functoriality the following diagram commutes:

ω3(Λ(G)) ω3(Λ(G))

ω3(M) ω(M)

ηΛ(G)

ω3( f )
ηM

ω3( f )

and so we have

f ◦ηΛ(G) = ηM ◦ f

Evaluating at λ = 1 ∈ ω3(Λ(G)):

(ηM ◦ f )(1) = ηM( f (1)) = ηM(m0)

( f ◦ηΛ(G))(1) = f (ηΛ(G)(1)) = ηΛ(G)(1) ·m0

(6.14)

Now if we vary m0 ∈M we see that

ηM(m) = ηΛ(G)(1) ·m (6.15)

Since η is an automorphism of ω3, we must necessarily have λ0 := ηΛ(G)(1) 6= 0 and η is assumed
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to be tensor preserving thus ηM⊗N = ηM⊗ηN . A simple check gives us

ηM⊗N(m⊗n) = λ0 · (m⊗n) := c(λ0)(m⊗n) (6.16)

While on the other hand

(ηM⊗ηN)(m⊗n) = ηM(m)⊗ηN(n) = λ0 ·m⊗λ0 ·n =: (λ0⊗λ0) ·m⊗n (6.17)

In particular λ0 ∈ Λ(G)gp, and so every tensor preserving automorphism of ω3 is given by

multiplication by some group-like element in Λ(G).

The above work means Aut⊗(ω3) is isomorphic to Λ(G)gp as a monoid and therefore

also as a group. By endowing Aut⊗(ω3) with the coarsest topology so that for each object M in

Mod f l
cpt(Λ(G)) the projections

Aut⊗(ω3)−→ End(ω3(M))

are continuous, Aut⊗(ω3) is even a topological group.

The natural topology to impose on End(ω3(M)) is the compact-open topology with a

basis of open sets indexed by K (compact in M) and E (open in M)

UK,E := {ϕ : M −→M : ϕ(K)⊆ E}

To see that Λ(G)gp −→ Aut⊗(ω3) is continuous it will suffice to prove Λ(G)gp −→ End(ω3(M))

is continuous for any M. This follows from the definition of the map (a group element g is sent to

the the endomorphism given by multiplication by g) and the continuity of the G-action on each

M.
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6.2.3 Proof of Theorem 1.5

Proof. First apply Lemma 6.1

Aut⊗(ω) = Aut⊗(ω1)∼= Aut⊗(ω3)

By Lemma 6.2 there is a continuous isomorphism of topological groups

Aut⊗(ω3)∼= Λ(G)gp

In particular since Λ(G)gp = G (Lemma 5.5)

G∼= Aut⊗(ω)

is a continuous isomorphism of topological groups

6.3 A classification result for Iwasawa algebras

Corollary 6.1. Let G, H be two profinite groups for which there exists a topological isomorphism

of O-algebras ϕ : Λ(G)−→ Λ(H) that is compatible with the ⊗̂O-coalgebra structures of Λ(G)

and Λ(H), denoted c1 and c2 respectively, such that the following diagram commutes:

Λ(G)⊗̂OΛ(G) Λ(H)⊗̂OΛ(H)

Λ(G) Λ(H)

ϕ⊗ϕ

c1 c2

ϕ

Then G∼= H.

Proof. The isomorphism ϕ induces a functor Fϕ : Mod f l
cpt(Λ(H))−→Mod f l

cpt(Λ(G)) by restric-

tion of scalars. Given an object M in Mod f l
cpt(Λ(H)), the Λ(G)-module structure on Fϕ(M) is
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defined by:

λ ·m := ϕ(λ) ·m

This functor maps Λ(H)-equivariant morphisms f : M−→N in Mod f l
cpt(Λ(H)) to Λ(G)-equivariant

morphisms Fϕ( f ) : Fϕ(M) −→ Fϕ(N) in Mod f l
cpt(Λ(G)) since for any λ ∈ Λ(G) and M, N in

Mod f l
cpt(Λ(H)) we have

Fϕ( f )(λ ·m) = Fϕ( f )(ϕ(λ) ·m) = ϕ(λ) ·Fϕ( f )(m) = λ ·Fϕ( f )(m)

In fact Fϕ defines an equivalence of tensor categories as an immediate consequence of

the commutative diagram above. Recall that the Λ(G)-action on M⊗̂ON is defined using the

⊗̂O-coalgebra map c1. The commutivity of the diagram ensures the Λ(G)-action on Fϕ(M⊗̂ON)

and Fϕ(M)⊗̂OFϕ(N) coincide.

Applying the anti-equivalence of categories between Banach space representations of G

and Iwasawa G-modules we deduce that we have an equivalence of categories

BanG(K)≤1 ∼−→ BanH(K)≤1

Finally, Theorem 1.5 implies G∼= H

6.4 Further research topics

Naturally the more learnt about a subject, the more questions seem to arise, and indeed

there is much still left to learn about Banach representations of p-adic Lie groups. We expect

continued interest in this field to drive developments and applications in the local p-adic Langlands

program.
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A natural first extension to the recovery theorem in this dissertation is to prove a Krein-

type recognition theorem. Such a result would answer the following question: given an abstract

category C (endowed with a tensor product ⊗ and fiber functor ω) what are the necessary and

sufficient conditions we can place on {C ,⊗,ω} to ensure an equivalence of categories

C ∼−→ BanG(K)

(and therefore that we recover a profinite group Aut⊗(ω) from C ).

Additionally, since in typical applications (in the local p-adic Langlands program es-

pecially) G is often only locally profinite (meaning locally compact, Hausdorff and totally

disconnected), proving a generalized recovery theorem that allows for locally profinite G could

be useful result.

The situation is a lot more complicated in this case however. One of the main issues is

that we can no longer use the regular definition for Λ(G) (which relied on G being compact),

instead one can define Λ(G) as a tensor product of Λ(G0) and O[G] where G0 is a compact open

subgroup in G. Of course Λ(G) defined in this way is no longer necessarily Noetherian.
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Appendix A

Definitions from Category Theory

A.1 Basic definitions

Definition A.1. A category C consists of the following data:

• A class of objects ob(C ).

• A class of morphisms homC (X ,Y ) between any two objects X , Y

• For each object X , a distinguished morphism 1X ∈ homC (X ,X) (called the identity mor-

phism).

• A binary (composition) operation

homC (X ,Y )×homC (Y,Z)−→ homC (X ,Z)

( f ,g) 7−→ g f
(A.1)

Additionally morphisms must satisfy the following axioms:

(Associativity) For any morphisms f ∈ homC (X ,Y ), g ∈ homC (Y,Z), h ∈ homC (Z,W )

(hg) f = h(g f )
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(Identity) For any morphisms f ∈ homC (X ,A) and g ∈ homC (B,Y )

f 1X = f and 1Y g = g

Definition A.2. Given an additive category C , its localization at Q, denoted CQ, is the (additive)

category with:

ob(C ) = ob(CQ)

homCQ(E,F) = homC (E,F)⊗ZQ

Remark A.1. Every module category over a ring is additive.

Definition A.3. Let C , D be two categories. A (covariant) functor F : C −→ D is a mapping

that:

• Associates to every object X in C an object F (X) in D .

• Associates to every morphism f in homC (X ,Y ) a morphism F ( f ) in homD(F (X),F (Y ))

such that F (1X) = 1F (X) and F (g f ) = F (g)F ( f )

A contravariant functor is one that reverses the direction of arrows, so that given a

morphism f in homC (X ,Y ) F ( f ) is a morphism in homD(F (Y ),F (X))

Definition A.4. Let C , D be two categories. An equivalence of categories consists of two functors

F : C −→D , G : D −→ C and natural isomorphisms

GF ∼= 1C and F G ∼= 1D

where 1C (resp. 1D ) is the identity functor on C (resp. D). Functors F and G as above are called

quasi-inverse.

We say that the above is an equivalence of tensor categories if F , G are tensor functors

between tensor categories C , D .
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Remark A.2. A functor F : C −→D induces an equivalence of categories between C and D if

and only if F is essentially surjective (each object in D is naturally isomorphic to F (X) for some

X in C ) and faithfully full (F induces a bijection between homC (X ,Y ) and homD(F (X),F (Y ))).

A.2 Natural transformations

Definition A.5. Let F , G : C −→ D be functors between categories C and D. A natural

transformation η : F −→ G is a collection of morphisms ηX : G(X) −→ F (X) indexed by

objects X in C , that are compatible in the sense that for any morphism f in homC (X ,Y ) the

following diagram commutes:

F (X) G(X)

F (Y ) G(Y )

ηX

F ( f )
ηY

G( f )

An endomorphism of a functor F is a natural transformation η : F −→ F , the collection

of all endomorphisms of F is denoted End(F ).

If a endomorphism of F has a quasi-inverse it is called an automorphism of F , the

collection of all automorphisms of F is denoted Aut(F ).

A.2.1 Operations on natural transformations:

1. ”Vertical” composition of natural transformations.

Let C , D be categories with functors F , G ,H : C −→ D and natural transformations

λ : F −→ G , µ : G −→H . Define the natural transformation µ◦λ : F −→H by

(µ◦λ)X = µX ◦λX (A.2)
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for any object X ∈ C

2. Natural transformations and functors.

Let A , B , C , D be categories with functors

F : A −→ B

G ,H : B −→ C

K : C −→D

and let λ : G −→ H be a natural transformation. We can form the following natural

transformations:

λF : GF −→H F defined by: (λF )A := λF (A)

K λ : K G −→K H defined by: (K λ)B := K λB

(A.3)

A.3 Monoidal categories

Definition A.6. A (non-strict) tensor, or monoidal category is a category C equipped with a

tensor product bifunctor (−)⊗ (−) : C ×C −→ C and a distinguished object 1 such that

1⊗X ∼= X ∼= X⊗1 and X⊗ (Y ⊗Z)∼= (X⊗Y )⊗Z

are natural isomorphisms for any objects X , Y , Z in C . There are also additional coherence

conditions imposed to ensure morphisms constructed out of the isomorphisms above coincide,

these are called the pentagon axiom ([16, pg 162]) and the hexagon axiom ([16, pg 184]). These

conditions do not play a role in our proofs.

Definition A.7. Let C , D be monoidal categories with tensor product bifunctors (−)⊗1 (−) and

(−)⊗2 (−) respectively. A functor F : C −→D is called a tensor functor (or monoidal functor)
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if F (X⊗1 Y )∼= F (X)⊗2 F (Y ) is a functorial isomorphism.

A tensor functor F is called strict if F (X⊗1 Y ) = F (X)⊗2 F (Y )

Definition A.8. Let C , D be tensor categories with tensor functors F ,G : C −→D. A natural

transformation η : F −→ G is called tensor preserving (or monoidal) if for all objects X , Y in C

the following diagram commutes:

F (X⊗Y ) G(X⊗Y )

F (X)⊗F (Y ) G(X)⊗G(Y )

ηX⊗Y

∼=

ηX ⊗ηY

∼=

If F and G are strict tensor functors, then ηX⊗Y = ηX ⊗ηY in the sense that, for any x in X and y

in Y

ηX⊗Y (x⊗ y) = ηX(x)⊗ηY (y)

We will denote the tensor preserving automorphisms of F by Aut⊗(F ).

Lemma A.1. Let C , D be tensor categories with tensor functors F ,G ,H : C −→ D. If the

natural transformations λ : F −→ G and µ : G −→H are tensor preserving, then µ◦λ is tensor

preserving.

Proof. This is almost immediate from the commutative diagram:

F (X⊗Y ) G(X⊗Y ) H (X⊗Y )

F (X)⊗F (Y ) G(X)⊗G(Y ) H (X)⊗H (Y )

λX⊗Y µX⊗Y

∼=

λX ⊗λY µX ⊗µY

∼= ∼=

The top row is (µ◦λ)X⊗Y and the bottom row is (µ◦λ)X ⊗ (µ◦λ)Y . The left and right

squares commute (by assumption), thus the entire diagram commutes.
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