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Quantitative analysis of ultrasound images
for computer-aided diagnosis
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Abstract. We propose an adaptable framework for analyzing ultrasound (US) images quantitatively to provide
computer-aided diagnosis using machine learning. Our preliminary clinical targets are hepatic steatosis, adeno-
myosis, and craniosynostosis. For steatosis and adenomyosis, we collected US studies from 288 and 88
patients, respectively, as well as their biopsy or magnetic resonanceconfirmed diagnosis. Radiologists identified
a region of interest (ROI) on each image. We filtered the US images for various texture responses and use the
pixel intensity distribution within each ROI as feature parameterizations. Our craniosynostosis dataset consisted
of 22 CT-confirmed cases and 22 age-matched controls. One physician manually measured the vectors from the
center of the skull to the outer cortex at every 10 deg for each image and we used the principal directions as
shape features for parameterization. These parameters and the known diagnosis were used to train classifiers.
Testing with cross-validation, we obtained 72.74% accuracy and 0.71 area under receiver operating character-
istics curve for steatosis (p < 0.0001), 77.27% and 0.77 for adenomyosis (p < 0.0001), and 88.63% and 0.89 for
craniosynostosis (p = 0.0006). Our framework is able to detect a variety of diseases with high accuracy. We
hope to include it as a routinely available support system in the clinic. © 2016 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JMI.3.1.014501]
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1 Introduction

This work presents an adaptable ultrasound (US) computer-
aided diagnosis framework that is suitable for clinical applica-
tion across physicians, disease types, devices, and operators. US
is one of the most widely utilized imaging modalities because it
is quick, safe, easy to use, and inexpensive compared to other
modalities. However, US is limited by its high-operator depend-
ence, inter-reader variability, and dependence on machine set-
tings.! Computer-aided diagnosis can improve confidence in
US through quantitative analysis. In particular, we looked at
abnormalities in texture in hepatic steatosis and adenomyosis,
and shape in craniosynostosis. Our clinical aims are to provide
a straightforward framework for developing a library of tools
specific to various image assessment tasks that can increase con-
fidence in diagnosis, and increase detection rates to provide ear-
lier intervention.

2 Related Work

2.1 Texture Analysis for Steatosis Detection

We initially looked at the clinical targets of diagnosing hepatic
steatosis, adenomyosis, and craniosynostosis from US images.
Steatosis is abnormal lipid retention. In particular, we focused
on steatosis in the liver, which has prevalence of ~31% in the
general population.? While early damage is reversible, long-term
steatosis can lead to more severe liver conditions such as cirrho-
sis and liver failure.® US is the initial modality to examine

*Address all correspondence to: Jie Ying Wu, E-mail: jie_ying_wu@alumni.
brown.edu
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patients with suspected steatosis.* The differences between
healthy and abnormal tissue are very subtle, as shown in
Fig. 1. Frequently, doctors are not confident and need to confirm
their diagnosis with biopsy.’ This more invasive procedure
delays intervention and increases the risk for the patient.

Previous works have examined the pattern of echogenic pix-
els of US images, referred to as US texture, as a noninvasive,
quantitative method to diagnose steatosis. Texture characteris-
tics derive from a combination of changes to the underlying tis-
sue and the noise the imaging modality introduces. In the case
of US, shadowing and speckling introduce error to the true tex-
ture of the image.

Specifically, texture changes in the liver due to steatosis have
been well studied. Clinical observations include that livers turn
from smooth and dark to coarse and grainy as their fat content
increases. Some time ago, Khoo et al.” established that steatosis
can be detected using US imaging due to the relatively higher
echogenicity of fatty tissue. The method proposed by Khoo is
based on frequency response. While the trend in the energy is
noticeable, there was no clear boundary between none/mild/
moderate cases. Similarly, Lee et al.® measured the effectiveness
of standard deviation of pixel intensity to classify US liver
images as normal/fatty liver/chronic liver disease. Their study
includes 202 patients and demonstrates that the mean value
of the standard deviation is significantly higher in patients
with chronic liver disease. However, the ranges of the three cat-
egories overlap too much to confidently diagnose patients using
only the standard deviation.

2329-4302/2016/$25.00 © 2016 SPIE
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RT lobe

Portal Vein —

Fig.1 US of (a) normal versus (b) fatty liver. The texture of the rightimage is in general grainier, but some
speckling, inherently caused by the US medium, can be seen on the left image as well. The portal vein
shows up more clearly in the left image as fatty liver obscures the vessel interface. Additionally, fatty liver
is more hyperechoic. Compared to the evenly bright normal liver, the top of the right US image (near the
surface) is much brighter than the bottom (deeper) as more sound waves are immediately reflected in the

fatty liver.

These studies show promising preliminary results, but they
are mostly limited in size and diversity of the image collection
settings. The individual features studied do not provide robust
enough separation to use in a clinical setting. The problem of
creating a dependable framework to systematically quantify
US images is still an open problem. Our method aims to com-
bine many features and use machine learning to identify the
most relevant ones, and show that these features can provide
reliable differentiation in a larger patient group collected
from a retrospective review of images. We draw upon previously
identified relevant texture features and combine them to increase
confidence in our classifications. Starting with a broad range of
previously identified features, we use cross-validation on a high-
performance computing cluster to narrow down which are the
most relevant.

2.2 Texture Analysis for Adenomyosis Detection

The uterus is composed of two distinct tissue layers, the thinner
hormonally stimulated endometrium and the relatively static
myometrium. Adenomyosis is defined as ectopic endometrial
tissue within the myometrium. Clinical data reports anywhere
from 5% to 70% prevalence in women.” Diagnosis sensitivity
and specificity range from 53% to 89% and 50% to 99%, respec-
tively, for transvaginal US!® and Bazot et al.!! report 32.5% sen-
sitivity and 95% specificity in transabdominal US. Classic US
imaging findings of adenomyosis include a globular shape to the

Junctional zone

Myometrium

uterus and subendometrial linear striations and cystic spaces.
Figure 2 shows a comparison of a healthy pelvic US to one
with adenomyosis. While MRI remains the imaging gold stan-
dard for diagnosis, the first line imaging modality for the non-
specific symptoms with which these patients typically present—
heavy menstrual bleeding, cramps, and cyclical pelvic pain—is
often pelvic US. It is less expensive and more readily available.
The symptoms may be dismissed as normal menstrual symp-
toms and not considered urgent enough to be scheduled for
this more expensive test. It is also associated with infertility.'?
Hysterectomy is the accepted treatment, but newer tech-
niques such as uterine artery embolization show promise.’
An earlier and more confident diagnosis through US would pro-
vide better treatment planning for patients to control associated
symptoms. Kepkep et al.'* found that textural features such as
subendometrial linear striation and heterogeneous myometrium
are indicative of the disease. Hypothesizing that these texture
changes can be detected by a computer, we apply to uterine
US the same texture detection framework used for steatosis.

2.3 Shape Analysis for Craniosynostosis Detection

Craniosynostosis is the premature fusing of sutures in an infant’s
head, affecting about 1/2000 births.'* As the infant’s brain is
expanding, the fusion causes increased intracranial pressure
and could affect brain development.'> For craniosynostosis
involving only one suture, intervention within the first year

l

|

Junctional zone™

yometrium

Fig. 2 Pelvic US of a patient (a) with adenomyosis and (b) one without. The regions of the uterus are not
well distinguished from each other, and it is difficult to see changes caused by the adenomyosis.
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of life generally leads to a good prognosis, but the ideal timing
for intervention varies from 6 weeks to 10 months by which
sutures are affected.'®!” It is currently only diagnosed postna-
tally, typically through physical examination. As physical
examination is sometimes uncertain immediately after birth,
this can cause delayed diagnosis or a need for computed tomog-
raphy to confirm, which raises radiation concerns.!”

Previous work had focused on prenatally identifying cranio-
synostosis in a high-risk population and focused on more severe,
syndromic forms of the disease.'® The same method led to high-
false positives in the general population.'*'® They also relied on
expert readers to read the images.

Prenatal US presents the challenge of tracing three-dimen-
sional sutures using two-dimensional (2-D) US.'® Figure 3
shows an example of a 2-D projection of a skull with craniosy-
nostosis compared to one without. Since the time and type of
intervention varies from case to case,'’ the earlier detection
will help doctors better monitor skull development and plan
treatment, as well as counsel parents.

Delahaye et al.'* found that brachycephaly and dolicho-
cephaly, shorter and longer head shape than the expected
range, are not good predictors of craniosynostosis by them-
selves. These features are only indicative of craniosynostosis
when combined with associated syndromes or fetal DNA abnor-
malities. In the general population, they found very high levels
of false positives. Our study uses additional shape information
and analysis to improve accuracy in the general population, and
use a machine learning framework to reduce reliance on expert
readers.

2.4 Machine Learning

We use machine-learning algorithms to train classifiers and label
images as normal versus abnormal based on the identified fea-
tures of the images. In particular, we use support vector
machines (SVM)'® and random forest (RF).?’ In an SVM, the
parameterization of each image is plotted in high-dimensional
spaces, and the algorithm finds the best hyperplane to separate
the abnormal training data from the normal. The RF algorithm,
on the other hand, separates the normal and abnormal parame-
ters by decision trees. It has a number of subclassifiers, called
trees, and each one classifies the image as sick or not sick based
on a subset of the parameters. To classify a new image, each tree
classifies it based on its subset of parameters, and the overall
majority classification determines the result.

Biparietal
diameter

Occipitofrontal
diameter
>

-

Although the machine-learning algorithm presents a more
objective evaluation than a human reader, inter-reader variability
still poses challenges. Vicas et al.' show that if the training and
test region of interest (ROI) are both identified by the same
reader, machine-learning algorithms generally do better than
if each were determined by a different reader. They propose
an algorithm to automatically identify a suitable texture ROI
in liver US imaging following the constraint to avoid structural
elements like blood vessels and bile ducts. However, this auto-
matic method sometimes fails to identify any ROI under those
constraints, even when human readers do find ROIs in the
same image.

Minhas et al.* present a completely automated system to clas-
sify liver US images for fatty liver disease by automatically
identifying a ROI. They achieved sensitivities, specificities,
and accuracies above 90%. Their images were homogeneous
with respect to machine and machine settings, and class labels
for their training and testing sets came from human readers
rather than liver biopsies. Since results are reader dependent,’
this bias results in favor of the algorithm. Li et al.?! obtained
over 84% accuracy in classifying fatty and normal liver by look-
ing at near- and far-field ROIs and measuring the light density
and neighborhood gray scale characteristics. Their data set was
heterogeneous with respect to operator and anatomic view, but
the study restricted US machine setting such as frequency, gain,
and depth.

In contrast to the previous work, the framework described
here can be trained from populations of extant clinical images,
tuned for sensitivity and specificity, and used prospectively for
quantitative clinical decision-making support. It can be extended
to include additional parameters. Alternate machine-learning
paradigms can also be easily integrated and evaluated.

3 Models and Methods

3.1 Data Collection

All scans were obtained using GE LOGIQ E9 US units. We did
not control for probe type.

3.1.1 Steatosis

For the steatosis study, we collected data from Rhode Island
Hospital (RIH) from 354 patients with random US-guided
liver biopsies between 2009 and 2013. This retrospective
study was heterogeneous with regard to device settings, operator

Occipitofrontal
diameter

Fig. 3 US of a fetus (a) who will develop craniosynostosis and (b) one who will not. By manual inspection,
the difference between the two is not obvious at this stage. This is further complicated by the imaging
medium, where the front and back of the skull are sometimes indistinct, as shown in the right image.
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Fig. 4 Identifying ROI on the liver US image. The two images are from the same patient, chosen by each
radiologist. They marked the ROI (blue) best showing hepatic texture, while the green ROI is what the

program actually used.

characteristics, and anatomic view. From these patients, we col-
lected 624 liver US images and the patient’s corresponding
quantitative values of fat (%) from pathology. Patients with tar-
geted biopsies were excluded, since tumors affect fat content.
After removing patients with targeted biopsies, we had 488
images from 288 patients. This data review was approved by
RIH Institutional Review Board (IRB) as study 007313 on
March 23, 2013.

Two experienced radiologists independently examined all of
the images in the steatosis dataset. They were blinded to the
biopsy results. Each radiologist chose an image in each patient’s
series of images that best displayed the hepatic echo-texture. On
that image, each drew an ROI using Image],”* as shown in
Fig. 4. They were not looking specifically for steatosis or its
absence, but rather just the image and region in the image
that most clearly demonstrated the hepatic texture. The ROIs
also accounted somewhat for depth distortion from the US,
as the radiologists picked ROIs at a depth approximating the
focal length of the scan.

Since there was variation among the ROI sizes between the
two physicians, we chose to use a circular ROI around the man-
ually identified one for analysis. We calculated the center of the
physicians’ ROI and imposed a new circular ROI with the radius
of 50 pixels on the 788 x 1050 pixels image, centered on the
same point as shown in Fig. 4. This creates the potential problem
that the new ROI could now include structural components of
the organ, but we assume that the possible inclusion of those

/

' Endometrium

» g Myometrium . A
~ s s 4 >

Junctional l
Zone . 2

Faocal Area of =
Adenomyosis

components will affect an insignificant percentage of the total
pixels.

3.1.2 Adenomyosis

For the adenomyosis data set, we retrospectively identified 38
patients with pelvic US scans and MRI-confirmed diagnosis of
adenomyosis. For comparison, we collected 50 normal controls:
pelvic US exams that were normal as confirmed with MRI.
Abnormal US studies were again heterogeneous with respect
to imaging specifics. This data review was approved by the
RIH IRB as study 000214 on January 6, 2014. The radiologist
was not blinded, and selected regions that were indicative of
adenomyosis, or the lack thereof, based on MRI guidance to
use for texture analysis. Figure 5 shows an example of a pelvic
US and the accompanying MRI used to identify the ROIL.

The goal of this analysis was to provide a proof-of-concept
demonstration that population-based US texture analysis could
be effective in a different clinical domain without requiring sig-
nificant modification to our general processing framework. The
single physician picked ROIs of consistent size across all
images. Thus, a bounding circle was not necessary.

3.1.3 Craniosynostosis

For craniosynostosis, we collected the prenatal US from 22
infants with CT-confirmed diagnosis of craniosynostosis from

Focal Area of
Adenomyosis

Endometrium

Junctional Zone

Myometrium

Fig.5 (a) US and (b) a sagittal MRI through the uterus showing adenomyosis from the same patient. The
uterine lining is much clearer and more easily distinguished from the background in the MRI and the
shape of the uterus more easily assessed. In the MRI, a focal region of dark signal resulting in abnormal
thickening of the junctional zone is clearly seen. By US, the region of focal adenomyosis is difficult to

identify from that of surrounding normal myometrium.
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2008 to 2011 with maternal consent. Then we included an equal
number of age-matched, within a day of gestational age, con-
trols with normal skull shape. We did not think gender was
an important factor in head shape and did not control for it.
Table 1 lists the specific characteristics of each case.

We selected the standardized cross sectional axial cranial
images at the plane used to measure biparietal diameter
(BPD), and performed ray analysis at the intersection between
BPD and anterior—posterior diameters, to establish a consistent
zero angle in all images. For each of the images, we manually
measured skull diameters from center to inner skull boundary at
every 10 deg for 36 spoke lengths using TmageJ,** as shown in
Fig. 6. This is currently done manually by a single reader
because there are gaps in the 2-D US image where we had to
interpolate where the skull boundary should be. Future work
could include using a curve completing algorithm to automate
measurements. As we are more interested in comparing shape
deviation across all gestational ages caused by the suture mal-
formation, we normalized the lengths for each image by the lon-
gest axis. This allows us to account for skull growth and
compare across gestational ages.

3.2 Parameterization
3.2.1 Texture
We convert each image into a feature vector by characterizing it

according to its texture features at multiple scales. Our algorithm

Table 1 Craniosynostosis and control patient information.

Experimental subjects Controls
Diagnoses Sagittal 11, metopic 6, lambdoid 1, N/A
(types of suture coronal 1, sagittal and lambdoid 2,
closures) sagittal and metopic 1
Mean gestational 26w 6.8d (8w 4.1d) 26w 6.8d
age (SD) (8w 4.1d)
Total subjects 22 22
Male: female 14:8 7:15

OFD (HC)
HC

GA
EFW

Fig. 6 Measuring the diameter of the skull at 36 angles. From the
center of the skull, we follow the yellow lines to the inner skull boun-
dary and record the distance.
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reads in each image and normalizes the pixel intensities to
account for US’s settings dependence. Then it applies various
2-D image processing filters, as shown in Fig. 7, at multiple
scales to highlight texture responses. Filters include standard
deviation, range, and entropy each at two scale levels, as
well as gradient magnitude, and total oriented wavelet response.
Most of these filters measure the local rate of change in the pixel
intensities, or how smooth the image is. This is relevant to stea-
tosis because the excess fat makes the US image coarser and
grainier, compared to a normal liver, which should be dark
and smooth. Entropy, in contrast, works more globally to
show how predictive a patch of pixels is of the whole image.
Since fat build-up causes heterogeneity in livers,> image tex-
tures from patients with steatosis should have higher entropy.

For each of the filtered responses and the unfiltered image,
the algorithm extracts the pixel intensities within the ROIL. It
summarizes the intensities by a histogram of all the points,
as shown in Fig. 8. We fit an extended Gaussian to these histo-
grams and describe it with four parameters: mean, standard
deviation, kurtosis, and skew. These four characteristics for
the ROI, extracted from each of the filtered images, combine
into a feature vector, summarizing the image. Through the vari-
ety of filters and with enough images, we train the classifier to
generalize across variations inherent in US images such as pixel
size and angle.

To evaluate which features are the most relevant, we did an
exhaustive feature search using a high-performance computing
cluster. This was also how we determined the window sizes of
certain filters and the number of directions to use for shape
analysis. These values may be adjusted depending on the clini-
cal relative cost of false positives versus false negatives.

3.2.2 Shape

We concatenate the 36 spoke lengths into a single vector, and
then use principal component analysis (PCA) on the population
to reduce the dimensionality to six directions of maximum varia-
tion.”* PCA finds the directions of maximum variation in the
parameters and finds the component of each vector that goes
in those directions. The first few directions account for most
of the variance, as shown in Fig. 9.

To mitigate the effect of normal variation between skull
shapes and measurement error, we characterize each image
by the six principal directions and discard the rest.
Discarding the less relevant directions accounted for possible
measurement errors from the manual measurements of the dis-
tance to the inner skull boundary.

Original

Standard Deviation ~ Range

Fig. 7 The result of various filters applied to the liver US.
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Fig. 8 Histogram of pixel intensities within the ROI of on the original US image.
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Fig. 9 Variance in the principal directions of the craniosynostosis
dataset.

3.3 Classification

After extracting the feature vectors, we determine their corre-
sponding labels depending on the pathology. For steatosis,
we identify 10% fat given by pathological analysis of the biopsy
as a clinically relevant threshold to diagnose steatosis in pre-
vious studies.? This threshold can be adjusted for different lev-
els of sensitivity versus specificity. Diagnosis of adenomyosis
and craniosynostosis is not based on a threshold. Each is either
present or not based on the diagnostic MRI and CT scans,
respectively.

We then trained SVM and RF classifiers with the feature vec-
tors and their corresponding labels for comparison of the differ-
ent algorithms. We use leave-n-out cross-validation®® to evaluate
our classifiers. This means that for our test set, we took out n
cases. The rest were used to train the classifier, which was then
tested with the n cases we left out. Next, we took out a different
set of n cases and retrained a new classifier with the new training
set to classify the new test set. We repeated this until all cases
were classified and performed statistical analysis using SAS 9.4.

For steatosis, n = 2 was selected because we wanted to have
as large a training set size as possible while maintaining distinct
test and training data. Since each radiologist drew an ROI for
each patient, we kept both readers’ selections either in the test-
ing set or the training set—never one in each. Thus we avoided
training and testing on the same patient. We also included n =
10 for steatosis to show the robustness of our algorithm a smaller
training set.

We also trained classifiers with only the data from each of the
reader to see the effect of the initial ROI selection on the

Journal of Medical Imaging
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classification. These results are compared to the other reader’s
as well as the biopsy result and similarity is measured by kappa
statistic. In the inter-rater comparison, the classifier was trained
on 288 ROIs and corresponding patient images from one reader,
and tested on 288 ROIs and corresponding patient images of the
other. In the comparison with ground truth, leave-one-out cross-
validation was used since there is one ROI per patient per reader.

For the adenomyosis and craniosynostosis study, there was
one ROI and one set of measurements, respectively, for each
patient, we used leave-one-out cross-validation to evaluate
them. These datasets were not large enough to support leave-
ten-out cross-validation.

To provide a baseline comparison for our classifier results,
we asked the two radiologists who selected the ROIs for stea-
tosis to each manually classify 51 random, blinded images from
the steatosis study, and a resident to classify 102 of them. Our
chart review served as our baseline comparison for the adeno-
myosis study. We also asked two pediatric surgeons who operate
on craniosynostosis patients to classify the 44 images in the cra-
niosynostosis study.

4 Classification Results

The results of all three studies, with both the SVM and RF clas-
sifiers for various training set sizes, are presented in Table 2.

As indicated in Table 2, SVM outperforms RF concerning
sensitivity and area under receiver operating characteristic
(ROC) curve (AUC) across all disease groups. SVM also
slightly outperforms RF in terms of specificity for adenomyosis
and craniosynostosis, though not steatosis. Specifically, RF
appears to have very low sensitivity but high specificity for stea-
tosis relative to SVM. There are some differences between hold-
out size of 2 and 10, but as there is some variation training the
classifier each time, even with the same dataset, the differences
were not statistically significant.

Overall, RF and SVM for craniosynostosis and SVM for
adenomyosis greatly outperformed all diagnostics for all
other disease groups. In particular, SVM for craniosynostosis
achieved a sensitivity of 95%, a positive likelihood ratio of
over 5 and almost a 90% AUC value while SVM for adenomyo-
sis and RF for craniosynostosis achieved a sensitivity of 82%
and positive likelihood ratio over 3.

To illustrate the SVM classifier, we projected the feature vec-
tor to 2-D space using PCA in Fig. 10 to show the results of one
specific training set from the steatosis study. The diagonal line
shows the SVM classifier that was learned. Reducing dimen-
sionality decreases accuracy, but even in 2-D, most of the

Jan—-Mar 2016 « Vol. 3(1)
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Table2 The sensitivity and specificity each of the studies using different classifiers and hold-out set sizes in leave-n-out cross-validation obtained,
along with their 95% confidence interval. It also shows statistical analysis including likelihood ratio, the area under the receiver operator character-
istics curve and its confidence interval, and the p-value showing the likelihood of obtaining each result.

Sensitivity 95% CI Specificity 95% CI
Classifier, hold-out set size (%) (%) (%) (%) +LR C-Stat 95% Cl p-values
Steatosis
SVM, 2 74 [68  79] 72 [67 771 266 0.71 [0.67 074  <0.00010
SVM, 10 71 64 77 73 68 78] 261 0.70 [0.66  0.74] <0.0001
RF, 2 40 [33 48] 86 [82 89] 2.90 0.67 [0.62 0.71] <0.0001
RF, 10 47 [39 55] 85 [82 88] 3.19 0.69 [0.64 0.73] <0.0001
Adenomyosis
SVM, 1 82 [64 92] 74 [61 84] 3.14 0.77 [0.69 0.86] <0.0001
RF, 1 58 [40 74] 78 [66 86] 2.63 0.69 [0.59 0.79] 0.0012
Craniosynostosis
SVM, 1 95 [72 99] 82 [62 93] 5.25 0.89 [0.80 0.98] 0.0006
RF, 1 82 [62 93] 77 [46 93] 3.60 0.80 [0.67 0.92] 0.0037

normal cases are on one side of the line, and abnormal cases
the other.

In Fig. 11, we show two images from the steatosis data to
compare a correctly classified image on the left with an incor-
rectly classified image on the right.

To examine the effect of the initial ROI placement, we
present the inter-reader agreement in Table 3 where the classifier
was trained on one of the reader’s ROI and tested on another’s.
Table 4 shows the results when each reader’s classifier com-
pared to ground truth.

Inter-reader agreement between readers was poor, as indi-
cated by very low Kappa values. Compared with the pathologi-
cal results from biopsy, sensitivity was higher for readers ROIs
when using SMV relative to RF, though specificity suffered.

08 T T T T = v
@ ' +  Abnormal
06F B g T N Normal H
¥ * Support vectors
04} 4
Py @
02} 1
oF ++ .
.+.
02F 4
04Ff 4
06} 4
08} 1
= | 1 1
-2 -1.5 -1 05 0 05 1 15

Fig. 10 Example of a support vector machine in a 2-D projection of
the high-dimensional image feature space of liver US images. The
diagonal line is the classifier, where one side of the line would be clas-
sified as sick and the other as healthy.
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As a baseline comparison, the same expert radiologists who
identified the ROI manually for steatosis rated 51 random
images from this study each, and obtained 84% and 71% accu-
racy. This was considerably higher than a resident, who rated
102 images for an accuracy of 49%. In a similar study with cra-
niosynostosis, we asked two expert physicians to rate our 44
cases for craniosynostosis and control. They obtained 45%
and 50% accuracy. For adenomyosis, our chart review found
75% talse negative rates, which is in line with the low sensitivity
from transabdominal US in previous work.'!

5 Evaluation and Discussion

We present a novel, validated, and flexible framework for quan-
titative image analysis using clinical US data. Over all trials, our
system achieved accuracy of 72.74% and AUC of 0.71 for stea-
tosis, 77.27% and 0.77 for adenomyosis, and 88.63% and 0.89
for craniosynostosis in predicting the presence of specific dis-
eases. Our framework’s accuracy is near that of expert readers
for a steatosis, and greatly exceeds the sensitivity of standard
clinical diagnosis of adenomyosis and craniosynostosis.

We propose that our framework could help nonexpert readers
correctly classify liver US and flag images that are suspicious for
adenomyosis and craniosynostosis that would otherwise be missed.
Identifying steatosis earlier could prevent more severe symptoms,
identifying adenomyosis could help more patients get treated for it,
and identifying at-risk cases of craniosynostosis earlier could help
with treatment planning and parent counseling.'”

From our results comparing the initial ROI selection for stea-
tosis, although both readers’ ROIs led to similar performance
compared with the ground truth, they had poor agreement
with each other. This suggests that the framework can learn
the features each reader looked for, but cannot generalize across
readers. Thus, the readers selecting the test ROIs should be the
same was the ones provide the training ROIs. Future work could
examine whether having training ROIs from more readers could
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Fig. 11 US images for steatosis. The classifier was able to successfully identify the left one but not the

right.

Table 3 Inter-reader agreement for steatosis study.

Agreement 95% CI p-values
Reader 1 * Reader 2, K =0.1321 [0.0175 0.2468] <0.001
SVM
Reader 1 * Reader 2, K =0.1342 [0.0106 0.2578] <0.001

RF

increase the robustness of the algorithm for testing ROIs from a
new reader.

Similar texture analysis based metrics have been applied to
smaller, experimental settings.*”*!*” Because this is a general
framework, we were able to combine many of the features iden-
tified in literature as relevant for diagnosing steatosis. For exam-
ple, we incorporated standard deviation as a feature similar to
what Lee et al.® proposed, and Gabor filters?® to look at the fre-
quency components noted by Wu et al.® With our larger feature
set, we were able to demonstrate better separation between nor-
mal and abnormal than with using standard deviation alone, and
our large study size establishes the statistical significance of the
differences in frequency energy content.

In testing the different classifiers, we found that the SVM
gives the better balance between accuracy, sensitivity, and speci-
ficity through AUC analysis using MATLAB 2015a. RF some-
times gave better accuracy overall but a worse trade-off between
sensitivity and specificity as shown by the smaller AUC.
Depending on the application and which is more clinically
costly, the different classifiers provide the ability to preferen-
tially target either sensitivity or specificity.

Compared to previous works, our study presents a more gen-
eral framework tested on a larger and more heterogeneous data-
set. We were unable to match Minhas et al.’s* accuracy of
80.68% in identifying steatosis. The difference could be from

the more heterogeneous dataset with variability in machine set-
tings and operators, or from using biopsy results for labels
instead of human readers. Whereas Lee et al.’s® study showed
that the ranges of both the mean and the standard deviation of
the pixel intensity histogram overlapped significantly, we have
shown that these features along with others can be used to clas-
sify the two groups. For the adenomyosis study, we have shown
that our computer-aided diagnosis framework using pelvic US
matches the accuracy of expert readers with transvaginal US."?
Lastly, our craniosynostosis results show that shape analysis can
be used to classify nonsyndromic forms of the disease with high
accuracy in the general population, and not just the high-risk
ones as identified by Delahaye et al.'*

Future work includes implementing an image normalization
technique to explicitly learn the properties of the uncalibrated
US data. Currently, we implicitly learn which properties are
important through separating the parameters, but better normali-
zation techniques that incorporate additional information could
explicitly account for expected variations in the dataset. For
example, physicians often compare liver to kidney US when
looking for hepatic steatosis. The kidney gives the patient-spe-
cific baseline echo-texture response. This could be quantified
and subtracted from the liver features to examine only the
deviation from baseline for each patient.

Our extensible feature set allows for the incorporation of
additional features, such as elastography scores. We used gen-
eral features and filters to show the adaptability of our frame-
work, but more sophisticated filters targeting specific diseases,
or more complex machine-learning algorithms like neural net-
works could be incorporated.

Lastly, parallelizing the framework to run on high-perfor-
mance computing clusters and mapping it to hardware acceler-
ators like GPU could significantly improve runtime for training.
Currently, we use trivial parallelization and run multiple
instances of on different nodes to search through the parameter

Table 4 Classification results from individual readers for steatosis compared with ground truth. All tests used leave-one-out cross-validation.

Classifier Agreement 95% Cl Sensitivity (%) Specificity (%) ROC (%) p-values
Reader 1 * Truth SVM K =0.3410 [0.2336 0.4485] 69.2 68.0 0.67 <0.001
Reader 2 * Truth SVM K =0.3504 [0.2401 0.4607] 64.9 72.2 0.67 <0.001
Reader 1 * Truth RF K = 0.3909 [0.2769 0.5050] 46.8 89.2 0.73 <0.001
Reader 2 * Truth RF K = 0.2836 [0.1662 0.4011] 42.6 84.0 0.66 <0.001
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space, but this does not improve the runtime of a single instance.
The improvement in runtime would become more important in
extending our framework to more data-intensive problems like
working directly with the data-stream off the US machine rather
than the filtered images it displays.

6 Conclusion

We achieved consistent results across all three clinical targets
collected across 5 years at different US settings, by different
operators, and from multiple disease sites. This suggests that
our framework is reliable, flexible, and effective enough that
it will be suitable for clinical application with routinely collected
images. Our framework could be used to aid clinical decision
making and give physicians more confidence in their diagnoses
or lack of. With more cases, especially for adenomyosis and cra-
niosynostosis, and further refinement in feature selection and the
learning process, we hope to increase confidence in our results
and include it as a standard routine in the clinic.
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