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ABSTRACT 

The problem of deciding which of many possible feaiure5 in a 
training sequence are the salient or predictive ones is a well-known 
problem in machine learning. This problem of salience assignment 
is difficult when attempting to learn in an unpredictable and reac­
tive environment. Components of Experiential Learning ( CEL) is a 
framework for the development of computational theories of learning 
in this type of environment [Granger 1983, Granger and McNulty 
1984). In this pa.per, we review the CEL processes and explain a spe­
cific computer model LURN (Learning by Unconscious Rea.soNing) 
which illustrates the use of an incremental method for performing 
salience assignment. An additional con-straint on salience assignment 
arises from experimental results in animal psychology which indicate 
that living learning engines (i.e., humans and animals) make a sharp 
distinction between simple pairing (or strengthening) of associated 
events ver!us contingent salience assignment [Rescorla 1966). LURN 
cakutates the c-ontingent predictiveness of features in a noisy envi­
ronment, in a.ccordance with these experimental results. 
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1 Introduction 

1.1 The Salience Assignment Problem 

A rat in a laboratory cage hears a tone. It also hears the air conditioning system start, 

and sees a lab assistant taking note!. Shortly afterwards, it feels an unpleasant electric 

shock. What does the rat learn? 

Since the late 1960s, psychological experiments have made it clear that what the 

rat learns from above episode depends on the relationship, over several trials, among 

the several plausible cues to the unpleasant event. In Machine Learning research in 

Artificial Intelligence, this corresponds to a salience assignment problem: which of the 

many possible cues are the predictive, or salient ones, i.e., the ones to be learned? 

Rats soh·e the salience assignment problem under constraint., more severe than those 

faced by most AI systems. For instance, learning must be incremental, for the rat in a 

natural setting must make good use or the experiential· data already gathered even while 

gathering- more. Moreover, the environment may not provide perfect predictors; the 

animal must make predictions as best it can when cues indicate only a change in the 

·probability of an event. 

The CEL model of learning and memory [Granger 1983, Granger and McNulty 1984J 

is a framework for explaining a Yariety of learning phenomena. LeRN (Learning by Un­

conscious ReasoNing) is a computer model embodying some specific hypotheses within 

the CEL framework. LURN accounts for some data from animal learning experiments. 

In particular, LURN sho~s how an anin'iaJ ca.n learn which features of the environment 

are predictive of future stimuli, as demonstrated by Rescorla's [1966, 1968J experiments 

with dop and rats. 
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I. 2 A Method for Salience Assignment 

In this paper we present a method of determining which features of an event are predic­

tive of other events a.nd distingiJishing useful cues from context and background noise. 

The method determines the relevance of individual predefined features, and al.so forms 

new feature descriptions by conjoining or negating existing features. The effecti".'eness of 

the method is due to ta.king into account, in addition to successful predictions and errors 

of commission, al.so errors of omission and events in which the absence of a cue correctly 

prevented prediction of a second event. This extension of the idea of strengthening 

a.nd weakening corresponds to the distinction in psychology between learning based on 

number of pairings and learning based on contingency. Using this method, the LURN 

program exhibits contingency-based learning behavior, modeling the learning behavior 

of animals and humans in clas~icaJ conditioning tasks. The program is able to function 

correctly even with a large number of erroneous training·instances. 

2 Background: What is learned 

2.1 Association and Contingency 

How does a rat in a classical conditioning experiment distingiJish predictive cues from 

other, non-predictive features of the environment? We might initially guess that the 

animal forms an 'association' between a feature (call it Fl) like a tone and a folJowing 

feature (F2) like a shock.- In the classical conditioning paradigm, the second stimulus 

(F2) elicits a.n uncontrollable reaction with no prior training. This 'association' between 

the Fl and F2 might then become 'strengthened' [Anderson 1983] each time th~ stimuli 

are paired together. 

Experimental psychologists have studied this type of question in various learning 
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paradigms. Animal learning studies differ from most artificial intelligence work in cog­

nitive modeling in that they attempt to elucidate the representations and mechanisms 

involved at a lower level. However, researchers in animal learning are careful to look for 

effects that wil1 1scale up' to human learning. There is extensive evidence in the psycho­

logical literature that mammals (if not birds and lower animals) are excellent models of 

many human learning and memory abilities, and that most key results on animals do 

prove to also be true of humans, once tested !see, e.g., Bower and Hilgard 1981]. Hence, 

models of learning in lower mammals will contribute to the study of learning in higher 

mammals (e.g., us), even though such models cannot teach us everything about human 

learning. 

Animal learning experiments show that a more sophisticated salience ~signment 

method is at work than simple strengthening on the basis of number of pairings, de­

scribed above. What actually happens i.s t~at over a number of trials, a rat incrementally 

learns to attend to some features of the environment over others, differentially noting 

which of the features (tone, lights, other noises, other visual cu~) turn out to be more 

useful as predictors of the shock's onset. Rescorla [1966, 196i, 1968J h~ shown that 

animals do not simply learn an association b~d on the number of times they are paired 

together. Rather, they learn a combination of information about how often the relevant 

Fl (tone) preced~ the occurrence of F2 (shock) measured against how often F2 occurs 

by itsell, without the presence of F 1. For instance, if much less than half of a.lJ soundings 

of a tone· are followed by a delivery of food, but a.lJ deliveri~ of food are preceded by 

ton~, then the animal will ~sociate food with the tone even though this association 

Jea.ds to a high likelihood of disappointment. Rescorla shows that animals )earn all and 

only relationships in which the probability of the relevant feature cue Fl preceding F2 

is greater than the probability of F2 occurring without that cue. Formally statc-t:'., this 

means that a positive association between two stimuli (Fl and F2) will occur iI and only 
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if p(F2IF1) > p(F2IF1). 

This measurement of relative probabilities is referred to in the psychological literature 

as continKency, animal.s (and humans, in similar circumstances) exhibit contintency­

driven JearninK in the sense that they somehow maintain incrementally updated know l­

edge of the relative predictiveness of features. Through experience the animal must pick 

out the relevant features from the background of uncorrelated features and use only the 

relevant features to predict future events. 

2.2 Behavior vs. Behaviorism 

The study of animal learning has sometimes been erroneously associated with 'behav­

iorism', which would have it that nothing is learned by an animal except the association 

between stimulus and response itself. This extreme view of psychology fails to provide 

a satisfactory account for a wide range of behavioral data, such as latent learning, in 

which animals clearly exh~bit learning in spite of the absence of any simple goal-based 

appetitJve or avoidance-based reinforcer. In today's animal and human psychology, the 

strict behaviorist viewpoint ~ all but dead. As Dickinson [1983] points out, a theory 

that equates learning with behavioral change will have a great deal of trouble explaining 

the many phenomena of "'behaviorally silent" learning, including-, for instance, sensory 

preconditioning. The CEL framework describes learning in terms of mental processes 

and representations, and so is completely incompatible with the behaviorist perspective. 

Behavioral cha~ges are o! interest to us as evidence of other changes. In this respect our 

work is in the mainstream of modern animal and human learning theory. 

2.3 Related work 

Much work iii machine learning has involved separating relevant features of a state from 

irrelevant features. As early as 1959, Samuel's checkers program constructed a linear 
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evaluation function by adjusting the weight of features depending on performance of the 

function, and by experimentally adding features from a predetermined pool. Samuel's 

program achieved m~ters level play, but the approach of constructing a linear eYaluation 

function did not prove to be powerful enough for adoption in other domains. 

More recent work has concentrated on symbolic descriptions. Winston ,s ARCH 

prop-am [Winston 19i5] ]earned structural descriptions of objects from a set of positive 

and negative instances. Instances and concepts both are represented by semantic nets. 

Objects (nodes in the net) are removed when they a.re part of the difference between two 

positiYe instances. The most relevant features (objects and relations) are thc:JiSE which 

are parts of differences between positive instances and negative instances. In order to 

isolate these relevant features, ARCH depends o_n negative instances which differ from a 

positive instance in only a single feature. Also, ARCH is not able to function correctly 

when erroneous training instances are presented. 

An alternative to starting with a single positive instance and gen~ralizing, ~ in 

ARCH, is starting with an over-general description_ and specializing it. Specialization 

may be more useful than generalization for problem-solving systems because the perfor-

mance component of the system i.s initially too ra.sh, and generates negative instances 

which can be used to refine the concept This is the approach taken by Langley !1983, 

1984J in the SAGE.2 system, which learns appropriate conditions for applying operators 

in a number of problem-solving domains. An ~nstance," for SAGE.2, consists of the 

whole working memory when a. production was fired. Candidate differences between pos-
-

itive instances (selection context) and negative instances (rejection context) are found 

by a path-finding process which follows chains of features appearing in more than one 

working- memory element. New rules proposed by the path-finding process are initially 

weak, bot are strengthened whenever they are re-invented ~l' when they are fired and 

lead toward the goa.l state. Rules are weakened when th_e credit assignment algorithm 
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determines that they are not leading toward the goal state. 

SAGE.2 succeeds in identifying features which are relevant for identifying the proper 

situations in which to fire an operator. It learns incrementally without help from a 

teacher. The performance component of SAGE.2 is initially quite rash, but the learning 

component is conservative: New rules are introduced at low strengths, and become effec­

tive only after being reinvented several times. This is in marked contrast to Winston's 

ARCH program, which specializes a concept immediately upon presentation of a single 

negative instance. The conservative learning strategy of SAGE.~ allows it deal with neg­

ative instances which differ from positive instances in many ways, and which therefore 

lead SAGE.2 to postulate many ways of discriminating between positive and negative 

instances. It may also give SAGE.2 some immunity to erroneous training instanc.es. 

Strengthening and weakening is also used in the ACT* family of programs developed 

by John Anderson [Anderson 1983]. The ACT* framework, like many others including 

SAGE.2, is based on production rules. ACT* creates new rules. through processes of 

composition, proceduraliza.tion, generallz.a.tion, and discrimination. Of these, generaJ­

iza.tion and discrimination address the problem of discovering which features are relevant 

for determining when an operator should be applied. ACT* creates a generalized rule 

by omitting a condition from the antecedent parl of another rule. Discrimination adds 

a new clause either to the antecedent or to the consequent part of a rule. As in SAGE.2, 

newly introduced rules initially have very Jaw weights. Weights are i.ncrea.sed when they 

are reinvented or are activated through the ~pread of activation in memory. They are 

weakened by negative feedback. 

The ACT* framework ha.s been used to account for a wide variety of data from 

the psychology of human learning. The scheme for strengthening- and weakening rules, 

however, does not appear to be consistent with th~ ha.sic psychological data concerning 

contingency. 
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3 The CEL Framework and the LURN Model 

The CEL architecture [Granger 1982, 1983; Granger and McNulty 1984J provides a set 

of m.echanisms for establishing, storing, indexing and retrieving memory traces based on 

experience. Within this architecture, the LURN model implements a number of specific 

hypotheses about the nature of traces, their indexing, and the detailed operation of the 

encoding and retrieYal processes in memory to account for experimental data in human 

and animal psychology. 

3.1 Overview or CEL 

The CEL framework consists of twelve processes, or operators, and a set of represen­

tations based on sequential traces of events. The operators are separable, by fun¢tion, t 

into five classes: reception, recording, retrieval, reconstruction, and refinement. There 

are two reception operators: DETECT and SELECT. DETECT performs sensory input 

and special preprocessing. For example, specialized processing performed by the visual 

system would be encapsulated within DETECT. SELECT acts as an active filter on the 

sensory information processed by DETECT, allowing the model to attend to specific 

elements of a sensory stream of information. 

The recording operators are NOTICE, COLLECT, DETOUR, and INDEX. The 

NOTICE operator maintains a list of desirable and undesirable states. NOTICE con­

tinuously matches these states against the output from SELECT; NOTICE tags events 

with a hedonistic vaJue, and then appends them onto a data structure called short term 

memory (STM). NOTICE also sets a global value reflecting the pleasure of the organism 

a,, a whole. If this global Yalue falls to one extreme or another, then either of two other 

operators are triggered: COLLECT or DETOUR. These operators 'package' a number of 

event specifications stored in shori term memory (STM) into a schema (memory trace). 
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A schema is represented in CEL as a ~aence of events, and ea.ch event is represented 

as a set of (unstructured) features. COLLECT packages a desirable schema; DETOUR, 

an undesirable one. Both of these operator.J hand their newly created schema to the 

fourth operator: INDEX. INDEX stores each schema in long term memory (LTM) using 

appropriate indexing schemes so that they may be retrieved at a later time. 

The retrieYal operators REMIND and ACTIVATE perform retrieval and selection 

of stored schemata. REMIND matches the la.st event specification in STM against the 

indexing structure built by INDEX in long term memory (LTM). Schemata matching 

within a certain threshold a.re placed in intermediate term memory (ITM). ACTIVATE 

then examines each of the schemata in ITM and chooses one for reenactment on the ba-

sis of a number of-metrics. This chosen schema is called the current predictive schema 

(CPS). The competition between these REMINDed schemata is similar to conflict res­

olution in a spreading activation framework [Anderson, 1983). 

SYNTHESIZE a.nd ENACT are the two reconstruction operators. The first, SYN­

THESIZE, matches the CPS with to the events appearing in STM. If event descriptions 

in the CPS a.nd STM match, then the ENACT operator attempts to perform any ac· 

tions in the next event of the CPS. If SYNTHESIZE is not able to match an event 

description in the CPS with the most recent event in STM, it triggers the refinement 

operator BRANCH. Lastly, if SYNTHESIZE has been able to successfully match each 

event description in the CPS with sequential event specifications in STM, then it will 

trigger the refinement operator REINFORCE. 
-

The fifth class of operators are the refinement operators REINFORCE a.nd BRANCH. 

REINFORCE incrementally strengthens a schema. BRANCH packages event spediica­

tions into a schema for indexing, effectively reducing the strength of the current predic-

tive schema {CPS) by ad di'·~ a competin~ schema. BRAN CH also changes organism 

state values associated with surprise or failed expectation. One of these state values 
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triggers SELECT to relax its filtering process. Another has the effect of increasing the 

number of event specifications that are packaged as a schema for indexing. 

The CEL operators and their paths of interactions are sketched in 6 gure 1. 

4 Contingency in LURN 

Continrency is defined by Rescorla [1966} as p(F2jFI)/p(F2IFl). This is similar to 

the lo[icaJ sufficiency value used in some expert systems employing Bayesian statistics, 

notably the Prospector system [Duda 1979J. Our model shows how such a value can be 

incrementally learned and used in a reactive environment. 

To determine the predictive value of a feature (or group offeatures ), LURN notes the 

frequency of four combinations: Fl occurs and then F2 occurs (prediction}, Fl occurs 

and then F2 does not occur (error of commisai'on), Fl does not occur and then F2 does 

occur (error of omission), or Fl does not occur -and neither does F2 (non-prediction). 

The first and last of th~ combinations strengthen the association between Fl and F2, 

while errors of commission and of omission weaken the association. 

F2 present F2 absent 

Fl present ++ +-

Prediction Error of Commission 

Fl absent -+ --

1 Error of Omission Non-prediction 

Table 1: Possible combinations of Fl and F2 

The four categories described above a.re needed to compute logical necessity and 

logical sufficiency IJy application of Bayes rule. However, it would be psychologicalJy 

implausible to note all the tim~ that Fl doe5 not occur and F2 also doe5 not occur. 
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EXTE~NAL WORLD 

STl1 
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INDEX EXTERNAL WORLD 

LT1'1 

Figure 1: Outline of CEL operators 
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(FI &. F2) &. NOT(F3) --> F4 

Figure 2: A hypothetical memory network. 

Therefore the learning mechanism of CEL notes relations between features only when 

one or the other has become active. We envision this as a spreading activation process, 

in which a node may become active either by being present in STM or by being expected 

(triggered by another node). Thus the paired non-occurrence of F 1 and F2 is noted only 

if some other combination of feature5 caus~ F2 to be expected. 

The res.triction that links between nodes a.re modified only if at lea.st one of the nodes 

is actiYated leads to a systematic undercounting of non-predictions. Thus the expecta­

tions simulated by the model are not the same a.s would be achieved by application of 

Bayes rule. 

MPmory in our model is organized as nodes and links, with inhibitory and excitatory 

links strengthened and weakened by the differences in activation between nodes. We 

hypothesize a single node type (which computes a boolean combination of its inputs) 

and four kinds of links: probe, trigger, expectation, and confirmation. Trigger and 

probe links are paired, as are expectation and confirmation links. The expectation­

confirmation pairs allow successes, errors of commission, and errors of omission to be 

recognized. The trigger-probe pairs allow us to have nodes which compute the logical 

negation of their inputs, but which are not constantly excited in the absence of input 
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stimuli. If the network in figure 2 were a.ctiYated through nodes F 1 and F2, but not 

F3 or F4, activation would spread from the first AND node to the second, and a probe 

would propagate backward from the second AND to the NOT node, which would then 

satisfy the second AND node. This would then trigger an expectation of node F4, and 

an error of commission would be recognized. 

Our current implementation uses a simplification of this scheme: For each feature 

(F'.2), we keep a table of counts with entries for each feature or combination hypothesized 

as a relevant cue (Fl). Instead of adjusting the strengths of links between nodes, we com­

pute weights from these counts. The simplified scheme is advantageous for experimental 

change while our theoretical view of memory develops. 

4.1- Establishing a Memory Trace 

In response to a pleasant or unpleasant stimulus (F2), CEL forms a memory trace, or 

·schema, containing several events that lead up to it (see (Granger and McNulty 1984J 

for details of tra.c~tablishment processes in CEL). 

Ea.ch of the features in these preceding events is potentially a cue which can be 

used to predict F2. The task is to decide which of these potential cues are relevant or 

predictive, which a.re background or context cues, and which are uncorrelated. 

4.2 Gathering Evidence 

All counts in L_URN's memory are initially 1. These counts will be updated only when 

the index node is triggered by matching cues in the environment (REMIND) and one 

of the schemas beneath it is chosen (ACTIVATE) to become the current predictive 

schema (CPS). SYNTHESIZE then follow! the CPS and attempts to match it to events 

as they occur, eventually triggering REINFORCE or BRANCH, depending on whether 

the match between the current episode and the CPS is successful or unsuccessful. 
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REINFORCE is responsible for noting when a prediction has succeeded. Cues in 

the index node which match features in the environment during the current experience 

are called successes, and their success scores are incremented. Cues in the index node 

which did not match features in the environment are called omissions, and their omission 

scores are incremented. 

BRANCH is responsible for relevance assignment when predictions fail. BRANCH 

scores a commission for each cue feature that matched the environment and a non­

prediction for each cue feature that was absent from the enYironment. Features present 

in the environment but not present in the schema are added to the cue table with an 

initial score of 1 commission, no successes, no omissions, and no non-predictions. 

4.3 A Detailed Example 

Assume LURN is simulating a situation -where tones, lights, noises, and shocks are 

occurring. LURN's job is to construct a memory record -that allows it to learn which of 

the many features of the environment a.re the ones that predict the occurrence of shock, 

so that it can avoid it. In this ~tion we will illustrate what LURN's memory would 

look like in three circumstances: ( 1) where shock is randomly paired with a number 

of environmental featu~ (random contingency); (2) shock is reliably preceded by a 

conjunction of predictive features (e.g., tone and light) (positive contingency); and (3) 

shock only occurs in the absence of a pa.rlicular feature cue, so that the cue (e.g., tone) 

becomes a 1 saf~ty signal'_ - i.e., the anim~ (or LURN) can predict that no shock will 

occur after the cue (nerative contingency). 

After training in the random condition, i.e., with tone, light, shock, etc., indepen­

dently _occurring at regular intencili, LUR..'l will have a score function similar to table 2 

(note that successes are indicated by'++', commissions by'+-', omissions by'-+', 

and non-predictions by '- - '. The figu~ in tables 2, 3, and 4 are taken from runs of 
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r ++ +- -+ I -- LS LN 

Ca.ge 9 9 1 1 1.0 1.0 

Tone 4 4 6 6 1.0 1.0 

Light 4 4 6 6 1.0 1.0 

Buzz 4 5 6 5 0.81 1.22 

Whrr 4 4 6 6 1.0 1.0 

Table 2: Random Contingency 

our computer model.) 

LURN in a positive continency condition, on the other hand, would have a score 

function like table 3. The conjunction of light and tone is proposed by the LURN 

program, as discussed in section 4.5. This chart illustrates important differences between 

contingency learning and more intuitive notions of strengthening based on number of 

pairings. Cage and tone receive the same number of pairings with shock, but tone is 

a much better predictor of shock. Moreover, tone was involved in a greajer number of 

mistaken predictions (erro~ of commission) than was buzz, but tone is still recognized 

a_, the better predictor. 

Finally, in a negative contingency situation, LURN's memory would have gathered 

statistics like table 4. In training situations with aversive stimuli, negatively contingent 

cues have been shown to increase pursuit behavior and decrease avoidance behavior (even 

when the avoidance or pursuit behavior is not related to the stimulus whose absence is 

predicted). Negatively co-ntingent cues may also serve to suggest avoidance or escape 

reactions. 
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++ +- -+ -- LS LN 

Ca.ge 17 6 1 1 1.48 0.52 

Tone 17 4 1 3 3.24 I 0.25 

Light 17 4 l 3 3.24 1 0.25 
I I 

Buzz 6 i 3 12 4 I 
I 0.89 I 1.33 

I I I Whrr 14 6 4 1 o.88 I l.so 

And[Tone,Light] 15 2 1 2 2.6.5 l 0.18 

Table 3: Positive Contingency 

++ +- -+ -- LS 1 LN 

Ca.ge Z2 6 1 1 1.s1 I 0.43 

Tone 1 3 22 4 0.30 l 4.88 

Light 12 3 11 4 I 1.09 / 0.75 

Buzz 11 5 12 2 0.80 2.19 

Whrr 11 4 12 3 0.92 1.33 

Not[ToneJ Z2 4 1 2 2.54 0.23 

Table 4: Negative Contingency 
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4.4 Characterizing Cues 

With counts of omissions, successes, commissions, and non-predictions, we can say what 

we mean by u1efu/ cues (both positive and negative), context, and uncorrelated cues. A 

positive cue has a greater than average ratio of successes to errors of commission (high 

LS), and a negative cue has a smaller than average ratio of successes to commissions 

(LS less than 1). Both contexi cues and uncorrelated cues have Ls values in the vicinity 

of 1, but context cues have a small number of errors of omission relative to errors of 

commission. 

Positive cue ls >> 1 

Negative cue ls << 1 

Context ls i::::i 1, omi1n'ons < commiuions 

Uncorrelated ls i::::i 1, oniinion1 2! commi11ion1 

An intuitive way of stating the difference between uncorrelated and context cues is 

. that one can be relatively sure that uncorrelated features are not necessary for predicting 

an event (F2), since FZ ha,., repeatedly occurred in absence of the uncorrelated cue. One 

cannot be sure, though, about the importance of conteXi. H is impossible to know 

whether or not it is a necessary precondition until F2 has been predicted a few times in 

the absence of the context feature. Then the context cue will either become a positive 

cue (iI the prediction was successful) or an uncorrelated cue (iI the prediction failed). 

-
4.5 Combining features 

It is not sufficient to note relations between individual features. It is also necessary to 

note useful combinations of features. We will use the term 'clause' to refer either to a 

memory node representing a singie feature or a node representing a. boo)ean combination 

of features. The LURN model us.es current association! between clauses to suggest new 
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combinations. Clan~ containing boolean AND or NOT are introduced to discriminate 

betw~n positive and negative instances. 1 Generation of these clauses is guided by 

current relations between clauses and the features to be predicted. When a clause is 

satisfied in a negative instance but not in a positive instance, and that clause ha,, an LS 

value less than 1, it is a candidate for negation. When a clause with a LN value below 

1 is pr~nt in a negative instance it is a candidate for conjunction with a clause that is 

unsatisfied in the negative instance and also has a L~ Ya.Jue less than 1. We can think 

of the value of clauses as guiding a plausible move generator for searching the space of 

discriminated conditions. 

Propose When (error of commission) 

Not[ A) LS(A) << 1, A satisfied 

And[A,Bj LN(A) << 1, A satisfied 

l LN (B) < < 1, B unsatisfied 

5 Experience with the LURN System 

5.1 Robustness 

Real-world environments invariably entail some de~ of noise, so a learning engine must 

be able to tolerate erroneous training instances. We have b~n pleasantly surprised by 

the performance of the LURN program in these circumstances. Figure 3 depicts the 

performance of LURN when trained with various rates of erroneous instances. 

The line plotted with circles in figure 3 shows. performance under conditions of uni-

1 h j5 desirable ~ &llow both disc:rimina.tion (through conjunct.ions of cla.U5es) a.nd generalization 

(through disjunct.ion). At th1s time, however, the LUR~ model proposes only conjunctioru .Ld 

neption5. A we&.ier form of generalization is a.c:h.ieved by dropping clauses with low predictive value. 
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Figure 3; Performance of LURN a.s a function of noise. 
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form noise, that is, equal chance of substituting a positive instance for a negative instance 

and vice Yersa. As the error rate approaches 0.3, the LURN's performance falls toward 

a chance level ( 503 ). As one would expect, error rates in excess of .5 cause LURN to 

acquire the opposite of the training concept and to perform at less than chance level. 

LUR~'s tolerance of erroneous training instance is partly due to the smooth weight-· 

ing function. In addition, though, we found that robustness depends critically on the 

introduction of combined features (section 4.5). With no noise in the data, LVRN can 

achieve perfect performance for simple conjunctive classifications even when the com­

bination proposer is disabled, since the extreme values of LS and LN are sufficient to 

express logical necessity and logical sufficiency. But when even a small number of err<>­

neous in.5tances a.re introduced, performance falls off precipitously unless combinations 

are proposed. The predictive value of a combination of features is higher than that of 

any of its component features, and the influence of erroneous instances on that value is 

correspondingly less. 

The triangles in flgure 3 plot the performance of LURN when ne~tive instances are 

substituted for positive instances, but there are no spurious positive instances. This 

is similar to partial reinforcement in conditioning.· LURN's performance remains well 

above chance in this case even for levels of noise in excess of 50% because the tone and 

light are in positive contingency relation with shock even when the absolute probability 

of shock following the cues is low. (LURN's level of performance is similar when the 

only noise is spurious positive instances.) 

5.2 Annotated Run-Time Output 

We have implemented LURN in Franz Lisp on a VAX 11/7f:IJ running under Unix. In 

the following transcript of a LURN run, the conjunction of tone :11d light is a positively 

contingent cue for the onset of shock. Annotations are separated from actual program 
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output by semicolons. 

Detecting: cage. l,ight, tone, wh.rr theu are external cuu. 
doubttul ot shock occurrence (odds• 0.3 < 1). 

Detecting: shock 
Updating Expectations 

au-king 1ueee1ae1 
au-king omia1ion1 

Detecting: ca.ge, light, tone, whrr, 
strongly expecting shock (odds • 

Detecting: shock 
Updating Expectations 

au-king successes 
aarking oaiaaiona 

Detecting: cage, light 

buu 

LURJ' doesn't predict the shock, but 
geta one. 

1ati1tied cues get a 1ucce1a. 
u.nsatistied cue1 get Ill omission. 

3.26 » 1). 
LURJ auecesstully predicts the shock. 

aa.tistied cues get a success. 
u.nsa.tistied cuea get Ill oaiaaion. 

doubtful ot shock occurrence (odds• o.e4 < 1). 
Detecting: ~otbing 

Pattern 
++ +- -+ 

not[whrr) 
2 1 

tone 
4 2 

light 
4 2 

3 

2 

buu 
3 2 3 

whrr 
3 3 2 

ea.ge 
4 3 

11 

11 
o. ag 11 

2.0 

2.0 

II 
11 

II 
II 

II 

lD 

I 

LURJ doesn't predict the 1hock l.lld 
doesn't get one. thia ia a 
1uccea1tul prediction, but the counts 
~e not updated when a node isn't 
actiTated. 

LTN looks like this now: 

1.33 I; a aista.kenly introduced ela.uae. 

I 
0.5 I; tone h1..1 a low LI. 

I 
0.6 I; light also baa a low LJ. 

t.88 11 o.~ 

11 
o. 75 11 

II 

1.5 

1.14 II o.se 
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Detecting: Cllge, light, vbrr, buz.z 
atrongly expecting 1hock (odd• • 

Detecting: nothing 
Updating Expectation• 

marking co11U111i1aions 
marking non-predictions 

Suggeating Po11ible lev Feature 
a.nd [light. tone] 

:2.14 » 1). 
LORI ma..ke1 a.n error of comais1ion. 

aatiafied featu:-9& get a co111J1iaaion. 
unsatisfied features: a non-prediction. 

LURI suggest• a new feature clause. 

LURJ'a contingency information suggests this new feature 
through a contingency driven discriaination proce11. 
The light cue is aatiafied (present) in this inatl.llce 
and bu a LI << 1. The tone cue ia not ntis:fied 
(mining) and dao hu a LI « 1. Their conj unction 
is suggested a• a new clause. 

5.3 Explanation of program behavior 

LURN calculates its confidence in predicting the shock by using the LS and LN values 

associated with each of the features. Logical sufficiency (LS) and logical ne<:essity (LN) 

are calculated by 

LS= s(n + o) 
o( s + c) 

LN= c(n+o) 
n( s + c) 

where " is the count of successful predictions, c is errors of commission, o is errors of 

omission, and n is non-predictions. LURN updates counts for satisfied and unsatisfied 

features when F2 is expected or when F2 is detected. LURN doesn't update counts 

when F2 is neither expected or detected. 

Confidence in LURN is calculated by multiplying together the LS values of each 

satisfied feature and the LN values of each unsatisfied feature. This confidence measure 

is then interpreted in terms of odds: much less than 1 indicates that FZ is not expe<:ted; 

about 1 indicates uncertainty; much greater than 1 indicates that F2 is expected. 
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LCRN introduces new clauses only on errors of commission. By restricting the 

proposal of new clauses to immediately after errors, LUR~ avoids endlessly making pro­

posals when it reaches proficiency. Possible new clauses are proposed from the satisfied 

and unsatisfied features with LN values below a. bound of I. 

6 Conclusions: Achievements and Limitations 

6.1 Contingency versus simple strengthening of associations 

LURN expands the concept of "strength" or "weight" of a memory trace to include 

sufficient information to determine inter~vent contingency. The salience of individuaJ 

featu~ .and of combinations of features is determined incrementally, and performance 

remains quite good even with a considerable number of erroneous ·training instances. 

6.2 Future Work 

The field of animaJ learning is rich in important data, little of which has been exam~ 

ined from the viewpoint of artificial intelligence. We have begun work on blocking 

!Kamin 1968, 1969) and on differences in response latencies between animals in instru­

mental and classical conditioning procedures. Weaknesses remain in some aspeds of our 

model. In particular, neither the encoding of features (unstructured attributes) nor the 

mechanisms for learning combinations of features (which currently propose only con­

junctions and ~egations)_ are as strong as they need to be. We expect the behaYioraJ 

data to continue to guide us toward a more complete and powerful model. 
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