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ABSTRACT OF THE DISSERTATION

Lagrangian Energetics and Vertical Dispersion in Stably Stratified
Turbulence

by

Seungbum Jo

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2015

Professor Keiko K. Nomura, Chair

The vertical dispersion of fluid particles in stably stratified homogeneous

turbulence with mean shear is investigated. An analysis framework which de-

scribes the associated flow energetics in the Lagrangian frame is developed. This

provides a more clear and consistent interpretation of the behavior of the mean

square vertical displacement, σ2
zp(t), which can be related to the total potential en-

ergy (TPE) of a given set of fluid particles. The analysis considers TPE in terms

of the available potential energy (APE), associated with the nonequilibrium dis-
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placement, and the reference potential energy (RPE), associated with the change

in particle equilibrium height, i.e., the equilibrium displacement. The correspond-

ing evolution equations describe the key sequence of processes. As fluid particles

move away from their equilibrium height, vertical kinetic energy is converted (re-

versibly) to APE. This establishes nonequilibrium displacement, z′ and increases

TPE. Without molecular diffusion, gravity will reduce the vertical velocity and the

particles will tend to return to their original equilibrium height; APE is converted

back to KE in this reversible process. With molecular diffusion, fluid particles will

change their density, such to reduce ρ′, and therefore, change their equilibrium

height, i.e., some of the APE is dissipated and converted to RPE where it accumu-

lates. Molecular diffusion thereby acts to preserve displacements and reduce the

reconversion of PE to KE. In this manner, fluid particles can move further away

from their original equilibrium level and σ2
zp(t) can grow without limit.

The evolution equations are integrated in time and give a relation for σ2
zp(t).

At long time, the RPE will dominate the TPE; σ2
zp(t) is then a measure of the to-

tal APE dissipated by the flow. The significance of this with respect to the total

energy dissipated is given by the cumulative mixing efficiency, Ωc, which depends

on the strength of stratification. In the case of decaying turbulence, σ2
zp(t) evolves

to a constant value, proportional to Ωc. In the case of stationary turbulence, the

(constant) rate of growth of σ2
zp(t) is proportional to Ωc. The analysis is demon-

strated using direct numerical simulations of homogeneous shear flows with decay-

ing, stationary, and growing turbulence. Results for the latter case show σ2
zp(t)

xiv



to continually increase, and to have a reduced dependence on and reduced values

of Ωc as the strength of stratification decreases. In general, simulation results are

in agreement with the analysis and confirm that, in homogeneous stratified flows

with mean shear, an effective time scale for vertical dispersion at long time is that

of the turbulence decay time.
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Chapter 1

Introduction

1.1 Introduction

Air quality is controlled by how effective atmospheric turbulence can dis-

perse gaseous and particulate pollutants released at the earth’s surface. Because

of its vital importance, there have been significant efforts to develop simple and

effective models of turbulent dispersion for air quality applications [65]. However,

current dispersion models are found to be weak in their ability to predict dispersion

in the stable boundary layer which is characterized by turbulence, stratification,

internal waves and shear [36]. This is due in part to some uncertainties in the un-

derstanding and modeling of the physics of turbulent dispersion in stably stratified

conditions.

In a neutrally stratified flow, buoyancy forces do not restrict the vertical

motion of fluid particles and they can move vertically over unlimited distances by

1
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advection. In a stably stratified turbulent flow, the vertical motion of fluid particles

are restricted by buoyancy forces. If there is no molecular diffusion, the density

of fluid particles does not change and they are constrained to oscillate about their

equilibrium level. If molecular diffusion is considered, an interchange of density

will cause fluid particles to change the equilibrium level of their oscillations. The

fluid particles can thereby move further away from their original equilibrium levels.

The overall turbulent dispersion is then a result of two processes: large-scale tur-

bulent advection and small-scale molecular mixing [40]. The relative importance

of each process and the range of conditions under which each process dominates is

not clear.

Turbulent dispersion can be investigated in terms of energetics since the

vertical displacement can be considered in terms of potential energy. Large-scale

turbulent advection can establish overturns that raise a heavy fluid above a light

fluid which results in an increase in potential energy (PE). The associated kinetic

energy (KE) is converted to available potential energy (APE), which is the portion

of PE, available for conversion back to KE. However, molecular diffusion will cause

density changes and APE is dissipated. Eulerian energetics developed by Winters

et al [68] has been used to describe the advection and molecular diffusion. How-

ever, energetics in the Lagrangian frame, which is more appropriate framework to

investigate fluid particles’ dispersion, has not been fully developed.

This study considers stably stratified homogeneous shear flow, the simplest

flow that contains turbulence, shear and stratification, to investigate the physics
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of mixing and dispersion.

1.2 Literature Review of Research

1.2.1 Turbulent Dispersion in Stratified Flow

Fundamental analyses of turbulent dispersion are based on the statistical

theory developed by Taylor for stationary, homogeneous turbulence in an unstrat-

ified fluid [57]. Taylor’s diffusion theory is based on the statistical theory of Brow-

nian motion, where random movements of particles are only due to collisions. An

ensemble average of the displacement of particles is given by

⟨σ2
i ⟩ = 2⟨u2

i ⟩
∫ to

t

(t− τ)Rii(τ) dτ (1.1)

where ⟨ ⟩ denotes ensemble averages, σi is a displacement from an initial position,

ui is the vertical fluctuating velocity and t is the travel time from the source. The

mean square of particle displacement is directly related to the Lagrangian velocity

autocorrelation function which is given by

Rii(τ) =
⟨ui(t)ui(t+ τ)⟩

⟨u2
i ⟩

(1.2)

In a stationary process, the mean square dispersion at short time can be obtained

by assuming Rii(τ = 0) ≈ 1 from (1.1).

⟨σ2
i ⟩ = ⟨u2

i ⟩t2 (1.3)
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After a long enough time τ , the particle forgets its initial velocity. Therefore,

ui(t+ τ) is independent of ui(t) and ⟨ui(t)ui(t+ τ)⟩ → 0. As fluid particle veloci-

ties decorrelate from their original values, the mean square displacement increases

linearly with time.

⟨σ2
i ⟩ = ⟨u2

i ⟩TL,iit (1.4)

where TL,ii =
∫ 0

∞ Rii(τ) dτ is the Lagrangian integral timescale. Therefore, in neu-

trally stratified flows, fluid particles can move vertically over unlimited distances.

Large-scale vertical dispersion is relatively insensitive to small-scale mixing and in

most calculations of turbulent dispersion in neutrally stratified fluids, molecular

mixing is not considered.

In stably-stratified fluids, if the density of the fluid particles remains un-

changed, it can be shown (assuming stationary turbulence and equipartition of ki-

netic and potential energies) that fluid particles are constrained to oscillate about

their equilibrium density level a vertical distance of order σw/N , where σw is the

rms vertical component of turbulent velocity and N is the local buoyancy fre-

quency of the fluid [7, 40]. However, molecular diffusion alters the density of fluid

particles which, in turn, alters the equilibrium level about which they oscillate, the

fluid particles may move farther away from their former equilibrium levels. This

is the physical description developed by Pearson, Puttock and Hunt [40], hereafter

referred to as PPH. They consider the vertical flux of density, in Lagrangian terms,

to consist of two components: that associated with the growth in vertical displace-
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ment of fluid particles and that associated with the change in particle density due

to molecular diffusion. PPH claim that, while in neutrally stratified flows the for-

mer component dominates, in stably-stratified flows the latter becomes significant

due to the constraints on the former [18]. As stratification increases, mixing may

then become the dominant transport mechanism and thereby alter the nature of

the diffusivity.

PPH extend the earlier work of Csanady [7] to develop a mathematical

model of vertical dispersion in stably-stratified stationary turbulence based on

Langevin-type equations. In their model, the rate of change of density of fluid

elements by molecular mixing is explicitly accounted for and described by,

dρ

dt
= κ∇2ρ = − γNρ′ (1.5)

where the mixing parameter, γ, is the ratio of the buoyancy timescale to the

diffusion timescale. Results of the model show that, for small times, Nt << 1,

the mean squared vertical displacement of fluid elements, σ2
z(t), behaves as that in

neutrally stratified fluid (1.3),

σ2
z(t) = σ2

w t2 . (1.6)

For longer times, Nt > 1, the model prediction is given by,

σ2
z(t) = (σw/N)2 (ζ2z + 2γ2 Nt) , (1.7)

where ζz is a dimensionless parameter of order unity which depends on the shape of

the turbulent pressure gradient spectrum. Thus, the behavior of σ2
z(t) is dependent
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on the value of the mixing parameter γ. If γ << 1, σ2
z(t) may exhibit nearly

constant values (dispersion plateau) for intermediate times, 1 < Nt < γ−2. For

large γ, or large times Nt >> γ−2, the model predicts a slow linear growth, σ2
z ∼ t.

Values of the mixing parameter are found to be in the range, 0.1 ≤ γ ≤ 0.4, which

yield both types of behavior [18]. In order to account for the effects of shear, an

ad-hoc parameterization of γ is used [19].

On the other hand, Venkatram, Strimaitis, and Dicristofaro [63], hereafter

referred to as VSD, present a semi-empirical model to estimate vertical dispersion

based on the assumption that molecular mixing effects are negligible. According

to their model, at long time, σz
2 exhibits a linear growth without an intervening

constant period. These two models are based on fundamentally different interpre-

tations of the importance of molecular mixing in turbulent dispersion and they

produce significantly different results. Das and Durbin [9] have formulated a La-

grangian stochastic model for turbulent dispersion that accounts for shear and

inhomogeneities in stratified flows but the validation of these models is limited.

Direct numerical simulations (DNS) have been performed to study tur-

bulent dispersion in homogeneous stably stratified unsheared flows. Results for

decaying (unforced) turbulence [24, 22, 62] show that σ2
z evolves in time to a con-

stant value, which scales approximately with N−2. Results for stationary (forced)

turbulence [60, 5] show a linear growth in σ2
z at long time, supporting the PPH

model prediction. A plateau at intermediate times is also observed in these re-

sults at sufficiently low buoyancy Reynolds numbers, Reb = εk/(νN
2), and Froude
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numbers, Fr = εk/(N Ek), where Ek and εk are the turbulent kinetic energy and

its dissipation rate, respectively [5].

Venayagamoorthy and Stretch [62] (hereafter referred to as VS) examine

the physical ideas of PPH and the significance of small-scale mixing on particle

dispersion by tracking and evaluating the mixing of fluid particles in their DNS.

They find that in weakly (and neutrally) stratified flows, mixing limits the density

perturbation of fluid particles. As stratification increases, mixing is suppressed

and the density perturbations become controlled by advection consistent with the

predominance of oscillating wave motion. They attempt to quantify the signifi-

cance of mixing through a decomposition of the vertical displacement in terms of

an isopycnal (adiabatic) displacement, i.e., the deviation from the particle equilib-

rium level with respect to the background mean density profile, and a diapycnal

(diabatic) displacement, i.e., the change in the particle equilibrium level due to

the change in its density. They find that the diapycnal displacement dominates

the total displacement even in weakly stratified flows. In general, the observed

significance of the effects of mixing supports the basic underlying ideas of PPH.

However, VS find that the timescale for density changes due to mixing does not

scale well with that of buoyancy, as proposed by PPH (1.5), but instead with the

energy decay timescale.

Lindborg and Brethouwer [29] (hereafter referred to as LB) derive expres-

sions for σ2
z(t) for both decaying and stationary turbulence by integrating the

evolution equation for density fluctuations and applying turbulence scaling argu-
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ments and, in particular, they assume the mixing time to be comparable with the

Kolmogorov time scale. Their results for decaying flows at long time predicts σ2
z to

become constant, as observed in the DNS studies. The constant value is shown to

be 2(Eap(0)+aE(0))/N2, where Eap(0) and E(0) are the initial turbulent potential

and total (kinetic and potential) energies and 0 < a < 1. Their result for station-

ary flows at long time predicts σ2
z = (4Eap + 2 εP t)/N2, where εP is the turbulent

potential energy dissipation rate. LB interpreted the first term as the adiabatic

contribution to the mean square vertical displacement and the second term as

the diabatic contribution to the mean square vertical displacement. Comparisons

with their DNS of forced stationary turbulence [5] show good agreement of the

development of the plateau at intermediate times, associated with the adiabatic

contribution, and linear growth at long time. The long time growth rate agrees

with VS that the relevant time scale is the turbulence decay time. Although the

results of Lindborg and Brethouwer [29] provide quantitative predictions for σ2
z(t),

the physical interpretations are still not entirely clear since σ2
z(t) was derived in

an indirect manner. In particular, although energy quantities, i.e., turbulent ki-

netic and potential energies, appear in their result, they do not explicitly consider

the energetics of the dispersion process. A more complete and systematic anal-

ysis of the energetics of turbulent dispersion in stably stratified flow needs to be

developed.
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1.2.2 Energetics of Stably Stratified Flow

The energetics of stratified flow is usually formulated in the Eulerian frame-

work. Here, we review the analysis developed by Winters et al.[68]. The total

potential energy (TPE) for a volume of fluid is defined as

Ep = g

∫
ρz dV (1.8)

where ρ is the density of the fluid and z is the vertical spatial coordinate.

Since not all of the TPE is available for conversion into KE, it is more useful

in considering energetics, to decompose the PE into an available part and a non-

available part. The component of PE available for conversion to KE is the Available

Potential Energy (APE). The other component of PE is the background potential

energy (BPE) which is defined as the minimum potential energy attainable through

adiabatic redistribution of the density and given by,

Eb = g

∫
z∗(x, t)ρ(x, t) dV (1.9)

where z∗, obtained from an actual state through an adiabatic rearrangement, is the

vertical reference position in the state of minimum gravitational potential energy

at a given point (x, t) and defined as z∗(x, t) =
1
A

∫
H[ρ(x′, t)− ρ(x′, t)] dV ′ and H

is the Heaviside step function.

Then, APE is obtained by subtracting BPE (1.9) from TPE (1.8),

Ea = Ep − Eb = g

∫
ρ(z − z∗) dV (1.10)
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This concept of APE was first introduced by Margules [32] and developed

by Lorenz [31]. Lorenz’s APE is defined as the difference in the potential energy

between actual and reference state and is the available part of TPE for conversion

to KE which is eventually transformed to background potential energy via molecu-

lar mixing. Equations (1.9) and (1.10) explicitly define APE and BPE for Eulerian

energetics.

The evolution equations of KE, APE and BPE for a closed system are given

by,

dEk

dt
= − Φz − εk (1.11)

dEa

dt
= Φz − Φd + Φi (1.12)

dEb

dt
= Φd (1.13)

where Ek is a kinetic energy, εk is a viscous dissipation of kinetic energy, Φz =∫
gρw dV is the buoyancy flux which can be converted into kinetic energy re-

versibly, Φd = κg
∫
−dz∗

dρ
(∇ρ)2 dV is the dissipation rate due to diffusion, Φi =

−κgA(ρtop − ρbottom) is the conversion rate from internal energy to potential en-

ergy, κ is the thermal diffusivity, A is the fixed horizontal area and ρtop and ρbottom

is the horizontal mean density of top surface and bottom in ocean respectively.

In the Lagrangian point of view, an expression for the locally defined APE

density (hereafter defined as Eap) for the case of an incompressible fluid with arbi-

trary stratification and adiabatic processes was proposed by Holliday and McIntyre

[14] and Andrews [1] showed that the results hold for a compressible fluid. The
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APE density is defined as the integral of the displacement of a fluid particle from

its equilibrium state and given by,

Eap = −
∫ ζ

0

gζ̂ρ
′

o(z − ζ̂) dζ̂

= ρ(z − ζ)gζ + P (z)− P (z − ζ) (1.14)

where ˆ denotes a dummy integration variable, ζ is the vertical displacement of

fluid particle from its original, undisturbed position, z − ζ is an original, undis-

turbed position, ρ
′
o is the derivative of undisturbed density with respect to height

z and, P (z) and P (z − ζ) are the hydrostatic pressure at z and z − ζ. Equation

(1.14) shows the sign positive definite APE.

Although Roullet & Klein [44] and Molemaker & McWilliams [33] consid-

ered the presence of molecular diffusion, only the APE density was defined. The

PE quantity comparable to BPE has not been considered for Lagrangian energet-

ics. Therefore, the full Lagrangian energetics needs to be established to describe

the motion of fluid particles with molecular diffusion.

1.3 Summary and Outstanding Issues

As discussed in the previous section, current dispersion models are based

on two statistical theories for dispersion. One is the PPH model which extends

Csanady’s idea and accounts for small-scale mixing by describing the molecular

diffusion in terms of changes in the equilibrium level of the particles. The other is

the VSD model, which neglects molecular diffusion and is based on an extension
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of Taylor’s standard statistical theory. Due to the different interpretations of the

importance of mixing in turbulent dispersion, those two models produce signifi-

cantly different results. For short time, they agree but for long time, according to

the PPH model, the turbulent dispersion is dependent on the mixing parameter

γ but VSD model shows that the behavior of σ2
z(t) grows only linearly in time

and a mixing parameter is constant. LB derive the equations for σ2
z(t) for station-

ary and decaying turbulence but the equations are derived in an unclear manner.

The outstanding issues include the interpretation of molecular diffusion effects on

turbulent dispersion and the dependence of the behavior of mean square vertical

displacement on the value of the mixing parameter.

In the energetics study, the Eulerian energetics analysis has been used to

investigate the mixing process and diabatic effects but a Lagrangian frame is more

appropriate for dispersion modeling because it explicitly considers the vertical

displacement of fluid particles. However, currently only the APE component is

developed for Lagrangian energetics and a total PE description is not fully devel-

oped.

1.4 Research Objectives

The overall objective of this research is to better understand and predict

vertical fluid particle dispersion in a stably stratified turbulent flow, in particular,

to clarify the role and significance of molecular diffusion.
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In order to accomplish the objective, we consider the energetics of the fluid

particles and relate potential energy (PE) components to the mean square vertical

displacements. The time development of the potential energy components will

then provide a clearer description of the physics of fluid particle motion with a

diabatic effect. Specific objectives of the study include:

• Develop a Lagrangian analysis of the PE energetics.

– Previously, APE was the only potential energy component that had

been defined in the Lagrangian framework. Here, we will define a new

energy quantity, the reference potential energy (RPE), which we will

show is the Lagrangian equivalent of BPE.

– We will develop the associated evolution equations and investigate the

underlying physics. This will clarify the role and significance of mixing

process.

• Derive expression for σ2
z(t) from the PE evolution equations and interpret

fundamental physics of vertical dispersion.

– The PE components will be expressed in terms of mean square vertical

displacements and the mixing effect investigated by comparing the equi-

librium and nonequilibrium PE component. The relative significance of

stirring and mixing will be evaluated and a proper timescale associated

with turbulent dispersion determined.
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• Demonstrate the developed results using DNS.

– DNS is performed for three flow conditions, decaying, stationary, and

growing turbulent flow to confirm the analytical results of the energetics

and vertical dispersion.

1.5 Dissertation Outline

The content of this dissertation is arranged into five further chapters:

• Chapter 2 provides the flow description for the analysis, including the defi-

nitions of basic parameters and governing equations for the Boussinesq flow.

• Chapter 3 presents the development of the Lagrangian energetics. Potential

energy components and their associated time evolution equations are consid-

ered. A physical interpretation of each conversion terms is investigated.

• Chapter 4 develops a turbulent dispersion model by applying the Lagrangian

energetics. The appropriate dispersion timescale and relations are proposed

and compared with existing models. Three flow conditions including decay-

ing, stationary, and growing flow, are examined to investigate the mixing

effect on dispersion.

• Chapter 5 presents the DNS results demonstrating the energetics analysis of

turbulent dispersion in homogeneous stably stratified shear flow.



15

• Chapter 6 concludes this dissertation with a summary of significant results

of this research. Suggestions for further work are indicated.

• Appendix A describes the numerical methodology for DNS. The particle

tracking algorithm is also described to obtain Lagrangian statistics.



Chapter 2

Basic Flow Description

2.1 Physical Description

Our primary application of interest is turbulent dispersion in the atmo-

sphere under stably stratified condition. We therefore consider the motion of fluid

particles in an unbounded domain. A uniform background stable stratification

(dρ/dz < 0) is imposed which is fixed in time. Buoyancy effects due to gravity are

important. Flow velocities are much smaller than the speed of sound so that the

density change due to pressure changes is small compared to that due to temper-

ature changes, hence, the equation of state is ρ = f(T ). The fluid is a gas and

assumed to behave as an ideal gas.

The dependent variables of interest in this study are velocity vector v,

pressure p, temperature T and density ρ. The instantaneous position and velocity

16
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vectors are given by,

x(x, y, z, t) = (x1, x2, x3) = (x, y, z) (2.1)

v(x, y, z, t) = (u1, u2, u3) = (u, v, w) (2.2)

where x, y and z correspond to the streamwise, spanwise and vertical directions

in a cartesian coordinate system. Here ρ̃ and T̃ are respectively defined as the

instantaneous potential density and temperature of a fluid particle.

ρ̃(x, y, z, t) = ρ− ρo − ρa(z) = ρ(z) + ρ′(x, y, z, t) (2.3)

T̃ (x, y, z, t) = T − To − Ta(z) = T (z) + T ′(x, y, z, t) (2.4)

where ρ and T are the total density and temperature, ρo and To are the constant

values for scaling density and temperature of the system, ρa(z) and Ta(z) are the

adiabatic density and temperature variation when the fluid is adiabatically moved

to reference pressure, ρ(z) and T (z) are the background density and temperature,

and ρ′ and T ′ are the deviation from background density and temperature.

Each particle is identified by its originating position (xo, yo, zo) at to =

0. The independent variables in the Lagrangian frame are the initial position

(xo, yo, zo) and the current time t. Thus, x(xo, yo, zo, t) is the position of a fluid

particle at t. A fundamental relationship between Lagrangian and Eulerian frames

of reference is then, x(xo, yo, zo, t) = (x, y, z, t).

The significance of the potential temperature and density is that their gra-

dients determine the stability of the flow, i.e., dT̃
dz

> 0 or dρ̃
dz

< 0 is a stable flow
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condition whereas dT
dz

> 0 or dρ
dz

< 0 condition can be unstable, i.e., it can be

either dT̃
dz

< 0 or dρ̃
dz

> 0 because the density at a lower region can decrease as

the pressure effect on density is removed and does not compress the fluid particle

anymore. Since ρ̃ decreases with height in stable condition and it is the variable

that determines the static stability, the use of potential density is appropriate for

ensuring a stable stratification after an adiabatic density distribution.

From the Stokes’s assumption, the thermodynamics absolute pressure can

be interpreted as the mean pressure or the mechanical pressure related to only

translational energy. Thus, pressure can be decomposed into a hydrostatic and

nonhydrostatic pressure [23].

p = P + p′ (2.5)

where P is the hydrostatic pressure and p′ is the perturbation from hydrostatic

pressure. The hydrostatic pressure is associated with the fluid in static equilibrium

state and determined by the hydrostatic force balance,

dP

dz
= − (ρo + ρ)g (2.6)

which represents the balance between net pressure force in the vertical and gravi-

tational force of fluid particle associated with fluid particle’s density.

2.1.1 Equation of motion - Boussinesq approximation

The Boussinesq approximation was introduced and applied to fluid dynam-

ics by Boussinesq [4], and Spiegel and Veronis [48] formally justified the Boussinesq
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approximation by performing a scaling analysis of equations. The study for Boussi-

nesq flow is reviewed by many papers such as Durran & Arakawa [11] and Bannon

[2].

The main purpose of the Boussinesq approximation is retaining the effects of

density (buoyancy) and linearizing the acceleration terms in Navier-Stokes equa-

tion by ignoring density variations except where they are coupled with gravity.

This assumption is applicable under certain conditions which are (i) compressibil-

ity effects are small so density does not change due to pressure change but may

change due to temperature change and (ii) the vertical scale of the flow (H) is

much smaller than any length scale ℓ, hence, ∆ρ
ρo

= ϵ ≪ 1 [27, 48].

The general equations for conservation of mass and momentum for fully

compressible flow of a Newtonian fluid are,

1

ρ

Dρ

Dt
= −∇ · v (2.7)

ρ
Dv

Dt
= −∇p− ρg +∇

(
2µeij −

2

3
µ(∇ · v)δij

)
(2.8)

where eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
is a strain rate tensor

For the Boussinesq flow, Spiegel and Veronis [48] show that the divergence

of velocity (∇ · v) contains order of ϵ which is much less than 1, and this term can

be assumed to be very small, approximately zero. From the conservation of mass,

1

ρ

Dρ

Dt
= −∇ · v = −

(
∂

∂t
+ v · ∇

)(
ϵ

ρ

∆ρ
+ ϵ

ρ′

∆ρ

)
+O(ϵ2) ≈ 0 (2.9)

In the Boussinesq approximation, the thermodynamic variables such as spe-

cific heats (cp & cv), volumetric expansion coefficient (α), and transport properties
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such as thermal conductivity (k) and viscosity (µ) are assumed to be constant.

The equation of state for Boussinesq flow gives,

ρ(T ) = ρo[1− α(T − To)] (2.10)

For an ideal gas, it obeys an equation of state which is given by,

p = ρRT (2.11)

where R is a specific gas constant

The change in internal energy is given by,

de = cvdT (2.12)

where e is a specific internal energy and cv is a specific heat at constant volume

The mechanical energy for the Boussinesq flow is obtained by multiplying

(2.8) v with Boussinesq approximation by which gives,

ρo
D

Dt

(
1

2
u2
i + gz

)
=

∂

∂xj

(uiτij) + p(∇ · v) (2.13)

where τij = −pδij + 2µeij and
∂

∂xj
(uiτij) = −p(∇ · v)− v(∇p) + µ∇2v

The total energy equation for the Boussinesq flow is given by [27],

ρo
D

Dt

(
e+

1

2
u2
i + gz

)
=

∂

∂xj

(uiτij) +
∂qi
∂xi

(2.14)

The internal energy equation can be obtained by subtracting mechanical

energy (2.13) from total energy (2.14).

ρo
De

Dt
= −∇ · q− p(∇ · v) (2.15)
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The internal energy equation combined with (2.4), (2.11) and (2.12) reduces

to an equation for temperature.

ρo
De

Dt
= −∇ · q− p(∇ · v)

ρocv
DT

Dt
= −∇ · q+

p

ρ

Dρ

Dt

ρocv
DT

Dt
= −∇ · q− (−Dp

Dt
+ ρR

DT

Dt
)

ρo(cv +R)
DT

Dt
= −∇ · q+

Dp

Dt

DT

Dt
= κ∇2T

DT̃

Dt
= κ∇2T̃ (2.16)

where q = −k∇T is a heat flux obeying the Fourier law, k is the thermal conduc-

tivity, κ = k
ρocp

is the scalar thermal diffusivity, cp is a specific heat at constant

pressure, and Dp
Dt

is negligible under the Boussinesq approximation.

Combining (2.16) with (2.3) and (2.10) gives the density equation which

has same form as temperature equation.

Dρ̃

Dt
= κ∇2ρ̃ (2.17)

(2.17) shows that the density changes due to thermal diffusion.

The momentum equation (2.8) for a fluid particle in the Boussinesq flow

with ∇ · v ≈ 0 condition is,

ρ
Dv

Dt
= −∇p + µ∇2v − ρg (2.18)



22

Subtracting the hydrostatic balance of background (2.6) from (2.18) and dividing

by ρo gives the conservation of momentum for the Boussinesq flow,

ρ
Dv

Dt
= −∇p′ + µ∇2v − ρ′g(

1 +
∆ρ

ρo
+

ρ′

ρo

)
Dv

Dt
= − 1

ρo
∇p′ + ν∇2v − ρ′

ρo
g

Dv

Dt
= − 1

ρo
∇p′ + µ∇2v − ρ′

ρo
g (2.19)

In summary, from (2.9), (2.19) and (2.17), the equations of motion for a

fluid particle in a uniformly stratified flow with the Boussinesq approximation are:

∇ · v ≈ 0 (2.20)

Dv

Dt
= − 1

ρo
∇p′ + ν∇2v − ρ′

ρo
g (2.21)

Dρ̃

Dt
=

∂ρ̃

∂t
+ v · ∇ρ̃ = κ∇2ρ̃ (2.22)

In Bousinessq flow with molecular (thermal) diffusion and ideal gas behav-

ior, the equation for internal energy (2.16) is converted to an equation for density,

which as shown in chapter 3, will be considered in terms of potential energy. There-

fore, in this study, we will focus only on the mechanical energy components, kinetic

energy and potential energy. Alternatively, if the conversion is made back from ρ̃

to T̃ , changes in the (diabatic) component of potential energy would be considered

as changes in internal energy.



Chapter 3

Lagrangian Energetics

In this chapter, we develop a Lagrangian analysis of the energetics of stably

stratified Boussinesq flow with a particular focus on the description of potential

energy. The total potential energy of a fluid particle is considered as the sum of

the available potential energy (associated with nonequilibrium displacement) and

reference potential energy (associated with the change in particle equilibrium level).

The use of PE components in the Lagrangian frame has several advantages: they

are sign-positive definite, independent of the coordinate system, and can be directly

related to the square of vertical displacement in uniform stratified flows [28].

The associated evolution equations will indicate the key underlying physics. The

developed analysis will then be applied to the problem of homogeneous turbulent

dispersion in chapter 4. Results will give an expression for the behavior of mean

square vertical displacement and clarify the role of mixing.

We first briefly examine potential energy (PE) components in the Eulerian

23
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framework and then develop PE components in the Lagrangian framework in the

following section. We will then compare these two analyses. Finally, application

to a uniform stratified turbulence is considered and the corresponding evolution

equations for the PE components in the Lagrangian frame are developed.

3.1 Potential Energy Analysis -

Eulerian Framework

As discussed in chapter 1, the energetics of stratified flow is usually formu-

lated in the Eulerian framework which considers a region of space, i.e., a control

volume, for analysis. The total potential energy (TPE) is described as the sum of

available potential energy (APE) and background potential energy (BPE).

3.1.1 Total Potential Energy

The potential energy (per unit volume) at a given z location may be eval-

uated as ρgz, where ρ is the density of the fluid and z is a vertical height defined

with respect to an arbitrary datum. In the Eulerian energetics developed by Win-

ters et al. [68], the total potential energy (TPE) for the domain (control volume)

is then

Ep = g

∫
ρz dV (3.1)
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3.1.2 Background and Available Potential Energy

Lorenz [31] defined the reference state as the minimum energy state and

no further conversion occurs between PE and KE, i.e., the reference state is an

undisturbed stable (dρ
dz

< 0) state in hydrostatic equilibrium (v = 0). The corre-

sponding PE of this reference state is BPE (Background Potential Energy) and is

used to define APE from TPE. Winters et al. [68] defined BPE as the minimum

potential energy for a given volume and time and obtained through an adiabatic

redistribution of the actual density, ρ, to give ρ(z∗1) > ρ(z∗2) when z∗1 < z∗2 so

that the resulting density distribution is a decreasing function of z∗ [66]. The BPE

is then given by,

Eb = g

∫
z∗(x, t)ρ(x, t) dV

= gA

∫
ρ(z∗, t)z∗ dz∗ (3.2)

where z∗(x, t) is the corresponding vertical position of fluid in the reference state

of fluid at (x, t) in the actual state.

The APE is then obtained by subtracting BPE (3.2) from TPE (3.1),

Ea = g

∫
ρ(z − z∗) dV (3.3)

As discussed in chapter 1, the APE is the portion of TPE available for conversion

to kinetic energy (KE).
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Figure 3.1: Diagram of a fluid particle’s reference density and height. In this case
shown, the reference density variation ρr(z) is linear.

3.2 Lagrangian analysis

For the development of PE components in Lagrangian framework, the La-

grangian variables first need to be established. The PE (per unit volume) of a fluid

particle, which resides at a height z at time t could be evaluated as

ρ̃(t)gz(t) (3.4)

where a natural datum for z would be the initial position z(0). However, as will be

shown, in considering the energetics and the partitioning of PE, we will consider

zeq(0) for the datum, so that the particle vertical position can be written as

zp(t) = z(t)− zeq(0)

= (z(t)− zeq(t) + (zeq(t)− zeq(0))

= z′(t) + ∆zeq(t) (3.5)
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where zp is the total vertical particle displacement, defined with respect to its

original equilibrium reference height zeq(0). The equilibrium reference height is the

height where the density of fluid particle ρ̃(t) equals the reference density ρr(z),

which is the redistributed density field obtained from an adiabatic rearrangement

such that ρr(z1) > ρr(z2) when z1 < z2.

Figure 3.1 illustrates the decomposition of the fluid particle’s vertical posi-

tion and corresponding density. We consider a fluid particle with an initial position

z(0) and initial density ρ̃(0). zeq(t) is the equilibrium reference height of a parti-

cle whose density ρ̃(t) matches the reference density ρr(z). zeq(0) is the original

equilibrium reference height at t = 0 and ∆zeq is the change in the particle’s equi-

librium reference height. z′ is the deviation of the particle’s current height z(t)

from the particle’s current equilibrium reference height. With these defined La-

grangian variables, we will develop the potential energy components in Lagrangian

framework.

3.2.1 Available Potential Energy Density

The locally defined APE density (hereafter denoted as Eap) in the La-

grangian framework was proposed by Holliday and McIntyre [14] for an adiabatic

process, i.e., there is no molecular diffusion and thus the density of a fluid particle

remains constant in this case. APE density is associated with the difference be-

tween the actual density, ρ̃(t) = ρ̃(0), and reference density, ρr(z) [54] and defined
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as,

Eap =

∫ z(t)

zeq(0)

g(ρ̃(0)− ρr(ẑ)) dẑ

= ρ̃(0)g(z(t)− zeq(0))−
∫ z(t)

zeq(0)

gρr(ẑ) dẑ

= ρ̃(0)g(z(t)− zeq(0)) + P (z(t))− P (zeq(0)) (3.6)

where zeq(0) is the (constant) equilibrium height, ẑ is the dummy variable of inte-

gration, and P (z(t)) and P (zeq(0)) are the hydrostatic pressures at z(t) and zeq(0)

respectively

Based on (3.6), the interpretation of Eap is the amount of energy required

for a fluid particle with density ρ̃(0) to move from its equilibrium height (zeq(0)) to

a new height, z(t). The amount of work of ρ̃(0)g(z− zeq(0)) is needed to overcome

the gravitational force in figure 3.1. However, all of this work is not required to

move a fluid particle from zeq(0) to z(t) because of the favorable pressure gradient

which is is associated with an inactive portion of PE and is responsible for equilib-

rium [23]. Therefore, (3.6) represents the net energy required for a fluid particle

to move from zeq(0) to z(t) which is also the amount of PE energy available for

conversion to KE.

The above definition of APE density (3.6) was extended by Roullet and

Klein [44] and Molemaker and McWilliams [33] to include diabatic effects. The

constant equilibrium height (zeq(0)) and density (ρ̃(0)) are replaced by an instanta-
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neous equilibrium height (zeq(t)) and instantaneous density of fluid particle (ρ̃(t)),

Eap =

∫ z(t)

zeq(t)

g(ρ̃(t)− ρr(ẑ)) dẑ

= g

∫ z(t)

zeq(t)

ρ̃(t) dẑ − g

∫ z(t)

zeq(t)

ρr(ẑ) dẑ (3.7)

Recall that the full description of PE in the Eulerian framework consists of

two components, APE and BPE. We have now considered corresponding APE and

analogous with the Eulerian framework, we need to define an additional energy

quantity which is consistent with BPE in Eulerian analysis.

3.2.2 Reference Potential Energy Density

The PE of a fluid particle is defined w.r.t. the particle vertical displacement

(3.5). APE is defined w.r.t. the displacement from zeq(t) to z(t), we now consider

the energy associated with the remaining portion of zp, i.e., from zeq(0) to zeq(t).

The minimum energy to change the fluid particle’s reference state in La-

grangian framework can be determined by evaluating the difference between the

initial reference density and the instantaneous reference density as the correspond-

ing reference height of fluid particles changes from zeq(0) to zeq(t). We consider

the RPE (Reference Potential Energy) to be the energy required to change the

reference state of fluid particles. We can define the RPE density consistent with

the APE density as the minimum energy required to elevate a fluid particle with

ρ̃(0)(= ρr(zeq(0))) at zeq(0) from its initial reference state (zeq(0)) to a new refer-

ence state (zeq(t)) in figure 3.1. We define the RPE density (hereafter denoted as
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Erp)

Erp =

∫ zeq(t)

zeq(0)

g(ρr(zeq(0))− ρr(ẑ(t))) dẑ

=

∫ zeq(t)

zeq(0)

g(ρ̃(0)− ρr(ẑ)) dẑ

= g

∫ zeq(t)

zeq(0)

ρ̃(0) dẑ − g

∫ zeq(t)

zeq(0)

ρr(ẑ) dẑ (3.8)

In (3.8), RPE depends only on reference density, the actual state which can

be changed only by molecular diffusion, and independent of current height. RPE is

non-available energy because the new thermodynamic equilibrium reference state

cannot return to its initial reference state without heat transfer, due to irreversible

mixing. As will be shown (see figure 3.2), Erp is a positive definite quantity which

is independent of the particle’s direction of movement.

3.2.3 Total Potential Energy in Lagrangian analysis

Both the potential energy components, APE and RPE density, are now

defined and TPE density (hereafter represented as Etp) is expressed as the sum of

APE and RPE density.

Etp =

∫ z(t)

zeq(t)

g(ρ̃(t)− ρr(ẑ)) dẑ︸ ︷︷ ︸
Available PE

+

∫ zeq(t)

zeq(0)

g(ρr(zeq(0))− ρr(ẑ)) dẑ︸ ︷︷ ︸
Reference PE

(3.9)
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3.3 Eulerian and Lagrangian framework

comparison

In this section, we will compare the PE components in the Lagrangian and

Eulerian framework for a closed system with a uniform stratification, in which case

the Eulerian system (finite volume) will be the same as the Lagrangian system (an

ensemble of fluid particles).

3.3.1 Ensemble average of PE in Lagrangian framework

The APE density in (3.7) represents one fluid particle’s APE and the en-

semble average of all the fluid particles’ APE density gives a total APE per unit

volume denoted by Eap,

Eap =

N∑
N=1

(∫ z(t)

zeq(t)
g(ρ̃(t)− ρr(ẑ)) dẑ

)
N

=

⟨
g

∫ z(t)

zeq(t)

ρ̃(t) dẑ

⟩
−

⟨
g

∫ z(t)

zeq(t)

ρr(ẑ) dẑ

⟩
(3.10)

= g⟨z′ρ̃(t)⟩ (3.11)

where N = total number of fluid particles, 1
N

N∑
N=1

is ensemble average denoted by

⟨ ⟩ and the ensemble average of second term in (3.10) vanishes because when the

fluid particles exchange their position for a closed system, they have same amount

of pressure gradient force but opposite sign as shown by Winters and Barkan [66].

Similarly, the RPE density in (3.6) represents one fluid particle’s RPE and

the total RPE denoted by Erp is obtained by taking an ensemble average over all
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the fluid particles. Total RPE per unit volume of all the fluid particles is given by

Erp =

N∑
N=1

(∫ zeq(t)

zeq(0)
g(ρ̃(0)− ρr(ẑ)) dẑ

)
N

=

N∑
N=1

(
g∆zeqρ̃(0)− g

∫ zeq(t)

zeq(0)
ρr(ẑ) dẑ

)
N

= g⟨∆zeqρ̃(0)⟩ −

⟨
g

∫ zeq(t)

zeq(0)

ρr(ẑ) dẑ

⟩
= g⟨∆zeqρ̃(0)⟩ (3.12)

where
⟨
g
∫ zeq(t)

zeq(0)
ρr(ẑ) dẑ

⟩
, the work done by the pressure gradient force of all the

fluid particles, is zero since all of the fluid particles switch their positions for a

closed system [66].

From (3.11) and (3.12), TPE per unit volume of all the fluid particles de-

noted by Etp is given by

Etp = g⟨z′ρ̃(t)⟩+ g⟨∆zeqρ̃(0)⟩ (3.13)

3.3.2 Available Potential Energy comparison

Andrews [1] showed that the volume-integrated APE density is in general

greater than or equal to Lorenz’s APE (
∫
V
Eap dV ≥ APELorenz). However, if

the reference state in APE density equals Lorenz’s reference state, the volume-

integrated APE density equals Lorenz’s APE [1, 54].

Ea

V
=

g
∫
ρ(z − z∗) dV

V

= gρ(z − z∗), spatial average (3.14)
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where V is the total volume of a domain.

The equation (3.11) and (3.14) show that Eap in Lagrangian framework is

equal to APELorenz per unit volume in Eulerian framework, i.e., gρ(x, t)(z − z∗) =

g⟨z′ρ̃(t)⟩ because the volume average is equal to the ensemble average of all fluid

particles in a given volume.

3.3.3 Non-available Potential Energy comparison

In the ρ−z∗ coordinate system of Eulerian framework, the minimum energy

to change the reference state (∆Eb) is determined by evaluating the density change

(∆ρ = ρ(t, z∗)− ρ(0, z∗)) at fixed position (z∗(0, ρ)) and integrating over z∗.

∆Eb = gA

∫
ρ(t, z∗)z∗ dz∗ − gA

∫
ρ(0, z∗)z∗ dz∗

= gA

∫
∆ρz∗ dz∗ (3.15)

Equation (3.15) represents the minimum energy required to change the density

due to mixing over the volume. From (3.15), the change of BPE per unit volume

is given by,

∆Eb

V
=

gA
∫ z∗,top
z∗,bottom

∆ρz∗ dz∗

A(z∗,top − z∗,bottom)

= g∆ρz∗(0, ρ), spatial average (3.16)

= g

(
dρ

dz∗

)
∆z∗

(
dz∗
dρ

)
ρ

= g∆z∗ρ(0, z∗) (3.17)
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Z

Zeq(t)

Zeq(0)
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dρr/dz
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(a) RPE density in Lagrangian framework

dρ/dz

Δρe>0

ρ

t

(b) ∆Eb density in Eulerian framework

Figure 3.2: RPE density and ∆Eb density comparison

where V = −A(z∗,bottom−z∗,top), z∗,bottom and z∗,top are the reference position at the

bottom and top of the control volume respectively and ∆z∗ = z∗(t, ρ(t))−z∗(0, ρ(t))

is the difference between the initial and instantaneous reference position equivalent

to the change in reference height (∆zeq) in the Lagrangian framework.

Therefore, from (3.12) and (3.17), RPE per unit volume equals to ∆Eb per

unit volume for the same initial density profile, i.e., the initial reference density of

flow (ρ(z∗(0))) in Eulerian framework is equal to the initial density of fluid parti-

cles (ρ̃(z(0))) in Lagrangian framework. g∆z∗ρ(0, z∗) = g⟨∆zeqρ̃(0)⟩ because the

volume average is equal to the ensemble average of all particles for a homogeneous

fluid in a closed system. From (3.12) and (3.16), the effect of mixing on change

in reference density in Eulerian framework is equivalent to the effect of mixing on

change in reference height in Lagrangian framework and both thereby represent

the change in reference state.

The RPE density in (3.8) is always positive for any fluid particle moving
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above or below the centerline (z = L
2
, L = domain length) as it is illustrated in

figure 3.2a which shows positive triangle area in both directions. When a fluid par-

ticle moves up, the density of fluid particle ρ̃(0) is greater than reference density

ρr(z) and change in equilibrium level ∆zeq is positive. Since ρ̃(0)− ρr(z) and ∆zeq

are both positive, Erp has a positive value from (3.8). When the fluid particle moves

down, the density of fluid particle ρ̃(0) is smaller than reference density ρr(z) and

change in equilibrium level ∆zeq is negative. Since ρ̃(0)− ρr(z) and ∆zeq are both

negative, Erp has a positive value from (3.8). The arrows in figure 3.2a represents

the density change of fluid particles which is equivalent to the change in reference

density profile in figure 3.2b. In comparison, ∆Eb density can be positive or neg-

ative in figure 3.2b, even though the volume average of ∆Eb is always positive.

The ∆Eb density equation in (3.17) shows a positive value above the centerline in

z∗ coordinate and negative value below the centerline as it is illustrated in figure

3.2b. RPE density which is positive definite is not the same as ∆Eb density but

total RPE is equal to total ∆Eb.

In summary, the change in background potential energy (∆Eb) is the dif-

ference between the instantaneous and initial reference density profile. RPE cor-

responds to the difference between instantaneous and the initial equilibrium level

associated with the density of fluid particle with a given initial reference density.

The density change of all fluid particles in Lagrangian framework is equivalent to

the change in reference density profile in Eulerian framework. Finally, if the initial

reference density profile is same, Lagrangian and Eulerian frame can be considered
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equivalent for a closed system.

3.4 Application to uniform stratified turbulence

We now consider the particular case of an unbounded homogeneous turbu-

lent flow with uniform background stable stratification (dρ/dz = constant < 0). In

this case, the background density corresponds to the mean (spatial average) den-

sity which only varies in the vertical direction, i.e., ρ = ρ(z). The instantaneous

potential density and temperature of a fluid particle are also decomposed into a

mean part and a fluctuating part.

ρ̃(x, y, z, t) = ρ̂(z) + ρ′′(x, y, z, t) (3.18)

T̃ (x, y, z, t) = T̂ (z) + T ′′(x, y, z, t) (3.19)

where ρ̂(z) and T̂ (z) are a horizontally homogeneous mean (ensemble average)

density and temperature depending only on vertical position, and ρ′′ and T ′′ are

the fluctuation of the potential density of fluid particle from the mean density

and the fluctuation of the potential temperature of fluid particle from the mean

temperature. In this study, the deviation from the background density ρ′ is equal

to the fluctuation from the mean density ρ′′ and the background density is equal

to mean density, i.e., ρ′ = ρ′′ and ρ(z) = ρ̂(z). From here on, we will use prime (′)

to indicate fluctuations from mean values.

The instantaneous velocity is decomposed into a mean part (U) and a fluc-
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tuating part (v′).

v(x, y, z, t) = U(z) + v′(x, y, z, t) (3.20)

where U(z) is the mean x-component (horizontal) velocity which can vary in z,

i.e., vertical mean shear may exist.

In the case of uniform stably stratified flow (dρ
dz

= constant), the reference

density, ρr(z), is replaced by the horizonal average density, ρ(z), which is equal

to Lorenz’s adiabatically rearranged reference density state. The APE density

equation then is

Eap = g

∫ z(t)

zeq(t)

(ρ̃(t)− ρ(ẑ)) dẑ (3.21)

and from (3.8), RPE density equation is,

Erp = g

∫ zeq(t)

zeq(0)

(ρ̃(0)− ρ(ẑ)) dẑ (3.22)

Equation (3.21) and (3.22) will be applied to develop the model for mean square

vertical displacement in a uniform stably stratified flow in chapter 4.

3.5 Evolution of Energetics

The potential energy quantities have been defined. The evolution equa-

tions of these quantities need to be developed to examine the underlying physical

processes and associated energy conversion.
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3.5.1 Evolution of density

The density of a fluid particle evolves according to (2.22):

Dρ̃

Dt
= κ∇2ρ̃ (2.22)

The material derivative of the mean density (ρ(z)) of a fluid particle is

expressed by,

Dρ

Dt
=

∂ρ

∂t
+ w′∂ρ

∂z
= w′∂ρ

∂z
(3.23)

Subtracting (3.23) from (2.22) yields the evolution equation for the density fluctu-

ation ρ′,

Dρ′

Dt
= − w′dρ

dz
+ κ∇2ρ̃ . (3.24)

The equation indicates that changes in ρ′ are due to changes in ρ(z) by vertical

advection w′ and changes in particle density by molecular diffusion.

Integrating (3.24) with respect to time,

ρ′(t)− ρ′(0) = (z(t)− z(0))

(
−dρ

dz

)
+

∫ t

0

κ∇2ρ̃ dτ

= −( ρ(z(t))− ρ(0) ) + ∆ρ̃ . (3.25)

The vertical displacement of a fluid particle from its initial position is given

by

∆z = z(t)− z(0) =

∫ t

0

w′ dτ . (3.26)
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Figure 3.3: Diagram of fluid particle density and displacement decompositions.

From (3.25), ∆z may also be expressed as,

z(t)− z(0) =
ρ′(t)

−dρ/dz
− ρ′(0)

−dρ/dz
+

∆ρ̃

dρ/dz

= (z(t)− zeq(t)) − (z(0)− zeq(0)) + (zeq(t)− zeq(0)) (3.27)

From this, we redefine the particle displacement to be (as indicated in (3.5)),

z(t)− zeq(0) = (z(t)− zeq(t)) + (zeq(t)− zeq(0))

zp(t) = z′(t) + ∆zeq(t) (3.28)

where z′ is the deviation from the particle’s current equilibrium reference height,

i.e., the nonequilibrium displacement, and ∆zeq is the change in the particle’s equi-

librium reference height, i.e., the equilibrium displacement. A diagram illustrating

the displacements and corresponding densities is given in Figure 3.3.



40

VS [62] considered the vertical displacement in terms of an adiabatic dis-

placement and a diabatic displacement which correspond to the two components

in (3.28), the nonequilibrium displacement, z′, and the change in particle equilib-

rium level, ∆zeq, respectively. The time derivative of the vertical displacement of a

fluid particle in (3.28) gives the decomposition of the vertical velocity components,

adiabatic velocity and diabatic velocity, as done by VS [62] in their analysis:

Dzp
Dt

=
Dz′

Dt
+

Dzeq
Dt

(3.29)

where Dzp
Dt

is a total vertical velocity, Dz′

Dt
is an adiabatic vertical velocity, and Dzeq

Dt

is a diabatic vertical velocity.

3.5.2 Evolution of Turbulent Kinetic Energy

From (2.21), the time development of the components of the fluid particle

kinetic energy (per unit volume) with an uniform mean vertical shear is obtained,

ρo
D 1

2
u′2

Dt
= − ρo u

′ w′ dU

dz
− u′∂p

′

∂x
+ µu′∇2u′ (3.30)

ρo
D 1

2
v′2

Dt
= − v′

∂p′

∂y
+ µ v′∇2v′ (3.31)

ρo
D 1

2
w′2

Dt
= − w′∂p

′

∂z
+ µw′∇2w′ − gρ′w′ (3.32)

Taking an ensemble average over all particles and assuming homogeneous flow and

negligible diffusion of kinetic energy with high Re, the evolution equation for the

ensemble mean turbulent kinetic energy (TKE), Ek = ρo⟨u′2 + v′2 + w′2⟩/2,

DEk

Dt
= − ρo⟨u′w′⟩dU

dz
− εk − g⟨ρ′w′⟩ (3.33)
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where εk is the total dissipation rate of TKE

3.5.3 Evolution of Available Potential Energy

From (3.21), the evolution equation of APE density in the Lagrangian frame

is derived as

DEap
Dt

=
D

Dt

∫ z(t)

zeq(t)

g(ρ̃(t)− ρr(ẑ)) dẑ

= g

(
z′
Dρ̃(t)

Dt
+ ρ̃(t)

Dz′

Dt

)
− g

(
ρr(z)

Dz

Dt
− ρr(zeq)

Dzeq
Dt

)
−
∫ z(t)

zeq(t)

g
∂ρr
∂t

dẑ

where the reference density of the flow in Lagrangian framework is fixed in time,

∂ρr
∂t

= ∂ρ
∂t

= 0, and for the uniform stratified flow, ρr(z) = ρ(z), ρr(zeq(t)) = ρ̃(t).

Therefore, the evolution equation of APE density is given by

DEap
Dt

= g(ρ̃− ρ)w′ + gz′
Dρ̃(t)

Dt

= gρ′w′ − κg

dρ/dz
ρ′∇2ρ̃

= gρ′w′ −
(
− κg

dρ/dz
(∇ρ′)2 +

κg

dρ/dz
∇2

(
ρ′2

2

))
(3.34)

where gρ′w′ is the buoyancy flux which is a reversible conversion from KE to

APE from (3.32) and (3.34), − κg
dρ/dz

(∇ρ′)2 is the dissipation rate of APE, and

κg
dρ/dz

∇2
(

ρ′2

2

)
is the diffusion of APE.



42

The ensemble average of (3.34) gives the evolution equation of total APE.

DEap

Dt
= ⟨gρ′w′⟩ − κg

dρ/dz
⟨ρ′∇2ρ̃⟩

= B − εp −
κg

dρ/dz

⟨
∇2

(
ρ′2

2

)⟩
(3.35)

= B − g

(
−dρ

dz

)
ερ −

κg

dρ/dz

⟨
∇2

(
ρ′2

2

)⟩
(3.36)

where B is the total buoyancy flux which is a reversible conversion from KE to

APE, εp = − κg
dρ/dz

⟨(∇ρ′)2⟩ = g
(
−dρ

dz

)
ερ is the total dissipation rate of APE, and

ερ = − ⟨κ∇ρ′ · ∇ρ′⟩.

3.5.4 Evolution of Reference Potential Energy

From (3.8), the evolution equation for RPE density in the Lagrangian frame

is given by

DErp
Dt

=
D

Dt

∫ zeq(t)

zeq(0)

g(ρ̃(0)− ρr(ẑ)) dẑ

= gρ̃(0)
Dzeq(t)

Dt

− g

(
ρr(zeq(t))

Dzeq(t)

Dt
− ρr(zeq(0))

Dzeq(0)

Dt
+

∫ zeq(t)

zeq(0)

∂ρr
∂t

dẑ

)

where ρr(zeq(t)) = ρ̃(t), ρr(zeq(0)) = ρ̃(0) and ∂ρr
∂t

= ∂ρ
∂t

= 0

Therefore, the evolution equation of RPE density is given by

DErp
Dt

= g
Dzeq
Dt

(ρ̃(0)− ρ̃(t))

=
κg

−dρ/dz
∆ρ̃∇2ρ̃ (3.37)

where κg
−dρ/dz

∆ρ̃∇2ρ̃ is defined as the equilibrium mixing rate since it is associated

with the change in equilibrium state due to mixing.
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Taking an ensemble average of (3.37) gives,

DErp

Dt
=

κg

−dρ/dz
⟨∆ρ̃∇2ρ̃⟩

= Φm (3.38)

where Φm = κg
−dρ/dz

⟨∆ρ̃∇2ρ̃⟩ is the total equilibrium mixing rate

From (3.29), the evolution of RPE can be written in terms of a diabatic

velocity component.

DErp

Dt
=

⟨
−g∆ρ̃

Dzeq
Dt

⟩
(3.39)

=

⟨
−g∆ρ̃

(
Dzp
Dt

− Dz′

Dt

)⟩
= ⟨−g∆ρ̃w′⟩+ κg

dρ/dz
⟨ρ′∇2ρ̃⟩+ g

(
dρ

dz

)
D

Dt
⟨∆zeqz

′⟩

= ⟨−g∆ρ̃w′⟩

+ εp +
κg

dρ/dz

⟨
∇2

(
ρ′2

2

)⟩
+ g

(
dρ

dz

)
D

Dt
⟨∆zeqz

′⟩ (3.40)

The first term on the RHS of (3.40) may be negligible since the change in the fluid

particle’s density and the velocity are considered to be statistically independent

as explained by VS [62]. This will be also confirmed by our DNS results shown

in figure 5.4. The last term in (3.40) is the mixed product of a nonequilibrium

and equilibrium displacement (⟨z′∆zeq⟩) and expected to be negligible for high

Reynolds number flows (i.e. statistically independent) [42, 62]. The third term in

(3.40) is also negligible for high Reynolds number. The remaining term is εp, thus,

as the equilibrium level changes from zeq(0) to zeq(t), APE is converted to RPE

through εp. Since εp > 0, the energy accumulates in the form of RPE through Φm.
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3.5.5 Evolution of Total Potential Energy

From (3.35) and (3.38), the evolution equation of the total potential energy

of all the fluid particles is given by,

DEtp

Dt
=

DEap

Dt
+

DErp

Dt

= B − εp + Φm (3.41)

where B is the buoyancy flux which is the reversible conversion between KE and

APE, εp is the irreversible dissipation of APE and Φm is the accumulation of RPE.

Combining (3.41) with (3.40) for high Reynolds flow gives,

DEtp

Dt
= B (3.42)

The rate of change of TPE is controlled by the buoyancy flux, i.e, the rate

of conversion from TKE. The form of TPE equation in (3.42) is same as that of an

adiabatic case, thus the rate is independent of molecular diffusion. However, energy

is continuously converted among TKE, APE and ultimately to RPE. The rate of

conversion of APE to RPE is εp which will thus control the relative magnitudes of

the PE components, APE and RPE.

3.6 Summary of Energetics

We may now describe the energy transfer and conversions using the TKE

and PE evolution equations defined above. From (3.33), (3.35), and (3.38) the
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(a) Fluid particle is lifted by TKE (b) New equilibrium height due to mixing

Figure 3.4: Sequence of processes

energetics of fluid particles are given by,

DEk

Dt
= − ρo⟨u′w′⟩dU

dz
− εk − g⟨ρ′w′⟩ (3.43)

DEap

Dt
= ⟨gρ′w′⟩ − κg

dρ/dz
⟨ρ′∇2ρ̃⟩ = B − εp (3.44)

DErp

Dt
=

κg

−dρ/dz
⟨∆ρ̃∇2ρ̃⟩ = Φm (3.45)

≈ κg

dρ/dz
⟨ρ′∇2ρ̃⟩

The above equations indicate that TKE is produced/maintained by mean shear

(−ρo⟨u′w′⟩dU
dz
) and some of this energy maybe be converted to APE reversibly

through the buoyancy flux g⟨ρ′w′⟩ or dissipated through εk.

The equations also indicate a sequence of processes associated with PE

as illustrated in figure 3.4. In figure 3.4a, a fluid particle is released at z(0) with

ρ̃(0) and transported to z(t) by w′. This initial buoyancy flux, (ρ̃(0) − ρ(z))gw′,

converts energy in the form of TKE to APE. In figure 3.4b, the deviation from the

surrounding/background density drives the molecular diffusion which then alters
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the density of the fluid particle from ρ̃(0) to ρ̃(t), hence the equilibrium height

changes from zeq(0) to zeq(t). This decreases ρ
′ and the associated APE and, cor-

respondingly increases ∆zeq and associated RPE, i.e., APE is converted to RPE.

The dissipated energy associated with εp is accumulated in the form of the unavail-

able potential energy, RPE, through Φm associated with the change in equilibrium

reference height. This sequence of processes will be verified with DNS results in

chapter 5.

Overall, from (3.43) and (3.44), the total turbulence energy, E = Ek +Eap,

is given by,

DE

Dt
= − ρo⟨u′w′⟩dU

dz
− εk − εp (3.46)

Thus in stratified flows, there are two ways, εk and εp, by which the turbulence

ultimately decays and the associated energy is transformed into the nonrecoverable

forms of internal energy and RPE which may also be considered as internal energy

as discussed in chapter 2. The fully Lagrangian energetics is now developed, and

will be used to evaluate the vertical displacements of fluid particles.

The text of this dissertation includes the reprints of the following paper,

submitted for consideration at the time of publication.

Chapter 3: Seungbum Jo, Keiko K. Nomura and James W. Rottman., ‘The La-

grangian energetics of a fluid particle in a Boussinesq flow’., in preparation for

submission for publication.



Chapter 4

Vertical Dispersion in Stratified

Turbulent Flow

In this chapter, we derive equations for the mean square vertical displace-

ment σ2
zp by applying our Lagrangian energetics analysis to a homogeneous stably

stratified turbulent shear flow. In particular, the APE and RPE are related to the

corresponding components of σ2
zp and their evolution equations are used to deter-

mine the behavior of σ2
zp(t). Thus, the Lagrangian energetics analysis is a more

systematic approach for determining σ2
zp(t) and clarifies the role and significance

of molecular mixing in the vertical dispersion of fluid particles in stratified flow.

At the end, we will compare our dispersion model to some existing models for

decaying and stationary turbulence.

47
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4.1 Vertical Displacements: Relation to PE com-

ponents

There are two ways to relate PE components to vertical displacements.

First, we can use the Taylor series expansion [44]. Expansion of (3.7) for APE

density in small z′(z′ = z − ∆zeq) gives

Eap = − g(
1

2

∂ρr
∂z

z′2 +
1

3!

∂2ρr
∂z2

z′3 + higher order) (4.1)

For the uniform density profile in stably stratified turbulence, d2ρr
dz2

and all the

higher order terms become zero since the background density(ρr(z)) is equal to

mean density(ρ(z)) for which the gradient is constant. Finally, the local APE

density equation has a quadratic form and it is proportional to 1
2
z′2,

Eap = − g

2

∂ρ

∂z
z′2 = ρoN

2 z
′2

2
(4.2)

Another way to express the APE density in terms of the square of vertical

displacement is using the geometry of ρ − z diagram. In figure 4.2, the triangle

area represents the APE density in the uniformly stratified flow and this can be

expressed in terms of the difference in the two areas indicated in figure 4.1. From

(3.21),

Eap = g

∫ z(t)

zeq(t)

ρ̃(t) dẑ︸ ︷︷ ︸
Area 1 in 4.1a

− g

∫ z(t)

zeq(t)

ρ(ẑ) dẑ︸ ︷︷ ︸
Area 2 in 4.1b

=
1

2
gρ′z′ =

1

2
g[z′(−dρ

dz
)]z′

= ρoN
2 z

′2

2
(4.3)
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(a) Work against gravitational force (b) Work by pressure gradient force

Figure 4.1: Graphical representation of terms in APE density equation (4.3)

Figure 4.2: Graphical representation of APE density (= Area1 − Area2 in figure
4.1 ) in the Lagrangian framework

where N2 = − g
ρo

(
dρ
dz

)
. Equation (4.3) yields the same result as (4.2) and the APE

density is expressed in terms of nonequilibrium displacement squared.

Similarly, we may apply the graphical approach to relate RPE density

to the equilibrium displacement. In figure 4.4, the triangle area represents RPE

density and this can be expressed in terms of the difference in two areas indicated
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(a) Local RPE density (b) Work by pressure gradient force

Figure 4.3: Graphical representation of terms in RPE density equation (4.4)

Figure 4.4: Graphical representation of RPE density (= Area1 − Area2 in figure
4.3 ) in the Lagrangian framework

in figure 4.3. From (3.22),

Erp = g

∫ zeq(t)

zeq(0)

ρ̃(0) dẑ︸ ︷︷ ︸
Area 1 in 4.3a

− g

∫ zeq(t)

zeq(0)

ρ(ẑ) dẑ︸ ︷︷ ︸
Area 2 in 4.3b

= −1

2
g∆ρ̃∆zeq = −1

2
g[∆zeq(−

dρ

dz
)]∆zeq

= ρoN
2
∆z2eq
2

(4.4)

From (3.9), the TPE density in the uniform stratified flow can be expressed

as the sum of APE and RPE density, and thus, using (4.3) and (4.4), the square
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of nonequilibrium and equilibrium vertical displacements.

Etp =

∫ z(t)

zeq(t)

g(ρ̃(t)− ρ(ẑ)) dẑ +

∫ zeq(t)

zeq(0)

g(ρ̃(0)− ρ(ẑ)) dẑ

= ρoN
2 z

′2

2
+ ρoN

2
∆z2eq
2

(4.5)

4.2 Mean Square Vertical Displacement

We now consider the behavior of the mean square vertical displacement,

σ2
zp(t) ≡ ⟨z2p(t)⟩, with high Re. Taking an ensemble average of (4.5) over all

particles gives,

⟨Etp⟩ = Etp = ρoN
2
σ2
zp

2
= ρoN

2 ⟨z′2⟩
2

+ ρoN
2

⟨
∆z2eq

⟩
2

(4.6)

As indicated in chapter 3 for (3.45), we note that for high Reynolds number flows,

it is expected that the mixed product (⟨z′∆zeq⟩) to be zero (i.e. statistically in-

dependent) [42, 62]. In (4.6), the mean square of vertical displacement of fluid

particles is expressed in terms of the nonequilibrium displacement z′ associated

with the APE and equilibrium displacement ∆zeq associated with the RPE.
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4.2.1 Energetics of Mean Square Vertical Displacement

Recall equations (3.43) - (3.45) describe the energetics of the fluid particles,

in terms of the ensemble mean TKE, APE and RPE,

DEk

Dt
= − ρo⟨u′w′⟩dU

dz
− εk − g⟨ρ′w′⟩ (3.43)

DEap

Dt
=

D

Dt

(
ρoN

2 ⟨z′2⟩
2

)
= ⟨gρ′w′⟩ − κg

dρ/dz
⟨ρ′∇2ρ̃⟩ = B − εp (3.44)

DErp

Dt
=

D

Dt

(
ρoN

2

⟨
∆z2eq

⟩
2

)
=

κg

−dρ/dz
⟨∆ρ̃∇2ρ̃⟩ = Φm (3.45)

≈ κg

dρ/dz
⟨ρ′∇2ρ̃⟩

From the energetics point of view, the amount of TPE does not change due

to molecular diffusion as long as the same amount of energy is supplied from TKE

since εp ≈ Φm. However, the energy is continuously converted between APE and

RPE due to molecular diffusion and the relative magnitude of each PE components,

APE and RPE, changes, hence the associated vertical displacement components

change.

In the dispersion point of view, as the fluid particles move away from their

original equilibrium level, TPE increases as TKE is converted reversibly to APE.

If there is no molecular diffusion, the fluid particles tends to return to the origi-

nal equilibrium level due to buoyancy force and are constrained to oscillate about

the equilibrium level. As fluid particles change their density through molecular

diffusion and thus alters equilibrium levels, APE is dissipated and eventually con-

verted irreversibly into RPE where the energy accumulates. The fluid particles can
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thereby move further away from their original equilibrium levels and now oscillate

about the new equilibrium level.

4.2.2 Model for Mean Square Vertical Displacement

Time integration of (3.41) with (3.38) and (4.6) gives,

∫ t

0

DEtp

Dt
dt =

∫ t

0

DEap

Dt
dt +

∫ t

0

DErp

Dt
dt∫ t

0

D

Dt

(
ρoN

2

⟨
z2p
⟩

2

)
dt =

∫ t

0

D

Dt

(
ρoN

2 ⟨z′2⟩
2

)
dt +

∫ t

0

D

Dt

(
ρoN

2

⟨
∆z2eq

⟩
2

)
dt

ρoN
2

⟨
z2p
⟩

2
= ρoN

2 ⟨z′2⟩
2

+

∫ t

0

Φm dt

σ2
zp(t) =

⟨
z′2
⟩

+
2

ρoN2

∫ t

0

Φm dt (4.7)

where Etp(0) = Eap(0), hence, ⟨zp(0)2⟩ = ⟨z′(0)2⟩ since initially there is no change

in the reference state and all of TPE exists as APE.

Thus, if there is no diffusion (Φm = 0), fluid particles are constrained to

oscillate about their equilibrium level and σ2
zp(t) = ⟨z′2⟩. However, with molecular

diffusion, from (4.7), since the integral of Φm grows in time, σ2
zp will grow without

limit. As noted earlier, it must be kept in mind that the complete dynamics are

described by the coupled system given by (3.24) and (3.33). As N2(= − g
ρo

(
dρ
dz

)
)

decreases, the influence of ρ′ on the velocity field is diminished. In the limit of

N2 → 0, Etp → 0; potential energy considerations are no longer relevant. In this

limit, ρ′ is a passive scalar and (4.7) simply describes the one-way response of the

scalar field to the flow. The velocity field is decoupled from the scalar field; σ2
zp(t)
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is described solely by the velocity and the energetics of σ2
zp are confined to kinetic

energy considerations.

4.2.3 Non-dimensionalized Mean Square Vertical Displace-

ment

The above ideas motivate scaling in terms of energy quantities. Nondimen-

sionalizing (4.7) with the initial total turbulence energy, E(0) = Ek(0) + Eap(0),

σ∗2
zp(t) =

ρoN
2 σ2

zp(t) /2

E(0)
=

ρoN
2 ⟨z′2(t)⟩/2
E(0)

+

∫ t

0
Φm(t) dt

E(0)
, (4.8)

i.e.,

E∗
tp(t) = E∗

ap(t) + E∗
rp(t) , (4.9)

where the asterisks denote the non-dimensional quantities. The mean square dis-

placement is thereby considered in terms of non-dimensional potential energy com-

ponents (4.9). We may also express (4.9) as,

E∗
tp(t) = E∗

ap(t) +

∫ t

0
Φm(t) dt

E(0)

= E∗
ap(t) + Ωc(t)

∫ t

0

ε(t)

E(0)
dt (4.10)

where ε = εk + εp is the total rate of dissipation of turbulence energy and Ωc

is a cumulative mixing efficiency which is the ratio of mixing rate to the total

dissipation rate [41]. This shows how much of turbulent energy is used for mixing.

Ωc(t) =

∫ t

0
Φm(t) dt∫ t

0
ε(t) dt

(4.11)
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As discussed in VS, the mixing efficiency is a measure of the portion of turbulence

energy that goes into changing the potential energy of the fluid by irreversible

mixing thereby quantifying the significance of stratification in transient mixing

events. In general, significant dispersion and scalar variance dissipation may occur

in a flow. How influential the latter is on the former in stratified flow may be

indicated by Ωc.

4.3 Long Time Behavior

In (4.7), at large times, since ⟨∆z2eq⟩ is a cumulative quantity , we expect

⟨∆z2eq⟩ ≫ ⟨z′2⟩. This is consistent with the observed behavior in VS [62] that

the equilibrium displacement dominates the vertical displacement even in weakly

stratified flow. We now consider two limiting flow conditions for long time in more

detail.

4.3.1 Decaying turbulence

In the case of decaying turbulence, all of the turbulence energy eventually

dissipates; as t → ∞, Ek(t), Eap(t) → 0. TPE then exists all in the form of RPE

and (4.10) may be written as,

E∗
tp(∞) = E∗

rp(∞) = Ωc(∞)
E(0) + Esh(∞)

E(0)
(4.12)
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where Esh(∞) is the total TKE produced by shear,

Esh(∞) = −
∫ ∞

0

ρo⟨u′w′⟩dU
dz

dt (4.13)

For unsheared decaying flow (Esh = 0),

E∗
tp(∞) = Ωc(∞) . (4.14)

Thus, in decaying flows (with and without shear) at long time, σ∗2
zp ap-

proaches a constant corresponding to the total change in potential energy that

occurred in the fluid by irreversible mixing. The final state is at equilibrium with

minimum potential energy, E∗
rp.

4.3.2 Stationary turbulence

In the case of stationary turbulence, Ek, Eap, ⟨ρ′w′⟩, εp, Φm, and ε are

maintained constant in the flow. For these conditions, the growth rate of TPE

is equal to that of the RPE which is given by the equilibrium mixing rate, Φm.

Integrating (4.10) and (4.11) with constant equilibrium mixing rates yields,

E∗
tp(t

∗) = E∗
ap + Ωc t

∗ (4.15)

where Ωc = Ω = Φm/ε is a (constant) instantaneous mixing efficiency, t∗ = t/TL,

and TL = E/ε is the turbulence energy decay time. In stationary flow, TKE

is continually converted to APE. Since the time at which particles are identified

is arbitrary, at any selected initial time (t = 0), all of the TPE exists as APE,

E∗
tp(0) = E∗

ap. As time proceeds and diffusion occurs, APE is dissipated at a rate
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given by εp and eventually converted to RPE at a rate of Φm, hence, TPE increases

in time through these energy conversion processes.

4.4 Time scale for stationary turbulence

Since APE maintains constant, the analysis yields a simple model for σ2
zp(t)

for stationary turbulence for which we have,

Dσ2
zp

Dt
=

D⟨∆z2eq⟩
Dt

=
2 ερ

(dρ/dz)2
= 2Kd (4.16)

and Kd is the diapycnal turbulent diffusivity. The resulting σ2
zp(t) may be scaled

as,

σ2
zp(t)

L2
E

= 1 +
t

Tρ

, (4.17)

where L2
E = ρ′2/(dρ/dz)2 is the Ellison overturn scale, and Tρ = ρ′2/2ερ is the

decay timescale for density fluctuations. We may also write (4.17) as,

z∗p
2 ≡

σ2
zp(t)

L2
E

= 1 + 2γ′ t

Tk

, (4.18)

where Tk = Ek/εk is the decay timescale for TKE and

2γ′ =
Tk

Tρ

, (4.19)

is the ratio of the mechanical to scalar timescales, a parameter used in second order

closure models. As discussed in VS, γ′ is relatively insensitive to stratification and

may vary slowly with Re and Pr. Thus, if γ′ is independent of stratification, an

effective timescale for vertical dispersion is Tk.
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4.5 Dispersion Model Comparison

4.5.1 Comparison to LB model

Lindborg & Brethouwer [5] derived the equation for mean square vertical

displacement by integrating evolution equation for buoyancy flux with an assump-

tion of negligible of κ⟨w′∇2ρ′(t)⟩.

⟨σ2
zp(t)⟩ =

2

ρoN2

∫ t

0

(⟨gρ′(t′)w′⟩ − ⟨gρ′(0)w′⟩) dt′ (4.20)

=
2

ρoN2

∫ t

0

(⟨gρ′(t′)w′⟩ − εp(t
′) + εp(t

′) − ⟨gρ′(0)w′⟩) dt′

=
2

ρoN2

(
Eap(0) + Eap(t

′)− ⟨gρ′(0)z′(t′)⟩+
∫ t

0

εp(t
′) dt′

)
(4.21)

where Eap is an available potential energy and εp is the dissipation rate of APE

LB’s model for mean square vertical displacement with the zero initial den-

sity fluctuation ρ′(0) = 0 in (4.21) is consistent with the derived equation (4.7)

since the dissipation rate of APE is equal to mixing rate of RPE, i.e., εp ≈ Φm.

Although LB’s model for mean square vertical displacement is same as our

model, the physical interpretations were not entirely clear since they did not ex-

plicitly consider the energetics.

Long time behavior comparison - Decaying turbulence

LB [5] derived the long time expression for decaying and stationary turbu-

lence from (4.21). For decaying case, as t → ∞, the last term in (4.21) goes to

a constant value which is the total dissipated amount of potential energy and LB
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consider it as a some fraction of the total initial energy, Ek(0) + Eap(0). The two

middle terms in (4.21) go to zero as t → ∞ since there is no available potential

energy after all for decaying turbulence. Thus,

⟨σ2
zp(∞)⟩ =

2

ρoN2
[Eap(0) + a(Ek(0) + Eap(0))] (4.22)

where a is a value between 0 and 1 and varies with an initial condition but the

variable “a” is not clearly interpreted.

Non-dimensionalized by initial total energy of (4.22) gives,

⟨σ2
zp(∞)⟩∗ = a+ Eap(0)

∗ (4.23)

LB’s model for decaying turbulence in (4.23) is consistent with our derived

model in (4.14) and the variable “a” in (4.23) is identified as mixing efficiency

(Ωc(∞)). The non-dimensionalized initial APE (Eap(0)
∗) will be eventually con-

verted to RPE, hence this term should be also accounted into variable “a”.

Long time behavior comparison - Stationary turbulence

For the case of stationary turbulence, LB derived the expression for long

time behavior from (4.21) by assuming that the adiabatic dispersion reaches its

upper bound ⟨δz′2⟩ = 4Eap/(ρoN
2) [29].

⟨σ2
zp(∞)⟩ =

1

ρoN2
[4Eap + 2εpt] (4.24)

Equation (4.24) is rewritten by scaling of 4EP/ρoN
2 and gives,

⟨σ2
zp(∞)⟩∗ = 1 +

1

2
t∗∗ (4.25)
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where t∗∗ = t/T and T = Eap/εp is eddy turnover time

In the case of no initial fluctuation, i.e., z′(0) = 0, hence, ⟨δz′2⟩ = ⟨z′(t)2⟩−

2⟨z′(t)z′(0)⟩ + ⟨z′(0)2⟩ = ⟨z′(t)2⟩ = 2Eap/(ρoN
2). However, in (4.24), ⟨δz′2⟩ is

assumed to be equal to 4Eap which indicates that Eap is proportional to
1
4
z′2. This

assumption is against the general idea that APE is proportional to 1
2
z′2 [14].

If (4.24) is scaling by 2Eap/ρoN
2 with a correction of ⟨δz′2⟩ = 2Eap/(ρoN

2),

the mean square vertical displacement gives,

⟨σ2
zp(∞)⟩∗ = 1 + t∗∗ (4.26)

Same scaling application to our model

Our model for stationary case in (4.7) can be written by scaling of 2Eap/ρoN
2

as LB model in (4.26) combining with (4.3), Eap = ρoN
2 ⟨z′2⟩

2
.

σ2
zp(t) =

⟨
z′2
⟩

+
2

ρoN2

∫ t

0

Φm dt

σ2
zp(t)

2Eap/ρoN2
= 1 +

Φm

Eap

t

σ2
zp(t)

∗ = 1 + t∗ (4.27)

where t∗ = t/Tm, and Tm = Eap/Φm is the turbulence mixing time.

Now the corrected LB model for stationary turbulence at long time in (4.26)

is consistent with our model in (4.27).



61

4.5.2 Reconsideration of PPH model

With our results for stationary flow, we now reconsider the model of PPH

(1.7), which assumes that small-scale mixing scales with the buoyancy time scale,

i.e.,

γ =
1/N

ρ′2/ερ
(4.28)

As shown by VS, γ varies with N and thus (4.28) is not the appropriate scaling;

rather, the timescale for small-scale mixing should be related to that of the energy

decay, i.e., γ′ (4.19). Using γ′ (4.19) as a modified mixing parameter in place of

γ (4.28) in the derivation of the Langevin formulation of PPH gives the following

result,

σ∗
z
2 =

⟨(∆z)2⟩
⟨w′2⟩/N2

= ζ2z +
2γ′2

N2Tk
2 Nt = ζ2z + 2γ′2 Fr2 Nt . (4.29)

which, as expected, differs from the original result (1.7) by the growth rate factor.

We can compare the modified PPH relation (4.29) with our energetics anal-

ysis result (4.18). Non-dimensionalizing (4.18) with VKE and buoyancy time scales

gives,

σ∗2
zp =

⟨z2p⟩
⟨w′2⟩/N2

= β

[
1 +

2γ′

NTk

Nt

]
= β(1 + 2γ′FrNt) , (4.30)

where Fr = (1/N)/Tk and β = L2
E/(⟨w2⟩/N2) is a nondimensional amplitude. We

see that the growth rate factor γ′ Fr differs from that in (4.29) by a power of 2.

A similar observation was noted by Kimura and Herring[24] with their Langevin

model results.
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The various model growth rates may be compared quantitatively. For the

original PPH model (1.7) and using the bounds for typical γ values (γ = 0.1, 0.4),

0.02 ≤ 2γ2 ≤ 0.32. For the modified PPH model (4.29) with the DNS parameter

values, 2γ′2Fr2 = 0.229 ± 0.063. For our developed model (4.30) with the DNS

parameter values, 2βγ′Fr = 0.616 ± 0.087, which agrees well with the simula-

tion results which will be shown in chapter 5. The predicted growth rates using

the PPH model do not agree with the DNS results. The modified PPH model,

with the timescale corrected, lies between the original PPH predictions, but still

underpredicts the growth rates of the DNS flows.

4.6 Summary and conclusions

The two PE components are related to two vertical displacements respec-

tively, i.e, the APE associated with a nonequilibrium displacement z′ and the RPE

associated with an equilibrium displacement ∆zeq. The total potential energy as-

sociated with the total displacement, zp, is expressed in terms of z′ and ∆zeq. In

the uniform stratified flow (ρr(z) = ρ(z)), the mean square vertical displacements

is expressed as the sum of them, σ2
zp(t) = ⟨z′2(t)⟩ + ⟨∆z2eq(t)⟩. As the fluid par-

ticles move away from their original equilibrium level, TPE increases as TKE is

converted reversibly to APE. With molecular diffusion, fluid particles change their

density and thus alters equilibrium levels. Hence, APE is dissipated and even-

tually converted irreversibly into RPE where the energy accumulates. The fluid
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particles can thereby move further away from their original equilibrium levels and

now oscillate about the new equilibrium level.

TPE (z2p) is dominated by RPE (∆z2eq) at long time for all cases, decaying,

stationary and growing turbulence. However, since the increase in RPE is a direct

result of energy conversion through APE, it does not dominate in the dynamical

sense. In decaying turbulence, APE will eventually decay and what remains is the

RPE accumulated during the transient event. The mean square vertical displace-

ment σ2
zp equals the mean square equilibrium displacement ⟨∆z2eq⟩ and approaches

to a constant value given by the cumulative mixing efficiency Ωc(∞). In stationary

turbulence, APE is maintained constant while RPE continually accumulates and

grows. The mean square vertical displacement grows linearly in time at a rate

given by the (constant) instantaneous mixing efficiency.

Lindborg and Brethouwer [29] derived similar relations for σ2
z(t) in which

they consider the two terms on the right-hand side of (4.24) as the adiabatic and

diabatic contributions, respectively. In particular, the long-time growth rate from

the diabatic contribution for stationary flow is the same as in (4.16) and, as they

note, Kd corresponds to the diffusivity used in the model of Osborn and Cox [37].

However, Lindborg and Brethouwer [29] interpret the contributions by consider-

ing only APE associated with a nonequilibrium displacement, whereas our analysis

considers both nonequilibrium and equilibrium displacement by developing full La-

grangian energetics. Also, this analysis more clearly recognizes that the processes

are sequential in nature. That is, small-scale mixing acts to preserve displace-
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ments and reduce the reconversion of potential energy to kinetic energy but is

not, by itself, the predominant contributor of transport. Furthermore, we demon-

strate the irreversibility of the nonequilibrium component, ⟨∆zeq
2⟩. Our model for

stationary flow (4.17), given in terms of σ2
zp, does not exhibit a dispersion plateau

and is consistent with a constant scalar variance, Eap as will be shown in chapter 5.

The text of this dissertation includes the reprints of the following paper,

submitted for consideration at the time of publication.

Chapter 4: Keiko K. Nomura, James W. Rottman and Seungbum Jo., ‘The ener-

getics of vertical fluid particle dispersion in stably stratified turbulence’., in prepa-

ration for submission for publication.



Chapter 5

Numerical Results of Energetics

and Turbulent Dispersion

In this chapter, we examine the ideas and relations from our energetics

and turbulent dispersion analysis using DNS (Direct Numerical Simulation) of

homogeneous stably stratified shear flow. The behavior of the flow and associated

energetics have previously been studied in terms of Eulerian statistics [10, 12, 15,

21] and is well documented. The Lagrangian statistics are obtained by tracking a

fluid particle. Here, we consider three flow cases, decaying, stationary and growing

turbulence which Richardson number are 1.0, 0.13 and 0.01.

65
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5.1 Results for stably stratified shear flow

5.1.1 Direct numerical simulations

The simulations performed follow those of Diamessis and Nomura [10]. Rel-

evant nondimensional parameters include the turbulent Reynolds number based

on the Taylor microscale, Reλ = vλ/ν, the Shear number, Sh = SEk/εk, and

the Prandtl number, Pr = ν/κ. Here, v is the r.m.s turbulent velocity and

S ≡ dU/dz is the mean vertical velocity gradient. The relative significance of

stratification to mean shear effects is characterized by the gradient Richardson

number, Ri = N2/S2.

For given initial turbulent Reynolds number (Reλo) and Shear number

(Sho), the value of Ri (with respect to the critical Richardson number value, Ricr)

designates distinct flow regimes: subcritical flow (Ri < Ricr) in which turbulence

grows, critical flow (Ri = Ricr) in which turbulence is stationary, and supercritical

flow (Ri > Ricr) in which turbulence decays.

Two sets of simulations, differing in initial conditions, were performed for

this study. In the first set, the simulations were initialized with a fully developed

isotropic turbulent velocity field and zero scalar fluctuations (ρ′(0), Eap(0) = 0).

Thus, particle statistics exhibit an early time transient during which ρ′2 is estab-

lished. Initial parameter values for these runs are Reλo = 26 and Sho = 2.3. In the

second set, the simulations were initialized with nonzero initial scalar fluctuations

(ρ′(0), Eap(0) ̸= 0). For the fully stationary flow, buoyancy and shear are added to
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fully developed isotropic turbulent velocity field. Statistics are then obtained after

stationary flow conditions are achieved. For this flow, Reλ,o = 27 and Sho = 3.8.

In all simulations, Pr = 0.7.

Lagrangian statistics are obtained by a fluid particle tracking scheme based

on cubic spline interpolation for the particle velocity from the available Eulerian

flow field [71, 62]. Time integration for particle displacement (3.26) is carried out in

the same manner as the Eulerian field. The total number of particles used is 4096.

The particles are initially distributed uniformly in the computational domain. The

presence of mean shear is handled as in Shen & Yeung [47] by subtracting the cor-

responding mean displacement of particles released from each horizontal plane. By

doing so, only the displacement due to turbulence fluctuations is retained. In this

method, single-particle displacement statistics may be equivalently viewed in an

inertial frame that moves at the value of the mean velocity at the initial particle

position [47].

5.1.2 Energetics statistics

Nondimensionalizing potential energy components with the initial total tur-

bulent energy, E(0), is given by,

Etp

E(0)
=

Eap

E(0)
+

Erp

E(0)

E∗
tp(t) = E∗

qp(t) + E∗
rp(t) (5.1)
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where the asterisks denote the non-dimensional quantities.

The figure 5.1 shows the nondimensionalized potential energy components

for three flow conditions, decaying, stationary and growing turbulent flow. The

portion of PE components out of the total energy increases as the stratification

becomes stronger whereas the total displacement is restricted with a strong strati-

fication as shown in figure 5.3. This is consistent with VS’s [62] idea which showed

that the contribution from the potential energy dissipation (εp) becomes a signifi-

cant portion of the total energy dissipation as the stratification becomes stronger.

For all flow conditions, figure 5.1 shows TPE is dominated by APE at short time

and RPE dominates TPE at long time as described in a mean square vertical dis-

placement statistics. The figure 5.2 shows the non-dimensionalized mixed products

(defined as MP) of z′ and ∆zeq (denoted by E∗
mp = ρoN

2<z′∆zeq>

E(0)
) and E∗

mp, is small

compared to E∗
tp for all flow conditions.

Figures 5.3 and 5.4 show the time development of the E∗
tp(t) components

and the terms of the corresponding evolution equations (3.35) and (3.38), respec-

tively, for the first set of simulations (Eap(0) = 0). In the supercritical flow

(Ri = 1.0, figure 5.3a), TKE decays in time; E∗
tp initially grows as E∗

ap develops

and then decreases as E∗
ap decays. Correspondingly, g⟨ρ′w′⟩ initially increases and

then decreases even becoming negative before eventually diminishing in value (fig-

ure 5.4a). As E∗
ap is established, E∗

rp develops; the rate of growth decreasing as

E∗
ap decreases. At long time, E∗

ap → 0 and E∗
tp → E∗

rp (4.12) which approaches a

constant value of approximately 0.17. In the critical flow (Ri = 0.13, figure 5.3b),
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beyond the initial transient, TKE is maintained nearly constant and E∗
tp exhibits

a nearly linear growth. During this time, g⟨ρ′ w′⟩ and εp achieve an approximate

balance (figure 5.4b) and E∗
ap remains nearly constant. The continual conversion of

APE to RPE occurs at a constant rate (εp) and E∗
rp grows linearly in time as does

the E∗
tp. In the subcritical flow (Ri = 0.01, figure 5.3c), TKE and TPE continually

increase in time. In this case, g⟨ρ′ w′⟩ exceeds εp (figure 5.4c) which results in the

growth of E∗
ap. We also observe that εp is comparable to the ∆ρ̃∇2ρ′ term (figure

5.4f); as E∗
ap is destroyed, E

∗
rp increases at the same rate. As RPE accumulates, it

eventually exceeds the APE (figure 5.3a, St > 7).

Figure 5.5 shows E∗
tp(t) components and equation terms for the fully sta-

tionary flow (Ri = 0.13, Eap(0) ̸= 0). In this case, initially all of the TPE exists

as APE. Since the flow is stationary, g⟨ρ′w′⟩ and εp are in balance (figure 5.5b),

and the APE remains constant for all time. We also observe that εp becomes

comparable to the ∆ρ̃∇2ρ′ term. After a short time St > 2 ∼ Tρ, RPE increases

nearly linearly, as does TPE (figure 5.5a). In contrast to the results of van Aartrijk

et al.[60] and Brethouwer & Lindborg [5], a dispersion plateau does not develop

(note that in our flow, Reb ≈ 29 and Fr ≈ 0.62, which are comparable in value

to those in Brethouwer & Lindborg). As discussed by Brethouwer & Lindborg [5],

the development of the plateau in σ2
z(t) is associated with adiabatic dispersion,

i.e., the nonequilibrium displacement, z′(t) − z′(0), as indicated in (3.27). Thus,

early in time, this quantity must develop (and decorrelate) from its initial value.

The development of the plateau is thus dependent on initial conditions. This ar-
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tifact is eliminated in the present analysis by defining the particle displacement

with respect to zeq(0) (3.28). Our statistics for vertical dispersion σ2
zp(t), which do

not exhibit this early time development, are consistent with stationary turbulence

(constant ⟨z′2(t)⟩) conditions.

In general, we observe that the TPE is dominated by APE at short time and

by RPE at long time. Physically, as the particles are advected away from their ini-

tial (equilibrium) position to regions of differing density, there is a reversible gain

in potential energy in the form of APE. However, due to the action of molecular

diffusion, density perturbations are eventually reduced as particles exchange den-

sity with neighboring fluid. This changes their equilibrium level which represents

an irreversible retention of potential energy, i.e., RPE. In terns of the Eulerian

flow field, in general there may be a corresponding change in background potential

energy. In these simulations the turbulence is spatially homogeneous and the mean

fields are decoupled from the flow. Mixing occurs throughout the domain, however

there is no net change in the spatially averaged density and correspondingly, no

change in the background potential energy. However, in the Lagrangian frame, in-

dividual fluid particles are identified and distinguished and each experiences some

net diffusive flux. The physical increase in potential energy is then indicated by

their measured (equilibrium) displacements.

In order to gain further insight, conditional statistics are obtained from the

fully stationary flow. We extract the history for a subset of particles by employing

conditional sampling of specific high amplitude events occuring at time St = Stc



71

(Stc = 7.5 in these results). Figure 5.6a-c show the expected TPE component

values and corresponding equation terms for those fluid particles exhibiting high

amplitude (above rms value) positive buoyancy flux ρ′w at St = Stc. We observe

that the peak in ρ′w at Stc = 7.5 (figure 5.6b) is followed by a peak in APE, and

subsequently, a peak in ρ′ ∇2ρ′ develops which results in an increase in ∆ρ̃∇2ρ′.

The latter results in the enhanced increase in RPE (figure 5.6a). Beyond these

events, the particles return to the ensemble average values. Figure 5.6d-f show the

expected TPE component values and corresponding equation terms for those fluid

particles exhibiting high amplitude ρ′ ∇2ρ′ at t = tc. In this case, the peak in

ρ′ ∇2ρ′ at Stc = 7.5 (figure 5.6e), is preceded by peaks in APE and ρ′w, and also

results in enhanced ∆ρ̃∇2ρ′ (figure 5.6f). This again leads to an enhanced increase

in RPE (figure 5.6c). These results illustrate the sequence of processes associated

with energy conversion and vertical dispersion.

As discussed earlier, the significance of small-scale mixing on the overall

energetics is indicated by the mixing efficiency, Ωc. Figure 5.7 shows Ωc(t) evalu-

ated from the DNS flows (with Eap(0) = 0). Although values of ⟨z2p⟩ and ⟨∆z2eq⟩

are highest in the weakly stratified (subcritical, Ri = 0.01) flows, the low values of

Ωc indicate that small-scale mixing has a relatively small effect on the total energy

of the flow. As the stratification level increases (critical and supercritical flows),

small-scale mixing has a stronger influence on σ2
zp as the increase in values of Ωc

indicate. In the decaying flow (figure 5.7a), Ωc ≈ 0.17, which is comparable to

expected values of mixing efficiency for decaying flows. We note that in the fully
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stationary flow (Eap(0) ̸= 0), Ωc(t) ≈ 0.14.

Figure 5.8a shows z∗p
2 versus t/Tk for the DNS results and the model (4.18)

for which we use γ′ = 0.7. The agreeement is quite good except for some deviation

at late times due to development away from exact stationary conditions in our

simulations. In particular, the measured long time slope from the DNS data is

1.42 ± 0.08. The corresponding γ′ values, 0.67 − 0.75, are comparable to those

determined by VS for a range of stratification levels (0 ≤ Ri ≤ 1000) in both

unsheared [62] and shear flows.

Figures 5.8b,c show the comparison on log scale plots. The good agreement

between the DNS results and model is also observed at early time. Figure 5.8c

also shows the relative development of RPE within the timescale, Tk.

5.2 Summary and conclusions

In summary, the DNS results demonstrate our energetics analysis of dis-

persion, and in particular, the sequence of processes involved in (3.35) and (3.38)

and the distinct roles of advection and diffusion in vertical particle displacement.

From the Lagrangian analysis and DNS simulation results, we can verify that the

RPE associated with a diapycnal displacement is dominant in TPE for all flow

conditions. We conclude that in stably stratified stationary flow, the turbulent

diffusivity Kρ is directly related to the dispersion coefficient, Kz, which is equal to

the rate of growth of mean square equilibrium displacement, 2Kd = D⟨∆z2eq⟩/Dt.
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The latter directly describes the effects of molecular diffusion on vertical transport

and the underlying physical idea of PPH. The relevant time scale is that of the

decay of density fluctuations, Tρ, which is related to the kinetic energy decay time,

Tk. This is consistent with the prevailing idea, as acknowledged by PPH and VS,

that in high Re turbulent flows, the rate of small-scale mixing is not dependent on

the molecular diffusivity. In general, the total vertical flux includes a contribution

from molecular diffusion,

Fz = wρ̃− κ∇ρ̃ (5.2)

and, as given in VS, the total diffusivity may be expressed by a general scaling

relation,

Kd + κ

κ
= 1 + γ′LE

2

Tk κ
(5.3)

which indicates that the diffusivity reduces to the molecular value for low turbulent

Peclet numbers, Pet = LE
2/Tk κ.

In order to address the role of molecular diffusion on the buoyancy flux

itself, the appropriate evolution equation to be considered is,

Dρ′w

Dt
= ρ′

Dw

Dt
+ w

Dρ′

Dt

=

[
− ρ′

ρo

∂p

∂z
+ νρ′∇2w − g

ρo
ρ′2
]

+

[
w2

(
−dρ

dz

)
+ κw∇2ρ′

]
(5.4)

in which the last term corresponds directly to these effects. As noted in VS, we

expect small-scale mixing to be independent of the velocity at high Reynolds num-

bers. Our DNS results indicate ⟨κw∇2ρ′⟩ to be small as shown in figure 5.9.
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From our energetics analysis, we have formulated a dispersion model for sta-

tionary homogeneous turbulence. The model captures the basic long-time behavior

of the PPH model of linear growth of ⟨zp2⟩, however it differs in the underlying

time scaling. Results for long time behavior and growth rate compare well with

our DNS results for stationary homogeneous sheared turbulence. The PPH model,

even with a correction in the mixing timescale, underpredicts the DNS flow results.

This is attributed to the differing time scale exponent of 2, which is an outcome

of their Langevin model formulation.
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Figure 5.1: Potential Energy Components for (a) Ri=5.0, (b) Ri=1.0, (c) Ri=0.13,
(d) Ri=0.01. Green line : E∗

tp, Blue line : E∗
ap, Red line : E∗

rp
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Figure 5.2: Non-dimensionalized mixed products of z′ and ∆zeq (E∗
mp =

ρoN
2<z′∆zeq>

E(0)
) for (a) Ri=5.0, (b) Ri=1.0, (c) Ri=0.13, (d) Ri=0.01.
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Figure 5.3: Time development of mean square vertical displacement and compo-
nents for (a) Ri=1.0, (b) Ri=0.13, (c) Ri=0.01. Green line : < z2p >, Blue line :
< z′2 >, Red line : < ∆z2eq >
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Figure 5.4: Time development of APE and MP evolution equation terms for (a),
(b) Ri=1.0, (c), (d) Ri=0.13, (e), (f) Ri=0.01.
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Figure 5.5: Time development of mean square vertical displacement and compo-
nents for (a) TPE components, (b) APE equation terms, (c) MP equation terms.
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Figure 5.6: Time development of TPE components and evolution equation terms
with conditional sampling (Stc = 7.5)
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Figure 5.8: Vertical dispersion results and comparison with developed model for
stationary shear flow(a) Linear plot, (b),(c) Log scale plots
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Figure 5.9: Correlation between vertical velocity and mixing (< w′∇2ρ′ >) for (a)
Ri=1.0, (b) Ri=0.13, (c) Ri=0.01.



Chapter 6

Conclusions

This chapter presents a brief summary and discussion of the results and a

brief suggestion for future work.

6.1 Summary of Research Study

The overall objective of this research is to study the fundamental physics

of turbulent dispersion in stably stratified flows. We have developed an analy-

sis framework which describes vertical dispersion in stably stratified homogeneous

turbulence in terms of energetics in the Lagrangian frame. This allows us to clar-

ify the ideas proposed by PPH and in particular, the transport mechanisms and

the role and significance of molecular diffusion. Our analysis considers the total

potential energy of a fluid particle TPE associated with the mean square vertical

displacement, σ2
zp, in terms of the available potential energy APE, associated with

84
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non-equilibrium displacement, and the reference potential energy RPE, associated

with changes in particle equilibrium height, i.e., equilibrium displacement. These

energy quantities and their corresponding evolution equations describe the behav-

ior of σ2
zp(t). As fluid particles move away from their equilibrium height, vertical

kinetic energy is converted (reversibly) to APE. This establishes nonequilibrium

displacement, z′ and increases TPE. Without molecular diffusion, gravity will re-

duce the vertical velocity and the particles will tend to return to their original

equilibrium height; APE is converted back to KE in this reversible process. With

molecular diffusion, fluid particles will change their density, such to reduce ρ′, and

therefore, change their equilibrium height, i.e., some of the APE is dissipated and

converted to RPE where it accumulates. Molecular diffusion thereby acts to pre-

serve displacements and reduce the reconversion of PE to KE. In this manner, fluid

particles can move further away from their original equilibrium level and σ2
zp(t) can

grow without limit.

As discussed, the decomposition of the TPE (4.5) is essentially equivalent to

that used by PPH and VS for total particle displacement. VS consider the relative

significance of molecular mixing on dispersion by comparing the relative magni-

tudes of the isopycnal displacment (z′2) and the diapycnal displacement (∆z2eq)

with respect to z2p . They note that beyond the initial transient, ∆z2eq dominates

in their decaying flows, even in weak stratification. Our analysis provides a clearer

interpretation of these results by considering the associated energy quantities and

corresponding evolution equations. The analysis shows that the molecular mixing
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essentially redistributes energy between APE and RPE; TPE does not increase

and the energy through transitory APE (z′2) is stored as RPE (∆z2eq). We observe

TPE (z2p) is dominated by RPE (∆z2eq) at long time for all cases, decaying, station-

ary and growing turbulence, from both of analytical results and DNS simulation

results. However, since the increase in RPE is a direct result of energy conversion

through APE, it does not dominate in the dynamical sense. In decaying turbulence,

APE will eventually decay and what remains is the RPE accumulated during the

transient event. The mean square vertical displacement σ2
zp equals the mean square

equilibrium displacement ⟨∆z2eq⟩ and approaches to a constant value given by the

cumulative mixing efficiency Ωc(∞). In stationary turbulence, APE is maintained

constant while RPE continually accumulates and grows. The mean square vertical

displacement grows linearly in time at a rate given by the (constant) instantaneous

mixing efficiency.

In general, the importance of these fully coupled effects between the velocity

and scalar (density) fields depends on the strength of stratification. As stratifi-

cation increases, buoyancy limits fluid particle advection thereby limiting TKE

conversion to APE, and consequently to RPE. Vertical displacements are reduced,

however, the relative significance of small-scale mixing with respect to the overall

energetics becomes greater as indicated by the higher mixing efficiency, Ωc.

The energetic analysis provides proper timescales associated with turbulent

dispersion whereas one key assumption in PPH model is that small scale mixing

is controlled by buoyancy time scale. The timescale for density changes due to
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small scale mixing is found to be approximately insensitive to buoyancy and is

determined by the turbulent decay time scale at large time. Hence the time scale

for density changes is independent of stratification (N) and related to decay time

scale, γ′ = 1
2
Tk

Tρ
, where Tk is the decay time scale for TKE and Tρ is the decay

timescale for density fluctuations. Our proposed dispersion model based on this

timescale agrees well with DNS results and provide substantial improvements over

previous models.

6.2 Suggestions for Future Work

During our study, several interesting issues have been suggested from other

researchers. In this study, we developed the general equations of Lagrangian en-

ergetics and then applied to an uniform stratified flow. However, the effect of

non-uniform stratification (dρr
dz

̸= constant) is important in the lower atmosphere

where temperature inversions develop near the ground and on the top boundary

layer of the ocean [13]. Roullet and Klein [44] investigated the anharmonic effect

defined as Eanh = Ea−EQG where EQG is a quadratic form of APE due to an uni-

form density profile. Moreover, the reference density in the atmospheric boundary

layer changes in time and the reference density in the ocean continuously changes

everyday. Therefore, the effect of non-uniform stratification (dρr
dz

̸= constant) and

unsteady stratification (dρr
dt

̸= 0) on the vertical dispersion should be further in-

vestigated.
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In this study, we considered the linear Boussinesq flow which volumetric

expansion coefficient (α) is constant. According to Tailleux [50], if the volu-

metric expansion coefficient is not constant and function of the temperature, the

expansion/compression pressure work term in internal energy equation will be also

function of the correlation between |∇T |2 and dα
dT

and this term can be significantly

larger in a strongly turbulent fluids which leads the change in internal energy will

be significantly increased. For the investigation of the effect of these nonlinear

terms on energy transfer, the Lagrangian energetics with nonlinear equation of

state should be developed further.

Our study is based on a strong fundamental physics and theory and they

are confirmed by DNS. However, DNS results alone may not be sufficient in un-

derstanding of energetics and turbulent dispersion. Experiments and field studies

should be further compared with DNS results and theories.



Appendix A

Direct Numerical Simulation

The problem to be investigated is a turbulent flow field with uniform shear

and uniform density stratification. This simplest form of the flow contains all basic

physical mechanisms but is more accessible to numerical simulations. A summary

of the numerical methods will be presented in this chapter.

A.1 Numerical Formulation

The Direct Numerical Simulations code DISTUF (Direct Simulations of

Turbulent Flows) is used to solve the exact time-dependent three-dimensional gov-

erning equations. The simulations performed follow those of Gerz, Schumann and

Elghobashi [12], which uses a combination of second-order finite difference and

pseudo-spectral to model homogeneous, isotropic incompressible turbulence with

stratification and shear.

89
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A.1.1 Dimensionless Scalings

The non-dimensional fluctuating velocities, time, length, pressure and fluc-

tuating temperature are defined following:

u∗
i =

u
′
i

Uref

(A.1)

t∗ =
t

L/Uref

(A.2)

x∗
i =

xi

L
(A.3)

p∗ =
p′

ρoU2
ref

(A.4)

T ∗ =
T ′

Tref

(A.5)

where Uref = ∆U for shear flow, L is the length of the computational domain and

Tref = ∆T for stratified flow

For computing purposes, the non-dimensional density gradient and non-

dimensional shear rate are defined as:

S∗
ρ =

L

∆ρ

ρ

dz
=

L

∆T

T

dz
(A.6)

S∗ =
L

∆U

dU

dz
= S

L

∆U
(A.7)

where dρ
dz

is the mean vertical density gradient and S = dU
dz

is the mean vertical

velocity gradient. In the simulation, S∗
ρ = 0 for unstratified flow , S∗

ρ = 1 for

stratified flow, S∗ = 0 for unshear flow and S∗ = 1 for shear flow.

A.1.2 Nondimensional Parameters

Relevant nondimensional parameters in this study are investigated.
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The Reynolds number

The turbulent Reynolds number based on the Taylor microscale is defined

as :

Reλ =
vλ

ν
(A.8)

where ν is the kinematic viscosity, v is the root-mean-square of turbulent fluctua-

tion velocity (v =
√

1
3
(u2

1 + u2
2 + u2

3)) and λ is the turbulent Taylor microscale.

The Shear number

The strength of the shear rate is characterized by the shear number and

defined as :

Sh = S
Ek

εk
(A.9)

where Ek is the turbulent kinetic energy (TKE) and εk is the dissipation of TKE

The Prandtl number

The Prandtl number is defined as the ratio of momentum diffusivity to

thermal diffusivity.

Pr =
ν

κ
(A.10)

where κ is the thermal diffusive coefficient
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Buoyancy Frequency

The strength of stratification is characterized by the buoyancy frequency

and defined as :

N2 = − g

ρo

dρ

dz
= αg

dT

dz
(A.11)

In the simulation of this study, the density gradient is linear and N has a constant

value.

The Richardson number

The relative significance of stratification to mean shear effects is character-

ized by the gradient Richardson number and defined as :

Ri =
N2

S2
(A.12)

The flow regime are divided into three flow conditions by using the critical Ri ≈

0.13. Ri < 0.13, Ri = 0.13, Ri > 0.13 regimes are respectively subcritical, critical

and supercritical and each flow conditions corresponds to growing, stationary and

decaying turbulence.

Shear and Buoyancy Time Scale

The shear and buoyancy time scale is respectively defined as St and Nt.

St =
dU

dz

L

Uref

t∗ =
dU

dz

L

∆U
= t∗ (A.13)

Nt =
N

S
St =

√
Ri t∗ (A.14)
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A.1.3 Dimensionless Form of Governing Equations

Continuity Equation

The non-dimensionalized continuity equation is derived by substituting

(A.5) to (2.20).

∂u∗
i

∂x∗
i

= 0 (A.15)

Momentum Equation

The non-dimensionalized momentum equation is derived by substituting

(A.5), (3.20), (2.3) and (A.15) to (2.21).

∂u∗
i

∂t∗
+

∂(u∗
iu

∗
j)

∂x∗
j

+ S∗x∗
3

∂u∗
i

∂x∗
1

+ S∗u∗
3δi1 = − ∂p∗

∂x∗
i

+
1

Re

∂2u∗
i

∂x∗2
j

+RiT ∗δi3 (A.16)

Energy Equation

The non-dimensionalized energy equation is derived by substituting (A.5),

(3.20) and (2.3) to (2.16).

∂T ∗

∂t∗
+

∂(u∗
jT

∗)

∂x∗
j

+ S∗
ρx

∗
3

∂T ∗

∂x∗
1

=
1

RePr

∂2T ∗

∂x∗2
j

(A.17)

A.1.4 Finite Difference Formulation

The computational domain considered in this study is a finite parallelepiped

domain with streamwise, spanwise and vertical dimensions of length L. Each length

section L has N grids of equal spacing ∆x in all directions.
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The governing equations are discretized by using a second-order accurate

finite difference scheme except for the mean advection term where Fourier approx-

imation is used. A second order accurate explicit Adams-Bashforth scheme is used

to advance the discretized equations in time. The numerical scheme for integrating

the velocity from time tn to tn+1 proceeds in the following steps [12]:

1. The momentum equation is written in semi-discretized form as

un+1
i − un

i

∆t
= ri − δip (A.18)

where ri represents the convective and diffusive terms of the i-th velocity

equation :

ri = − δj(ui
juj

i) +
1

Re
δjδjui +RiT

3
δi3 − S∗u3

3δi1 (A.19)

2. The value un+1
i at the next time stop is evaluated from :

un+1
i = un

i +∆t(ri − δip) (A.20)

3. Applying the Adams-Bashforth time differencing scheme provides an inter-

mediate value:

u∗
i = un

i +∆t(ϕ1r
n
i − ϕ2r

n−1
i ) (A.21)

The calculation is initiated at n = 0 with ϕ1 = 1, ϕ2 = 0. Then for n > 0,

ϕ1 = 3/2, ϕ2 = 1/2
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4. In the presence of shear, the next refinement of the velocity is obtained by

evaluating u∗
i , initially obtained at position x, from where it is advected by

the mean velocity Sx3 during the timestep ∆t. Fourier interpolation must

be used to accurately obtain the refined estimation as the location x1 does

not necessary coincide with a grid point.

ũi = u∗
i (x1 −∆tSx3) (A.22)

5. The final step updates the intermediate value by :

un+1
i = ũi −∆tδip

n+1 (A.23)

6. An implicit Poisson equation is obtained from (A.23) and (A.15)

δiδip
n+1 =

δiũi

∆t
(A.24)

pn+1 is obtained by Fast Fourier Transforms (FFT) algorithm and a Gaussian

elimination.

A.1.5 Boundary Conditions

The periodic boundary conditions are implemented in the x1 (streamwise)

and x2 (spanwise) directions and the shear periodic boundary condition is used in

x3 (vertical) direction [12]. The boundary conditions for any fluctuation f

f(x1 +m1l1, x2 +m2l2, x3 +m3l3) = f(x1 − Sm3l3t, x2, x3) (A.25)

where mi are arbitrary integers and li are nondimensional domain lengths
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A.1.6 Initial Conditions

The velocity ui(xi, t) has a finite Fourier transform representation, with

N3 corresponding discrete nodes in the wavenumber space. The lowest nonzero

wavenumber is k0 =
2π
L
. The components of the wavenumber vector ki at a given

node are integer multiples of k0 ranging from kmin = (1− 1
2
N)k0 to kmax = 1

2
Nk0

[72]. Simulations are initialized with fully developed isotropic turbulent velocity

field. A random number generator is used to produce the initial fluctuating fields

that contain no phase information and no initial spectral transfer [21]. This initial

velocity field satisfies the equation of continuity and governed by a prescribed

three-dimensional energy spectrum E(k, 0) of random and uncorrelated phase:

E(k, 0) =

(
3v20
2

)(
k

k2
p

)
e

(
− k

kp

)
(A.26)

where kp is the wavenumber of the spectrum peak and v0 is the initial rms velocity.

This spectrum function is associated with the initial period of decay for isotropic

turbulence, which is characterized by a relatively higher energy content at the

lower wavenumbers. In this study, kp = 6(2π) is chosen which is large enough for

the integral lengthscale to grow during the simulation period and small enough

for the energy and dissipation rates to be sufficiently small at the largest resolved

wavenumber kmax [12]. The initial total energy is exclusively kinetic in form, as

the initial temperature fluctuations are set to zero.

The initial spectra are chosen to allow a parameterization of the flow evo-

lution based on the specific set of initial conditions but this initial state is not
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sufficient to contain the energy in the lowest and highest wavenumber portions of

spectrum due to a strong increase in the viscous dissipation, hence, a large drop

of turbulent kinetic energy, turbulent Reynolds number and shear number. An

alternative initialization method is introduced by Jacobitz et al.[21] to reduce the

initial drop of these values. A preliminary simulation is performed in advance for

about one eddy-turnover time (St = 2) for the initially random, unstratified, un-

sheard isotropic turbulent velocity fields to become fully developed with necessary

phase correlation as dictated by the Navier-Stokes equations. The initial energy

spectrum evolves into a spectrum characteristics for fully developed turbulent flow

: the low wavenumber portion gains energy and the high wavenumber portion loses

energy, but the general shape of the spectrum changes slightly. The skewness of

the velocity derivative is a measure of the nonlinear energy transfer from low to

high wavenumbers:

Su =
3∑

i=1

1
3
⟨
(

∂ui

∂xi

)3
⟩

(1
3
⟨
(

∂ui

∂xi

)3
⟩) 3

2

(A.27)

The initial skewness is zero, which corresponds to the initial random isotropic

velocity field with no energy transfer. After a short initial period, it increases to

an asymptotic value and the preliminary simulation is ended as turbulence can

be regarded as fully developed. The initial values of the Reynolds number and

shear number of this first preliminary simulation are chosen so that the values at

the end of this simulation match the target initial set of parameters of the actual

simulation [21]. Buoyancy and shear are introduced to flow after the preliminary
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simulation has done at St = 2. The fluid particles are also released into the flow

at the end of the preliminary simulation as turbulence evolves to the beginning of

the asymptotic region.

A.2 Particle Tracking Algorithm

In the Lagrangian frame, a large number of tagged fluid particles are tracked

as the Eulerian flow field evolves. In order to gain Lagrangian statistics, a particle

tracking algorithm is used [61]. Denoting xi(x0i, t) and ui(x0j, t) as the position

and velocity at time t of a fluid particle in the Lagrangian viewpoint with initial

position x0 at time t=0, the equations of motion of the fluid particle is given by:

∂xi(x0i, t)

∂t
= ui(x0j, t) (A.28)

The Lagrangian velocity ui(x0j, t) is determined from the spatial Eulerian velocity

field by

ui(x0j, t) = ui(xk(x0j, t), t) = U1(x3) + u′
i(xj, t) (A.29)

A.2.1 Time Integration of Particle Motion

From DNS, the Eulerian velocity ui is available at every grid point in 3-

D computational domain at each time step. Interpolation scheme is required to

determine the velocity at any arbitrary position within the field. After the release

of fluid particles, (A.28) is integrated for the first time advancement using the
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Euler scheme:

xi(t
1) = xi(t

0) + ∆tu′
i(t

0) + ∆U1(x3(t
0))δi1 (A.30)

and thereafter by a second-order accurate Adams-Bashforth scheme in each coor-

dinate direction [61]:

xi(t
n+1) = xi(t

n) +
∆t

2

[
3u′

i(t
n)− u′

i(t
n−1)

]
+∆tU1(x3(t

n))δi1 (A.31)

where U1(x3)δi1 is the local mean velocity of the particle and ∆t is the constant

timestep chosen in accordance with that used in the integration of Navier Stokes

equations. The particle trajectory does not coincide with the grid points where the

fluid velocity is known, hence ui has to be interpolated to the particle’s position

so that it can be advanced to its next new position [58].

A.2.2 Velocity Interpolation

The fluid particle velocity is an essential parameter to determine Lagrangian

statistics. Different interpolation schemes can be used to obtain the particle ve-

locities. For a numerical accuracy and computational efficiency, two interpola-

tion schemes, ordinary linear interpolation scheme and cubic spline interpolation

scheme, are used. The linear interpolation scheme is considered initially because

of its simplicity.

The cubic spline interpolation scheme follows the formulation given by Ye-

ung and Pope [71]. It has the distinct advantages of fourth-order accuracy and
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twice-continuously differentiable approximations. There are essentially two main

steps in cubic spline interpolation schemes :

The first step is to evaluate the cubic spline coefficients, ei. The basis func-

tions and their coefficients are also considered to be continued periodically outside

the interval because the velocity fields from the Eulerian DNS are periodic [61].

For DNS calculations of N equispaced nodes in each direction, Nb = N + 3 basis

functions are required to locate at the nodes and their periodic extensions, one

extended basis function to the left of the first node and two basis functions to the

right of the Nth node. The periodic velocity function can be extended to have

N + 3 collocation points, hence the cubic spline coefficients can be determined

from the Nb collocation conditions.

N∑
j=1

Tijej = ui for i = 0, ...., Nb (A.32)

where

Tij =



2
3

for i = j

1
6

for |i− j| = 1

1
6

for (i, j) = (1, N) or (N, 1)

0 otherwise

(A.33)

The second step is to perform the interpolation.

g(x) =

Nb−1∑
i=0

bi(x)ei (A.34)

where bi(x) is the ith basis function. At any given location, only four basis functions

are nonzero. Numbering the nodal points from x1 to xN and defining ∆x =
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x1 − x0 = xN+1 − xN and ξ = x−xi

∆x
for i = 0, 1, ...N + 1, N + 2, the ith basis

function at any given position x is given by :

bi(x) =



1
6
(2 + ξ)3 for − 2 ≤ ξ ≤ −1

1
6
(−3ξ3 − 6ξ2 + 4) for − 1 ≤ ξ ≤ 0

1
6
(3ξ3 − 6ξ2 + 4) for 0 ≤ ξ ≤ 1

1
6
(2− ξ)3 for 1 ≤ ξ ≤ 2

0 otherwise

(A.35)

The three-dimensional spline can be represented as the tensor product of three

one-dimensional splines as follow:

u(x1, x2, x3) =

Nb−1∑
k=0

Nb−1∑
j=0

Nb−1∑
i=0

bi(x1)cj(x2)dk(x3)eijk (A.36)

where bi, cj and dk are the one-dimensional basis functions in the x1, x2 and x3

coordinate directions respectively. (A.36) can be decomposed as:

u(x1I , x2J , x3K) =

Nb−1∑
i=0

bi(xiI)EiJK (A.37)

where

EiJK =

Nb−1∑
j=0

cj(x2J)FIjK (A.38)

FIjK =

Nb−1∑
k=0

dk(x3K)eijk (A.39)

From (A.37), (A.38) and (A.39), N3
b cubic spline coefficients can be obtained.
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A.2.3 Particle Sampling Size

From the central limit theorem, the relative error of an ensemble average

varies as N
− 1

2
PART where NPART is the number of particles used in the simulation.

For a statistically homogeneous flow filed, Eulerian statistics obtained from volume

averaging over all grid points are equivalent to Lagrangian statistics obtained from

ensemble averaging over all fluid particles. VS [62] show that the sample size of 83

particles is sufficient to obtain the accurate Lagrangian statistics. For this study,

Lagrangian statistics is obtained from a set of 163 number of particles.

A.2.4 Resolution Requirement

DNS of turbulent flows is the numerical solution of the exact, three-dimensional,

time-dependent Navier-Stokes equations in the absence of turbulence closure model

or inevitable empiricism. Since no modeling assumptions are made, basic physics

must be recovered directly from simulation results. Therefore, the size of the com-

putational domain must be large enough to capture the largest turbulence scales,

usually characterized by the integral length scale l. These requirements determine

the number of necessary grid points N where N is the number of grid points. VS

[62] show that the 643 grid resolution is sufficient to meet these requirements. In

this study, based on current computer resources, resolution is limited to N = 128

and the total size of the computational domain is Ntotal = N3 = 1283.
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