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Maŕıa Pérez-Urdiales1 and Kenneth A. Baerenklau 2
4

ABSTRACT5

This paper estimates feasible water savings for a sample of nine urban water districts6

in California during the height of the 2012-16 drought, just prior to the implementation of7

mandatory water use reductions, using household production theory and stochastic frontier8

analysis. Estimates of feasible savings are compared to mandated reductions and actual9

reductions in each district. Although the mandated reductions were generally feasible, our10

results show that they had asymmetric impacts across districts and tended to impose larger11

burdens on some disadvantaged groups.12
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INTRODUCTION15

Although droughts are part of regular climate cycles, their frequency and intensity has in-16

creased in recent decades across many parts of the world, such as Southern Europe, Africa,17

Eastern Asia, Southern Australia and Western United States (Spinoni et al., 2014; Cook18

et al., 2018). With such related increasing concerns about water scarcity, a variety of wa-19

ter conservation policies have been adopted and/or expanded by urban water districts in20

drought-prone regions. Some approaches are more voluntary in nature, such as messag-21

ing campaigns, social norming (i.e. publishing average neighborhood use on each household22

billing statement), and rebate programs to encourage adoption of water efficient technologies.23

Others are harder for households to avoid or ignore, such as scarcity pricing and mandatory24

water use restrictions with penalties for non-compliance. Scarcity pricing has advantages25

from the perspective of economic efficiency, but often is viewed as inequitable because water26

is an essential good at low levels of use. Thus, districts often resort to use restrictions under27

extreme water scarcity. Such restrictions may target type of use (such as washing sidewalks28

and driveways), time of use (such as irrigating during the day), or total amount used (often29

referred to as rationing).30

A common mandatory water restriction is rationing by percent reduction, in which the31

amount of allocated water is defined as a percentage of water use in a baseline period before32

the drought. During California’s recent drought (2012-16), which was particularly severe33

(Mount et al., 2016), the State Water Resources Control Board (State Board) imposed34

mandatory percent reductions on more than 400 large urban water districts in April 2015.35

These mandatory restrictions were imposed because of the low level of statewide water sav-36

ings achieved in 2014, when California Governor Jerry Brown had requested a 20% voluntary37

reduction in urban areas. After achieving only half of this requested cutback, followed by38

a record-low snow-pack in the winter of 2015, the State Board imposed mandatory water39

restrictions to reduce statewide urban water use by 25% relative to 2013 levels. District-level40

targets ranged from 4 to 36% relative to water use in 2013. To meet these targets, some dis-41
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tricts changed the emphasis of their water conservation actions from voluntary approaches,42

like information campaigns, to more severe actions such as penalties, aggressive pricing, and43

customer-level water use prohibitions (McCann et al., 2017).44

As noted by Mitchell et al. (2017), the State Board achieved its overall goal but the45

mandate had asymmetric impacts on residents throughout the state. For example, Mitchell46

et al. (2017) notes that compliance with the mandate was more difficult for some districts,47

especially those with higher targets. Moreover, after the drought, most but not all districts48

reported that the mandate had strained relationships with their customers (McCann et al.,49

2017). In one high-profile case, the board of directors for a southern California water district50

was recalled and replaced due to extreme customer dissatisfaction (Stevens and Lin, 2016).51

These observations are consistent with those by Lund and Reed (1995), who argue it can52

be challenging for districts and their customers who have already adopted long-term water53

conservation strategies to comply with restrictions by percent reduction.54

In addition, many water districts felt that the State Board had over-reached, usurped55

local control, and undermined their pre-existing drought contingency plans. In some cases,56

state intervention effectively stranded available water supplies that districts had previously57

paid to secure. The inability to sell this water produced unanticipated financial stresses58

in such districts. In other cases, customers who had previously undertaken conservation59

efforts at the behest of their water district were “rewarded” with a rate increase needed to60

compensate for lost revenue and pay for fixed operating expenses (Mitchell et al., 2017).61

Although the State Board has since adopted a new approach based on stress-testing that62

allows for greater local control, analysis of the impacts of the mandate can help inform63

debates on the use of mandatory percent reductions and centralized versus decentralized64

water conservation authority. The logic for centralized control in California is that most65

urban residents are served by a large interconnected statewide water system and thus a major66

drought is best addressed through coordinated, collective action to promote cooperation and67

reduce shirking - i.e., an equitable sharing of the burden. The logic for decentralized control68
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is that the state already requires districts to develop and implement individual drought69

contingency plans, and each district is in the best position to monitor and respond to its70

own local conditions. If some districts make preventative drought-related investments, then71

they should be able to reap the benefits when droughts occur. Committing to local control72

incentivizes such investments, thus reducing the need for (what is perceived as) more blunt73

state intervention. The State Board attempted to equitably share the burden through a74

mostly formulaic approach to setting individual mandate levels that it felt was fair and75

responsive to local conditions. However, the anecdotal evidence mentioned above suggests76

that this approach was not entirely successful.77

The present study contributes to this discussion in two ways. First, we quantify the78

district-level impacts of California’s statewide conservation mandate across a sample of ur-79

ban water suppliers. Second, we investigate how the impacts correlate with socio-economic80

characteristics. We accomplish this with stochastic frontier analysis and show how this81

method also could be used by water districts to gauge the conservation potential of a cus-82

tomer base, and thus to evaluate the feasibility of various conservation targets.83

In order to address the first objective, we estimate a local measure of potential water use84

efficiency during the year prior to the state mandate. In doing so, we identify the potential85

water savings in a given district conditional on household characteristics and available conser-86

vation technologies during that period. Water use efficiency is measured using a household87

production theory approach in which households produce water services using water and88

other marketed goods as inputs. In this context, we can estimate a water demand frontier89

that allows us to compute the level of efficiency in water use and potential water savings90

at the time of the mandate. The second objective is achieved by regressing the difference91

between the estimated efficient water use and the mandated conservation target on a set92

of socioeconomic and demographic characteristics. This allows us to see how the relative93

feasibility of the mandated reductions correlate with district-level traits.94

Using a sample of nine districts located throughout California, we find evidence that the95
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mandated conservation targets were generally feasible, but also hit some districts, and some96

typically disadvantaged groups, harder than others. These findings support claims of some97

water districts that the state’s approach, while well-intentioned, did not adequately account98

for local conditions and fell short of achieving an equitable sharing of the conservation99

burden. We also show that the household production approach may be effective for districts100

needing a method to estimate contemporaneous water use efficiency potential, and to assess101

the feasibility of water reductions in a short-run context such as drought emergencies.102

MEASURING EFFICIENCY IN WATER USE103

The water demand frontier approach104

The household production theory approach proposed by Becker (1965) offers a useful105

framework for measuring efficiency in water use. To implement this framework, we assume106

that consumers obtain utility from water services produced in the household using inputs of107

market goods such as water and capital. As in Filippini and Hunt (2011, 2015), an input108

(water) demand frontier function can be derived from a cost minimization problem as:109

min
W

PWW + PKK

such that T (WS,W,K) = 0

(1)110

where WS is a vector of water services, which are produced using inputs W and K, i.e.,111

water use and a vector containing other inputs, respectively. PW and PK are the input prices112

for each of the previously defined inputs, and T represents the technologies available to the113

household. This cost minimization problem is assuming that the other inputs K are fixed,114

and therefore, it identifies the level of water use that minimizes the cost of producing water115

services WS given the level of other inputs K and the available technology.116

In order to solve this cost minimization problem, Filippini and Hunt (2011) propose a117

non-radial measure of efficiency that allows one to identify the potential reduction of only one118

input, as opposed to the standard input oriented radial measure, in which the contribution119
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of each input to technical efficiency is equiproportionate. The differences between these two120

measures are explained in Figure 1 by plotting an isoquant and an isocost line. The isoquant121

represents all technically efficient combinations of W and K used to produce a given level122

of WS∗. The isocost line illustrates all the input combinations that share the same cost.123

Having this in mind, the point x∗ where the isocost is tangent to the isoquant represents the124

cost-minimizing combination of inputs, that is, W ∗ and K∗. A household using W1 and K1 to125

produce WS∗ is both technically and cost inefficient. Since the standard input oriented radial126

measure implies an equiproportionate reduction of each of the inputs, the level of technical127

inefficiency using this measure is defined as the ratio of the distance from the origin to the128

technically efficient point θx1 and the distance from the origin to input combination x1.129

Similarly, cost efficiency is measured as the ratio of the distance from the origin to βx1130

and the distance from the origin to x1, implying a different input allocation. However, as131

discussed by Filippini and Hunt (2015), with the non-radial measure, the inefficiency is the132

difference between the cost-minimizing water use W ∗ and the observed water use W1.133

We obtain the non-radial measure by estimating a single conditional water demand fron-134

tier function for each water district, anticipating that households within the same district are135

more similar to each other in terms of water conservation technologies and habits, and thus136

neighbors provide a more meaningful efficiency benchmark than residents from other parts137

of the state. Blasch et al. (2017) note that this frontier function represents the minimum138

amount of water needed to produce a desired level of water services, given input prices, for139

a household in the sample that uses the most efficient production technology. Households140

not consuming on the frontier are considered inefficient, and the level of inefficiency can be141

measured as the distance to the efficient frontier.142

Following Filippini and Hunt (2011), we use the stochastic frontier approach introduced143

by Aigner et al. (1977).The reader may wonder why we do not use data envelope analysis144

(DEA). DEA is a deterministic method to estimate efficiency, and therefore it does not145

consider an error term in the estimation. In the case of household level data, we can expect146
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a high level of unobserved heterogeneity that could lead to misleading efficiency estimates.147

Therefore, we follow seminal papers in the energy literature to estimate efficiency such as148

Filippini and Hunt (2011, 2015) and use a stochastic frontier model. The water demand149

frontier function can be specified as:150

lnWit = α + β1lnPWit + β2WSit + vit + uit (2)151

where Wit is the water use for household i and period t, PWit is the average price of152

water, and WSit is a vector of water services (defined later in the Data Section) produced in153

the household, vit is a noise term, assumed to be normally distributed, and uit is a one-sided154

non-negative random disturbance representing the inefficiency term.155

All households in our sample face Increasing Block Rates (IBR), which present a simul-156

taneity concern as the marginal price increases (decreases) with the quantity consumed. To157

estimate the stochastic frontier model in Equation (2) while correcting for this problem of158

price endogeneity, we use Corrected Two-Stage Least Squares (2SLS) (Amsler et al., 2016),159

which is a generalization of corrected ordinary least squares (COLS). In this case, we first160

estimate Equation 2 by 2SLS using a set of instruments Z to obtain the 2SLS estimates α̂,161

β̂1 and β̂2. Then, we construct the correct 2SLS residuals as:162

eit = lnWit − α̂− β̂1lnPit + β̂2WSit (3)163

Importantly, we do not construct the residuals using ˆlnPit from the 2SLS. As indicated164

by Amsler et al. (2016), once we construct eit we calculate the second (σ̂2
e) and the third165

(µ̂′3) moments of the residuals, and we calculate σ̂2
u and σ̂2

v as:166

σ̂2
u =

(
π

4− π

√
π

2
µ′3

)2/3

(4)167

σ̂2
v = σ̂2

e −
π − 2

π
σ̂2
u (5)168
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To solve for σ2
u and σ2

v in terms of sample quantities, µ′3 < 0. If µ′3 > 0, we face the “wrong169

skewness” phenomenon (Waldman, 1982).Simar and Wilson (2009) indicate that this issue is170

not an estimation failure, but a finite sample problem that occurs when the variance ratio of171

the inefficiency component to the composite error is small. Following Amsler et al. (2016),172

in such cases we set σ2
u = 0. Once we calculate σ2

u and σ2
v , we correct the intercept as173

α̃ = α̂ +
√

2
π
σ̂u, and the COLS estimates are α̃, β̂, σ̂2

u and σ̂2
v .174

After obtaining these parameters, we predict the inefficiency term using the point esti-175

mator in (Kumbhakar and Lovell, 2000, p.142):176

WEi = E(exp {−ui} |ei) =

[
1− Φ(σ∗ − µ∗i/σ∗)

1− Φ(µ∗i/σ∗)

]
exp

[
−µ∗i +

1

2
σ2
∗

]
(6)177

where µ∗i = εiσ
2
u/σ

2 and σ2
∗ = σ2

uσ
2
v/σ

2 and Φ(.) is the standard normal cumulative distri-178

bution function. A water use efficiency score (WE ) of 1 indicates the household is efficient,179

and a water use score below 1 indicates that the household could reduce water use by (1 -180

WE ) by adopting water use habits and/or technologies currently used by the most efficient181

households. Because we estimate a water demand frontier function for each water district,182

this measure is relative to the most efficient households in a given household’s water district.183

Efficient and mandate-level water use184

Once we estimate the efficiency scores, the efficient level of water use for each household185

in each month can be computed as:186

Efficient Water useit = Actual water useit ×WEit (7)187

Moreover, we can then compute the mean efficient water use for each district by month,188

and then calculate the distance between the log of this measure and the log of the state189

mandated conservation target assigned to each district:190

Feasibilitydt = log(Mandate Water usedt)− log(Efficient Water usedt) (8)191
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This distance measure can be viewed as a feasibility indicator for each district in each192

month. If the mandated conservation target is higher than efficient use, then the target is193

“feasible” given current water use habits and technologies employed by the most efficient194

households in a given district. If the target is less than efficient use, then the target is not195

feasible in this sense. Rather, novel habits and technologies not currently used by even the196

most efficient households would be needed to meet such a target. Thus, the measure provides197

a sense of the reasonableness or fairness of each conservation target. This enables assessment198

of whether the targets were generally feasible and achievable. Moreover, we can regress this199

measure on socioeconomic, demographic, and seasonal variables to assess how these might200

be correlated with feasibility.201

DATA DESCRIPTION202

Our data set is consists of household level data from nine water districts in California203

from May 2014 to June 2015, that is, the drought’s so-called voluntary conservation period.204

We remove households reporting consumption levels equal to 0, as likely being unoccupied.205

Moreover, we balance the panel to consider households observed for the entire period of206

analysis. This period immediately precedes the mandate period to provide an accurate207

picture of technologies in use going into the mandate.208

Figure 2 shows counties including water districts in the analysis (in gray). These counties209

span the most populous regions of central and southern California. At the request of the210

water districts that have generously shared their data with us, we do not specifically identify211

any individual district. The household-level data set includes water use, water prices and212

housing characteristics such as the number of bathrooms in the house and household irrigated213

areas. These data were merged with socioeconomic and demographic characteristics at the214

district level from the American Community Survey (ACS) of the US Census, and with215

data on evapotranspiration from the California Irrigation Management Information System216

(CIMIS).217

Table 1 shows some descriptive statistics by water district of variables used to estimate218
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the water demand frontiers. For the dependent variable we use monthly water use (water219

use) measured in cubic meters (m3). For water services, i.e., the outputs to be produced by220

the household, we use the number of bathrooms (Bathrooms) as a proxy for indoor water221

services, and as proxies for outdoor water services, the amount of irrigated area (Irrigated222

area) measured in square meters and the average monthly evapotranspiration rate (ET ).223

The evapotranspiration rate is an indicator of weather variability, and therefore, the need for224

outdoor water services. We consider this indicator rather than precipitation or temperature225

because Baerenklau et al. (2014) found that it captures more than 90% of weather variability226

for another application involving CIMIS data. The year each house was built (Year Built) is227

included to control for housing characteristics that may affect their ability to produce water228

services. Last, we include the average water price (Avg P). The district with the highest229

water use also has the largest average irrigated area, but this district also shows a high230

standard deviation in this variable, i.e, there is more variability within the district. This231

district also has the highest average price. While this can be due to higher marginal prices232

for each block, it may also reflect that households in this district tend to consume in a higher233

block and so are charged a higher rate. Districts with less water use and water services (both234

indoor and outdoor) tend to be more urban.235

Table 2 shows descriptive statistics for variables considered in the second stage regression236

for our feasibility measure. For this regression, we consider a set of socioeconomic and237

demographic characteristics at the district level obtained from the US Census. Specifically,238

we include median household income (Income), median age (Age), the percent of population239

under 10 (Pop<10 ) and over 75 years of age (Pop>75 ), the percent of population identifying240

as Hispanic, (Pop Hispanic), the percent of population with bachelors degrees (Pop bachelor),241

and the mandatory water restriction assigned to the district (Mandate level). We also include242

three seasonal dummy variables: winter for December-February, spring for March-May, and243

summer for June-August. Last, we include a monthly time trend t that controls for temporal244

changes in water consumption observed during the period of analysis. Several variables had245
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high dispersion, such as Income, Pop Hispanic, and Pop bachelor. This indicates that districts246

considered in the analysis are quite heterogeneous, and we might expect differences in their247

ability to respond to mandatory restrictions.248

It is worth noting that most of the variables considered in the second stage regression249

are related to the ability to reduce water use, as opposed to the variables included in the250

first stage that are directly related to the production of water services and the installed251

technologies. As discussed by Kay et al. (1994) for the case of agricultural efficiency, dif-252

ferences in performance are often due to variation in management. However, management253

is not directly measured. For this reason, Rougoor et al. (1998) propose to use personal254

aspects (such as socioeconomic and demographic characteristics and abilities) and aspects of255

the decision-making process as proxies for the ability of a farmer to influence performance.256

Therefore, in this paper we follow a similar approach including “managerial variables” as257

determinants of the districts’ ability to meet the mandate.258

RESULTS259

Efficiency in water use260

The estimation results for the water demand frontier models for each district are shown in261

Table 3. The estimated coefficients have the expected signs for all models and are statistically262

significant for most variables. Price elasticities are negative and significant for all districts.263

Although they differ in magnitude, elasticity estimates are all within the common range264

reported in Sebri (2014).265

As expected, the proxies for water services Bathroom, ET and Irrigated area have a266

positive and significant effect on water use in all models. Moreover, the coefficient for Year267

built is negative and significant in most cases. This negative effect can be explained by newer268

houses tending to be more efficiently equipped when initially built.269

The mean efficiency scores and standard deviations are shown at the bottom of Table270

3. We observe that there is some heterogeneity in both the mean score and the dispersion.271

Five of the districts show mean efficiency scores ranging from 0.680 to 0.860, indicating272
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that on average these districts could reduce water use by 14%-32%. However, the remaining273

four districts suffer from the wrong skewness issue (explained in Section 2) and thus it is274

not possible to identify inefficiency during the period of analysis. In order to have a better275

understanding of the distribution of efficiency scores, in Figure 3 we show the histograms276

of the efficiency scores for the first 5 districts. The vertical lines indicate the 1st quartile,277

median and 3rd quartile in brown, blue and red, respectively. We observe that, while there278

are differences in the distributions across districts, at least 25% of the households in each279

district have relatively high efficiency scores around 0.9.280

Figures 4 and 5 compare the evolution of water use by each district during three periods:281

the year prior to the voluntary conservation period (the pre-voluntary period, June 2013 -282

May 2014), the voluntary conservation period (June 2014 - May 2015), and the mandatory283

conservation period (June 2015 - December 2015) (the mandatory period continued into 2016,284

however our data set ends in December 2015). Each figure also shows the state-mandated285

water use level (with the conservation target shown in parentheses in the figure legend, as286

a percent of the pre-voluntary use level) and our estimated efficient water use level. The287

panels in the figures are arranged in descending order by mandate level.288

Generally, the efficient water use levels are below the state-mandated levels in most289

months. These positive differences imply the mandated reductions were generally feasible.290

However, often in late winter and early spring, mandate levels are below efficient use, so291

achieving the mandates without affecting the level of water services would require imple-292

menting water use habits and technologies beyond even the most efficient households in293

those districts. Two districts show this pattern in summer months, as well.294

The figures also allow comparison of actual and efficient use. The most meaningful295

comparison involves actual use in the voluntary period because our estimate of efficient use296

is derived from this data. This comparison shows that actual use during this time exceeded297

efficient use for five of nine districts, implying these districts had “room to improve” when298

entering the mandate period. However, as noted above, for the remaining four districts, we299
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face the wrong skewness issue (explained in Section 2) and thus cannot identify inefficiency300

during the period of analysis. Here, our efficient use estimate coincides with actual use,301

implying use was already efficient before the mandate period. This result is not surprising302

as the water use during the voluntary period was already near the level required by the303

mandate. For these districts the mandate levels were often near or below efficient use.304

A related comparison is between actual use during the mandate period and efficient use.305

In most cases, actual use during the mandate period exceeded efficient use, which makes306

intuitive sense. But this is not always the case. Sometimes actual use during the mandate307

period fell below our estimate of efficient use. This suggests households were adopting new308

habits and technologies as the state transitioned to mandatory cutbacks in water use-habits309

and technologies that were uncommon even among efficient households prior to the mandate310

period.311

Further insights can be gleaned by examining the three districts that were assigned a312

mandated reduction in the range of 20% to 24%. Two of these districts have relatively313

low water use and less seasonal fluctuation. The third has higher overall use and greater314

seasonal differences. More interesting is how water use evolved from the pre-voluntary to315

the voluntary periods in these districts. The first two districts achieved little conservation316

during the voluntary period while the third achieved more. Yet all three were assigned 20-24%317

reductions based on the pre-voluntary baseline. Not surprisingly, the mandatory reductions318

were more easily achieved (as defined by our feasibility measure) in the first two districts319

than in the third, where our efficiency estimate coincides with actual use. This suggests320

there were asymmetric impacts of the mandate, and supports arguments that a state-level321

approach-even one that was thoughtfully designed to equitably share the burden-did not322

adequately capture local conditions.323

Feasibility and the role of districts’ characteristics324

To further explore asymmetric impacts, we consider the possibility that observed differ-325

ences in feasibility across districts might correlate with observable customer traits. To do326
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so, we regress monthly measures of our difference variable (Feasibility) on districts’ socio-327

economic and demographic characteristics (explained in the Data Section). Negative values328

of Feasibility indicate that the mandate is below our estimate of efficient water use, implying329

the mandate would not be feasible with water conservation habits and technologies already330

in use at the time. Conversely, positive values imply more feasible and easily achievable331

mandated conservation levels. We also include seasonal dummies as explanatory variables332

and a monthly time trend in these regressions. We do this because the preceding analysis333

shows that households tend to be less efficient during the earlier months of the analysis,334

which includes the summer. Including both seasonal dummies and a trend helps disentangle335

these effects.336

Estimation results for this analysis appear in Table 4. Not surprisingly, Mandate level is337

strongly negatively correlated with our dependent variable: higher percent reductions occur338

with lower feasibility (a higher compliance burden). The time trend t is positively correlated339

with the feasibility measure, indicating that compliance generally becomes easier through340

time. This makes intuitive sense to the extent that households change their water use habits341

and technologies over time. The seasonal dummies for spring and winter are negatively342

correlated, indicating greater difficulty in achieving compliance with the mandate during the343

cooler, wetter time of year. This also makes intuitive sense and is consistent with Lund et al.344

(2018) who note that landscape irrigation represents a high proportion of urban water use345

in California, and reductions during the 2012-16 drought were mostly achieved by reducing346

this water use.347

Regarding the socio-demographic regressors, Income has a positive and significant effect348

on Feasibility. The mandated reductions were more feasible (easier to comply with) wealthier349

districts, and more difficult in poorer districts. Districts with an older population, a higher350

percentage of children under 10 and adults over 75 also found it more difficult to comply with351

their mandated reductions. A similar effect occurred for districts with larger percentages352

of Hispanic residents, with feasibility measures being lower in such districts. In each of353
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these cases, a greater compliance burden occurs with traits that often indicates an already354

disadvantaged community: lower income, more children and elderly residents to care for, and355

a larger under-represented minority population. However, this is not true for our education356

variable. The proportion of bachelor’s degree holders has a negative and significant effect357

on the Feasibility variable, indicating greater feasibility in districts with lower educational358

attainment.359

To assess the economic significance of these regression estimates, we report the elasticities360

for the socioeconomic and demographic regressors in Table 5. A change in any of these361

variables produces an elastic response in our feasibility measure. For example, a 1% increase362

in Age and Pop<10 would lead to a 23.6% and 20% decrease in the feasibility measure,363

respectively. A 1% decrease in median household income would lead to an 11% decrease in364

the feasibility measure. The impact on the feasibility measure of a 1% change in any of these365

socio-demographic variables is larger than that of a 1% increase in the mandate level which366

produces an inelastic response. These are not trivial differences in policy impacts across367

districts.368

CONCLUSIONS369

This paper analyzes the mandatory water restrictions implemented during the 2012-16370

California drought by using household production theory and stochastic frontier analysis,371

both widely used in the economics literature, including applications to energy consumption.372

In general, the restrictions were not excessive, consistent with work by Mitchell et al. (2017)373

who observe that most districts achieved their mandated reductions in 2015-16 and that Cal-374

ifornia historically has been able to achieve short-term urban water use reductions of around375

20%. However, the present work adds important context to these findings by motivating376

a measure of water conservation feasibility and using this measure to show that the state377

mandate imposed larger burdens on some districts.378

To further investigate the asymmetric impacts of the state mandate, we regress our feasi-379

bility measure against several socioeconomic and demographic characteristics. Although the380
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State Board’s approach to setting the mandate levels did not directly target such charac-381

teristics, they nonetheless seem to correlate such that poorer and older communities, those382

with more children and/or more elderly residents, and those with more Hispanic residents383

were harder hit by the regulations. While speculative, this may be because poorer and older384

communities are less able to purchase and install water efficient technologies as a response to385

drought. Those with children may find it more challenging to control indoor use and may be386

less willing to forego a green lawn. And Hispanic communities may be less likely to receive387

water district messages in their native language and thus less likely to be responsive.388

From a policy perspective and looking ahead to future droughts, our results provide a389

rationale for greater local control, to the extent such control could be more responsive to local390

conditions and mitigate undesirable differential impacts. Moreover, while our approach could391

be implemented by state regulators, water districts have a potential advantage for tailoring392

short-term water restrictions as they have immediate access to household level customer393

information and a better understanding of heterogeneity within the district. The observed394

feasibility of the mandate levels generally increasing during the drought also suggests that395

a more flexible approach is warranted - one that adapts conservation targets to changes396

in technology and behavior that appear to occur during a drought. In this context, our397

methodological approach could be useful for water districts. Rather than setting fixed percent398

reduction targets from an arbitrary baseline, our approach would allow districts to assess399

conservation potential in near-real-time. This would enable water managers to estimate their400

available demand-side “cushion” as water scarcity concerns increase during the onset of a401

drought. Analyzing this conservation potential in the context of available reserves could402

then help inform policy decisions about actions that might be needed to help customers403

install new technologies not currently in use. By regularly updating the calculations, water404

managers could judge whether and to what extent percent reductions might be increased in405

an ongoing drought without creating excessive burdens for customers.406
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District A District B District C District D District E District F District G District H District I
County Statistic San Mateo Santa Clara Solano Alameda Los Angeles San Joaquin Monterey Los Angeles San Mateo

Mean 58.89 36.31 34.85 29.78 39.57 52.36 35.58 20.51 37.28
Water use Std Dev 82.25 29.84 21.12 21.76 27.23 53.35 30.58 12.74 36.20
(m3) Min 2.83 2.83 2.83 2.83 2.83 2.83 2.83 2.83 2.83

Max 2217.20 419.09 464.40 563.50 586.16 1826.43 968.43 283.17 1551.76
Mean 2.75 2.05 1.47 2.40 2.01 2.79 2.45 1.80 1.72

Bathrooms Std Dev 1.31 0.62 0.65 1.08 0.68 1.01 0.86 0.83 0.78
Min 1 1 1 1 1 1 1 1 1
Max 10 5. 8 10 5 10 8 8 8
Mean 1283.30 360.80 172.90 154.76 237.34 756.19 668.43 201.09 393.06

Irrigated area Std Dev 1664.61 368.64 102.26 135.35 200.47 966.73 849.93 215.06 320.86
(m2) Min 0.00 3.00 13.68 0.00 8.11 0.00 57.18 0.00 0.00

Max 8427.49 10176.85 1613.26 2077.94 3406.24 17738.18 20391.28 3999.73 9688.44
Mean 54.83 63.01 68.15 66.19 63.79 54.83 61.22 54.83 59.46

ET Std Dev 7.66 16.37 10.96 10.25 11.56 7.66 12.76 7.66 14.42
(cm/month) Min 33.12 37.41 48.93 47.92 41.13 43.17 42.30 43.17 37.00

Max 73.91 85.70 84.10 81.32 77.48 64.83 80.42 64.83 78.21
Mean 1959 1968 1940 1964 1978 1964 1973 1955 1951

Year Built Std Dev 22 20 16 23 24 19 18 15 16
Min 1860 1880 1890 1808 1900 1880 1880 1900 1895
Max 2015 2008 2010 2015 2007 2014 2011 2011 2010
Mean 2.61 0.73 0.60 1.90 1.54 1.90 1.92 2.43 1.48

Avg P Std Dev 0.85 0.36 0.19 0.46 0.69 0.69 0.74 0.69 0.70
($/m3) Min 1.81 0.31 0.45 1.34 0.85 1.29 1.19 1.68 0.83

Max 8.56 3.39 2.68 5.34 8.31 7.25 7.32 6.49 6.36

N households 8193 8785 1501 9521 9520 5641 973 9679 6822

TABLE 1: Descriptive statistics by district
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Statistic Mean St. Dev. Min Max

Income ($1000) 91.014 34.607 41.152 132.652
Age 37.996 4.042 27.748 41.731
Pop <10 (%) 13.660 1.529 11.877 18.010
Pop >75 (%) 5.977 1.119 3.500 7.845
Pop Hispanic (%) 27.762 25.927 7.405 82.047
Pop bachelor (%) 22.683 10.748 5.199 35.359
Mandate level 20.60 6.40 8.00 36.00

TABLE 2: Descriptive statistics for variables in the second stage
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TABLE 3: Results

Dependent variable:

log(water use)

Variables District A District B District C District D District E District F District G District H District I

ET 0.040∗∗∗ 0.037∗∗∗ 0.015∗∗∗ 0.017∗∗∗ 0.008∗∗∗ 0.022∗∗∗ 0.017∗∗∗ 0.009∗∗∗ 0.011∗∗∗

(0.0004) (0.001) (0.0005) (0.0002) (0.0002) (0.0002) (0.001) (0.0002) (0.0003)

Bathrooms 0.226∗∗∗ 0.221∗∗∗ 0.182∗∗∗ 0.186∗∗∗ 0.132∗∗∗ 0.224∗∗∗ 0.140∗∗∗ 0.105∗∗∗ 0.112∗∗∗

(0.002) (0.003) (0.007) (0.002) (0.002) (0.003) (0.008) (0.003) (0.003)

Irrigated area 0.0001∗∗∗ 0.0001∗∗∗ 0.0002∗∗∗ 0.0001∗∗∗ 0.001∗∗∗ 0.0002∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗ 0.0001∗∗∗

(0.00000) (0.00000) (0.00001) (0.00000) (0.00001) (0.00001) (0.00003) (0.00002) (0.00001)

Year Built -0.001∗∗∗ -0.003∗∗∗ -0.00000 0.005∗∗∗ -0.001∗∗∗ 0.0002 -0.0001 -0.002∗∗∗ -0.002∗∗∗

(0.0001) (0.0001) (0.0002) (0.0001) (0.0001) (0.0002) (0.0002) (0.0001) (0.0001)

log(Avg P) -0.659∗∗∗ -0.684∗∗∗ -0.537∗∗∗ -0.815∗∗∗ -0.482∗∗∗ -0.305∗∗∗ -0.314∗∗∗ -0.136∗∗∗ -0.315∗∗∗

(0.051) (0.063) (0.029) (0.019) (0.032) (0.019) (0.031) (0.015) (0.026)

Constant 3.129∗∗∗ 7.484∗∗∗ 1.733∗∗∗ -6.879∗∗∗ 4.622∗∗∗ 1.303∗∗∗ 2.240∗∗∗ 7.157∗∗∗ 7.026∗∗∗

(0.235) (0.255) (0.409) (0.221) (0.175) (0.312) (0.494) (0.225) (0.273)

Efficiency scores
Mean 0.708 0.726 0.860 0.680 0.857 - - - -
Std Dev 0.185 0.180 0.108 0.204 0.107 - - - -

N 98316 105420 18012 114252 114240 67692 11676 116148 81864

Note: ∗∗∗p<0.01
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TABLE 4: Estimation results - Second stage

Coefficients Std. Errors
Intercept 7.51 *** 2.89
t 0.05*** 0.01
Summer 0.04 0.04
Spring -0.52*** 0.07
Winter -0.18*** 0.03
Income 0.02*** 0.00
Age -0.11** 0.05
%Pop<10 -0.22*** 0.08
%Pop>75 -0.21*** 0.06
%Pop Hispanic -0.01*** 0.00
%Pop Bachelor -0.03*** 0.01
Mandate level -0.006*** 0.003
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TABLE 5: Elasticities for socioeconomic and demographic characteristics

Elasticities
Income 11.01
Age -23.60
%Pop<10 -20.07
%Pop>75 -7.34
%Pop Hispanic -1.60
%Pop Bachelor -4.09
Mandate level -0.85
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FIG. 2: Distribution of water districts in the analysis
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FIG. 3: Histogram E�ciency Scores

29

FIG. 3: Histogram Efficiency Scores

29



0

25

50

75

100

125

Ju
ne Ju

ly

Aug
us

t

Sep
tem

be
r

Octo
be

r

Nov
em

be
r

Dec
em

be
r

Ja
nu

ary

Fe
bru

ary
Marc

h
Apri

l
May

Months

M
on

th
ly

 h
ou

se
ho

ld
 w

at
er

 u
se

 (m
3)

Water use prevoluntary period
Water use voluntary period
Water use mandate period
Efficient water use
Water use mandate level (32%)

(a) Evolution of water use - District A

0

25

50

75

100

125

Ju
ne Ju

ly

Aug
us

t

Sep
tem

be
r

Octo
be

r

Nov
em

be
r

Dec
em

be
r

Ja
nu

ary

Fe
bru

ary
Marc

h
Apri

l
May

Months

M
on

th
ly

 h
ou

se
ho

ld
 w

at
er

 u
se

 (m
3)

Water use prevoluntary period
Water use voluntary period
Water use mandate period
Efficient water use
Water use mandate level (32%)

(b) Evolution of water use - District B
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(d) Evolution of water use - District D

FIG. 4: Evolution of water use for di↵erent districts
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FIG. 5: Evolution of water use for di↵erent districts
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