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Abstract

Immunologic impairment may contribute to poor outcomes after implantation of mechanical
circulatory support device (MCSD), with infection often as a terminal event. The study of immune
dysfunction is of special relevance given the growing numbers of older patients with heart disease.
The aim of the study was to define which immunologic characteristics are associated with
development of adverse clinical outcomes after MCSD implantation.

We isolated peripheral blood mononuclear cells (PBMC) from patients pre- and up to 20 days
post-MCSD implantation and analyzed them by multiparameter flow cytometry for T cell
dysfunction, including terminal differentiation, exhaustion, and senescence. We used MELD-XI
and SOFA scores measured at each time point as surrogate markers of clinical outcome.

Older patients demonstrated increased frequencies of terminally differentiated T cells as well as
NKT cells. Increased frequency of terminally differentiated and immune senescent T cells were
associated with worse clinical outcome as measured by MELD-XI and SOFA scores, and with
progression to infection and death.

"Corresponding author.: jschaenman@mednet.ucla.edu (J.M. Schaenman).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.humimm.
2018.01.011.
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In conclusion, our data suggest that T cell dysfunction, independently from age, is associated with
poor outcomes after MCSD implantation, providing a potential immunologic mechanism behind
patient vulnerability to multiorgan dysfunction and death. This noninvasive approach to PBMC
evaluation holds promise for candidate evaluation and patient monitoring.
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T cell; Immune phenotype; Mechanical circulatory support; Elderly

1. Introduction

The past decade has brought substantial progress in the field of advanced heart failure and
mechanical circulatory support devices (MCSD), and device implantation is increasingly the
treatment of choice for patients with disease not amenable to medical therapy [1]. Given the
increasing prevalence in heart failure and shortages in organ donors, the number of potential
candidates for MCSD is growing [2]. However, there remains a subset of patients who
undergo successful MCSD implantation and yet proceed to multisystem organ dysfunction
and death, often with infection and sepsis as terminal events [1]. This observation suggests
that immunologic impairment may be a contributor to poor outcomes after MCSD
implantation, an important concern given the increasing number of older patients with heart
failure [3], and the known associations between increased age and T cell immune cell
dysfunction [4-6]. Older and physically frailer patients are at increased risk for death after
MCSD implantation [7,8].

Associations between immune dysfunction and advanced heart failure have previously been
described, with markers of inflammation including cytokines, C-reactive protein, and
autoantibodies [9]. Older studies have shown a decrease in the numbers of CD4+ and CD8+
T cells, impaired T cell function, and inflammation after MCSD placement [10-14],
postulated to be associated with increased rates of blood clotting and strokes, infection, and
development of multiorgan system dysfunction. New markers of T cell dysfunction
associated with impaired control of infection include T cell maturation and terminal
differentiation [15,16]. In addition, immune senescence, or deficient replicative ability, and
immune exhaustion, or impaired antigen response, are associated with immune dysfunction
and poor infection control, worsened with in older patients as well as CMV antibody
positive individuals [17-19]. These immunologic changes seen with advanced heart failure
and after MCSD implantation may also contribute to the alloreactivity often seen after these
patients undergo heart transplantation [1,2].

Whether T cell functional immune phenotypes are associated with poor outcomes after
MCSD implantation and whether there is a mechanistic link between them has not
previously been examined. We hypothesized that T cell functional immune phenotypes are
associated with poor outcomes after MCS device implantation. We describe here a novel
approach to immunologic evaluation of T cell phenotypes in patients undergoing MCSD
implantation.
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2. Materials and methods

2.1. Patients and samples

We enrolled patients from the Ronald Reagan Medical Center with advanced heart failure
undergoing evaluation for MCSD. This observational study was approved by the UCLA
Institutional Review Board. All patient signed informed consent. Blood was collected for
peripheral blood mononuclear cell (PBMC) isolation within 24hs prior to MCSD
implantation and on Days 1, 3, 5, 8, 10, 14 and 17, £+ 1 day after surgery for a total of 8
planned blood draws. 28 patients were enrolled who had PBMC available for analysis, and
completed at least 6 months of clinical follow-up between September 2012 and March 2015,
with the last point of clinical review as of July 1, 2016. Only FDA-approved durable MCSD
were included in our analysis, namely HeartMate 11, HeartWare, Thoratec Paracorporeal
Ventricular Assist Device, CentriMag, or Total Artificial Heart, but not percutaneously
inserted devices such as extracorporeal membranous oxygenation, TandemHeart, or Impella
pumps. However, patients could have temporary support devices in place prior to MCSD
implantation. PBMC were isolated using previously published techniques [20], and frozen
for storage until batched analysis could be performed. The majority (75%) of samples were
collected between Days 0 and 8, with 57% with 5 samples and 71% with =5 samples
available for analysis. Sensitization was defined as the presence of detectable antibodies
against HLA 1 and 1l single antigens.

2.2. Flow cytometry

Viable cells were identified using a fluorescent live/dead marker (Life Technologies). T cell
maturation was assessed using a cocktail of fluorochrome-conjugated antibodies against
CD3, CD4, CD8, CCR7, and CD45RA to determine maturation phenotype. Naive cells were
defined as CCR7+/CD45RA+; effector memory as CCR7-/CD45RA~; and terminally
differentiated as CCR7-/CD45RA+ (antibodies obtained from either BD Biosciences or
Biolegend). In addition, 22 of the 28 patients were simultaneously analyzed for exhaustion,
senescence, and activation of T cells using KLRG1, CD57, CD38, CD28, and PD-1 [16].
Immunophenotyping of NK T cells was performed using fluorochrome-conjugated
antibodies against CD56, CD3, CD4, CD8, and KLRG1. NK cells were defined as total
CD56+ KLRG1+ lymphocytes. Fluorescence from viable cells was measured by the BD
LSRFortessa (BD Biosciences) with FCS Express software (DeNovo Software) for analysis.
For maturation phenotype analyses, central memory (CCR7+/CD45RA-) T cells are not
described given the low frequency of these cells observed in peripheral blood.

2.3. Clinical data collection

Data was collected prospectively to calculate MELD-XI (Model for End-Stage Liver
Disease eXcluding INR) and SOFA (Sequential Organ Failure Assessment) scores, used as a
surrogate for multiorgan dysfunction [21,22]. For MELD-XI calculation, an appropriate
measure for patients on anticoagulation, serum creatinine was set to 1.0 for patients with
creatinine levels of < 1.0 to prevent calculation of negative numbers, generating a minimum
score of 9.44, following previously published guidelines [22]. Records were reviewed for 1
month prior to and 6 months after MCSD implantation for evidence of significant bleeding
requiring transfusion or operative intervention as well as infectious episodes including sepsis
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syndrome, bacteremia, driveline infection, pneumonia, and urinary tract infection following
standard definitions [23,24]. Severe infection was defined as requiring intravenous antibiotic
treatment and/or leading to extension of hospital stay or death. MELD-XI and SOFA
measurements were evaluated at each time point for which PBMC were collected. MELD-
X1 values ranged from11.2 to 28.8; SOFA scores ranged from 3 to 16. Median values were
used to divide patients into “High” or “Low” MELD-XI and SOFA groups either prior to or
after MCSD implantation.

2.4. Statistical analysis

Statistical analysis was performed using JMP Pro 11 (SAS Software). Differences between
continuous values (SOFA or MELD-XI, chronologic age, frequencies of immunologic
subtypes) were compared by non-parametric 2-sample test (Mann-Whitney U-Test), while
differences between categorical variables were compared by Fisher exact test. Standard least
squares regression was used to compare numeric variables.

To correct for the issue of repeated measures and patient-to-patient variability, linear mixed
effects models were used to evaluate the association between immune phenotype and clinical
outcomes including MELD-XI and SOFA, correcting for random patient effects. Time to
infection and death were analyzed using Cox proportional hazards models, with immune
phenotypes included as time-varying covariates. Bridge to transplantation (BTT) was
analyzed using logistic regression, with immune phenotypes averaged across repeated
measures. Variables reaching a statistical significance of p < 0.05 were further analyzed in a
multivariable model adjusted for patient age. These analyses were performed using R 3.3.2
(http://www.r-project.org/).

3. Results

3.1. Patient characteristics at time of MCSD implantation

Of the twenty-eight patients with advanced heart failure ranging in age from 24 to 80 years
old enrolled in this study, 53.6% of patients were older than age 60 at the time of MCSD
implantation (Table 1). Most patients underwent HeartMate 11 device implantation (71.4%),
with several receiving implantation of other devices: Paracorporeal Ventricular Assist Device
(PVAD) (10.7%), HeartWare (7.1%), Total Artificial Heart (TAH) (7.1%), and left-sided
Centrimag (3.6%). Five of the 20 patients receiving left sided HeartMate Il implantation
required additional right-sided MCSD implantation. Prior to MCSD implantation, 10
patients (35.7%) had temporary device in place, 5 with intra-aortic balloon pump (IABP)
and 5 with extracorporal membrane oxygenation (ECMO). There was no significant
association between need for temporary device and age (p = 0.698). There was also no
association between temporary device and heart failure type, INTERMACS score, MELD-
XI, SOFA score, or death at 3 months.

Dividing patients into high (=18) versus low (< 18) MELD-XI group at the time of implant
revealed increased patient age (median 63 compared with 43 years) and severity of heart
failure (83% INTERMACS 1 or 2 compared with 20%) in patients with higher compared
with lower MELD-XI scores (Table 2). Older patients had a higher median MELD-XI score,
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with a median of 20.1 in older compared with 14.0 in younger patients (Table 3). The
association between age and increased MELD-XI and SOFA scores continued after MCSD
implantation (p < 0.001 for both).

3.2. Patient outcomes after MCSD implantation by clinical characteristics

MELD-XI and SOFA scores decreased overall by post-operative Day 5 compared with pre-
implant levels (Supplemental Table 1). The median follow-up time was 474 days (IQR 91 to
779 days).

The median number of days to death was 50 (Table 4). 25.0% of all patients (n = 7) died by
3 months after implant. Of the 10 patients who died by one year post implant, the majority
(n =9) died due to multiorgan failure, often in the setting of sepsis, while one patient died
outside of the hospital due to unknown causes.

7 patients had infections prior to implantation, which included bacterial sepsis (n = 2),
bacterial pneumonia (n = 2), urinary tract infection (n = 1), Candidal infection (n = 1), and
viral pneumonia (n = 1). Post implantation, 15 patients experienced infections including
bacterial sepsis (n = 7), bacterial pneumonia (n = 4), Candidal infection (n = 2), viral
pneumonia (n = 1), and colitis (n = 1). Infections post-implant occurred at a median of 28
days after surgery. There were 6 significant bleeding complications requiring transfusion or
surgical intervention. MELD-XI score at time of implantation was not significantly
associated with clinical outcomes, as incidence of subsequent infection and death were
similar in the low and high MELD-XI groups (Supplemental Table 2). Analyzing older
compared with younger patients showed a trend towards, increased incidence of infection
and death in older patients, with 40.0% incidence death at 3 months in the older as compared
with 7.7% in the younger patients (p = 0.084) (Supplemental Table 3). Treating age as a
continuous variable demonstrated an association with death at 3 months (p = 0.028).

3.3. T cell phenotype and patient age

Patients underwent longitudinal sampling of PBMC with one pre-implant blood draw and up
to 7 assessments after MCSD implantation. Limiting analysis to PBMC collected prior to
MCSD implant, older patients had fewer naive CD8+ T cells compared with younger
patients, with a median frequency of 9.8% compared with 40.1% (p = 0.002). Older patients
displayed an increased frequency of terminally differentiated effector memory cells
(TEMRA) CD8+ T cells, cells with a median frequency of 46.4% as compared with 26.0%
in younger patients (p = 0.038) prior to MCSD implantation. Effector memory (EM) CD8+
T cells did not vary by patient age at Day 0. No significant associations were found for
CD4+ maturation.

After MCSD implantation (excluding pre-implant values), analysis of patient age showed
decreased median frequency of naive CD8+ T cells (9.7%) in older as compared with
younger patients (53.0%) (p < 0.001). Older patients displayed an increased frequency of
EM (29.9% compared with 19.8%, p = 0.002) and TEMRA CD8+ T cells (48.2% compared
with 17.0%, p < 0.001) (Fig. 1a). These differences between older and younger patients did
not change significantly over time after MCSD implantation (Supplemental Fig. 1). A
similar pattern was observed for CD4+ T cells by maturation subtype, with the most striking
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difference between older and younger patients in the frequency of naive CD4+ T cells
(35.2% in older compared with 52.2% in younger patients, p = 0.001). There was an
increased frequency of exhausted CD8+ CD57+PD-1+ T cells in older (11.6%) compared
with younger (6.6%) patients (p < 0.001) but no significant association between age and T
cells senescence. Interestingly, younger patients with a decreased frequency of naive CD8+
T cells and increased frequency of TEMRA CD8+ T cells were more likely to experience
infections and progression to death. Conversely, the older patients who had increased
frequency of naive and fewer TEMRA CD8+ T cells were more likely to successfully bridge
to transplant without adverse clinical outcomes.

3.4. T cell phenotype and CMV antibody status

CMV antibody (Ab) positivity was associated with decreased frequency of naive CD8+ T
cells, with median frequency 11.4% in CMV Ab positive as compared with 49.3% in CMV
Ab negative patients (p < 0.001) (Fig. 1b). CMV Ab positive patients had increased
frequency CD8+ EM (29.9% compared with 18.9%, p = 0.001) and CD8+ TEMRA T cells
(46.8% compared with 20.3%, p < 0.001). A similar association was seen for CD4+ T cells
(data not shown). In addition, there was increased frequency of CD8+ exhausted (CD57+
PD-1+) (10.1% compared with 6.3%, p = 0.012) T cells in the CMV Ab positive compared
with CMV Ab negative patients. CMV Ab positive patients displayed increased frequency of
senescent CD8+ T cells, de-fined as CD8+ CD28- (36.1% compared with 10.7%, p <
0.001), CD8+ CD57+KLRG1+ (11.6% compared with 3.2%, p < 0.001), or CD8+
KLRG1+CD28- (10.0% compared with 2.0%, p = 0.002).

3.5. Tcell phenotype and INTERMACS score

After MCSD implantation an association was seen with the frequency of CD8+ naive T cells
(18.6% in INTERMACS 1/2 compared with 39.8% in INTERMACS 3/4, p = 0.004) and
CD8+ EM T cells (31.6% in INTERMACS 1/2 compared with 19.0% in INTERMACS 3/4,
p < 0.001). No association was seen with CD8+ TEMRA or CD4+ T cells. After MCSD
implantation, INTERMACS 1/2 patients had increased frequency of exhausted CD8+ T cells
(CD57+ PD-1+) compared with INTERMACS 3/4 patients (18.5% compared with 3.0%, p <
0.001), however, no difference was seen in frequency of senescent CD8+ T cells. Frequency
of CD8+ T cells expressing the activation marker CD38+ were significantly increased in
INTERMACS 1/2 patients (46.8%) as compared with INTERMACS 3/4 patients (16.2%) (p
< 0.001). This difference in activated CD8+ T cells was also detectable prior to MCSD
implantation in INTERMACS 1/2 patients(45.3%) as compared with INTERMACS 3/4
patients (13.3%) (p = 0.019).

3.6. T cell phenotype and pre-MCSD temporary device

There was no significant association with the presence or absence of pre-MCSD temporary
assist devices (IABP or ECMO) and T cell maturation, senescence, or exhaustion prior to
MCSD implant. After MCSD implantation, however, patients with history of temporary
device displayed increased frequency of exhausted and senescent T cells: There was
increased frequency of KLRG1+ CD8+ T cells in the patients with history of temporary
support device (60.9%) as compared with those without history of temporary device (14.7%)
group (p < 0.001). CD8+ KLRG1+ PD-1+ analysis revealed a similar association, with
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increased frequency in the temporary device (40.8%) as compared with the no temporary
device group (8.0%) (p = 0.001). KLRG1+ CD28- T cells and differences in T cell
maturation, however, did not show any significant differences.

3.7. T cell phenotype and MCSD pulsatility

For the 18.8% of patients receiving a pulsatile MCSD device, increased frequency of
KLRG1+ CD8+ T cells was observed after implantation in patients receiving pulsatile
devices (64.4%) compared with those receiving non-pulsatile devices (23.6%) (p = 0.002).
Analysis of CD8+ KLRG1+ PD1+ exhausted T cells also revealed increased frequency in
those receiving pulsatile (31.3%) compared with non-pulsatile MCSD (9.7%) (p = 0.006).
CD8+ KLRG1+ CD28- senescent T cells were also increased in those receiving pulsatile
(8.8%) compared with non-pulsatile devices (1.9%) (p = 0.006). There were no differences,
however, in markers of T cell maturation.

3.8. T cell phenotype analysis and MELD-XI/SOFA score

CD8+ and CD4+ maturation phenotypes were not significantly associated with MELD-XI or
SOFA scores prior to implantation. After MCSD implantation, an association between
numerical MELD-XI scores and CD8+ maturation phenotype was observed, with a
statistically significant association between frequency of naive CD8+ T cells (p < 0.001),
EM T cells (p = 0.26), and TEMRA T cells (p = 0.027). This association was also seen
between naive CD4+ T cells (p = 0.031) and TEMRA T cells (p = 0.005), as well as for
SOFA scores (data not shown). Categorizing each MELD-XI score as ‘high’ (=16) or ‘low’
(< 16) (divided by level post-implant) revealed a similar association: After MCSD
implantation, lower frequencies of CD8+ naive T cells were seen with high MELD-XI
(11.7%) as compared with low MELD-XI (40.2%) (p < 0.001), and increased frequency of
EM and TEMRA CD8+ T cells (p = 0.002 and p = 0.009, respectively) (Fig. 1c).

After MCSD implantation, lower frequencies of CD8+ naive T cells were seen with high
SOFA (=6) (18.8%) as compared with low SOFA scores (< 6) (34.0%) (p = 0.034), and
increased frequency of EM CD8+ T cells were seen in high as compared with low SOFA
scores (p = 0.012). A similar pattern was seen for the CD4+ T cells (data not shown). There
was increased frequency of KLRG1+ CD8+ T cells in the high MELD-XI (50.5%) as
compared with the low MELD-XI (17.4%) group (p = 0.027) (Fig. 1d). CD8+ KLRG1+
PD-1+ analysis revealed a similar association, with increased median frequency in the high
(27.0%) as compared with the low MELD-XI group (8.8%) (p = 0.001) (Fig. 1d). KLRG1+
CD28- T cells also demonstrated significant difference between the high MELD-XI and low
MELD-XI groups (8.6% compared with 1.8%, p = 0.006). No differences in exhaustion or
immune senescence was seen by SOFA score (data not shown).

3.9. T Cell phenotype analysis and clinical outcome of infection

CD8+ maturation subtypes after MCSD implantation were associated with post-implant
infection, with lower frequency of naive CD8+ T cells in patients with infection (18.5%)
compared with those without infection (35.1%) (p = 0.007), increased frequency of EM
(30.3% compared with 18.7%, p = 0.003), and a trend towards increased TEMRA CD8+ T
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cells (14.8% compared with 30.7%, p = 0.051) (Fig. 2a). A similar finding was observed for
CD4+ naive (p = 0.003) and EM (p = 0.003) T cells.

There was an increased frequency of CD8+ KLRG1+ T cells in patients with infection
(53.3%) as compared with those without (16.0%) (p = 0.004) (Fig. 2b). Analysis of
exhaustion (KLRG1+ PD-1+) and senescence (KLRG1+ CD28-) showed association with
infection after MCSD implantation (p = 0.008 and 0.003, respectively) (Fig. 2b). Increased
frequency of activated and exhausted or senescent CD57+ PD-1+ and CD57+ KLRG1+
CD8+ T cells was also observed in patients with infection (p = 0.003 and p = 0.0004,
respectively).

3.10. T Cell phenotype analysis and clinical outcome of BTT and death

Patients who were successfully bridged to transplant showed a decreased frequency of
terminally differentiated TEMRA CD8+ T cells(31.2%) as compared with those who were
not (55.2%) (p < 0.001). A similar pattern was seen for CD4+ T cells (data not shown).
Analysis of senescence showed CD8+ CD57+KLRG1+ of 14.4% in those who did undergo
transplantation as compared with 31.0% in those who did not (p = 0.018). CD8+
CD57+PD-1 frequency was 7.9% in those who were bridged to transplant as compared with
13.0% in those who did not (p = 0.004).

CD8+ maturation subtypes were associated with death at 3 months, with a lower frequency
of naive CD8+ T cells in patients who died(10.3%) compared with those who survived
(27.0%) and an increased frequency of TEMRA CD8+ T cells in patients who died (63.9%)
as compared with those who survived (32.1%) (p < 0.001) (Fig. 2c). Increased frequency of
senescent CD8+ KRLG1+CD28- T cells after implantation was seen in those who died at 3
months (9.7%) as compared with those who survived (5.2%) (p = 0.041). There was
increased frequency of CD8+ KRLG1+PD-1+ (29.9% versus 3.9%, p = 0.015) (Fig. 2d) and
CD8+ CD57+PD-1+ (13.9% versus 7.7%, p = 0.001) in patients who died as compared with
those who survived.

3.11. NK and NK T cells

Older patients demonstrated an increased frequency of NK T cells(5.0%) as compared with
younger patients (1.5%) (p < 0.001) after MCSD implantation, and increased frequency of
NK cells (49.0%) compared with younger patients (12.3%) (p < 0.001), but no difference in
NKT KLRG1+ cells by age (Fig. 3a). Increased numbers of NK T cells was associated with
increased MELD-XI score, with 4.6% in the high MELD-XI as compared with 2.0% in the
low MELD-XI group (p = 0.004). A similar trend was seen for high versus low SOFA, and
NKT+ KLRG1+ cell frequency was positively associated with MELD-XI and SOFA scores
(data not shown). NKT cell frequency was associated with death, with median frequency of
5.1% in those who died compared with 2.2% in those who survived at 3 months (p = 0.002).
NKT+ KLRG1+ cells were also associated with death (Fig. 3b).

3.12. Multivariable analysis combining demographic and immunologic factors

To address the issue of repeat measures analysis and patient effects on the association
between immune phenotype and clinical outcomes, linear mixed effects models were used.
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Increased age was positively associated with MELD-XI and SOFA scores (Table 5a).
Variables reaching statistical significance or trending towards significance (defined as p <
0.10) are highlighted in bold. Maturation subtype, senescence (CD8+ CC28-), and NKT+
KLRG1+ cells were associated with MELD-XI or SOFA scores; maturation subtype and
exhaustion (CD4+ PD1+CD57+) was associated with infection; and activation (CD4+
CD38+) and NKT cells expressing KLRG1 were associated with death. As discussed above,
age is an important clinical factor associated with adverse outcomes after MCSD
implantation. We corrected for age to determine whether age was a confounder impacting
the observed association between T cell senescence, exhaustion and maturation, however, a
statistically significant association remained between markers of immune dysfunction and
clinical outcomes, indicating that these immune markers were important independent of
patient age (Table 5b). Correction for CMV antibody status led to similar results as
correction for age (data not shown). Analysis of these post-operative values were more
predictive of clinical outcomes compared with pre-implantation analysis.

4. Discussion

Despite years of experience with MCSD implantation, it remains unclear why a sizeable
minority of patients develop post-operative complications including infection, multiorgan
dysfunction and death. In this analysis of MCSD recipients, we found that T cell maturation
phenotypes correlated with patient outcomes, as measured by infection, death, MELD-XI
and SOFA scores. We also observed increased frequencies of senescent and exhausted CD8+
T cells in patients with increased age, increased MELD-XI scores, and death. The
association between T cell dysfunction and increased patient age has been previously
described; however, this finding appears to more pronounced in our population of patients
with advanced heart disease. While the findings reported in Table 5a. demonstrate the
importance of patient age in association with T cell dysfunction in predicting patient
outcomes, we have shown that T cell dysfunction has predictive value independent of patient
age, as mixed effect analysis correcting for repeated measures further supported the
association between T cell immune dysfunction as demonstrated by increased frequency of
maturation subtypes, exhaustion, and senescence and the development of adverse clinical
outcomes (Table 5b). Somewhat surprisingly, pre-MCSD characteristics including need for
temporary assist devices also had impact on post-implant T cell phenotypes. Patients
receiving pulsatile devices (PVAD or TAH) also demonstrated increased frequency of
senescent and exhausted T cells, although this observation is limited by the relatively small
numbers of patients receiving these devices in our cohort.

The important findings of our study are two-fold. First, we provide evidence that age and
disease severity as measured by INTERMACS score are independently associated with
differences in immune function as assessed by multiparameter immune phenotyping,
shedding light into possible mechanisms associated with the development of multi-organ
system dysfunction. Second, we provide data from this pilot study suggesting that
measurement of these immunologic factors, in combination with clinical data, may provide
important prognostic information, to predict outcomes among the highest risk patients,
before and after MCSD implantation (Tables 5a, 5b, 6). These immunologic measurements
are dominant even when age is included in the analysis, suggesting that immune phenotypes
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may be predictive of clinical outcomes independent of patient age. Noninvasive
measurement of immunologic parameters holds the potential for creation of a composite
model for outcome prediction in a manner analogous to other cardiac risk models such as the
AlloMap test for determination of risk for rejection after heart transplantation [25,26]. This
could be applied during initial evaluation of patients with advanced heart failure to provide a
mechanism-based measure of risk and allow for adequate decision-making regarding utility
vs. futility of MCSD placement, and would also allow for identification of high risk patients
for closer monitoring after implantation.

Another intriguing finding of our study was the potential utility of pre-implantation immune
cell phenotyping to predict post-implantation outcomes up to 3 months post-surgery. Future
studies will be necessary to explore whether patients who survive the early post-implantation
phase despite measurable immune dysfunction may ultimately undergo ‘immunologic
remodeling’ or whether their senescent or exhausted T cell phenotype will persist. This
hypothetical ability for immunologic rehabilitation may be age-limited, with younger but not
older patients having the potential for improvement.

Limitations to this study include the relatively small sample size and the heterogeneity of the
patients included, in terms of MCSD type. Given the small number of adverse clinical
outcomes, it was difficult to link immune phenotype to infrequent events such as death in the
multivariate analysis. As a pilot study, however, the number of patients included is similar to
other studies of immune dysfunction after MCSD implantation [10,11,13], and we observed
a stability of immunophenotype after MCSD implantation regardless of device type
(Supplemental Fig. 1). An advantage of the single center design for a pilot study is
homogeneity in patient medical management and waiting time for heart transplantation.
Despite these potential limitations, the findings from this pilot study suggest the potential for
noninvasive monitoring of immunologic cells in prediction of clinical outcomes. Future
multicenter studies including a more homogenous population in terms of MCSD type will be
key to validate the findings from this study. In addition, future studies will follow those
patients successfully bridged to heart transplantation to determine whether the immunologic
changes observed during the period of MCSD implantation influence alloreactivity,
development of donor-specific antibodies, and frequency of cellular or antibody-mediated
rejection after transplantation.

As the numbers of patients with advanced heart disease continue to increase, especially in
the older population, the need for MCSD implantation will continue to grow. The finding
that older patients demonstrate increased frequency of markers of T cell dysfunction
suggests that impaired T cell function including exhaustion and immunosenescence may be
the mechanism by which older MCSD recipients experience increased rates of infection and
death. Immunologic characterization of peripheral blood is a powerful and noninvasive
technique that may improve patient risk stratification before and after surgical intervention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Frequency of CD8+ maturation subtypes by patient age. PBMC from time points after
MCSD implantation were analyzed for naive (CCR7+/CD45RA+), effector memory (EM)
(CCR7-/CD45RA-), and terminally differentiated effector memory RA+ (TEMRA)
(CCR7-/CD45RA+) CD8+ T cell content, expressed as a percentage of the total number of
CD8+ T cells. Each dot corresponds to a sample; bars indicate median. *** indicates p <
0.001 and ** indicates p < 0.01, by nonparametric test.
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Frequency of CD8+ maturation subtypes by CMV antibody status. PBMC from time points
after MCSD implantation were analyzed for naive (CCR7+/CD45RA+), effector memory
(EM) (CCR7-/CD45RA-), and terminally differentiated effector memory RA+ (TEMRA)
(CCR7-/CD45RA+) CD8+ T cell content, expressed as a percentage of the total number of
CD8+ T cells. Each dot corresponds to a sample; bars indicate median. *** indicates p <
0.001 by nonparametric test.
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Frequency of CD8+ maturation subtypes by MELD-XI score. PBMC from time points after
MCSD implantation were analyzed for naive (CCR7+/CD45RA+), effector memory (EM)
(CCR7-/CD45RA-), and terminally differentiated effector memory RA+ (TEMRA)
(CCR7-/CD45RA+) CD8+ T cell content, expressed as a percentage of the total number of
CD8+ T cells. Each sample was evaluated for MELD-XI score at the corresponding
timepoint. ‘HighMELD’ defined as >16, and ‘LowMELD as < 16’. Each dot corresponds to
a sample; bars indicate median. *** indicates p < 0.001; ** indicates p < 0.01, by

nonparametric test.
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Frequency of senescent, exhausted, and activated CD8+ T cells by MELD-XI score. PBMC
from time points post MCSD implant were analyzed for senescent (KLRG1+), exhausted,
(KLRG1+/PD-1+), or activated (KRLG1+/CD38+) CD8+ T cells, expressed as a percentage
of the total number of CD8+ T cells. Each sample was evaluated for MELD-XI score at the
corresponding timepoint. ‘HighMELD’ defined as =16, and ‘LowMELD’ as < 16°. Each dot
corresponds to a sample; bars indicate median. ** indicates p < 0.01, and * indicates p <
0.05, by nonparametric testing.
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Frequency of CD8+ maturation subtypes by post-implant infection. PBMC from time points
post MCSD implant were analyzed for naive (CCR7+/CD45RA+), effector memory (EM)
(CCR7-/CD45RA-), and terminally differentiated effector memory RA+ (TEMRA)
(CCR7-/CD45RA+) CD8+ T cell content, expressed as a percentage of the total number of
CD8+ T cells. Each dot corresponds to a sample; bars indicate median. ** indicates p < 0.01

by nonparametric testing.
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Frequency of senescent and exhausted CD8+ T cells by post-implant infection. PBMC from
time points after MCSD implant were analyzed for KLRG1+, exhausted (KLRG1+/PD-1+),
and senescent (KLRG1+/CD28-) CD8+ T cells, expressed as a percentage of the total
number of CD8+ T cells. Each dot corresponds to a sample; bars indicate median. **
indicates p < 0.01 by nonparametric testing.
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Frequency of CD8+ maturation subtypes by patient survival at 3 months post-implantation.
PBMC from time points after MCSD implant were analyzed for naive (CCR7+/CD45RA+)
and terminally differentiated effector memory RA+ (TEMRA) (CCR7-/CD45RA+) CD8+ T
cell content, expressed as a percentage of the total number of CD8+ T cells. Each dot
corresponds to a sample; bars indicate median. *** indicates p < 0.001, and ** indicates p <
0.01 by nonparametric testing.
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Frequency of senescent and exhausted CD8+ T cells by patient survival at 3 months post-
implantation. PBMC from time points after MCSD implant were analyzed for senescent
(KLRG1+) and exhausted (KLRG1+/PD-1+) CD8+ T cells, expressed as a percentage of the
total number of CD8+ T cells. Each dot corresponds to a sample; bars indicate median. *
indicates p < 0.05 by nonparametric testing.
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Frequency of NK (CD56+ KLRG1+) NKT, and NTK KRLG1+ cells by patient age. PBMC
from all time points after MCSD implant were analyzed. The data are expressed as a
percentage of the total number of viable PBMC or lymphocytes, respectively. Each dot
corresponds to a sample; bars indicate median. *** indicates p < 0.001 by nonparametric

test.
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Frequency of NK (CD56+ KLRG1+) NKT, and NTK KRLG1+ cells by death at 3 months
post-implantation. PBMC from time points after MCSD implant were analyzed. The data are
expressed as a percentage of the total number of viable PBMC or lymphocytes, respectively.
Each dot corresponds to a sample; bars indicate median. *** indicates p < 0.001 by
nonparametric test, and ** indicates p < 0.01 by nonparametric testing.
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Table 1

Demographic characteristics of study participants (n = 28). % (n) for each variable.

Age (yrs) (median) (range) 61 (24-80)
Older (=age 60) 53.6% (15)
Sex (% male) 78.6% (22)
Nonischemic CMY 71.4% (20)
Intended bridge to transplantation ~ 85.7% (24)
HeartMate 11 device 71.4% (20)
RVAD * 35.7% (10)
INTERMACS 1/2 60.7% (17)

*
RVAD includes right-sided Centrimag or ventricular support from PVAD or TAH.
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Table 2

Demographic characteristics of study participants by high MELD-XI (218) (n = 18) compared with low
MELD-XI group (< 18) (n = 10) at Day 0, prior to MCSD implantation. Bold font indicates p < 0.05.

Characteristic High MELD-XI Low MELD-XI p-value
Age (yrs), median (range) 63.0 (36-74) 43.0 (24-80) 0.058
Older (= age 60) 72.2% 20.0% 0.017
Sex (% male) 88.9% 60.0% 0.147
Nonischemic CMY 72.2% 70.0% 1.000
Intended bridge to transplantation  66.7% 77.8% 0.669
HeartMate 1l device 72.2% 70.0% 0.921
RVAD ¥ 27.8% 50.0 0.412
INTERMACS 1/2 83.3% 20.0% 0.003
SOFA score, median (range) 10 (5-16) 6 (3-10) <0.001

*
RVAD includes right ventricular support from PVAD or TAH.

Hum Immunol. Author manuscript; available in PMC 2019 April 22.

Page 24



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Schaenman et al.

Table 3

Page 25

Demographic characteristics of study participants by Age =60 (Older) (n = 15) compared with those < 60

(YYounger) (n = 13) at time of implantation. Bold font indicates p < 0.05.

Characteristic Older Younger p-value
Age (yrs) (median) (range) 63.0 (36-74) 43.0 (24-80) N/A*
Sex (% male) 93.3% 61.5% 0.069
Nonischemic CMY 53.3% 92.3% 0.038
Intended bridge to transplantation ~ 58.3% 83.3% 0.371
HeartMate |1 device 80.0% 61.5% 0.322
RVAD ¥ 20.0% 53.95 0.114
INTERMACS 1/2 73.3% 46.2% 0.246
MELD-XI at Day, median (range)  20.1 (13.0-28.8) 14.0 (9.4-21.5) 0.009
SOFA at Day 0, median (range) 8 (4-16) 5.5 (3-13) 0.047
CMV ANTIBODY positive 80.0% 69.2% 0.670

*
RVAD includes right ventricular support from PVAD or TAH.

Aok

Statistical analysis not performed as cohorts defined by age.
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Clinical outcomes of study participants (n = 28). % (n) for each variable.

Table 4

Infection pre- or post-implantation

Severe infection post-implantation

Successful bridge to transplant *

Death 30 days

Death 3 months

Death 1 year

Days to death (median) (range)

Infection pre-MCSD (< 1 month)

Infection post-MCSD (< 6 months)

Severe Infection post-MCSD (< 6 months)
Significant bleeding post-MCSD (< 6 months)

78.6% (22)
64.3% (18)
70.8% (17)
14.3% (4)
25.0% (7)
35.7% (10)
50 (12-736)
25.0% (7)
53.6% (15)
46.4% (13)
21.4% (6)

*
Excluding 4 patients with MCS implant as destination therapy.
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