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OPERS VERSUS NONABELIAN HODGE

OLIVIA DUMITRESCU, LAURA FREDRICKSON, GEORGIOS KYDONAKIS, RAFE MAZZEO,
MOTOHICO MULASE, AND ANDREW NEITZKE

ABSTRACT. For a complex simple simply connected Lie group G, and a compact Riemann surface
C, we consider two sorts of families of flat G-connections over C. Each family is determined by a
point u of the base of Hitchin’s integrable system for (G, C). One family ∇h̄,u consists of G-opers,
and depends on h̄ ∈ C×. The other family ∇R,ζ,u is built from solutions of Hitchin’s equations,
and depends on ζ ∈ C×, R ∈ R+. We show that in the scaling limit R → 0, ζ = h̄R, we have
∇R,ζ,u → ∇h̄,u. This establishes and generalizes a conjecture formulated by Gaiotto.

1. INTRODUCTION

1.1. Summary. The main result of this paper is the proof of an extension of a conjecture for-
mulated by Gaiotto in [1], Conjecture 3.1 below. This result concerns certain families of flat G-
connections, for a simple, simply connected complex Lie group G. The case G = SL(N, C) is
Theorem 3.2 below. The general case is Theorem 4.11.

1.2. The case of G = SL(2, C). Fix a compact Riemann surface C of genus g ≥ 2 and a holo-
morphic quadratic differential φ2 on C. This data determines two natural families of SL(2, C)-
connections over C, as follows.

• First, we consider the family of opers determined by φ2. These are global versions of the
locally-defined second-order differential operators (Schrödinger operators)

Dh̄,φ2 : ψ(z) 7→
[
−h̄2∂2

z + P2(z)
]

ψ(z), (1.1)

where h̄ ∈ C×, and
φ2 = P2(z)dz2 (1.2)

locally. The operator Dh̄,φ2 makes sense globally with the following two stipulations:

– We consider ψ(z) as a section of K−1/2
C .

– We use only coordinate charts in the atlas on C coming from Fuchsian uniformization,
so that the transition maps are Möbius transformations.

By a standard maneuver, replacing ψ by its 1-jet, we can convert Dh̄,φ2 to a flat connection
∇h̄,φ2 in a rank 2 vector bundle Eh̄ over C. Holomorphically, Eh̄ is an extension

0→ K1/2
C → Eh̄ → K−1/2

C → 0. (1.3)

Eh̄ has distinguished local trivializations defined canonically in terms of coordinate charts on
C, and in such a trivialization,

∇h̄,φ2 = d + h̄−1
(

0 P2
1 0

)
dz, h̄ ∈ C×. (1.4)

• Second, we consider a Higgs bundle determined by φ2: this is the bundle

E = K1/2
C ⊕ K−1/2

C (1.5)
1
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equipped with its standard holomorphic structure ∂̄E, and a “Higgs field” ϕ ∈ Ω1,0(End E)
represented in local trivializations by

ϕ =

(
0 P2
1 0

)
dz. (1.6)

According to the nonabelian Hodge theorem (Theorem 2.5), associated to (E, ∂̄E, ϕ) there is a
canonical family of flat connections in E, of the form

∇ζ,φ2 = ζ−1ϕ + Dh + ζϕ†h , ζ ∈ C×, (1.7)

where the Hermitian metric h is determined by solving a certain elliptic PDE on C (Hitchin’s
equation, (2.1) below), and Dh is the associated Chern connection.

The families (1.4), (1.7) are evidently similar; in particular, their leading terms in the h̄ → 0 or
ζ → 0 limit match, if we set h̄ = ζ. However, these two families are not exactly the same.

Gaiotto in [1] proposed a relation between them, as follows. Introduce an additional parameter
R ∈ R+ and rescale the Higgs field by ϕ→ Rϕ; this leads to a 2-parameter analogue of (1.7),

∇ζ,R,φ2 = Rζ−1ϕ + Dh(R) + Rζϕ†h(R) , ζ ∈ C×, R ∈ R+. (1.8)

Now fix h̄ ∈ C× and consider a scaling limit where

ζ = Rh̄, R↘ 0. (1.9)

(In other words, we take both R→ 0 and ζ → 0, while holding their ratio ζ/R = h̄ fixed.) Gaiotto
conjectured that in this limit the connections ∇ζ,R,φ2 converge, and that the limiting connection is
an oper. In §3.2 below we prove that this is indeed the case, and that the limiting oper is equivalent
to ∇h̄,φ2 of (1.4).

1.3. The case of G = SL(N, C). The story just described has an extension where we make the
following replacements:

quadratic differentials φ2 tuples of holomorphic differentials u = (φ2, . . . , φN)
order-2 differential operators Dh̄,φ2 order-N differential operators Dh̄,u

SL(2, C)-connections SL(N, C)-connections
Both the families (1.4) and (1.8) admit generalizations to this setting. As in the case G = SL(2, C),
we show that these two families are related by the scaling limit (1.9). This extension is Theorem
3.2, proven in §3.3. For the reader’s convenience we also review the construction of differential
operators Dh̄,u generalizing (1.1), in §2.11.

1.4. The case of general G. Finally we treat the case of a general simple, simply connected com-
plex Lie group G. Once again, both families (1.4) and (1.8) admit generalizations to this setting,
and we show in Theorem 4.11 that these two families are again related by the scaling limit (1.9).

1.5. Punctures. Strictly speaking, the connections we consider are not quite the same as those
studied in [1]: that paper mainly concerned meromorphic quadratic differentials φ2 on CP1, rather
than holomorphic ones on a Riemann surface C. We expect that the methods of this paper can be
generalized to the meromorphic case, but we do not treat that extension here.

1.6. Motivations. One motivation for this work (as well as for [1]) is the desire to understand the
relation between asymptotics of flat sections of the two families of connections (1.4), (1.7). The
analysis of the h̄ → 0 asymptotic behavior of Schrödinger equations, i.e. of (1.4), has a long his-
tory; it goes under the name of the “WKB approximation,” more recently sharpened to the “exact
WKB method.” See e.g. [2, 3] for highly readable accounts. On the other hand, recently the ζ → 0
asymptotics of the families (1.7) has been studied in [4, 5]. The two analyses address a priori dif-
ferent problems, and involve different methods. In [4, 5] the main analytic tool is a certain integral
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equation related to tt∗ geometry, while in the exact WKB method this role is played by the Borel
resummability of solutions of Schrödinger equations. Nevertheless, the formal structures (Stokes
graphs and connection formulae) which appear in the two cases are the same. Optimistically, the
link between (1.4) and (1.7) provided by the results of [1] and this paper might help in finding a
direct passage between these two asymptotic analyses.

A related motivation comes from physics: the result of this paper should be helpful in under-
standing the relation between opers and the Nekrasov-Shatashvili limit of the Nekrasov partition
function, as formulated most sharply in [6] (in the case G = SL(2, C).)

1.7. Acknowledgements. We thank the American Institute of Mathematics for its hospitality dur-
ing the workshop “New perspectives on spectral data for Higgs bundles,” where this work was
initiated. We also thank the organizers and all the participants of the workshop, and particularly
Philip Boalch for posing the question which led to this work. We thank David Ben-Zvi and Lotte
Hollands for many useful conversations about opers.

This work is supported by National Science Foundation awards DMS-1105050 (RM), DMS-
1309298 (MM), DMS-1151693 (LF,AN). OD is a member of the Simion Stoilow Institute of Mathe-
matics of the Romanian Academy.

2. BACKGROUND, FOR G = SL(N, C)

In this section we give some background on the main players in our story: Hitchin’s equations,
the Hitchin section, and opers. We specialize to the case G = SL(N, C) and thus work with vector
bundles rather than principal bundles.

2.1. Hitchin’s equations. Fix a compact Riemann surface C of genus g ≥ 2 and an integer N ≥ 2.
We consider tuples (E, h, D, ϕ) comprised of:

• A rank N complex vector bundle E over C, equipped with a trivialization of det E,
• A Hermitian metric h in E which induces the trivial metric on det E,
• An h-unitary connection D in E,
• A traceless section ϕ of End(E)⊗ KC.

Hitchin’s equations [7] are a system of nonlinear PDE for these data:

FD + [ϕ, ϕ†h ] = 0, (2.1a)

∂̄D ϕ = 0. (2.1b)

Here FD denotes the curvature of D, †h means the adjoint with respect to the metric h, and ∂̄D is
the (0, 1) part of the connection D.

We shall actually be considering a rescaled version of (2.1),

FD + R2[ϕ, ϕ†h ] = 0, (2.2a)

∂̄D ϕ = 0, (2.2b)

obtained by replacing ϕ→ Rϕ, where R ∈ R+.

2.2. Higgs bundles. Now suppose given a solution (E, h, D, ϕ) of (2.2). The operator ∂̄D gives a
holomorphic structure on E. Equation (2.2b) then says that ϕ is a holomorphic section of End(E)⊗
KC. Thus the tuple (E, ∂̄D, ϕ) is an SL(N, C)-Higgs bundle:

Definition 2.1. An SL(N, C)-Higgs bundle over C is a tuple (E, ∂̄E, ϕ):

• A rank N complex vector bundle E over C, equipped with a trivialization of det E,
• A holomorphic structure ∂̄E on E,
• A traceless holomorphic section ϕ of End(E)⊗ KC.
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2.3. Harmonic metrics. Conversely, suppose given an SL(N, C)-Higgs bundle (E, ∂̄, ϕ) and a Her-
mitian metric h on E inducing the trivial metric on det E. Then there is a unique h-unitary connec-
tion Dh in E whose (0, 1) part is ∂̄Dh = ∂̄E (Chern connection). We write its (1, 0) part as ∂h

E, and
the full Dh as

Dh = ∂̄E + ∂h
E. (2.3)

The equation (2.2b) automatically holds when D = Dh. The equation (2.2a) with D = Dh becomes
a nonlinear PDE for the metric h:

Definition 2.2. Given an SL(N, C)-Higgs bundle (E, ∂̄E, ϕ), and R ∈ R+, a harmonic metric with
parameter R is a Hermitian metric h on E, inducing the trivial metric on det E, such that

FDh + R2[ϕ, ϕ†h ] = 0. (2.4)

Thus, we have

Remark 2.3. Given an SL(N, C)-Higgs bundle (E, ∂̄E, ϕ), R ∈ R+, and a harmonic metric h with pa-
rameter R, the tuple (E, h, Dh, ϕ) gives a solution of Hitchin’s equations (2.2).

Next we consider the existence of harmonic metrics.

Definition 2.4. An SL(N, C)-Higgs bundle (E, ∂̄E, ϕ) is called stable if there is no holomorphic
subbundle E′ ⊂ E such that ϕ(E′) ⊂ E′ ⊗ KC and deg(E′) > 0.

The following key result (“nonabelian Hodge theorem”) is proven in [8]:1

Theorem 2.5. Given a stable SL(N, C)-Higgs bundle (E, ∂̄E, ϕ), and any R ∈ R+, there exists a unique
harmonic metric h with parameter R.

Combining this with Remark 2.3, we see that given a stable Higgs bundle and a parameter R,
we obtain a solution of Hitchin’s equations (2.2) with parameter R.

2.4. Real twistor lines. Given a solution (E, h, D, ϕ) of Hitchin’s equations (2.2) with parameter
R, there is a corresponding family of flat non-unitary connections in E, given by the formula

∇ζ = ζ−1Rϕ + D + ζRϕ†h , ζ ∈ C×. (2.5)

Indeed, the statement that ∇ζ is flat for all ζ ∈ C× is equivalent to (2.2). The family (2.5) is
sometimes called a “real twistor line,” because of the role it plays in the twistorial description of
the hyperkähler metric on the moduli space of solutions of (2.2).

2.5. The principal sl(2, C)-triple. Define

H =


N − 1

N − 3
. . .
−N + 3

−N + 1

 , (2.6)

X+ =


0
√

r1
0
√

r2
. . . . . .

0
√

rN−1
0

 , (2.7)

1More precisely, the theorem in [8] concerns GL(N, C)-bundles rather than SL(N, C)-bundles, but it is straightfor-
ward to deduce the version for SL(N, C)-bundles.



OPERS VERSUS NONABELIAN HODGE 5

X− =


0√
r1 0
√

r2
. . .
. . . 0√

rN−1 0

 , (2.8)

where
ri = i(N − i). (2.9)

These make up an sl(2, C)-triple:

[H, X±] = ±2X±, [X+, X−] = H. (2.10)

In addition, for each n ≥ 1, choose (once and for all) a nonzero matrix Xn, such that only the ij
entries with j− i = n are nonzero (the nth superdiagonal), or equivalently

[H, Xn] = 2nXn, (2.11)

and also
[X+, Xn] = 0. (2.12)

For example, when N = 4 we could choose

X1 =


0
√

3 0 0
0 0 2 0
0 0 0

√
3

0 0 0 0

 , X2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , X3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 . (2.13)

For later use we record a few facts, obtained by direct computation:

Proposition 2.6. We have the following:

• The equations (2.11), (2.12) determine Xn up to a scalar multiple for n > 0, and the solution Xn has
the antidiagonal symmetry (Xn)ij = (Xn)N+1−j,N+1−i.
• The equations (2.11), (2.12) determine X0 to be a multiple of the identity.
• The equations (2.11), (2.12) have only the solution Xn = 0 for n < 0.

2.6. The Hitchin component.

Definition 2.7. The Hitchin base is the vector space

B =
N⊕

n=2

H0(C, Kn
C). (2.14)

We denote points of B by
u = (φ2, . . . , φN). (2.15)

Now fix a spin structure on C, i.e. a holomorphic line bundle L over C equipped with an iso-
morphism L2 ' KC. Over each local coordinate chart (U, z) on C, L has two distinguished trivi-
alizations corresponding to the two square roots

√
dz; we choose one of these arbitrarily for each

chart. Then the transition map for L between charts (U, z) and (U′, z′) is

(z, s) ∼ (z′, s′ = αz,z′s), where αz,z′ =

√
dz√
dz′

. (2.16)

Definition 2.8. The Hitchin component is a set of stable SL(N, C)-Higgs bundles (E, ∂̄E, ϕu), param-
eterized by u ∈ B, as follows:
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• E is the smooth vector bundle

E = LN−1 ⊕LN−3 ⊕ · · · ⊕ L−N+3 ⊕L−N+1. (2.17)

Our distinguished local trivializations of L induce distinguished local trivializations of E.
Note that the exponents appearing in (2.17) are the diagonal entries of the matrix H from
(2.6). Thus the transition maps between distinguished trivializations of E are

αH
z,z′ =


αN−1

z,z′

αN−3
z,z′

. . .
α−N+3

z,z′

α−N+1
z,z′

 . (2.18)

• ∂̄E is the holomorphic structure on E induced from the one on L.
• Fix a chart (U, z) and write φn = Pn,zdzn. The Higgs field ϕu ∈ End E⊗ KC is, relative to the

distinguished local trivialization of E,

ϕu,z =

(
X− +

N−1

∑
n=1

Pn+1,zXn

)
dz. (2.19)

(Note that this indeed makes global sense, i.e. αH
z,z′ϕu,zαH

z′,z = ϕu,z′ .)

Example 2.9. For N = 5, (for one choice of normalizations of the Xn),

ϕu =


0 2P2 2P3 P4 P5

2 0
√

6P2
√

6P3 P4

0
√

6 0
√

6P2 2P3

0 0
√

6 0 2P2
0 0 0 2 0

dz. (2.20)

Here and below, when working in a single coordinate chart (U, z), we sometimes drop the explicit
subscripts z to reduce clutter. Note that the characteristic polynomial of this matrix is

t5 − 20P2t3 − 14
√

6P3t2 − (24P4 − 64P2
2 )t− (24P5 − 32

√
6P2P3), (2.21)

so with our conventions, the Pn are not the coefficients of the characteristic polynomial, but they
both determine and can be recovered from these coefficients.

When N is even, the Hitchin component depends on the choice of spin structure. When N is
odd, only even powers of L appear, so in fact the Hitchin component does not depend on the spin
structure.

2.7. The bilinear pairing. The bundle E given by (2.17) has a nondegenerate complex bilinear
pairing S, i.e. an isomorphism S : E → E∗, coming from the fact that L−n = (Ln)∗. In our
distinguished trivializations this is simply

S =


1

1
...

1

 . (2.22)

The antidiagonal symmetry of X± and the Xn can be restated as saying that they are self-adjoint
with respect to S, i.e.

S−1XT
n S = Xn (2.23)
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and similarly for X±. Thus, for any u ∈ B, the Higgs field ϕu of (2.19) is also S-self-adjoint,

S−1ϕT
uS = ϕu. (2.24)

We define EndS E to be the subalgebra of traceless S-skew-adjoint endomorphisms,

EndS E = {S : S−1χTS = −χ and Tr S = 0} ⊂ End E. (2.25)

We then have

Lemma 2.10. If χ ∈ EndS E, then [X+, χ] = 0 if and only if χ = 0.

Proof. This follows directly from Proposition 2.6, which says that if [X+, χ] = 0, then χ is a combi-
nation of X0, X1, . . . , XN , and thus is S-self-adjoint. �

2.8. The natural metric. The Higgs bundle corresponding to the origin of B is particularly impor-
tant:

Definition 2.11. The uniformizing Higgs bundle is the element (E, ∂̄E, ϕ0) of the Hitchin component,
where 0 = (0, 0, . . . , 0) ∈ B.

Here is the reason for the name. By the uniformization theorem, the conformal class determined
by the complex structure on C contains a unique Riemannian metric g\ with constant curvature
−4. More generally, g\/R2 is the unique metric with constant curvature−4R2. This in turn induces
a metric on E, as follows:

Definition 2.12. The natural metric h\(R) on the bundle E of (2.17) is orthogonal with respect to
the decomposition (2.17), and on Ln ⊂ E, is induced by g\/R2, i.e.,

h\(R) = Rng−n/2
\ on Ln ⊂ E. (2.26)

We write h\ for h\(R = 1).

Thus, viewing Hermitian metrics as maps E→ E∗, we have

h\(R) = h\ ◦ RH. (2.27)

For future use we also describe h\(R) relative to the distinguished local trivializations of E. In a
local coordinate chart (U, z), we can write

g\ = λ2
\,zdzdz̄, where ∂z̄∂z log λ\,z − λ2

\,z = 0. (2.28)

Then

h\,z(R) = RHλ−H
\,z =


RN−1λ1−N

\,z
RN−3λ3−N

\,z
. . .

R3−NλN−3
\,z

R1−NλN−1
\,z

 . (2.29)

Note that h\(R) is compatible with S in the sense that, using S to identify E ' E∗, the dual
metric induced by h\(R) is equal to h\(R) itself. This is expressed concretely by the equation

S−1h\(R)T = h\(R)−1S̄ (2.30)

where both sides are maps Ē→ E. (2.30) is straightforward to check directly using (2.22), (2.29). It
follows in particular that S intertwines the Chern connections on E and E∗:

S−1 ◦ (∂̄E)
T ◦ S = ∂̄E, S−1 ◦ (∂h\

E )T ◦ S = ∂
h\
E . (2.31)

The next proposition, from [9], explains the importance of h\(R) for our purposes:
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Proposition 2.13. The harmonic metric on the uniformizing Higgs bundle (E, ∂̄E, ϕ0) with parameter R
is h\(R).

Proof. We just compute directly in the distinguished trivializations:

FDh\(R) + R2
[

ϕ0, ϕ
†h\(R)

0

]
=
(

∂z̄∂z log(λ\)H +
[

X−, λ2
\X+

])
dz ∧ dz̄ (2.32)

=
(

∂z̄∂z log(λ\)− λ2
\

)
H dz ∧ dz̄ (2.33)

= 0. (2.34)

�

2.9. SL(N, C)-opers. We now recall the notion of SL(N, C)-oper:

Definition 2.14. An SL(N, C)-oper on C is a tuple (E,∇, F•):

• A rank N complex vector bundle E over C, equipped with a trivialization of the determinant
bundle det E,
• A flat connection ∇ on E,
• A filtration 0 = F0 ⊂ F1 ⊂ · · · ⊂ FN = E of subbundles of E,

such that

• Each Fn is holomorphic (with respect to the holomorphic structure ∂̄∇),
• If ψ is a section of Fn then ∇ψ lies in the subbundle Fn+1 ⊗ KC ⊂ E⊗ KC,
• The induced linear map

∇̄ : Fn/Fn−1 → Fn+1/Fn ⊗ KC (2.35)
is an isomorphism of line bundles, for 1 ≤ n ≤ N − 1.

A flat holomorphic bundle (E,∇) can admit at most one filtration F• satisfying the properties
above. Thus an SL(N, C)-oper is a special sort of flat SL(N, C)-bundle; in fact, SL(N, C)-opers
form a holomorphic Lagrangian subspace in the moduli space of flat SL(N, C)-bundles. How-
ever, we will not use this picture explicitly; our constructions will produce the required filtrations
directly in a local way. For more background on opers see e.g. [10, 11, 12].

2.10. A construction of SL(N, C)-opers. We now recall a construction of SL(N, C)-opers which is
particularly convenient for our purposes. This construction has its roots in the work of Drinfeld-
Sokolov; see e.g. [13] for a point of view close to ours.

We first describe a 1-parameter family of bundles Eh̄ (h̄ ∈ C), equipped with holomorphic struc-
tures ∂̄Eh̄ and holomorphic filtrations Fh̄,•. Then for any u ∈ B we will construct a corresponding
1-parameter family of connections∇h̄,u (h̄ ∈ C×), compatible with the holomorphic structures and
filtrations, so that (Eh̄,∇h̄,u, Fh̄,•) is a 1-parameter family of opers:

Proposition 2.15. We have the following:

• For any h̄ ∈ C, the SL(N, C)-valued transition functions

Th̄,z,z′ = αH
z,z′ exp(h̄α−1

z,z′∂zαz,z′X+) (2.36)

define a holomorphic rank N vector bundle (Eh̄, ∂̄Eh̄) over C, carrying a filtration Fh̄,•, and equipped
with a distinguished trivialization for each local coordinate patch (U, z) on C.
• For any h̄ ∈ C× and u ∈ B, there exists a canonical SL(N, C)-oper (Eh̄,∇h̄,u, Fh̄,•), compatible with

the holomorphic structure ∂̄Eh̄ . Relative to the distinguished trivializations of Eh̄ on patches (U, z) in
the atlas given by Fuchsian uniformization, ∇h̄,u is given by

∇h̄,u,z = d + h̄−1ϕu,z, (2.37)



OPERS VERSUS NONABELIAN HODGE 9

where (as noted earlier)

ϕu,z =

(
X− +

N−1

∑
n=1

Pn+1,zXn

)
dz. (2.38)

The remainder of this section is devoted to the proof of Proposition 2.15.
When h̄ = 0, E0 is just the bundle E described by (2.17), with transition functions αH

z,z′ as given
in (2.18). The transition functions Th̄,z,z′ for Eh̄ are a deformation of this. However, there is still
something to check:

Lemma 2.16. The transition functions (2.36) obey the cocycle condition

Th̄,z,z′′ = Th̄,z′,z′′Th̄,z,z′ . (2.39)

Proof. We will exhibit an alternative representation

Th̄,z,z′ = Mh̄,z′α
H
z,z′M

−1
h̄,z , (2.40)

from which the cocycle condition (2.39) is immediate.
Fix some metric g on C, represented locally as

g = λ2
z dzdz̄, (2.41)

and let
fz = ∂z log λz. (2.42)

Then λz′ = λz|αz,z′ |2, whence

fz′ = (∂zαz,z′)αz,z′ + α2
z,z′ fz. (2.43)

Now define
Mh̄,z = exp(h̄ fzX+). (2.44)

Then we compute directly

Mh̄,z′α
H
z,z′M

−1
h̄,z = exp(h̄ fz′X+)α

H
z,z′ exp(−h̄ fzX+) (2.45)

= αH
z,z′ exp(h̄ fz′α

−2
z,z′X+) exp(−h̄ fzX+) (2.46)

= αH
z,z′ exp(h̄α−1

z,z′∂zαz,z′X+) (2.47)

= Th̄,z,z′ (2.48)

where the second equality uses the relation

α−HX+αH = α−2X+ (2.49)

obtained by exponentiating (2.10), and the third uses (2.43). �

We have now shown that the transition functions Th̄,z,z′ determine a vector bundle Eh̄ over C.
Moreover, the Th̄,z,z′ are holomorphic, so Eh̄ has a holomorphic structure ∂̄Eh̄ , represented by ∂̄ in
the distinguished local trivializations. (In other words, the distinguished local trivializations are
holomorphic.) Note also that Th̄,z,z′ is an upper-triangular matrix, so it preserves the filtration Fh̄,•,
where Fh̄,n is spanned by the first n basis vectors, and this filtration is defined globally.

Although E0 6' Eh̄ when h̄ 6= 0, all the other Eh̄ are isomorphic:

Proposition 2.17. For any λ ∈ C× and h̄ ∈ C, there is an isomorphism Eh̄
∼−→ Eλ2 h̄ given by λH in the

distinguished local trivializations.

Proof. We simply note that by (2.49) and (2.36), λHTz,z′,h̄ = Tz,z′,λ2 h̄λH. �
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We now finally describe the connection ∇h̄,u on Eh̄. For this purpose it is convenient to re-
strict the choice of coordinate systems. We fix a complex projective structure on C, i.e. an atlas of
coordinate charts (U, z) with coordinates differing by Möbius transformations,

z′ =
az + b
cz + d

, ad− bc = 1. (2.50)

The particular complex projective structure we choose is the one coming from Fuchsian uni-
formization, i.e. the realization of C as a quotient of the upper half-plane by a subgroup Γ ⊂
SL(2, R). Now we can check:

Lemma 2.18. The formula (2.37) defines a global connection in Eh̄.

Proof. We must check that
Th̄,z,z′ ◦ ∇h̄,u,z ◦ T−1

h̄,z,z′ = ∇h̄,u,z′ (2.51)

when z and z′ are related by (2.50). We compute the LHS directly, writing α = αz,z′ for simplicity.
It is a sum of three terms. The first is

αH exp(h̄α−1∂zαX+) ◦ d ◦ exp(−h̄α−1∂zαX+)α
−H (2.52)

= d +
[
αH ((−h̄∂2

z log α)X+

)
α−H + (−∂z log α)H

]
dz (2.53)

= d +
[
(−h̄α2∂2

z log α)X+ + (−∂z log α)H
]

dz. (2.54)

Next is

h̄−1αH exp(h̄α−1∂zαX+)X− exp(−h̄α−1∂zαX+)α
−H (2.55)

= h̄−1αH(X− + (h̄∂z log α)[X+, X−] +
1
2
(h̄∂z log α)2[X+, [X+, X−]])α−H (2.56)

= h̄−1αH(X− + (h̄∂z log α)H − (h̄∂z log α)2X+)α
−H (2.57)

= h̄−1α−2X− + (∂z log α)H − h̄α2(∂z log α)2X+. (2.58)

The transformation for the other terms in h̄−1ϕu,z is simpler since they commute with X+, and we
obtain

h̄−1αH exp(h̄α−1∂zαX+)

(
N−1

∑
n=1

Pn+1,zXn

)
exp(−h̄α−1∂zαX+)α

−H (2.59)

= h̄−1αH

(
N−1

∑
n=1

Pn+1,zXn

)
α−H (2.60)

= h̄−1
N−1

∑
n=1

Pn+1,zα2nXn. (2.61)

Combining all these terms, the terms proportional to H cancel nicely and we get the desired result
∇h̄,u,z′ , except for an extra term εX+, where

ε = −h̄((∂zα)2 + α2∂2
z log α). (2.62)

It is precisely at this point where we have to use the restriction of the coordinate atlas. Indeed, for
the transformations (2.50),

α = ±(cz + d), (2.63)
and (2.62) vanishes in this case. �

Finally note that the explicit formulas (2.37) and (2.8) say ∇h̄,u,z has nowhere-vanishing entries
on the first subdiagonal, and all entries below this subdiagonal vanish. This is equivalent to saying
that∇h̄,u obeys the last condition in Definition 2.14, and completes the proof that (Eh̄,∇h̄,u, Fh̄,•) is
an SL(N, C)-oper, thus completing the proof of Proposition 2.15.
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2.11. SL(N, C)-opers and differential operators. This section is not used directly in the rest of
the paper. Its purpose is to recall the sense in which SL(N, C)-opers are equivalent to certain N-th
order linear scalar differential operators. This construction is well known; we include it here just
to spell out its relation with the description of opers in Proposition 2.15 as connections on Eh̄.

When ψ is a holomorphic section of L1−N , let ψ[N−1] denote the (N − 1)-jet of ψ, which is a
holomorphic section of the jet bundle JN−1(L1−N).

Proposition 2.19. Fix u ∈ B. There exists a unique holomorphic isomorphism

Φu : JN−1(L1−N)
∼−→ Eh̄ (2.64)

such that:

• For any ψ, ∇h̄,u(Φu(ψ[N−1])) is valued in the holomorphic line subbundle LN−1 ⊗ KC ' LN+1 of
Eh̄ ⊗ KC,
• The diagram

JN−1(L1−N) Eh̄

L1−N L1−N

Φu

h̄

is commutative, where the left vertical arrow is the projection to the 0-jet, and the right arrow is the
quotient by FN−1, given in distinguished local trivializations by taking the last component.

The map
Dh̄,u : ψ 7→ ∇h̄,u(Φu(ψ

[N−1])) (2.65)
is a linear differential operator of order N, mapping L1−N → LN+1.

This becomes much more concrete when we write Φu relative to the distinguished local trivial-
izations in the Fuchsian atlas. For instance, when N = 2, we have[

∂z + h̄−1
(

0 P2
1 0

)](
−h̄2ψ′z

h̄ψz

)
=

(
−h̄2ψ′′z + P2ψz

0

)
. (2.66)

This equation implies that

Φu(ψ
[1]) =

(
−h̄2ψ′z

h̄ψz

)
. (2.67)

The 0 in the bottom component of the RHS of (2.66) says∇h̄,u(Φu(ψ[1])) is valued in the subbundle
L ⊗ KC; this condition determines Φu up to a constant multiple which is fixed by requiring that
the bottom component of Φu(ψ[1]) is exactly h̄ψz. Thus we can read off from the top component of
the RHS of (2.66) that Dh̄,u is represented locally by

Dh̄,u,z = −h̄2∂2
z + P2. (2.68)

Similarly, for N = 3, the analogue of (2.66) is∂z + h̄−1

 0
√

2P2 P3√
2 0

√
2P2

0
√

2 0


 h̄3

2 ψ′′z − h̄P2ψz

− h̄2
√

2
ψ′z

h̄ψz

 =

 h̄3

2 ψ′′′z − 2h̄P2ψ′z − h̄P′2ψz + P3ψz
0
0


(2.69)

which says that we have

Φu(ψ
[2]) =

 h̄3

2 ψ′′z − h̄P2ψz

− h̄2
√

2
ψ′z

h̄ψz

 (2.70)
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and

Dh̄,u,z =
h̄3

2
∂3

z − 2h̄P2∂z − h̄P′2 + P3. (2.71)

Note that Φu depends on u, through the P2 in (2.70). The u dependence of Dh̄,u is thus more
complicated than one might naively guess: we already see that P′2 appears in (2.71), despite the
fact that only the Pn and not their derivatives appear in the formula (2.37) defining ∇h̄,u.

3. THE SCALING LIMIT, FOR G = SL(N, C)

3.1. The main theorem for G = SL(N, C). Fix an SL(N, C)-Higgs bundle (E, ∂̄E, ϕ) on C. We
then have the 2-parameter family (2.5) of flat connections in E, depending on ζ ∈ C× and R ∈ R+,
where we take h(R) to be the harmonic metric guaranteed by Theorem 2.5, and D = Dh(R):

∇R,ζ = ζ−1Rϕ + Dh(R) + ζRϕ†h(R) . (3.1)

We are going to consider the limits of certain 1-parameter subfamilies of (3.1), obtained by taking
R→ 0 and ζ → 0 simultaneously while holding their ratio fixed. In other words, fix some h̄ ∈ C×

and set ζ = Rh̄: then (3.1) becomes

∇R,h̄ = h̄−1ϕ + Dh(R) + h̄R2ϕ†h(R) . (3.2)

In [1], Gaiotto proposed (and gave considerable evidence for):

Conjecture 3.1. Suppose the SL(N, C)-Higgs bundle (E, ∂̄E, ϕ) is in the Hitchin component, and fix
some h̄ ∈ C×. Then as R → 0 the connections ∇R,h̄ converge to a connection ∇0,h̄ in E, and there exists a
filtration F• in E such that (E,∇0,h̄, F•) is an SL(N, C)-oper.

We will prove the following explicit version of Conjecture 3.1:

Theorem 3.2. Fix any u ∈ B. Let (E, ∂̄E, ϕu) be the corresponding Higgs bundle in the Hitchin compo-
nent, and let h(R, u) be the family of harmonic metrics on E solving the rescaled Hitchin equation (2.4).
Let F• be the filtration

Fn =
n⊕

i=1

LN+1−2i ⊂ E. (3.3)

Fix h̄ ∈ C× and let

∇R,h̄,u = h̄−1ϕu + Dh(R,u) + h̄R2ϕ
†h(R,u)
u . (3.4)

Then, as R→ 0 the flat connections ∇R,h̄,u converge to a flat connection

∇0,h̄,u = h̄−1ϕu + Dh\ + h̄ϕ
†h\
0 , (3.5)

and (E,∇0,h̄,u, F•) is an SL(N, C)-oper, equivalent to the SL(N, C)-oper (Eh̄,∇h̄,u, Fh̄,•) of Proposition
2.15.

We emphasize that the harmonic metric h(R, u) depends on R, and indeed (as we will see)
h(R, u) diverges as R→ 0. In particular, we cannot simply drop the last term of (3.4) in the R→ 0
limit, despite the explicit prefactor R2; it survives to become the last term of (3.5), and is ultimately
responsible for the deformation of the holomorphic structure as a function of h̄.
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3.2. Proof of the main theorem for G = SL(2, C). The case N = 2 of Theorem 3.2 is notationally
simpler, and contains the main ideas, so we do it separately.

Fix a coordinate patch (U, z) on C, and the corresponding distinguished trivialization of E. Our
first aim is to write an explicit local formula, (3.13) below, for the family of connections (3.4) in E.

First we recall from [9] that the decomposition

E = L⊕L−1 (3.6)

is orthogonal for h(R, u). Since L2 ' KC, h(R, u) is induced from a Hermitian metric g(R, u) on
C. In the local patch (U, z),

g(R, u) = λ(R, u; z)2dzdz̄ (3.7)
for some positive real-valued function λ(R, u; z) (which we sometimes write λ for short.) Then

h(R, u) =
(

λ−1 0
0 λ

)
. (3.8)

We now write the Chern connection Dh explicitly. Since the distinguished trivializations are
holomorphic, the (0, 1) part ∂̄Dh is simply represented by ∂̄. The (1, 0) part ∂Dh is then determined
by unitarity with respect to h, which gives

∂Dh = ∂−
(

∂ log λ 0
0 −∂ log λ

)
, (3.9)

so altogether

Dh = d−
(

∂ log λ 0
0 −∂ log λ

)
. (3.10)

Next, the choice of u ∈ B just means fixing a holomorphic quadratic differential φ2 ∈ H0(C, K2
C).

Locally,
φ2 = P2 dz2 (3.11)

where P2 is a holomorphic function on U, and

ϕu =

(
0 P2
1 0

)
dz, ϕ†h

u =

(
0 λ2

λ−2P2 0

)
dz̄. (3.12)

Combining (3.10), (3.12), (3.4) gives the desired explicit representation,

∇R,h̄,u = d + h̄−1
(

0 P2
1 0

)
dz−

(
∂ log λ 0

0 −∂ log λ

)
+ R2h̄

(
0 λ2

λ−2P2 0

)
dz̄. (3.13)

Next we want to use (3.13) to understand∇R,h̄,u in the limit R→ 0. For this we need to understand
the behavior of λ(R, u) as R→ 0.

Flatness of ∇R,h̄,u is equivalent to the fact that h is the harmonic metric. Thus computing the
curvature of ∇R,h̄,u from (3.13) gives the harmonicity condition, as an equation for λ:

∂z̄∂z log λ− R2(λ2 − λ−2|P2|2) = 0. (3.14)

To get some intuition, first consider the special case P2 = 0. Then (3.14) specializes to

∂z̄∂z log λ− R2λ2 = 0, (3.15)

which says the metric g(R, 0) of (3.7) has constant curvature −4R2. Thus g(R, 0) = g\/R2 where
g\ is the unique metric with constant curvature −4 (see §2.8), and λ(R, 0) = λ\/R.

More generally when P2 6= 0, we use g\/R2 as background metric and write

g(R, u) = (g\/R2)e2 f , λ(R, u) = (λ\/R)e f , (3.16)

where f is a real-valued function on C. We claim that as R→ 0

∂a
z∂b

z̄ f = O(R4) for all a, b ≥ 0, (3.17)
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(so in particular, f = O(R4)).
To prove (3.17), first rewrite (3.14) in terms of the Laplacian for g\, ∆g\ =

4
λ2 ∂z̄∂z =

1
λ2

(
∂2

x + ∂2
y

)
:

N( f , R) = ∆g\ f + 4
(

1− e2 f + R4|P2|2e−2 f
)
= 0. (3.18)

The maximum principle shows that for any R ≥ 0, there exists at most one function f such that
N( f , R) = 0. In fact, the method of upper and lower solutions shows that there is exactly one
solution, but of course we already know this when R > 0 from the existence and uniqueness of
harmonic metrics, and f = 0 is a solution when R = 0.

The linearization at R = 0 is

DN|(0,0) ( ḟ , 0) =
(
∆g\ − 8

)
ḟ , (3.19)

and this is an isomorphism as a map Ck+2,α(C) → Ck,α(C) for any k ≥ 0 and α ∈ (0, 1). Note
also that N is a C∞ mapping from a neighborhood of 0 in Ck+2,α(C)×R to Ck,α(C). The Banach
space implicit function theorem now gives the existence of a C∞ map Ψ : [0, R0) → Ck+2,α(C)
such that N(Ψ(R), R) = 0 for 0 ≤ R < R0, and Ψ(0) = 0. From the uniqueness it follows
that Ψ is independent of k and α, so that Ψ(R) is a C∞ function on C for each R ≥ 0, and in fact,
(z, R) 7→ Ψ(R)(z) lies in C∞(C× [0, R0)). We can say even more: since all data in N is real analytic,
the real analytic version of the implicit function theorem [14] shows that Ψ is real analytic in R.
Finally, by the uniqueness of harmonic metrics, Ψ(R) must agree with the desired f when R > 0.

The upshot of the last paragraph is that we may expand f in a Taylor series around R = 0,

f = R f1 + R2 f2 + · · · (3.20)

Substituting this series into (3.18), we see that f1 = f2 = f3 = 0, and hence we get (3.17) as desired.
It follows that as R→ 0 we have

λ =
λ\

R
+ O(R3). (3.21)

Substituting this in (3.13), we see that as R→ 0, ∇R,h̄,u converges to

∇0,h̄,u = d + h̄−1
(

0 P2
1 0

)
dz−

(
∂ log λ\ 0

0 −∂ log λ\

)
+ h̄

(
0 λ2

\

0 0

)
dz̄. (3.22)

This is the desired (3.5).

It is instructive to see directly that (E,∇0,h̄,u, F•) is an SL(2, C)-oper, where F• is the filtration

0 ⊂ L ⊂ E. (3.23)

For this the key is the lower left entry h̄−1dz in (3.22), mapping L → L−1 ⊗ KC ' L. The two
salient facts about this are:

• Its (0, 1) part is trivial, so L is a holomorphic subbundle of (E, ∂̄∇0,h̄,u);
• Its (1, 0) part is nowhere vanishing, i.e., ∇̄0,h̄,u : L → (E/L)⊗ KC is an isomorphism of line

bundles.

These conditions say precisely that (E,∇0,h̄,u, F•) is an SL(2, C)-oper.

Finally we show that (E,∇0,h̄,u, F•) is equivalent to the SL(2, C)-oper (Eh̄,∇h̄,u, Fh̄,•) of Propo-
sition 2.15. Comparing (3.22) to the desired form (2.37), we see that we need to change our local
trivializations by a gauge transformation which eliminates the last two terms in (3.22), i.e. by a
matrix of the form

Mh̄,z =

(
1 h̄β
0 1

)
, (3.24)
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where ∂z̄β = λ2
\ . Because of the equation (2.28) for λ\, there is a natural candidate, β = ∂z log λ\,

leading to

Mh̄,z =

(
1 h̄∂z log λ\

0 1

)
. (3.25)

Relative to the new local trivializations, the transition maps from patches (U, z) to (U′, z′) become
the ones we wrote in (2.40); these are indeed the transition maps of Eh̄. What remains is to compute
∇0,h̄,u in the new trivializations. Computing directly Mh̄,z ◦ ∇0,h̄,u ◦ M−1

h̄,z from (3.22), (3.25) we
obtain

d + h̄−1
(

0 P2
1 0

)
dz + h̄

(
0 2(∂zλ\)

2−λ\∂
2
zλ\

λ2
\

0 0

)
dz. (3.26)

If our coordinate patch (U, z) is in the atlas given by Fuchsian uniformization, then the explicit
form of the hyperbolic metric in the upper half-plane gives λ\ = i

z−z̄ , and then the last term in
(3.26) vanishes. Thus (3.26) reduces to the desired (2.37). This finishes the proof of Theorem 3.2 in
case N = 2.

3.3. Proof of the main theorem for G = SL(N, C). Now we prove Theorem 3.2 in full generality.
The proof is essentially the same as for N = 2, with three differences:

• The notation is less transparent, because we cannot write everything in terms of explicit 2× 2
matrices.
• The harmonic metrics h(R, u) are no longer determined by a single function on C, so we have

to study a coupled system instead of a single scalar equation.
• The harmonic metrics h(R, u) may not be diagonal in the distinguished trivializations.

As in the case N = 2, the main technical issue is to control the harmonic metric h(R, u) in the
limit R → 0. We will show that in this limit h(R, u) approaches the natural metric h\(R) of §2.8.
To say this precisely: define End\,R E to be the set of endomorphisms which are self-adjoint with
respect to h\(R). Then h(R, u) : E→ E∗ can be written uniquely as

h(R, u) = h\(R)eχ(R,u) = e
1
2 χ(R,u)

T

h\(R)e
1
2 χ(R,u) (3.27)

where χ(R, u) ∈ End\,R E. We will show that χ(R, u)→ 0 as R→ 0:

Lemma 3.3. We have
χ(R, u) = O(R4). (3.28)

Proof. First some notation: for u = (φ2, . . . , φN) ∈ B and α ∈ R+, we let

αu = (α2φ2, . . . , αNφN) ∈ B. (3.29)

Now define

Nu(χ, R) =
[
∂̄E, e−χ ◦ ∂

h\
E ◦ eχ

]
+

[
ϕu, e−χ ◦ ϕ

†h\

R2u ◦ eχ

]
. (3.30)

We proceed in steps:
(1) For any fixed R, Nu(·, R) is a nonlinear operator

Nu(·, R) : Ω0(EndS E)→ Ω2(EndS E). (3.31)

(2) For any R > 0 and χ ∈ End\,R E, we have Nu(χ, R) = 0 iff h\(R)eχ is the harmonic metric for
ϕu with parameter R.

(3) Nu(0, 0) = 0.
(4) The linearization DχNu|(0,0) is bijective.
(5) There exists a real analytic χ(R, u) ∈ End\,R E ∩ EndS E for R ∈ [0, R0) such that

Nu(χ(R, u), R) = 0. (3.32)
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(6) The first nonzero term in the Taylor expansion of χ(R, u) around R = 0 appears at order R4.
For (1), what needs to be checked is that Nu(·, R) preserves EndS E. This is a straightforward

calculation using the compatibility between S and the rest of the data, as expressed in (2.31), (2.30),
(2.24).

For (2) we also compute directly. The curvature of the Chern connection Dh for the metric
h = h\(R)eχ = h\RHeχ is

FDh =
[
∂̄E, ∂h

E

]
=
[
∂̄E, e−χR−H ◦ ∂

h\
E ◦ RHeχ

]
=
[
∂̄E, e−χ ◦ ∂

h\
E ◦ eχ

]
, (3.33)

while
ϕ†h

u = e−χR−H ◦ ϕ
†h\
u ◦ RHeχ = R−2e−χ ◦ ϕ

†h\

R2u ◦ eχ. (3.34)
Combining these gives

FDh + R2[ϕu, ϕ†h
u ] = Nu(χ, R) (3.35)

which is the desired result.
For (3), observe first that

Nu(0, 0) =
[
∂̄E, ∂

h\
E

]
+

[
ϕu, ϕ

†h\
0

]
. (3.36)

This would vanish if ϕu were replaced by ϕ0 since h\ is the harmonic metric for the Higgs field
ϕ0, by Proposition 2.13 (with R = 1). However, the difference ϕu − ϕ0 is a sum of terms Xn,

all of which commute with ϕ
†h\
0 since ϕ

†h\
0 is proportional to X+. We conclude by recalling that

[Xn, X+] = 0 by (2.12).
For (4) we compute that

Lu(χ̇) := DχNu|(0,0) (χ̇) = ∂̄E∂
h\
E χ̇ +

[
ϕu,
[

ϕ
†h\
0 , χ̇

]]
. (3.37)

We wish to show this operator has trivial kernel. First consider the case u = 0. Using the L2

pairing induced by h\, we have

〈χ̇,L0χ̇〉 = ‖∂h\
E χ̇‖2 +

∥∥∥∥[ϕ
†h\
0 , χ̇

]∥∥∥∥2

. (3.38)

By Lemma 2.10, the second term on the right is strictly positive if χ̇ 6= 0, so L0 has trivial kernel. It
can be deformed among elliptic operators to the self-adjoint operator ∂̄E∂

h\
E , and hence has index

zero, which means that L0 is also surjective, and hence an isomorphism Ck+2,α → Ck,α for any
k ≥ 0.

We now extend this to a statement about Lu. To this end, we use the grading on EndS E where a
matrix has grade k if, in the distinguished local trivializations, its nonzero entries are k steps above
the diagonal. Notice that L0 preserves this grading. Moreover, we have

Lu(·)−L0(·) =
[

ϕu − ϕ0,
[

ϕ
†h\
0 , ·

]]
(3.39)

and this strictly increases the grading since both ϕu − ϕ0 and ϕ
†h\
0 are strictly upper triangular. It

follows that Lu also has trivial kernel. (Indeed, given operators A, B where A preserves a grading
and B increases it, (A + B)v = 0 implies that A annihilates the lowest-grade component of v.)
Then, by the same remarks as above, Lu is also surjective.

To obtain (5) we can apply the implicit function theorem, exactly as in the case N = 2 above, to
deduce the existence of a smooth function χ(R, u) such that Nu(χ(R, u), R) ≡ 0 for 0 ≤ R ≤ R0.
As before, this solution is real analytic in R and z jointly. Moreover, writing † for †h\(R) we compute
directly from (3.30)

Nu(χ, R)† = eχ†
Nu(χ

†, R)e−χ†
, (3.40)



OPERS VERSUS NONABELIAN HODGE 17

so if χ is a solution then χ† is as well. Thus the uniqueness in the implicit function theorem forces
χ = χ†, i.e. χ(R, u) ∈ End\,R E.

Finally, for (6) we simply plug the Taylor series

χ(R, u) =
∞

∑
n=1

Rnχn(u) (3.41)

into (3.32), and expand in powers of R. From (3.30) we have

Nu(χ, R) = Nu(χ, 0) + O(R4). (3.42)

Thus at order R1 we have to solve
Lu(χ1) = 0, (3.43)

which we have already seen implies χ1 = 0. Similarly we get χ2 = χ3 = 0. This finishes the
proof. �

Now we are ready to prove Theorem 3.2. We just substitute h(R, u) = h\(R)eχ(R,u) in (3.4),
obtaining (using (3.34))

∇R,h̄,u = h̄−1ϕu + e−χ(R,u) ◦ Dh\ ◦ eχ(R,u) + h̄e−χ(R,u) ◦ ϕ
†h\

R2u ◦ eχ(R,u). (3.44)

In the limit R→ 0 we have χ(R, u)→ 0, so this reduces to

∇0,h̄,u = h̄−1ϕu + Dh\ + h̄ϕ
†h\
0 , (3.45)

as desired.
To verify that (E,∇0,h̄,u, F•) is equivalent to the oper of Proposition 2.15, we proceed just as we

did for N = 2: introduce the matrix

Mh̄,z = exp
(
h̄(∂z log λ\)X+

)
(3.46)

and compute directly Mh̄,z ◦ ∇0,h̄,u ◦M−1
h̄,z , giving

d + h̄−1ϕu + h̄εX+, (3.47)

where the “error term” ε =
2(∂zλ\)

2−λ\∂
2
zλ\

λ2
\

vanishes when the local coordinate (U, z) is in the atlas

given by Fuchsian uniformization. This completes the proof.

4. THE SCALING LIMIT, FOR SIMPLE G

In §3 we have stated and proved our main theorem for the group G = SL(N, C). In this final
section we generalize to arbitrary simple, simply connected complex Lie groups G. This goes
along the same lines as for G = SL(N, C) — indeed all the essential computations really have to
do with a principal SL(2, C) subgroup, which already appeared in the G = SL(N, C) case. Thus
we will be fairly brief.

We follow the conventions in [15].

4.1. Simple complex Lie algebras, Kostant subalgebra, and involutions. Fix a simple, simply
connected complex Lie group G and a Cartan subgroup H ⊂ G. Let ∆ ⊂ h∗ be the set of roots of
(G, H). Choose a positive subset ∆+ ⊂ ∆, and let Π ⊂ ∆+ be the set of simple roots. Then there is
a Chevalley basis for g:

g = 〈{hαi}αi∈Π, {xα}α∈∆〉 . (4.1)
The associated Borel subalgebra is

b = 〈{hαi}αi∈Π, {xα}α∈∆+〉 ⊂ g. (4.2)

Let B ⊂ G be the corresponding Borel subgroup.
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Kostant’s principal sl(2, C) ⊂ g is spanned by (H, X+, X−), defined in terms of the Chevalley
basis as:

H = ∑
α∈∆+

hα = ∑
αi∈Π

rαi hαi , X± = ∑
αi∈Π

√
rαi x±αi , (4.3)

and obeying

[H, X±] = ±2X±, [X+, X−] = H. (4.4)

The first equation in (4.3) defines the coefficients rαi ∈ Z+. g decomposes as a sum of irreducible
representations v1, . . . , vr of the principal sl(2, C), where r is the rank of G. Each vn has odd com-
plex dimension; we arrange them in increasing order and write

dimC vn = 2mn + 1. (4.5)

Then (m1, m2, . . . , mr) are the exponents of G.
Let Xn be a highest-weight vector in vn, i.e. one obeying

[X+, Xn] = 0, [H, Xn] = 2mnH. (4.6)

Xn is determined up to a scalar multiple, which we do not fix.
Let ρ : g → g be the conjugate-linear Cartan involution associated to the Chevalley system. Its

defining properties are that it preserves h (but is not the identity there) and satisfies ρ(xα) = −x−α.
ρ determines a Hermitian form on g:

〈Y1, Y2〉 = −B (Y1, ρ(Y2)) (4.7)

where B is the Killing form on g.
Another important involution is given by:

Proposition 4.1 ([9] Proposition 6.1). There is a complex-linear involution σ : g→ g characterized by

σ|ker(ad(X+)) = −1, σ(X−) = −X−. (4.8)

Moreover, σ obeys

σ ◦ ρ = ρ ◦ σ. (4.9)

The fixed locus of ρ is a real Lie subalgebra of g, corresponding to a compact real form K of G.
Similarly the fixed locus of λ = σ ◦ ρ is a real Lie subalgebra of g, corresponding to a split real
form Gr.

Both ρ and σ preserve the principal sl(2, C) (though they act non-trivially on it). It follows that
the principal embedding ι : SL(2, C) ↪→ G restricts to ι : SL(2, R) ↪→ Gr, and to ι : SU(2) ↪→ K.

When G = SL(N, C), if we choose the standard Cartan subgroup and simple roots, we have
ρ(X) = −X† and σ(X) = −SXTS−1. Thus in this case K = SU(N).

4.2. Higgs bundles. Fix a compact Riemann surface C of genus g ≥ 2.

Definition 4.2. A G-Higgs bundle over C is a tuple (P, ∂̄P, ϕ):

• A principal G-bundle P over C,
• A holomorphic structure ∂̄P on ad P,
• A holomorphic section ϕ of ad P⊗ KC.
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4.3. Harmonic reductions. In the principal bundle setting, the analogue of a Hermitian metric h
is a reduction of structure group from G to K, i.e. a principal K-bundle Q ⊂ P. So, suppose given
a G-Higgs bundle (P, ∂̄P, ϕ) with a reduction Q. Since the involution ρ of g is K-invariant, using
the reduction Q ⊂ P it induces an involution ρQ of ad P (which acts trivially on ad Q.)

When G = SL(N, C), K = SU(N), and P is the bundle of frames in E, a reduction Q ⊂ P is
equivalent to a Hermitian metric h in E inducing the trivial metric on det E; namely Q consists of
all frames which are unitary for h. Then ρQ(ϕ) = −ϕ†h .

There is a unique connection DQ in ad Q whose (1, 0) part is ∂̄P (Chern connection),

DQ = ∂̄P + ∂Q
P , (4.10)

where
∂Q

P = ρQ ◦ ∂̄P ◦ ρQ. (4.11)
We denote its curvature FDQ ∈ Ω2(ad Q). Now we can formulate the analogue of the harmonic
metrics from §2.3:

Definition 4.3. Given a G-Higgs bundle (P, ∂̄P, ϕ), and R ∈ R+, a harmonic reduction with parameter
R is a reduction of structure group to K, Q ⊂ P, such that

FDQ − R2[ϕ, ρQ(ϕ)] = 0. (4.12)

4.4. Real twistor lines. Given a G-Higgs bundle (P, ∂̄P, ϕ) with harmonic reduction Q there is a
corresponding family of flat connections in P, given by the formula

∇ = ζ−1Rϕ + DQ − ζRρQ(ϕ), ζ ∈ C×. (4.13)

Indeed, the statement that ∇ is flat for all ζ ∈ C× is equivalent to (4.12).

4.5. The Hitchin component.

Definition 4.4. The Hitchin base is the vector space

B =
r⊕

n=1

H0(C, Kmn+1
C ). (4.14)

We will denote points of B by u = (φ1, . . . , φr), where φn ∈ H0(C, Kmn+1
C ). (Warning: this is

inconsistent with our notation in §2: what we call φn here would have been called φn+1 there.)
As in §2.6 we fix a spin structure L on C. Let P0 denote the principal C×-bundle of frames

in L; it carries a canonical holomorphic structure induced from the one in L. The distinguished
trivializations of L associated to patches (U, z) induce distinguished elements of P0. Then:

Definition 4.5. The Hitchin component is a set of G-Higgs bundles (P, ∂̄P, ϕu), parameterized by
u ∈ B, as follows:

• The bundle P is
P = P0 ×C× G, (4.15)

where we embed C× ↪→ G by α 7→ αH.
• ∂̄P is the holomorphic structure on P induced from the one on P0.
• The Higgs field ϕu ∈ ad P⊗ KC is, in the distinguished trivializations,

ϕu,z =

(
X− +

r

∑
n=1

Pn,zXn

)
dz. (4.16)

The following crucial fact is proven in [9]:

Theorem 4.6. Given a G-Higgs bundle in the Hitchin component, and any R ∈ R+, there exists a unique
harmonic reduction Q with parameter R.
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4.6. The linear involution. The involution σ : g→ g of §4.1 induces an automorphism σ of ad P,
where P is the bundle (4.15). (To see this involution is well defined we use the fact that σ(H) = H.)
Note that

σ(ϕu) = −ϕu. (4.17)
We define adσ P to be the σ-invariant part of ad P.

4.7. The natural reduction. Recall from §2.8 the natural metric on L, induced by uniformization
with parameter R. Let Q\,0(R) ⊂ P0 be the circle bundle of unit-norm vectors in L. In the distin-
guished local trivializations of P0, Q\,0(R) is the U(1)-orbit of (λ\/R)

1
2 .

Definition 4.7. The natural reduction Q\(R) of the bundle P of (4.15) is

Q\(R) = Q\,0(R)×U(1) K ⊂ P0 ×C× G = P, (4.18)

where we use the fact that for |α| = 1 we have αH ∈ K. We abbreviate Q\(R = 1) as Q\. In
particular, (cf. (2.27))

Q\(R) = R−H/2Q\. (4.19)

Proposition 4.8. The harmonic reduction on the Higgs bundle (P, ∂̄P, ϕ0) with parameter R is Q\(R).

Proof. This is essentially the same computation as in Proposition 2.13. The curvature FDQ\(R) is

induced from FDQ\,0(R) = ∂∂̄ log λ\ through the embedding U(1) ↪→ K, so

FDQ\(R) = (∂∂̄ log λ\)H. (4.20)

In the distinguished local trivializations of P, Q\(R) is the K-orbit (λ\/R)H/2K. Thus, in the dis-
tinguished local trivializations ρQ\(R) acts by (λ\/R)H/2 ◦ ρ ◦ (λ\/R)−H/2. So we have

R2
[

ϕ0, ρQ\(R)(ϕ0)
]
= R2

[
X−dz, (λ\/R)H/2ρ((λ\/R)−H/2X−)dz̄

]
(4.21)

= −λ2
\ [X−, X+]dz ∧ dz̄ (4.22)

= λ2
\H dz ∧ dz̄. (4.23)

Combining these and using (2.28) gives the result. �

4.8. G-opers. Now we recall the notion of G-oper. The principal bundle version of the filtration
from §2.9 is a reduction to the Borel subgroup B ⊂ G.

Definition 4.9. A G-oper on C is a tuple (P,∇, F) where:

• P is a principal G-bundle,
• ∇ is a flat connection in P,
• F ⊂ P is a reduction to B ⊂ G,

such that

• F is holomorphic, with respect to the holomorphic structure on P induced by ∇,
• ∇ is in “good position” with respect to F, in the following sense. Choose locally a connec-

tion ∇B on P induced from a flat holomorphic connection on F, and consider ∇ − ∇B ∈
Ω1,0(ad P). Changing the choice of∇B leaves invariant the class [∇−∇B] ∈ Ω1,0(ad P/ad F).
Now (ad P/ad F) = F×B (g/b), from which it follows that the set of B-orbits of (ad P/ad F)
is just the set of B-orbits of g/b. Thus, at each point of C, ∇ determines a B-orbit O∇ of
g/b⊗Ω1,0. The “good position” condition is thatO∇ is the orbit containing [X−]dz (note this
condition is independent of the choice of local coordinate, since the B-orbit of [X−] contains
all scalar multiples of [X−].)
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4.9. A construction of G-opers. Next we recall a construction of G-opers parallel to §2.10.

Proposition 4.10. We have the following:

• For any h̄ ∈ C, the transition functions

Th̄,z,z′ = αH
z,z′ exp

(
h̄α−1

z,z′∂zαz,z′X+

)
(4.24)

define a holomorphic G-bundle (Ph̄, ∂̄h̄) over C, with a reduction to a B-bundle Fh̄, and equipped with
a distinguished trivialization for each local coordinate patch (U, z) on C.
• For any h̄ ∈ C× and u ∈ B, there exists a canonical G-oper (Ph̄,∇h̄,u, Fh̄), compatible with the

holomorphic structure ∂̄h̄. Relative to the distinguished trivializations of Ph̄ on patches (U, z) in the
atlas given by Fuchsian uniformization, ∇h̄,u is given by

∇h̄,u,z = d + h̄−1ϕu,z, (4.25)

where (as we have stated before)

ϕu,z =

(
X− +

r

∑
n=1

Pn,zXn

)
dz. (4.26)

Proof. The checks that Ph̄ and its connection ∇h̄,u are globally well defined are just as in the proof
of Proposition 2.15: indeed the computations there only involved the principal sl(2, C) generators
H, X+, X− and their commutation relations with the Xn, so they go through unchanged.

The B-reduction Fh̄ is represented by B ⊂ G in the distinguished trivializations; this is indeed
globally defined, since X+, H ∈ b and thus the transition functions Th̄,z,z′ of (4.24) are valued in B.
To see that∇h̄,u is an oper, we can compute in any distinguished trivialization, and locally take∇B
to be the trivial connection; then by (4.25), the class [∇h̄,u −∇B] is represented by the projection
of h̄−1 ϕu,z to g/b. Using (4.26) and the fact that each Xn ∈ b, this projection is simply h̄−1[X−]dz.
This is in the B-orbit of [X−]dz, as desired. �

4.10. The main theorem for general G. Now we state and prove our main theorem for general
complex simple simply connected G:

Theorem 4.11. Fix any u ∈ B. Let (P, ∂̄P, ϕu) be the corresponding Higgs bundle in the Hitchin com-
ponent, and let Q(R, u) ⊂ P be the family of harmonic reductions solving the rescaled Hitchin equation
(4.12). Let F be the reduction of P to B which, in each distinguished local trivialization, is given by B ⊂ G.

Fix h̄ ∈ C× and let
∇R,h̄,u = h̄−1ϕu + DQ(R,u) − h̄R2ρQ(R,u)(ϕu). (4.27)

Then, as R→ 0 the flat connections ∇R,h̄,u converge to a flat connection

∇0,h̄,u = h̄−1ϕu + DQ\
− h̄ρQ\

(ϕ0), (4.28)

and (P,∇0,h̄,u, F) is a G-oper, equivalent to the G-oper (Ph̄,∇h̄,u, Fh̄) of Proposition 4.10.

In parallel to the proof of Theorem 3.2, the main technical issue is to show that the harmonic
reduction Q(R, u) approaches Q\(R) as R → 0. We can formulate this as follows. Let Ad\,R P be
the group of automorphisms of P preserving Q\(R), and ad\,R P its Lie algebra. We have

Q(R, u) = e−
1
2 χ(R,u)Q\(R) (4.29)

for a unique χ(R, u) ∈ ad\,R P. Then, parallel to Lemma 3.3:

Lemma 4.12. We have
χ(R, u) = O(R4). (4.30)
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Proof. First some notation: for u = (φi)
r
i=1 ∈ B and α ∈ R+, we let

αu = (αmi+1φi)
r
i=1 ∈ B. (4.31)

Now define
Nu(χ, R) =

[
∂̄P, e−χ ◦ ∂

Q\

P ◦ eχ
]
−
[

ϕu,
(

e−χ ◦ ρQ\

)
(ϕR2u)

]
. (4.32)

Then, just as in the proof of Lemma 3.3, we proceed in steps:

(1) For any fixed R, Nu(·, R) is a nonlinear operator

Nu(·, R) : Ω0(adσ P)→ Ω2(adσ P). (4.33)

(2) For any R > 0 and χ ∈ ad\,R P, we have Nu(χ, R) = 0 iff e−
1
2 χQ\(R) is the harmonic reduction

for ϕu with parameter R.
(3) Nu(0, 0) = 0.
(4) The linearization DχNu|(0,0) is bijective.
(5) There exists a real analytic χ(R, u) ∈ ad\,R P ∩ adσ P for R ∈ [0, R0) such that

Nu(χ(R, u), R) = 0. (4.34)

(6) The first nonzero term in the Taylor expansion of χ(R, u) around R = 0 appears at order R4.

Each step is strictly parallel to the analogous step in the proof of Lemma 3.3; we just mention the
necessary substitutions. In step (1) the necessary compatibility with σ is (4.9) and (4.17). For step
(2) we first note that if χ ∈ ad\,R P then

ρQ = e−
1
2 χR−H/2 ◦ ρQ\

◦ RH/2e
1
2 χ = e−χR−H ◦ ρQ\

. (4.35)

Thus the curvature of DQ is

FDQ =
[
∂̄P, ∂Q

P

]
=
[
∂̄P, e−χR−H ◦ ∂

Q\

P ◦ RHeχ
]
=
[
∂̄P, e−χ ◦ ∂

Q\

P ◦ eχ
]

, (4.36)

and
ρQ(ϕu) = (e−χ ◦ ρQ\

◦ RH)(ϕu) = R−2(e−χ ◦ ρQ\
)(ϕR2u) (4.37)

where we used
RH ϕu = R−2ϕR2u. (4.38)

In step (3) we use Proposition 4.8. In step (4) we compute

Lu(χ̇) := DχNu|(0,0) (χ̇) = ∂̄P∂
Q\

P χ̇−
[

ϕu,
[
ρQ\

(ϕ0), χ̇
]]

, (4.39)

and then proceed as in Lemma 3.3, using the L2 norm on ad P induced by Q\ and the Hermitian
pairing (4.7), and the grading on g induced by H. The remaining steps (5), (6) are just as in the
proof of Lemma 3.3. �

The remainder of the proof of Theorem 4.11 is also strictly parallel to that of Theorem 3.2, so we
omit it.
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