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Abstract
Background: The human microbiome plays a critical role in human health. Massive
amounts of metagenomic data have been generated with advances in next-generation
sequencing technologies that characterize microbial communities via direct isolation
and sequencing. How to extract, analyze, and transform these vast amounts of data
into useful knowledge is a great challenge to bioinformaticians. Microbial biodiversity
research has focused primarily on taxa composition and abundance and less on the
co-occurrences among different taxa. However, taxa co-occurrences and their
relationships to environmental and clinical conditions are important because network
structure may help to understand how microbial taxa function together.

Results: We propose a systematic robust approach for bacteria network construction
and structure detection using metagenomic count data. Pairwise similarity/distance
measures between taxa are proposed by adapting distance measures for samples in
ecology. We also extend the sparse inverse covariance approach to a sparse inverse of
a similarity matrix from count data for network construction. Our approach is efficient
for large metagenomic count data with thousands of bacterial taxa. We evaluate our
method with real and simulated data. Our method identifies true and biologically
significant network structures efficiently.

Conclusions: Network analysis is crucial for detecting subnetwork structures with
metagenomic count data. We developed a software tool in MATLAB for network
construction and biologically significant module detection. Software MetaNet can be
downloaded from http://biostatistics.csmc.edu/MetaNet/.

Keywords: Metagenomics data, Networks analysis, Modules

Background
Our human body is a host to various ofmicrobes. Over 90 % of the cells in human body are
bacterial or other non-human cells. These microbes have great influence on human phys-
iology and nutrition, and are crucial for our health [1]. Metagenomics, which is the study
of genetic material recovered directly from uncultured microorganisms, has accelerated
the analysis of functional biodiversity relevant to its ecology. The objectives of human
microbiome research are to explore the host-microbiota interactions, associate differ-
ences in microbial communities with differences in metabolic functions and diseases,
and understand how microbiota changes may affect human health [1]. Massive amounts
of metagenomic sequencing data have been generated with advances in next-generation
sequencing (NGS) technologies. There are two NGS methods for metagenomics: whole
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metagenomic shotgun sequencing (WMGSS) and 16S rRNA gene sequencing. 16S rRNA
sequencing is an amplicon sequencing method for identifying and comparing bacteria
present within a given sample, while WMGSS comprehensively sample all genes in all
organisms present in a given complex sample. The two techniques are quite different
and intend for answer different biological questions. It has been shown that 16S rRNA
sequencing contains hundreds of thousands of 16S RNAs fragments and is an efficient
tool to infer bacterial communities, while WMGSS is mainly used for functional delin-
eation and it is generally not deep enough to detect rare species in complex communities
[2, 3]. In this paper, we infer network structures and taxa co-occurrence with 16S rRNA
sequencing. By examining the relationship of genome structure and function across many
different taxa withNGS data, the scope ofmicrobiology and ofmicrobial evolution studies
has been greatly broadened, and the field of systems biology has emerged [4, 5].
There have been great strides in determining the taxonomical and functional contents

of a sample in the last several years. Many software packages including MOTHUR [6],
UniFrac [7], QIIME [8], and SILVAngs [9] have been designed primarily for the analy-
sis of 16S rRNA sequencing data, while the other software packages including MEGAN
[5, 10], Phymm [11], NBC [12] were developedmainly for shotgunmetagenomic sequenc-
ing data. Those tools provide different approaches for the comparison of microbial
communities with metagenomic sequence data. One output from some of the software is
the abundance counts (sequence reads) for each taxa. These taxa abundance counts can
be further analyzed to identify taxa and microbial communities that are associated with
human diseases by comparing taxa counts from two or more groups with different dis-
ease status. Study of the link between characteristics of a microbiome and human disease
is a active area of research. Current approaches such as MetaStats [13] and MetaDistance
[14] mainly focus on variations in abundance across different clinical conditions, ignor-
ing the interactions and structural variations among taxa. However, bacteria taxa do not
act alone, rather they form part of large interacting (co-occurrence) networks and may
function together. Variations in network structures and taxon interactions may be asso-
ciated with disease status and clinical phenotypes [15–18]. Therefore network methods
specifically designed for metagenomic count need to be developed.
Networks methods and graph theory have been widely applied to gene regulatory

network construction with expression data [19–21]. Network analysis has also proved
powerful for studying the characteristics of metabolic networks and their impact on var-
ious functional and evolutionary properties [22–24]. RNA-Seq is a NGS approach to
transcriptome profiling. It provides a far more precise measurement of levels of tran-
scripts and their isoforms than other methods [25]. Local Poisson graphical (log-linear)
model and Bayesian generalized graphical model for network construction have been
developed with RNA-seq data recently [26, 27]. However, the log-linear model is not valid
when there are zero counts or measures in the data, which is common in metagenomics.
Also, the Bayesian Poisson graphical model is slow when the network size is large. It
usually takes hours to construct a network with hundreds of nodes. Those parametric
methods can not be applied to metagenomic count data without modification. Moreover,
even though there are a fewmethods available for network construction with microbiome
data [28–32], most methods for network analysis are based on pairwise correlations
(or distance) and ignore high-order correlations. However, high-order (partial) correla-
tion has the advantage over pairwise correlation, because it measures the conditional
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dependency between two taxa given the effect of other taxa being removed or fixed, and
reflects direct correlation between taxa and excludes the between-taxon dependency due
to other taxa. In addition, variance heterogeneity and non-normality of metagenomic
count data make standard correlations invalid (e.g. Pearson correlation). One way to deal
with the problem is to use proportion and log-ratio transformations [33]. However the
log-ratio is not defined when there are zeros in the data and approximation methods have
to be used.
In this paper, we propose a nonparametric approach for co-occurrence network

construction and subnetwork structure detection. We propose similarity (or distance)
measures between taxa derived by adapting distance measures between samples with
abundance counts defined in ecology [34]. We also expand the sparse inverse covari-
ance method to sparse inverse of general similarity matrices for high-order correlation.
The performance of our methods are evaluated through simulation and publicly avail-
able metagenomic data sets. The proposed methods are efficient for detecting true
network structures. Even though the co-occurrence network is just a description analysis
from temporal snapshots, it may be informative regarding how microbial taxa function
together.

Methods
Given samples with or without associated phenotypes, our goal is to study the connectiv-
ity and subnetwork structures of bacteria taxa with human microbiome. The final output
from 16S rRNA sequencing of the host’s microflora is an integral, non-negative number
of sequencing reads for each taxon. Such reads are the metagenomic counts represented
as

X =

⎡
⎢⎢⎢⎢⎣
x11 x12 . . . x1m
x21 x22 . . . x2m
...

...
. . .

...
xn1 xn2 . . . xnm

⎤
⎥⎥⎥⎥⎦

where X is the count matrix with n samples and m taxa, and xij denotes the total number
of reads of taxon j in sample i. In case there have been known disease status or clinical
conditions (y) available, we will also discuss methods for detecting structural variations
across clinical conditions. Constructing a human metagenomic network requires several
sequential steps: (i) estimating pairwise similarity (or distance) measures between differ-
ent taxa, (ii) adjacency matrix construction, (iii) network structure (module) detection
and differentiated networks. We will discuss each of these steps.

Pairwise similarity measures

Correlation coefficients are one type of similarity measures that describe the magnitude
and direction of association between two variables. Becausemetagenomic count data typ-
ically have variances that are a function of the mean and are not normally distributed, the
usual pairwise correlation (e.g. Pearson correlation coefficient)is not appropriate for net-
work analysis. We use two distribution-free nonparametric correlations for count data.
Given two n-dimensional vectors x and y and their corresponding ranks Rx and Ry,
we have
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• Spearman rank-order correlation:

R(x, y) = 1 − 6
∑n

i=1(Rxi − Ryi)2

n(n2 − 1)
We will take the average of the scores when multiple elements have the tied ranks.

• Kendall’s τ rank correlation:

τ(x, y) =
∑

i<j sgn(xi < xj)sgn(yi < yj)√
(T0 − T1)(T0 − T2)

,

where T0 = n(n − 1)/2, T1 = ∑
k tk(tk − 1)/2, and T2 = ∑

l ul(ul − 1)/2. The tk is
the number of tied x values in the kth group of the tied x values, ul is the number of
tied y values in the l th group of tied y values, and sign(z) is defined as:

sgn(z) =

⎧⎪⎨
⎪⎩

1 if xi < xj,
0 if xi = xj,

−1 if xi > xj.

Our similarity matrix S can be defined with either S = [
sin

(
π
2 R

(
xi, xj

))]
m×m or

S = [
sin(π

2 τ(xi, xj))
]
m×m [35]. Those distribution-free correlations only utilize rank

information, and are more robust than the parametric approach. Even though they are
slight less efficiency than Pearson correlation under normal distribution, both Spearman
and Kendall correlation coefficients provide a good compromise between robustness and
efficiency [36].
Distance measures are commonly used for quantifying the dissimilarities between sam-

ples and visualizing the samples in 2D and 3D [37]. They have been modified to measure
pairwise similarity between taxa and construct phylogenetic tree recently [38, 39]. Given
two n-dimensional column vectors x1 and x2 of two taxa, distance measures between taxa
can be defined as

• Hellinger distance:

D(x1, x2) =
√√√√ n∑

i=1

(√ xi1
x+1

−
√ xi2
x+2

)2
,

where x+1 = ∑n
i=1 xi1, and x+2 = ∑n

i=1 xi2.
• The χ2 distance:

D (x1, x2) =
√√√√ n∑

i=1

(x+1 + x+2)

(xi1 + xi2)

(√ xi1
x+1

−
√ xi2
x+2

)2
.

• Bray-Curtis dissimilarity:

D(x1, x2) = 1 − 2
∑n

i=1 min(xi1, xi2)∑n
i=1(xi1 + xi2)

= 1 − 2
n∑

i=1

min(xi1, xi2)
(x+1 + x+2)

.

These distances can be calculated with either raw or relative abundance reads. Even
though there is no great difference, we suggest to use relative abundance for sequencing
depth adjustment. The relative abundance matrix P is computed from the count matrix
X with P = [pij]n×m, where pij = xij∑m

j=1 xij
. Based on the distance measures, we define a

similarity measure with the popular Gaussion kernel as

S = [Sij]m×m , where Sij = S(xi, xj) = e−
D2(xi ,xj)

σ ,
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where the free parameter σ can be estimated by resampling. We set σ = 1 for all compu-
tations in this paper. This distance based similarity matrix S is a positive (semi)-definite
kernel matrix well studied in machine learning and bioinformatics. The kernel function

e−
D2(xi ,xj)

σ can be treated as an inner product in the high-dimensional feature space, so S
can be regarded as the covariance matrix in the feature space.

Similarity to adjacency matrix

To compensate for noise andmeasure error, we propose two efficient approaches to deter-
mine statistically significant nonzero similarities. Unlike most methods in the literature
determining the network structure with an arbitrary threshold of pairwise correlation, we
are more interested in studying high order correlations. i.e., how xi and xj associate with
each other when information about other variables is taken into consideration. Sparse
inverse covariance for graph construction was originally proposed for continuous data
with the assumption that the observations are from a multivariate Gaussian distribution
[40]. This approach can handle large network efficiently. We extend this method to study
the sparse inverse of a general similarity matrix S−1, and evaluate its efficiency using sim-
ulation. Unlike S, a value zero in any cell of S−1 implies conditional independence among
those variables. Mathematically S−1

ij = 0 ⇒ P(xi, xj|x−i,−j) = 0, where x−i,−j denotes all
the variables other than xi and xj. The likelihood estimate of A = S−1 is

max
A�0

L = log detA − tr(SA),

where tr(SA) is the trace of SA. Assuming S is nonsingular, and taking the first order
derivative, we have A−1 = S. However, it is common that n < m in metagenomic data, so
S can be singular. In such case, the following l1 penalized error function can beminimized
to obtain maximal likelihood estimates:

min
A�0

E = − log detA + tr(SA) + λ||A||1,

where ||A||1 = ∑
ij |aij| is the elementwise l1 norm for matrix A. The sparse structure

of A can be estimated directly. This approach follows the framework of block coordinate
descent [40, 41]. Mathematically, we partition the matrices S and A into the following
block form:

S =
[
S11 s12
sT12 s22

]
; A =

[
A11 a12
a12 a22

]
,

where S11,A11 ∈ R
(m−1)×(m−1), s12, a12 ∈ R

m−1, and s22.a22 ∈ R. Then we have

log detA = log det
[
A11

(
a22 − aT12A

−1
11 a12

)]
= log detA11 + log

(
a22 − aT12A

−1
11 a12

)
.

So

min
A�0

E = − log detA11 − log(a22 − aT12A
−1
11 a12) + tr(SA) + λ||A||1.

Assuming A11 is fixed and taking the first order derivative for a12 and a22, we have the
sub-differential of E with respect to a12:

∂E
∂a12

= 2
a22 − aT12A

−1
11 a12

A−1
11 a12 + 2s12 + 2λsgn(a12),
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where sgn(x) = ∂|x|
∂x for x ∈ R is defined as sgn(x) =

⎧⎪⎪⎨
⎪⎪⎩
1 x > 0,

[−1, 1] x = 0,

−1 x < 0.

Similarly, since

a22 > 0, the partial derivative of E with respect to a22:
∂E

∂a22
= − 1

a22 − aT12A
−1
11 a12

+ s22 + λ.

After finding the derivative, we initialize A0 = (S + λI)−1, and then use the standard
decent gradient algorithm to update each row/column repeatedly until the algorithm con-
verges. After obtaining the sparse A and taking the absolute value A = |A|, we set the
diagonal value of A to zero with A = A− diag(A) to get the final adjacency matrix A. The
adjacency matrix A is a representation of a graph, where the value of aij represents the
connectivity between taxa i and j.

λDetermination
The regularization parameter λ controls the number of nonzero estimated links between
nodes and the sparsity of the network. The larger the λ, the sparser the network. A com-
mon approach for determining λ is stability selection [42, 43]. This approach seeks the
λ leading to the most stable sets of edges. Given data X, stability selection first draws p
sub-samples X1, X2, . . . ,Xp of size q (1 < q < n), where q = 2

3n in this paper, and then
estimates one separate network Ai(λ) for each sub-sample Xi and a fixed regularization
parameter λ. Stability selection then defines the average fraction of disagreements over
all edges of the sub-sampled graphs as

D(λ) =
∑

j<k ājk(λ)(1 − ājk(λ))(p
2
) , where ājk = 1

p

p∑
i=1

aijk(λ).

The optimal λ̂ is then chosen as:

λ̂ = min
{
λ : max

0<t<λ
D(t) ≤ α

}
, where α = 0.05.

Final network is constructed using whole data X and λ̂.

Network structure detection and differentiated networks

The problem of subnetwork structure detection requires the partition of a network into
communities (subnetworks/modules) of densely connected nodes, while nodes belonging
to different communities are sparsely (weakly) connected. Bacterial subnetwork structure
detection is very important because we want to know which taxa coexist and function
together. One simple approach to accomplish this is modularity function maximization
[44, 45]. The modularity function also measures the quality of a partition and can be used
to compare the performance of different partition methods. Given a weighted network
with adjacency matrix A, to attribute each node to a module ci, a modularity function can
be defined as follows:

Q = 1
2w

∑
i,j

[
aij − kikj

2w

]
δ(ci, cj),

where aij is the weight of an edge between taxa (node) i and j, ki = ∑
j aij is the sum of the

weights of edges attached to taxon i, andw = 1
2
∑

i,j aij is the total weight. In addition, ci is
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the subnetwork (module) to which taxon i is assigned, and the δ function δ(u, v) = 1 if u =
v and 0 otherwise. Obviously, −1 ≤ Q ≤ 1 and the larger Q indicates better separation in
subnetworks. The subnetwork partition algorithms are designed for maximizing Q. We
adopt the two-step iterative local greedy approach [44] in this paper. Unlike K-means or
hierarchical clustering, this two-step algorithm automatically determines the number of
network modules (clusters) without predefining.
Given metagenomic data from different clinical conditions or different times, we con-

struct a network with similarity Si and adjacency matrix Ai for clinical condition or time
i. We are interested in knowing wether the network structures of a subset of taxa have
changed from one clinical condition (time) to another. We may define network statistics
to measure the network structure changes either with the similarity matrix S or the adja-
cency matrix A. Given two networks A1 (S1) and A2 (S2), our first network statistic is
defined by the following mean absolute distance (MAD):


(A) = 1
m(m − 1)

∑
i<j<m

|a1ij − a2ij|, or 
(S) = 1
m(m − 1)

∑
i<j<m

|s1ij − s2ij|,

where a1ij and a2ij are the interaction score between taxa i and j in network 1 and 2. The
networks are considered to be significantly different if the value of 
(A) or 
(S) is large.
Permutation tests can be used to estimate the P-value. Exact permutation test will be used
when the sample size is small (< 100), otherwise, the number of permutations used will
be L = 100,000. We first permutate the original data L times and compute the 
(A,π)

or 
(S,π) for each permutation π , the P-value corresponding to 
(A) or 
(S) can be
computed as:

P(
(A)) = 1
L
∑
π

I(
(A,π) ≥ 
(A)), or P(
(S)) = 1
L
∑
π

I(
(S,π) ≥ 
(S)),

where I(x) = 1 if x is true and 0 otherwise, and


(A,π) = 1
m(m − 1)

∑
i<j<m

∣∣∣aπ ,1
ij − aπ ,2

ij

∣∣∣ , or
(S,π) = 1
m(m − 1)

∑
i<j<m

∣∣∣sπ ,1ij − sπ ,2ij

∣∣∣ .
MetaNet package

MetaNet toolbox in MATLAB was implemented to construct sparse network from
metagenomic count data. The toolbox was tested under MATLAB 2013a, but should
also work on the later versions of MATLAB. Implemented functions in this toolbox
include several similarity (distance) measures, simulated distributions and network mod-
els, sparse inverse covariance estimation, network structure detection and differential
networks, and network visualization. The goal of this distribution is to provide an easy-
to-use tool for network construction and analysis. Although the package is till under
development, the users can construct, analyze, and visualize a network from their own
data without much difficulty. MetaNet is provided as is without warranty of any kind.
More information and the toolbox can be downloaded from http://biostatistics.csmc.edu/
MetaNet/.

Data sets

Simulated data

Simulated count data with different numbers of nodes and sample sizes are generated
from a negative binomial (NB) distribution. More specifically, the data sets are generated

http://biostatistics.csmc.edu/MetaNet/
http://biostatistics.csmc.edu/MetaNet/
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from a NB distribution Xij ∼ NB(λij, γ ) with mean λij and dispersion parameter γ , and
log(λi) is from a multivariate distribution log(λi) ∼ N(μ,�) with mean μ and covariance
matrix �. The graphical structures are constructed through A = �−1, where A is an
adjacency matrix with additional diagonal elements aii = ∑

j,i	=j aij + 1, i = 1, . . . , n. The
adjacency matrices are generated using three different models include small world, scale
free, and range dependent networks. The small world network we use only allows a node
to connect with its neighborhood node, while the scale-free network has the number of
nodes of degree 2 following a power law, and the range dependent network has an edge
between nodes i and j with probability 0.9.0.3|j−i|−1. These three networks are known
to mimic the behavior of real biological networks. All count data sets in this paper are
generated by setting μ = 3 and the overdispersion parameter γ = 2.

Real metagenomic data from body habitats

The real data was collected from six body habitats including external auditory canal
(EAC), gut, hair, nostril, oral cavity, and skin [46]. The objective of the original study was
to estimate the microbial community composition and detect the differentiation in abun-
dance among body habitats. A total of 815 samples were collected for 6 categories of
habitat. Networks were constructed from gut, oral cavity (OC), and skin samples with the
sample sizes of 45, 54, and 612 respectively. There were total 1713 taxa at the genus level.

Results
Results with simulation data

The proposed approaches were first evaluated using simulated count data. Given the
number of nodes n = 20 and sample sizes of m = 500, we simulated the count data with
known network structures. The predicted adjacency matrix was then estimated with the
inverse of similarity matrix. The regularized parameter λ was chosen via stability selec-
tion. Computational results with different similarity measures and graphic models are
given in Fig. 1.
The proposed similarity or dissimilarity measures including Spearman correlation coef-

ficients, Hellinger, and Bray-Curtis performed well to detect the true structures as shown
in Fig. 1. The area under ROC curves (AUC) was used to evaluate the performance of
detecting proposed network structures, where the specificity for a network measures the
proportion of no edges that are correctly detected, while the sensitivity for a network is the
proportion of edges that are correctly identified.With the optimal λ∗ = 0.2, 0.55, and 0.65
for Spearman, Hellinger, and Bray-Curtis, we have the predicted AUCs of 0.91, 0.96, and
0.92 respectively with the small world network. The Bay-Curtis distance performed the
best, while the other two measures also performed well (≥ 0.91). Similarly, our proposed
approach also performed reasonable well with both scale-free and range dependent net-
works. We achieved the best predicted AUC of 0.851 and 0.902 with Hellinger distance
and λ∗ = 0.6 and 0.45 respectively for scale-free and range dependent networks. Overall
Spearman has the lowest predicted AUCs for all models with the negative binomial sim-
ulated data as shown on the bottom of Fig. 1, but the differences among all measures are
not very significant.
To further evaluate the performance of the method for large networks with small sam-

ple sizes and different similarity measures, Small world, scale free, and range dependent
networks with 500 nodes and the sample size of 50, 100, and 200 respectively are used for
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Fig. 1 Simulated networks. Results from simulation data with three network structures: Top panel: three
different network structures; Bottom panel: predicted AUCs for each simulated network

data simulation. The count data are generated from Poisson distribution with μ = 3. We
repeated the computational experiments 50 times, the average AUC and their standard
deviations with different similarity measures are reported in Table 1.
Table 1 indicates that the predicted AUCs increase and the performance gets better as

the sample size increases. The proposed method performs reasonable well for different
network structures. While Hellinger distance achieves the best result in small-world net-
work, Spearman’s rank correlation has the best performance with scale-free and range
dependent networks. Therefore, Spearman’s rank correlation is more robust with large
networks generated from Poisson distribution, even though differences among different
similarity measures are not always statistically significant.

Results with real body habitats data

There were 59 genera left for network construction after discarding genera with aver-
age abundance of less than two reads. We first calculated the similarity matrices from
Spearman correlation coefficient, Hellinger, and Bray-Curtis distances respectively, and

Table 1 Predicted AUCs with different network structures and sample sizes for large networks with
500 nodes

n Similarity Small world Scale-free Range-dependent

50 Spearman 0.909 (±.015) 0.930 (±.035) 0.730 (±.021)

Bray-Curtis 0.894 (±.014) 0.786 (±.017) 0.693 (±.016)

Hellinger 0.936 (±.018) 0.844 (±.019) 0.709 (±.015)

100 Spearman 0.982 (±.009) 0.972 (±.020) 0.849 (±.014)

Bray-Curtis 0.975 (±.011) 0.820 (±.016) 0.794 (±.019)

Hellinger 0.986 (±.016) 0.883 (±.013) 0.812 (±.011)

200 Spearman 0.999 (±.012) 0.994 (±.015) 0.872 (±.015)

Bray-Curtis 0.996 (±.009) 0.864 (±0.014) 0.828 (±.018)

Hellinger 0.998 (±.006) 0.944 (±.012) 0.846 (±.015)
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then determined the adjacency matrices with sparse inverse of the similarity matrices.
The optimal λs for Spearman, Hellinger, and Bray-Curtis were then determined with sta-
bility selection. To further reduce the false-positive rate, the final adjacency matrix A was
determined by the common edges of three different adjacency matrices. For compari-
son purpose, we also constructed a common network with all the samples from different
habitats. Exact permutation test was used to compare networks constructed from gut,
oral cavity, and skin with the common network. The differentiated network structures for
skin, gut, and oral cavity were detected with a permutation P value of 0.05. Subnetwork
structures were then identified with modularity maximization. Bacteria networks unique
for skin, gut, and oral cavity are shown in Fig. 2.
Different colors of the nodes indicate different network modules, and the node size

represents relative abundance: The larger the nodes, the higher the relative abundance
of a genera. The edges indicate the direct coexistence (co-occurrence) between two gen-
era. The skin subnetwork on the top panel of Fig. 2 has 4 modules colored in green,
blue, orange, and red with 6, 6, 2, and 2 genera respectively. Several genera on the net-
work are known to cause skin infections. For instance, Streptococcus on the green module
is a well-known bacteria directly related to several skin infections including Impetigo,
Cellulitis, and Erysipelas. Actinomcyes genus causes a chronic (slowly progressive) infec-
tion named Actinomycosis, and Fusobacterium genus has been known to cause tropical

(I) Skin Net

(II) Gut Net (III) OC Net

Fig. 2 Differentiated networks for Skin (I), Gut (II), and OC (III)



Liu et al. BioDataMining  (2015) 8:40 Page 11 of 14

phagedenic ulcer (http://dermnetnz.org/bacterial/). More interestingly, the direct associ-
ation of Actinomcyes and Fusobacterium on the green module was verified by a recent
study experimentally [47]. The mixture and co-infection of two bacteria genera cause
mastoiditis. In addition, Pasteurella genus has also been shown to cause skin disease [48].
Other genera directly connected to Pasteurella includingRothia, Granulicatella, Gemella,
andHaemophilusmay function together biologically and clinically through ‘guilt by asso-
ciation’. Even though the co-occurrences among genera are only verified statistically, their
biological and medical implications need to be further validated in a wet lab, our methods
provide a guidance for investigators in their research.
The gut network constructed with 45 samples is shown in the bottom left panel (II)

of Fig. 2. Two modules colored with green and yellow respectively are identified, each
of them with 4 genera. All 4 high abundance genera and their interactions on the green
module are associated with gut related diseases. Faecalibacterium and Bacteroidetes gen-
era are both associated with type 2 diabetics and obeisity [49]. Another recently study
also indicates that Blautia and Faecalibacterium vary together during antibiotic therapy
[50], and it has been shown that both Roseburia and Faecalibacterium have lower abun-
dance in patients with Crohn’s Disease compared with their healthy siblings [51]. All these
studies support our results that Faecalibacterium, Blautia, Roseburia, and Bacteroidetes
interact with each other. However, interactions among the 4 genera (Subdoligranulum,
Coprococcus, Anaerotruncus, andOscillibacter) with lower abundance in the yellowmod-
ule have not been well studied, even though individual genus has been reported in recent
literature.
Bacteria genera in oral cavity (OC) play a key role in mouth infections and periodontal

diseases. Oral cavity network built with genera from 54 oral cavity samples is shown in the
bottom right panel (III) of Fig. 2. Three modules colored with green, red, and yellow were
identified with 2, 2, and 3 genera on each subnetwork. Interactions and co-occurrences
are identified among both high abundance genera (Fusobacterium, Veillonella, Neisseria,
Prevotella) and low abundance genera (Atopobium, and Megasphaera) in OC. Genera
such as Fusobacterium, Neisseria, Porphyromonas, and Prevotella have been known to
be significantly different in abundance with different clinical conditions and disease sta-
tus [52, 53]. The co-occurrences between Porphyromonas and Fusobacterium on the
yellow module has been verified through a mouse model experimentally [54]. However,
co-occurrences among Fusobacterium, Porphyromonas, and Neisseria together have not
been explored. One interesting finding is the common interactions between Prevotella
and Veillonella and between Megasphaera and Atopobium in the oral cavity and skin,
indicating that some interactions and co-occurrences may be shared at different body
habitats. Therefore, co-occurrence network analysis with proposed approach is useful
for determining novel biological interactions that may help to decipher the structure of
complex microbial communities. It is also useful for systematically exploring co-existence
patterns in big metegenomics data that standard tools may fail to detect.

Conclusions
We have developed a systematic approach for constructing networks and detecting sub-
network structures with metagenomic count data. Our contributions are in two areas:
(1) we adapt distance measures between samples from ecology to compute similarity
between taxa, and (2) we extend sparse inverse covariance methods for Gaussian models

http://dermnetnz.org/bacterial/
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to determine high-order interactions with general similarity matrices. Based on both sim-
ulated and real data, our method can identify true and biologically important interactions
and associations with limited computational experiments. One advantage of our approach
is that it detects the partial (high-order) correlations among the taxa. Unlike pairwise
correlation, partial correlation measures the conditional dependency between two taxa
given the effect of rest taxa being removed or fixed. Therefore, networks constructed
from partial correlation usually have lower false positive connections than those from
pairwise correlation. In addition, modularity function maximization for structure detec-
tion in MetaNet automatically determines the number of network clusters, while other
popular approaches such as K-means and hierarchical clustering require the number of
clusters or a cutoff point to be predefined. Even thoughMetaNet is slightly computational
intensive when comparing to the popular pairwise approach, it only takes minutes to con-
struct a network with thousands of nodes. While our method has been developed for 16S
rRNA sequencing data from human body, it can be applied to 16S sequencing data from
other organisms. It may also be used to analyze whole metagenomic shotgun sequencing
or RNA-seq, as long as the sequences are properly aligned. Note that our method con-
structs networks solely based on their statistical similarity or dissimilarity among taxa,
the biological significance of the results has to be further validated in a web lab. Future
works wledge and pathway information into our network constructions.

Appendix: network statistics
Given the adjacency matrix A and the their subnetworks, different statistics has been
defined to describe the network and taxa. The most important network statistics
are [55]:

• Degree: number of links connected to a taxon (node) i, Ki = ∑
j aij.

• Number of triangles around a taxon i: Ti = 1
2
∑

j,k aijaikajk .
• Clustering coefficient: Measuring the segregation of a network,

C = 1
m
∑

i Ci = 1
m
∑

i
2Ti

Ki(Ki−1) .

• Participation coefficient of taxon i, Yi = 1 − ∑
m∈M

(
Ki(m)
Ki

)2
, where ki(m) is the

within-module degree of taxon i in module m.

Wewill apply network statistics to rank the bacteria taxa. The larger the network statis-
tics, the stronger connectivity the taxa, and the more important the taxa statistically. The
biological importance of those taxa with larger network statistics can be further validated
in the lab.
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