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Asparagine promotes cancer cell proliferation
through use as an amino acid exchange factor
Abigail S. Krall1, Shili Xu1, Thomas G. Graeber1,2,3,4, Daniel Braas1,4 & Heather R. Christofk1,3,4,5

Cellular amino acid uptake is critical for mTOR complex 1 (mTORC1) activation and cell

proliferation. However, the regulation of amino acid uptake is not well-understood. Here we

describe a role for asparagine as an amino acid exchange factor: intracellular asparagine

exchanges with extracellular amino acids. Through asparagine synthetase knockdown and

altering of media asparagine concentrations, we show that intracellular asparagine levels

regulate uptake of amino acids, especially serine, arginine and histidine. Through its exchange

factor role, asparagine regulates mTORC1 activity and protein synthesis. In addition, we show

that asparagine regulation of serine uptake influences serine metabolism and nucleotide

synthesis, suggesting that asparagine is involved in coordinating protein and nucleotide

synthesis. Finally, we show that maintenance of intracellular asparagine levels is critical for

cancer cell growth. Collectively, our results indicate that asparagine is an important regulator

of cancer cell amino acid homeostasis, anabolic metabolism and proliferation.
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M
any tumour cells exhibit high rates of glutamine
consumption to support macromolecular biosynthesis
and cell proliferation1. Glutamine fuels the tricarboxylic

acid (TCA) cycle through anaplerosis and contributes to the
synthesis of lipids, nucleotides and non-essential amino acids.
However, the full spectrum of glutamine contribution to cancer
cell growth remains an area of active investigation. Although
glutamine can contribute to synthesis of several amino acids
through its catabolism to glutamate, only asparagine requires
glutamine for de novo synthesis; glutamine is a substrate for
asparagine synthetase (ASNS). ASNS activity is unidirectional
and ATP-dependent, suggesting that cells synthesize asparagine
at the expense of macromolecule synthesis and cellular energy.

The importance of asparagine for tumour growth has been
demonstrated by the effectiveness of extracellular asparaginase in
treating low-ASNS-expressing leukaemia. Notably, the off-target
glutaminase (GLS) activity of asparaginase is not required for its
anti-tumour effects2. Although asparaginase is effective as a
therapeutic for cancers that obtain the majority of their
asparagine from the environment, cancers that are capable of
synthesizing asparagine de novo via ASNS are less responsive to
asparaginase therapy3. Moreover, leukaemic asparaginase
resistance is associated with elevated ASNS expression4, and
ASNS expression in solid tumours correlates with tumour grade
and poor prognosis5. Recently, genetic silencing of ASNS in
sarcoma cells combined with depletion of plasma asparagine
levels via asparaginase was shown to blunt tumour growth
in vivo6. Thus, cancer cells appear to have high demand for
asparagine, and this demand has the potential to be exploited
therapeutically.

The nature of ASNS regulation suggests that asparagine may
play a role in cellular amino acid homeostasis. ASNS expression is
upregulated in response to individual or combined limitation of
numerous amino acids, including most essential amino acids7,8.
Amino acid-starvation-induced upregulation of ASNS is
mediated by activating transcription factor 4 (ATF4), the
transcriptional activity of which is activated in response to
uncharged tRNAs. Although ATF4 regulates expression of genes
involved in multiple amino acid synthesis and transport
pathways, asparagine alone rescues the impaired proliferation
and autophagy resulting from induced ATF4 knockdown9,
supporting the idea that asparagine globally impacts
intracellular amino acid levels. However, the only currently
known function for asparagine is as a substrate for protein
synthesis. Here we identify a novel role for asparagine as an
amino acid exchange factor. We show that asparagine exchanges
with extracellular amino acids to regulate mTOR complex 1
(mTORC1) activation, nucleotide synthesis and proliferation.
Our results indicate that glutamine contribution to cancer cell
survival and proliferation is, in part, mediated by glutamine-
dependent asparagine synthesis.

Results
Glutamine independence confers asparagine dependence. The
broad contribution of glutamine carbon and nitrogen to cancer
metabolism has led to the development of drugs targeting
glutamine metabolism such as CB-839, an orally bioavailable
GLS inhibitor currently undergoing Phase I evaluation for cancer
treatment10–12. We hypothesized that glutamine-dependent
cancers may generate resistance to drugs targeting glutamine
metabolism by increasing reliance on metabolites downstream of
glutamine. To test this hypothesis, we generated both LPS2
liposarcoma cells that grow in the absence of glutamine and
SUM159PT breast cancer cells that are resistant to CB-839
(ref. 10; Supplementary Fig. 1a).

Since glutamine is required for de novo asparagine synthesis,
we examined whether resistance to glutamine withdrawal
confers growth dependence on exogenous asparagine. Also, since
CB-839-resistant cells downregulate cellular glutamine consump-
tion (Supplementary Fig. 1b), thereby limiting glutamine
availability for the ASNS reaction, we examined whether
resistance to GLS inhibition confers growth dependence of
exogenous asparagine as well. LPS2 glutamine-independent and
SUM159PT CB-839-resistant cells, but not their parental cells,
require asparagine in the cell culture medium for proliferation
(Fig. 1a–d). LPS2 glutamine-independent cells increase expression
of glutamine synthetase (GS) (Supplementary Fig. 1c), likely to
fulfil cellular glutamine requirements for nucleotide and protein
synthesis by synthesizing glutamine from glutamate13. However,
the dependence of glutamine-independent cells on exogenous
asparagine indicates that GS-derived glutamine is insufficient to
fulfil the cellular demand for asparagine and suggests that
maintaining intracellular asparagine levels is critical for
proliferation. Dependence of glutamine-independent cells on
exogenous asparagine for proliferation is consistent with a recent
report that exogenous asparagine protects cells from apoptosis on
glutamine deprivation5.

Given the structural similarity of asparagine and glutamine,
we examined whether asparagine could be metabolized like
glutamine as a potential resistance mechanism to glutamine
deprivation and GLS inhibition. To determine if blocking
glutamine metabolism causes cells to catabolize asparagine, we
labelled the cell culture medium with either asparagine uniformly
labelled on carbon (U-13C-asparagine) or uniformly labelled on
nitrogen (U-15N-asparagine). The only detected metabolites
labelled with asparagine carbon in the resistant cells are small
percentages of aspartate and malate (Supplementary Fig. 1d).
Asparagine nitrogen is detected in B10% of purines
(Supplementary Fig. 1e). However, both the U-13C-asparagine
and U-15N-asparagine utilized in these experiments are con-
taminated with small percentages of labelled aspartate, and the
observed label on aspartate, malate and purines is likely due to
this contamination and the increased consumption of aspartate
by the resistant cells (Supplementary Fig. 1f). These data suggest
that asparagine is not widely catabolized in LPS2 glutamine-
independent cells, SUM159PT CB-839-resistant cells or their
parental counterparts.

Since cells resistant to glutamine withdrawal and GLS
inhibition require exogenous asparagine for proliferation but do
not seem to catabolize it, we considered that the resistant cells
may require exogenous asparagine simply for protein synthesis.
To examine this possibility, we tested whether the LPS2 cells
resistant to glutamine withdrawal and/or the SUM159PT cells
resistant to GLS inhibition consume more 13C-asparagine from
the medium than their parental counterparts. All four cell lines
(both resistant cells and both parental cells) obtain a majority of
their intracellular asparagine from the culture medium, as
indicated by the high percentage of 13C-labelled intracellular
asparagine when the medium is labelled with U-13C-asparagine
(Fig. 1e). However, asparagine is not depleted from the medium
in either the parental or resistant cell lines, and CB-839-resistant
cells actually exhibit a net efflux of asparagine rather than influx
when grown in the presence of glutamine (Fig. 1f). These results
suggest that dependence of glutamine-independent cells on
exogenous asparagine is not solely for the purpose of protein
synthesis and suggest that asparagine export may be important
for growing cells.

Asparagine levels impact cancer cell proliferation. Since
exogenous asparagine is required for proliferation of gluta-
mine-independent cells, we next asked whether intracellular
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asparagine levels affect cell proliferation in glutamine-abundant
conditions. To address this question, we knocked down
ASNS using stable expression of short hairpin RNA (shRNA)
in a panel of cancer cell lines. All of the cell lines analysed,
when grown in DMEM (which has 4 mM glutamine but lacks
asparagine), exhibit reduced proliferation following partial
ASNS knockdown when compared with cells expressing
a scrambled shRNA (Fig. 2a,b). However, supplementation
of DMEM medium with 0.1 mM asparagine completely
rescues proliferation of HeLa cells in which ASNS expression
is suppressed by ASNS knockdown (Fig. 2c). These
results indicate that the growth benefit provided by ASNS
expression is due to asparagine synthesis, rather than to another
aspect of the ASNS reaction, such as cytoplasmic glutamate
production (Fig. 2d), and suggest that intracellular asparagine
levels impact cancer cell proliferation in glutamine-abundant
conditions.

Asparagine is an amino acid exchange factor. Intracellular
glutamine has the capacity to exchange with extracellular essential
amino acids14 and regulate mTOR activity14–16. Given that net
asparagine influx is not detected, even for cells that require
exogenous asparagine for proliferation, we hypothesized that
asparagine is imported into the cell only to be exported in
exchange for other amino acids. To test whether intracellular
asparagine is capable of exchanging with extracellular amino
acids, a high intracellular glutamine/asparagine concentration
was generated in serum- and amino acid-starved LPS2 cells
by a 60 min pre-load with either 2 mM L-glutamine, 2 mM
L-asparagine or a combination of the two. After washing away the
exogenous glutamine and/or asparagine, a glutamine/asparagine-
free amino acid mixture (AA medium) was added to the cells for
30 min. Glutamine and asparagine export from the cells was
evaluated both by examining extracellular glutamine/asparagine
levels following the 30 min AA medium treatment and by
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Figure 1 | Resistance to glutamine withdrawal or glutaminase inhibition causes cellular asparagine dependence. (a–d) Proliferation curves of

LPS2 parental, LPS2 glutamine (Q)-independent, SUM159PT parental and SUM159PT CB-839-resistant cells in the presence or absence of 0.1 mM

asparagine (N) in the medium. (e) Percentages of intracellular 13C-labelled asparagine in LPS2 parental and glutamine-independent, as well as SUM159PT

parental and CB-839-resistant cells labelled with U-13C-asparagine in the medium for 24 h, as determined by LC-MS. (f) The per cent change in medium

asparagine levels as determined by LC-MS after 24-h incubation time for the indicated cells or for medium in an empty tissue culture plate (blank).

Error bars denote s.d. of the mean (n¼ 3). P values were calculated by the Student’s t-test: *Po0.05; **Po0.01; ***Po0.001; NS, not significant.
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measuring intracellular glutamine/asparagine levels before and
after AA medium treatment. Confirming previous results14,
glutamine is detected in the medium only on stimulation with
amino acids (Fig. 3a). Consistent with exchange factor capacity,
asparagine is also detected in the medium on stimulation with
amino acids (Fig. 3b). Moreover, intracellular levels of both
glutamine and asparagine are depleted following asparagine/
glutamine-free amino acid treatment (Fig. 3c,d), and absolute
quantification of intracellular and exported glutamine/asparagine
verified that intracellular depletion is due to export (Fig. 3e,f).
While asparagine and glutamine are exported following amino
acid stimulation of pre-loaded LPS2 cells, efflux of glycine,
another neutral amino acid, is not detected (Supplementary
Fig. 2a). Notably, when pre-loaded with a combination of
glutamine and asparagine, asparagine but not glutamine export
is detected (Fig. 3a,b). In addition, while a glutamine pre-load is
required to observe glutamine export on amino acid treatment,
intracellular asparagine depletion occurs in response to amino
acid treatment even with an asparagine-starved, no pre-load state
(Supplementary Fig. 2b). These results suggest that LPS2 cells can
use asparagine as an amino acid exchange factor and may in fact
prefer use of asparagine over glutamine for amino acid exchange.

Knowing that asparagine is capable of exchanging with
extracellular amino acids, we next examined whether intracellular
asparagine levels regulate amino acid import under normal
growth (non-starvation) conditions. Amino acid import is
considerably impaired on ASNS knockdown in non-starved
HeLa cells grown in DMEM (Supplementary Fig. 2c). Import of
serine and basic amino acids arginine and histidine is particularly
sensitive to ASNS knockdown in DMEM, and supplementing
DMEM with 0.1 mM asparagine completely rescues uptake
of these amino acids (Fig. 3g). These results indicate that
intracellular asparagine depletion through ASNS knockdown
impairs amino acid uptake in cells cultured in complete medium,
including 4 mM glutamine, suggesting that amino acid exchange
with asparagine occurs under normal growth conditions and is
not simply a substitute for glutamine exchange in glutamine-
depleted conditions.

Asparagine regulates serine uptake and metabolism. Given the
capacity of asparagine for amino acid exchange, we asked whether
asparagine has increased capacity to exchange with certain amino
acids. Notably, ASNS expression in human tumours strongly
correlates with expression of genes involved in serine/glycine
synthesis and one-carbon metabolism (Supplementary Fig. 3a),
suggesting that cellular demand for serine and asparagine may
be specifically connected. To examine whether asparagine
preferentially exchanges with certain amino acids, asparagine-
pre-loaded LPS2 parental cells were treated with non-polar, basic
or serine/threonine (which share a transporter) amino acid sub-
categories. Although asparagine export is observed with all three
groups, asparagine preferentially exchanges with serine/threonine
and non-polar amino acids over basic amino acids following
amino acid starvation (Fig. 4a). In addition, following a 5-min
amino acid stimulation, intracellular non-polar and basic amino
acid levels are approximately 50% higher in asparagine-pre-
loaded glutamine-independent LPS2 cells compared with cells
that lack a pre-load, while intracellular serine and threonine levels
are Bthreefold higher in asparagine-pre-loaded cells (Fig. 4b,c).

Because asparagine regulates serine uptake, we asked whether
asparagine levels alter serine synthesis or metabolism. To examine
this possibility, we determined the impact of ASNS knockdown
on serine synthesis pathway gene expression in the absence and
presence of exogenous asparagine. ASNS knockdown results in
elevated mRNA and protein expression of serine synthesis
pathway enzymes, which is prevented by the addition of
exogenous asparagine to the medium (Fig. 4d; Supplementary
Fig. 3b,c). Consistently, ASNS knockdown results in increased
incorporation of glucose carbon into serine and glycine
(Supplementary Fig. 3d). ASNS knockdown also results in
elevated ATF4 mRNA expression (Supplementary Fig. 3c) and
increased localization of ATF4 to the promoters of serine
synthesis enzyme genes, as indicated by chromatin immuno-
precipitation (Fig. 4e). Moreover, ATF4 knockdown abolishes
the increased expression of serine synthesis pathway enzymes
on ASNS knockdown (Fig. 4f). These data suggest that cells
may compensate for decreased intracellular asparagine levels
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and consequent decreased ability to exchange intracellular
asparagine for extracellular serine by transcriptionally upregulat-
ing the serine synthesis pathway through ATF4 activation
(Supplementary Fig. 3e).

Asparagine regulates mTORC1 activation. Amino acids are
essential for mTORC1 activation17,18, and mTORC1 activity is
particularly sensitive to arginine levels19. Because asparagine
functions as an amino acid exchange factor and regulates arginine

1.6 16

16

14

14

12

12
10

8
10

8

6

6

4

4

2

2

0

0
Gln

Gln Asn

Asn

Pre–N + AA

shASNS + N

shASNS – N
Scr – N

Arginine

SerineSerine

24–48 h 48–72 h

Arginine

HistidineHistidine

Scr + NPre–N + AA Pre–QN – AA Pre–QN + AAPre–N – AA

Pre–QN + AAPre–QN – AAPre–Q + AAPre–Q – AA

Pre–Q + AA
No pre + AA

1.4
1.2

1.2

1.2

1.2

1

1

1

1

0.8

0.8

0.8

0.8

0.6

0.6

0.6

0.6

0.4

0.4

0.4

0.4

0.2

0.2

0.2

0.2

Blan
k –

 A
A

Blan
k –

 A
A

Blan
k +

 A
A

Blan
k +

 A
A

No 
pr

e 
– 

AA

No 
pr

e 
– 

AA

No 
pr

e 
+ 

AA

No 
pr

e 
+ 

AA

Pre
–Q

 –
 A

A

Pre
–Q

 –
 A

A

Pre
–Q

 +
 A

A

Pre
–Q

 +
 A

A

Pre
–N

 –
 A

A

Pre
–N

 –
 A

A

Pre
–N

+A
A

Pre
–N

 +
 A

A

Pre
QN –

 A
A

Pre
QN –

 A
A

Pre
QN +

 A
A

Pre
QN +

 A
A

0

0

0

0

0

–5

–10

–15

–20 NS
NS –12

–50

–50

–50

–40

–40
–40

–30

–30

–30
–30

–60

–20
–20

–20

–10–5
–10
–15
–20
–25

–35

–10–10

00

00

–10

–8

–6

–4

–2

0

R
el

at
iv

e 
ex

tr
ac

el
lu

la
r 

G
ln

R
el

at
iv

e 
ex

tr
ac

el
lu

la
r 

A
sn

R
el

at
iv

e 
in

tr
ac

el
lu

la
r 

G
ln

R
el

at
iv

e 
in

tr
ac

el
lu

la
r 

A
sn

P
er

 c
en

t c
ha

ng
e 

fr
om

 u
nc

ul
tu

re
d 

m
ed

iu
m

 
nm

ol
 In

tr
ac

el
lu

la
r 

nm
ol

 E
xt

ra
ce

llu
la

r

***

******

***

*

*** ***

***
***

**

******

**

a e

b f

c

d

g

Pre–N – AA
Pre–Q – AA
No pre – AA

Figure 3 | Asparagine is an amino acid exchange factor. Relative glutamine (a) and asparagine (b) levels in the medium from LPS2 cells, as measured

by LC-MS, before and after amino acid (AA) stimulation following pre-loading of the cells with glutamine (Q) and/or asparagine (N). Serum- and amino

acid-starved LPS2 cells were pre-loaded with 2 mM glutamine, 2 mM asparagine or 2 mM glutamine and 2 mM asparagine for 60 min prior to stimulation

for 30 min with an amino acid mixture (AA medium) lacking glutamine and asparagine. ‘Blank’ indicates measurements from plates lacking cells. ‘No Pre’

indicates measurements from plates of LPS2 cells not pre-loaded with glutamine or asparagine. Relative intracellular glutamine (c) and asparagine

(d) levels as measured by LC-MS in glutamine- and/or asparagine-pre-loaded cells before and after amino acid stimulation. (e) Absolute quantification of

intracellular glutamine and asparagine in pre-loaded cells prior to amino acid stimulation. (f) Absolute quantification of extracellular glutamine and

asparagine following amino acid stimulation. (g) Changes in extracellular amino acid levels during a 24-h incubation with HeLa cells. The 24-h incubation

began either 24 h (left panels) or 48 h (right panels) post doxycycline-induced expression of a scrambled shRNA (Scr) or ASNS shRNA. Values are shown

as per cent change from amino acid measurements from identical medium incubated on plates lacking cells, with negative bars indicating cellular

consumption and positive bars indicating production. For a–f, error bars denote s.d. of the mean (n¼ 3). For g, error bars denote s.e.m. (n¼ 6).

P values were calculated by the Student’s t-test: *Po0.05; **Po0.01; ***Po0.001. NS, not significant.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11457 ARTICLE

NATURE COMMUNICATIONS | 7:11457 | DOI: 10.1038/ncomms11457 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


import, we hypothesized that asparagine levels may influence
mTORC1 activity. Pre-loading serum- and amino acid-starved
LPS2 cells with asparagine prior to stimulation with amino acids
increases mTORC1 activation on amino acid stimulation (Fig. 5a;
Supplementary Fig. 4a,b), and asparagine and glutamine
pre-loading activate mTORC1 with similar kinetics (Fig. 5a).
Importantly, asparagine/glutamine pre-load only results in
mTOR activation following amino acid stimulation (Fig. 5a),
indicating that it is their exchange factor roles that elicit
mTORC1 activation.

Given that cells may obtain asparagine either from the
environment or by de novo synthesis via ASNS activity, we
speculated that ASNS expression levels would determine
mTORC1 sensitivity to extracellular asparagine levels. Consistent
with this hypothesis, mTORC1 activity in LPS2 cells, which have
relatively low ASNS levels (Fig. 5b) and obtain asparagine from
the medium, is sensitive to 6 h of asparagine withdrawal when
cultured in medium with serum and 2 mM glutamine (Fig. 5c).
Moreover, the kinetics of mTORC1 activation of serum- and
amino acid-starved LPS2 cells is reduced on stimulation with
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medium lacking asparagine (Supplementary Fig. 4c). While
mTORC1 activity recovers after 24 h of asparagine depletion
(Fig. 5c), simultaneous withdrawal of both asparagine and
glutamine prevents recovery after 24 h of withdrawal (Fig. 5d),
suggesting either that asparagine and glutamine can compensate
for each other in the exchange factor role or that ASNS
activity increases with prolonged asparagine withdrawal. Not
surprisingly, the effect of asparagine withdrawal on mTORC1
activity is more pronounced in glutamine-independent
(asparagine-dependent) LPS2 cells than in the parental cell line
(Fig. 5e versus Fig. 5c and Supplementary Fig. 4d versus
Supplementary Fig. 4c). Together these data suggest that

mTORC1 activity in cells with low ASNS expression is sensitive
to exogenous asparagine levels.

We next evaluated mTORC1 sensitivity to extracellular
glutamine and asparagine levels in cells with high ASNS
expression and the capacity to synthesize asparagine de novo.
HeLa and A431 cells, which have relatively high ASNS levels
(Fig. 5b), are unaffected by asparagine withdrawal when grown
in DMEM supplemented with 0.1 mM asparagine prior to
withdrawal (Fig. 5f,g; Supplementary Fig. 4e). Unlike LPS2
mTORC1 activity (Fig. 5c), HeLa and A431 mTORC1 activities
are remarkably sensitive to glutamine withdrawal (Fig. 5f,g;
Supplementary Fig. 4e). Asparagine (2 mM) supplementation,
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Figure 5 | Asparagine regulates mTORC1 activation and autophagy. (a) Immunoblotting of lysates from serum- and amino acid-starved LPS2 parental

cells pre-loaded with starve medium (No pre), glutamine (Pre Q) or asparagine (Pre N), followed by amino acid stimulation for 0, 5 or 15 min. Lysates were

probed with a phospho-specific antibody towards the mTOR target S6K at T389 and with anti-tubulin. (b) Immunoblot comparing ASNS levels in lysates

from LPS2, HeLa and A431 cells under non-starved conditions. (c) Immunoblot showing phosphorylation of downstream mTOR effector S6 ribosomal

protein (S235/236) following starvation of LPS2 parental cells of glutamine (�Q) or asparagine (�N) for the indicated times. ‘þ ’ indicates no starvation.

(d) Immunoblot showing S6 ribosomal protein phosphorylation (S235/236) following glutamine and asparagine starvation of LPS2 parental cells for

the indicated times. (e) Immunoblot showing S6 ribosomal protein phosphorylation (S235/236) following asparagine starvation of LPS2 glutamine-
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DMEM (�N) or DMEM supplemented with 0.1 mM asparagine (þN). Lysates were immunoblotted for autophagy marker LC3-II (bottom band),

mTOR activity markers pS6K and pS6, and tubulin.
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however, rescues HeLa and A431 mTORC1 activity on glutamine
withdrawal (Fig. 5g; Supplementary Fig. 4e). Asparagine rescue of
mTORC1 activity in HeLa and A431 cells suggests either that the
added asparagine compensates for the exchange factor role of
glutamine or that mTORC1 responsiveness to glutamine is
mediated, at least partially, by glutamine-dependent asparagine
synthesis, which is not required when exogenous asparagine is
provided.

To determine if mTORC1 insensitivity to asparagine with-
drawal in HeLa cells is due the ability of the cells to synthesize
asparagine de novo, we reduced ASNS expression and examined
mTORC1 sensitivity to exogenous glutamine and exogenous
asparagine. Stable ASNS knockdown in high-ASNS-expressing
HeLa and A431 cells generates mTORC1 sensitivity to exogenous
asparagine and decreases sensitivity to exogenous glutamine
(Fig. 5h; Supplementary Fig. 4f). In addition, although HeLa
mTORC1 activity recovers after 24 h of glutamine withdrawal
(Fig. 5f), simultaneous withdrawal of glutamine and asparagine
prevents or delays complete recovery (Fig. 5i), suggesting that
mTORC1 recovery is due to increased asparagine consumption in
the absence of glutamine. Collectively these results suggest that
intracellular asparagine levels can influence mTORC1 activity in
cultured cancer cell lines, and the degree to which cellular
mTORC1 activity is sensitive to exogenous asparagine depends
on the ASNS expression level.

To assess how acute loss of ASNS expression in high-ASNS-
expressing HeLa cells affects mTORC1 activation, we examined
mTORC1 signalling in HeLa cells with a doxycycline-inducible
ASNS shRNA or a doxycycline-inducible scrambled shRNA at
early time points post induction of ASNS knockdown. At 48 h
post induction of ASNS knockdown in asparagine-free DMEM,
ASNS knockdown cells exhibit increased autophagy (as indicated
by increased LC3-II levels) and reduced mTORC1 activity
(Fig. 5j), consistent with a starved cellular state in the absence
of asparagine.

Asparagine levels also influence activation of AMPK, as
indicated by increased phosphorylation of AMPKa on Thr172
on induction of ASNS knockdown (Supplementary Fig. 4g,h).
Although AMPK activation negatively regulates mTORC1
activity, the timing of AMPK activation is delayed relative
to impaired mTORC1 activation on ASNS knockdown
(Supplementary Fig. 4g). Moreover, reduced mTORC1 activation
is seen to the same extent in ASNS single knockdown and
ASNS/AMPKa double knockdown HeLa cells (Supplementary
Fig. 4h), suggesting that AMPK activation is not primarily
responsible for altered mTORC1 activation with varying
intracellular asparagine.

Asparagine coordinates protein and nucleotide synthesis. To
better understand the physiological importance of intracellular
asparagine, we examined the influence of asparagine on protein
synthesis, a process that is regulated by mTORC1 (ref. 20). Since
mTORC1 promotes mRNA translation through phosphorylation
of eukaryotic initiation factor 4E (eIF4E)-binding protein
(4E-BP1), with phosphorylation preventing 4E-BP1 from
binding to eIF4E at the 50 cap of mRNAs and permitting
assembly of the translation initiation complex21, we examined
whether ASNS knockdown impacts 4E-BP1 phosphorylation.
Although absolute levels of 4E-BP1 phosphorylated on Ser65
are unaltered, ASNS knockdown leads to elevated levels of
unphosphorylated 4E-BP1, resulting in a decreased ratio
of phosphorylated-to-unphosphorylated 4E-BP1 (Fig. 6a)
and increased 4E-BP1-eIF4E binding, as indicated by
co-immunoprecipitation (Fig. 6b). The gene encoding 4E-BP1 is
an ATF4 target22,23, and elevated levels of unphosphorylated

4E-BP1 may be a result of ATF4 activation induced by asparagine
depletion (Fig. 3e). Consistent with an increased percentage of the
inhibitory form of 4E-BP1, ASNS knockdown reduces the rate of
35S-methionine incorporation into newly synthesized proteins,
in a manner that is completely rescued by supplementing the
medium with 0.1 mM asparagine (Fig. 6c). Together, these results
are consistent with a model whereby intracellular asparagine
levels regulate protein synthesis through modulation of mTORC1
phosphorylation of 4E-BP1.

Because asparagine influences both serine uptake and
mTORC1 activity, we examined whether asparagine also affects
nucleotide synthesis. Serine is crucial for both purine and
thymidine synthesis through its conversion to glycine and
donation to the one-carbon unit pool24. mTORC1 activation
promotes nucleotide synthesis by increasing phosphorylation
of CAD (carbamoyl-phosphate synthetase 2, aspartate
transcarbamoylase, dihydroorotase)25, which catalyses the first
three steps of de novo pyrimidine synthesis, and by increasing
translation of phosphoribosyl pyrophosphate (PRPP) synthetase
2 (PRPS2)26, which synthesizes PRPP, a substrate for the rate
limiting enzymes of purine and pyrimidine synthesis, as well as
for nucleotide salvage pathway enzymes. Reducing intracellular
asparagine through ASNS knockdown results in reduced
phosphorylation of CAD on serine 1859 and reduced PRPS2
protein levels (Fig. 7a,b). PRPS1 protein levels (Fig. 7b) and
PRPS1 and PRPS2 mRNA levels (Supplementary Fig. 5a),
however, are also reduced on ASNS knockdown, suggesting that
mTORC1 translational regulation is not entirely responsible for
decreased PRPS levels. Consistent with the observed reduction in
CAD phosphorylation, PRPS1/2 levels and serine uptake in ASNS
knockdown cells, ASNS knockdown results in reduced PRPP
levels (Fig. 7c), decreased serine incorporation into purines
(Fig. 7d), reduced purine levels (Fig. 7e) and reduced pyrimidine
levels (Supplementary Fig. 5b). Although both the reduction in
serine import and reduced PRPS levels may contribute to reduced
nucleotide levels on ASNS knockdown, rescuing PRPS2 levels
through ectopic PRPS2 overexpression is insufficient to rescue
nucleotide levels (Supplementary Fig. 5c,d). Rescuing serine
uptake with cell-permeable serine methyl-ester, on the other
hand, rescues some of the nucleoside monophosphate and
nucleoside diphosphate levels, but does not rescue levels of
nucleoside triphosphates (Supplementary Fig. 5e). Through its
involvement in both mTORC1 activation and serine uptake, our
results collectively suggest that asparagine plays a role in
coordinating protein and nucleotide synthesis (Fig. 8).

Discussion
We present here a previously unrecognized role for asparagine as
an amino acid exchange factor. Our results suggest that
intracellular asparagine exchanges with extracellular amino acids,
especially serine, arginine and histidine, to promote mTORC1
activation, protein and nucleotide synthesis and cell proliferation
under normal growth non-starvation conditions.

Our results suggest that asparagine is an important glutamine-
derived metabolite for proliferating cells, and demand for
asparagine likely contributes to cancer cell glutamine dependence,
especially under cell culture conditions (which sometimes lack
asparagine). Cancer cells that have adapted to glutamine
independence require exogenous asparagine for proliferation.
Importantly, resistance to glutamine depletion does not occur
when cells are cultured in media that lack asparagine, such as
DMEM. Although glutamine-independent cells presumably
synthesize enough glutamine for protein and purine synthesis
via GS, the cells are not able to grow in the absence of exogenous
asparagine, indicating that the demand for asparagine in
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proliferating cells exceeds the amount of asparagine that can be
synthesized through the GS/ASNS pathway.

Although both asparagine and glutamine are capable of
exchanging with amino acids, the extent to which each amino
acid acts as an exchange factor under physiological conditions is
unclear. Glutamine is the most abundant free amino acid in
the blood at a concentration of 0.5–0.8 mM (ref. 27), and most
cell culture media contain 2–4 mM glutamine. Blood asparagine
concentration is much lower at 0.05–0.1 mM (ref. 27), and media
asparagine concentration ranges from 0 mM in DMEM to
0.38 mM in RPMI. Moreover, we found that intracellular
glutamine levels are 10–100-fold higher than asparagine levels,
depending on the cell line and the asparagine concentration in the
media. However, although glutamine is more abundant than
asparagine, glutamine is extensively metabolized—primarily in
the mitochondria by GLS. On the other hand, asparagine is a
metabolic dead-end and may therefore be more available for
exchange with extracellular amino acids. We show that
asparagine is preferentially exported on amino acid stimulation
following pre-loading of cells with an equimolar asparagine/
glutamine combination, and that asparagine, unlike glutamine,

is exported even without a pre-load. We also show that reducing
intracellular asparagine levels via ASNS knockdown decreases
amino acid uptake, even in the presence of abundant glutamine.
The impact of ASNS expression levels on mTORC1 activation
suggests that the influence of glutamine on mTORC1 activity may
be in part mediated by glutamine-dependent asparagine synthesis
via ASNS.

Although our data suggests asparagine exchanges with
extracellular amino acids, it is unclear which transporters are
involved in asparagine import and exchange. Glutamine is
thought to be imported into the cell through SLC1A5
(or ASCT2) and exchange with extracellular amino acids through
the neutral amino acid antiporter SLC7A5 (or LAT1)14. The
structural similarity between glutamine and asparagine suggests
that the two amino acids may have similar affinities for
transporters. In addition, pre-loading cells with glutamine or
asparagine results in similar intracellular levels of glutamine or
asparagine prior to AA medium stimulation (Fig. 3e); however,
pre-loading with both glutamine and asparagine decreases the
total intracellular amount of each by about half (Fig. 3c,d),
suggesting potential use of a common transporter for import into
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the cell. Asparagine exchange with serine and arginine raises the
possibility that asparagine uses SLC1A4 and SLC7A1 for its
exchange function. Future studies assessing asparagine export on
inhibition of individual amino acid antiporters will further clarify
the mechanistic details of asparagine exchange.

Our data suggest that asparagine plays a role in coordinating
protein and nucleotide synthesis (Fig. 8a). The exchange factor
role of asparagine influences protein synthesis through amino
acid-induced mTORC1 activation and downstream activation of
translation initiation factors, such as eIF4E. Asparagine regulation
of nucleotide synthesis is likely due to asparagine exchange with
extracellular serine. However, our data suggest that asparagine
may also influence nucleotide synthesis through modulation of
PRPS1/2 levels and/or mTORC1-regulated CAD activity.

Our results support asparagine as an important contributor to
cancer cell growth and suggest strategies for improving efficacy of

asparaginase and GLS inhibitors as cancer treatments. Our
findings that asparagine is an amino acid exchange factor that
modulates protein and nucleotide biosynthesis can explain the
clinical efficacy of asparaginase in low-ASNS-expressing cancers3.
Since cancers evade asparaginase sensitivity by upregulating
ASNS expression4, presumably to recover intracellular asparagine
pools via ASNS-catalysed synthesis from glutamine, coupling
asparaginase treatment with a glutamine-low diet may improve
efficacy of asparaginase treatment. In addition, our findings that
cancer cells acquire resistance to CB-839-inhibition by becoming
auxotrophic for asparagine suggest that coupling GLS inhibition
with an asparagine-low diet may improve efficacy of GLS
inhibitors. Collectively, our results suggest that future studies
combining drugs targeting asparagine or glutamine metabolism
with specialized diets to prevent or delay drug resistance may
improve treatment outcomes.
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Methods
Cell lines and culture conditions. HeLa cells (ATCC) and A431 (provided by
Dr Thomas Graeber, UCLA) were cultured in DMEM supplemented with 10%
foetal bovine serum and 1% penicillin-streptomycin, unless otherwise stated. The
LPS2 cell line was derived from a liposarcoma tumour sample28,29. SUM159PT
(provided by Dr Frank McCormick, UCSF) and LPS2 cells were cultured as
described below. Mycoplasma contamination testing was not conducted on
cell lines used in this study.

Generation of glutamine-independence and CB-839 resistance. To generate
glutamine-independence, LPS2 liposarcoma cells were cultured in a modified
DMEM (m-DMEM) containing or lacking glutamine, with media replacement
every 48 h. m-DMEM is glucose/glutamine/pyruvate-free DMEM (Invitrogen
A14430-01) supplemented with 10 mM glucose, 1 mM pyruvate, 0.1 mM alanine,
0.1 mM aspartic acid, 0.1 mM asparagine, 0.1 mM glutamic acid, 2 mM glutamine,
0.3 mM proline, 0.00289 mM thymidine and 10% dialyzed FBS (Invitrogen).
Renewed proliferation in the absence of glutamine was observed B6 weeks
post-glutamine withdrawal. To generate resistance to GLS inhibitor CB-839
(Calithera Biosciences), SUM159PT breast cancer cells were cultured in
pyruvate-free m-DMEM in the presence of 1 uM CB-839 or an equal volume of
DMSO, with media replacement every 48 h. A 10 mM stock solution of CB-839
was prepared in DMSO, and a fresh aliquot was thawed for each media change.
Renewed proliferation in the presence of CB-839 was observed B6 weeks after
treatment was initiated.

Proliferation assays. Cells were seeded in triplicate in six-well plates at 5� 104

cells per well. Cells were counted every 24 h for 72 or 96 h using a particle counter
(Beckman Coulter). For asparagine withdrawal experiments, cells were seeded
in complete medium, allowed to adhere to the plate for B6 h, followed by
replacement with medium containing or lacking asparagine.

Intracellular metabolite extraction and analysis. Cells were seeded in six-well
plates, and metabolites were extracted at 70–80% confluence. When heavy isotope
labelling was performed, medium was replaced 24 h prior to extraction with
medium containing the labelled metabolite. Cells were washed with ice-cold
150 mM ammonium acetate, and scraped off the plate in 800ml ice-cold 50%
methanol. About 10 nmol norvaline was added as an internal standard, followed by
400ml chloroform. After vigorous vortexing, the samples were centrifuged at
maximum speed, the aqueous layer was transferred to a glass vial and the
metabolites were dried under vacuum. Metabolites were resuspended in 50 ml 70%
acetonitrile (ACN) and 5 ml of this solution used for the mass spectrometer-based
analysis. The analysis was performed on a Q Exactive (Thermo Scientific) in
polarity-switching mode with positive voltage 4.0 kV and negative voltage 4.0 kV.
The mass spectrometer was coupled to an UltiMate 3000RSLC (Thermo Scientific)
UHPLC system. Mobile phase A was 5 mM NH4AcO, pH 9.9, B was ACN and the
separation achieved on a Luna 3 mm NH2 100 A (150� 2.0 mm) (Phenomenex)
column. The flow was 200ml min� 1, and the gradient ran from 15% A to 95% A in
18 min, followed by an isocratic step for 9 min and re-equilibration for 7 min.
Metabolites were detected and quantified as area under the curve based on
retention time and accurate mass (r3 p.p.m.) using the TraceFinder 3.1 (Thermo
Scientific) software. Relative amounts of metabolites between various conditions,

as well as percentage of labelling, were calculated and corrected for naturally
occurring 13C abundance30.

Medium metabolite measurements. For medium metabolite measurements, 5 ml
medium was mixed with 800ml ice-cold 50% methanol. About 10 nmol norvaline
was added as an internal standard, followed by 400 ml chloroform. After vigorous
vortexing, the samples were centrifiuged at maximum speed, the aqueous layer
was transferred to a glass vial and the metabolites were dried under vacuum.
Metabolites were resuspended in 100 ml 70% ACN and 5 ml of this solution used
for the mass spectrometer-based analysis, as described above for intracellular
metabolites. To look at changes in extracellular amino acid levels over time, the
experiment was initiated by the addition of fresh medium to the cells, and blank
medium from a cell-free plate was included in the analysis. Data was plotted as per
cent change from blank medium and normalized by area under the growth curve
during the incubation period. To highlight differences in amino acid uptake,
experiments in Fig. 3g and Supplementary Fig. 2c were performed with 1/3�
Amino Acid DMEM (DMEM diluted threefold with 1.8 mM calcium chloride,
0.81 mM magnesium sulfate, 5.33 mM potassium chloride, 110 mM sodium
chloride, 0.906 mM sodium phosphate monobasic, 44 mM sodium bicarbonate,
25 mM glucose, 4 mM glutamine and 1 mM pyruvate). For asparagine and
glutamine absolute quantification, serial dilutions of U-13C-asparagine or
U-13C-glutamine at known concentrations were added to sample triplicates prior
to chloroform addition. Sample asparagine and glutamine amounts were calculated
according to standard curves generated from the 13C standards. Glutamine
consumption and glutamate production rates were determined using a Nova
Biomedical BioProfile Basic Analyzer and normalized to area under the
growth curve.

Amino acid starvation and stimulation. Amino acid starvation was performed as
previously described14. Cells were starved of serum for 16 h followed by a 3 h
amino acid starvation in D-PBS containing 0.9 mM calcium chloride, 0.5 mM
magnesium chloride, 1 g l� 1 glucose and 20 mM HEPES pH 7.4 (starve medium).
For experiments involving glutamine and asparagine pre-loading, serum- and
amino acid-starved cells were incubated with 2 mM glutamine, 2 mM asparagine
or 2 mM asparagine and 2 mM glutamine in starve medium for 1 h at 37 �C.
Pre-loaded cells were washed twice with PBS to remove residual extracellular
glutamine and asparagine prior to amino acid treatment. Amino acid stimulation
was performed with AA medium (20 mM HEPES pH 7.4, 1.8 mM calcium chloride,
0.814 mM magnesium sulfate, 5.33 mM KCl, 110.3 mM NaCl, 0.906 mM sodium
phosphate monobasic, 44.05 mM sodium bicarbonate, 1 g l� 1 glucose, 0.8 mM
leucine, 0.8 mM isoleucine, 0.2 mM methionine, 0.8 mM valine, 0.4 mM
phenylalanine, 0.08 mM tryptophan, 02 mM histidine, and 0.8 mM lysine, 0.4 mM
arginine, 0.4 mM serine, 0.8 mM threonine) or glucose/glutamine/pyruvate-free
DMEM supplemented with 1 g l� 1 glucose.

Cell lysis and immunoblotting. Cells were lysed in buffer containing 50 mM Tris
pH 7.4, 1% Nonidet P-40, 0.25% sodium deoxycholate, 1 mM EDTA, 150 mM
NaCl, 1 mM dithiothreitol, 1 mM sodium orthovanadate, 20 mM sodium fluoride,
2 mg ml� 1 aprotinin, 2 mg ml� 1 leupeptin and 0.7 mg ml� 1 pepstatin. Western blot
analysis was performed using standard protocols, and the following commercial
antibodies were used as probes: ASNS (Proteintech 14681-1-AP, 1:1,000),
phospho-T389 S6 kinase (Cell Signaling 9234, 1:500), S6 kinase (Cell Signaling
2708, 1:1,000), phospho-S235/235 S6 ribosomal protein (Cell Signaling 4858,
1:3,000), S6 ribosomal protein (Cell Signaling 2217, 1:1,000), LC3A/B (Cell
Signaling 4108, 1:1,000), PHGDH (Cell Signaling 13428, 1:1,000), PSAT1
(Abnova H00029968-A01, 1:500), PSPH (Sigma HPA020376, 1:500), SHMT1
(Abcam ab55736, 1:1,000), SHMT2 (Cell Signaling 12762, 1:1,000), PRPS2
(Abnova H00005634-A01, 1:1,000), 4E-BP1 (Cell Signaling 9452, 1:1,000) and
a-tubulin (Sigma T6074, 1:10,000). Immunoblot images have been cropped for
presentation. Full-size images are presented in Supplementary Fig. 6.

Quantitative real-time PCR. RNA was purified with Qiagen RNeasy Kit. About
1 mg of total RNA was used to synthesize complementary DNA (cDNA) using
the iScript cDNA Synthesis Kit (Bio-Rad) as per manufacturer’s instructions.
Quantitative PCR (qPCR) was conducted on the Roche LightCycler 480 using
SYBR Green I Master Mix (Roche) and 0.5 mM primers. Relative expression values
are normalized to control gene (60S acidic ribosomal protein P0). qPCR was
performed with the following primers:

ASNS Fwd: 50-CAGAAGATGGATTTTTGGCTG-30

ASNS Rev: 50-TGTCCAGGAAGAAAAGGCTC-30

PHGDH Fwd: 50-GCAAAGAGGAGCTGATAGCG-30

PHGDH Rev: 50-TTCTCAGCTGCGTTGATGAC-30

PSAT1 Fwd: 50-TGCCGCACTCAGTGTTGTTAG-30

PSAT1 Rev: 50-GCAATTCCCGCACAAGATTCT-30

PSPH Fwd: 50-GAGGACGCGGTGTCAGAAAT-30

PSPH Rev: 50-GGTTGCTCTGCTATGAGTCTCT-30

SHMT1 Fwd: 50-CTGGCACAACCCCTCAAAGA-30

SHMT1 Rev: 50-AGGCAATCAGCTCCAATCCAA-30

SHMT2 Fwd: 50-CCCTTCTGCAACCTCACGAC-30

AA Ser

Asn

4E-BP1 S6K CAD

Protein
synthesis

Nucleotide
synthesis

mTORC1

Figure 8 | Asparagine coordinates protein and nucleotide synthesis.

Model illustrating asparagine contribution to protein synthesis and

nucleotide synthesis. Intracellular asparagine exchanges with extracellular

amino acids (AA), including serine (Ser), to coordinate protein and

nucleotide synthesis.
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SHMT2 Rev: 50-TGAGCTTATAGGGCATAGACTCG-30

MTHFD2 Fwd: 50-CTGCGACTTCTCTAATGTCTGC-30

MTHFD2 Rev: 50-CTCGCCAACCAGGATCACA-30

ATF4 Fwd: 50-GTCCCTCCAACAACAGCAAG-30

ATF4 Rev: 50-CTATACCCAACAGGGCATCC-30

PRPS1 Fwd: 50-CCTGCTATTTCTCGCATCAA-30

PRPS1 Rev: 50-GTGAGTTCTCCTGATGGCTT-30

PRPS2 Fwd: 50-CTGGGGCGGATCACATCATC-30

PRPS2 Rev: 50-CCGCATACAAATTATCCACAGGA-30

Translation rate. Labelling medium was prepared by adding 20 uCi ml� 1

35S-methionine (PerkinElmer) to methionine-free DMEM containing 10% dialyzed
FBS. Following two PBS washes, cells were labelled for 10 min and immediately
lysed. About 10mg of lysate was spotted onto Whatman filters (pre-blocked with
0.1% methionine). Filters were added to ice-cold 10% TCA for 20 min, boiled in 5%
TCA for 15 min and washed in ice-cold 5% TCA and 95% ethanol for 20 min each.
Scintillation fluid was added to dried filters and radioactivity was measured. Counts
per minute readings were normalized to protein content (Bradford assay).

Chromatin immunoprecipitation and quantitative real-time PCR. About
2� 107 cells were crosslinked by the addition of 1% formaldehyde-containing
medium for 10 min, followed by the addition of 140 mM glycine for 5 min.
Crosslinked cells were lysed in 1% SDS; 50 mM Tris-HCl, pH 8; 20 mM EDTA and
sonicated to produce DNA fragments between 200 and 600 bp in length. Lysate
corresponding to 5� 106 cells was immunoprecipitated with anti-ATF4 antibody
(Proteintech 10835-1-AP) or normal rabbit IgG (Santa Cruz) as a negative control.
Complexes were washed with Wash Buffer A (50 mM HEPES, pH 7.9; 0.1% SDS;
1% Triton X-100; 0.1% sodium deoxycholate; 1 mM EDTA; 140 mM NaCl), Wash
Buffer B (50 mM HEPES, pH 7.9; 0.1% SDS; 1% Triton X-100; 0.1% sodium
deoxycholate; 1 mM EDTA; 500 mM NaCl), LiCl Buffer (20 mM Tris-HCl, pH 8;
0.5% NP-40; 0.5% sodium deoxycholate; 1 mM EDTA; 250 mM LiCl) and TE
Buffer (10 mM Tris-HCl, pH 8; 1 mM EDTA), and eluted in Elution Buffer (50 mM
Tris-HCl, pH 8; 1 mM EDTA; 1% SDS) followed by TE containing 0.67% SDS for
10 min each at 65 �C. Crosslinking was reversed overnight at 65 �C and samples
were treated with RNase A for 60 min and Proteinase K for 90 min. DNA
was purified using the QIAGEN PCR Purification Kit. About 2 ml of eluted
immunoprecipitated DNA and 2 ml of eluted 1% input were used for Quantitative
Real-Time PCR with the following primers sequences:

ASNS Fwd: 50-TGGTTGGTCCTCGCAGGCAT-30

ASNS Rev: 50-CGCTTATACCGACCTGGCTCCT-30

PHGDH Fwd: 50-CGTAAGGCAGCAAACACGTA-30

PHGDH Rev: 50-CCAGCGATAAACCAAAGGTG-30

PSAT1 Fwd: 50-GTTTGCATCCCTGCGTGT-30

PSAT1 Rev: 50-CCGAGCTTCCTCACCAACT-30

shRNA-mediated knockdown. For stable ASNS knockdown, ASNS shRNA
(50-CCGGGCTGTATGTTCAGAAGCTAAACTCGAGTTTAGCTTCTGAACAT
ACAGCTTTTTG-30) or a non-specific ‘scrambled’ shRNA sequence (50-CCGGC
AACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTT
TTT-30) in the pLKO.1-puro vector (Sigma) were cotransfected in HEK293T cells
with expression vectors containing the gag/pol, rev and vsvg genes. Lentivirus was
harvested 48 h after transfection and added to subconfluent HeLa, A431, Hs578T,
MDAMB231 and HCC70 cells with 4 mg ml� 1 polybrene for 12–16 h. Cells were
selected in 2 mg ml� 1 puromycin for 1 week. For stable ATF4 or AMPKa
knockdown, ATF4 shRNA (50-CCGGGCCAAGCACTTCAAACCTCATCTCGA
GATGAGGTTTGAAGTGCTTGGCTTTT-30), AMPKa shRNA (50-CCGGTGAT
TGATGATGAAGCCTTAACTCGAGTTAAGGCTTCATCATCAATCATTTTT-30)
or a non-specific shRNA sequence (50-CCGGGCGCGATAGCGCTAATAATTT
CTCGAGAAATTATTAGCGCTATCGCGCTTTTT-30) in the pLKO.1-hygro were
transfected into HEK293 T as above for lentivirus production. Infected HeLa
shASNS cells were selected in 150 mg ml� 1 Hygromycin B for 2 weeks.

For inducible ASNS knockdown, shRNA oligonucleotides (shASNS 50-CACC
GCTGTATGTTCAGAAGCTAAATTCAAGAGATTTAGCTTCTGAACATAC
AGC-30 and 50-AAAAGCTGTATGTTCAGAAGCTAAATCTCTTGAATTTAGC
TTCTGAACATACAGC-30 ; and shScramble 50-CACCGTAGCGACTAAACACAT
CAATTCAAGAGATTGATGTGTTTAGTCGCTA-30 and 50-AAAATAGCGACT
AAACACATCAATCTCTTGAATTGATGTGTTTAGTCGCTAC-30) were
annealed and ligated into pENTR/H1/TO vector (Invitrogen #K4920-00) following
the BLOCK-iT Inducible H1 RNAi Entry Vector Kit manual. Resulting shRNA
constructs were recombined into pLentipuro/BLOCK-iT-DEST using Gateway
LR Clonase II (Invitrogen #11791-020). pLentipuro/BLOCK-iT-DEST is a
modification of pLenti4/BLOCK-iT-DEST (Invitrogen #K4925-00) wherein the
SV40 promoter/zeocin resistance cassette was replaced with the human PGK
promoter/puromycin resistance gene and the cPPT/WPRE elements were added,
and was kindly provided by Dr Andrew Aplin (Thomas Jefferson University,
Kimmel Cancer Center)31,32. Recombinant lentiviruses were packaged in 293T cells
by co-transfecting 4 mg each of lentivirus plasmid with expression vectors
containing the gag/pol, rev and vsvg genes. Lentivirus was harvested 48 h after
transfection and added to subconfluent HeLa cells with 4 mg ml� 1 polybrene

for 16 h. Cells were selected in 2 mg ml� 1 puromycin for 1 week. Doxycycline
induction of knockdown is controlled by the Tet repressor (TetR) protein
expressed from the pLenti0.3/EF/GW/IVS-Kozak-TetR-P2A-Bsd vector, which was
constructed by Dr Ethan Abel and was kindly provided by Dr Diane M. Simeone
(the University of Michigan, Translational Oncology Program). Knockdown was
induced with 25 ng ml� 1 doxycycline.

ASNS correlation data. ASNS correlations data (Supplementary Fig. 3a) were
based on TCGA mRNA expression data via cBioPortal (http://www.cbioportal.org/).

Data availability. Data referenced in this study are available from the cBioPortal
database http://www.cbioportal.org/.
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