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Inclusionary Zoning in a Monocentric City∗

by Lewis Lehe

November 3, 2014

Housing costs have come to play a central role in urban politics. In San Fran-
cisco, protesters block shuttles that ferry tech workers between Silicon Valley
and neighborhoods where these workers' demand have pushed up rents. In New
York City, Mayor Bill de Blasio campaigned on promises to lower housing costs.
Rising rents now play a role in a debate over whether to relax Washington, DC's
long-standing height limit.

A popular response to high housing costs has been to create or strengthen
inclusionary zoning: regulations requiring price-controlled units be included in
new housing developments and rented or sold to low- and middle-income house-
holds. Schwartz et al. (2012) surveys inclusionary zoning policies in several US
metropolitan regions, and Rubin et al. (1990) places inclusionary zoning on a
menu of policy options in a model of municipalities choosing how to provide
a�ordable housing. Speci�cs vary widely, but inclusionary zoning ordinances
generally exhibit three features which obtain importance in this study:

• The number of a�ordable units required is a fraction of the total number
of units in the development, the rest being market-rate units.

• A�ordable units must meet size and quality standards.

• An a�ordable unit's total rent may not exceed some fraction�generally
30%�of its occupant's income.

The original goal of this study was only to model how inclusionary zoning might
interact with geography. The setting is the classic Alonso-Mills-Muth monocen-
tric city model�so named after work in Alonso (1964), Mills (1967) and Muth
(1969). In the monocentric city model, di�erences in commute costs to a central
business district distinguish di�erent parts of a city, and the trade-o� between
commute and housing costs explains prices and sizes of housing units at each
location as well as the spatial distribution of income groups. Section 2.1 works
through this model, but a more thorough treatment appears in Brueckner (1987)
and Fujita (1989).

The literature on inclusionary zoning has thus far excluded space. Statistical
studies (Bento et al., 2009; Mukhija et al., 2010; Schuetz et al., 2010) are under-
taken at the regional level. The economic theory of inclusionary zoning, on the
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other hand, has generally treated a developer at a �xed location. Hughen and
Read (2013) model the order in which a developer builds market-rate and a�ord-
able units in a planned development as the housing market waxes and wanes.
Rubin and Seneca (1991) models a developer's choice of whether to accept a
density bonus�an entitlement to build higher or more densely than current
regulation permits�in exchange for supplying more or cheaper a�ordable units.
Clapp (1981) discusses how a developer might exit a regulated housing market
for another location, but the model is too general to reach speci�c conclusions.

In the course of treating the spatial question, we uncovered a dimension of
the ordinances which has escaped treatment in theory and statistics. While
ordinances always demand parity in construction quality (countertops, �oors,
etc.) between market-rate and a�ordable units in the same building, they im-
pose di�erent standards on the sizes of a�ordable units. By what we will call the
neighborhood standard, a�ordable units must be the same size as market-rate
units in the same neighborhood but not in the same building. This is the stan-
dard applied in San Francisco and New York City. By the building standard,
which applies in San Jose and Washington, DC, the opposite holds.

The distinction interacts meaningfully with geography, because neighbor-
hoods in a monocentric city model are segregated by income, and tastes for
home size vary with income. It turns out that a neighborhood standard en-
courages developers to provide larger market-rate units�either by supplying
a wealthier market segment or in�ating the sizes o�ered to any given class of
tenant�in order to raise the total share of a building's �oorspace o�ered at
market rates. The building standard, on the other hand, encourages developers
to size their market-rate units nearer to what the a�ordable units' occupants
prefer and to optimize them for lower income classes.

To show how inclusionary zoning alters development, we �nd the most prof-
itable housing design to build on vacant lots at each location in a monocentric
city under di�erent regulatory regimes. Section 1 sets up the model by speci-
fying renter's preferences, geography and building parameters. Section 2 solves
the developer's pro�t-maximization problem at each location under each regime.
Finally, in Section 3, a numerical simulation con�rms the e�ects predicted by
theory and gives a picture of their magnitude.

This paper involves two major strategic decisions. The �rst is to exclude
density bonuses, which are a common feature of inclusionary zoning. One reason
to do so is that the city is assumed to be `open' � i.e., the population varies
but utilities of residents do not�and so the stock of housing has no e�ect on
production choices. Another is that a density bonus necessarily implies the
status quo involves height limits or �oor-area ratios, which require their own
careful treatment (see, for example, Bertaud and Brueckner (2005)). To include
density restrictions alongside the size standards would invite a proliferation of
cases beyond the scope of a �rst inquiry and dillute the interesting results.

The second decision was to accomodate the de�nition of �a�ordability� some-
what to the assumption that everyone commutes downtown. Below, the rent on
a�ordable units may not exceed some percentage of their occupants' income net
of commute costs�-rather than gross income, as in most real-world ordinances.
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1 The Model

1.1 City

Consider a large city linear and symmetric around a single central business
district (CBD). All land except the CBD is devoted to housing, which is rented
by absentee landlords to renters. Renters all commute to the CBD and, in doing
so, inccur commute costs.

Assumption 1. Commute costs are rising in distance, independent of popula-

tion density and uniform across renters.

Thus, residing at each spot in the city imposes unique commute cost, t, which
will be the index of housing location.

1.2 Renters

Renters' preferences take a Cobb-Douglass form dependent on housing �oorspace,
s, (denominated in ft.2) and a numeraire, z, accounting for outside expenditures:

U (s, z)
.
= suz1−µ where 0 ≤ µ ≤ 1. (1)

Therefore, the budget constraint of a renter occupying a unit of size s at t is

y = t+ z + sp, (2)

where p is the unit's price: the annual rent per ft.2. The product sp is the rent
of the unit that is typically quoted in real estate listings.

While preferences are universal, there is inequality in endowments. Renters
are all members of classes speci�ed by tuples from the set

P = {...(yi, vi), . . . } , (3)

where yi and vi are, respectively, class i's income and utility in the status
quo. Utility is strictly increasing with income, and P is indexed such that
m ≤ n ⇐⇒ ym ≤ yn, vm ≤ vn. Moreover, the city is assumed to be open: a
renter of class i may obtain exactly vi by costlessly emigrating, and there are
an in�nite number of renters of her class who will immigrate to our city if an
opportunity is available to obtain utility vi with income yi. Hence, vi is called
a reservation utility.

The budget constraint and initial endowments determine how much a class
is willing to pay for housing at a given location. This amount is obtained by
setting U = vi and inserting i's budget constraint (2) into the utility function
(1) to obtain

Pi (s, t)
.
=
yi − t
s
−
(vi
s

) 1
1−µ

. (4)

Call Pi (s, t) the price function for class i. Since µ ∈ [0, 1] =⇒ 1/(1− µ) > 1,
Pi → 0 as s→∞ and Pi → −∞ as s→ 0. Moreover, since its second derivative
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is negative wherever its �rst derivative is zero (at its maximum), Pi is single-
peaked.1 Hence, Pi (s, t) assumes the shape shown in �gure 1.

Figure 1: price function Pi(s, t)

1.3 Housing supply

Developers use a unit plot of land and variable quantity of capital, k, to produce
h ft.2 of housing. Building technology is a function H (k):

h = H (k) with H (0) = 0,
∂H

∂k
> 0

∂2H

∂k2
< 0, (5)

Therefore, if $1 is the amortized price of one unit of capital, then the amor-
tized construction cost of building h ft.2 of �oorspace on a unit plot of land
is

C (h)
.
= H−1 (h) (6)

The �oorspace of a building is divided into units, each rented to one renter.
A given unit may be fully speci�ed by the design (s, p), which is a tuple giving
its size s (ft.2) and price p ($/ft.2). Floorspace is completely fungible, so that
building two units of size s costs the same amount as one unit of size 2s.

1.4 Inclusionary zoning

Now the inclusionary zoning policy is speci�ed. Let θ be the required a�ordable
share of units in a new building. The occupants of a�ordable units are members
of a class b and will be called bene�ciaries. A unit is considered a�ordable at
location t if it consumes no more than some fraction of (yb − t). Given the
Cobb-Douglass utility functions, it seems natural make this fraction µ. Thus,
total rent at t cannot exceed µ · (yb − t).

1This will be true of any utility function with an indi�erence curve which is smooth, convex

to the origin and satis�es the Inada conditions.
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2 Solution

In this section we will solve the model given di�erent regulatory regimes. To
solve the model is to derive the location choices of each household and the prices
and sizes of housing at each place t in the city.

2.1 Deregulated environment

A traditional way to begin solving this model is to derive renters' willingness-to-
pay for �oorspace at di�erent t. Since regulation falls on developers, however, it
will be more convenient to follow Muth (1969) in starting from the developer's
vantage at an arbitrary t, then asking this situation changes with t.

The developer's problem at t

Consider a development �rm constructing a new building at location t. It must
choose the building's size h and the design (s, p) of each unit. Since �oorspace
is homogenous and the developer is a price-taker, the pro�t-maximizing (s, p)
will obviously be the same for all units in the building. Therefore, the pro�t
(before paying land rents) from a building of size h and price p is

π
.
= (ph)− C (h) . (7)

Neither the number of units nor their �oorspace enters the pro�t equation,
and the size of building does not enter its occupants' utilities. Therefore, the
production decision can be bifurcated into a �rst stage where the developer
chooses the unit design (s, p), and a second where the developer takes p as given
and chooses building size. The unit design problem is

max
s,p

(p) s.t. U (yi − ps− t, s) ≥ vi for some i ∈ P. (8)

That is, the developer maximizes price subject to the constraint that some class,
i, must �nd the unit attractive. To insert the constraint into the problem, we
substitute Pi (s, t) for p in (8) and add a waystage:

max
i

{
max
s

[Pi (s, t)]
}
. (9)

The �rst-order condition on Pi (s, t) gives the most pro�table size for a class
i renter at t. This size can be parametrized as a bid-size function:

S∗i (t)
.
=

(
1

1− µ

)(1−µ)/µ
v

1/µ
i

(yi − t)
(1−µ)/µ

=
µ (yi − t)
P ∗i (t)

. (10)

Substituting S∗i (t) for s in Pi (t, s) gives the highest price an i-class renter will
pay, which can be parametrized as a bid-price function:

P ∗i (t)
.
= µ (1− µ)

1−µ
[

(yi − t)
vi

]1/µ
. (11)
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Hence, the most pro�table design for a class i renter at t is (S∗i (t) , P ∗i (t)).
Naturally, the class with highest bid-price will occupy the building. Call this
class i∗.

We now progress to the choice of building size. Substituting P ∗i∗ (t) into (7)
and taking the �rst-order condition on h, we see the developer will build until
the marginal cost of �oorspace equals the price. The optimal building size, h∗,
is implicitly de�ned by

∂C

∂h
|h∗ = P ∗i∗ (t) . (12)

Since C rises monotonically with h, a higher price makes a larger building
pro�table.

Layout of the city

Since the above equations hold for arbitrary t, we can infer how development
varies as t rises�that is, as we move out from the CBD. First, consider the
expression

dP ∗i
dt

= − [(1− µ) (yi − t)]
(1−µ)/µ

v
1/µ
i

= − 1

s∗i
. (13)

From (10) we see that, at some t′ where P ∗j (t′) = P ∗k (t′) with yk > yj , class
k must demand a larger home than j. Therefore, P ∗j (t′ + dt) < P ∗k (t′ + dt).
The consequence is that wealthier renters live farther out from the CBD. The
housing stock forms a series of concentric rings, each occupied by one class.
Moreover, since dP ∗i /dt < 0, buildings are smaller farther from the CBD.

2.2 Inclusionary zoning, neighborhood standard

With the neighborhood standard, the developer at t must ensure that a�ordable
units are sized at least as large as st, the size of market-rate untis at t. These
sizes are given by the following assumption:

Assumption 2. The existing housing stock was built in an era without inclu-

sionary zoning.

This assumption is realistic, because inclusionary zoning is a relatively new
policy in most regions. For further realism as well as simplicity, we will make
one more assumption:

Assumption 3. At every location t, the bid-size of the bene�ciary class b is

less than st.

This assumption comes into play whenever the share of b's income devoted to
commute costs is so large that b can only be satis�ed by units larger than
wealthier neighbors. We feel this scenario is an artifact of the assumption that
everyone commutes to the city center which has no corrollary in real life. The
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assumption also eases analysis, because it implies that b will always be satis�ed
spending µ (yb − t) for st.

Letting n denote the total number of units in the building, pro�t has become

π = [nθµ (yb − t) + n (1− θ) ps]− C (h) (14)

Since the average unit size in the building is θst + (1− θ) s, n can be written

n =
θst + (1− θ) s

h
. (15)

Now pro�t is

(hp̄)− C (h) , where p̄
.
=
θµ (yb − t) + (1− θ) ps

θst + (1− θ) s
. (16)

Since p̄ does not include h, the developer's decision-making can still be bi-
furcated into a �rst stage, where p and s are chosen to maximize p̄; and a second
stage, where h is chosen given p̄.

Proposition 1. The neighborhood standard leads developers to supply larger

units than in the deregulated environment.

Proof. Consider some class i > b. After substituting Pi (s, t) for p in p̄, we take
the �rst-order condition on s, yielding:

s∗i = vi

[
µ

(1− µ) p̄

]1−µ
. (17)

It must be that p̄ < P ∗i (t), or else the developer would be serving the bene�ciary
over i at location t in the �rst place. It follows that

s∗i
S∗i (t)

=

(
P ∗i (t)

p̄

)1−µ

> 1.

Proposition 2. The neighborhood standard leads developers to design units for

class k in locations where class j < k resides in the deregulated environment.

Proof. Consider the boundary t where P ∗j (t) = P ∗k (t). At this point, for a given
design (sj , p) that satis�es a k renter, there is a design (sk, p) that satis�es k at
the same price but with a larger unit. To see why, set Pj (s′, t) = Pk (s′, t) and
rearrange to �nd:

s′ =

[
v

1/1−µ

k − v1/1−µ

j

(yk − t)− (yj − t)

]1−µ/µ

At the boundary t, since the bid-pays are equal we have vj/vk = (yj − t) / (yk − t) ∈
(0, 1). Call this fraction α and consider the following logic:
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(
1− α1/1−µ

1− α

)1−µ/µ
v

1/µ
k

(yk − t)
1−µ/µ

<

(
1

1− µ

)1−µ/µ
v

1/µ
k

(yk − t)
1−µ/µ

=⇒ s′ < S∗k (t) .

Thus, the two classes are only willing to pay the same amount for a unit that
is smaller than k's bid-size. Since the range, [0, P ∗i (t)], of prices that the two
classes are willing to pay is the same, it follows that k is always willing to pay
any price at a larger unit size.

Now, let
(
s∗j , p

∗) be the design that maximizes p̄ when market-rate units are
rented to class j. If the developer instead o�ered the design (s∗k, p

∗), the fraction
of �oorspace rented at p∗ would rise, increasing p̄.

Floorspace ratio

There is a possible Pareto improvement on the neighborhood standard as cur-
rently practiced. The e�ects described in Propositions 1 and 2 arise as the
developer tries to raise the share of �oorspace rented at market-rates. Suppose
instead that, rather than stipulate a fraction θ of all units be a�ordable, the
ordinance were to stipulate a fraction θ̂ of all �oorspace be devoted to a�ord-
able units. In this case the design of market-rate units has no bearing on how
much a�ordable �oorspace is required, and so the developer simply designs the
market-rate units that she would without inclusionary zoning. Since these are
the most pro�table designs, it follows that, for a given building size, there is
always a �oorspace ratio θ̂ that achieves the same number of a�ordable units
as some unit ratio θ but at a higher rate of pro�t for the developer. Moreover,
since p̄ would be higher under θ̂, the developer will build a taller building. Thus,
more a�ordable units will be provided and the developer will earn higher pro�ts.

2.3 Inclusionary zoning, building standard

We now turn to the building standard, which requires that a�ordable and
market-rate units in the new building be the same size. As with the neigh-
borhood standard, the developer tries to maximize p̄, which has become

p̄ = θpb + (1− θ) p,
where pb and p are, respectively, the prices of a�ordable and market-rate units.
This expression follows from the fact that, when the units in the building are
all of one size, θ is the fraction of all �oorspace rented at pb.

The building standard introduces a new caveat. Naively, the expression for
p̄ might be written:

p̄ = (1− θ) pi + θµ (yb − t) /s. (18)

However, if the fraction-of-income threshold were the only constraint, then
a developer could maximize pro�ts by letting s → 0 and not supplying any
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Figure 2: Developer's decision under building standard

market-rate units at all. In reality, the developer must ensure bene�ciaries are
willing to occupy a�ordable units. The locus of possible rents, then, is actually
min {µ (yb − t) , sPb (s, t)}.

Proposition 3. The building standard leads developers to supply class i > b
with units nearer to b's bid-size at t.

Proof. The proposition is straightforward to prove diagramatically. Consider
the range of permissible designs for the a�ordable units, shown by the curve
A (s) in �gure 2. The developer's task is to �nd a unit size s that maximizes
the weighted average θA (s) + (1− θ)Pi (s, t). Clearly, whether i = l (whose
bid-size is lower than b's) or i = h (whose bid-size is higher), the optimal design
lies somewhere between S∗i (t) and S∗b (t).

Proposition 4. The building standard leads developers to design market-rate

units for lower income classes than in the deregulated environment.

Proof. Consider a point tk in the plane where class k > b resides under dereg-
ulation. By Assumption 3, we know S∗k (t) > S∗b (t). Proposition 3 established
that, when designing market-rate units for some group i under the building stan-
dard, the optimal unit-size, s, is between i's bid-size, S∗i (t), and b's bid-size,
S∗b (t). Therefore, the binding price ceiling is µ · (yb − tk), rather than sPb (s, t).
Thus, (18) is the appropriate expression for the average price of a building with
market-rate tenants of class k. Substituting Pk (s, t) for p in (18) and optimizing
yields:

p̄∗k
.
= µ (1− µ)

1−µ

[
(1− θ) (yi − tk) + θµyb

(1− θ)1−µ vi

]1/µ
. (19)
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Next, suppose there is a class j > i with a bid-size at tk between S
∗
k (tk) and

S∗b (tk). In this case, µ (yb − t) is still the binding rent ceiling, giving the ratio

p̄∗j
p̄∗k

=

[
yj − tk + ψ

yk − tk + ψ
· vk
vj

]1/µ

, where ψ
.
=
θµ (yb − tk)

1− θ
. (20)

Thus, if j outbids k at any location t ∈ [tk − ψ, tk] under deregulation, then
j must also outbid k at tk under the building standard. It has already been
established that lower incomes reside nearer the CBD under deregulation, and
so any class outbidding k in this interval must have a lower income.

3 Simulation

We have shown how to �nd the city's layout without inclusionary zoning and
with each of the two size standards. The building standard should induce devel-
opers to supply market-rate units for wealthier classes and to supply them with
larger units. The neighborhood standard encourages development for poorer
classes and units sized nearer to b's bid-size.

This section presents the results of a simulation in which the developer's
problem is solved at each location under each regimes. First, the city's dereg-
ulated layout is determined by setting µ = 1/3 and substituting tuples from P
into the bid-price and bid-size functions. P is given by:

yi = 300 + 300i

vi+1 =

{
vi · (yi+1 − 30i) / (yi − 30i) for i > 0

µµ(1− µ)1−µyi for i = 1
.

These formulas make the city a bullseye: each class occupies a band of
exactly �length� 3 (length meaning the di�erence in commute costs between the
start and end) and spends up to 10% of income on commuting. Call ti the
boundary where class i's residency begins. The population parameters appear
in table 1.

i yi vi ti
1 600 317 0
2 900 494 60
3 1,200 677 90
4 1,500 864 120
5 1,800 1,057 150

Table 1: Population parameters

Next, inclusionary zoning policies are simulated with θ = 1/4 and bene�cia-
ries from class 1 (yi = 600). In this case µya = µy1 = 200. The city's layout
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Figure 3: City layout under each regime

under deregulation, a building standard and a neighborhood standard are de-
picted in �gure 3. The �gures show that the results are as expected. Under
a neighborhood standard each class i > 1 lives closer to the city center than
otherwise and units are larger. Under a building standard, by contrast, groups
2 and 3 extend their reach outward, while groups 4 and 5 are not served at all.

4 Discussion

This study is the �rst to model inclusionary zoning at di�erent locations within
a city and to consider the di�erent incentives created by the two size standards.
It is found that a neighborhood standard moves the residency of each income
class inward and in�ates the sizes of the housing they consume, while a building
standard tilts construction toward the bene�ciary's tastes.

The political economy of inclusionary zoning is worth examining in light
of these results. By providing a�ordable units while shrinking building sizes,
it complements a pair of common municipal preferences: the desires for more
a�ordable housing and less density. Such a con�uence is well illustrated by
the City of Berkeley's Measure R, a ballot initiative which would impose much
more onerous a�ordable housing requirements than now exist on buildings with
heights greater 70 ft. in downtown Berkeley. The initiative is supported both by
housing activists and neighborhood groups concerned about parking availability
and the local sightline.

Another pro�table line further research would be to incorporate inclusionary
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zoning into �spatial mismatch� labor models with search behavior of the type
examined in Zenou (2009). The assumption that everyone commutes to the
CBD is very strong and contradicts the fact that much low-wage retail employ-
ment is concentrated farther out from the CBD. If inclusionary zoning moves
a signi�cant number of low-productivity workers nearer to the jobs for which
they are the best �t, there could be welfare gains beyond the simple calculus of
larger homes.
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