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Abstract 

Methyl Quantum Tunneling and Nitrogen-14 NQR Studies Using A 

de SQUID Magnetic Resonance Spectrometer 

by 

Bruce Elmer'Black 

Doctor of Philosophy in Chemistry 

University of California at Berkeley 

Professor Alex Pines, Chair 

Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) 

techniques have been very successful in obtaining molecular conformation and dynamics 

information. Unfortunately, standard NMR and NQR spectrometers are unable to 

adequately detect resonances below a few megahertz due to the frequency dependent 

sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a de 

SQUID (Superconducting Quantum Interference Device) detector, which has no such 

frequency dependence, has been developed. Previously, this spectrometer was used to 

observe II B and 27 Al NQR resonances. I have increased the scope of this study to include 

23Na, 51V, and 55Mn NQR transitions. 

Also, I present a technique to observe I4N NQR resonances through cross 

relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman 

splitting matches one nitrogen quadrupolar transition the remaining two I4N transitions can 

be detected by sweeping a saturating rf field through resonance. Additionally, 

simultaneous excitation of two nitrogen resonances provides signal enhancement which 

helps to connect transitions from the same site. In this way, we have observed nitrogen-14 

resonances in several amino acids and polypeptides. 

This spectrometer has also been useful in the direct detection of methyl quantum 

tunneling splittings at 4.2 K. Tunneling frequencies of a homologous series of carboxylic 



acids were measured and for solids with equivalent crystal structures, an exponential 

correlation between the tunneling frequency and the enthalpy of fusion is observed. This 

correlation provides information about the contribution of intermolecular interactions to the 

energy barrier for methyl rotation. 
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Chapter 1 
Introduction 

Magnetic resonance has become an important tool in the modem scientist's arsenal 

for the determination of structural and dynamical information. One source of molecular 

information is the quadrupolar coupling which describes the interaction of the electric 

quadrupole moment of the nucleus with a surrounding electric field gradient. l-3 This 

electric field gradient is caused primarily by the asymmetric distribution of bonding 

electrons, but may also result from ions and lattice defects. Thus the quadrupolar 

interaction reflects the environment around the nucleus and can provide information about 

coordination number, bonding symmetry, lattice symmetry, and defects. 

Solid state NMR and NQR are used to examine this interaction. Unfortunately, 

unlike liquid NMR, solid state NMR suffers from a deficiency in resolution due to the lack 

of molecular motion, which in a liquid serves to average anisotropic interactions to zero. In 

solid state powder samples, anisotropies from the dipolar and quadrupolar couplings 

broaden the spectrum often to the point where all information is lost.4• 5 To combat this 

problem several techniques have been developed. For spin-112 nuclei (those with no 

quadrupolar moment) magic-angle spinning (MAS) sharpens the resonances by eliminating 

the dipolar anisotropy.6 

However, for nuclei with l>l/2 this is not good enough as the quadrupolar 

anisotropy is not completely averaged. For nuclei with 1=3/2, 5/2, 7/2, ... and small 

quadrupolar couplings, dynamic angle spinning (DAS) and double rotation spinning (DOR) 

have been proven to be very successful in providing resolved spectra of the central 

transition ( -112 H + 112).7-9 From these experiments information about the sample can be 

obtained including the dipolar and quadrupolar couplings. For integer spin nuclei, 

however, there is no central transition and a good direct technique such as this is not 

available. 



It is also possible to study the quadrupolar interaction by zero field techniques, 

primarily Nuclear Quadrupole Resonance (NQR).1 In NQR the quadrupolar splittings are 

directly measured rather than calculated from simulated lineshapes as in the NMR 

experiments discussed above. Typical NQR experiments can measure large quadrupolar 

couplings of nuclei such as the halogens. 

Unfortunately, both standard NMR and NQR techniques suffer when it comes to 

measuring low frequency resonances. This is due to their detection scheme. Most 

magnetic resonance spectrometers use a Faraday detector. This is simply a coil which 

measures the voltage produced by the Faraday effect as the transverse magnetization 

oscillates after rf irradiation at the resonance frequency. 10 The sensitivity of the Faraday 

effect is proportional to the rate of change in magnetization (d<l>/dt). 11 Thus the voltage 

decreases linearly with the resonance frequency. This places a limit of several MHz on the 

detectable resonances. However, many important nuclei, such as liB, 14N, 23Na, and 

27 AI have smaller splittings. So a new technique must be found to study these materials. 

One such method is field cycling12· 13 which, however, is an inherent two dimensio·nal 

experiment and has the disadvantage of long experimental times. 

Another promising technique is described in this thesis. This spectrometer uses a 

de SQUID14-16 (Superconducting Quantum Interference Device) as a detector of magnetic 

resonance signals. 17• 18 The SQUID is able to directly detect changes in magnetic flux. 

This type of detector has no inherent frequency dependence.19 Thus the SQUID magnetic 

resonance spectrometer is able to observe quadrupolar splittings in a frequency range that 

was difficult to investigate before. Chapter 2 describes the theory behind the utilization of 

the SQUID as a detector. It also presents a brief outline of the SQUID magnetic resonance 

spectrometer. Chapter 3 continues with a general description of the experimental technique 

and an overview of the expected spectra. 

While working on this project I have expanded the range of samples that have been 

investigated. During this time we have added 23Na, 5Iv, and 55Mn to the nuclei that have 

2 



already been studied: 11 B and 27 AL 17• 18• 20-22 Chapter 4 presents results from my 

experiments involving these materials. 

Also, we have developed a new technique for the study of integer spin NQR, 

primarily 14N, which now allows us to analyze some biologically important molecules. 

The theory and results of these experiments are presented in Chapter 5. 

There is even information to be gained from very low field (50-200 G) NMR 

experiments. One example is methyl quantum tunneling.23 In high magnetic fields these 

transitions are forbidden. However, in low field the nonsecular parts of the dipolar 

Hamiltonian provide a means whereby tunneling transitions become slightly allowed.24 

The SQUID spectrometer has proven useful in studying methyl groups attached to sp3 

hybridized carbon atoms which normally have tunneling frequencies less than 1 MHz.25· 26 

These results are presented in Chapter 6 along with an interesting correlation between the 

tunneling frequency and thermodynamic properties of the straight-chained carboxylic acids. 
I 

Overall the SQUID detection scheme proves to be a viable technique for the study 

of low frequency magnetic resonance and compares favorably with other methods. 

3 



Chapter 2 
The SQUID Magnetic Resonance 

Spectrometer 

This chapter focuses on a brief description of the de SQUID and the SQUID 

spectrometer. Both of these subjects are presented in greater detail elsewhere, 15• 17• 18• 21 • 

27-36 my purpose is simply to provide a working knowledge of the spectrometer and the 

SQUID that will allow one to understand the experiments in this thesis. 

Because the SQUID is a device designed to use the unique properties of a 

superconductor in a magnetic field I will begin this chapter with a discussion of that subject 

including descriptions of the Meisner effect or flux exclusion, flux trapping and 

quantization, and the Josephson junction. The second part of the chapter will introduce the 

theory behind the operation of a de SQUID and explain how it can be used as a magnetic 

resonance detector. The third section will present a survey of the spectrometer and outline 

several recent changes in operation. 

2.1 Superconductivity in a Magnetic Field 

In 1911, Kammerlingh Onnes found that cooling mercury to a temperature below 

4.2 K resulted in a precipitous drop in resistivity.37 Thus was born the study of 

superconductors. In 1957, Bardeen, Cooper, and Schrieffer formulated a theory which 

characterized a majority of superconductors. 38 It described the net attraction of two 

electrons coupled by a phonon. These sets of electrons became known as Cooper pairs. In 

this coupled state they behave like bosons, in that all electron pairs can be described by the 

same bound-state wavefunction. The BCS theory describes many superconductors 

successfully, but is found to be inadequate for many materials such as high T c and organic 

4 



superconductors. However, in this thesis I will be concerned only with materials that do 

act in accordance with the BCS theory. 

When superconductors are placed in a magnetic field, it was found that they can be 

classified into two distinct types.31 Type I materials remain in the superconducting state as 

long as the field is below a specific critical value which is dependent on the type of material 

and its purity. Above that field it is no longer superconducting. Type II superconductors 

have two critical field values, Hc1 and Hc2 (Hc1 < Hc2). Below Hc1 the entire substance 

is superconducting like the Type I materials. Between the two critical fields, parts of the 

sample become nonsuperconducting. The amount of superconducting material varies 

linearly with the field until above Hc2 the entire sample is nonsuperconducting. The 

critical fields for many superconductors are in the low to moderate field strengths. One 

example is lead which has a critical fieid of 803 gauss at absolute zero.39 All magnetic field 

strengths in the experiments described in this thesis are well below the critical fields of the 

superconducting materials used in the spectrometer. 

2.1.1 Flux Exclusion: The Meisner Effect 

When a magnetic field is applied around a superconductor, the material generates 

currents to oppose the field according to Lenz's law. Because there is no resistance in the 

superconducting state, these persistent currents will eliminate the magnetic field in the 

interior of the superconductor. Thus magnetic flux is excluded from the material except for 

a narrow region near the surface, the depth of which is calculated below. 

More interesting is the related phenomenon discovered experimentally by Meisner 

and depicted in Figure 2.1.40 He found that if a piece of potentially superconducting 

material is placed in a magnetic field at high temperature and then cooled below its critical 

superconducting temperature, T c. the magnetic field will also be excluded from the interior 

5 



a) 

Normal 
B~ 

b) 

c) 

Superconducting 
B=O 

Superconducting 
B:t:O 

Figure 2.1. Superconducting material in a magnetic field. a) Before it is cooled the 

magnetic flux penetrates the sample. b) After it become superconducting, the flux is 

excluded from the interior of the sample. This is the Meisner effect. c) When the magnetic 

field is removed from a superconducting ring, currents flow around the surface that keep 

the magnetic flux through the ring constant. This is flux trapping. 
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of the superconductor. The explanation of this result can be found by first developing the 

London equation.41 • 42 

The velocity of a particle, as detennined by kinematics, is 

2.1 

where m is the mass of the particle, p its momentum, q its charge, c the speed of light, and 

A the vector potential due to the magnetic field. When p is replaced by its quantum 

mechanical analog, -iliV, 

2.2 

Let the superconductor wavefunction be written as 

\}' = -{P exp(ie(r)) 2.3 

where p is the concentration of Cooper pairs in the superconductor which we will assume 

to be relatively constant over the sample. The particle flux is then given by 

\}/v\}1* =£(liVe- 9.. A) 
m c 

and we can express the electric current density as 
""-

j = q\}/v\}1* = pq (liVe - 9.. A). 
m c 

2.4 

2.5 

Taking the curl of each side eliminates the Ve term (the curl of a scalar is zero) and gives 

the London equation: 

2 2 
V X j = - pq (V X A) = - pq B. 

me me 2.6 

One of Maxwell's equations states that 

7 



Taking the curl of 2.7 and substituting in 2.6 gives 

V X V X B = -V2 B = 41t V X j = - 41tpq
2 

B. 
c . mc2 

We will define the London penetration depth, A , to be 

Equation 2.8 then reduces to 

which has a solution 

r 
B(r) = B(O) exp(- -). 

A 

2.7 

2.8 

2.9 

2.10 

2.11 

Thus the magnetic field drops asymptotically to zero. A typical penetration depth into the 

superconductor, A, is calculated to be on the order of 100 A.. From this result we see that 

the bulk of the superconductor feels no net magnetic field. 

2.1.2 Flux Trapping and Quantization 

Something interesting happens if, instead of a solid sample, a ring of 

superconducting material is placed into a magnetic field at high temperature and cooled 

below Tc.43 Even when the magnetic field is removed the flux through the ring remains 

constant, as depicted in Figure 2.1, and is quantized. The field is retained by a 

supercurrent that circulates around the ring surface which maintains the flux despite any 

8 



change in the surrounding magnetic field. This is commonly called flux trapping. We use 

this property to provide a small steady field for our magnetic resonance experiments. 

We start with equation 2.5; 

j = ~nve -9.A). m c 2.5 

Let's examine a closed path C through the interior of the superconductor but well away 

from the surface. We know from the previous section that B and thus j are zero in this 

region. So, 

neVe= qA. 2.12 

When we integrate the left side of equation 2.12 around the path C and realize that the 

wavefunction, '¥, must be single valued we find that 

ncf ve dl = 27tn1ic. 
c 

2.13 

Integrating the right side of equation 2.12 and applying Stoke's theorem gives us 

q( fActi)= qff (V X A) dcr = qfiB dcr = q<I> 
c 

2.14 

where <I> is the magnetic flux through the region bound by C. Combining equations 2.12, 

2.13, and 2.14 renders 

2.15 

Thus we see that the magnetic flux through the ring is constant and quantized in units of a 

magnetic flux quantum, <1>0, where 

27t1ic 7 2 
<1>0 = --= 2.0678 X 1 o- Gauss em . 

q 

9 
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This information will have significance later when we consider the SQUID which is 

primarily a superconducting ring. 

2.1.3 The Josephson Junction 

The next subject in this review is the Josephsonjunction.27• 28• 43• 44 A Josephson 

junction is formed by two bulk superconductors separated by either insulating material or a 

much narrower superconducting region as depicted in Figure 2.2. 27 • 28• 44 If this barrier is 

small enough, significant tunneling across the junction will occur when a bias current is 

applied. The tunneling of Cooper pairs in this manner provides a supercurrent. A defmite 

phase relationship exists between the wavefunctions of the two bulk superconductors. 38 

But first we will start with two superconducting materials and assume isolated 

wavefunctions; 

'¥1 = ~ exp(i81(r)) 

'¥2 = ~ exp(i82(r)). 

2.17a 

2.17b 

When tunneling of electrons from one piece to the other is allowed and a potential, V, is 

applied across the junction the following time dependent Schrodinger equations can be 

written; 

2.18a 

. a'¥2 
11i-= 1iT'¥ 1 - eV'¥2 at 2.18b 

where 1iT represents the tunneling of electrons across the junction and T has the dimensions 

of a rate or frequency. 

10 



a) 

. ~ i<I>J '¥t =v 1--'t e 

b) 

. ~ i<l>t I '¥t =v 1-'I e 

Figure 2.2. The Josephson junction is made of two bulk superconductors connected by a 

small nonsuperconducting region or a narrower band of superconducting material. If the 

two bulk samples are not to far away from one another and a biasing current is applied, 

electrons can tunnel between the two samples and still retain their Cooper pair identity. The 

current from these tunneling electrons is called the supercurrent. 

11 



Combining equations 2.17a and 2.18a gives 

and a similar equation for '¥ 2. Multiplying 2.19 by ~ exp( -iS 1) and setting ~ = 92 - 91 

leaves 

.2.20a 

Multiplying the corresponding equation for '¥2 by~ exp(-i92) gives 

2.20b 

By letting exp(i~) = cos(~) + i sin(~) and equating real and imaginary part we find that; 

()pi ~ ,---_ dp2 at= 2l'V p1p2 sm(~) =-at' 

()91 eV *2 -=---T -cos(~), 
dt 1i p1 

ae2 eV *1 -=--T -cos(~). 
at n P2 

If the two junctions are the same then 

and thus 

Upon integration, 

12 
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2.22 

2.23 

2.24 

2.25 



2eVt 
~(t) = ~(O) + -n-. 2.26 

The supercurrent flow,j
5

, is proportional to ap, which combined with equation at 
2.26 results in 

js = jsO sin(~(t)) = jsO sin(~(O) + 2e:t). '2.27 

We see that the current between the two bulk superconductors oscillates at a frequency, 

2.28 

which is 486 MHz for a potential of 1 J.LV. In our de SQUID spectrometer the junction is 

biased by several microvolts giving oscillations in the gigahertz range. We are able. to 

ignore these oscillations by using a narrowband detector, which retrieves only the time 

averaged value of the supercurrent. 

2.2 The de SQUID 

As mentioned earlier the de SQUID is essentially a superconducting ring. It also 

has two Josephson junctions placed in the ring as shown in Figure 2.3. The characteristics 

of the SQUID are governed by these two facts which create quantum interference between 

the supercurrents flowing through each side of the SQUID.31 • 38 These supercurrents will 

have a phase based on the magnetic flux penetrating the ring and thus be a function of the 

strength of the magnetic field. This attribute makes the SQUID a sensitive detector of 

change in magnetic flux. We will utilize this property in order to measure magnetic 

resonance signals. A more detailed and mathematical description of the process is given 

below. 

13 



. 
JB 

A 

p 

u 
a b --

n 
B 

Figure 2.3. A de SQUID (left) consists of two Josephson junctions (right), a and b, 

connected in parallel. As superconducting electrons travel through the SQUID, they 

acquire a phase which depends on the amount of magnetic flux threading the loop. 

Quantum interference between the pairs produces a periodic voltage across the SQUID 

which is a function of <l>L. 
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2.2.1 Fundamental Description 27• 32-35 

The de SQUID in our detector (depicted in Figure 2.3) contains two parallel 

Josephson junctions; a and b, a magnetic flux, <I>L, penetrating the loop; a potential, V, 

across the junctions; and a current, jb, biasing the SQUID. A supercurrent is generated 

through the Josephson junctions as described above which can be separated into two parts, 

one component going between points P and Q through junction a and the other going 

through junction b. Each part of the supercurrent will gain a phase due to both the 

Josephson junction and the vector potential of the magnetic field: 

2e Q 
~<l>a(t) = ~a(t) + ~ fAds 

rtC p 

By recognizing that the current must be single valued we know that 

For simplification we will set n=O. Thus 

2e! 2e 
~b(t) - ~a(t) = nc j A ds = nc <I>L. 

We combine equations 2.30 and 2.31 to give 

The total supercurrent will then be 
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where jsa and jsb are the maximum supercurrents going through each half of the SQUID. 

For simplification we will assume that the two junctions are equivalent so that j53 = jsb = j50 

and ~3(t) = ~b(t)= ~(t). Thus 

js = jso sin(~(t)- :c <!>) + jso sin(~(t) + :c <l>r.) 

= 2j50 sin(~(t)) cos(:c <I>L). 

Therefore the supercurrent is a sinusoidal function of the magnetic flux. 

2.34 

The voltage across the SQUID is proportional to the normal current (the difference 

between the bias current and the supercurrent so long as jb>2j
50

): 

V(t) = R(jb- 2j50 sin(~(t)) cos(:c <I>L)). 2.35 

We note also that ~(t) is a function of the voltage and oscillates at a very high frequency,. 

however as mentioned above, a narrowband detector will only observe the time averaged 

voltage. This is not simply zero. 

From equation 2.25, we know that 

V(t) = !!:_ d~(t). 
2e at 

Rearranging to find the period of one oscillation gives 

We can also calculate the time averaged value of the voltage over one period as 
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1 n J d~(t) n 
V= T JV(t) dt = 2eT dt dt = 2eT 21t. 2.38 

Combining equations 2.37 and 2.38 provides 

V = 1L 21t 2eR (J d~(t) )-1. 
2
e h Ub(t)- 2j 50 sin(~(t))cos(:c <l>L)) 

2.39 

Which upon evaluation of the integral leaves 

2.40 

Therefore, the time averaged voltage is also a function of the magnetic flux penetrating the 

SQUID. Figure 2.4 plots the voltage dependence of the magnetic flux. 

2.2.2 The SQUID as a Detector 

There are several simple ways in which the SQUID can be used as a detector. 

First, for changes in magnetic flux that are much greater than a single flux quantum, one 

can simply count the number of oscillations in the voltage to obtain the number of flux 

quanta in the signal. Alternatively, for flux changes much less than one flux quantum, one 

can set the SQUID at the linear part of the flux versus voltage curve. As long as the flux 

change is small the voltage change will be a linear function of the flux. Neither of these 

two schemes is satisfactory for most applications. 

More typically the SQUID is used as a null detector in a negative feedback loop45 as 

shown in Figure 2.5. The output from the SQUID due to the change in the magnetic flux is 

fed through the appropriate electronics and a portion of the voltage obtained is then used to 

drive a coil around the SQUID that will offset the actual magnetic flux change. This means 
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Youtput vs. Magnetic flux 

Youtput 

n-1 n n+l 

Magnetic flux through SQUID (:~) 

Figure 2.4. Due to the quantum interference of the supercurrent going through the two 

Josephson junctions, the averaged voltage is a function of the magnetic flux threading the 

SQUID. 
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Figure 2.5. A schematic of the SQUID system with the coils, lock-in detection electronics, 

and feedback circuit. This scheme has low system noise and high sensitivity. 
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that the magnetic flux through the SQUID will remain constant. The size of the magnetic 

flux change is no longer a limitation as long as it doesn't vary faster than the electronics can 

react. 

The SQUID is very useful for detecting low frequency resonances. These are 

difficult to observe by standard NQR techniques which use the induction of current in a 

wound coil for detection. This Faraday detector measures the changes in the oscillating 

magnetic flux as a function of time (d<l>/dt). This is obviously frequency dependent, i.e. as 

the frequency decreases so does d<l>/dt. Therein lies the strength of the SQUID detector. It 

measures the magnetic flux directly, which has no frequency_dependence. 

With this advantage we want to use the SQUID to detect low frequency (down to 

de) signals. However, the system's noise power has a 1/f characteristic which dominates 

at low frequencies. 30 This is important in our experiments where we measure a change in 

the magnetization of a sample over several seconds, which corresponds to frequencies very 

close to de. The usual remedy for this problem is frequency modulation, also known as 

lock-in detection.46 

In this process the low frequency signal is mixed with a higher frequency carrier 

' wave. This higher frequency signal can then be detected with only the typical white noise. 

One disadvantage of this system is that signals with frequencies greater than the mixing· 

frequency are lost. Because the modulation frequency is limited by unavoidable stray 

reactances in the detection and feedback circuits it is generally less than a few hundred 

kilohertz. For our cw-spectrometer this is not important because the signals are always 

near de. But it does provide an important limitation for a pulsed SQUID NMR/NQR 

spectrometer, where the signal is detected at the frequency of the resonance. 

The next problem to be solved is how to couple the signal into the SQUID. One 

could build a SQUID and rf coils around the sample container.47 Then when a resonance 

frequency is irradiated the change in magnetization of the sample will be detected directly 

by the surrounding SQUID. This however is not practical. First, SQUIDs are typically 
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very small, on the order of micrometers or less, therefore the sample must be that small as 

well. Also, the ability to change the sample would be severally hampered by the size and 

delicacy of the SQUID. And lastly, the sample would always have to remain at the 

temperature of the SQUID which, as will be seen in Chapter 3, is often not an 

advantageous situation. 

A typical solution for many uses is a flux transformer or pickup coii.48 To detect 

low frequency signals an untuned superconducting circuit couples the sample flux into the 

SQUID as shown in Figure 2.6. The circuit is simply two superconducting coils made 

from a single piece of superconducting wire with one coil around the SQUID and the other 

coil, the pickup coil, surrounding the sample. As we sweep through a resonance the 

sample magnetization, and thus the magnetic flux through the pickup coil, will change. As 

described previously, the flux through a superconducting ring, or coil, is kept constant. So 

as the flux changes in the pickup coil a supercurrent is generated that produces a flux 

change of equal magnitude but opposite direction in the coil around the SQUID which is 

then detected. 
]<'. 

This circuit, as all others, suffers losses and so it is worthwhile to discuss the 

circuit design. The magnetic flux generated in the pickup coil by a sample of 

magnetization, M, is 

2.41 

where f is the filling factor, rp is the radius of the pickup coil, and NP is the number of 

turns in the pickup coil. This magnetic flux will induce a current in the superconducting 

circuit of 

2.42 

21 



Figure 2.6. A schematic of the superconducting transformer used to couple the sample flux 

into the de SQUID. A change in magnetic flux through the pickup coil causes an opposing 

change at the other coil. This it then coupled into the SQUID by mutual inductance, Mcs. 
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where 15 and lp are the inductances of the coil around the SQUID and the pickup coil 

respectively. The amount of flux ultimately coupled into the SQUID depends on the mutual 

inductance between the coupling coil and the SQUID, Mcs• as given by 

2.43 

Previous work has shown that the maximum signal is attained when lp=l
5

, for a fixed 

sample size. 30 So to maximize the signal other factors must be considered as 1
5 

is fixed 

because the coil is manufactured with the SQUID. 

Assuming the ideal case, 

2.44 

the flux through the SQUID will increase approximately as r312 for a given sample 

magnetization.49• 50 The actual dependence is greater when it is realized that for larger 

samples the filling factor is better because the walls of the sample container are usually kept 

constant. However, we must balance the size of the pickup coil with the type of samples 

that we wish to study. Expensive or toxic samples may not be practical to use in large 
( 

quantities. These considerations led to the spectrometer design described below. 

2.3 The Spectrometer 

In this section I will not attempt to describe the spectrometer in mechanical detail for 

that has been done before. 17• 18• 21 I do however want to give the reader a sense of the 

overall design and the method of operation for the experiments described in this thesis. 

There are some design and operational details that have been changed and I will discuss 

those in more detail. 
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2.3.1 Hardware Overview 

Figure 2.7 shows an overall view of the SQUID spectrometer and Figure 2.8 

presents a more detailed display of the lower portion of the SQUID spectrometer probe. 

The de SQUID (BTi Model DP probe with Model DSQ DC Hybrid SQUID) is hermetically 

sealed inside a niobium shield. Two copper screws provide the means whereby the pickup 

coil leads can be attached to the coupling coil of the SQUID. The SQUID is connected to a 

room temperature feedback controller (BTi Model 400) which functions essentially as 

described above. The signal from the SQUID is passed through the feedback unit to the 

SQUID controller (BTi Model40) where it is amplified (x1, xlO, xlOO, x1000) and filtered 

(5 or 50 kHz bandwidth). That signal is then sent through a home built low-pass filter with 

a bandwidth from 200 to 0.02 Hz and a variable gain from 10 to 120. It is then transmitted 

into an AT clone computer through a digital oscilloscope (Rapid Systems Model R1000). 

The spectra can be stored and analyzed on the computer. 

The pickup coil is supported on a macor form and is made of 10 turns of 0.5 em 

diameter NbTi wire which is superconducting at liquid helium temperatures. Surrounding 

the pickup coil is a second form which contains two Helmholz rf coils. These two coils are 

orthogonal to one another and provide two channels of rf irradiation for the magnetic 

resonances experiments. They are connected to a programmable frequency sweeper 

(Hewlett-Packard 3326A Two Channel Synthesizer) which is also controlled by the AT 

clone computer. The sweeper can provide two separate rf channels for frequency sweeps 

of up to 13 MHz at an output level of up to 10 V with sweep times varying from 1 ms to 

1000 s. 

A third coil form supports a lead tube that is surrounded by a copper coil. Before 

the probe is cooled the copper coil is charged with current to produce a specific magnetic 

field (usually 10-150 Gauss). After the probe is placed in the liquid helium bath (4.2 K) 

the current is turned off. However, because the lead tube is now superconducting the 
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Figure 2. 7. Schematic overview of the de SQUID spectrometer. 

25 



~Brass 

~Copper 

1·.::·.:-.-::·.:·.::~· . .-:·.:·.::-.j Macor 

l:tillf:tt':t::j Lead 

lmffttmtm=mi:l N i obi u m 

1 em 
1-----1 

ample Chamber 

XBL 896-2466 
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magnetic field due to the previous current in the coil is kept constant (as described in 

Section 2.1.2). This provides a variable magnetic field of up to at least 300 Gauss. The 

field can be easily changed by lifting the probe slightly above the helium bath so that the 

lead tube is no longer superconducting, applying a new current to the copper coil, and 

returning the probe to the liquid helium where the lead tube is again superconducting. This 
~ 

seems to have no detrimental effect on the SQUID if it is turned off during this operation. 

The rf field is on during detection and is coupled by mutual inductance into the 

pickup coil. Thus, a low pass filter must be used to eliminate the coupled rf and retain the 

signal (which is near dc).51 • 52 This places a limit on the rf frequency that can be used for 

irradiation. In this spectrometer; the rf must be greater than approximately 100kHz to be 

effectively filtered. Also, a lead lined brass can surrounds the coil form, which serves as a 

superconducting filter of stray magnetic and rf fields. 53 

The entire probe is placed into a cryostat so that the SQUID, probe, and sample are 

all at 4.2 K. We now use a much larger and better cryostat which allows us to run the 

experiment for 10+ hours per helium fill. 

2.3.2 Software Improvements 

I have rewritten both the data acquisition and processing software to make it more 

user friendly with menus and better graphics. The data processing software can now 

display up to 10 spectra simultaneously for easy comparison. Also resonance frequencies 

can be read directly from the screen rather than manually calculated as before. The 

acquisition program also writes the sweep start and stop frequencies, sweep time, and rf 

strength onto the data file for reference during processing. 

All this improves the data handling aspect of the experiment, but the biggest 

advances are in the actual control of the spectrometer. The software is now designed to use 

the second channel on the HP sweeper (when it is not needed for rf irradiation) to control 
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the output signal level by adjusting the de offset of that signal. This allows the computer to 

maintain the signal within the range of the digital oscilloscope by resetting the de offset 

after each scan, which had to be done manually before. We can now set the spectrometer 

to do multiple sweeps without constant human oversight. This allows for efficient 

averaging. Also, up to 20 different scans (with separate sweep parameters) can be run 

sequentially. The overall savings in time and effort for this experiment are significant. 

2.3.3 Operation 

In a typical experiment the sweep is usually between 100 to 500kHz in length and 

50 to 250 seconds in duration. We typically use around 3 volts of rf from the sweeper. 

This value is a compromise. We want to use as much rf as possible to completely saturate 

the resonance, but more rf means more noise. Also, the HP sweeper switches synthesizer 

switches circuits for voltages above 3 volts and this higher v'oltage circuit is much noisier. 

Three volts does however seem to be enough, as will be shown in the next chapter, to 

saturate most resonances. 

There is also a two channel mode where two separate frequency sweeps can be 

initiated simultaneously. If the sweeps are over the same region circularly polarized rf can 

be produced. However, more useful is the simultaneous sweep over a frequency region 

while applying another specific irradiation frequency. This type of experiment is especially 

important in the double irradiation scheme presented for 14N NQR (Section 5.3.4). 

This spectrometer allows us to do many NMR and NQR experiments at low 

frequency and in low field that are normally very difficult to accomplish by other means. 

This advantage makes the SQUID spectrometer a valuable asset in the field of magnetic 

resonance. 
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Chapter 3 
Z-Axis cw· NMR and NQR 

This chapter provides the basic theoretical description of the NMR and NQR 

techniques utilized in these experiments. More specialized theory and techniques will be 

discussed in chapters 5 and 6. I will begin by detailing the Hamiltonians that are used to 

describe the spin system, after which there will be a section on relaxation phenomena. The 

third part of the chapter will describe z-axis cw NMR and NQR detection. And, finally, 

there is a short discussion of experimentallineshapes and intensities. Table 3.1 is included 

as a reference to the relevant constants associated with the nuclei studied in this thesis. 

3.1 Hamiltonians 

Several Hamiltonians describe the basic interactions studied in NMR and NQR 

experiments. The first is the quadrupolar Hamiltonian which arises from the electrostatic 

interaction between an electric field gradient and the electric quadrupole moment of a 

nucleus. Such nuclei are non-spherical in shape and have a spin, I, greater than 1/2. This 

is the primary Hamiltonian in NQR. For NMR experiments the Zeeman Hamiltonian is the 

most important. It characterizes the interaction of the nuclear magnetic moment with an 

external magnetic field. For the experiments described in this thesis a magnetic field is 

applied even in the NQR case (which is atypical of most NQR techniques). Thus the 

Zeeman interaction is also present in our NQR experiments, although it is typically only a 

small but, as we will see, necessary perturbation of the quadrupolar Hamiltonian. 

Two other Hamiltonians are also required to describe the experimental situation: the 

dipole-dipole Hamiltonian, which represents the interaction between the magnetic moments 

of neighboring nuclei, and the rf field Hamiltonian which characterizes the excitation of the 
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Nucleus Spin Natural NMR Frequency Quadrupole 

Abundance at 1 Gauss Moment 

(%) (Hz) (e · l0-24 em 2) 

lH 1/2 99.99 4258 NA 

llB 3/2 80.1 1366 +0.04065 

l4N 1 99.63 308 +0.0156 

23Na 3/2 100 1126 +0.101 

27Al 512 100 1109 +0.140 

stv 7/2 99.75 1119 -0.052 

55Mn 512 100 1050 +0.40 

Table 3.1 Properties of the nuclei discussed in this thesis. 
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nuclear spins by rf irradiation in order to detect signals. Each of these Hamiltonians will be 

described in the following sections. 

3.1.1 The Quadrupolar Hamiltonian 

The quadrupolar Hamiltonian arises from the interaction between the electric 

quadrupole moment of a nonspherical nucleus (one with I> 1/2) and the surrounding electric 

field gradient as shown in Figure 3 .1. 1 The bonding electrons are the typical source of the 
. 

unsymmetric distribution of charge surrounding the nucleus which creates the electric field 

gradient. 3• 6• 54 Ions and other electric field anomalies, such as defects in the lattice, can 

also contribute. The quadrupolar interaction provides information about the local bonding 

configuration such as the coordination number, the symmetry of the molecular bonding, the 

symmetry of the lattice, and the effect of defects on the environment of the nucleus. Non­

crystalline structures such as those in glasses can also be studied. 55• 56 

The electric field gradient, V ab (where a, b = x, y, or z), is typically described in 

terms of a principal axis system, which is defined such that all off-diagonal terms are zero 

and V zz > V yy > V xx· The magnitude of the electric field gradient, eq, is designated as 

3.1 

and the asymmetry parameter, 11 , as 

3.2 

When this is combined with the Laplace equation, 

v zz + V yy + V XX : 0, 3.3 

the value of 11 is restricted to the range between 0 and I. 
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Figure 3.1 A nonspherical quadrupolar nucleus (center) has a preferred orientation in an 

electric field gradient. This gradient is usually due to the unsymmetrical distribution of 

bonding electrons, but can also arise from nearby ions and defects. 
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11 characterizes the degree of symmetry of the electric field gradient. If 11 equals 

zero then the z-axis has C3 or better symmetry. 2 If 11 equals 1 then V xx = 0 and the electric 

field gradient is limited to the zy plane with the symmetry of the color group, C4• If there 

are two perpendicular C3 or better symmetry axes then V zz = V YY = V xx = 0 and thus no 

electric field gradient. One of the well-known cases for such an occurrence is the cubic 

lattice such as in NaCl. There is no quadrupolar interaction for sodium or chlorine in this 

sample except where the material deviates from perfect cubic symmetry, such as near a 

defect site. 

The quadrupolar Hamiltonian can be written in its principal axis system as 

3.4 

where eQ is the electric quadrupole moment of the nucleus. Typical energy level diagrams 

are displayed in Figures 3.2 and 3.3. Figure 3.2 presents a half odd integer spin system, 

in this case I = 7/2, but a similar diagram can be drawn for I = 3/2, 5/2,. .. In all cases the 

energy levels are doubly degenerate in zero field. Figure 3.3 shows the I= 1 energy level 

diagram. Again a similar diagram can be drawn for I= 2, 3, ... Integer spin energy levels 

are only degenerate when 11 = 0. All nondegenerate levels for integer spin nuclei have a 

vanishing magnetic moment as indicated in the spin-1 energy level diagram. 57 This 

presents an important problem for the direct detection of integer spin NQR signals by the 

SQUID spectrometer which will be discussed in detail in Chapter 5. 

e
2
GQ is commonly referred to as the quadrupole coupling constant (CQ) and 

describes the strength of the quadrupolar interaction. 11 and CQ are the two parameters that 

are calculated from the quadrupolar resonances and completely characterize the electric field 

gradient. Figures 3.4 and 3.5 plot the relative splittings expected for nuclei with I=3/2, 

5/2, 7/2, 9/2, and 1 as a function of 11· 
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Figure 3.2. The energy level diagram for a spin 7/2 nucleus in both zero (left) and nonzero 
(right) magnetic fields. The roQ's are the quadrupolar frequencies, which in this case must 

be numerically calculated from the quadrupolar parameters, CQ and T) . ro0 is the Zeeman 

splitting, ynB0. Similar diagrams can be made for I = 3/2, 5/2, ... nuclei. 
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Figure 3.4. Plot of the relative splittings for resonance frequencies, ror,with respect to the 

quadrupolar coupling constant, CQ, as a function of 11 for nuclei with I = 3/2, 5/2, and 7/2. 

In the top graph the solid line represents the single transition for the I = 3/2 case and the 

dotted lines characterize I = 5/2 nuclei. 
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Figure 3.5. Plot of the relative splittings for resonance frequencies, ror,with respect to the 

quadrupolar coupling constant, CQ, as a function of 11 for nuclei with I = 9/2 and 1. 
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The two quadrupolar parameters provide information about the surroundings of the 

nucleus. A detailed quantum electronic treatment would be necessary for an accurate 

calculation of these parameters, but at this time the precision of these calculations is not 

great enough for quantitative predictions. However, from the magnitudes of these two 

parameters we can obtain information such as the symmetry around the nucleus, the size of 

the deviation from a specified lattice symmetry, paramagnetism (paramagnetic atoms 

usually have a much larger CQ), coordination number, the effect of impurities and lattice 

defects, and the distribution of sites in an amorphous material. 

Although the electric quadrupole moments of most nuclei vary over only about 2 

orders of magnitude, the quadrupolar frequencies can vary from less than 10 kHz to 

hundreds of MHz. The large quadrupolar frequencies are typically found for nuclei with 

very polarizable electrons, such as the halogens, or paramagnetic atoms, which include 

many transition metal compounds. As mentioned in Chapter 1, the SQUID is used to study 

NQR at the low frequency end of this range. This is the region for nuclei such as 11 B, 

14N, 23Na, 27 AI, and nonparamagnetic transition complexes involving nuclei such as Sly 

and 55Mn. The spectrometer could also be used to study slight deviations from cubic 

symmetry such as chlorine near defect sites in NaCl. 

3.1.2 The Zeeman Hamiltonian 

The Zeeman Hamiltonian describes the interaction between the nuclear magnetic 

moment and an external magnetic field. This is the principal Hamiltonian for NMR. In our 

NQR experiments the Zeeman interaction will serve as a perturbation of the pure 

quadrupolar Hamiltonian. For NMR, we write the Zeeman Hamiltonian as 

3.5 
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where y is the gyromagnetic ratio of the specific nucleus and B0 is the applied magnetic 

field. This determines the z axis of the nuclear spin. 

For our study of NQR, the Zeeman interaction is smaller than the quadrupolar 

interaction, so we must rewrite the Zeeman Hamiltonian in the principle axis system of the 

quadrupolar interaction: 

3.6 

The angles e and <1> relate the magnetic field axis to the quadrupolar principle axis system. 

The Zeeman interaction alone provides no information. Rather, quantities such as 

the chemical shift of the Zeeman line are studied. In our experiments we use such small 

fields that this shift would be less than 10Hz for protons, much too small to be resolved by 

this spectrometer. Instead we use the magnetic field primarily to split degenerate 

transitions. This will be discussed further in the section on NQR detection in this chapter 

as well as in Chapter 6 on methyl quantum tunneling. We also use the Zeeman interaction 

to match transitions of different nuclei. This application will be discussed further in 

Chapter 5 on 14N NQR. 

3.1.3 The Dipolar Hamiltonian 

The dipole-dipole interaction describes the coupling between a nuclear spin and the 

magnetic moments of neighboring nuclei. 58 The strength of the interaction depends on the 

distance between the nuclei and their gyromagnetic ratios as shown in the Hamiltonian, Hd, 

which is written in terms of spherical coordinates related to the Zeeman or quadrupolar 

principle axis system as 

3.7 
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where 

A=(l - 3 cos2 e) 11z12z, 
1 2 +r: -+ B = - 4" (1 - 3 cos e) (11 2 + I 112), 

3 ·n. + + 
C =- 2 sine cose e-1-r (11 12z + \zl2) 

D =-~sine cose ei<P (Ii 12z + \zli) 
3 2 2""' + + E = - 4 sin He- 1-r (1

1
12) 

F = -~ sin2e e2i<P (f1 Ii). 

3.8a 

3.8b 

3.8c 

3.8d 

3.8e 

3.8f 

The dipolar interaction can involve nuclei of the same (homonuclear) or of different 

(heteronuclear) types. If there is more than one neighboring nucleus with a dipole moment 

near the atom of interest, the dipolar interaction can be calculated for each case separately 

and summed for the total effect. 

The dipolar Hamiltonian provides the major contribution to line broadening in NMR 

spectra and, along with the Zeeman interaction, in NQR spectra. The dipolar Hamiltonian 

is weaker than either of the two previous interactions in the experiments described in this 

work. For our proton NMR experiments it is about 5-l 0% of the strength of the typical 

Zeeman interaction. This is significantly different from the normal high field NMR 

experiments where the dipolar interaction is many orders of magnitude smaller than the 

Zeeman term. In that case only the "A" and "B" terms of the homonuclear and "A" term of 

the heteronuclear dipolar Hamiltonian are considered. These are known as the secular 

terms and describe energy conserving transitions. However, in our experiments the other 

terms can not be ignored and provide a driving force for several of the experiments in this 

thesis. 

The "B" term of the dipole-dipole Hamiltonian is often called the flip-flop term. It 

describes an energy conserving transition if the nuclei are of the same type or if two 

different nuclei meet the level matching condition (see Chapter 5). This provides for 

efficient cross-relaxation and spin diffusion. The "C"-"F" terms allow mixing between 
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states that would be isolated in high field. This is especially important in the methyl 

tunneling experiments (Chapter 6) where the dipole-dipole coupling makes transitions 

between states of different symmetry slightly allowed. These tunneling transitions are 

forbidden in high field. 

3.1.4 rf Irradiation 

rf irradiation provides the means for the detection of NMR and NQR signals. As rf 

is swept through resonance, the irradiation causes spins to be excited from the more 

populated to the less populated state thereby inducing a change in the net magnetization of 

the sample. The Hamiltonian for linearly polarized rf along the x-axis of a principle axis 

system is 

3.9 

where ro is the frequency of the rf field and B 1 is its strength. For circularly polarized rf 

the proper form is 

3.10 

where the sign of~ determines the direction (right or left) of circular polarization. 

3.2 Relaxation 

Relaxation effects also must be understood in order to characterize the spectra 

obtained in these experiments, especially in the case of 14N NQR where it turns out to be a 

very important part of the detection scheme. Relaxation is usually not treated as a 

Hamiltonian operator, but rather as a decay process with a characteristic decay time, T 1 

(spin-lattice relaxation) or T 2 (spin-spin relaxation). Although the relaxation processes in 

41 



these experiments are not strictly exponential we approximate them as such as that is good 

enough for our purposes. 

3.2.1 Spin-lattice Relaxation 

Relaxation between the spins and the lattice returns the entire spin system to the 

lattice equilibrium temperature, the typical starting point for magnetic resonance 

experiments. This process causes a change in the sample's longitudinal magnetization, 58 

therefore the decay time, T 1, can be measured easily by the SQUID. An experimental 

example of this decay is shown in Figure 3.6. 

T 1 determines how often the resonance can be swept for the spins must relax back 

to equilibrium in order to obtain the maximum signal intensity. This usually requires 

waiting for 5T 1 between experiments. Herein lies one of the greatest limitations of the 

spectrometer. Many samples, especially in organics, have T 1's of tens of minutes to hours 

or longer at 4.2 K. Waiting for these samples to relax is impractical. One solution to this 

dilemma is to put the sample in a variable temperature container. Then the temperature can 

be raised to a point where the spin-lattice relaxation time is sufficiently short for the 

experiment to be practical. However, the signal intensity is inversely proportional to the 

equilibrium temperature so a sample at 77 K would have a signal approximately 18 times 

less intense than the same material at 4.2 K. At the present time most resonance signals 

would be lost in the noise at 77K. But with improvements in the detection circuitry and the 

sensitivity of the SQUID, we may overcome this problem. 

On the other hand if T 1 is very short compared to the sweep time, the signal 

intensity is decreased because spins relax almost as fast as they are excited. This we have 

observed for some organic glasses, such as toluene which has been rapidly quenched to 

4.2K. 
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T 1 Plot for Serine 
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Figure 3.6. A sample relaxation decay of the protons in L-serine at 4.2 K. 
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The ideal sample for this spectrometer would be one with T 1 on the order of the 

sweep time of the experiment. This would allow for efficient signal averaging, but the 

lineshape of the resonance would not be significantly altered by ongoing relaxation (as 

discussed in section 3.5). 

Fortunately, many interesting samples fit our T 1 requirements. Among these are 

organic molecules with methyl groups. The motion of the methyl group is enough to 

provide a convenient mechanism for coupling between the spin bath and the lattice. Also, 

all the borate glasses we have examined have had short T 1's . Thus despite the limitations 

there are still many interesting samples to be investigated. 

3.2.2 Spin-spin Relaxation (Cross-relaxation) 

Spin-spin relaxation is the process whereby the spins exchange energy amongst 

themselves. I wish to focus here on cross-relaxation, or spin diffusion, which is an energy 

conserving process that involves mutual transitions of two or more spins. 59• 6° Cross­

relaxation takes place between two levels that are close to or exactly in resonance with each 

other. The dipole-dipole interaction facilitates this transfer in polarization. In the case of 

NMR, spin diffusion is accomplished by the "B" or so called "flip-flop" term of the dipole­

dipole Hamiltonian. It involves an exchange in polarization between two spins with no net 

change in magnetization. 

Another type of cross-relaxation is depicted in Figure 3. 7 between two quadrupolar 

nuclei with I = 3/2. In this case the "R" and "F" terms of the dipolar interaction facilitate 

this exchange. 58 This type of cross-relaxation is important for NQR of half odd integer 

spin nuclei. The zero field transitions are doubly degenerate so cross-relaxation is energy 

conserving. In this case there is no net change in magnetization and therefore nothing for 

the SQUID to detect, despite irradiation of the transitions. Thus a magnetic field is 

necessary to separate the resonance frequencies. 36 When a field is added, the two 
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Figure 3.7. Samples of cross-relaxation between a) quadrupolar states, mediated by the 

"E" and "F" terms of the homonuclear dipole coupling, and b) a quadrupole nucleus (I=l) 

and Zeeman split states of a spin-112 system, promoted by the "B" term of the 

heteronuclear dipolar Hamiltonian. 
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previously degenerate transitions now become co0 ± coz (for a single crystal sample) where 

co0 is the quadrupolar frequency and roz is the Zeeman splitting. Cross-relaxation is no 

longer energy conserving. This solution, however, is limited for powder samples, because 

the signal intensity will be spread over the entire region from co0 - roz to co0 + coz. For 

these samples one must balance the decrease in cross-relaxation versus the decrease in 

intensity caused by the spreading of the signal over a wide frequency range. 

The final type of cross-relaxation that I wish to address is that between two 

different nuclei. This is especially important for our 14N experiments as will be described 

in detail in Chapter 5. If conditions are such that energy level splittings for two different 

nuclei are equal, we have what we call a level matching condition. This situation is shown 

in Figure 3.7 for the quadrupolar splitting of 14N and the Zeeman splitting of 1 H. This 

condition is easily met by simply applying a magnetic field such that the proton splitting is. 

exactly equal to a 14N quadrupolar transition frequency. Cross-relaxation occurs between 

the protons and nitrogens via the heteronuclear dipole-dipole coupling provided that the 

atoms are in close proximity to each other. In this case, a net magnetization change in the 

sample (from the protons) occurs during cross-relaxation which provides the basis for 

detecting 14N resonances. 

3.3 Z-axis cw Magnetic Resonance 

3.3.1 Single Crystal NMR (1=1/2) 

To describe z-axis cw NMR, I begin with the simplest case, that of a single crystal 

with isolated (no dipolar coupling) spin-1/2 nuclei in a magnetic field.50 I will also ignore 

relaxation effects. 

This is a simple two level system as depicted in Figure 3.8 with an energy splitting 

of hcoz. The populations of the two levels, using the high temperature approximation, are 
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Figure 3.8. Energy level diagram and equilibrium populations of a spin-112 nucleus in a 
(l) 

magnetic field, B0 = J. 
hy 
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1 hroz 
p-1/2 = 2 (1 - 2kT) 3.11a 

1 h.roz 
p +112 = 2 (1 + 2kT). 3.11b 

The longitudinal magnetization of the sample can be calculated by summing the products of 

the populations of each level multiplied by its respective Iz value, 

Mz = Nyli ~(Pilzi) 
1 

where N is the number density of the spins. For this case , 

3.12 

3.13 

The SQUID will measure the change in sample magnetization as rf is swept through 

resonance. Under ideal saturating conditions the populations of the two levels will 

equalize, 

3.14 

This will leave a longitudinal magnetization value of 

3.15 

Therefore, the net change in magnetization that the SQUID measures is 

3.16 

This is shown in Figure 3.9 as a single step at the resonance frequency. 

Several factors distort this idealized spectrum. Dipole-dipole coupling to nearby 

nuclei will split the line and provide a manifold of states about the original energy levet.61 

These separate splittings are typically not seen due to efficient cross relaxation and overlap 
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Theoretical Single Crystal Signals 
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Figure 3.9. Simple theoretical examples of single crystal NMR and NQR spectra. The 

quadrupolar resonance frequency of the NQR example is calculated by simply averaging 

the frequencies of the two transitions. 
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between the dipolar split states. Also, spin lattice relaxation will be manifest as a return to 

the original equilibrium value of magnetization if the spin-lattice relaxation time, T 1, is of 

the same order or shorter than the sweep time. This is one of the primary reasons why it is 

necessary to combine equal numbers of sweeps in different directions (high to low 

frequency and low to high frequency) in order to avoid biasing the spectrum and the 

resulting experimental resonance frequency by the direction of the sweep. 

3.3.2 Half Odd Integer Spin Single Crystal 
NQR 

As shown in Figure 3.2 , the ±m states in these systems are degenerate in the 

absence of a magnetic field. If transitions are excited in this situation we would find no 

signal because both transitions would be simultaneously irradiated with a net change in 

longitudinal magnetization of zero. For this reason a magnetic field is applied. The field 

splits the two transitions by an amount proportional to the field strength. Each resonance 

can then be separately excited. 

For a detailed example let's look at a spin-3/2 nucleus with an axially symmetric 

electric field gradient (11 = 0) as depicted in Figure 3~ 10.1. 62 The energy levels in this 

system are 

e2gQ_ 
E±3/2 = 4 + 3/2(yhBo) 3.17a 

e2gQ_ 
E±112 = - 4 + 1/2(ynB0) 3.17b 

with NQR resonances at coQ,+n = co0 ± ro2 where ro0 = e2~Q and ro~ = yB0. 

The equilibrium populations of the spin states, applying the high temperature 

approximation, 58 are 

_ ! nco0 31iC02 
p-3/2- 4 (1 - 4kT - 2kT ), 
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Figure 3.10. Energy level diagram and equilibrium populations of a spin-3/2 nucleus in a 
(1) 

magnetic field, B0 = __:z,_. 
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3.18b 

3.18c 

3.18d 

At thermal equilibrium the total magnetization of the sample is, according to equation 3.12, 

3.19 

For any half odd integer spin system equation 3.19 generalizes to 

3.20 

As rf is swept from low to high frequency, it first saturates the +112 ~ +312 transition 

resulting in an equalization of the populations of those two levels, 

· · 1 liroz 
p +312 = p +112 = 4 (1 + kT ). 3.21 

The longitudinal magnetization is now 

3.22 

which generalizes for any transition, m ~ m ± 1 (except +1/2 ~ -112 which is not a 

quadrupolar transition) as 

· Nyli
2 

("" 2 ) 6m ± 3 
Mz = (21+1)kT ( ~mi - l/2 00z + 81(21-1) 00Q) 

1 

3.23 

where roQ is the frequency of the quadrupolar resonance excited. Because roQ is much 

larger than roz a dramatic change in the sample magnetization occurs when an NQR 

transition is excited. 
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As the sweep continues through the -112 ~ -3/2 transition and equalizes the 

populations of those two levels, the final magnetization is found to be 

3.24 

Again this generalizes to 

3.25 

There is also a change in the magnetization on the order of roQ but now in the opposite 

direction of the first transition. These calculations lead directly to the theoretical signal 

shown in Figure 3.9. The quadrupole frequency is then simply the average of the two 

transition frequencies. Note that this theoretical signal is also broadened and changed by 

the dipolar couplings and relaxation effects as described in the previous section. 

3.3.3. Integer Spin NQR 

There is a very fundamental problem when one is working with integer spin nuclei. 

Nondegenerate quadrupole levels have no longitudinal magnetization in zero field. 57 This 

is easily seen in the case of the spin-1 nucleus. When 11 = 0 the 1±1) levels are degenerate 

and split from the 10) level by the quadrupolar coupling constant. This is similar to the 

previous case and we can use a magnetic field to split the levels and obtain the quadrupolar 

information. However when 11:;:. 0 then the two levels split into what we call the lx) and ly) 

states. These are an equal admixture of the 1±1) states: 1+1) + 1-1) and 1+1) -1-1).53 These 

states have no z-axis magnetization and any transition between the three quadrupolar levels 

will result in no net change in the sample magnetization and therefore no signal is detected. 

A magnetic field resulting in a Zeeman splitting on the order of the asymmetry splitting will 

correct this problem, but typically those fields are much to large and perturb the spectrum 
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so that the quadrupolar information is difficult to extract. Thus, direct detection of integer 

spin quadrupolar splittings is limited to the case of 11 close to zero. However, there is an 

indirect method that will be presented in Chapter 5. 

3.3.4 Powder Samples 

As usual the situation becomes more complex when powder or amorphous 

materials are used instead of single crystal samples. (This is not the case for zero field 

NQR however). In NMR experiments, the reason is that the dipolar interactions are 

randomly oriented with respect to the magnetic field. Thus, there is a range of splittings 

leading to the typical powder pattern. 

In NQR, the quadrupolar principle axis system (PAS) is also randomly aligned with 

respect to the laboratory static magnetic field. To see what happens, we will look at the 

case where the quadrupolar interaction is much larger than the Zeeman splitting (which is 

true in all our NQR experiments). First, we truncate the Zeeman Hamiltonian (equation 

3.6) to Hz= -yhB0Izcos9 where 9 is the angle between the quadrupolar and Zeeman z-

axes. The energy levels of the quadrupolar states are now shifted by L1.E(±m) = 

+ynB0mcose. It is not as simple for the ±1/2 states which are also mixed by the Ix and IY 

terms of equation 3.6 to give two new states, 1 

I+)=+ sina 1+112} + cosa 1-112) 

1-) = - cosa I+ 112} + sin a 1-1/2) 

3.26a 

3.26b 

where tan a= (~~11 ) 112 and f = { 1 +(I +112)2tan2e} 112. The resulting energy level shifts 

are L1.E = +fynB0cos9. Thus different crystallites in the sample will have different 

resonance frequencies depending on their orientation. The intensity of the transition is thus 

spread out over the range between ±myliB 0 rather than at two distinct transition 
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frequencies. Figure 3.11 displays the difference between single crystal and powder spectra 

for 27 AI in sapphire. 

The range of splittings is not the only factor in the decreased intensity of powder 

signals. Because the energy levels are split by a smaller effective field, Beff = B0cos9 the 

cross relaxation rate is increased for quadrupolar nuclei not aligned with the magnetic field. 

Also, as the pickup coil and rf coils are aligned in the laboratory frame (as is the 

magnetic field) they are less effective in detecting or irradiating quadrupolar nuclei not 

aligned with the magnetic field. 63• 64 The pickup coil is designed to measure changes in 

longitudinal magnetization as defined by the static magnetic field. For a nucleus with the 

quadrupolar z-axis not aligned with the magnetic field only the projection of its 

magnetization (and thus only the projection of its change in magnetization) on the 

laboratory z-axis affects the pickup coil. This indicates that nuclei perpendicular to the 

magnetic field contribute little intensity to the signal. 

For much the same reason rf irradiation is less effective in promoting transitions for 

nuclei not correctly aligned. Thus complete saturation of the resonance is not necessarily 

accomplished by employing the same rf strength as used in the single crystal experiment. 

Finally, the filling factor of the sample is much less for a powder than a single 

crystal occupying the same volume. There is much empty space between crystallites in a 

powder. 

· Despite all of the problems associated with the signal intensity of powder samples 

the main advantage is accessibility. Single crystals of many substances can simply not be 

obtained. We must therefore be satisfied with powders and seek to increase the signal to 

noise ratio to compensate for the loss in intensity. It should also be pointed out that for 

amorphous materials, such as glasses, there is no analog to a single crystal and they 

likewise suffer all of the problems described above, as well as often having a distribution in 

quadrupolar parameters causing an even larger spread in resonance frequencies and 

resulting in even less intense signals. 
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Figure 3.11. Comparison of powder and single crystal 27 Al NQR spectra of sapphire. 

The upper spectrum is an average of 8 scans and the lower is from 3 scans. The spectra are 

normalized to the same height, but the powder spectrum is actually has only about 15% of 

the intensity of the crystal spectrum. 
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3.4 Experimental Lineshapes and Intensities 

Several experimental parameters affect the lineshapes of the observed resonances. 

Although we do not simulate any of these lineshapes to obtain additional information, it is 

worthwhile to understand the expected shape because that will affect the way the data is 

processed as well as the ideal sweep parameters. 

The first effect considered is from spin lattice relaxation (see also section 3.2.1). If 

T 1 is much longer than the sweep time then the theoreticallineshapes described in sections 

3.3.1-2 are good guides to the experimental shapes. However, ifT1 is on the order of the 

sweep time the experimental lineshape is significantly altered. Figure 3.12 shows 

simulated lineshapes for NMR experiments. NQR lineshapes are similar, with relaxation 

effects observed for both transitions. Often rf absorption and spin-lattice relaxation are 

occurring at comparable rates, so the measured transition frequency of a single spectrum 

can be shifted. In order to obtain the correct value it is imperative to combine spectra of 

sweeps in opposite directions (low to high frequency and high to low frequency). An 

experimental rule of thumb for this combination is to add the spectra if T 1 is less than the 

sweep time and subtract the spectra otherwise. Contemplation on the effect of relaxation on 

the lineshape proves this provides the largest signal intensity in all cases. Also, if at all 

possible, the sweep time should be made less than T 1. However, this can not always be 

done and still provide a saturating rf field. 

If T 1 is on the order of or less than the time actually spent sweeping through the 

resonance, the signal intensity is often reduced. It is diminished because both rf absorption 

and relaxation are now directly competing at approximately the same rate and it becomes 

harder to saturate the transition. The only solution is to sweep faster and average many 

spectra. We have not found many samples that fit in this category other than organic 
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Figure 3.12. Simulated NMR spectra for different ratios ofT1 to sweep time. Note the 

change in lineshape and intensity as T 1 becomes shorter. 
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glasses, such as rapidly quenched toluene and bromoalkanes. At 4.2 K, short T 1's are a 

rarity and the opposite, very long T 1's, prove to be a more intractable problem. 

The intensity of the signal is also obviously dependent on how many spins are 

excited. In the previous calculations, I have assumed saturation (i.e. the populations of the 

two states involved are equalized) however, this need not be the case. The number of spins 

that flip is experimentally controlled by the rf field strength and the sweep rate.65 Figures 

3.13 and 3.14 demonstrate both effects. As mentioned above, the optimal sweep rate is 

often limited by the relaxation rate. The rf field strength is restricted by the noise it 

generates in the pickup coil. Thus a saturating field can not always be obtained. The ideal 

sweep parameters are a balance between all of these effects. 

For the 14N experiments one more parameter enters into the picture. This is the 

cross relaxation time between the protons and the nitrogen (see Chapter 5 for the details of 

the experiment). Figure 3.15 shows spectra with varying sweep time. Comparing this 

with Figure 3.14, it becomes plain that the cross relaxation process is slower than rf 

absorption and therefore stronger rf fields or longer sweep times are needed for. these 

experiments. 
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Figure 3.13. Experimental spectra of the IH resonance in L-alanyl-L-histadine for varying 

rf strengths with a constant sweep time of 100 seconds. The resonance appears to be 

saturated with 2.0 volts of rf. 
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Figure 3.14. Experimental spectra ofthe lH resonance in L-alanyl-L-histadine for varying 

sweep times with 3.0 volts of rf. The resonance appears to be saturated with a sweep time 

of 10 seconds. 
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Figure 3.15. Experimental spectra of the 14N resonance in L-alanyl-L-histadine for 

varying sweep times with 3.0 volts of rf. Compare these spectra to those for proton 

saturation (Figure 3.14). 
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Chapter 4 
NQR of 1=3/2, 5/2, and 7/2 Nuclei 

4.1 Boron-11 (I - 3/2) 

The SQUID spectrometer has proven its usefulness in studying 11 B quadrupole 

spectra for such powder samples as BN, B20 3 and its hydrated forms (such as boric acid, 

H3B03), as well as B20 3 glass.21• 22 The glass compounds are of particular interest in 

that there is a distribution of sites due to the amorphous nature of the sample that broadens 

the resonance. For binary glasses such as xN~O·B203, studies can also be made detailing 

the change in crystal structure and borate species as the composition is varied. Bray and 

coworkers have accomplished much in this field. 66-?0 

The one drawback of 11B NQR is that there is only one resonance for each site. 

Because of this we can not uniquely determine the quadrupolar parameters by zero field 

NQR. However, when a small magnetic field is applied the powder lineshape is modified 

to reveal features from which the quadrupolar parameters can be calculated.71 

I will present data from the SQUID spectrometer that suggest the important potential 

it has for the study of both binary borate glasses and the measurement of spin-3/2 

quadrupolar parameters by means ofNQR in a small magnetic field. 

4.1.1 Sodium Borate Glass 

Sodium borate glasses can be made by heating NaOH and H3B03 to the melting 

point and then rapidly quenching the mixture. I made samples where x = 0, 0.11, 0.12, 

and 0.33, 11 B spectra of these samples are shown in Figure 4.1. Although these are 

poorly made samples, due to incomplete melting of the components, the spectra still show 
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Figure 4.1 A series of quadrupolar spectra of vitreous xNa20· B20 3 where x = 0, 0.11, 

0.12, and 0.33 (top to bottom). A second peak grows at 1310 kHz, probably due to 

diborate and tetraborate structures, at the expense of the 1360kHz boroxol peak as the 

sodium concentration increases. 
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an overall change as the sodium concentration increases. A second peak grows in around 

1310 kHz at the expense of the 1360 kHz peak that is also found in B20 3 glass. Bray and 

coworkers have conducted similar experiments on a wider range of samples and find the 

same pattern. 66• 69• 70 B20 3 glass consists primarily of boroxol structures66• 68 which 

would account for the 1360 kHz line. Bray suggests that the other resonance of 

xN~O-B203 comes from either tetraborate or diborate structures.7° Finding these two 

separate signals implies that different boron-oxygen structures can be resolved by NQR 

methods. 
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To continue this study we obtained quadrupolar spectra of the ternary glass system, 

xNa20·ySi02-B20 3. According to Bray, there should be many different types of borate 

structures,67• 72-75 but we observed only one resonance in each case. This could very well 

be due to extensive overlapping among the lines so they could not be separately resolved. 

A potential solution to this problem is IDs (1=3) NQR, which contains many more lines per 

site. These resonances would not necessarily overlap even when the 11 B transitions do. 
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4.1.2 Boron Nitride 

One very real problem of spin-3/2 nuclei is the existence of only one quadrupolar 

transition. Thus the quadrupolar parameters can not be independently determined by zero 

field NQR. However, there is a solution based on calculations and experiments with 

chlorine NQR done by Morino and Toyama. 71 If a weak magnetic field is applied (weak 

meaning that the Zeeman interaction is much smaller than the quadrupole as in these 

experiments) then sharp features in the powder spectrum should be found at ±(1 ± 11) )'Hz. 
27t 

Figure 4.2 displays a spectrum of BN from the SQUID spectrometer in a field of 

approximately 60 gauss. Measurements from the spectra indicate features at 1330, 1378, 

1566, and 1615 kHz with )'Hz = 150 kHz. From this, 11 ::; 0.13 can be calculated. This 
27t 

value of 11 near zero is substantiated by the crystal structure of BN at this temperature. The 

material is essentially an analog to graphite with hexagons made of alternating boron and 

nitrogen atoms.16 This structure has a c3 symmetry axis which would then indicate that11 

should be zero. 

The results of this analysis are encouraging for the future of spin-3/2 NQR. The 

SQUID spectrometer could be used to obtain an accurate frequency measurement at a lower 

field and then 11 information from a higher field spectrum. Because a magnetic field must 

be supplied anyway, experiments of this type would require no extra effort, but yield the 

extra information needed to determine the quadrupolar parameters. 

4.2 Sodium-23 (I 3/2) 

Sodium is an important element in many ionic compounds. Most of these 

materials, however, have symmetry that preclude the quadrupole interaction, such as the 
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Figure 4.2 The II B NQR spectrum of BN in a field of 60 Gauss. 
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cubic lattice ofNaCI. NaBr04 is not among thatgroup and has been extensively studied by 

NMR lineshape analysis of single crystal samples.77-79 I measured the NQR resonance of 

23Na for a powder sample of NaBr04 and found it to be 444 ±12kHz which agrees with 

the literature value of 443kHz at 4 K.77 The spectrum is displayed in Figure 4.3. Because 

23Na is a spin-3/2 nucleus only one transition frequency can be measured. However, from 

single crystal NMR studies it is found that 11 = 0. Thus, our transition frequency would 

lead to a quadrupolar coupling constant of 888 ± 24 kHz. 

4.3 Aluminum-27 (I - 5/2) 

4.3.1 Sapphire (a-AI20 3) Crystal 

Sapphire has become the primary test material for the SQUID spectrometer. We 

have both a single crystal and powder samples of sapphire. Spectra of both samples are 

shown in Figure 3.11. Sapphire consists of aluminum sitting in a distorted octahedron 

formed by six oxygen atoms. It can be thought of as an aluminum atom sitting 

asymmetrically between two equilateral triangles with an oxygen atom at each apex. 80 This 

model would indicate that 11 = 0 due to the C3 symmetry axis. From the resonance 

frequencies of 357 ± 2 kHz and 714 ± 2 kHz, the quadrupolar parameters are calculated tq 

be CQ = 2.38 ± 0.01 MHz and 11 = 0.00 ± 0.06, which supports this model.20 However, 

these findings have recently been disputed by Bray and coworkers. They use an NQR 

spectrometer with a Robinson oscillator for detection and obtain resonance frequencies of 

361.6 ± 0.4 kHz and 715.5 ± 0.7 kHz with corresponding quadrupolar parameters of CQ 

= 2.389 ± 0.002 MHz and 11 = 0.091 ± 0.007. 66 

They also proceeded to calculate quadrupolar parameters from SQUID data in 

Figure 3 of reference 20 which they claim gives 11 = 0.12 ± 0.03. However, it must be 

noted that the figure displayed a spectrum obtained in only one sweep direction and so 
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Figure 4.3 23Na NQR spectrum of NaBr04 in a field of approximately 15 Gauss. A 

resonance is found at 444 ±12kHz. 
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therefore should not be relied upon to give accurate frequency information due to 

distortions caused by relaxation and saturation effects. 

They suggest that the deviation between our SQUID results and their values is due 

to our use of a magnetic field. Of course, in this experiment a magnetic field is necessary 

to separate the degenerate quadrupolar states and minimize cross relaxation. To test their 

hypothesis, I measured the quadrupolar resonances at different field strengths. Figure 4.4 

displays the results. There was no change in the frequency of either resonance despite a 

change in the field by a factor of2.5. 

A more recent paper by Bray lists new values of the quadrupolar parameters, CQ= 

2.386 ± 0.002 MHz and 11 = 0.034 ± 0.016.81 Note that the two values of eta from Bray 

are not within the experimental error of each other. Perhaps the error can be found in the 

fact that their spectra are obtained in only one sweep direction and so may be biased by 

relaxation and saturation effects. Alternately, their relatively fast sweep rates/time constant 

could cause a distortion in the line. Bray's experiments give ratios of 8.1 kHz/time 

constant and 3.4 kHz/time constant for the low and high frequency regions respectively.66 

Our experiments typically have a range between 0.2 - 0.5 kHz/time constant. This ratio 

expresses approximately the frequency range of signal that is averaged for each point in the 

spectrum. Because the differences in the two sets of resonance frequencies are about half 

the ratio of Bray's experimental sweep rates/time constant, L:\v1 = 4.6 kHz and L:\vh = 1.5 

kHz, it seems possible that this may have affected the measurement of the resonances. The 

correct answer is still unknown, but we are preparing experiments that will measure these 

transitions using a pulsed SQUID spectrometer. Because those experiments require no 

magnetic field, they may be able to provide a resolution to this debate. 
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Figure 4.4 A series of quadrupolar spectra taken at fields of approximately 5, 7.5, and 13 

Gauss. Note that in all three spectra the resonances remain at 357 ±2kHz and 714 ± 2 

kHz. Thus these frequencies are not a function of the magnetic field strength. 
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4.3.2 Petalite 

Petalite is a naturally occurring polycrystalline lithium aluminosilicate. It has only 

one distinct aluminum site, which is a distorted Al04 tetrahedron with Al-0 bond distances 

of 1.742 and 1.732 A.82 Figure 4.5 shows the 27 Alquadrupolar spectra of petalite with 

two resonances at 834 ± 5 kHz and 1314 ± 5 kHz. The quadrupolar parameters are 

calculated to be CQ = 4.56 ± 0.01 MHz and 11 = 0.47 ± 0.1. These values agree with those 

later found by dynamic angle spinning (DAS) experiments: CQ = 4.62 ± 0.05 MHz and 11 

= 0.48 ± 0.03. 83 

The line widths of these spectra are relatively large ( 100 - 200 kHz) as compared to 

the sapphire powder (20 kHz) and are most likely due to the polycrystalline nature of the 

sample. Structural disorder can lead to broadened lines as found in this sample and in 

glasses. This is due to a distribution of electric field gradient values resulting from · 

variation in the structural parameters. 

4.4 Vanadium-51 (I 7/2) 

Vanadium-51 provides the first example of a transition metal compound and a 

nucleus with I = 7/2. As mentioned in Chapter 3, low frequency quadrupolar resonances 
' 

can be found for transition metals only in nonparamagnetic states or in compounds which 

deviate only slightly from symmetry that would eliminate the quadrupolar interaction. In 

this case, I obtained a compound, ammonium metavanadate (NH4 V03), with a V(V) 

configuration. V(V) is not paramagnetic and many examples of such compounds have 

been studied previously by lineshape analysis and Bray's Robinson oscillator 

spectrometer.70• 84• 85 NH4 V03 has been observed by both of these methods. Figure 4.6 

displays the 5ly resonances obtained by the SQUID spectrometer. The transitions at 388 ± 
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Figure 4.5 27 Al NQR spectra of petalite in a field of approximately 10 Gauss. Resonances 

are found at 834 ± 5 kHz and 1314 ± 5 kHz. The quadrupolar parameters are calculated to 

be CQ = 4.56 ± 0.01 MHz and 11 = 0.47 ± 0.1. 

73 



Ammonium Meta vanadate (51 V NQR) 
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Figure 4.6 51 V NQR spectra of NH4 V0 3 in a field of approximately 7.5 Gauss. 

Resonances are found at 292 ± 7 kHz, 388 ± 5 kHz, and 610 ± 3 kHz. The quadrupolar 
parameters are calculated to be c0 = 2.88 ± 0.04 MHz and 11 = 0.38 ± 0.03. 
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5 kHz and 610 ± 3 kHz agree well with those found by Bray (388.4 ± 0.5 kHz and 606.3 

± 0.3 kHz). 85 They were not able to detect the lowest frequency transition which we find 

at 292 ± 7 kHz. 

For spin-7 /2 nuclei there is no analytical solution for the quadrupolar parameters, 

c0 and 11· The secular equation (with E = hCof28), 

2 2 
E4 - 42(1 + 1 )E2 - 64(1 -112)E + 105(1 + 1 )2 = 0, 4.1 

must be solved numerically (see Figure 3.4). Doing this gives values of c0 = 2.88 ± 0.04 

MHz and 11 = 0.38 ± 0.03. These agree with Bray's results of c0 = 2.868 ± 0.005 MHz 

and 11 = 0.363 ± 0.013.85 (He correctly assumes that the resonances he measured were the 

two higher frequency transitions.) 

Attempts were made to study other vanadium compounds, most notably vanadium 

oxide as a catalyst on a silica surface. However, no resonances were found. This may .be 

due to one or more of the following causes. First, there may not have been enough 

vanadium in the sample for detection or it may have been in the wrong oxidation state. 

Also, V 20 5 has a very small quadrupolar coupling constant and so the transitions may have 

been to low in frequency for detection. Or T 1 may have been to long. Further 

investigations into these catalysts could, however, be profitable given their importance in 

chemistry. 

4.5 Manganese-55 (I 5/2) 

Another transition metal nucleus which I have studied is 55Mn. The only 

non paramagnetic oxidation state of this element is Mn(VII) which forms the basis for the 

permanganates, XMn04. One problem with these samples is their light sensitivity. So 

care was taken to recrystallize the materials and then avoid as much exposure to light as 

possible. 
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4.5.1 Potassium Permanganate 

The first sample is K.Mn04, the most common of the permanganate family. 

Resonances were measured on two separate occasions with transitions detected at 374 ± 7 

kHz and 730 ±7kHz as shown in Figure 4.7. From this data, the quadrupolar parameters 

are calculated to be c0 = 2.44 ± 0.02 MHz and 11 = 0.1 ± 0.1. Previous measurements 

from an NMR lineshape analysis of a room temperature sample found c0 = 1.70 ± 0.07 

MHz and 11 < 0.05.86 The difference between the quadrupolar parameters in these two 

experiments may come from several sources. First, a structure change between room 

temperature and 4.2 K could easily account for the difference. Or, perhaps the samples 

were not prepared under similar conditions so that again crystal structures are not 

equivalent. With this in mind I conducted two sets of experiments with different samples, 

both times after recrystallization of KMnO 4 . I obtained the same resonance values each 

time. 

The one area of agreement for both sets of data is the value of 11· From room 

temperature crystal structure data it is found that the Mno4- group is a nearly regular 

tetrahedron with Mn-0 distances of 1.622, 1.625, 1.634, and 1.635 A. 87 Thus the electric 

field gradient arises primarily from the electric charges of the ions in the orthorhombic 

crystal structure .. This leads to the high degree of symmetry evidenced by 11 ::: 0. 

4.5.2 Silver Permanganate 

In the second sample, AgMn04 , this symmetry is lacking. Experimental 

resonances were found at 2309 ± 15 kHz and 1451 ± 10 kHz and are shown in Figure 4.8. 

The calculated quadrupolar parameters are c0 = 7.99 ± 0.06 MHz and 11 = 0.462 ± 0.016. 

At least part of the difference between the two permanganates can be attributed to the much 
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Figure 4.7 55Mn NQR spectra of KMn04 in a field of approximately 13 Gauss. 

Resonances are found at 374 ±7kHz and 730 ±7kHz. The quadrupolar parameters are 
calculated to be CQ = 2.44 ± 0.02 MHz and 11 = 0.1 ± 0.1. 
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Figure 4.8 55Mn NQR spectra of AgMn04 in a field of approximately 13 Gauss. 

Resonances are found at 2309 ± 15 kHz and 1451 ± 10 kHz. The quadrupolar parameters 
are calculated to be CQ = 7.99 ± 0.06 MHz and 11 = 0.462 ± 0.016. 
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larger deviation from a perfect tetrahedron of the Mno4- unit in AgMn04• Here the Mn-0 

distances are found to be 1.612, 1.631, 1.625, and 1.571 A88 which show larger 

differences among the bond lengths than those found for KMn04. This can easily change 

the value of 11 from its symmetric value of zero. It would also increase the strength .of the 

electric field gradient, and therefore CQ, because it deviates more from the symmetric 

tetrahedron which would have no electric field gradient. Also, because it is more 

covalently bonded, the molecular volume of AgMn04 is 15% smaller than KMn04. This 

could also increase the electric field gradient due to the closer proximity of the valance 

electrons. 

Further studies of permanganates as a function of the cation could be very 

interesting. Perhaps a comparison of quadrupolar parameters with the ionicity of the 

cation-Mno4- bond should be investigated. Also, information about the effect of crystal 

structure changes and deviations in basic units such as Mno4- could be gained. 
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Chapter 5 
NQR of Nitrogen-14 (1=1) 

As mentioned in Chapter 2, the case of integer spin nuclei is special. Only under 

unusual circumstances can these resonances be directly detected. I will begin this chapter 

with a detailed explanation of the problem in detection of integer spin NQR. Then I will 

present some data on solid a-N2 which has been directly detected and illustrates the special 

case where T) is close to 0. Following that I will introduce the indirect method of detection 

which involves level matching between a proton NMR transition and a nitrogen NQR 

resonance. Finally, I will describe some samples that we have studied, among which are 

amino acids and small peptides, to demonstrate the method and show what information we 

cari learn. 

5.1 The Integer Spin Problem 

Integer spin systems present a problem because all nondegenerate states of the 

system have a vanishing magnetic moment in zero magnetic field. 57 I will focus on the I= 

1 case because that includes the most important nuclei: 2D and 14N. The same ideas will 
'-

also apply to other integer spin systems, such as I= 3 (10B) and I= 5 (50V). 

The vanishing magnetic moment can be derived in two distinct but equivalent ways. 

First, the brute force method requires the calculation of eigenvalues and eigenstates from 

the quadrupolar Hamiltonian; 

5.1 

For I= 1 this leaves eigenstates; 
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with eigenvalues; 

lx) = 1+1) + 1-1), 

ly) = 1+1) -1-1), 

lz) = 10), 

hC 
~1 +T\). 

hC 
~1-T\), 

hC0 
- 2 ' 

respectively, where CQ = e
26Q· This leads to three possible transitions; 

5.2a 

5.2b 

5.2c 

5.3a 

5.3b 

5.3c 

5.4a 

5.4b 

5.4c 

The corresponding energy level diagram for this situation is found in Figure 5.1. Note that 

all three eigenstates have no magnetic moment (i.e. ('I'*Illl') = 0). 

Another way to show that the magnetic moment must vanish is through the use of 

group theory and time reversal symmetry. An electric field is in not affected by time 

reversal, but a magnetic field would be reversed as it is created by charges traveling in a 

specific direction. Therefore, a set of energy levels that results from an electric field, such 

as the nuclear quadrupole levels, will not be changed by the reversal of time. 

The Schrodinger equation, 

H'¥ = -in a'¥ 
at 5.5 

is invariant under time reversal if 1) His time reversal invariant and 2) we reverse tim~ (t 

~ -t) and take the complex conjugate (i ~ -i and'¥~'¥*). Because a nondegenerate 
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Figure 5.1. Energy level diagram for a spin-1 nucleus. Note that for the case where 11 :t:. 0 

all states have zero longitudinal magnetization. 
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state produced by an electric field can in no way be altered by time reversal but must be 

changed to its complex conjugate due to the Schrodinger equation condition; 

'I'= 'I'*. 5.6 

Therefore 'I' is real. However, an angular momentum operator, for example 

(Lz) = -ih(x:Y - y :x), 5. 7 

is imaginary and can not be time reversal invariant unless its eigenvalue, Lz, is zero. Thus 

the expectation value of an angular momentum operator (and therefore a magnetic moment) 

of a nondegenerate state in a quadrupole system must be zero in the absence of a magnetic 

field. 

Both of these arguments demonstrate that the nondegenerate states of an integer 

spin nucleus have no magnetic moment. There is no net change in magnetization with rf 

irradiation at a resonance frequency despite a change in the spin populations of the various 

levels. Because the SQUID measures such changes in magnetization, we see that there is 

no signal to detect. 

5.2 Direct Detection 

We could, however, apply a magnetic field to break the time reversal symmetry and 

thereby obtain a magnetic moment. To calculate this magnetic moment we will assume the 

most favorable of conditions, a single crystal sample with the magnetic field aligned along 

the quadrupolar z axis. The Hamiltonian is then 

5.8 

Solving this Hamiltonian leads to eigenvalues,89-91 
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with eigenstates 

where 

Ex= e2,iQ[1 + 11(1 + f2)112], 

EY = e2,iQ[1 -11(1 + f2)112], 

-~ Ez-- 2' 

lx) = cos81+1) + sinSI-1), 

ly) = sin81+1)- cosSI-1), 

lz) = 10), 

cose = ~[1 + f2 + f(l + f2)112rlt2, 

sin e = ~[1 + f2 - f(l + f2)1/2rl/2, 

f 'YBo 
e2qQ11. 

4h 

5.9a 

5.9b 

5.9c 

5.10a . 

5.10b 

5.10c 

5.lla 

5.llb 

5.11c 

We see that the magnetic moment is no longer zero, but a function of the parameter, f. If 

we calculate the expectation values of the wavefunctions we find that 

and 

(lx) = (Iy) = 0, 

(zllzlz) = 0, 

f 
(xllzlx) = -(yllziY) = - 2 112 = -F(f). 

(1 + f ) 

· 5.12a 

5.12b 

5.13 

This factor, F(f), is the magnetic moment of the lx) and ly) states. This is what the SQUID 

will measure when a nucleus is excited from, for example, the lz) to the lx) state. Figure 

5.2 shows a plot of F(f) for typical values of our NQR experiments. 
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Figure 5.2. Signal intensity vs. 11 with yBo = 11 kHz and e
26Q =5000kHz. 
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From this diagram it is easily seen the magnetic moment is nearly zero unless 11 = 

. 0. One could increase the field, but for powder samples this would mean spreading the 

signal over a larger frequency range making the corresponding signal intensity smaller. So 

we arrive at the conclusion that direct detection of 14N NQR by the SQUID is limited to 

samples with 11 = 0. Here the magnetic field serves to split the I+ 1) and 1-1) states, 

analogous to the case of the half odd integer spins (see section 3.3.2). 

5.2.1 Solid a-N 2 

We have been able to directly detect integer spin NQR in one sample, solid a.-N2• 

According to the literature, 11 for this sample is identically or very close to zero. Figure 5.3 

shows the 14N NQR spectrum of this material in a 35 G field. The resonance frequency 

was determined to be 3488 ± 2 kHz and agrees well with previous measurements of 

3487.73 ± 0.03 kHz at 4.2 K.92• 93 

The linewidth can be used to place an upper limit on the value of 11· This width 

comes from two sources; 1) the splitting due to the magnetic field, which is yB0, and 2) the 

splitting between states due to 11. which is e~iQ 11· The observed splitting in this spectrum 

puts an upper limit on the value of 11 of 0.006, which corresponds well to a literature limit 

from Scott of11 < 0.00016.93 

5.3 Indirect Detection 

Because direct detection of 14N NQR is limited to circumstances where 11 = 0, we 

need to find a way of indirect detection. It should be noted that the detection of 14N NQR 

through standard means is not typically inhibited by the vanishing magnetic moment but 

rather by the low frequency of 14N transitions (typically < 5 MHz), so indirect methods 
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Figure 5.3. Spectrum of solid a-N2. This sample was made by blowing nitrogen gas into 

the sample container which was placed into liquid helium. The very low asymmetry 

parameter of this sample allows for reasonable signal intensity. 
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must also be used. Techniques have been developed to study 14N NQR using field 

cycling. Several of the most productive of these techniques exploit level crossings between 

the proton and the nitrogen spins of a sample during field cycling.57• 94-97 A typical 

experiment would involve three phases: 1) preparation, 2) irradiation, and 3) detection. 

During the preparation phase the sample is placed in a large magnetic field for a time 

sufficient for both spin species to reach equilibrium with the lattice (i.e. the proton and 

nitrogen spin temperatures and the lattice temperature are the same). The sample is then 

removed from the magnet to an area where the magnetic field is essentially zero. While the 

field is changing, the proton spins will interact with the nitrogen spins at level crossings. 

These occur when the proton Zeeman splitting (due to the field) is equal to one of the 

nitrogen quadrupQlar frequencies. When this happens, the heteronuclear dipolar coupling 

can induce energy conserving spin flips between the two systems. However, since both 

systems are at the same spin temperature, there can be no net change in the polarization of 

either spin bath. 

At low field, rf irradiation is applied at a specific frequency. If this frequency 

corresponds to a quadrupolar resonance then the nitrogen spin system will absorb energy. 

While returning to high field for detection the protons will again interact with the nitrogen 

spins. If the nitrogen bath has absorbed energy during the irradiation some of that energy 

will be transferred to the protons during the level crossing. 

In the final phase, the proton magnetization is measured at high field. If the 

irradiation frequency corresponded to a nitrogen quadrupolar transition then the proton 

magnetization will have decreased due to the energy absorbed during the level crossings. 

This cycle is repeated with incremental stepping of the irradiation frequeqcy until the entire 

spectrum is mapped out. Many such cycles must be carried out in order to obtain a single 

N-14 NQR spectrum. 

Other techniques have also been developed that differ from the one described above 

in either the way of providing contact between the two spin baths or in the property of the 
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proton spins which is measured during the detection period. However, they all provide a 

coupling between the protons and the nitrogens and then measure the effect of this coupling 

on the protons. 

Our technique does essentially the same thing, but no longer involves any field 

cycling. I call it the level matching method. Essentially, we keep the protons in constant 

contact with the nitrogen spin system during the entire experiment rather then only 

intermittent contact as in the experiment described above. This is done by picking a 

magnetic field such that the proton Larmor frequency, vh, or a multiple of the Larmor 

frequency (usually 2vh) is equal to a nitrogen quadrupolar frequency: v0, v_, or v +" 

In this experiment, one of the non level matching NQR transitions is excited with 

rf. This irradiation changes the population of one of the spin states involved in the level 

matching transition. Thus the nitrogen spin reservoir associated with the level matching 

resonance is either heated or cooled. Through cross-relaxation between the nitrogen and 

nearby protons, mediated by the heteronuclear dipole-dipole interaction, the protons are 

correspondingly warmed or cooled to finally achieve an equilibrium spin temperature for 

the level matching states. This change in the magnetization of the protons creates a 

detectable signal for the. SQUID spectrometer. One of the advantages of this method is that 

the entire spectrum can be obtained in one scan, with, typically, a considerable savings in 

time over the field cycling methods. 

5.3.1 Single Sweep 

I will begin by describing the simplest of the level matching methods, the single 

-
sweep experiment. To describe this mathematically I will begin with a discussion on the 

concept of spin temperature. 

A spin temperature can be mathematically defined for any two level in the following 

way,58 

89 



p1 hv12 
p= exp(- kT ) 

2 12 
5.14 

where P1 and P2 are the populations of the two states, v 12 is the frequency difference 

between states, and T 12 is the spin temperature of the system. For quadrupolar nuclei, one 

spin temperature may not describe the entire system. For I= 1, a maximum of two spin 

temperatures are required but at thermal equilibrium only one is needed. In this discussion, 

the only nitrogen spin temperature that we use is derived from the ratio of the populations 

of the two states that define the level matching transition. 

In NMR, hv<<kT for T>lK so we can use the high temperature limit.58 This 

allows the exponential to be expanded in a series where all but the first two terms are 

ignored. Thus equation 5.14 can be written as 

5.15 

The spin temperature is then simply 

5.16 

If cross-relaxation between the proton and nitrogen spin baths is complete, then at all times 

T proton = T nitrogen 5.17 

where T nitrogen is the spin temperature derived from the two level matching states. From 

equations 5.16 and 5.17 we derive that 

5.18 
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where v P and v n are the proton and nitrogen level matching frequencies respectively and 

P PI , P P2 , P n I , and P n2 are the populations of the states involved in the level matching. 

This will provide a condition for our calculation of the signal intensity below. 

For the next part of the discussion I will use the situation shown in Figure 5.4 as an 

example of a system with N nitrogens and P protons. These results will then lead to 

generalized solutions. At thermal equilibrium with the lattice we can write the populations 

of the three nitrogen levels as 

5.19a 

5.19b 

5.19c 

where 

hv hv 
1-a = exp(- kT) === 1 - kT 5.20a 

hv+ hv+ 
1-b = exp(- kT ) === 1 - kT . 5.20b 

(Again the high temperature approximation has been used.) The populations of the two 

proton levels are 

p 
p -­+-2 

p 
P_ = 2\1-a). 

5.21a 

5.21b 

During the experiment the nitrogen v + transition is saturated by rf irradiation thus 

causing the transfer of ~s spins fro~ the Nz level to the Nx level. In the mean time, ~r 

spins will relax from the NY level to the N z level as the protons equilibrate the spin 

temperature by means of cross-relaxation. This will mean that Pfr spins will be moved 

from the P +level to the P_level where 
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Single Sweep 

Nx -----

p 

Nz p+ 

Populations 

Before After 

Nx N(l - b)/3 . N(l- b + s)/3 

NY N(l - a)/3 N(l- a- r)/3 

Nz N/3 N(l - s + r)/3 

p P(l- a)/2 P(l -a+ Rr)/2 

p+ P/2 P(l- Rr)/2 

Figure 5.4. Example of the single sweep method. In this case, v + is the observed 

transition and the proton Zeeman frequency is matched to v _ to provide efficient cross-

relaxation. 
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5.22 

The final populations, assuming no spin-lattice relaxation, will be 

N 
Nz = 3(1-s+r), 5.23a 

N 
NY= 311-a-r), 5.23b 

N 
Nx = 3(1-b+s), 5.23c 

p 
P_ = 2\ 1-a+Rr), 5.23d 

p 
P + = 2<1-Rr). 5.23e 

Two conditions exist at the end of the experiment. First, due to complete saturation 

by the rf, 

5.24 

Second, thermal equilibrium between the proton and nitrogen spin baths due to cross­

relaxation is maintained. Using equation 5.18 we find that 

1 P 1 N 
- (1 - --) = - (1 - :..:Y). 
V P+ v Nz 

h -

5.25 

In this case, 5.25 reduces to 

5.26 

because vh = v_ . 

Substituting 5.23a and 5.23b into the first condition leads to 

N N 
3'1-s+r) = }{1-b+s) 5.27 

thus 
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The second condition gives 

(b+r) 
s.=-2-. 

p N 
2:(1-Rr) 3(1-s+r) 

p =N 
2:(1-a+Rr) 3(1-a-r) 

Doing the required algebra renders 

s(l-a+Rr) = r(2-a+2R). 

5.28 

5.29 

5.30 

We realize, however, that the difference in populations in typical NMR, experiments are 

actually very small (in the high temperature limit) which means that a,r<<l. Thus rewriting 

equation 5.30 and eliminating all the negligible terms gives 

s 5.31 r = (2+2R) 

Combining this result with 5.28 and 5.20b leaves 

b liv+ 
r = (4R+3) = kT(4R+3)" 5.32 

p~ is the number of proton spins that have flipped and therefore the magnetization 

change is 

Thus, 

yliPRr yn2PRv + 
.1M=- 2 = -2kT(4R+3} 

yn2PR 3 e2qQ( 1 ~) 
=- 2 4 kT(4R+3) · 
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The generalization of this formula is 

~ oc ±vobs 5.35 

. 
where the sign of the magnetization change is positive if v obs or v cr is v + . The solid lines 

in Figure 5.5 display the calculated relative intensities in all experimental cases. Figure 5.6 

is a spectrum of the v_ (1972 ±4kHz) and v + (2590 ±3kHz) transitions of glycyl-glycine. 

This sample demonstrates both the method and the sign difference expected for different 

combinations of irradiation and level matching frequencies. 

This .calculation assumes that cross-relaxation amongst the protons and between the 

proton and nitrogen spin baths is faster than the time scale of the sweep through resonance. 

Where this does not occur, the full expected intensities of the signals will not be realized. 

This means that the ideal operating procedure for the spectrometer -is to use long sweep 

times and as much rf power as possible. 

5.3.2 Single Sweep (v cr 

If, instead of the nitrogen level matching resonance equaling vh, it matches 2vh the 

following adjustments must be made to the derivation. Assuming the situation in Figure 

5.7, the original populations (equations 5.19a-c and 5.2la) remain the same except 

p a 
P_ =2(1-2). 5.2lb' 

The final populations, with ~s spins transferred by the saturating rf, and ~r spins relaxing 

in the nitrogen spin bath leaves the nitrogen spin populations (5.23a-c) the same but now 

p a 
P_ = 2(1-~2Rr), 5.23d' 

p 
P + = 20-2Rr). 5.23e' 
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Figure 5.5. A plot of the relative intensities as calculated in sections 5.3.1 (solid lines) and 

5.3.2 (dotted lines) for all different combinations of cross relaxing and observed 

transitions. 
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Figure 5.6. Spectra of diglycine taken by level matching the proton Larmor frequency with 
the v0 frequency (618kHz) of the amino acid nitrogen and sweeping over the v_ (1972 

kHz) and v + (2590 kHz) transitions. 
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Single Sweep . 

Nx -----

Populations 

Before After 

N X N (1 - b )/3 N (1 - b + s )/3 

N y N (1 - a)/3 N (1 - a - r )/3 

N z N/3 N(l - s + r)/3 

p P(l- a/2)/2 P(l- a/2 + 2Rr)/2 

p + P/2 P(l - 2Rr)/2 

Figure 5.7. Example of the single sweep method. In this case, v + is the observed 

transition and twice the proton Zeeman frequency is matched to v _ to provide efficient 
cross-relaxation. 
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This is because two proton spins must now flip for every nitrogen spin relaxed. The 

saturation condition (eq. 5.24) is still met so equations 5.27 and 5.28 are correct. But the 

thermal equilibrium condition is 

p N 
2(1 - p- ) = (1 - }:[) 

+ z 
5.25' 

because v_ = 2vh. Substitution of the populations gives 

P a N 
2< 1 - 2 + 2Rr) 3< 1 - a -r) 

2(1 - P ) = ( 1 - N ) · 
2<1-2Rr) 3(1-s+r) 

5.29' 

Working out the complex fractions produces 

a 
-- 4Rr 
2 a+ 2r - s 

2( 1 - 2 R r) = (1 - s + r ) · 5.30' 

Again, r,s<<l so this leaves 

a - 8Rr = a + 2r - s 5.36 

or 

s 
5.31' r=8R + 2· 

This leads to 

r = 16R + 3· 
b 5.32' 

Th · · h d h 2rRP · th fl" · h -e magnetizatiOn c ange ue tot e-2 - proton spms at 1p IS t en 

5.33' 

Comparing this to equation 5.33 gives 
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2(4R + 3) 
L\.M2vh = L\.Mvh 16R + 3 5.37 

This will lead to a slight increase in signal as displayed in by the dotted lines in Figure 5.5. 

Because absolute intensity measurements are not very accurate with the SQUID system this 

slight increase has not been observed. It should also be noted that the transition matrix 

elements for this experiment should be smaller than in the previous case because higher 

order terms in the dipolar interaction would be needed, namely those involving 3 spins: 2 

protons and 1 nitrogen. Thus the actual final intensities may be reduced. 

5.3.3 Double Sweep 

The next two methods are attempts to increase the signal intensity by also irradiating 

the third transition in the nitrogen spin system. These experiments are meant to accomplish 

two objectives. First, by increasing the signal intensity we will be able to observe weak 

signals such as the v0 transition. Because intensity is proportional to frequency, the v0 line 

usually is very weak due to its low frequency (typically 100 - 600 kHz) as confirmed in 

Figure 5.5. 

The second goal is to connect transitions that are from the same nitrogen site. 

Polypeptides and even some amino acids have more than one nitrogen site, so it will be 

important to match transitions from the same nitrogen in order to calculate the quadrupolar 

parameters. This is easily done if the intensity of the signals can be selectively modified. · 

The double sweep method utilizes a sweep first'through one resonance and then 

tl)rough the other while detecting the resultant signal as shown in Figure 5.8. In this case, 

v + is irradiated first and at the end of that sweep the final conditions in section 5.3.1 are 
Ns' Nr' 

achieved. Now v0 is s~ept. 3 spins are transferred due to the rf and 3 spins are 

relaxed by the protons. At the end of this sweep, assuming no spin-lattice relaxation, the 

final populations are 
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Double Sweep 

\'irr 
p 

Nz p+ 

Populations 

Before Intermediate After 

Nx N(l - b)/3 N(l- b + s)/3 N(l - b + s + s')/3 

NY N(l - a)/3 N(l -a- r)/3 N (1 - a - s' - r - r')/3 

Nz N/3 N(l -s + r)/3 N ( 1 - s + r + r') /3 

p P(l- a)/2 P(l -a+ Rr)/2 P(l - a + Rr + Rr')/2 

p+ P/2 P(l- Rr)/2 P( 1 - Rr - Rr')/2 

Figure 5.8. Example of the double sweep method. In this case, v + is swept first and 

following that we sweep through v0 for observation. The proton Zeeman frequency is 

matched to v _ to provide efficient cross-relaxation. 
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Nz = ~1-s+r+r'), 
NY= ~1-a-r-r'-s'), 
Nx = ~1-b+s+s'), 

P_ = ¥1-a+Rr+Rr'), 

P + = ¥1-Rr-Rr'). 

The final conditions will be 

The same mathematics as applied in the previous section leads to 

So 

(b ) 
b(2R+3) 

- -a + 4R+3 
r = (4R+3) 

2R+3 
_ y liPrR _ yli2PR(-Vo + 4R+3 v +) 

AM-- 2 -- 2kT 4R+3 

The generalization of this formula is 

+ + 2R+3 
= _ yli2PR(-V obs- 4R+3 virr) 

~ 2kT 4R+3 · 

5.23a" 

5.23b" 

5.23c" 

5.23d" 

5.23e" 

5.24" 

5.25" 

5.32" 

5.33" 

5.35" 

The first sign is negative if v obs and v cr are a combination of v _ and v0. The second sign is 

negative if v obs is v + . A comparison of these intensities with those from the original 

method is shown by the dotted lines in Figure 5.9. An analysis of this figure indicates that 

in some, but not all, cases the signal is enhanced. This has not yet been confirmed 

experimentally. 
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Double Sweep 

v+/vofv_ 
--_;:::;::::-----------~---- v+/v_!v0 ------__ --- v_!vofv+ 

0.0 0.2 0.4 0.6 0.8 1.0 
eta 

Figure 5.9. A plot of the relative intensities as calculated for the single sweep (solid lines) 

and double sweep (dotted lines) methods for all different combinations. 
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5.3.4 Double Irradiation 

When two transition frequencies have been elucidated then another type of 

experiment can be done, namely double irradiation. This method enhances the intensity of 

any resonance and so can be used to detect difficult to find transitions (usually v0 because 

of its low frequency and therefore low intensity) and also to connect transitions when more 

then one nitrogen site is present in the material. 

In this experiment, sh()wn in Figure 5.10, two rf irradiation frequencies are used. 

One, v irr• is held constant at the frequency of a known transition. This transition is 

saturated before and during the experiment. The second rf channel is swept through a 

range containing the unknown or possibly connected resonance. Thus, we simultaneously 

irradiate the two non-level matching transitions. This leads to the following conditions: 

5.38a 

5.38b 

5.38c 

The proton spins are entirely saturated in the experiment, if we assume complete cross­

relaxation. Thus the final populations of the states at the end of the experiment are 

5.39a 

5.39b 

The number of proton spins flipped during detection is then the difference between the final 

population and the population after. irradiation of virr: 

P_(end)- P_(intermediat~) =;a- 4:~ 3). 5.40 
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Double Irradiation 

'1rr 
p 

Nz p+ 

Populations 

Before Intermediate After 

Nx N(l- b)/3 N(l- b + s)/3 N/3 

NY N(l- a)/3 N(l- a- r)/3 N/3 

Nz N/3 N(l-s + r)/3 N/3 

p P(l- a)/2 P(l- a+ Rr)/2 P/2 

p+ P/2 P(l- Rr)/2 P/2 

Figure 5.10. Example of the double irradiation method. In this case, v + is irradiated 

before and during the sweep through v0 for observation. The proton Zeeman frequency is 

matched to v _ to provide efficient cross-relaxation. 
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Thus the final magnetization is 

yn2PR Rv + 
L\M=- 2kT (v_- 4R + 3) 5.33"' 

and the generalized formula is 

5.35"' 

the minus sign occurring when v cr and v irr are a combination of v _ and v 0. These 

intensities are compared to those for the single sweep method in Figure 5.11. The full 

effect of this enhancement has not been observed experimentally, but a significant increase 

in signal intensity has been seen as presented in Figure 5.12. 

5.3.5 Level Matching Conditions 

Figure 5.13 shows a series of derivative spectra of L-serine taken at different fields 

(the broadest transition is at twice the proton Larmor frequency, 2vh, which is proportional 

to the magnetic field strength). It demonstrates two possible level matching conditions. 

The first situation is where the proton frequency exactly matches the nitrogen quadrupolar 

frequency. In this case, the level matching transition is completely overwhelmed by the 

proton signal, but the other resonances are clearly visible. 

In the second case, the frequency of the level matching transition deviates, within 

the range of the dipolar interaction of the protons, from the proton Zeeman splitting. Here 

the level matching signal can often be observed, especially if it is swept before saturating 

the proton resonance. Usually cross-relaxation is efficient enough to detect the other 

transitions. This allows us to find resonances although the exact level matching condition 

is not met and therefore makes the experiment less rigid as far as choice of magnetic field 

strength. 
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Double Irradiation 

0.0 0.2 0.4 0.6 0.8 1.0 
eta 

Figure 5.11. A plot of the relative intensities as calculated for the single sweep (solid lines) 

and double irradiation (dotted lines) methods for all different combinations. 
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Frequency [kHz] 
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sweep 
(100-300 kHz) 
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Figure 5.12. Comparison of the three nitrogen transitions ofL-alanine l v0 =160kHz, v_ 

= 828 kHz, and v + = 988 kHz) under single and double irradiation. 
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Figure 5.13. Derivative spectra of DL-serine for different magnetic field strengths. The 
broad proton line appears at double the Larmor frequency. The nitrogen transitions, v _ 

(882kHz) and v +(961kHz) become visible near level matching. 
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5.4 Experimental Results 

Tables 5.2 and 5.3 provide a list of the. 14N NQR r~sonances that we have obtained 

up to this time. Also included are field cycling measurements at 77 K from the literature. 57• 

98-102 It can be seen that the agreement is quite good. Most of those resonances are below 

2 MHz, a frequency range where standard NQR experiments don't work. However, first I 

wish to mention some higher frequency experiments. 

The first 14N NQR resonances measured by this method were those for a urea 

inclusion compound with octanoic acid. The measured quadrupole parameters for this 

compound are c0 = 3487 ±20kHz and 11 = 0.344 ± 0.011. These compares well with 

urea at 77 K (CQ = 3507 and 11 = 0.323). 103 The other two high frequency compounds are 

pyridine (CQ = 5216 ±6kHz, 11 = 0.019 ± 0.002) and uracil. For uracil, 100• 104 a nucleic 

base used in DNA, the two resonances observed correspond to v + for different nitrogen 

sites as described by Edmonds. 100 The parameters of these three materials are typical NH 

and NH2 values. 

Amino acids provide good examples of NH3 + groups which typically have c0 = 

1.0- 1.5 MHz and 11 < 0.2J02 Thus the resonance frequencies are less then 1300kHz.· 

These types of resonances are difficult to observe except with the SQUID spectrometer or 

field cycling experiments. 

When there are several nitrogens per molecule it becomes imperative to try and 

assign the lines to specific sites. One useful tool is symmetry. An NH3 + group has a c3 

axis along its bond to the carbon skeleton. This translates into 11 = 0 for that site (see 

section 3.1.1). 102 This situation only occurs for a perfectly tetrahedral NH3 + group. 

However, referring to Tables 5.2 and 5.3, we find that most of the NH3 + groups have 11 < 

0.2 making them easy to spot as opposed to other sites. Alanine, histidine, and serine 

provide good examples of the near tetrahedral NH3 + group. 
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Name Site V+ (kHz) V- (kHz) vo (kHz) CQ (kHz) 11 
L-Alanine NH3+ 988 + 3 828 ± 10 160 ± 3 1208 + 3 0.267 ± 0.005 

(982) (825) (1205) (0.261) 
Glycine NH3+ 1099 ± 2 782 ± 3 - 1254 + 3 0.506 + 0.005 

(1093) (780) (313) (1249) (0.501) 
L-Histidine NH3+ 1032 ± 5 939 ± 5 - 1314 + 5 0.142 ± 0.008 

(mono) (1025) (932) (1305) (0.143) 
NH3+ 984±6 908 ±4 - 1261 ± 5 0.121 ± 0.008 
(ortho) (974) (903) (1251) (0.113) 
NH 1412 + 4 - - - -

(1406) (749) (657) (1437) (0.915) 
D-Serine NH3+ 976±4 859 ± 2 116 ± 8 1223 + 3 0.190 ± 0.005 
L-Serine NH3+ 977±3 860 + 3 - 1225 + 3 0.191 ± 0.005 

(967.5) (855.5) (1215) (0.184) 
DL-Serine NH3+ 961 ± 3 882 + 3 - 1227 + 3 0.128 ± 0.005 

(949) (875) (1217) (0.118) 

Table 5.1 Amino Acid 14N results. Literature values are given in parentheses below our experimental results. 

Ref. T(K) 
4.2 

57 (77) 
4.2 

57 (77) 
4.2 

57 (77) ' 
4.2 

57 (77) 
4.2 

57 (77) 
4.2 
4.2 

57 (77) 
4.2 

57 (77) 

..... ..... ..... 



Name Site V+ (kHz) V- (kHz) vo (kHz) Co (kHz) 11 Ref. T(K) 
Diglycine NH3+ 2590 + 3 1972 ± 3 - 3041 + 3 0.407 + 0.005 4.2 

(2585) (1975) (620) (3030) (0.41) 57 (77) 
NH 1058 + 3 - - - - 4.2 

(1090) - (260) (1280) (0.41) 57 (77) 
Triglycine ? 1167 + 6 4.2 

? 898 ± 8 4.2 
? 843 ±7 4.2 
NH (2900) (1175) (3080) (0.76) 57 (77) 
NH (2620) (720) (3010) (0.48) 57 (77) 
NH3+ (1025) (275) (1180) (0.46) 57 (77) 

L-alanyl-L- NH3+ 1203 ± 6 933 +4 - 1424 + 5 0.379 + 0.007 4.2 
histidine NH3+ 1160 + 3 834±4 327 + 5 1329 ± 4 0.491 + 0.006 4.2 

NH 1550 + 3 - - - - 4.2 
NH 1477 + 3 - 524+7 1620 ± 6 0.647 + 0.008 4.2 

L-alanyl- NH3+ 1033 + 13 837 + 5 183 + 6 1247 + 9 0.314 ± 0.014 4.2 
digl_ycine 
Urea/Octa- Urea 2915 + 20 2315 ± 20 - 3487 + 20 0.344 ± 0.011 4.2 
noic Acid 
Pyridine 3937 + 7 3887 ± 5 - 5216 + 6 0.019 ± 0.002 4.2 
Uracil NH 2318 + 7 - - - - 4.2 

(2320) (1585) (740) (2600) (0.569) 57 (77) 
NH 2285 ± 5 - - - - 4.2 

(2290) (1620) (675) (2600) (0.519) 57 (77) 

Table 5.2 Polypeptide and other 14N results. Literature values are given in parentheses below our experimental results. 
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coo­
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+H N-C-H 
3 I 

CH3 

Alanine 

coo-
1 HC-NH 

+ H N - c- cH -e 1 
3 2 ' 1 N=CH 

H 

Histidine 

coo­
l 

+H N-C-H 
3 I 
H- C- OH 

I 
H 

Serine 

We investigated D-, L-, and DL-serine in order to confirm an hypothesis about the 

crystal structures of these compounds. D and L isomers are simply mirror images of one 

another so one would expect to see crystal structures that are also mirror images. For the 

quadrupolar interaction this should make no difference and thus the quadrupolar parameters 

should be the same. This is confirmed by D- and L-serine. However, for DL-serine, 

which is a racemic mixture of D and L isomers, the crystal structure should be significantly 

altered to accommodate both molecules. This change in crystal structure should have an 

impact on the quadrupolar parameters, which is also confirmed by our results-. This is 

another indication of the importance of crystal structure in the quadrupolar interaction and 

illustrates the type of information that we can obtain. 

Another interesting sample is L-histidine because it has three nitrogens per 

molecule. Quadrupolar transitions for both the NH3 + and the NH groups have been 

observed. No resonances arising from the ring nitrogen with no attached protons have 

been detected probably because it does not have very efficient cross-relaxation with any · 

nearby protons. Perhaps slower sweeps and more rf power might help in detecting these 

kinds of resonances. Only one transition for the NH group has been measured but the level 

matching requirement for that experiment implies that v _ = v0 so 11 = 1. We are unsure why 

we can not detect the v _ and v0 transitions, but work is continuing in this regard. 

The four NH3 + resonances in this sample imply two separate sites. Edmonds also 

observes these signals for certain preparations of histidine. 101 He explains that the sample 
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is a mixture of two crystal structures: monoclinic and orthorhombic. They were able to 

obtain a pure orthorhombic sample and from that assign the resonances to the 

corresponding structure. We follow their assignment. This sample could provide a perfect 

opportunity to use the double irradiation technique to connect transitions. 

coo­
l 

+H N- C- H 
3 I 

H 

Glycine 

Glycine seems to break the pattern of NH3 + groups with 11 < 

0.2. A look at the crystal structure, however, explains the difference. 

Two of the protons in the NH3 + group are strongly hydrogen bonded 

to neighboring molecules, however the third proton participates in a 

weaker bifurcated hydrogen bond with two adjoining molecules.102• 

105 Thus the three protons are no longer equivalent and ~e c3 axis 

symmetry does not exist. This again confirms the fact that crystal 

structure can often have a profound impact on quadrupolar parameters. 

The next step on the way to proteins is polypeptides. We have studied several di­

and tripeptides with mixed success. The problems here arise from several sources. First, 

the intensity of the signal is decreased by the increased size of the molecule. Fewer 

nitrogens from a given site are found in the sample. Second, there is more than one 

nitrogen site in the sample and therefore there are many resonances which must be 

assigned. Despite the predictions made in the theoretical section there has been only limited 

success in connecting resonances from the same site. However, our ability to conduct 

these experiments is increasing and should result in easier assignments. 

The first attempts at polypeptides were di- and triglycine.99 Diglycine resonances 

were found at 2590 ± 3 kHz, 1972 ± 3 kHz, and 1058 ± 3 kHz. The first two are assigned 

to the bridging nitrogen bond based on comparison with typical NH quadrupolar 

parameters. We also expect that the terminal diglycine nitrogen should have quadrupolar 

splittings similar to those for glycine and the third resonance fits that profile. 

Unfortunately, the v_ and v0 transitions have not yet been observed for the terminal 
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H 0 H H 0 H 0 H 
I II I I II I II I 

+ H3 N- c- c- N- c- coo- + H3 N- c- c- N- c- c- N- c- coo-
l I I l I I I I 
H H H H H H H H 

Diglycine Triglycine 

nitrogen so we are not able to compare the quadrupolar parameters of this sample with 

those of glycine. 

Triglycine has proven to be a difficult sample. Long spin-lattice relaxation times 

have prevented us from averaging scans and until now resonances have been found only at 

1167 ±6kHz, 898 ±8kHz, and 843 ±7kHz. Early conjecture would place the 1167 

resonance and one of the other two as terminal glycine nitrogen signals, because that would 

be similar to glycine itself. The other resonances would be v_ or v0 (for a large 11 site) of a 

bridging nitrogen. 

L-alanyl-L-histidine has proven to be a much better sample. We have observed 

several transitions. My coworkers, Marcia Ziegeweid and Ulrike Werner, have recently 

proposed connections between the resonances (see Table 5.2). Their analysis indicates that 

there are two distinct NH3 + groups in this sample. This would imply that there are two 

H 0 COO- H 0 H 0 H 
I II I ~C -NH I II I II I 

+H3N- c- c- N- c- CHz-C I +H3N- c- c- N- c- c- N- c- coo 
I I I '1\FCH I I I I I 
CH 3 H H CH 3 H H H H 

Alanyl-Histidine Alanyl-Diglycine 

distinct lattice sites as there is only one NH3 +group in the molecule (the terminal alanine 

nitrogen). In addition they have identified two NH groups which could either be the 

bridging amino group of histidine or one of the nitrogens in the histidine ring. This model 

indicates that there are still several nitrogens and their resonances to be found in order to 
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provide a final assignment. Also, a crystal structure of this sample would be helpful in 

confirming the existence of two lattice sites. 

Finally, we have been able to find resonances from the NH3 + site in L-alanyl-

diglycine. Unfortunately, we have not observed transitions from either of the glycine 

nitrogens and a further search for these resonances is warranted. 

The di- and tripeptides are a step towards biologically important molecules. 

Realistically, however, it must be noted that many of these resonances occur in the same 

frequency range (100-1300 kHz for terminal nitrogens and 700-3000 kHz for bridging 

nitrogens). Thus significant overlap of transitions would occur with larger molecules. 

Also, assignment of the nitrogen site to a specific amino acid residue may be difficult, again 

because of the overlap in the frequency range. These problems must be resolved for 14N 

NQR to be useful in biological molecules. 

As indicated by the incomplete list of resonances for several of these samples, much 

work remains to perfect the technique. This is, however, an important beginning for the 

study of 14N NQR by the SQUID spectrometer. 

\ 
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Chapter 6 
SQUID NMR and Methyl Quantum 

Tunneling 

Methyl quantum tunneling provides an important example of quantum processes in 

molecules. It has been widely studied by inelastic neutron scattering (INS)106 and 

NMR. 23 In this chapter I will show how we use the SQUID spectrometer to measure 

tunneling splittings and discuss the advantages of this approach as compared to the field 

cycling method. I will also present a correlation between the microscopic methyl tunneling 

splittings and macroscopic thermodynamic properties. This correlation may then be used to 

learn about the surroundings and interactions of the methyl group. 

6.1 Theory 

An understanding of the methyl quantum tunneling experiments first requires an 

analysis of the effects of symmetry on the methyl group wavefunction. 107-113 If we 

assume that the equilibrium temperature is low enough that classical internal rotation is 

frozen ·then the usual model for a methyl group is an equilateral triangle confined by a 

hindering barrier to small oscillations about its symmetry axis. Rotation of the methyl 

group is treated as a sudden transition from one orientation to one of the two other 

equivalent alignments. This model of the methyl group introduces c3 geometrical 

symmetry. The C3 symmetry table is reproduced below for reference during this 

discussion. 
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c3 E c3 
c2 

3 

A 1 1 1 

Ea 1 £ £* 

Eb 1 £* £ 

£ = exp(27til3) 

Ta.bl~ f!.1 ~ ~haract~r Tabl~ 

The total wavefunction for the methyl group can be expressed as 

6.1 

The four tenns on the right side refer to the electronic, vibrational, rotational, and spin parts 

of the total wavefunction. We do not consider the electronic or vibrational wavefunctions 

further as they are not involved in the methyl group rotation. But we will assume that they 

are in a symmetric ground state although this is not a general requirement for the validity of 

the following argument. This discussion begins by examining the rotational part of the 

wavefunction first. 

The rotational Hamiltonian, Hr, consists of a kinetic energy term, corresponding to 

the free rotation of the methyl group, and a potential energy term, which describes the 

barrier to free rotation. This can be written as 

6.2 

where I is the moment of inertia and <1> is the angle of rotation from a specific orientation. 

Because of the C3 symmetry the potential can be described by the following Fourier series 

V(<l>) = ~ LY 3n(l-cos(3n<j>)). 6.3 
n 

118 



In these experiments the first term in the series dominates and so we ignore all others. 

v 
V(cj>) == j{l-cos(3cj>)). 6.4 

This is true for the samples we study because they have high barriers and no other local 

symmetry. For samples with lower barriers, which are usually analyzed by inelastic 

neutron scattering, this approximation is not good and a second term in the expansion is 

often needed. 

The rotational Hamiltonian is now 

6.5 

For small variations in the angle cj> the potential term can be expanded around the three 

minima, cl>o = 0, ±27t/3, to give108 

6.6 

where 

6.7 

Thus the rotational Hamiltonian is now; 

6.8 

which is the harmonic oscillator Hamiltonian and has eigenvalues 

6.9 

The triply degenerate ground state wavefunction is calculated to be 
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'I' = (Iro) 112 exp(- Iro(<j>- <l>o)2) 
o tm 21i 

6.10 

with <l>o = 0 or ±27t/3. Figure 6.1 depicts this situation, which deliberately ignores any 

tunneling between the potential wells. 

Returning to equation 6.5, the eigenstates of this Hamiltonian can be expressed in a 

basis formed by the three harmonic .oscillator ground states. To do this calculation we 

define the off-diagonal elements to be 

6.11 

where rot is what we call the tunneling splitting. 108 The eigenstates of the rotational 

Hamiltonian are then found to be 

6.12 

where A.= 1, E or£* withE= exp(2~i). The corresponding eigenvalues ~e 

6.13a 

6.13b 

where E0 is the ground state energy found in the harmonic potential. 

We classify the three eigenstates according to the irreducible representations of the 

c3 symmetry as A, Ea, and Eb for '1'0, qtE*, and qtE respectively. Figure 6.2 displays an 

energy level diagram of several rotational states. The A and E states are split by what we 

have defined as the tunneling frequency, rot. We can use this parameter to numerically 

calculate the barrier height to rotation, V 3. 

Now to the spin part of the wavefunction, because this is, of course, an NMR 

experiment. First, we define an operator which cyclically permutes the space coordinates, 
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Rotation Angle 

Figure 6.1 Potential energy diagram for a methyl group. The eigenstates are formed from 

a harmonic approximation (equation 6.8) that does not allow tunneling. 
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Figure 6.2 Potential energy diagram displaying the energy levels for the full rotational 
Hamiltonian (equation 6.5). The ground rotational states are split by rot' the tunneling 

frequency. 
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6.14 

From this operator a Hamiltonian can be built, Ht, that, so long as the system is limited to 

the ground torsional state, can replace Hr (equation 6.5) since both have the same 

eigenvalues apart from an unimportant additive constant: 

6.15 

An operator, P, can also be defined which cyclically permutes the spin coordinates. The 

indistinguishability of the three orientations means that PR is the unit operator so 

6.16 

This Hamiltonian can now be applied to the methyl group spin states which are written in a 

basis, 1123), where 1, 2, and 3 =a. or~ depending on whether the magnetic moment of the 

particular proton spin is aligned parallel or antiparallel to the orientation of an applied ... 
magnetic field. The eigenstates of the combined Zeeman (equation 3.5) and tunneling 

Hamiltonians are 107 

A+312 = la.a.a), 
1 

A+112 = {3 (la.a.~) + la.~a.) + l~a.a.)), 

1 
A_ 112 = {3 (Ia.~~) + l~a.~) +~~~a.)), 

A-3/2 = ~~~~). 
1 

E~112 = {3 (la.a.~) + Ela.~a.) + E*l~a.a.)), 

1 
E~112 = {3 (Ia.~~) + El~a.~) + E*l~~a.)), 

E~ 112 = ~ (la.a.~) + E*la~a.) + El~aa.)), 

E~112 = ~ (Ia.~~) + E*l~a~) + El~~a)). 

123 

6.17a 

6.17b 

6.17c 

6.17d 

6.17e 

6.17f 

6.17g 

6.17h 



... 

In each case we give the state a short hand name which specifies the irreducible 

representation of the C3 symmetry group which it transforms as and its magnetic quantum 

number, m = m 1 + m2 + m3. For example, A+312 means an A symmetry state with a total 

magnetic quantum number of 3/2 (all spins aligned in the direction of the field). The 

corresponding eigenvalues are 

6.18a 

6.18b 

6.18c 

6.18d 

6.18e 

6.18f 

6.18g 

6.18h 

An energy level diagram for the methyl group in a magnetic field is shown in Figure 6.3. 

A second variation describing the coupling between the rotational and spin states 

invokes the Pauli principle instead of the Hamiltonian described in equations 6.14 to 6.16. 

Beginning with the 1123) states, one can symmetrize them to conform with the c3 

symmetry group. This leads to the same eigenstates listed above. We recall that the Pauli 

principle states that a wavefunction must be antisymmetric with regards to the exchange of 

two indistinguishable fermions. 114 Also, we realize that a c3 rotation of an equilateral 

triangle of indistinguishable protons corresponds to a double exchange of particles. Thus, 

the total wavefunction must be symmetric under a C3 rotation. As stated above, the 

electronic and vibrational wavefunctions are assumed to be in a symmetric ground state 
1i (J) 1i (J) 

because our experiments take place at 4.2 K (i.e. kTe' kT >> 4.2 K). Thus the 
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Spin States of the Methyl Group 

Zero order Tunneling Magnetic Field 
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Figure 6.3. Rotational energy levels of a methyl group. (a) Without tunneling. (b) With 

tunneling: The eight spin states of the v = 0 rotational state, degenerate in zero·order, are 

split by the tunneling frequency, rot' into two manifolds, A and E, consisting of four 

degenerate states each. (c) When a magnetic field is applied, the A states split according to a 

spin-3/2 manifold and theE states split according to a doubly degenerate spin-112 manifold. 
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combination of rotational and spin wavefunctions must also be symmetric. Therefore only 

certain combinations are allowed, namely ~otAspin• EarotEbspin• and EbrotEaspin· Because 

the E and A rotational state are split by cot' the E and A spin states must be split by the same 

amount due to this coupling as depicted in Figure 6.3. 

Professor S. Clough has recently taken exception to the concept of the 

indistinguishability of the protons in the methyl group and so he rejects the two previous 

explanations of the coupling between the spin and rotational systems.115 He claims that the 

methyl group can be treated as an anyon and he then uses a Hamiltonian similar to equation 

6.15 seemingly without justifying the coupling suggested by this Hamiltonian. Whether 

this interpretation is true or not is contested but seems necessary to support some of 

Clough's other contentions such as rotational pressure and rotational friction, both of 

which could lead to a rotational polarization of the methyl group (i.e. the energies of the Ea 

and Eb states are inequivalent).24• 116 

Figure 6.3 displays the steps taken to find the final energy level diagram for the 

methyl group. Several transitions can now be identified. Those involving transitions 

between states of the same symm~try: coz, 2roz, and 3roz; and those between states of 

different symmetry: rot, roz ± cot' and 2roz ± ror An experimental spectrum of hexanol is 

presented in Figure 6.4 and displays most of these transitions. 

In the experiment we must irradiate the system with rf in order to detect the 

transitions from which the tunneling frequency can be calculated. This, however, is not 

trivial when one realizes that rf can not excite transitions between states of different 

symmetry. This is easily understood by looking at the transition probability; 

6.19 

where '¥ 0 is the original state, '¥ 1 is the new state, and H is the Hamiltonian used to induce 

the transition. This integral vanishes unless the direct product '¥ 0 *® H ® '¥ 1 has a 

component with A type symmetry .117 For rf excitation the Hamiltonian given in equations 
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Figure 6.4. Methyl tunneling spectrum of hexanol. 
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3.9 and 3.10 have only A type symmetry. The matrix element is, therefore, a direct 

product of terms with A, A, and E type symmetry respectively. This direct product is 

completely of E type symmetry and therefore the transition probability is zero. Thus a 

transition between states of A and Estates is forbidden. However, in low field the dipolar 

interaction helps overcome this problem. 

The dipolar Hamiltonian promotes mixing between all states in the energy level 

system. 109 The A and Estates are specifically mixed together by the nonsecular parts of 

the dipolar interaction (terms "C"-"F" of the dipolar Hamiltonian, equations 3.8c-f). 

Because it is the nonsecular terms that cause the mixing, these experiments can not be 

performed at high field, where these parts of the dipolar Hamiltonian are very small 

compared to the Zeeman term and rotating off resonance so as to have little effect on the 

eigenstates. The SQUID provides the ideal environment for these experiments because it 

easily satisfies both requirements for success: low temperature (where classical rotation is 

frozen) and low field (where the dipolar coupling makes the tunneling transitions slightly 

allowed). 

Clough and coworkers have proposed an additional mechanism for excitation to 

account for the intensities of the tunneling lines in their field cycling experiments. 118 They 

find that the transitions corresponding to ~m = ±1 and ~m = ±2 have comparable 

intensities and are larger than the ~ = ±3 transitions. If rf irradiation provided the only 

means for causing transitions, one should find that the~= ±1 transitions would be much 

larger then the others and that the ~m = ±2 and ~m = ±3 transitions should be 

comparable. 119 To account for this anomaly in their experiments they propose what they 

call dipolar driven NMR. They suggest that the rf and magnetic fields can be added to give 

a time dependent field. In a reference frame moving with this composite field, part of the 

dipolar Hamiltonian becomes time dependent. This now produces a spectrum with 

transitions defined by the selection rules of the dipolar Hamiltonian. That leads to a 

spectrum with the ~ = ±1 and~ = ±2 transitions of comparable magnitude. 
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Dipolar driven NMR appears to also explain our spectra. We do not see any 

transitions corresponding to ~m = ±3, but those with ~m = ±2 are approximately 112 to 

114 the intensity of the ~m = ± 1 transitions. Thus, it would seem that the dipolar 

interaction takes a more active role in the experiment rather than just mixing states of 

different symmetry. 

6.1.1 Barrier Heights 

The objective of these experiments is to obtain the tunneling frequency and from 

that calculate the barrier to rotation, V 3.120 This barrier comes from both intramolecular 

and intermolecular sources: 

vbarrier = vintra + vinter· 6.20 

Some generalizations can be made about the barrier height and its intra- and intermolecular 

elements. 

Usually, the intramolecular part dominates ~d that in turn is dominated by the 

sections of the molecule closest to the methyl group. One can estimate the size of the 

barrier by looking at the hybridization of the carbon to which the methyl group is attached. 

If that carbon atom is sp or sp2 hybridized, such as in acetone or toluene, the barrier is 

approximately 10-30 meV with tunneling frequencies in the MHz-GHz range. 106 If, 

however, the carbon atom is sp3 hybridized, such as in the alkanes or the alcohols, the 

barrier is much larger due to the increased steric hindrance around the methyl group.25• 26 

These barriers tend to be in the 130-150 meV region with tunneling frequencies less than 1 

MHz. Figure 6.5 graphs several representative samples and displays this overall trend. 

This last range is the ideal environment for the SQUID spectrometer and will be the focus 

for the rest of our discussion. 
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Methyl Quantum Tunneling 

c lead acetate 
c toluene 

3-methylpyridine 

magnesium acetate 

c methyl malonic acid 

o copper acetate 

hexamethy !benzene 

octane 
propanmc 
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5 10 15 

Barrier Heights (kJ/mol) 

Figure 6.5. Plot of the tunneling frequency vs. barrier height for several representative 

samples. 121 Note the wide range of tunneling frequencies. Those with high values, 

usually methyl groups attached to sp or sp2 hybridized carbon atoms, are measured by 

inelastic neutron scattering. The materials with tunneling frequencies less than 1 MHz, 

typically those attached to sp3 hybridized carbons, can be analyzed by field cycling NMR 

or the SQUID spectrometer. (1 kJ/mol = 10.36 meV) 
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Although the intramolecular part of the barrier dominates, information can be 

obtained about the intermolecular interactions. One way of doing this is by analyzing the 

same compound but different crystal structure. However, the difference in the barrier 

heights is then not strictly due to intermolecular changes but also reflects the influence of 

crystal structure on the molecular conformation near the methyl group. 

Another way to gain information about intermolecular interactions is by the study of 

a series of related molecules with the same type of crystal structure. The idea is to keep the 

intramolecular contribution constant while studying changes in the tunneling barrier versus 

differences in the crystalline parameters. For small changes in the barrier height due to 

intermolecular interactions such as these, the tunneling frequency becomes approximately 

an exponential function of V 3.122 

The high barrier samples in these experiments have a dominating intramolecular 

potential. However, because the important contributions to the intramolecular potential 

come only from those parts of the molecule that are very close to the methyl group, 

lengthening the chain will not be important as the methyl group feels essentially only 

methylene units. So the intramolecular potential is kept relatively constant for a series of 

compounds where the only structural modification is in the length of the chain. The 

difference in the barrier between molecules due to changes in the intermolecular potential 

should become apparent so long as they have the same basic crystal structure. 

6.1.2 Previous Methods 

The earliest measurements of the tunneling frequency were from microwave spectra 

of small molecules in the gas phase.123• 124 This method is of limited usefulness because 

the rotational spectrum becomes excessively complicated and unresolvable for larger 

molecules. However, tunneling measurements on molecules such as methanol, ethanol, 

and acetone were carried out. 
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More recently, investigators have primarily used techniques such as inelastic 

neutron scattering (INS), a T 1 temperature minimum correlation, and field cycling 

experiments. For tunneling frequencies in the hundreds of MHz to GHz range, INS 

provides the best method for measurement. Also, Clough and coworkers were also able to 

correlate the T 1 temperature minimum and the tunneling frequency to give a rough estimate 

of barrier to rotation. 125 Recently, he showed that this correlation is true for the entire 

range of tunneling frequencies. 126 

However, the method I wish to focus on is the field cycling experiment, used 

primarily by Clough et. al., because it is in direct competition with the SQUID 

spectrometer. These experiments are very similar to those described in Chapter 5 for 14N 

NQR detection. The method can be divided into three parts: 1) preparation, 2) irradiation, 

and 3) detection. In the preparation phase the sample is left in a high field magnet long 

enough for the protons to achieve an equilibrium polarization. The sample is then placed · 

into zero or low field either by moving the sample or decreasing the field of the magnet. In 

this low or zero field, the sample is irradiated at a specific rf frequency. If this frequency 

corresponds to a resonance then the proton spin bath absorbs energy, _otherwise nothing 

happens. Upon returning to high field the proton magnetization is measured. If the 

irradiation frequency corresponded to a resonance then that final magnetization will be 

smaller. Each cycle gives a single point for the final low field spectrum. This process is 

repeated, each time stepping either the irradiation frequency or the low field magnet 

strength by a specific amount until the entire spectrum is obtained. This can take a long 

period of time, especially when signal averaging is needed. 

The SQUID spectrometer has several advantages over field cycling. First, as 

alluded to above, the SQUID method can have a great savings in experimental time. A 

spectrum can be obtained in one scan by the SQUID spectrometer (although usually at least 

one scan in each sweep direction for each resonance is preferred) compared to the many 

cycles needed for field cycling experiments. Also, the SQUID spectrometer is specifically 
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built to operate at low temperatures, which is a requirement for observation of the tunneling 

phenomenon. A low temperature field cycling apparatus requires either the shuttling of the 

sample at 4.2 K ~r changing the field strength of the NMR magnet with the sample in a 

cryostat. Neither of which is particularly simple to construct and use. Thus the SQUID 

spectrometer may ultimately be the method of choice for low frequency methyl quantum 

tunneling measurements. 

6.2 Experimental Results 

In this section I present the results that we have obtained from the SQUID 

spectrometer. We studied a series of straight chained carboxylic acids with 3-15 carbon 

atoms.22• 127 The results are given in Table 6.2. The tunneling frequency for propanoic 

acid was previously measured by field cycling to be 210 kHz24 which agrees with that 

obtained in these experiments. I have also provided in this table a key of the crystal 

structures of the acids as the tunneling frequency is a function of this parameter. The 

symbols for these structures are based on the literature.128 

A tunneling frequency was not found for butanoic acid. It could be that the 

tunneling frequency was to small to detect due to the overlapping of the tunneling 

resonance with the much stronger Larmor line or perhaps butanoic acid formed a glass 

upon cooling to low temperature which would produce a distribution of sites over which 

the signal intensity would be spread. It is interesting to note that of all the carboxylic acids 

studied, butanoic acid is the only one to have a low temperature phase transition as 

demonstrated by heat capacity measurements. 129-131 Quite possibly something about this 

phase transition prevents u~ from finding the tunneling resonances. 

We have also obtained tunneling splittings for other molecules, most notably simple 

organic molecules with six carbon atoms, in order to compare their barriers to rotation. 

These are also shown in Table 6.2. All of these samples have barriers of the same order of 
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Name Crystal Phase Tunneling Barrier Height 

(No. of Carbons) Frequency (kHz) (meV) 

Propanoic Acid (3) m 215 140.0 
' 

Butanoic Acid (4) See text 
I 

Pentanoic Acid (5) m 250 137.7 

Hexanoic Acid (6) m* 168 143.8 

Heptanoic Acid (7) m* 193 141.6 

Octanoic Acid (8) m* 170 143.6 

Nonanoic Acid (9) m* 156 144.9 

Decanoic Acid ( 10) A 189 141.9 

Undecanoic Acid (11) C' 140 146.8 

II A' 193 141.6 

Dodecanoic Acid (12) c 177 142.9 

II A 168 143.8 

Tridecanoic Acid (13) A' 191 141.8 

Tetradecanoic Acid (14) A 162 144:3 

Pentadecanoic Acid (15) A' 190 141.9 

Hexadecanoic Acid (16) B 179 142.8 

1-Bromohexane 246 138.1 

1-Bromooctane 207 140.7 ' 

1-Bromodecane 207 140.7 

Hexanol 155 145.0 

Table 6.2 Methyl group tunneling frequencies (±4kHz) obtained from SQUID-NMR 

measurements. The crystal phases are taken from refs. 128, 132-134 . A and A' are 

triclinic crystals and B, C, C' and m are monoclinic structures. m* denotes an assumed 

monoclinic phase inferred from the known crystal structures of the other acids. 
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magnitude, however trends due to the functionality at the end of a carbon chain can't be 

determined because the crystal structures of these molecules are not similar. 

Figure 6.6 shows a graph of the tunneling frequencies of the carboxylic acids 

versus the number of carbon atoms in the molecule and includes lines connecting acids of 

similar crystal structure. This plot indicates some general trends in the series. First, the 

acids with odd and even numbers of carbons have different but related crystal structures128 

and that the trends in tunneling frequency confirm this information. Clough and coworkers 

found a similar odd-even effect in their study of a series of alkanes.25 The next interesting 

feature is the large variation in tunneling frequency for the smaller acids and relative 

constancy for the larger acids. This makes sense as we expect the shorter acids to show 

bigger changes between their crystal structures and those of slightly longer acids. It is also 

of interest that the tunneling frequencies of the same molecule in unlike crystalline forms 

are significantly different, especially in the case of undecanoic acid. 

Another interesting feature is the overall maximum tunneling frequency of pentanoic 

acid. This is unusual for we would expect a maximum at either end of the series. 

However, when one looks at other properties of this series such as melting point 

temperatures and enthalpies of fusion one finds that pentanoic acid is also an extreme.135 

This leads us to consider possible correlations between the thermodynamic properties of the 

carboxylic acids and their tunneling frequencies. 

6.3 Correlations with Thermodynamic Properties 

As mentioned above the anomalous behavior of pentanoic acid led us to study other 

features of the carboxylic acids. W~ were able to make a correlation between the tunneling 

frequency and the enthalpy of fusion 129-131• 136 for carboxylic acids of the same crystal 

structure. The plots are found in Figure 6.7 with the correlation: 
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Figure 6.6. Plot of the tunneling frequency vs. number of carbons for the carboxylic 

acids. Those materials with the same type of crystal structure are connected by lines. 
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Figure 6. 7. Experimentally determined tunneling frequencies as a function of the 

enthalpies of fusion for a series of carboxylic acids. For pentanoic acid there is 

considerable disagreement about the enthalpy of fusion. 
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6.21 

where a and b are fitting parameters. This alsoimplies that 

V3 oe dHfus· 6.22 

A fundamental question is raised by this correlation about how a macroscopic 

property, such as the enthalpy of fusion, can be related to a microscopic property, the 

barrier height to rotation. Perhaps even more puzzling is why would a property, like the 

enthalpy of fusion that depends upon the interactions of the entire molecule, be correlated to 

the tunneling frequency, which is concerned only with the region around the methyl group. 

A close look at the origin of the enthalpy of fusion and barrier height to rotation in relation 

to the crystal structure of these materials may provide some answers. 

Looking at the crystal structures of the carboxylic acids (for example Figure 6.8), it 

becomes apparent that the methyl group of one acid is between the four carboxylic acid 

dimer groups above and below. 128• 132-134 These groups tend to get closer together as the 

acids get longer and in general correlate to the tunneling frequency although a quantitative 

measure of this can not be obtained due to the lack of crystal structure data. As the acid 

groups get closer together, the methyl group is squeezed between them causing a higher 

barrier to rotation and thus a smaller tunneling frequency. 

Another indication of the influence of the acid groups is the tunneling barrier for 

long chain molecules. For long chained alkanes and ketones this tunneling frequency is on 

the order of 300 kHz.25• 26 However, for the carboxylic acids this frequency is around 

180kHz. This lower frequency and thus higher barrier is probably due to the stronger 

interactions between the highly polar carboxylic acid groups which squeeze the methyl 

group. 
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Figure 6.8. Sample crystal structure of propanoic acid. 133 Carbon atoms are shaded, 

oxygens are patterned. The methyl group is placed between four carboxylic acid dimer 

groups. 
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It is well known that the carboxylic acids have a much higher enthalpy of fusion 

than equally heavy alkanes. This, of course, is because of the hydrogen bonding and 

electrostatic interactions of the highly polarizable carboxylic acid groups. The strength of 

these interactions increases as the acid groups get closer together. Thus giving a 

corresponding increase in the enthalpy of fusion as the acids gets longer and the carboxylic 

groups get closer together which is almost entirely due to the acid functionalities. 

And thus we have our correlation. Both the enthalpy of fusion and the changes in 

the barrier to rotation are influenced by the surrounding carboxylic acid groups. This kind 

of experiment indicates that the study of methyl quantum tunneling can give us some 

insight into what is happening around a specific part of a molecule, namely the methyl 

group. '\ 
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