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Bounding the Power of Preemption in Randomized
Scheduling

Ran Canetti^ Sandy Irani^

March 22, 1995

Abstract

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

We study on-line scheduling in overloaded systems. Requests for jobs arrive one by
one as time proceeds; the serving agents have limited capacity and not aU requests can
be served. Still, we want to serve the 'best' set of requests according to some criterion.
In this situation, the ability to preempt (i.e., abort) jobs in service in order to make room
for better jobs that would otherwise be rejected has proven to be of great help in some
scenarios.

We show that, surprisingly, in many other scenarios this is not the case. In a sim
ple, generic model, we prove a polylogarithmic lower bound on the competitiveness of
randomized and preemptive on-line scheduling algorithms. Our bound applies to several
recently studied problems. In fact, in certain scenarios our bound is quite close to the
competitiveness achieved by known deterministic, non-preemptive algorithms.

1 Introduction

Scheduling problems pervade many aspects in system design and management. Consider, for
instance, the following problems:

(a). A system with several processors is assigned jobs of varying duration and load, where each
job is to be performed on a single processor. The jobs arrive one by one and each job must be
assigned to a processor before the next job is known. The goal is to assign the jobs to processors
"in the best possible way".

(b). A set of gateways connects a network of computers to a set of peripheral devices. At any
point in time, a node in the network may request a connection to a particular type of device for
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some period of time. The bandwidth required for the different connections vary. The goal is,
again, to assign connections to gateways "in the best possible way".
(c). A communication network with guaranteed bandwidth policy services many different types
oftraffic. Requests for connections between nodes in the network arrive and depart through time.
The durations, priorities, and bandwidth requirements of connections vary greatly (e.g. e-mail,
video, etc.). Connections should be allocated bandwidth and routed "in the best possible way".
We note that this problem is currently of great practical value. High speed communication
networks, which are the communication backbone of the future, have guaranteed bandwidth
policy and are confronted with such bandwidth allocation problems (e.g., ATM [22]).

A prominent characteristicofall these scenarios is that the scheduling algorithmlearns about
the incoming requests as they enter the system one by one, and must decide how to handle each
task without knowledge of future tasks.

Two natural optimization problems arise from these and other related scenarios. First, we
may assume that all requests are served and aim at minimizing the maximum load on any
serving agent (e.g., processor, gateway, link) at any point in time. We call this problem load
balancing. Alternatively, the capacity of the system may be limited, thus not all requested can
be served. Now the goal is to schedule the subset of requests with maximum value according to
some criterion. We call this problem admission control. Both optimization problems have been
studied in several models. The load balancing problem emerging from example (a) above is an
old problem introduced in [14] and extensively studied since [1, 9, 15]. The admission control
problem emerging from this example is studied in [10, 11, 21]. The load balancing problem
emerging from example (b) is studied in [5, 7] and of example (c) in [1]. The admission control
problem emerging from example (c) is studied in [2]. In this work we address admission control
problems. (We refer the reader to [10] for an exposition ofthe importance of admission control.)

A natural question in such scenarios has to do with the power of preemption. The ability to
alter previous decisions in certain ways has proven to be very powerful (say, when algorithms
are allowed to reassign a job to a different server at some cost [19, 18]). We address the
following notion^ of preemption, natural in limited capacity scenarios. We allow a job to be
aborted in the middle of execution, in order to make room for a more valuable job that would
otherwise be rejected. However, no credit is accrued for uncompleted jobs. Preempting jobs in
the middle of execution may be problematic in some scenarios (say, when service is guaranteed
upon admission). In other scenarios, preemption seems to be acceptable and even very helpful
(say, in systems that support real-time jobs, e.g. [20]).

It has been demonstrated that an appropriate use of preemption helps considerably to en
hance the throughput in certain settings [8]. We study the following question. To what extent
can the ability to preempt jobs enhance the performance in more general cases (e.g., when the
criteria for performance are different, or when the setting is different)?

We provide some surprising answers to this question by demonstrating that preemption does
not help much (ifat all) in a largevarietyofon-line admission control problems. First we consider
a generic, simple model for on-line admission control. In this model we show a lower bound
on the competitiveness of any randomized, preemptive on-line scheduling algorithm. This
bound applies, via simple reductions, to a large variety of models, and in particular to the
admission control problems emerging from the three examples above. We elaborate on the
different scenarios where our result applies in section 1.1.

We describe our generic model. A server is given a sequence of job requests, arriving one by



one as time proceeds. The server can serve only one job at a time. Each job is characterized by
its arrival time, its duration (known upon arrival), and its value. A job has to be either rejected
or served immediately for the specified duration. The server can preempt (i.e., abort) jobs in
service. The value gained from a sequence is the sum of the values of completed jobs. No value
is gained for preempted jobs. We consider randomized scheduling algorithms (or schedulers). A
scheduler is /-competitive if for any sequence S of jobs the value gained by the best (off-line)
schedule on S divided by the value gained by the online scheduler on S is at most /. Note that
/ may be a function of the request sequence, rather than a constant. In this model, we prove
the following bound:

Theorem 1 Any randomized, preemptive scheduler has a competitive ratio of at least

'(•IM)
where p, is any of the following two measures:

(i) p = py, the ratio between the largest and smallest value of a job in the request sequence.
(ii) p = pd, the ratio between the largest and smallest duration of a job in the request sequence.

We actually prove a stronger fact than suggested by the theorem: for any randomized pre
emptive scheduler A and for any p, we construct a sequence S which simultaneously satisfies

IJ'd{S) < p and py{S) < p, such that the competitiveness of on 5 is f2(-yiog pjlog log p). An
identical bound applies also to scenarios where any fixed number of jobs can be served at a time.
The bound does not depend in any way on the number of jobs which can be served at a time. In
Section 5 we describe a simple, randomized, preemptive O(log(min{/fd, //„}))-competitive sched
uler in our generic model, thus demonstrating that our bound is at most a roughly quadratic
factor from optimality.

Many previously studied scheduling problems can be reduced to this generic model. In par
ticular, our bound applies to the setting in which Awerbuch Azar and Plotkin show a scheduler
with competitiveness logarithmic in pd and py [2]. Their scheduler is both deterministic and
non-preemptive. Thus, in their setting, the combined power of randomization and preemption
results in at most a roughly quadratic improvement. (We note, however, that the scheduler in
[2] does not apply to the setting of Theorem 1.)

Our proof of the bound is non-trivial and occupies most of this paper. It involves techniques •
which we believe are of independent interest. For each randomized scheduler, we construct a
request sequence on which the scheduler performs poorly relative to the best strategy. The
sequence does not depend on the random choices of the scheduler. The sequence is constructed
one request at a time via an interaction with the scheduler, A. Each next request is generated
based on the probability distribution of the job A currently has in service. That is, at each
step the adversary keeps a set of threshold values. The adversary generates the next request
depending on whether the probability that A has some specific job in service is above or below
some threshold. The adversary strategy is a randomized adaptation of a simple deterministic
lower bound. Our technique may prove useful in transforming similar deterministic lower bounds
into randomized ones.



1.1 Applications of the bound

We describe how our lower bound applies to recently studied admission control problems. In
Section 4 we formally state and prove these applications.

Consider the following admission control problem, emerging from example (a) above. A
system consists of a set of processors, each with limited capacity. Jobs of varying load, duration
and value arrive through time, eachwith a deadline. At all times the sum of the loads of the jobs
in service on a given processor must not exceed its capacity. A scheduler must decide which jobs
to execute (and on which processor) in order to complete the set of jobs with the largest total
value before their deadlines. Via a simple reduction, our lower bound of /j,/ log log fi)
applies to this setting, with any number of processors, where fi is either fid or The bound
holds regardless of whether each job takes the entire capacity of a processor, or if a single job
cannot occupy more than a predefined fraction 6 of the capacity, for any ^ > 0 (see Corollary
5).

In this setting, the bound applies even when the value gained from completing a job is
computed in some specific ways: (1) The value of job equals its duration. (2) The value of all
jobs is 1. In both cases, the bound holds with respect to fid and fn, where fii is the ratio of
largest to smallest load of a job in the input sequence (see Corollaries 6 and 7). Surprisingly,
our bound does not apply when the value of each job equals its load times its duration. In
fact, constant competitive algorithms exist in this case [8, 10, 11, 21, 16, 17]. A lower bound of
^(v^) the competitive ratio of any deterministic preemptive scheduler is shown in [11, 17],
where the value of a job is arbitrary. Their bound does not apply to randomized schedulers.

We note that example (b) given at the beginning of the introduction is a generalization of
this multiprocessor scheduling problem. Thus our bound applies, yielding similar results.

Next we address call control and virtual circuit routing problems. Here we have a commu
nication network with guaranteed bandwidth policy in which the links have limited capacities.
Requests for connections (or calls) arrive through time, where each call has its source and desti
nation nodes, as well as duration, bandwidth requirement, and value. The scheduler must route
accepted calFs within the capacity limitations of the links; that is, the sum of the bandwidth of
calls using each link must be always less than its capacity.

Awerbuch, Azar and Plotkin show a deterministic, non-preemptive (9(log/i)-competitive
scheduler in this model, where fi = fid • fiy • n and n is the number of nodes in the network
[2]. They also show that this is the best that any deterministic, non-preemptive scheduler can
achieve. Their scheduler has the drawback that every job is constrained to require bandwidth
at most If log fj, of the capacity of any edge. Awerbuch, Bartal et al. remove this constraint
for networks with a tree topology via a randomized, non-preemptive scheduler [3]. Awerbuch,
Gawlick et al. improve the bounds for trees and give randomized, non-preemptive schedulers
for meshes [4].

Garay and Gopal initiated the study of preemptive call control in [12]. They show constant
competitive preemptive schedulers for simple networks and value functions. Garay et al. show
competitive schedulers on a single link and a line network, for the special case that at most one
call can be accommodated on any link, and for several specific ways for determining the value
of a call [13]. Bar-Noy et al. generalize their results by showing constant competitive schedulers
on a single link when the value of a call is the bandwidth times the duration and every call has a
bandwidth requirement which is at most a limited fraction of the capacity of the link [8]. Their



strategies apply also to line networks if all calls have infinite durations. (Here the bandwidth
times the duration of a call reflects the 'amount of information' contained in the call. Thus,
preemption helps when the quantity to be maximized is the throughput of the link.)

Our result provides a lower bound of fi(y^log /u/ log log fx) on the competitiveness of any
preemptive, randomized scheduler for any network, when the value of a call is arbitrary. The
bound holds even when a single call cannot occupy more than a predefined fraction 6 of the
link capacity (for any ^ > 0), and if the value of a call is either its duration or 1, as in the
multiprocessor scenario described above (see Corollary 8).

Furthermore, if the network has no cycles then our bound applies even when the value of
a call equals the duration times bandwidth, or the distance from source to destination, or the
distance times duration, or the distance times duration times bandwidth (see Corollary 9). In
these cases, (x = min{ju<i, D} where D is the diameter of the network.

We suggest the following intuitive description of this state of affairs. The bandwidth times
duration measures the "amount of information" contained in a call, whereas the bandwidth
times duration times distance measures the "work" invested in a call. It can thus be said

that, in the single link case, when the value of a job is directly proportional to the information
contained in it then our bound does not apply and constant competitive algorithms exist. If the
value of a job is arbitrary then our bound applies. In more complex networks (even in a line of
links), our bound applies even when the value of a call is directly proportional to the amount
of information, or to the work invested.

Organization. In Section 2 we formally define our generic model. In Section 3 we state and
prove the basic lower bound as stated in Theorem 1 (in Section 3.1 we first prove a weaker
version of the bound; the proof of this weaker version is simpler and offers intuition for the
proof of the full bound). In Section 4 we state and prove several corollaries of our bound. In
Section 5 we demonstrate the tightness of the bound by sketching a scheduler in our model,
with logarithmic competitiveness.

2 The model

We formalize the generic model described in the Introduction. A server is given a sequence of
job requests, arriving one by one as time proceeds. We assume that time is discrete, although
several requests may arrive at a single time unit. The server can serve at most one job at a
time. Each job c is characterized by its arrival time tc, its duration dc (known upon arrival),
and its value Vc- The scheduling of jobs is subject to the following rules. A job has to be either
served immediately for the specified duration or rejected. The server can preempt (i.e., abort) a
job in service. ^ The server accrues an additive gain of Vc for each completed job c. No gain is
accrued for preempted jobs.

A sequence S == ci,..., c„ of job requests is timely if > tcj for every i > j. Say that S
is feasible if no two jobs intersect, that is for no i ^ j we have U < tj < ti + d,-. The gain of S

is G{S) = Dces^c- The optimal feasible gain of S is 0{S) = max^^/^-^l^, feasible} ^('̂ ')5 where
S' C S means that S' is a subsequence of S.

For a scheduling algorithm A, let .4(5', r) C 5" be the sequence of jobs completed by A on

^It may be helpful to visualize each job c as a rectangle with length height Vc/dc, the rectangle is located
on the number line so that its left edge is at point tc- The area of the rectangle is Vc-



sequence S and random input r. Algorithm is a valid Scheduler if whenever S is timely,
>1(5', r) is feasible for all r.

Definition 1 Let /ii(-),... be a set of measure functions from request sequences into the
reals. A scheduler A is /-competitive with respect to ..., if for all large enough m
and for all timely sequences S with niax-^i{/i, (5)} <m we have:

f{m) > 0{S)
£.(^(^(5,0))

where Er{h{r)) denotes the expected value of h{r) when r is uniformly chosen from the set of
random inputs ofA, We stress that the sequence S does not depend on the random choices of
A (i.e., using standard terminology, the adversary is oblivious/

is theWe sometimes use EG>t(5) to shorthand £^(^(>1(5, r))). We also say that
EG>(S)competitive ratio of A on sequence 5. In the sequel we use the following simple observation. For

a sequence 5, a scheduler A and a job c € 5, let 1^ denote the binary random variable having
value 1 iff job c is completed in a run of A on 5. Then,

£r(G(>l(5, r))) = £r(X^ Ic • = X/ ^r{Ic)' Vc = ^Vc •Prob(>l. completes c)
c€S c€S c€S

That is, the expected gain of the scheduler is the sum over all jobs in the input sequence of the
probability that the job is completed times its value.

3 The lower bound

Let g{x) =g•yiogiog(!r) -Let fid{S) (resp., p,v{S)) be the ratio between the largest and smallest
duration (resp., value) of a job in the request sequence 5. We prove the following bound:
Theorern 1 Any randomized, preemptive on-line scheduler is at least g-competitive, with respect
to measures yj. and p,y.

For the proof we construct, for each scheduling algorithm A and infinitely many values m, a
timely sequence 5 with max{^d(5),//„(5)} < m, and show a feasible "off-line schedule" 5' C 5
such that > g{m). We first present a very rough description of the construction. Let
5 '̂) denote the prefix of 5 consisting of the jobs requested up to time t. Say that two jobs are
of the same type if they have the same duration and value. The sequence 5 consists of several
different types of jobs. Let p,(t) denote the probability that a job of type i is being served by
A at the end oftime unit t. Let p[t) = {po{t),... ,pk{t)), where the number ofdifferent types of
jobs is + 1 Since at most one job can be scheduled at a time we have Yli=QPi{t) < 1 for all t.
Given A, p{t) is a function of only 5^'/

The construction of the sequence 5 can be pictured as an interactive game between the
scheduler and an adversary, where in each time unit t the adversary generates some requests
based on the jobs requested so far and p{t-l). Next the scheduler generates p{t) based on the
new requests and the history of the interaction, subject to the conditions that i2i=oPi{t) < 1,
and pi(t) < pi{t - 1) unless a new f-job is requested at time t. (Here we give the scheduler
some extra "leeway" by letting it know in advance all the jobs requested during the entire time
unit). Sequence 5 is now the concatenation of the jobs requested by the adversary in the game.



We stress that S is fixed for each scheduler; it does not depend on the random choices of the
scheduler in a specific run.

Our adversary strategy in the above game consists of several recursive applications of roughly
the same scheme. In order to better present our construction and analysis, we first describe a
simpler adversary that consists of only one application of this scheme. This simpler adversary,
called a 1-adversary, shows a weaker result than Theorem 1, namely that no valid scheduler is
less than —o(l))-competitive (where e is the base of natural logarithms).

3.1 A 1-adversary

A 1-adversary generates, for each scheduler A and a value m, a sequence S with Hd{S) =
and fJ,v{S) =m, and afeasible "off-line schedule" S' CSsuch that eg!4(5) —̂ ~

The 1-adversary uses only two types of jobs: a-jobs have duration and value m^; 6-jobs
have duration 1 and value m. The sequence S is constructed as follows. The adversary first
requests an a-job at time 0. Next, at each time t = 0,... ,to (where to is computed below) a
6-job is requested. Note that any feasible subsequence of S consists of either the a-job or some
of the 6-jobs.

Setting an appropriate "stopping time", to, is the crux of the adversarial strategy. If the
scheduler were deterministic (or alternatively if the adversary could see the random choices of
the scheduler), then computing to would be simple: as soon as A preempts the a-job for some
6-job the input sequence would stop. This way, A gains m while the optimal schedule is the
a-job, with gain m^. If A never preempts the a-job then we set to = (that is, 6-jobs are
requested during the entire duration of the a-job), and the optimal schedule is all the 6-jobs
with gain m^. In any case, the competitive ratio of .4 on 5 would be m.

However, the random choices of A are not known. Instead, the adversary will, at the onset of
any time unit t -f-1, compute Pa{t), the probability that A still serves the a-job. If Pa{t) is large
enough (i.e., above some threshold described below) then another 6-job is requested. Otherwise
the request sequence is stopped. The threshold is computed as follows. Let Ob{t) denote the
maximum gain that can be accrued from the requested 6-jobs up to time t (that is, Ob{t) = t-m
for time t where Pa{t) has not yet dropped below the threshold). Let the threshold function /(•)

— ae^

=(;:
if X <

if X > rn?

where a = The threshold at time t is f{Ob{t)) (that is, f{t •m)). The adversarial strategy
can now be described as follows: First, request an a-job and a b-job at time 0. Next, at each
time t = 1,... ,m^ —1 do: if pa{t —1) > f{{t —l)m) request a b-job; else end the request
sequence.

We suggest the following explanation to the choice of threshold function. Let to be the first
time that Pa(i) drops below the threshold. It will be seen that the competitive ratio of the
algorithm is roughly at most

. 1 r .. , o/(x) +—/ (1 - /(y))<^y if X<
m Jo

1 —/(x) if X>



Figure 1: A 1-adversary. The shaded area shows the expected gain ofthe algorithm from type-b
jobs.

where x = to •m and /(•) is the threshold function in use (see Figure 1). Our choice of f{x)
ensures that expression (1) evaluates to the same minimal value for all x (that is, for all values
of to)- In particular, for any a the function f{x) = 1 —ae^ solves the differential equation

d 1
[/(^) + ~ ~ fiy))dy] = 0

thus making sure that (1) doesn't change for 0 < a; < Our choice of a is such that
1~ ^ = n;e, that is /(O) = 1—/(x) for all x > m^. Thus (1) has the same value also for x > m^.
Consequently, the competitive ratio of ^ on 5" will be roughly the same (minimal) value for all
values of to.

Analysis of the operation of A on S. We consider three cases:

Case 1: to < rn. In this case the best feasible subsequence of S is the a-job, with gain
(thai is, 0{S) = m^). The expected gain of A is computed as follows. The probability that A
completes the a-job is Pa(to). The probability that A completes the 6-job offered at time t is
Pb{t) < I —Pa{t). Using the observation at the end of Section 2, we have

£^^(5) < m'̂ Paito) + mY^{l -pa{t)).
4=0

It follows from the adversary strategy that p„(to) < f{to •m), and pa(t) > f{t •m) for all t < to.
Thus,

EGA(5) <mV(^o + f{i- "^))j +rn (2)
< m^/(to •m) + m {I - f{t •m))dx + m (3)

2/1 — 1= m [1 —ae^) +mJ aenidx +m (4)

= m^(l —aem)-f m^a:(em —1)-f-m (5)
= m^(l -a) + m (6)



(see Figure 1.) Thus, in this case the competitive ratio of A is at least ~ ^(m)'
Case 2: m < to < —1. In this case the best feasible subsequence of S is all the 6-jobs,

with gain torn. We again have

< m'̂ Pa{to) + m'^{l - Pa,{t))

/m-1 /to-1 \

< m^(l —ae) + mI ^ aeni j + mI ^ ae1
\t=0 / \.t=:m /

/<0-l \

< m^(l —a) + mI ^ ae j + m
\t—m )

< tomae + m

(the derivation of the third row from the second is done in the same way as in (3) through (3);
in the derivation of the fourth row from the third we use the fact that 1 —a = ae). Thus, in
this case the competitive ratio of A is at least ^ —O(^).

Case 3: to = —1. The difference from Case 2 is that here Pa(t) may never go below the
threshold. However, it is easy to see that this does not help the scheduler. The best feasible
subsequence of S is all the 6-jobs, with gain m^. Bounding the expected gain of the scheduler,
we have (since Pa(t) > 1 —ae for all t):

m^—l

EG^(S') < m^pa{m^ —I) + m ^ (1 —Pa{t)) < tti^ + m^(ae)
t=i

Thus, the bound on the competitive ratio of A is the same as in the previous case.

In all three cases, the competitive ratio of ^ on 5 is at least minj^^,^! — =
— —0(—). A simple calculation shows that any m > 8 is enough for showing a non-trivial
bound (that is, a bound more than 1).

3.2 Proof of Theorem 1

Roughly speaking, the scheme described in Section 3.1 used the 6-jobs to make sure that A
accrues only a fraction of the value of the a-job requested. The same scheme can be used -
recursively to make sure that A accrues only a fraction of the value of each 6-job requested.
That is, use a third type of jobs, called c-jobs, with smaller duration and value than 6-jobs. The
c-jobs have the property, however, that the total value of a series of consecutive c-jobs scheduled
during the duration of a single 6-job is greater than the value of the 6-job. For each requested
6-job recursively apply the above scheme, using the c-jobs. Consequently, the "effective gain"
that the scheduler accrues from each 6-job is only a fraction of its real value. Thus, a better
threshold function can now be used with respect to the a-job, forcing A to accrue only a smaller
fraction of the optimal gain of the entire sequence. The adversary used for proving Theorem 1
uses this idea, implementing several levels of recursion.

We first give a more precise description of the construction and then give some intuition for
our choices. Define Adv^, an adversary implementing k levels of recursion, as follows. ADVjt
requests k + 1 different types of jobs. The value of the jobs of type i (where i = 0,... ,k) is
Vi = and their duration is d,- -- k'̂ \ Thus, Using the terms of Section 3.1,



the lower index jobs play the role of the 6-jobs and the higher index jobs play the role of the
a jobs. Let an i-period be the time period in between two consecutive integer multiples of d,.
Let the partial gain function 0,(t) denote the maximum (off-line) gain that can be obtained by
scheduling only ji-jobs for j < i that have been requested by the adversary since the beginning
of the current ^-period through time t. Adv^ employs k threshold functions ,fk{-),
defined below. As in Section 3.1, the ith threshold at time t is computed by evaluating the zth
threshold function at C,_i(t).

At each time t, the threshold values are compared with the following values, derived from
the behavior of the scheduler. Let qk{t) = pk{ty, for i < k, let Roughly, the
value qi{t) is at most the probability that an i-job is being served by A at time t, given that all
the j-jobs for j = i -f 1,..., fc were preempted or never scheduled.

AdV/- thus operates as follows. At time t = 0, request A: -f 1 jobs, one ofeach type. At each
other time t -f-1, run procedure ADvSTRATEGY{k,pk{t)), described in Figure 2 below.

ADVSTRATEGY(i, qi{t)):
(l)if di divides t then

Request an z-job;
(2) if z > 0 and fi{Oi-i(t)) < qi{t) then

call AdvStrategy(z - 1,
end

Figure 2: At each time unit t, Adv^ runs ADVSTRATEGY(A;,pA:(t))-

fi{x) =
ft-i _

1 —ajC "i

1 —

if a: < Vi
if X > Vi

wheffe and a,- are defined as follows. Let /5o = 1, and

(7)

where 7 = p-. Let a,- = 1 —(/?,• —•y). Note that the 1-adyersary of Section 3.1 is identical to
AdVi, with m = k^.

We suggest the following explanation to the operation of the adversary. The condition in
Step (1) makes sure that the times at which an z-job may be requested are d,- time units apart.
Thus, only a single z-job can be requested during an z-period, and the duration of an z-job is a
full z-period. The condition in Step (2) of each level zcontrols whether to call the (z - l)st level.
Roughly, the (z - l)st level is called if the probability that an z-job is being served by A at time
t, given that all the j-jobs for ji = z 1,... were preempted, is more than the threshold. This
condition corresponds to the condition of Section 3.1 regarding whether to request any further
6-jobs.

Alsohere, the threshold functions are chosenso that in each levelz the scheduler will have the
same expected gain regardless of when qi{t) 'dips' below the threshold. The value I//?,- represents
the minimum competitive ratio of a scheduler against Adv,- (this statement is formalized in



Lemma 2 below). The competitive ratio of the scheduler against Adv,- (given yS,_i) is later
shown to be roughly bounded by

fi{x) + (1 - My))dy iix <Vi (8)

- fi{x)) iix>Vi (9)

where /,(•) is the ith threshold function in use, and x = For every a, and our choice
of fi{x) ensures that expression (8) evaluates to the same (minimal) value for all x < vi, using
a differential equation in the same way as in Section 3.1. The Q!,'s and ;3,'s are determined as
follows. We set = 1. Next, for any z > 0, a,- is chosen so that the competitive ratios at x < u,-
and at X> u,- are equal; using (8) and (9) this translates to /j(0) = /?,-i(l — or (by the
definition of fi{x)):

(for z= 1this condition reduces to the corresponding condition in Section 3.1, that is a\ = ^).
Next, I3i can be computed by evaluating (8) at any value of x (and adding a small "error term"
7). Setting, say, x = 0 and using (10), we get = /.(O) + 7 = 1-+7 = 1- + 7-

The recursion relation (7) follows. For the proof we show:

Lemma 2 Let k > 0. Let A be a scheduler and let S be the request sequence generated via an
interaction between A and Adv^. Then, the competitive ratio of A on S is at least where

A-
We derive Theorem 1 from Lemma 2. First we claim that Pk = ®(^) (niore precisely,

0k + b < ^). This can be verified from (7) using straightforward algebra. To compute the
maximum possible value for k (namely, the maximum possible number of recursion levels), we
note that a sequence S generated by Adv^ has p,v{S) = ^ = (and Pd{S) = ^ = k'̂ '̂ ). Thus,
given that p{S) = m we can employ Adv^ where k = Theorem 1 follows. •

Proof of Lemma 2. Consider a sequence S generated via an interaction between A and ADVjt.
We introduce the following notations. A time unit t is called z-critical if Oi{t) > Oi{t —1). A
time interval r = [ts, t/] is called an z'-step if ts and </ + 1 are z-critical and <3 + 1,..., iy are not
z-critical. For every z, sequence S partitions time into a sequence of z-steps. If r = [ts,tf] is the
first z'-step in an z-period then let the z-height of r be hi{T) = Oi(ts) (in this case, Oi(ts) = v,).
Otherwise, let the z-height of r be hfr) = Oi(ts) —Oi(ts —1). Clearly, the optimal gain from
sequence S is the sum of the fc-heights of all the fc-steps in the duration of S.

Roughly, we will show that the expected gain of A from the jobs requested during each fc-step
is at most 0k times the A:-height of this step. However, we first distinguish between the main
contribution to the competitive ratio of A and several "special cases" which result in additional,
small "error terms". These error terms, encapsuled in the term 8 defined above, result from
three classes of requests. These classes are defined below and are taken care of in Lemma 4.

A j-job c is said to be final for level i li j < i and c is the last j-job to be requested in its
z-period. A j-job is final if it is final for some level z where j < i. A j-job c is a step-2 job for
level z if i > j and c is requested during the second z-step in its z-period. A job is step-2 if it is
step-2 for some level z with i > j. A j-job c is said to be high-probability if qj{t) > fj{Oj-i{t))



for all times t in its duration (high probability jobs correspond, in principle, to Case 3 in the
analysis of a 1-adversary in Section 3.1 where the probability that a job is running never falls
below the threshold). A job is regular if it is neither a step-2, final or high-probability job.

Let FiGAriS) denote theexpected gain of A from the regular johs requested by AoVjt during
some step r (that is, EG>li-('S') = YlceSr ' Prob(>l completes c), where St is the sequence of
regular jobs requested during t). Lemma 3states that EGA(5') isat most (3k times the fc-height
of each k-step r. We know that 0{S) = E {fc-steps r} ^kir). It follows that the expected gain
of A from S due to regular jobs is at most ^k •0{S). Lemma 4 states that the total gain of A
from all the non-regular jobs in S is at most 6 •0{S). Lemma 2 follows. •

In the rest of the proof we use the following observations regarding the structure of S. A
job is said to be i-small if it is a j-job with j < i. The first job requested in each i-period is
an i-job. The rest of the jobs in this i-period are z-small. Each i-period can be partitioned into
i-steps (any i-step is contained within a single i-period). The first i-step in an i-period occurs
due to the request of the i-job and has z-height u,-. This z-step can be partitioned in several
(z - l)-steps. In the second z-step (if there is one), the optimal gain due to the z-small jobs
exceeds the gain of the z-job for the first time. If this happens, then the optimal schedule in
the z-period contains only z-small jobs instead of the z-job. As a result, any additional increase
in Oi within this z-period causes the same increase in 0,_i, and any subsequent z-step r is also
an (z - l)-step. Furthermore, /zi(r) = /zi_i(T). Note that if there is a second z-step r, then t is
also an (z —l)-step but it is not necessarily the case that hi{T) —/z,_i(r). This is because the
arrival of an z-small job may cause the optimal gain from z-small jobs to exceed the value of the
z-job by only a small amount.

Lemma 3 Let k > 0. Let A be a scheduler and let S be the request sequence generated via an
interaction between A and AdVa;. Let t be a k-step. Then,

EGA(5) < ^k •hkir) (11)

Proof. We prove the lemma by induction on k. The lemma trivially holds for AdVq (using
one type of job), since = 1. Also, the case of AdVi was analyzed in Section 3.1.

Let k > 0 and assume that there exists a scheduler A and a fc-step r such that (11) is
violated. We construct a scheduler A' with the following property that contradicts the induction
hypothesis. Consider the sequence 5".generated via the interaction of A' with ADVfc_i. Then
there exists a (A; —l)-step r' in S' such that

EGA'̂ ,{S') > pk-i •hk-i{T') (12)

(where EG.4(.,(5") is defined similarly to EG.4t(5'), with respect to A', 5", and t').
Scheduler A' is constructed as follows. Consider the sequence S generated by AoVt inter

acting with A. A {k - l)-period in S, starting at time A., is chosen in a way described below.
Roughly, A' will imitate the operation of A starting at time conditioned on the event that
A has preempted the A:-job. More precisely, let pi{t) (resp., p((t)) denote the probability that A
(resp.. A!) has a job of type zscheduled at time unit t. Scheduler A' is constructed so that when
playing against AdVa;_i for the duration of a (A: —l)-period, the following probability vector
jo'(A) = Po(t),.. -tPk-iit) is maintained:



Scheduler A' can always be implemented since < 1, and p'-{t) > p'-{t —1) only if an
i-job is requested at time t. In choosing we distinguish between two cases.
Case 1: step r is not the first A:-step. Then r is also a (A: —l)-step, and is contained in a
[k —l)-period. Let be the beginning of this {k —l)-period.
Case 2: step r is the first A:-step. The first A;-step is partitioned into several {k —l)-steps,
Ti,... ,T;. Let r* be the {k —l)-step contained in r that maximizes the ratio

f EGA,(S) 1

among all the {k —l)-steps contained in r, where is the latest ending time of a regular
job requested during r,- (note that may be later than the end of r,). For convenience, we
assume that the initial A:-job is not included in the first [k —l)-step. Let be the beginning of
the {k —l)-period containing r*. Note that A' may perform very poorly on request sequences
different than those generated by ADVfc-i. The only purpose of A' is to contradict the induction
hypothesis.

Analysis of scheduler A'x It can be seenfrom (13) and the adversary strategy (Figure 2) that
at each time t ADVfc_i, interacting with A!^ requests exactly the same jobs that Adv^ requests
at time t -\- U when interacting with A; this holds with the following two exceptions. First,
ADVfc may request an initial A;-job at time f*, where ADVjt-i does not. Second, the sequence S
may end before S', if pkit) falls below the threshold for some time t. Let S denote the sequence
S starting at time with the initial A:-job removed (if there is one). Then, 5 is a prefix of S'.
Furthermore, for any (k —l)-step r in 5 we have hk-i{T) = hk-\{T'), where r' is the {k— l)-step
in S' that corresponds to r. Next we distinguish three cases:

Case 1: The induction hypothesis is violated with respect to the first A:-step, r. Let r* be
as in the definition of A!. Let rj be the {k —l)-step that corresponds to r» with respect to S'.
We show that if EG>t(.^/(iS") < • /ifc-i(T.') then EG^t(5') < •Vk-

We first express EG>It(5') in terms of the expected gain of A in the {k —l)-steps ti, ... ,t/
contained in r. Assume that the initial A:-job is not a high-probability job. In this case, there is
a time t such that pk{t) < fk{Ok-i{t)). Let to —t lit happens before the end of r; otherwise to
is the first time unit after r. We can bound the expected cost of in r as follows,

I

EGA(S') < Vk •fk{Ok-x{to)) + ^EGAr,{S). (14)
i=l

(Inequality (14) is satisfied even if the initial A;-job a is a high-probability job. In this case, the
contribution of a is not included in EG.At(5'); it is considered in Lemma 4.)

Scheduler A' completes each job d € S' requested during r* with probability at least (1 —
Pki^c)) times the probability that A completes the corresponding job c ^ S. Since tc < e^,,
EG«4t,(S') < (1 —Pk{e.r,)) •EGA!^^,{S') . Now, assume that EGA'̂ j{S') < ^k-\ •hk-\{Td)^ and
recall that hk-i{Tj) = /ifc_i(r*). Thus,

EGA.(5") < (1 -Pk{eT,)) •/3k-i • hfc_i(r.).

It follows from the choice of r* that EGA,(»S') < (1 -pfc(eT,))/^fc-i •hk-i(Ti) for all steps Ti. Thus,
(14) implies that

EGA(5') < Vk •fk{Ok-i{to)) + X](l - Pk{eri)) •^k-i •hk-i{Ti).



We complete the analysis of this case by showing that

I

Vk •fk{Ok-\{to)) + ^(1 - PkitTi)) •^k-l •hk-l{Ti) < •Vk.
i=l

First, we show that

I

Vk •fk{Ok-i{tQ)) + ^(1 - Pk{sri)) •/3k-i •hk-i{Ti) < {^k -l)-Vk (15)
i=l

where is the starting time of step r;, and 7 = ^ is a small "error term". Next we show that

Showing (15), we have

- Pk{er,)) •^k-l • hk-l(Ti) < 7 •Uit.
t = l

Vk •fk{Ok-i{to)) + ^(1 - Pkisn)) •Pk-\ •hk-i{Ti)
i=\

< Vk •fk{Ok-x{to)) + - fk{Ok-l{Sr,))) •0k-l •hk-x{Ti)
i=X

< Vk-fk{Ok-x{to)) + ^k-x- {l-fkiy))dy
Jo

We integrate only up to y = Ok-x{to)i since either is after the end of r or no non-final jobs
are requested at or after time to- Let x = Ok-x{to)- Since this is the first fc-step we have x < Vk;

thus, fk{x) = 1 —OLkC "k . Thus:

f^k—l(to)
Vk •fk{Ok-x{to)) + ^k-x • (1 - fk{y))dy

Jo
rx Pk-iv

= (1 —OfcC )vk + /Sfc-i / otke "k dy
Jo

Pk-l^ Ufc
= (l-a^e -k )vk + f3k-x-^—ak{e "k -1)

Pk-X

= (1 - dk)vk

= {Pk - 'y)vk.

Next, we show (16). Let Wi denote the largest j such that a j-job arrives on the first time
unit of Ti. Then hk-x{Ti) < v^. = Rewriting the left hand side of (16) we get

I k-X

I3k-x hk-xin) •(pk(Sri) - Pk(eTi)) < /3fc-l Y (Pk(^ri) - Pk(eri))
j=l j=0 {i : wi=j}

Observe that if Wi = Wji (and i > i') then step Ti begins only after all the jobs requested during
Ti> have ended (this is so since at most one j-job is requested in a j-period). Since pk{t) is a
non-increasing function, we have:

Y^r Y (PkM - Pk{eri)) < 51 1^ 2•Ufc.i <-jT-Vk = l-Vk
j=0 {i I u;,=j} j=0



Case 2: Step r is the second A:-step. All jobs requested in this step are step-2 jobs and are
thus not regular. Thus, EG>1t-(S') = 0. (Step-2 jobs are accounted for in Lemma 4.)

Case 3: Step r is neither the first nor the second A;-step. Then, t is a. {k —l)-step as well.
Let r' be the {k —l)-step that corresponds to r in S'. Then, hk{T) = hk-i{T) —hk-i{T'). We
show below that the probability that A completes each regular job c G 5 is at most times

the probability that A! completes the corresponding job c' £ S' during r'. Thus, (12) holds with
respect to step r'.

Scheduler A completes an Tjob c with probability Pi(ec), and A' completes c' with probability
, ,, where tc is the time at which c ends (i.e. ec = tc A dA. It remains to show that
l-Pfc(ec)' V I- /

1 —pki^c) < Since c is not a final job, we have that pki^c) > fk{0{ec)). Since r is
not the first fc-step, we have that Ok-i{ec) > Ufc. Thus, fk{Ok-i{ec)) = 1 —ake^^-^, and
1 - Pk{&c) < oike^^-^ < •

Lemma 4 Let k > 0. Let A be a scheduler and let S be the request sequence generated by
an interaction between A and ADVjt. Then, the total gain of A from all the step-2, final and
high-probability jobs in S is at most j^O{S).

Proof. We first bound the gain of A from the final and step-2 jobs. The gain achievable by the
optimal algorithm (which upper bounds the gain achievable by A) from all the step-2 jobs for
level i requested within a given i-period is at most To see this, suppose that an (i —l)-step
begins at time t and j is the largest number such that a j-job arrives at time t. It must be the
case that i < i —1. A new (z —l)-step (and hence also f-step) begins when the optimal gain
achievable from j-small calls exceeds vj. Thus the optimal gain in the second step is at most

We can bound the optimal gain achievable from final jobs by the total value of all final jobs.
Notice that for each Tjob and every j < i, there is at most one final j-job. Let n,- be the total
number of i-jobs in S. The optimal gain achievable from the jobs that are final or step-2 for
level i is thus at most

ii(ui_i -I- Y, Vj) < 2niVi Y
1 ^ 2niVi

- P-l

For every i, the sequence of all z-jobs in 5 is a feasible subsequence of S, with gain. UiVi.
Therefore, 0{S) > max,(n,u,). The sum of the values of all final and step-2 jobs is thus at most:

2n,Uj ^ / J I 1\ 2n,Uf 2 ^E iTTT S (*^ +1) "".ax ^ < ^0(5).

Next we bound the gain achievable from the high-probability jobs which are not final. Con
sider a high-probability z-job c which is not final. We first show that during every (i —1) period
within the duration of c, an (z —l)-job is requested. To see why this is true, recall that an (z —1)
job is requested in an (z —l)-period if at the first time unit t in the period qj{t) < fjiOj-i{t))
for all j > i. If c is not final, then qj{t) < fj{Oj-i{t)) for all j > i and for all times t in the
duration of c. If c is high-probability then g,(f) < /i(0,_i(f) for all times t in the duration of c.

Consequently, k'̂ jobs of type (z —1) are requested in the duration of c. The total value
of these (z —l)-jobs is k^ times the value of c. Let h, be the number of all non-final high-
probability z-jobs in S. We know that k^Vihi < Ui-iZZj-i. Therefore, the total gain from all



non-final high-probability jobs is at most

J' ^ 1 1 1
^ ^ Tmax n,ni < yO{S).

t=i ^ i=i ' k

4 Applications of the bound

In this section, we present a series of corollaries showing how the lower bound of Theorem 1 can
be generalized and extended to related problems.

We first consider the multiprocessor scheduling problem described in Section 1.1. Below we
describe how the bound in Theorem 1can be generalized to situations where more than a single
job can be served at a time. Each job c has a load Ic, and a feasible sequence is one in which
the sum of the loads of any set of overlapping jobs is at most U. We also show that the bound
holds if there is more than one server (each with capacity U) and if there is an upper bound on
the load that any single job may require.

Recall that /j,d, m and fiy denote the ratio ofmaximum to minimum duration, load and value
of a job, respectively. Let g{x) =

Corollary 5 Theorem 1 holds even when there are m servers, each with capacity U, and for
every job c, Ic < SU for any S <1.

Proof. We assume the existence of a scheduler A' that contradicts the corollary. Based on
A, we then construct scheduler A that contradicts Theorem 1. A keeps a copy of A' running.
Given a sequence S of requests, A gives A' a sequence S' constructed as follows.

Let Oi be chosen so that l/o = [1/5]. Upon receiving a request c in 5, >4 generates a set S'̂ of
Nc = mfa requests for A'. Each job in S'̂ has the same duration as c, has value Vc' = avdm and
load Ic' = Uoi. Note that ifall jobs from S'̂ are scheduled, they use up the entire capacity of the
system. Furthermore, the sum of the values of all the jobs in S'̂ is equal to Vc (i.e. NcVc> = Vc).

First observe that^ 0{S) < 0{S'). Given a feasible subsequence 5 C 5, we can obtain a
feasible subsequence S' C S' such that G{S) < G{S'): for every c G5, include all the jobs from
S', in 5'.

Next we describe the behavior of A. Let ndt) denote the expected number of jobs in S'̂
scheduled by A' at time t. A will accept and preempt jobs so as to maintain the invariant that
at all times t, the probability that A has job c scheduled is nc{t)jNc. In showing how A achieves
this we assume that A' has the property that after the arrival of a set of jobs 5"^, the entire
capacity of all m servers is being used. No generality is lost by this assumption, since A can
always decide to preempt jobs later in favor of an incoming job. Now suppose that Ahas a job
c running during time unit t —\ and jobs 01,02,... ,Ck arrive at time t. A will preempt c with
probability (nc(t - 1) - nc{t))lnc{t - 1). If A preempts its current job or did not have any jobs
running during time t - 1, then it accepts job c.- with probability nc,{t)fYlj=i ncj(0- It is easy
to verify by induction on t that the invariant holds.

Let Oc be the ending time of job c. The expected gain of A' from the jobs in S'̂ is Uc'«c(ec) =
Vcnc{ec)alm. The expected gain of A from job c is VendedINc = Vcnc(ec)alm. Thus, the
expected gain ofA on its input sequence S isequal to the expected gain ofA' on the constructed
sequence S'.



Since fJ.d{S) = fJ'diS') and fiviS) = fJ^viS'), the existence of A' contradicts Theorem 1. •

Each of the remaining corollaries is proven using a reduction technique similar to the proof of
Corollary 5, We first describe this technique in more general terms. Next, we state the corollaries
and fill out the necessary details in the proofs.

Assume the existence of a scheduler A! that contradicts some corollary. Based on A\ we
then construct scheduler A that contradicts Theorem 1. A keeps a copy of A' running. Given
a sequence S of requests, A gives A' a sequence S' constructed as follows. Upon receiving a
request c in 5, A generates a set S'̂ of Nc requests for A! each of value Uc' and load Ic'. The
duration of each job in S'̂ is exactly dc. The parameters of the constructed requests depend on
the reduction. However, they will always have the property that the collection of the Nc jobs in
S'̂ , if all scheduled, usq all of the capacity of the system. That is, Ic'Nc is the total capacity of all
servers. Furthermore, the sum of the values of all the jobs in 5^ is equal to Vc (i.e. NcVc' = Vc)-

Given these properties of the reduction, we can deduce that 0{S) < 0{S'). Given a feasible
subsequence S Q S, vfe can obtain a feasible subsequence S' C S' such that G{S) < G{S'): for
every c € 5, include all the jobs from S'̂ in S'.

Let nc{t) denote the expected number of jobs in S'̂ scheduled by A' at time t. Let Cc be
the ending time of job c. Then, the expected gain of A' from the jobs in S'c is Uc'̂ cl^c)- As
above, A maintains the invariant that at all times t the probability that A has job c scheduled
is nc{t)/Nc- Consequently, the expected gain of A from job c is Vcnc{ec)/Nc.

The next two corollaries show that the bound applies also when some specific value functions
are used.

Corollary 6 Assume jobs have arbitrary load and duration, and the value of a job is its dura
tion. Then, any randomized, preemptive on-line scheduler is at least gl2-competitive for mea
sures fid find pi.

Proof. We choose Nc = Vc/dc, Id = and d^ = dc. The expected gain of A' from jobs
in S'̂ is dcnc{cc), and the expected gain of A from job c is Vcnc{ec)fNc = dcnc{ec). Thus, the
expected gain ofA on its input sequence S is equ^ to the expected gain ofA! on the constructed
sequence S'. Since Pd{S) = Pd{S') and pi{S') < Pd{S) • PviS), if A' is 5'/2-competitive with
respect to measures pd and pi, then A is ^^-competitivewith respect to measures pd and py, thus
contradicting Theorem 1.

We remark that the construction can be easily adapted to the cases where more than a single
job can be served at a time, where there is a bound 6U (for any ^ < 1) on the load of a single
job and where there are m servers. This is accomplished in a similar manner as in Corollary 5,
that is by increasing the number of jobs by a factor of m/^ and reducing the load of each job
by a factor of 8. •

Corollary 7 Assume jobs have arbitrary load and duration, and the value of all jobs is 1. Then,
any randomized, preemptive on-line scheduler is at least g-competitive for measures pi and pd-

Proof. We choose Nc = Uc, h' = and d^ = dc- The expected gain of A' from the S'̂ jobs is
nc(ec), and the expected gain of A from job c is Vcnc{tc)INc = nc{ec). Thus, the expected gain
of A on its input sequence S is equal to the expected gain of A! on the constructed sequence
S'. Since pd{S) = Pd{S') and pi{S') = Pv{S), the existence of A' contradicts Theorem 1.



Again, theconstruction can beeasily adapted as in as in Corollary 5 to the cases where more
than a single job can be served at a time, where there is a bound SU (for any 6< 1) on the load
of a single job and where there are m servers. •

We note that our bound does not hold in the scenario where the value of a job is itsduration
times its load. In fact, using this value function there exist constant-competitive schedulers [8].

Next we address the call control model, described in Section 1.1. Xhe job scheduling for the
uniprocessor model discussed above is identical to the call control model on a single link (when
load is translated to bandwidth). We can generalize the result to work for an arbitrary network
as follows:

Corollary 8 Assume calls have arbitrary values. Then, any randomized, preemptive call control
algorithm for any network has a competitive ratio ofat least g for measures pd and

Proof. Pick any pair of nodes s and t in the network. Let F be the value of the maximum
flow from s to t where tt(e) is the capacity of an edge. Let ebe the greatest common divisor of
all the edge capacities. We will only request calls between s and t with bandwidth at most e.
Thus, the set of paths between s and t can be treated as a single edge with capacity F.

We use the same reduction above, choosing Nc = F/e, = Vct/F, 4' = dc and = e. The
expected gain of A' from the c' jobs is Uc«c(ec)e/F, and the expected gain of A from job c is
Vcnc[ec)lNc - Vcnc{ec)elF. Thus, the expected gain of Aon its input sequence S is equal to the
expected gain of A' on the constructed sequence 5". Since pd{S) = pd{S') and py{S) = py{S'),
the existence of A' contradicts Theorem 1. •

The techniques of Corollary 8 can easily be extended to show that the bounds of Corollaries
6 and 7 (using Vc = dc or Vc = 1) apply to the corresponding call control problems in any
network topology. Furthermore, when the network has no cycles we can extend the lower bound
to special cases where the value of a call is determined in some specific ways, listed below. Let
Tc denote the distance between the two endpoints of the call c.

Corollary 9 Suppose we have a tree network with diameter D, Then any randomized, preemp
tive call control algorithm for this network has a competitive ratio ofat least ft (g) for measures
Pd and D, even with the following criteria for call value:

(l) Uc —Icdc.
(ii) Vc = rc.
(iii) Vc = rcdc.
(iv) Vc = rchdc.

Remarks. (1) Note that although D is not a parameter of the input sequence, it describes the
network which along with the sequence is part of the input to the problem. The definition of
competitiveness in Section 2 can be adapted accordingly. (2) Method (i) for determining the
value of a call measures the amount of information potentially contained in a call. Measure
(iv) measures the amount of "work" invested in a call. The fact that our bound holds for
these measures stands in contrast to the single-edge and multiprocessor cases. There, constant
competitive algorithms exist for similar measures.

We employ the usual reduction to the setting in Theorem 1.



(i) Assume the existence of a o(5r)-competitive scheduler A! on a tree network with diameter
D = Hd{S) • fJ.v{S), where the value of a call c is Ic • dc- We construct a scheduler A that
contradicts Theorem 1.

In our construction we assume that each job c given to A has the property that Vc/dc divides
the diameter D. Such a situation can be easily acheived by normalizing the value of each job
so that minc{uc/dc} = 1. The the value of each job c can then be rounded so that Vc/dc is a
power of 2, and the diameter of the network is rounded down to the nearest power of two. It is
easy to see that this way only a factor of two is lost in the effectiveness of the reduction. Note
that Theorem 1 holds even when the algorithm knows minimum value of vddc in the sequence
in advance.

A first chooses a simple path of length D in the network on which A1 operates and numbers
the nodes along the path 0,1,..., jD. For each requested job c, scheduler A requests a set 5^
of Vcfdc calls for A!^ where the ith call starts at node (i —I) • and ends at node i • .

(That is, Nc —Vc/dc and each generated call c' is of length Tc' = D^.) All generated calls have
/c' = 1. The expected gain of A' from the jobs in S'̂ is dcndec), and the expected gain of A
from job c is Vcnc{ec)dcfvc = dcnc{ec)- Thus, the expected gain of A on its input sequence S
is equal to the expected gain of A' on the constructed sequence S'. Since y.d{S) = fid{S') and
/x„(5) •fid{S) > D, the existence of A! contradicts Theorem 1.

(ii) In cases (ii) through (iv) we assume that for each job c requested of A, the values Vc,
and Vc/dc are integers. Also here, such a situation can be acheived by rounding, with a loss of
at most a factor of two in effectiveness.

As in the proof of (i), A picks a path of length D in the tree. The vertices of this path
are labelled {0,...,!?}. Nc = 1, Ic —1, dc = dc>. The endpoints of the call in S'̂ . are node 0
and node Vc- Thus, Vc = Vc = Vc<- Since (id{S) = (J'd{S') and existence of A'
contradicts Theorem 1.

(iii) As in the proof of (i), A picks a path of length D in the tree. The vertices of this path
are labelled {0,..., D}. Nc = 1, Ic = i-, dc = dc'- The endpoints of the call in S'̂ are 0 and node
Vc/dc. Thus, Vc' = Vc/dc., and Vc = Vcdc' = Uc'> Since fid{S) = Hd{S') and fJ,v{S) •fJ.d{S) > D, the
existence of A' contradicts Theorem 1.

(iv) The construction for (iii) works here since for all c, /c = 1.

5 Tightness of the bound

We sketch two simple preemptive, randomized schedulers in the basic model defined in Section
2. The first is O(log/u„)-competitive and the second is (9(log//d)-competitive. Depending on
whether fid < we can implement the appropriate one to obtain a 0(log/x)-competitive
scheduler for fj, = min{iJ,y, Hd}-

For the O(log/iv)-coiiipetitive scheduler, we use a technique of [3]. Let m (resp., M) be
the minimum (resp., maximum) possible value of a job. Let k —[log(M/m)] and let vq,. •.,Vk
satisfy vq = m, Vk = M, and Vi/vi-i < 2. Our scheduler first picks I <i < k aX random. Next, it
rejects all jobs whose value does not fall between Vi-i and Vi. Jobs with value between t;,_i and Vi
are scheduled as follows: accept an incoming job if it terminates before the currently running job.
It is easy to see that this simple scheduler is 2-competitive over the sequence of jobs in the chosen
range. Thus, the competitive ratio of the randomized algorithm is 4log2 /Up = 4log2(M/m).



For the C>(log//d)-competitive scheduler, let d (resp., D) be the minimum (resp., maximum)
possible duration of a job. Let k = |"log(Z}/d)] and let do, •••,4 satisfy 4 = m, dk = M, and
di/di-i < 2. Our scheduler first picks 1 < i < k a.t random. Next, it rejects all jobs whose
duration does not fall between d,_i and di. Jobs with duration between d,_i and d, are scheduled
as follows: accept an incoming job if there is no currently running job or if the new job has
twice the value of the currently running job. It is easy to see that the competitive ratio of this
algorithm is 0(log2pij) = 0(log2(M/m)).

6 Open Questions

The first question we leave open is simply to close the quadratic gap for our generic scheduling
problem. The most desirable result would give a logarithmic lower bound. This would not only
match the upper bound shown in Section 5 but would also match the other logarithmic upper
bounds discussed in Section 1.1.

Although much of the recent work in online routing in communication networks addresses
the limited capacity problem, most of the work on the more traditional load balancing problems
relates to makespan minimization. Despite the general lack of attention, the limited capac
ity problem seems to be well suited to many of the applications for the variety of scheduling
paradigms in the literature. This points out an important and largely unexplored area in on
line scheduling. For example, there has been little which addresses admission control problems
related to either example (a) or (b) at the beginning of the introduction. Although the work
of [10], [11] and [21] is an important step in this direction, their work addresses a very special
cases. Thus, generalizing these results to apply to more complex models is an important and
relevant new direction for research.
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