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ABSTRACT OF THE THESIS

Post-Disaster Structural Health Assessment System Using Personal Mobile-Phones

By

Ahmed A. Alzughaibi

Master of science in Electrical Engineering

University of California, Irvine, 2018

Professor Ahmed Eltawil, Chair

In the aftermath of a natural disaster reconnaissance is typically conducted by teams of

engineers tasked with tagging buildings according to their damage state. Tagging (red, yel-

low, or green) conveys information about the condition of the building (unsafe, needs further

evaluation, or safe, respectively). While thorough, the process can take several days to weeks

to be completed. Automated assessment is an attractive alternative to manual inspection

but requires deploying a dense network of sensors at the granularity of each structure. Such

a network was deemed to be impractical with respect to cost or deployment time. However,

with the advent of the Internet of things (IoT) era, a massive network of citizen-owned smart

devices such as tablets and smart-phones that contain vibration sensors (e.g. accelerome-

ters) is already deployed. The objective of this work is to develop a framework that can

crowd-source relatively low-quality readings from distributed smart citizen owned devices

and distill that information into actionable information. This information can be provided

to public safety personnel within minutes of an event, in the form of a disaster map, with

buildings tagged by their most likely damage state. This paper reports on the development

of an application running on a mobile phone to collect readings and coupled to a cloud based

server used to generate the necessary tags.

x



Chapter 1

Introduction

Every year, earthquakes hit largely-populated cities destroying infrastructure and killing

hundreds to thousands of people depending on the severity of the event [14]. Recently, sig-

nificant research attention has been devoted to studying the feasibility of applying automated

systems in detecting and reporting seismic events. The two areas that are most prominently

studied are Earthquake Early Warning (EEW) systems and post-disaster structural health

assessment [15, 16]. Several recent efforts targeted automatic structural health monitoring

by using satellite imaging [4], or by installing high accurate vibration sensors [17]. The main

disadvantage in adopting satellite monitoring is that it is capable of only capturing partial to

complete building collapse. On the other hand, high accuracy accelerometers are capable of

detecting the building response to the event, from which its state can be inferred. However,

to achieve large-scale deployment, installing a dense network of high accuracy accelerometers

is needed which is not practical with respect to cost or time of deployment.

With the advent of the Internet of things (IoT) era, a dense network of citizen owned de-

vices is already deployed, such as smart-phones, tablets, ...etc. These devices are already

equipped with vibration sensors, specifically accelerometers. The objective of this work is to

1



develop a framework that can crowd-source relatively low-quality readings from distributed

smart citizen owned devices and distill that information into actionable information. In prior

work, an EEW system (called MyShake) was developed using only mobile sensors data [10].

MyShake successfully provided a 20 seconds warning for a magnitude 5 (M5) earthquake.

Furthermore, CSN, another earthquake detection system used phone accelerometers to cap-

ture the s-wave in addition to the much harder to detect p-wave [18]. While prior work

focused on providing early warning, in this work we focus on utilizing mobile accelerometer

reading to directly assess the structural health of buildings post event.

According to the Federal Emergency Management Agency (FEMA), the relative displace-

ment between adjacent floors is related to building health [19] via the Inter-story Drift Ratios

(IDRs). IDRs can be used to classify structures as immediate occupancy (IO), life safety

(LS), or collapse prevention (CP) depending on the maximum instantaneous value of the

IDR.

1.1 What is the Inter-story Drift Ratio (IDR)?

Buildings react to earthquake shaking in different ways depending on the type of the building

and how strong the earthquake is. Buildings shake as 1st, 2nd, 3rd, etc harmonic waves.

IDR is a quantitative measure of how the structure bends in response to earthquake shak-

ing. When a building bends over a certain threshold, it is classified as inhabitable since it’s

columns are most likely damaged. Figures 1.1 and 1.2 depict a building with and without

earthquake shaking.

2
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Figure 1.2: Building under earthquake shaking

In fact, IDR is defined as the drift between two adjacent floors at a moment of time as a

factor of the floor height. Equation 1.1 is used to calculate the IDR in a moment of time.

IDR =
Inter-story Drift

Floor Height
(1.1)3



Equation 1.1 can be rewritten as fallows

IDRi =
Disp.Floori −Disp.Floori+1

FloorHeight
(1.2)

where Disp.Floori and Disp.Floori+1
are the floor displacement of floorsi and i+1, respectively.

The equivalent IDR of the building (IDRb) is the maximum of all IDRi in the building, the

mathematical equation is given in equation 1.3

IDRb = max {IDRi : i = 1, 2, ...,M − 1} (1.3)

where M is number of floors in building b. After that, the structure is classified using FEMA

standards. For example, Table 1.1 represents the threshold IDR of steel moment-frame build-

ings. Refer to section 3.3 for detailed explanations of the classification process.

Table 1.1: Classification thresholds of steel moment-frame buildings, according to FEMA
[12]

IDR % Building State

IDR < 2.5% Immediate occupancy (IO)

2.5% < IDR < 5% Life safety (LS)

IDR > 5% Collapse prevention (CP)

1.2 Earthquake Magnitude Scale

Before designing the system, we must study the earthquake that usually affects the struc-

tural health of buildings. The United States Geological Survey (USGS) [13] categorized

4



earthquakes based on their magnitudes and effectiveness to structural health of buildings.

Table 1.2 presents earthquake magnitudes along with their effects on buildings and frequency

per year reported in [13].

Table 1.2: List of earthquake magnitudes along with their effects to buildings and frequency
per year, reported in [13]

Magnitude Earthquake Effects
Estimated Number
Each Year

2.5 or less Usually not felt, but can be recorded
by seismograph.

900,000

2.5 to 5.4 Often felt, but only causes minor dam-
age.

30,000

5.5 to 6.0 Slight damage to buildings and other
structures.

500

6.1 to 6.9 May cause a lot of damage in very pop-
ulated areas.

100

7.0 to 7.9 Major earthquake. Serious damage. 20

8.0 or greater Great earthquake. Can totally destroy
communities near the epicenter.

One every 5 to 10
years

1.3 An Examples of a Damaged Structure

A hotel in Van Nuys, California has been damaged during the Northridge earthquake in

1994. Although there is no noticeable damage when seen from a distance (Figure 1.3), the

main columns of the building have been severely damaged (Figure 1.4).

5



Figure 1.3: Holday Inn Van Nuys, California seen from distance after 1994 Northridge
earthquake.

(a) Exterior up-close view of the
column damage cased by the earth-
quake

(b) Interior up-close view of the
column damage cased by the earth-
quake

Figure 1.4: Holday Inn Van Nuys, California after 1994 Northridge earthquake.
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1.4 Current methods for post-disaster building assess-

ment

There are several methods for structural health assessment in the aftermath of an earth-

quake. The most popular method is conducting an on-site inspection by teams of engineers.

However, having engineers visit every building is impractical. This process takes weeks to

months which could result in additional loss of lives. Another method used for structural

health assessment is using the satellite maps to tag the collapsed building. The main issue

with using satellites is that they can only detect partially or completely collapsed buildings.

The most accurate automated method to classify the structural health of buildings is using

seismic-grade accelerometers to calculate the IDR. However, it is expensive to implement

seismic-grade accelerometers on every floor. Pros and cons of each inspection method are

summarized in Table 1.3.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 contains the literature review. Chap-

ter 3 provides an overview of the system architecture. Chapter 4 reviews the experimental

validation of the system. Finally, the conclusion is drawn in Chapter 4.4.

7



Table 1.3: Current methods used for post-disaster building assessment

Inspection
Method

Definition Advantages Drawbacks

Physical
Inspection

on-site door-by-door
inspection by teams
of engineers

accurate decisions
made by professional

long process with pos-
sibility of lost lives due
to unchecked collapsed
buildings; very expen-
sive

Satellite
Monitoring

comparing before-
and after-disaster
satellite maps to
tag partially or
completely collapsed
buildings

relatively fast detec-
tion

detects only par-
tially or completely
collapsed building

Seismic-grade
Accelerome-
ters

installing seismic-
grade accelerometers
in every floor in
every building

accurate accelerom-
eter reading means
accurate relative
displacement calcula-
tion

very expensive to set
up in every building

8



Chapter 2

Literature Review

The literature review is divided into two thematic sections in addition to a concluding section.

Section 2.1 reviews the current community-based earthquake monitoring systems. Section

2.2 discusses the structural health assessment systems in the aftermath of an earthquake.

Each section contains chronologically ordered publications in the same theme. The title of

the publications subsection contains the publication titles, authors and years of publishing.

2.1 Community-based Automated Earthquake Moni-

toring Systems

In This section, a list of systems to utilize community-based sensors in seismology is pre-

sented. There are two major systems that are currently working. First, Community Sensing

Network (CSN) which was developed in 20111. Second, MyShake, originally iShake, intro-

duced in 20131.

1This is the year of the first known publication

9



2.1.1 Community Sensing Network (CSN), 2011 -

Community Seismic Network, R Clayton et al, 2011 [8]

This article reports the design of CSN. CSN is a dense open seismic network based on

cheap MEMS sensors owned by volunteers from the community which are connected to their

personal computers or sensors located in mobile-phone devices. The readings are then sent

to a cloud server to be processed.

The main output of CSN is a map of peak acceleration, generated seconds after the event.

It was suggested that sensors in buildings can be useful for monitoring the state-of-health

of the structure after major earthquakes. The vision of this work is replacing the USGS

system Did You Feel It (DYFI)? which is a subjective measure of the earthquake intensity

i.e. asking people if they have noticed the shaking and how strong the shaking was in a

scale from 1 to 10. CSN was intended as a supplement to increase the resolution of ground

shaking measurements of traditional networks, not as a replacement.

The paper lists some of the advantages of dense seismic networks over traditional seismic net-

works. First, the real-time processing is generally simpler by easily generating the hypocenter

using the first few readings. Second, a map of shaking is produced directly from the readings

rather than from a model-based approach that depends on knowing the epicenter of the event

as in the traditional networks. Figure 2.1 shows a comparison between maps generated using

traditional seismic network (top) vs. using the proposed dense network (bottom).

Third is the relatively low cost of dense networks. In fact, CSN uses Phidget sensors, that

cost about $100, rather than the extraordinarily expensive seismic-grade accelerometers,

which are in the order of thousands of dollars. As a trade-off, Phidgets have a noise level

that is much higher than seismic-grade accelerometers. However, the noise level of Phidgets

is 1/4 of the noise level of sensors that were equipped in smartphones in 2011.
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Figure 2.1: A comparison between maps generated using traditional seismic network (top)
vs. using the proposed dense network (bottom), proposed in [8].

A client software is used to retrieve the sampled data from the sensor and apply minor

data processing to the signal to be sent through the connected computer to the server. The

detection algorithm uses a standard ratio of short-term-average over long-term average. The

information that is sent when an earthquake is detected are the peak amplitude, time and

location of the event. The sampling rate that was used in the system was 50 samples per

second.

The installation of the proposed system was planned in Pasadena, CA in 2011. The major

challenge of the suggested system is convincing the public to buy and install the sensors.
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The Next Big One: Detecting Earthquakes and other Rare Events from Community-

based Sensors, M Faulkner et al., 2011 [20]

In this publication, M Faulkner et al. (2011), proposed a statistical approach to initiate an

early warning system using CSN. In addition, they introduced the use of mobile-phones int

the CSN network.

M Faulkner et al. conducted an experiment to assess the sensitivity of the sensors, estimating

and evaluating sensors’ ROC curves using experiments involving historical earthquakes data.

For instance, it was claimed that approximately 100 Android clients or 20 Phidgets per 20

km by 20 km area may be sufficient to achieve roughly 99% correct detection for events

magnitude 5 and above.

Community Sense and Response Systems: Your Phone as Quake Detector, M

Faulkner et al., 2014 [18]

This work proposed using decentralized event detection in the CSN system. It was claimed

that introducing the decentralized event detection in addition to the server level detection

would minimize the error alerts.

In addition, an ML detection algorithm was introduced to the system. The researchers

suggest that using a more sophisticated ML algorithm will reduce the probability error.

The team conducted an experiment on the suggested system and found that approximately

50 phones or 10 Phidgets are enough to detect a nearby magnitude 5 or larger event with

about 99% success.
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Dense building instrumentation application for city-wide structural health mon-

itoring, 2017 [21]

In this work, a practical real experiment was conducted. CSN initiated a structural moni-

toring program for NASA Jet Propulsion Laboratory (JPL) campus buildings. Researchers

claimed that evaluation of data during and after events using the CSN system shows the

usefulness of higher density networks more than methodw that use traditional sparser de-

ployment.

The system still requires the installation of MEMS sensors, connected to active computers

during the event, in all buildings and areas being monitored which is impractical.

2.1.2 iShake and MyShake, 2013 -

Mobile phones as seismologic sensors: automating data extraction for the iShake

system, J Reilly, 2013 [22]

iShake is a seismic sensing system designed by a team at UC Berkeley. iShake uses sensors in

mobile-phone devices to measure earthquake ground shaking. The aim of the iShake project

is to provide the public with a way to contribute more quantitative data, than USGS’s Did

You Feel It (DYFI) ? to earthquake research by automating the sensor reading collection

via the iShake mobile application.

Shake table testing was conducted on iPhones to determine if they are sensitive enough to

sense earthquake shaking. iShake focuses on recovering earthquake-related parameters, such

as Arias intensity and spectral ordinates rather than an early-warning system.

To solve the high power hungriness of the app, the device has to be charging at the time of the

earthquake. In addition, the device has to enter a steady mode, by not exceeding a certain

13



threshold for a predefined period of time, before it could be triggered. The mechanism used

to detect earthquake is crossing a predefined threshold i.e. when the acceleration value is

larger than a predefined value, the system can be triggered. After that, the application sends

the detected earthquake readings to a server along with the timing and GPS location.

On the server end, signal processing is done to the received data to ensure accurate results.

First, detected earthquakes have to be verified with USGS earthquake detection database

to be considered real earthquakes. Second, fall detection is applied by detecting the large

change in Arias Intensity. In addition, specific phone resonance needs to be filtered out of

the reading for unbiased results. In the end, a map using the strengths of the readings along

with their locations is presented.

A virtual earthquake field test is conducted to test the feasibility of the proposed system

visualization map. This work does not focus on detecting the structural damage caused by

earthquakes.

MyShake: A smartphone seismic network for earthquake early warning and

beyond, Q Kong, 2016 [10]

The goal of the proposed system in the paper (MyShake, initially iShake) has been changed

to an earthquake early warning (EEW) system. At the beginning of this work, noise floors

of several lately released phones, at the time of publication, were calculated and compared

to currently used sensors in traditional networks and lately developed MEMS sensor, that

are too expensive to be integrated into mobile phones. The study found that mobile phone

sensors can detect earthquakes that are magnitude 5 or stronger. In addition, the study

found an improvement of the noise floor over the years.

MyShake introduced intelligent detection algorithms instead of using the threshold mecha-

nism. Researchers have used three classifiers to classify earthquake shaking from movements
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applied to the device. The three classifiers used are Zero-Crossing (ZC), which is a frequency

measure, IQR, which is an amplitude measure, and cumulative absolute velocity (CAV).

MyShake successfully provided a 20 seconds warning for a magnitude 5 (M5) earthquakes.

The system still does not focusing on detecting the structural damage caused by earthquakes.

2.2 Post-Earthquake Structural Health Assessment

Instead of conducting reconnaissance by teams of engineers tasked with tagging buildings ac-

cording to their damage state, several automated structural health assessment methodologies

were proposed over the past few years. In this section, some of the purposed methodologies

are listed.

2.2.1 Continuous GPS monitoring of structural deformation at

Pacoima dam, California, K Hudnut et al., 1998 [1]

The first discussed methodology is using GPS to monitor the structural health of civil struc-

tures. Pacoima Dam, built in 1928, suffered structural deformation after 1971 San Fernando

and 1994 Northridge earthquakes. In 1995, a system of three GPS receivers was deployed in

the dam. The proposed system used the GPS receivers to monitor the momentary displace-

ments of the 70-year-old dam relative to a stable station in a nearby station.

After two years of continually monitoring the dam movement, time series to the GPS receiver

started to indicate downstream motion of the dam during the fall and winter, followed by

upstream deflection during the spring and summer. The deflection was nearly 2cm peak-to-

peak amplitude with an approximately 1-year period.
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The present system at Pacoima Dam was operating in near real-time manner. There was

a time lag of several days. The suggested system required installing GPS sensors in the

monitored structure.

2.2.2 Determination of building damage due to earthquakes using

aerial television images, H Hasegawa et al., 2000 [2]

In this work, researchers suggested the methodology of using the already available high

definition television images to detect the damage in buildings in the aftermath of a disaster.

The proposed approach used oblique angle (bird’s eye) images taken by helicopters after

natural disasters. The results of the interpretation were compared with the results of the

ground survey to determine the feasibility of the system. For wooden buildings, moderate

and severe damage was mostly recognized in the helicopter photos. However, only collapsed

and severely damaged buildings were detected in non-wooden buildings.

The main drawbacks of this approach are the delay of having helicopters take the images

and analyzing them in addition to the non-availability of helicopter images in rural areas.

2.2.3 A wireless modular health monitoring system for civil struc-

tures, J Lynch et al., 2002 [3]

This proposed method uses wireless sensing units for real-time structural response measure-

ments via using available technologies in the marketplace. J Lynch et al. claimed that the

suggested system is a low-cost alternative to traditional wire-based sensing systems. The

readings are then sent wirelessly to a centralized data storage system. In the end, data

processing is done to study the structural health of the structure.

16



In order to prove the concept, a small-scale model building was instrumented and excited

with modal analysis performed on the time history response. Although the proposed system

is claimed to minimize the installation cost, the cost is still too high to be used in all

structures.

2.2.4 Use of satellite SAR intensity imagery for detecting building

areas damaged due to earthquakes, M Matsuoka et al., 2004

[4]

This proposed method uses Synthetic aperture radar (SAR) Satellite because of its ability

to record the backscattering coefficient regardless of weather condition or sun illumination

and consequently can be used for better understanding damaged areas after disasters such

as earthquakes and floods.

The suggested system compares before and after event satellite images to calculate physical

earth coefficients. The researchers found that the backscattering coefficient and intensity

correlation between the two attained values were much lowered in hard-hit areas. In addition,

they evaluated building damage using the difference in the backscattering coefficient and

correlation coefficient of the pre- and post-event ERS images. Figure 2.2 shows a schematic

explanation of the observation process.

In conclusion, the investigators proposed that they developed an automated method to detect

hard-hit areas based on the discriminant analysis, and compared the results that were found

with a damage survey result. However, the biggest limitation of this approach is the fact

that it can only detect partially or completely collapsed buildings.
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Figure 2.2: A schematic explanation of the observation process proposed in [4].

2.2.5 Application of a web-enabled real-time structural health

monitoring system for civil infrastructure systems, S F Masri

et al., 2004 [5]

This suggested method discussed in this paper targeted infrastructure systems, such as

bridges. As a proof of concept, the researchers deployed the system into Vincent Thomas

Bridge in Los Angeles, California. The bridge had been instrumented with 26 strong motion

accelerometers to monitor its movement. It was shown that the analysis results of a recent

earthquake correlate well with similar results previously obtained by other investigators who

studied the bridge.

Because the sensors were installed in the 1970s, the sensor network was very sparse for ap-

plications that need to have an accurate estimate of the complex, three-dimensional motion.

The researcher suggested using a broad spectrum of sensors to capture different measure-
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ments of monitored infrastructure systems such as bridges. For instance, corrosion sensors,

vision-based approaches, strain gauges, and direct displacement meters can provide a com-

prehensive diagnosis of the structure. In addition, the proposed system requires installing

sensors in the monitored infrastructure system.

2.2.6 An advanced vision-based system for real-time displacement

measurement of high-rise buildings, J Lee et al., 2012 [6]

This paper proposes a vision-based method for the real-time displacement measurement

of high-rise buildings based on the successive estimation of relative displacements and ro-

tational angles at several floors using a multiple vision-based displacement measurement

systems. vision-based monitoring is very attractive since it calculates the displacement di-

rectly, avoiding the relatively large error of converting acceleration to displacement in the

case of using accelerometers.

J Lee et al. claimed that the proposed vision-based system can successfully measure the

horizontal displacement of a high-rise building by comparing the results that were collected

for the experiment with reference readings from accurate sensors that were mounted in the

same structure.

The system faces two main challenges. First, the need to installing cameras integrated

buildings in advanced in addition to all the implemented wires and routers. Second, the

system requires huge bandwidth for image processing.
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2.2.7 Intelligent monitoring system on prediction of building dam-

age index using neural-network, 2012 [7]

The aim of this work is to design a structural analysis software to classify buildings by

their structural health status. This work proposes an intelligent monitoring system utilizing

artificial neural network (ANN) for structural health assessment. In addition, the system

provides an alert and notifications system to inform the public about the status of the

damage. Figure 2.3 shows the suggested system framework.

The technique that was used in the ANN system is supervised learning, which means dividing

the data set into 2 sets, one for learning and the other for testing. The dataset was a

combination of previous earthquake readings and readings from accelerometers where no

earthquake had occurred.

The proposed system added an intelligent approach for structural health detection to an

already developed structural health assessment system. The main drawbacks of this approach

are the high cost and the need to pre-install accelerometer in the targeted buildings.

Figure 2.3: An ANN structural health monitoring framework proposed in [7]
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2.3 Summary

Previous work in automating earthquake monitoring has been studied in this chapter. Ta-

ble 2.1 shows summarizes major automated earthquake monitoring systems currently work-

ing.

Table 2.1: Summary of major automated earthquake monitoring systems

Year
Lunched

Sensor Type Requires Installa-
tion?

Detection
Type

Goal

Community
Seismic Network
(CSN)

2011 cheap MEMS
sensors, sug-
gested using
phones sensors

yes, sensors con-
nected to user
computers

Threshold Early Warning
System (EEW)

updated CSN 2017 MEMS sensors yes, packaged box
contains a sensor,
a computers, and
backup battery

ML algo-
rithm

EEW System
and study build-
ings behavior

iSkake 2013 phones sensors no Threshold study earth-
quakes

MyShake 2016 phones sensors no ML algo-
rithm

EEW System

In addition, Several methodologies used for structural health monitoring have been studied.

Table 2.2 gives a hint on the most common methodologies.
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Table 2.2: Summary of the most common structural health monitoring methods

Year
Lunched

Sensor Type Requires In-
stallation?

Goal

GPS Moni-
toring

1995 GPS receivers yes, GPS
receiver at-
tached to
structure

Structural
health
Monitoring
(SHM)

Arial Images
Monitoring

2000 - no SHM

Warless Lo-
cal Sensors
Monitoring

2002 Accelerometers yes SHM

Satellite
Monitoring

2004 - no SHM

Infrastructure
Monitoring

2004 Already de-
ployed sensor

yes SHM

vision-based
Monitoring

2012 cameras yes SHM

Intelligent
algorithms
Monitoring

2012 Accelerometers yes SHM
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Chapter 3

System Overview

The system was designed using client-server architecture. The user application is used to

detect, store and then send recorded sensor data to a centralized cloud server. Then, the

server sorts, organizes and stores data in a database. When requested by the user, the

server computes the IDR value for each building and classifies the building to IO, LS or CP.

Then, the server generates a map that displays buildings tagged with their structural health

status. The rest of the chapter is organized as follows. Section 3.1 gives an overview of the

mobile-phone application and the earthquake detection criteria. Section 3.2 covers server’s

architecture. Finally, the classification process is presented in section 3.3.

3.1 Client Mobile-phone Application

As part of this work, we developed a mobile-phone application that detects an earthquake

and sends sensor readings to a centralized cloud computing server along with the exact time,

device ID, user email address, building’s street address, and floor number. The first time

the app is installed, the user is asked to manually enter an email address and the location
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information to be saved in a local database for future use. That process not only reduces

the app power consumption by not requesting GPS location but also avoids any additional

errors due to mis-geolocating adjacent buildings. When the app is restarted, the stored

information will be displayed and the user will have the option to update it. Screen-shot of

the iOS application are in Figure 3.1.

(a) Welcome page (b) Main UI

Figure 3.1: Screenshots of the Client Application. The seismic sensing is performed silently
in the background. The information is fed back to the user in the form of a disaster map.

The app consists of 3 modes: steady mode, trigger mode, and streaming mode. The app has

to enter a steady state before it can be active and available to get excited by an earthquake

to avoid any additional noise in the reading. The app enters the steady mode when the

absolute sensed acceleration in the x-y direction is below a certain threshold for certain time

window. Trigger stage starts once an earthquake is detected,i.e. predetermined threshold

(0.1g) has been crossed in the x-y direction. This is the same technique that has been used

in iShake [22]. The app stores readings for a specific duration. After that, the app begins
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sending the recorded event information and readings to the centralized cloud-server. An

overview of how the app works is shown in Figure 3.2.

Raw 
readings 
database

Earthquake 
Shaking?

Store accelerometer readings along with NTP exact timing

Send the earthquake complete information including 
sensors data, NTP timing, full address and floor number

Start the app

Steady state 
conditions 
satisfied?

Store last 30 second of readings as a buffer 

YES

NO

NO

YES

Steady 
Mode

Trigger 
Mode

Streaming 
Mode

Figure 3.2: Mobile-phone Application Flowchart. The left hand side shows different appli-
cation modes.

The detailed detection mechanism and signal processing of the mobile-phone application is

presented in Algorithm 1.

3.1.1 Sampling Rate

It is well known that the sampling rate of the accelerometer affects displacement calcula-

tion. The error decreases with the increase of the sampling frequency. According to Apple

developers documentation, The maximum frequency at which you can request updates is
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Algorithm 1 Mobile-phone Application

1: INPUT shaking, and location information
2: OUTPUT acceleration as a function of time
3: for i← 1, 2, ..., fs ∗ Tsteady do . fs is the sampling rate, and Tsteady is the

pre-defined duration of the steady state condition
4: axi

, ayi , and azi ← accelerometer reading in the x-axis, y-axis, and z-axis, respectively
5: axyi ←

√
a2xi

+ a2yi
6: end for
7: while max{axy} < Θsteady AND azi > 9.0 do . Θsteady is the pre-defined

threshold of the steady state condition
8: if axy > Θdetection then . Θdetection is the pre-defined earthquake

detection threshold
9: for i← 1, 2, ..., fs ∗ Tstoring do . Tsteady is the pre-defined duration of the

earthquake readings
10: axi

, ayi , and azi ← accelerometer reading in the x-axis, y-axis, and z-axis, re-
spectively

11: ati ← current NTP epoch time
12: end for
13: else
14: Check steady state conditions again
15: end if
16: end while
17: Raw readings database← ax, ay, az, at, and location information
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hardware-dependent [23]. In our experiments, the available phones were iPhone 5 and 5S.

The highest sampling frequency for both devices is 100 Hz, so this was used in the exper-

iment. This frequency is twice as much as what was used in MyShake [10]. Less error is

expected when more advanced recently developed phones, such as iPhone X are used.

3.1.2 Pre-Trigger

If the data is recorded at the start of the trigger time, the prior data will be lost. It is

worth noting that an error at the beginning of the acceleration time window is amplified

by double integration, which is needed to calculate the displacement (see section 3.3.2 for

the details). The error in the displacement without adding pre-trigger data compared with

including pre-trigger data is discussed in the section 4.1.3. For that reason, a moving buffer

was added to store accelerometer data for 30 seconds. The stored data is then sent to the

server when the app is triggered. The first 25 seconds of the pre-trigger data could be used

for noise characterization which will be helpful for the aggregation of the readings by giving

more weight to less noisy readings.

3.1.3 NTP-Time Synchronization

Calculating relative displacements (IDR) requires millisecond accuracy for precision phasing.

Therefore, a synchronization technique is required across phones to avoid clock drift. At first,

the internal mobile-phone’s internal clock was used for reading synchronization. However,

the error in relative displacement calculation was slightly more than expected. For that

reason, the proposed application uses Network Time Protocol (NTP) timing to ensure an

accurate simultaneous reference for all devices [24], [25].
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NTP is the Internet protocol used to synchronize the clocks of computers to some time ref-

erence. The time reference used in the proposed system is epoch time which is the total

number of seconds since midnight of January 1, 1970. The error in calculating the displace-

ment using the mobile-phone internal clock for Synchronization compared with using NTP

clock is discussed in the section 4.2.3.

3.1.4 Running in the Background

One key feature of the application is the ability to detect earthquakes while running in the

background. In other words, even if the user is not directly interacting with the application

interface the app is still sensing the acceleration and can switch between the internal modes.

3.2 EC2 Cloud Server

Using a cloud server has major advantages over using a standard server. One advantage is

the scalability of the cloud server which is crucial property in seismic related systems because

it is hyperactive for a short period of time during and after an event [26]. Low operational

cost is another attractive feature of cloud servers compared to standard servers. In addition,

in cloud services maintenance and back up are usually offered by the service provider.

Amazon Web Services (AWS) is one of the major cloud computing service providers which

make it suitable for the proposed system. An Amazon Elastic Compute Cloud (EC2) is used

as a base for all computations and processes needed. An overview of how the EC2 server is

presented in Figure 3.3.

A quick look at procedures done by the server is shown in Algorithm 2.
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Request raw data from the database

Apply the classification process (section 3.3)

Store

Raw 
readings 
database

Classification 
Status 

database

Debugging 
Database

Figure 3.3: The EC2 Cloud Server Flowchart

Algorithm 2 The EC2 Cloud Server

1: INPUT accelerometer readings, and building heights
2: OUTPUT detailed disaster map
3: Local memory← Raw readings database
4: for Buildings in the targeted area do
5: Structucal health status← Classification algorithm, Raw readings . see section 3.3
6: Disaster map annotation← Structural health status, Building’s location
7: end for

3.2.1 MySQL Database

The system uses the MySQL database because of its ability to store and organize thousands

of readings to be called back when needed. The data is organized by zip code, street address,

and floor number. The system consists of 3 different databases. One database is used to store

raw sensor data received from the app along with the location information. Another database

used to store the resultant IDRs for each building along with the exact time and date of the

incident (earthquake). The last database is used as checkpoints for system debugging.
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Raw Readings Database

The raw readings database is used to store raw sensor data received from the app along with

the NTP timing of the readings. Location, date, and time of the incident are registered as

well. A sample of the raw readings database is given in Figure 3.4.

Figure 3.4: Raw Readings Database. BLOB means a very long array is stored in this location.

Classification Status Database

The classification status database is used to store the resultant IDRs for each building along

with the exact time and date of the incident (earthquake). A sample of the classification

status database is given in Figure 3.5.

Figure 3.5: Classification Status Database
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Debugging Database

The debugging database provides checkpoints. Debugging database A is used to compare

the received data to the data that was sent by the app. Debugging database B is used to

ensure that the displacement calculation was done correctly. Finally, debugging database C

is used to check the synchronization and relative displacement processes. These databases

are displayed in Figures 3.6, 3.7 and 3.8, respectively.

Figure 3.6: Debugging Database A

Figure 3.7: Debugging Database B

Figure 3.8: Debugging Database C
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3.2.2 Web page

A list of the tested buildings along with their classification status is displayed on the system’s

website which is also hosted by the EC2 server. In addition, the website includes a map of

the buildings tagged with their structural health state making it easier for the public to

check their buildings in the aftermath of an event. A screen-shot of the web page is shown

in Figure 3.9. Furthermore, the list and the map are available in the app for even simpler

access.

Figure 3.9: Website Screenshot. A detailed map is shown containing buildings tagged with
their most likely structural health status.

Knowing the terrain surrounding the targeted building helps safety personnel on planing

evacuation. A satellite view showing the terrain of the building surroundings is also provided

in the webpage, as in Figure 3.10

The street-view is another option provided in the website to make it easier for the public to

search for their building’s structural health status. Figures 3.11, 3.12 present the street-view

feature in the website and the phone’s application, respectively.
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Figure 3.10: Satellite view showing the terrain surrounding the targeted buildings.

Figure 3.11: Street-view feature makes searching for buildings even easier for the public

3.3 Classification Process

The system loops over all the buildings that have active users during the disaster to categorize

them into IO, LS or CP using FEMA standard [12]. For instance, an IDR over 4% for steel-

moment frame buildings is considered CP. IDRs over 1% and below 4% are classified as LS,

while IDRs less than 1% stated as being IO. Classifying a building is done through several

stages. These stages are:
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(a) a list of the tested buildings
search-able by street address or zip
code in addition to the detailed
map containing buildings tagged
with their structural health status

(b) the street view feature allows
the user to use phone’s orienta-
tion to clearly point to the building

Figure 3.12: Screenshots of the Client Application Disaster Map. The information is fed
back to the user in the form of a disaster map.

3.3.1 Removing the Bias

Phone accelerometers usually have a constant bias. The first step is removing the bias for

each axis of the acceleration which is estimated by long-term averaging. First the long-term

mean (bias) needs to be calculated for each axis using equations 3.1 and 3.2.

µx =

N∑
i=1

axrow [i]

N
(3.1)
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µy =

N∑
i=1

ayrow [i]

N
(3.2)

Where N is the total number of readings i the given period, axrow is the raw acceleration

x-axis readings that were sent from the mobile-phone, and ayrow is the raw acceleration y-axis

readings that were sent from the mobile-phone.

After that, the long-term mean (bias) has to be subtracted from each reading in every axis

using formulas 3.3 and 3.4.

ax[i] = axrow [i]− µx for i = 1, 2, ..., N (3.3)

ay[i] = ayrow [i]− µy for i = 1, 2, ..., N (3.4)

Where ax[n] is the x-axis acceleration reading after filtering out the bias, and ay[n] is the

y-axis acceleration reading after filtering out the bias. The pseudo-code for removing the

bias process is given in Algorithm 3.

Algorithm 3 Removing the Bias

1: INPUT axrow [n], ayrow [n]
2: OUTPUT ax[n], ay[n]
3: µx ← mean(axrow [n])
4: µy ← mean(ayrow [n])
5: for i← 1, 2, ..., N do
6: ax[i]← axrow [i]− µx . removing the long-term average from every reading in x-axis
7: ay[i]← ayrow [i]− µx . removing the long-term average from every reading in y-axis
8: end for
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3.3.2 Displacement Calculation

Finding velocity as a function of time v(t) from raw accelerometer data a(t) is done using

equation 3.5

v(t) = v0 +

t∫
0

a(t) dt (3.5)

The initial velocity (v0) = 0 because of the steady mode conditions. Furthermore, displace-

ment d(t) is found using equation 3.6

d(t) = d0 +

t∫
0

v(t) dt (3.6)

The initial displacement (d0) = 0 because of the steady mode conditions. In short, integrat-

ing the acceleration results in velocity while double integrating the acceleration calculates

displacement as in equation 3.7.

d(t) =

t∫
0

 t∫
0

a(t) dt

 dt (3.7)

Integration is done numerically by summation in the case of digital (discrete) signals. Equa-

tions 3.5, 3.6, and 3.7 can be rewritten as follows

v[n] = dt

n∑
0

a[n] (3.8)

d[n] = dt
n∑
0

v[n] (3.9)
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d[n] = (dt)2
n∑
0

n∑
0

a[n] (3.10)

where dt is the inverse of the sampling rate (fs) ; dt = 1/fs . d[n] is the displacement at

time n. To plot the displacement as a function of discrete time (n), the function cumsum

(cumulative summation) is used to approximate integration. cumsum is defined in 3.11.

cumsum(g[n])[i] =
i∑

k=1

g[k] for i = 1, 2, ..., N (3.11)

Where g[n] is a discrete sequence. For example, the cumulative sums of the sequence

{a, b, c, d, e, ...}, are {a, a + b, a + b + c, a + b + c + d, a + b + c + d + e, ....}. Further-

more, the double cumulative sums (double integration) of the sequence {a, b, c, d, e, ...}, are

{a, 2a+ b, 3a+2b+ c, 4a+3b+2c+d, 5a+4b+3c+2d+e, ....}. As a result, the contribution

of the beginning of the sequence is much higher than its tail. Similarly, the effect of the

noise in the beginning of a signal distorts the resultant signal much more severely than the

noise at the middle or end of it. Note that the result of the operation cumsum is a sequence.

That is different than the operation sum which results in a single value.

The pseudo-code for displacement calculation procedures is given in Algorithm 4.

3.3.3 Data Synchronization

Data must be aligned before relative displacement calculation. NTP time that was sent

from the app, as mentioned in section 3.1.3, is used as the base of alignment since the error
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Algorithm 4 Displacement Calculation

1: INPUT fs, t[n], a[n]
2: OUTPUT d[n]

3: fs ← round( t[N ]−t[1]
N

)
4: dt← 1/fs
5: for i← 1, 2, ..., N do

6: cumsum(a[n])[i] =
i∑

k=1

a[k]

7: cumsum(v[n])[i] =
i∑

k=1

v[k]

8: end for
9: v[n]← dt ∗ cumsum(a[n]) . v0 = 0 because of the steady mode conditions

10: d[n]← dt ∗ cumsum(v[n]) . d0 = 0 because of the steady mode conditions

of the device’s clock is irrelevant. The pseudo-code for reading synchronization is given in

Algorithm 5.

Algorithm 5 Data Synchronization

1: INPUT t[n], d[n] . t[n] is the NTP epoch time for d[n]
2: OUTPUT d[n]S . d[n]S is a synchronized version of d[n]
3: for i← 1, 2, ...,M − 1 do
4: Delayi ← t[n]i − t[n]i+1

5: d[n]Si
← d[n]i, Delayi

6: end for

Figure 3.13 shows an example of the effect of using mobile-phone’s internal-clock time for

synchronization to relative displacement calculation. It is clear that mis-aligning the two

readings has led to a large unreal relative displacement. In the the example in Figure 3.13,

even though one reading is lagged by less than 15 ms, it has led to a 2 cm error, which is

intolerable in IDR calculations.

On the other hand, the NTP alignment has led to a 2 ms mis-alignment. This 2 ms shift

between the two readings has led to 0.2 cm relative displacement error as presented in Figure

3.14.

The improvement of using NTP time over the phone’s clock as a function of the stored data

duration is provided in Fig 3.15. It makes sense that the contribution of the synchronization
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Figure 3.13: An example of the effect of using mobile-phone’s internal-clock time for syn-
chronization to relative displacement calculation.
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Figure 3.14: An example of the effect of using NTP time for synchronization to relative
displacement calculation.

error to the total error is decreases with increasing duration since the error due to the

accelerometer noise accumulates fast for long duration which minimizes the synchronization

error portion of the total error.
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Figure 3.15: The improvement in The IDR accuracy of using NTP time over internal-clock
time for synchronization

3.3.4 Relative Displacement Computation

The server loops over every adjacent floor in every building containing active devices during

an earthquake. Then, the IDR is computed using equation (3.12).

IDRi = max

{∣∣∣∣d(t)i − d(t)i+1

h

∣∣∣∣} (3.12)

Where IDRi is the maximum IDR value between floor i and floor i+1, d(t)i and d(t)i+1 are

the calculated displacements in meters for floor i and floor i + 1, respectively, and h is the

floor height in meters (typically, 4m for steel-moment frame buildings). In Digital signals,

formula 3.12 can be rewritten as

IDRi = max

{∣∣∣∣d[n]i − d[n]i+1

h

∣∣∣∣} (3.13)
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After that, an equivalent IDR value is calculated for every building using equation (3.14).

IDRb = max {IDRi : i = 1, 2, ...,M − 1} (3.14)

Where IDRb is the maximum IDR value recorded between any adjacent floors in building b

and M is number of floors in building b. Finally, a class is given to the building by compar-

ing IDRb with the FEMA reference values. The pseudo-code for relative displacement and

IDRb calculation procedures is given in Algorithm 6.

Algorithm 6 IDR calculation

1: INPUT h, d[n]S
2: OUTPUT IDRb

3: for i← 1, 2, ...,M − 1 do
4: for j ← 1, 2, ..., N do

5: d[j]irelative ←
d[j]Si

−d[j]Si+1

h
. where d[j]irelative is the relative displacement between

floors i and i+ 1
6: end for
7: IDRi ← max {|d[n]irelative |}
8: end for
9: IDRb ← max {IDRm} . m = 1, 2, ..., M-1

The variance of the error in relative displacement is given in equation 3.15.

V ar[di − di+1] = V ar[di] + V ar[di+1]− 2 Cov[di, di+1] (3.15)

Since the two devices are independent, Covariance (Cov[di, di+1]) = 0. Furthermore, V ar[di] =

V ar[di+1] assuming the cell-phone accelerometers are identical. Therefore,

V ar[di − di+1] = 2 V ar[di]
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and the standard deviation of the error in relative displacement Std[di − di+1] is given in

equation (3.16).

Std[di − di+1] =
√

2 Std[di] for i = 1, 2, ..., n− 1 (3.16)

An overview of how the server classification process is given in Figure 3.16

Request raw data from the database

Filter out accelerometer bias

Are readings for 
the same event?

YES

NO

Go to the next floor

Loop over buildings, align data and calculate the IDR 
between every adjacent floors

Loop over floors, align data using NTP reference time

Classify buildings to IO, LS or CP using FEMA datasheet 

Store

Raw 
readings 
database

Classification 
Status 

database

Debugging 
Database

Figure 3.16: The EC2 Cloud Server Flowchart. The chart shows signal processing of received
phone acceleration signals.

The pseudo-code for the classification process is given in Algorithm 6.
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Algorithm 7 Structural health classification process

1: INPUT accelerometer readings, and building heights
2: OUTPUT structural health status
3: for Building in the targeted area do
4: for floors in the building do
5: ai[n]← airow [n] . Filtering out the bias using Algorithm 3
6: di[n]← ai[n] . the displacement is calculated for every floor using Algorithm 4
7: d[n]Si

← t[n]i, d[n]i . reading synchronization using Algorithm 5
8: d[n]irelative ← d[n]Si

, d[n]Si+1
. Relative displacement between every adjacent

floors is calculated using Algorithm 6
9: IDRi ← d[n]irelative . Local IDR is calculated for every adjacent floors using

Algorithm 6
10: end for
11: IDRb ← IDRi . Building IDRb is calculated for The building using Algorithm 6
12: IO, LS, or CP ← IDRb . A classification status is given to the building using

FEMA standards
13: end for

3.4 Summary

A post-earthquake automated assessment system was built using client-server architecture.

For the client side, an iPhone application was designed for earthquake detection. Once the

earthquake is detected, the application saves the accelerations of the shaking for a predefined

duration. When the recording is finished, the detailed information about the earthquake is

then sent to a database used to register the unprocessed application readings. The detailed

information includes accelerometer readings, the NTP precise timing and location details.

On the other side, an Amazon cloud server was built for 4 purposes. First, storing raw

readings that were sent through the application in a database. Second, implementing all the

signal processing needed for structural health assessment.Third, saving building status along

with location information in a database. Finally, visualizing the resultant classification into

a detailed interactive map including buildings tagged with the most likely structural health

status.
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The system flowchart is presented in Figure 3.17

Request raw data from the database

Filter out accelerometer bias

Are readings for 
the same event?

YES

NO

Go to the next floor

Loop over buildings, align data and calculate the IDR 
between every adjacent floors

Loop over floors, align data using NTP reference time

Classify buildings to IO, LS or CP using FEMA datasheet 

Store

Raw 
readings 
database

Classification 
Status 

database

Earthquake 
Shaking?

Store accelerometer readings along with NTP exact timing

Send the earthquake complete information including 
sensors data, NTP timing, full address and floor number

Start the app

Steady state 
conditions 
satisfied?

Store last 30 second of readings as a buffer 

YES

NO

NO

YES

Figure 3.17: System Flowchart. The left hand side shows the mobile-phone application
modes. The right hand side describes the signal processing of received phone acceleration
signals.
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Chapter 4

Experimental Validation

Several tests were conducted to determine the phone’s ability to track phone displacement.

A few more experiments were done in which different features were added to the system to

test for improvement. The experiments were repeated for durations ranging from 5 to 30

seconds and for different settings. These settings are described below.

4.1 Preliminary Experiments

A few experiments were conducted to discover the mobile-phone accelerometer feasibility in

earthquake detection and analysis.

4.1.1 Noise Characterization

Before building the system, a full characterization of mobile-phone accelerometer noise is

needed to check the ability of the phone’s accelerometer to sense an earthquake. First, In

order to determine the noise level, the devices were left in a quit room to store accelerometer
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readings overnight. The registered reading is the total noise which consists of the accelerome-

ter’s noise plus the everyday vibrations due to walking, door closing, etc. Figure 4.1 presents

a 10-minute sample of the accelerometer’s readings.
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Figure 4.1: Pure Mobile-phone Accelerometer Noise for 10 minutes

Figure 4.2 shows the power spectral density of the stored acceleration. The noise level of the

accelerometer of the tested phone was about -52 dB.
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Figure 4.2: The Power Spectral Density of Mobile-phone Accelerometer Noise
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The PSD of different magnitude earthquakes has been studied in [10] and presented in

Appendix B. It has been used as a reference to determine which earthquake magnitude the

phone’s accelerometer is able to sense. It is clear that the mobile-phone’s accelerometer is able

to sense earthquakes that are magnitude 5 (M5) or larger. In fact, the stronger earthquakes

are the ones that are focused on since they are the ones that cause sever damage to the

structural health of buildings.

The noise floor of the seismic-grade accelerometer is provided in Appendix B in addition to

the noise floor of a recently developed MEMS accelerometer, which can be mounted in a

smart-phone in the future, when they are more economically feasible.

4.1.2 Removing the Bias

As mentioned in 3.3.1, a phone’s accelerometer tends to slightly bias to a positive or a

negative value. For example, in Figure 4.3 the recorded acceleration is biased by about

0.14 m/s2 to the negative side.

The bias of mobile-phone accelerometers can severely damage displacement calculation since

this bias accumulates very fast after double integrating the acceleration to calculate displace-

ment. For instance, a 20 seconds sample of the biased accelerometer readings is presented in

Figure 4.4 along with displacement that was calculated using the biased acceleration. Even

though the bias was as little as 0.14 m/s2, the error in the displacement became 2.8 m which

is a completely intolerable error in seismology standards.

On the other hand, Figure 4.5 shows the fixed unbiased accelerometer readings in addition

to the displacement that was calculated using the unbiased acceleration. The error in the

displacement became about 0.03 m. This is a huge improvement compared the case of

unfixed acceleration.
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Figure 4.3: Biased vs. unbiased mobile-phone accelerometer noise
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Figure 4.4: Biased mobile-phone noise acceleration vs. the displacement that was calculated
using biased acceleration
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Figure 4.5: Unbiased mobile-phone noise acceleration vs. the displacement that was calcu-
lated using unbiased acceleration

4.1.3 Pre-Trigger Data

As stated in section 3.1.2, not including the pre-trigger data causes errors in displacement

calculations since it does not take into account valuable pieces of the readings. An example

of the displacement calculations difference between adding and not adding the pre-trigger

readings is given in Figure 4.6. Not adding the pre-trigger data has added about 2 cm of

error.

4.1.4 Low Pass Filter

As most of the features have been added to successfully improve the error, some additions

did not have noticeable effect. One of those features is filtering the readings before any

signal processing. The idea was removing the high frequency noise using a low pass filter.
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Figure 4.6: Unbiased mobile-phone noise acceleration vs. the displacement that was calcu-
lated using unbiased acceleration

However, it turned out that the effect of the high frequency noise was minimal. In addi-

tion, implementing the low pass filter added noise to the valuable low frequency earthquake

acceleration.

4.2 Full System Experiments

A full system experiment was conducted where two phones are placed on two adjacent floors

and manually triggered and kept not moving for the entire period. Furthermore, another

full system test were conducted to calculate the relative displacement and the IDR of two

moving devices. The applied shaking was identical , which means the relative displacement

should be pure zero since the actual distance between the devices is constant.

Furthermore, several experiments were conducted to examine the effect of adding different

features into the system. The two features that were studied in this section are one, the addi-

tion of the pre-trigger readings and two, relying on the NTP time for reading synchronization
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instead of using the phone’s internal clock. The reason a full system test was not conducted

without fixing the mobile-phone’s accelerometer bias is because the error is extremely large

for estimating the displacement of one device (see section 4.1.2). This error will increase in

the case of relative displacement calculations as explained in section 3.3.4.

4.2.1 Case I: At Rest

The first experiment conducted determines the effect that pure phone accelerometer noise has

on the calculation of the relative displacement between two non-moving floors containing one

device each. The two devices are triggered manually and left at rest for the whole experiment

period. Ideally, the resultant relative displacement should be zero. However, the noise from

phone accelerometer accumulated rapidly due to double integration. This error increased

sharply as the the duration of the registered event increased. The error was relatively small

(around 0.5%) for durations below 10 seconds. Therefore, it is not likely to cause mis-

classification of a building’s health status. According to [9], about 66% of earthquakes that

hit California have strong motion duration below 10 seconds.

4.2.2 Case II: Identical Motion Before Adding Pre-Trigger Data

Adding the pre-trigger data is a crucial step to ensure that we are not losing any shaking

information. In fact, not using pre-trigger data worsens the IDR calculation by a factor of 5

making it intolerable even for shorter durations. Figure 4.8 shows the average of full system

tests repeated 30 times for each duration. The error in the IDR calculation is found to be

slightly more than 3% for 10 seconds stored acceleration which is unbearable in structural

health classification.
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Figure 4.7: Error in IDR Using Smart-phone Accelerometer at Rest
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Figure 4.8: Error in IDR Using Smart-phone Accelerometer using Identical Motion Before
Adding Pre-Trigger Data
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4.2.3 Case III: Using Mobile-Phone’s Internal Clock for Synchro-

nization

Relying on the phone’s internal clock slightly enlarges the error in the IDR calculation. As

explained in section 3.3.3 the best available option for indoor synchronization is using NTP

epoch time as a common reference for all devices in the system. Figure 4.9 displays the

average of the repeated full system tests relying on the mobile-phone’s internal clocks for

data alignment. The IDR calculation error in the system in the case of using the internal

clock was slightly larger than the case of using NTP time. In fact, using the phone’s internal

clock is still tolerable for durations less than 10 seconds.
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Figure 4.9: Error in IDR Using Smart-phone Accelerometer for Identical Motion Using
Mobile-Phone’s Internal Clock for Synchronization

4.2.4 Case IV: Identical Motion with Optimal Settings

The last test applies an identical shaking motion to the two phones. The two devices are both

bonded to a horizontal shaking slider. Ideally, they should get triggered at the same time
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and record the same acceleration. Additionally, since both phones are attached together,

their relative displacement should be perfect zero. Consequently, any measured relative

displacement is due to several other factors such as: time synchronization, trigger delay, and

amplitude-dependent accelerometer noise in addition to the accelerometer noise. As shown

in Fig. 4.11, the error is still tolerable for short durations (roughly 0.75% for periods shorter

than 10 seconds).
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Figure 4.10: Error in IDR Using Smart-phone Accelerometer using Identical Motion with
Optimal Settings

4.3 Readings Aggregation

Aggregating same-floor readings reduces the error in the relative displacement. As men-

tioned in section 3.1.2, the pre-trigger readings can be used for noise characterization. Noisy

readings can be given less weight, resulting in a more-efficient aggregation. A more complex

aggregation mechanism could be applied for even better results. Determining the effect of

using different aggregation methods is out of the scope of this thesis.
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4.4 Summary

To validate the feasibility of the system for structural health assessment, full system tests

were conducted using different settings. The first experiment was determining effect of the

noise of the mobile-phone’s accelerometer in addition to the every day life sources, such as

walking around the device which cause vibration that can be read by the accelerometer.

After that, few experiments were conducted to test possible advances through introducing

different improvements into the system. One of the improvements added is including the

pre-trigger data to avoid losing any valuable piece of readings. Relying on NTP time as a

reference for synchronization instead of the phone’s internal clock is another improvement

that was studied.

Furthermore, a full system experiment was conducted where two phones were placed on two

adjacent floors and manually triggered and kept stationary for the entire period.

Finally, full system tests were conducted to calculate the relative displacement and the IDR

of two moving devices. The applied shaking was identical , which means the relative dis-

placement should be pure zero since the actual distance between the devices is constant.

Figure 4.11 shows the results of tests conducted on the system for every setting used.

55



5 10 15 20 25

1

2

3

4

5

6

7

8

Duration [seconds]

E
rr
o
r
S
ta
n
d
a
rd

D
ev

ia
ti
o
n
[%

]

At rest

Identical motion with optimal settings

Identical motion using internal clock

Identical motion before adding pre-trigger readings

Figure 4.11: Error in IDR Using Smart-phone Accelerometer. Different settings and features
were tested.
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Conclusion

A post-disaster structural health assessment system has been developed using client-server

architecture. A mobile-phone application is designed to detect and record earthquake ac-

celeration. The stored data is then sent to a centralized cloud server which calculates the

maximum IDR for every structure to be classified as either safe, needs further evaluation

or unsafe according to FEMA standards. The resultant classification is then presented to

emergency personnel as well as the to public in the form of a disaster map with buildings

tagged by their most likely health state. Promising results were achieved for short duration

events which showed error in IDR less that 0.75% for an event period shorter than 10 seconds.

Future directions of the project include applying machine learning (ML) earthquake detec-

tion algorithms, implementing noise cancellation algorithms, and using the mobile-phone’s

barometer to determine the user’s floor.
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Appendix A

Earthquake Strong-Motion

Most of the damage caused by earthquakes is happening during the strong shaking of the

earthquake. Addressing the duration of earthquake’s strong shaking provides a great refer-

ence for the periods we should focus on. The strong motion duration calculated based on

acceleration magnitude or cumulative energy obtained by integrating squared acceleration.

The strong motion duration of 140 California earthquake records was calculated in [9]. The

cumulative density function (CDF) of strong motion duration is presented in Figure A.1.
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ground motion recorded in California reported in [9].
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Appendix B

Power Spectrum Density of Different

Magnitudes Earthquakes and the

Noise Floor of Seismic Grade

Accelerometers

B.1 PSD of Different Magnitudes Earthquakes

To better now the ability of mobile-phone accelerometers in seismic field, the noise floor of

accelerometers have to be compared with the amplitudes of earthquakes of different magni-

tudes. This comparison has been previously done in MyShake [10] and presented in Figure

B.1. Phone accelerometers are able to sense the shaking for magnitude 5 (M5) or larger

earthquakes at distance of 10 km away from the phone in the frequency range of 1 to 10 Hz.
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B.2 Noise Floor for Seismic Grade Accelerometers

An example of the seismic grade accelerometers used today in seismic monitoring is presented

in Figure B.1. It can clearly be seen that those accelerometers are able to capture much

weaker earthquakes for almost all earthquake frequency range. The noise floor of the seis-

mic grade accelerometer is around −120 dB compared to −40 ∼ −60 dB for mobile-phone

accelerometers.

Figure B.1: PSD of Different Magnitudes Earthquakes and seismic grade accelerometers, as
reported in [10].
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B.3 Noise Floor of MEMS Accelerometers

The future of accelerometers that can be mounted in hand-held devices is very bright. A

recently developed MEMS accelerometer has nose floor that is comparable to seismic-grade

accelerometers. However, this type of sensors is not attractive for mobile-phone manufac-

turers due to the high cost. The plot of the HP MEMS [11] accelerometer noise floor is

presented in Figure B.2.

Figure B.2: Noise Floor for HP MEMS Accelerometers, as reported in [11].
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