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Topological surface state in the Kondo Insulator Samarium Hexaboride 
 
D. J. Kim, J. Xia, and Z. Fisk 
 
Department of Physics and Astronomy, University of California, Irvine, Irvine, California 
92697, USA 
 
 
Strongly correlated electron systems show many exotic properties such as 

unconventional superconductity, quantum criticality, and Kondo insulating 

behavior. In addition, the Kondo insulator SmB6 has been predicted theoretically to 

be a 3D topological insulator with a metallic surface state. We report here transport 

measurements on doped SmB6, which show that ~3% magnetic and non-magnetic 

dopants in SmB6 exhibit clearly contrasting behavior, evidence that the metallic 

surface state is only destroyed when time reversal symmetry is broken. We find as 

well a quantum percolation limit of impurity concentration which transforms the 

topological insulator into a conventional band insulator by forming impurity band. 

Our careful thickness dependence results show that SmB6 is the first demonstrated 

perfect 3D topological insulator with virtually zero residual bulk conductivity. 

 

Topological invariants of electron wave functions in condensed matter physics reveal 

many intriguing phenomena (1,2). The most exotic one is the topological insulator (TI) 

characterized by the Z2 group where an insulating bulk coexists with a metallic boundary 

state (3,4). Possible novel quantum states supporting coherent qubits using Majorana 

fermions with their potential for technological application has led to intense research into 

Bi based TIs (5). Their large band gap and simple surface state make it possible to 

explore their underlying physics using various techniques (6). However, the main 

complication concerning these Bi based materials is that they still have considerable 

residual conductivity in the bulk, and only experimental techniques distinguishing bulk 

and surface clearly such as angle-resolved photoemission spectroscopy (ARPES) (7,8) or 

scanning tunneling microscope (STM) (9,10) can be used to explore the surface 

properties of these materials properly. Thus, it is both not easy to detect their topological 

surface state with transport techniques and hard to achieve scalability in applications 

based on transport properties. Theories (11,12) predict that a Kondo insulator SmB6, 



which evolves from a Kondo lattice metal to an insulator with a small gap as the 

temperature is lowered, could be a topological insulator with a metallic surface state. The 

insulating bulk and metallic surface separation has been demonstrated in recent transport 

measurements (13-15). This bulk and surface separation is especially important for 

potential applications toward scalable quantum information processing (16). 

The Kondo insulator SmB6 is a dense lattice of Sm magnetic moments which 

evolves from a dirty metal at room temperature to an insulator with some residual 

conductance at low temperature (17). This transition is one of the most remarkable 

phenomena of Kondo lattices which also exhibit unconventional superconductivity (18), 

hidden order transition (19) and quantum criticality (20) as a result of immersion of 

magnetic moments in a conduction band. The resistance of SmB6 increases exponentially 

as the temperature decreases (see Fig. 1A) with a non-universal ratio of low to high 

temperature resistance. Usually, the higher quality sample exhibits the higher ratio (see 

Supplementary Materials). 

 From Ohm’s law, the electrical resistivity of a rectangular parallelepiped shaped 

bulk conductor is defined by the product of measured resistance and geometrical factor L 

/ A, where L and A are the length and cross sectional area. Since ideal TIs do not have 

bulk conductance, they cannot satisfy the basic Ohm’s law. Thus, if a 3D TI transforms 

from a conventional bulk conductor at high temperature to an insulator with only surface 

conduction at low temperature, the sample thickness should not affect the measured low 

temperature limiting resistance but be independent of it. Figure 1B shows this most 

unusual behavior of SmB6 manifesting the thickness independence of sample resistance 

caused by the bulk and surface separation is a necessary condition for an ideal TI. The 

sample thickness is reduced by polishing. After the first resistance versus temperature 

measurement, the same sample is flipped and mounted on a polishing fixture to reduce 

the thickness from the backside to keep the original surface and electrical leads made by 

spot welding intact. (right lower inset Fig. 1A and see Supplementary Materials). The 

resistance is measured in a Quantum Design PPMS with LR700 ac-bridge and 

automation software (21). From room temperature down to 10 K, the comparative 

resistance ratio (RR) of three different thicknesses of SmB6 follows the geometric ratios 

as with usual bulk metallic systems, but below 10 K, RR starts dropping and rapidly 



converges to one below 5 K. This convergence indicates that the surface conductance 

dominates with a relatively much small conductance being left from the finite 

temperature effect coming from the tiny band gap in the bulk, which indicates complete 

insulating bulk and metallic surface separation at low temperature. These temperatures 

are consistent with our previous reports (13-14). In contrast to SmB6, semiconducting 

BaB6 and quantum critical CeAuSb2 (22) show only the bulk metallic behavior over 

entire temperature range. However, this separation of bulk and surface is not enough to 

claim that SmB6 is indeed a topological Kondo insulator (TKI). 

 



Fig. 1. Failure of Ohm’s law. (A) Resistance versus temperature of rectangular 

parallelopiped shaped SmB6 sample, the insets show crystal structure (upper), a finely 

polished surface sample with electrical leads (lower left), and the sample flipped and 

mounted on a polishing fixture for thickness reduction with the original leads in place 

(lower right). (B) thickness dependences of SmB6, BaB6 and CeAuSb2 resistance. SmB6 

has very clear thickness independence and its resistance ratios for three different 

thicknesses converge to one indicating bulk (insulator) and surface (conductor) separation 

as the temperature is lowered below 10 K. In contrast, BaB6 and CeAuSb2 show 

conventional bulk conducting behavior. 

 

The most convincing way to prove SmB6 to be a TKI is with ARPES to observe the Dirac 

cones. However, if SmB6 is an ideal TKI with virtually zero bulk conductance at low 

temperature, it should be possible to probe with transport measurement not only for 

understanding underlying physics but also for hybrid system with other superconducting 

and magnetic materials. Even though the thickness independence is exotic, it could arise 

from an accidental layer on the surface (23). Thus, it is necessary to find firmer evidence 

to support surface Dirac fermions along with the thickness independent resistance at low 

temperature. Usually, to probe the surface Dirac fermion, quantum oscillations from 

Berry phase and Landau quantization by STM or magneto-optics experiments have been 

used for the conventional TIs (4-6). However, the Kondo insulator is a strongly correlated 

system with the small band gap arising from Kondo screening and magnetic field may 

affect not only the nontrivial band topology but also quench the Kondo effect. The 

previous magneto resistance measurement up to 9 T did not show any evidence of 

quantum oscillation (13) and even higher field is reported to quench the Kondo insulating 

property leading to more metallic behavior (24). Therefore, conventional transport 

measurements in high magnetic field may not be the way to detect Dirac fermions 

through quantum oscillation. Instead, TIs have three aspects of the topological protection 

of the surface state (4-6,9,10). First, its fundamental Z2 topology preserves a gapless 

surface state unless time reversal symmetry (TRS) is broken. Second, helical spin 

polarization prevents momentum backscattering from k to –k by non-magnetic impurities. 

Finally, the Berry phase protects the surface state from weak localization through time 



reversed paths. These collectively provide a robust surface state with TRS conservation. 

Probably, the simplest manifestation of this TRS protected surface state would be 

positive magneto-resistance in an external magnetic field, and a transition from positive 

to negative would be expected for TKI from the above reasoning. Indeed this happens for 

pure SmB6 below 1 K, but the observation of this transition does not uniquely support a 

topological surface state (see Supplementary Materials).  

 To include the effect of the broken TRS, we use magnetic and non-magnetic 

impurity doping in SmB6 and measure resistance versus temperature with the thickness 

reduction method to check if the low temperature resistance value converges to one as the 

pure samples do. Figure 2A shows a clear contrast between magnetic gadolinium (Gd) 

and non-magnetic Yttrium (Y) and Ytterbium (Yb) doped on Sm sites in SmB6 samples. 

The overall RRs for two different thicknesses in Yb and Y doped SmB6 exhibit bulk 

conducting property at high temperature which converge to one at low temperature. In 

contrast, the RR of the Gd doped sample follows the geometrical ratio over the entire 

temperature range. Usually both magnetic and non-magnetic doping can break the Kondo 

insulating phase and make doped samples quite metallic at concentration higher than 

30 %, eventually leading to antiferromagnetic (GdB6), conventional semiconducting 

(YbB6) and superconducting transition (YB6). In the intermediate doping concentration, 

the resistance rise at low temperature tends to be decrease dramatically. Thus, the 

contrasting RRs or bulk conducting behavior for the Gd doped sample could be 

misinterpreted rather as a more effective reduction of the resistance rise at low 

temperature. However, as shown in Fig. 2B and 2C, compared with the Gd doped sample 

which makes almost 2.5 orders of magnitude jump, the Y doped sample makes less than 

2 orders of magnitude increase. Remarkably, below 4 K, the resistance of the Y doped 

sample saturates but the Gd doped sample shows further dramatic increase even to the 

base temperature. We can confirm from other samples in the same batches that the Gd 

doping makes a dramatic resistance rise compared with Y doping (see Fig. 2B and 2B 

insets) in the temperature regime from 20 K to 500 mK, where the resistance increases 

( R(T)/R(20 K) ) are 237 and 23 for Gd doping and Y doping respectively. 

 Substituting Sm with Y or Gd decreases the resistance significantly but still there 

survives a band gap from the slightly disturbed hybridization at ~3% doping 



concentration. Thus, the Y doped sample’s RR convergence and low temperature 

saturation is consistent with the prediction for much more conductive surface state, but 

when TRS is broken by the magnetic impurities, the bulk resembles very tiny gap 

insulator with some thermally induced conduction at finite temperature while the 

resistance keeps increasing with lowering temperature due to the absence of metallic 

surface state. This result is a required property of a topological surface state protected by 

TRS invariance. 

 
Fig. 2. Topologically surface state protected by time reversal symmetry. (A) 

Thickness resistance ratios  for Y (3%), Gd (3%), and Yb (4%) doped SmB6 samples. In 

contrast to the non-magnetic impurities which do not destroy the surface state, the 

magnetic impurities make the sample a conventional insulator. (B-C) Resistance versus 

temperature curve of Y doped and Gd doped SmB6. The Gd doped sample makes larger 

resistance rise and does not show resistance saturation at low temperature. Insets in (B) 

and (C) show resistance down to 500 mK for each doping. 

 

An important question concerning  impurities on Sm sites is whether or not they are 

dynamically coupled to the conduction electrons and involved in the Kondo insulator 



formation in the bulk. If they participate in a more complex way or generate another 

competing order, the interpretation of Fig. 2 might be more subtle. The surface state 

arises from the topological property of the bulk. Thus, the ideal doping condition is to 

keep the Kondo insulating property intact and introduce just enough impurities to 

demonstrate the effect on the surface state. Figure 3A shows the inverse of magnetic 

susceptibility obtained by subtracting χ of 3% Y doped sample from that of 3% Gd doped 

sample to elucidate the pure Gd behavior at 1000 Oe. The inverse susceptibility for the  

Gd doped sample exhibits a straight line passing through the origin which indicates that 

the magnetic impurities obey a simple paramagnetic Curie law. But  40% Gd leads the 

sample beyond the percolation limit and the Curie law behavior disappears at low 

temperature (Fig. 3B) in contrast to the 3% Gd doping (upper inset, Fig. 3B). The 

magnetization curve (lower inset, Fig. 3B) suggests antiferromagnetic interactions 

between Gd moments. To confirm the non-interacting impurity picture in the low 

concentration doped samples, we measured the magnetization for both Gd and Y doped 

samples and subtracts again to get Brillouin function fits up to 2 T perfectly as shown in 

Fig. 3C-E. Higher field alters the Kondo effect in the SmB6  host and changes the free Gd 

response from its ideal paramagnetic behavior. 



 
Fig. 3. Behavior of magnetic impurities in SmB6. (A) Inverse magnetic susceptibility 

of subtracted Gd contribution with temperature obeying Curie’s law. Insets, inverse 

susceptibility of 3% Gd (upper) and 3% Y (lower).  (B) Magnetic susceptibility of 40% 

Gd doped sample shows saturation below 3 K, magnetization curve versus field for the 

sample has a straight line portion (lower inset ) indicating possible magnetic interaction 

between Gd sites at lower temperature. In contrast, the susceptibility of low concentration 

(3%) sample exhibits divergence at low temperature (upper inset). (C-E) Magnetization 

versus field for subtracted 3% Gd portion at 1.8 K, 5 K, and 10 K. the red lines are 

Brillouin fits to each curves. 

 

Independent of dopant type (magnetic or non-magnetic), a high concentration of 

impurities in a Kondo insulator can affect its properties. Substituting for Sm with 



impurities decreases the resistance significantly and large doping (above 30%) destroys 

the insulating properties and leads to a metallic state (25). When the doping concentration 

is modest and lies between the strong Kondo insulating state and bulk metallic state, the 

surface state can be altered even with non-magnetic impurities. Divalent Yb does not 

have magnetic moments in SmB6 (see Supplementary Materials). The resistance of a 4% 

Yb doped sample has an almost  4 order of magnitude rise with lowering  temperature 

and very clear bulk and surface separation with concentration (see, Fig. 4 A, B). However, 

the RR for an 18% doped sample does not have the bulk and surface separation 

characteristic (Fig. 4A). As with the 3% Gd and Y doped samples in Fig. 2, figure 4 B 

and C show clear difference at low temperature. The 4% Yb doped sample shows the 

usual Kondo insulating surface state with saturating resistance but 18% Yb instead has a 

diverging feature in the low temperature range. This increasing resistance indicates a bulk 

insulating property and this is probably connected with the fact that pure YbB6 is a 

typical band semiconductor 

 A single impurity or defect behaves as a boundary in the system. As the Z2 index 

varies at the boundary, localized in-gap bound states with opposite spins with the gapless 

Dirac dispersion can be formed in topological insulators and the wave function decays 

exponentially away from the center of the impurity with a characteristic length scale. 

When the length scale is smaller than the distance among impurities, the energy overlap 

of these bound states leads to possible quantum scatterings between them at each 

impurity site (26). But when the impurity concentration is low enough, this quantum 

scattering is prohibited to ensure the robustness of the surface state. Thus, as the non-

magnetic impurity concentration increases, the scattering in the dense bound states can 

form an extra impurity band of the overlapping bound states, and this makes it possible to 

induce back scattering to destroy the surface state. Thus, the possible insulating state in 

fig. 4C can be in the quantum percolation limit where a transition from a topological 

insulator to a conventional insulator occurs. 



 
Fig. 4. Quantum percolation of high concentration Yb doped SmB6. (A) Thickness 

resistance ratios for 4% Yb and 18% Yb doped SmB6 samples.  (B-C) Resistance versus 

temperature curves for each concentration. At low temperature 18% doping resistance 

diverges when compared with 4% doping. This indicates a transition to a conventional 

insulator by forming impurity band above the percolation limit.  
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S1. Sample quality and thickness reduction 

 

We used Al flux growth in continuous Ar purged vertical high temperature tube 

furnace with high purity elements to grow all single crystals. The samples are leached out 

in sodium hydroxide solution. 

The key feature of SmB6 resistance is an exponential rise with cooling with low 

temperature saturation. However, the order of magnitude, saturation rate, and saturation 

point of resistance rise are not sample independent for samples from different batches. 

Usually higher purity elements (Sm, B) including flux material, Al, make larger increase 

with slightly lower saturation temperature (see Fig. S1 A). 

The high quality sample and thickness reduction with well defined rectangular 

parallelipiped geometry are two important requirements for the resistance ratio 

measurement. We choose samples with well defined facets for reference and shape them 

with Al2O3 polishing pads (usually start from 30 µm and end with 50 nm roughness pad) 

into parallelipipeds. Then, we used dilute HCl (50 HCL + 50 DI water) for 2 minutes to 

remove possible oxidation on the surface. After drying the sample, the electrical leads are 

made with thermocouple grade 25 µm thick platinum wires by spot welding. After 

measuring the thickness with microscope reticule, the resistance temperature dependence 

is precisely measured at each stabilized temperature with a high resolution AC resistance 

bridge and Quantum design PPMS. One important thing is that the thermal cycle (cooling 

down and warming up), mounting sample on the polishing fixture with wax, and 

following chemical treatment (Acetone, IPA, HCL etching) should not change the 

resistance dependence with temperature for the same thickness sample to avoid any 

possible artifact from measurement setup (drift, offset, thermal cycling effect) and 



chemical reaction or contamination (see Fig. S1B). Measuring resistance versus 

temperature for one thickness, the reduced thickness data is measured with the exactly 

same sample with the original leads. First, the same sample with the original leads is 

flipped to mount on the fixture, and the leads are carefully pressed so as not to be 

destroyed during the polishing. Figure S1C shows the procedure for thickness reduction. 

 
Fig. S1. Sample quality, reproducibility, and thickness reduction. (A) resistance 

versus temperature curves from two different batches.  (B) resistance ratio versus 

temperature, the first run is measured with the initial condition of c and the second run is 

measured with the final condition of C without polishing. (C)  sample thickness reduction 

procedure. 

 

S2. Transition from positive to negative magneto-resistance 

 



Usually f orbital Kondo insulators show negative magneto resistance associated with 

Kondo screening breaking and eventually evolve to positive when they become a more 

metallic bulk conductor at higher temperature. One possible conjecture for TKI would be 

a sign change of magneto resistance with field, from positive at low field to negative at 

high field. This happens in high purity SmB6 samples (see Fig. S2A). However, this 

transition is not unique to temperatures below complete gap opening temperature. Even 

above 10 K with magnetic or non-magnetic impurity doped the samples show a similar 

transition (see Fig. S2B). Thus this field dependence is not clear support for the TKI state.  

 
Fig. S2. Sign change of magneto-resistance. (A) resistance versus external magnetic 

field curves for pure SmB6 at 480 mK and 2 K.  (B) resistance versus external field of 

doping samples at 10 K. 

 



S3. Magnetic property of Yb doped SmB6 

 

Impurities with magnetic moments on Sm sites usually contribute to the magnetic 

properties of the doped samples significantly in magnetic susceptibility and 

magnetization curve,as in Gd doped samples. We find that divalent Yb, which has 

magnetic moment in free ion form, does not show a magnetic moment in SmB6 and does 

not disturb the insulating properties in host bulk as do Y and Gd impurities. Figure S3 

shows magnetic susceptibility curve for 18% Yb doped SmB6 at 1000 Oe and 

magnetization curve (inset) compared with pure SmB6. Yb sites appear like a magnetic 

vacancy in those curves,.The non magnetic doping shifts the peak and valley positions as 

in other non-magnetic doped samples. 

 
 

Fig. S3. Magnetic properties of Yb doped SmB6. Magnetic susceptibility (1000 Oe 

external field) and magnetization (inset) curves of high purity pure and 18% Yb doped 

SmB6. 

 

 




