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Abstract

The objective  of this  study is to develop a methodology for incident duration prediction.

First, we develop an understanding  of factors that influence incident  duration. Then, we use a

series of truncated  regression  models to predict incident duration. The models account for the fact

that incident information at a Traffic Operations Center is acquired over the life of the incident. The

implications  of this simple methodology for incident duration prediction are discussed.

Key Words: Advanced Transportation  Management Systems, incident management,

incident duration prediction, traffic operations, Chicago



Summary

The prediction of incident durations can facilitate incident management  and support traveler

decisions.  This paper develops a procedure  for predicting  incident  durations. First, the causal and

non-causal  factors which influence incident durations are conceptualized. These include

operational characteristics such as response times and whether a heavy wrecker was used, incident

characteristics such as injuries and number of vehicles involved and environmental conditions such

as weather and visibility. Specific hypotheses  are tested by developing truncated  regression

models of incident  duration using data provided by the Illinois Department  of Transportation

(IDOT) on Chicago area freeways. The models show that incident durations are longer when the

response times are higher, the incident information is not disseminated  through the public media,

there are severe injuries, trucks are involved in the incident, there is heavy loading in the truck,

State property is damaged, and the weather is bad. The most important  variables in incident

duration prediction  were incident characteristics  and the consequent  emergency response actions.

A time sequential methodology is developed to predict the incident durations as information

about the incident  is acquired in a Traffic Operations Center or TOC. Initially, after an incident is

detected, information  at a TOC is often acquired at a high rate, then information acquisition levels

off and toward the end of an incident the acquired information may decay. Accordingly,  the

incident duration models grow in terms of their explanatory variables at first, then they are

sustained  during the middle stages and begin shrinking toward the end when information starts

decaying. The estimated time sequential models remain statistically significant even after they have

shrunk to a few remaining incidents. One purpose of this prediction  methodology  is to

demonstrate  the trade-off between  early and accurate incident duration prediction. For the models

to be operational,  we suggest estimating similar models with more local data.

. . .
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1. INTRODUCTION

The continued  growth in demand for automobile travel in urban areas increases  the stress

on the highway infrastructure.  At the same time, resources  available for expansion  of the urban

highway network are becoming increasingly limited, suggesting the importance  of getting the most

service out of the existing infrastructure. One way to do this is by responding quickly to manage

and divert travelers away from incidents and related congestion. A major source of congestion  is

that induced by random incidents  such as accidents,  breakdowns, load spills, etc., which cause

temporary and unexpected  lane blockage, imposing delays. The Illinois Department  of

Transportation (IDOT) responds to over 100,000 incidents each year on the freeway system in the

Chicago area. The flow restrictions  resulting from these events may last only a few minutes, or

they can affect travelers for hours, depending on the nature of the incident and efforts to clear it.

IDOT detects and verifies incidents with loop detectors, patrol vehicles, police and

emergency operations,  cellular phone calls, private traffic services, and by monitoring

communications  between  CB radio users. After an incident is detected, patrol vehicles  equipped

with emergency gear are dispatched to provide assistance and clear the scene (McDermott  1980).

Information regarding the incident may be disseminated  through the Highway Advisory Radio

(HAR) and Changeable  Message Signs (CMSs) as well as through commercial  radio and television

stations.

Investigations  of Advanced Transportation Management and Information Systems

(ATMIS) have shown that such systems may have relatively larger transportation  system benefits

in incident  conditions  compared with recurring congestion (Al-Deek 199 1). Therefore,  any

advanced information system should have the ability to detect incidents and predict incident  and

queue durations. Behavioral studies suggest that travelers have a strong interest  in not merely

“current” roadway performance information, which can be as much as fifteen minutes old when it

is received,  but in projective  information, i.e., prediction of incident related traffic conditions  ahead

(Khattak 199 1). Such predictions  would give travelers a better basis for making diversion
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decisions, and at least they may adjust their expectations  and reduce uncertainty.

The objective of this research is to develop a practical capability to predict incident duration,

which may provide useful information  for managing and improving incident  response,  as well as

for informing travelers and supporting their diversion decisions. Data used in this effort came

from historical  records of a sample of freeway incidents in the Chicago metropolitan  area, provided

by the IDOT District One Communication  Center.

2. LITERATURE

2.1 Incidents  on Freeways

Table 1 presents a summary of selected studies that have examined the effect of various

factors on incident  duration (DeRose 1964; Goolsby 1971; Juge et al. 1974; Golob et al. 1987;

Giuliano  1989;  Jones et al. 1991). The average duration of incidents  varies widely across studies,

in part due to differences in incident types, locations, environments,  and methodologies  used for

specific studies. Differences in durations may also be due to variation in the definition of incidents

(Giuliano 1989).

Studies of the effect of incident characteristics  on incident duration have found that longer

incident  durations were more likely if the incident involved injuries (Golob et al. 1987; Giuliano

1989;  Jones et al. 1991),  if there was an overturned  vehicle (Golob et al. 1987),  if greater number

of lanes were blocked (Golob et al. 1987; Jones et al. 1991),  if the incident  occurred  during the

nighttime  (Jones et al. 1991),  if the facility was congested  (Wilshire and Keese 1963) and if high-

demand special events such as sporting events were occurring  (Jones et al. 1991).  There is some

evidence in the literature to suggest seasonal variation in incident clearance times; specifically, it

was found that incident  durations  varied by month of the year (Jones et al. 1991).  Further, Jones

et al. (199 1) found that peak-period incidents were cleared sooner than off-peak incidents,  possibly

due to Washington State Department of Transportation’s  policy of using tow trucks only during the

peak period. The response  times and other operational  response  variables were not used as
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explanatory variables due to their unavailability. Alcohol involvement  was associated  with shorter

incident  clearance times, possibly because of higher level of police response  to such incidents

(Jones et al. 1991).  Overall, incident duration is influenced  by contextual  factors, incident

characteristics,  environmental  conditions, locational and seasonal factors and driver

attributes/condition.

2.2 Incident Management

Hall (1993) provides a good bibliography on incident  management and addresses  the issue

of whether ATMIS and incident management can provide benefits. The main conclusion  of the

study is that incident  management and ATMIS offer marginal benefits in terms of reducing delays

experienced  by travelers, especially during the peak period. Specifically, the elimination  of

incidents altogether  will increase the “effective capacity,” defined as the equivalent  of expected

capacity, over time by about 2-9% for a l-5 mile recurrent bottleneck.

Ritchie  and Prosser (1990) have developed a knowledge-based expert system to support

the decisions  of the Traffic Operations Center (TOC) personnel. It provided insights into the

information acquisition  process for our study. Specifically,  the information  acquisition  and

incident  response process is broken down into incident  detection, incident verification,

identification  and evaluation of alternative responses, implementation  of selected responses  and

monitoring  recovery.

2.3 Prediction of Travel Times

There has been virtually no work to our knowledge on short-term prediction  of incident

durations. Ben-Akiva  et al. (1991) have identified  the need for predictive  information,  and Ben-

Akiva et al. (1992) have discussed  initial methodologies  for predicting traffic flows under mostly

normal travel conditions. They assert that traffic flows can be analyzed based on (a) statistical

techniques,  (b) theoretical  models that describe mechanics of flow, and (c) disaggregate models of
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individuals’ route choice.

Recently, Cremer et al. (1993), Stephanedes  and Kwon (1993), and Davis and Kang

(1993) have presented frameworks for predicting  traffic flows. Cremer et al. (1993) use a

dynamic route guidance model to predict traffic flows and travel times on a simple network when

capacity is reduced due to incidents,  lane drops, or construction.  However, incident  duration  is

used as an input to the model. Our research complements  these efforts by first exploring  the

process of incident  occurrence  and response, and then developing a method for estimation  of

incident  durations.

Our literature search showed that studies of incident duration did not explicitly consider

operational  response  characteristics--although  it has long been realized that faster response  times

can reduce incident clearance times and improve freeway operation (Wilshire and Keese 1963).

Further, the effect of disseminating  incident information on clearance times has not been explored,

and finally, there is virtually no work on predicting incident  durations.

3 CONCEPTUAL STRUCTURE

3.1 Process of Incident Occurrence, Management, and Information Dissemination

When a major incident occurs on the Chicago area freeways, IDOT attempts to detect it

through a multitude of information sources. After detection, the incident is “managed” both at the

TOC and on the scene. The TOC staff dispatches the needed vehicles and equipment  and contacts

other agencies, such as the police and medical service, if needed. Further, the TOC personnel  can

disseminate  incident  information through the IDOT-operated  information system (which includes

HAR, CMSs, and a dedicated radio channel) as well as through commercial  radio and television

stations. The incident  information is updated periodically. TOC personnel also maintain a log of

the incoming information  which is archived as incident reports, the source of data used in this

study. Meanwhile,  the on-site incident management  team may redirect traffic, help with relocating

vehicles,  picking up debris, supplying needed fuel/minor  repairs, etc. The police perform incident

4



investigation  and other law enforcement  actions as needed. Other agencies such as the medical and

fire-fighting services may also be involved in on-site incident management.

The process  of incident  occurrence and response  is shown qualitatively  on a queuing

diagram in Figure 1. The arrival rate at the incident bottleneck  exceeds the processing rate for the

duration of the incident (Makigami et al. 1971; Al-Deek and Kanafani 199 1; Hall 1993). The delay

experienced  by motorists is represented by the area between cumulative arrival and departure

curves. Note that the congestion  may last significantly longer than the incident. The terms used in

the figure are defined as follows:

Incident detection time is the time between the occurrence of the incident and detection of

the incident. Response  time is the lag between incident detection and the arrival of the first rescue

vehicle; if the incident  occurs within the sight of a patrol person, then both detection and response

times may be negligibly small. Clearance time is the time between the start of the on-site rescue

operation and the end of clean-up operation. This includes Emergency Medical  Service response

(if needed), incident  investigation,  and debris/spill  removal. Incident duration is the time between

occurrence  of the incident  and end of clean-up. Recovery time is the time between  end of clean-up

operation and the resumption  of normal traffic conditions. The key point is that a reduction  in

incident  duration reduces the total delay experienced by travelers. Further, predictive  information

about incident duration may help individuals in terms of anticipating delay and allow them to divert

to alternate  routes or otherwise  change travel patterns before joining the queue. This would be

indicated by a reduction in arrival rate at the incident bottleneck.

3.2 Causal and Non-causal Factors

The factors which influence incident durations include incident characteristics,

environmental  conditions,  roadway/flow characteristics,  locational factors and operational/response

factors such as dissemination  of incident information. For example, incident duration may be

longer if the incident  involves injuries, if the weather is adverse, if there is roadwork near the
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incident location, or if the response team takes longer to reach the incident scene. The existing

flow conditions  may be important  because  higher flow rates (e.g., due to peak periods  and/or

special events) may hamper the response  to incidents. Further, operational  factors such as

implementation  of special ramp metering and arterial signal optimization plans during incidents can

reduce queues and possibly incident duration. Vehicle characteristics  such as percentage  of heavy

trucks may influence incident  durations, i.e., large trucks are more likely to interfere with incident

clearance operations. Moreover, incident durations may be influenced by whether information

regarding the incident  is disseminated.  This influence is likely to come through queue reduction,

i.e., by encouraging mode and route diversion which reduces demand and facilitates  on-site

incident  management. In addition, seasonal trends may exist, that is, incidents may be longer at

certain times of the year due to a multitude of factors, e.g., tourist activity and economic  activity.

Operational  factors can be causal or non-causal. For example, shorter response  time of

emergency vehicle(s)  may reduce incident duration; however, non-causal factors such as whether a

heavy wrecker was used for clearing the incident may actually be associated with longer incident

durations because they reflect the nature of the incidents, although they do not cause longer

incidents.

Only some operational factors can be controlled by the incident management authorities.

For example, it may be possible  to reduce incident durations, by reducing response  times,

improving on-site incident  management,  or disseminating  incident information. However, incident

characteristics such as incident  type, time of day, location, weather, etc., are obviously  not subject

to control.

Some factors may have both direct and indirect effects on incident durations. For example,

adverse weather may increase the incident duration directly, and it may also increase response

times. Furthermore, uni-directional  causality may not exist among variables. For example,

response  times may depend on incident durations; that is, response teams may be quicker to

respond to major incidents compared with minor ones. Clearly, the complexities  of phenomena
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make it challenging to collect data and model incident duration accurately.

4. METHODOLOGY

The objectives  of this  research were addressed by developing a conceptual  structure

describing the relationship  between incident duration and contributing factors. Data describing a

sample of freeway incidents and responses to them were analyzed to test the effects of various

factors on incident  duration. Based on the factors that were found significant, a time sequential

methodology  for prediction  of incident  durations was developed which would support successively

more informed and more accurate incident duration predictions as an incident progresses.  This

methodology  accounts for the dynamic nature of the information acquisition process at a TOC.

Finally, conclusions  were drawn and implications  of the findings for managing incidents,

disseminating  incident information and designing ATMIS were explored.

5. CONTEXT  OF THE STUDY AND DATA DESCRIPTION

The Chicago area freeways form a radial network that is embedded with nearly 2000 loop

detectors and is patrolled by IDOT emergency response vehicles. Other more specialized incident

response  equipment,  including heavy wreckers, is stationed at an IDOT field office just off the Dan

Ryan Expressway, about 3 miles south of the city center. IDOT provided us with a convenience

sample of records of 109 larger incidents  occurring in 1989 and 1990. Figure 2 shows the location

of selected incidents in the sample data that occurred on six major Chicago area freeways.

Statistical  tests (chi-square) showed no statistically significant differences between  expected and

observed frequencies  in terms of distance from the city center (5% level).

5.1 Data Collection

The IDOT incident  records (Figure 3) provide information on the following factors:
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. Incident  characteristics  that include incident type (e.g., accident, stall) incident description

(extent, intensity,  number and type of vehicles,  number and severity of injuries,  etc.),

number of lanes affected, duration of lane closures. This information  comes from on-scene

reports communicated through the radio by trained emergency response  personnel.

. Response  characteristics  that include emergency vehicle response times, number and type

of emergency vehicles responding.

. Distribution  of incident warning information.

. Environmental conditions  such as weather.

Although the data are not “ideal,” they are sufficiently detailed in terms of IDOT operational

response and dissemination  of incident information. These data are kept by the IDOT

communication  center in Schaumburg, which is responsible  for managing the operation of

Emergency Patrol Vehicles and directing incident clearance in the Chicago metropolitan  area.

5.2 Overview

5.2.1 Incident Characteristics

Most incidents  in this sample (73%) occurred on weekdays and 77% happened during the

off-peak. A majority of them (73%) occurred when the weather was clear. Most incidents  (76%)

were accidents  and 33% of the accidents were roll-overs. Almost 90% of the incidents  involved

more than one vehicle  and 57% involved heavy vehicles, e.g., tractor trailer combinations.  In 11%

of the incidents, the load had to be removed from the vehicle in the clearance effort; 5% had non-

solid loading, resulting  in spills. (Information about hazardous material could not be obtained

from the records, even though this  may have influenced incident durations.) About 49% involved

injuries, of which 68% were classified as severe. Close to 20% of the incidents  resulted  in damage

to State property, e.g., roadside equipment.
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5.2.2 Response Operations

The average response time of the first rescue vehicle was 7.5 minutes from the initial

report. Some incidents  were discovered  by the patrol vehicles in which case the response  times

were zero. In 93% of the cases a second rescue vehicle responded  by reaching the scene in an

average of 14 minutes. About 45% of the incidents required a heavy wrecker which normally was

dispatched  from the IDOT Dan Ryan field office. Pavement  sanding and salting were needed in

3 1% of the cases due to spills of fuel or bulk loads. Incident information was disseminated

through HAR and CMSs in 60% of the cases.

5.2.3 Incident Duration

The true start time of an incident is not usually known. The durations in our data are

modified incident  durations,  i.e., the incident  duration less the detection time. Figure 4 shows the

frequency distribution  of modified  incident durations in our data set. The mean is 7 1.6 minutes

and the standard deviation  is 41.6. This distribution  is skewed, as opposed to approximately

normal as with Jones et al. (1991), probably because  our sample contains  a disproportionate

number of longer incidents. The exploration of relationships  between incident  duration and

response time of the first and second rescue vehicles showed that shorter response  times,

particularly for the first rescue vehicle, are associated with smaller incident durations.

5.3 Data Representativeness

To determine  the representativeness  of this  sample, it was compared with data from the

Chicago Area Expressway Annual Report (1988), which documents all detected incidents  on

Chicago area freeways. A comparison of this  sample with total incidents on the Chicago area

freeways is shown in Table 2. It indicates no strong biases in terms of highway facility location,

occurrence  times and weather conditions, although our sample has fewer peak period incidents.

This is probably because  many peak period incidents are relatively small.
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The comparison  of incident durations with other studies reviewed earlier confirms that this

sample is biased toward larger duration incidents. Further, most incidents  in this sample are

accidents,  whereas we expected  a higher frequency of non-accidents  such as stalls. Therefore,  we

need to be careful in generalizing the results.

6. MODELING INCIDENT DURATION

Two statistical techniques were applied to estimate incident duration: the regression model

because incident  duration is a continuous variable; and survival models because incidents can be

assumed to have an increasing  or decreasing hazard functions (Jovanis and Chang 1987;  Jones et

al. 1991).  The regression and survival model estimates  were largely similar in terms of their

statistical  properties.  Therefore, only the simpler and more intuitive regression  model is reported.

The variables used in model development  are as follows:

. Incident  characteristics  including incident type (accident, stall), vehicle type (light, heavy),

number of vehicles involved, injuries and fatalities, and State property damage.

. Response  and operational  factors including the response  times, number of rescue vehicles,

whether a heavy wrecker was needed, if sanding/salting  was done because of a spill/ice  on

the pavement and whether other agencies such as medical services and owners of the

vehicles  involved provided assistance.

. Environmental conditions  such as weather and visibility.

. Locational  characteristics  such as the freeway where the incident occurred and distance

from the city center.

. Seasonal factors such as month of the year.

. Flow conditions  as reflected in time of day and day of the week variables.

. Motorist  information  captured through whether or not incident information was

disseminated through HAR.
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To test whether there are differences in detecting and managing incidents of different types,

the sample was segmented by incident  type (accident, stall, etc.). However, this did not produce

significantly  different parameter estimates.

We have used the truncated regression model for estimation  because small values of

incident  duration are unobserved  (Hausman and Wise 1977; Greene 1990).  (Note that this

technique  is different from Tobit models (Greene 1990) where observations  above or below a

certain value are “piled up.“) At the time this sample was taken, the traffic surveillance system in

Chicago did not allow for observation  of short duration incidents,  i.e., incidents  lasting a few

minutes were likely to go undetected. The minimum incident duration in this  data set was 13

minutes.

Assume that the relationship  between  incident durations, y, and independent  variables x1,

X2, **-, xk is of the form:

yi = pl Xi1 + 02 X i 2  + 9..  + Pk Xik + Ei = P’Xi + &i

Where i refers to the i th observation; the set of n observations can be denoted as:

Y =X@+& (1)

Where:

Y = Vector of n dependent  variable observations on incident duration,

X = Matrix of k independent  variables and n observations,

p = Vector of k parameters,

E = The error term with expected value zero and variance 02.

Therefore Y is distributed  normally with mean Xp and variance 02, that is, Y- N(XP, 02).

Suppose  the truncation  point is 70; thus the observations,
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yi =p‘Xi +&i > zo are included in the data observed, and

yi = P’Xi + Ei 5 zo are excluded.

Figure 5 illustrates  truncation more clearly. We expect that higher response  times will be

associated with higher incident  durations, and this relationship  is represented  by the solid line.

However, due to the inability to record small incidents, truncation occurs at the horizontal  line and

the empty circles are eliminated  from the data set. The resulting regression  line, shown as dashed

in the figure, will not estimate  the effect of response times correctly. There is a correlation  between

the error term and the explanatory variables. The magnitude  of the bias would depend on ~0, p, 02

and xi . Estimation using ordinary least squares regression gives biased results  that can be

overcome through maximum likelihood procedures (Greene 1990). The density function is given

by:

(2)

f(yi) = [ (l/O>  Q((yi - p’Xi> / 0) 11
[ 1 - @ ((70 - P’Xi> / 0) 1

The Log-Likelihood  function is given by:

In L= - n/2 (In (27C) + In (02)) - l/(2 02) Ci (yi - p’xi)2
- xi In [ 1 - Q ((70 - p’xi)/ 0)) ]

Where,

(3)

$I(.) is the standard normal probability  density function,

<D(.) is the standard normal cumulative  density function.

The values of p and CJ are maximized.

Table 3 shows the selected model based on our judgement and statistical  significance. The

truncation  point was arbitrarily chosen to be 10 minutes, based on our judgement and the data set,

assuming that smaller incidents go undetected. The variables have the expected signs. A positive
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sign means increasing incident duration are associated with an increase in explanatory variable

value. The unexplained  portion of the model can be attributed to factors such as differences  in

efficiency of the rescue team and differences in the efficiency of TOC dispatch personnel.

The model shows that policy-sensitive  variables significantly influence incident  durations.

Specifically,  incident  durations increased when the response time of the first patrol vehicle was

longer; however, the response time of the second rescue vehicle did not have a statistically

significant effect. The magnitude of the response time parameter indicates that a one-minute

reduction in response  time of the first rescue vehicle may decrease the incident duration by slightly

more than one-half minute. Considering that the average response time was 7.5 minutes and the

average incident  duration was 7 1.6 minutes, there may be some limited potential for reducing

response  times and with them incident durations.

Reporting  the incident on HAR and CMSs was associated  with shorter incident  durations.

This is quite surprising, since IDOT personnel  tended to use HAR only for larger incidents.

Disseminating  incident information seems to reduce incident duration by more than 5 minutes.

Considering  the high cost of delay, this  reduction in incident duration is significant. Based on a

value of time of $8 per hour per vehicle and incident lasting 60 minutes with 75% capacity

reduction, Garrison and Mannering  (1990) suggest that each minute of incident  duration costs

$2200 in lost time to the motorists--not  accounting for psychological  costs such as increased  driver

frustration and anxiety. The finding that information influences system performance is also in

conformity with the behavioral  studies which showed that travelers were more likely to divert in

response  to delays if they received information through radio traffic reports compared with

observing congestion  (Khattak 1991). Informing travelers about incidents may allow them to

change their normal travel patterns (e.g., they may take alternate routes), avoiding delays and

reducing the time needed to clear the incident. This suggests that HAR, CMSs and other electronic

media perform a useful function during incidents in terms of duration reduction. However, it does

not necessarily follow that information dissemination  results in a reduction of total system delay
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(Arnott et al. 1991;  Ben-Al&a et al. 1991).

Injuries, involvement of heavy vehicles, heavy loading and non-solid  loading caused

incident  durations  to be longer. Further, if the freeway facility was damaged and if the weather

was adverse (fog, rain, snow, etc.), then incident  durations  were longer. Severe weather seems to

add 17 minutes  to incident  duration. During adverse weather, incident frequency increases

sharply, overloading the incident  response  system and resulting in longer response  times;

however, such incident  effects were not captured directly in this model. When the incident

involves a vehicle with non-solid  loading, it adds 39 minutes. The non-causal  operational

variables show that incidents requiring sanding and salting took 21 minutes longer to clear,

whereas when a heavy wrecker was used, the incidents were 13 minutes longer. Similarly, if the

incident  required  response  from other agencies (fire, ambulance, environmental  management units,

etc.), then the incident  durations  were longer.

7. A METHODOLOGY  FOR PREDICTION:  TIME SEQUENTIAL  INCIDENT

DURATION MODELS

At the TOC, information about the incident is acquired sequentially. A typical sequence is

as follows. After detection of an incident, an emergency patrol vehicle is dispatched to the incident

scene. Upon reaching the scene, the patrol person provides an eyewitness  account of the incident,

i.e., details about the severity, casualties,  etc. After the initial assessment,  the patrol person may

request more assistance  and may ask that other agencies be contacted. Thus, while an incident

duration model that uses all of the variables from historical records is helpful for understanding

factors contributing  to duration, it has little  or no operational value, since we can only apply it at a

point in time when we already know the duration of the event. From a practical standpoint,  we

need an approach that will support earlier but probably less-accurate  duration prediction  with fewer

variables, to be updated in a series of steps as new information  arrives.

The proposed  time sequential incident duration methodology is based on the sequential
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acquisition  (and decay) of incident-related  information at a TOC over the life of an incident. First,

the methodology identifies  stages based on availability of information while the incident  lasts.

During the initial stage, when an incident is first reported, often very little  is known about its

attributes and the actions needed to clear it. Typically, the only variables available or known at the

TOC are incident  location, time of day and weather. During subsequent  stages, more information

is acquired, and consequently  better predictions  can be made. Second, certain previously acquired

information  could become irrelevant  to predicting the remaining incident duration. For example, as

illustrated  in Figure 1, if a heavy wrecker has completed its operation, then information  about its

operation may be irrelevant  to predicting the remaining incident duration at a subsequent  stage.

Therefore, subsequent  prediction stages may be characterized  by the addition and/or deletion of

explanatory variable(s).

There are several methods that can be used to model the process of incident duration

prediction. A series of truncated  regression  models is appropriate for estimation  at various stages

of the incident  process. Alternatively,  one could estimate  duration models, based on conditional

probability. A set of regressors  (covariates) can be used to predict the probability  of an incident

lasting x minutes,  given that it has lasted y minutes (where y < x). We have chosen to report the

truncated regression  results because the parameter estimates are more meaningful. Also the

regression models would appeal to the TOC personnel, because  of their simpler structure and

interpretation.

The Stage 0 model (when the incident information is first acquired in the TOC) is similar to

Equation (1) except the explanatory variables are those available at the time:

Y =xp+& (4)

Where:

Y = Vector of n dependent  variable observations on incident duration,

X = Matrix of pu independent  variables available at Stage 0 and n observations,
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p = Vector of pu parameters at Stage 0,

E = The error term with expected value zero and variance 02.

The truncation  point ru for Stage 0 was chosen to be 10 minutes as before. From a model

estimation  perspective,  the p estimates may be biased due to the unavailability  of complete

information  at the stage. The only instances when bias may not exist are when the unavailable

variables are unrelated  to the available variables, or if the p estimates of unavailable variables are all

zero; that is, if the future information  does not significantly predict incident durations. Ironically,

the exclusion of unavailable variables may actually have an advantage: reduced multicollinearity

problems. The bias due to unavailability  of variables can be dealt with by including proxy

variables.

At Stage 1, more information is acquired at the TOC during the time zt while some detected

incidents would cease to exist. The incidents that cease to exist can be treated as unobserved  and

the truncation point moved from zu to 20 + ‘1;1 in Figure 5. Thus, incidents  are dropped from

successive models when they are cleared before the activation of that model; hence there will be

successively smaller sample sizes (the new sample size will be n - vr, where  v1 incidents  have

ceased to exist during the interval 71 and v1 2 0). We estimate the Stage 1 model with the

condition  that observations:

yi =p’Xi  +&i > 70 + 71 are included in the data, and

yi =p’Xi +&i I zo + zt are excluded.

The basic model presented  in Equation (4) is retained with new definitions as follows:

Y = Vector of n - vr (un-ceased) incident  duration observations,
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X = Matrix of p1 independent  variables available at Stage 1 and n - vl observations;  p1 = [(PO -

dl) + al], and al denotes the freshly acquired information  on new variables during time interval 21

(and the information is available for forecasting at the end of 71); dl denotes the decayed

information  that has become irrelevant to prediction during the time interval 71 (and should not be

used for forecasting at the end of ~1). Thus p1 includes the original variables along with the newly

acquired variables and excludes the decayed variables,

p = Vector of p1 parameters at Stage 1,

E = The error term.

The observation of TOC operations in Chicago indicates that information is often acquired

in spurts (e.g., when a patrol person reaches the scene and starts describing  incident  details);

however, it may not decay in spurts.

Certain conditions  should be satisfied for the methodology to work:

d, E Pq-1 Only those pieces of information can decay which already exist (are

included in the model), and cp is an index for stages,

The stages should each be set such that information acquired during an

interval does not decay during the same interval.

For Stage w, the model is given by:

yi = P’Xi + Ei > zo + zr +...+ zW are included,  and

17



yi =p’Xi +&i I ~0 + zl +...+ z, are excluded.

The new definitions  for the model presented in equation 4 are:

Y = Vector of n - v, dependent  variable observations  on incident duration,

X = Matrix of pW independent  variables available at Stage w and n - v, observations;  pW = [(pW-1 -

d,) + a,], and pW-l denotes the information  on variables at Stage w - 1, a, denotes the freshly

acquired information during time interval T:,; d, denotes the decayed information that has become

irrelevant to the prediction during the time interval TV,

p = Vector of pW parameters at Stage w,

E = The error term.

The equations can be estimated using the maximum likelihood procedure as indicated

before. The estimation  process terminates  when there are too few incidents remaining in the

sample to make meaningful forecasts. This methodology accounts for the information  acquisition

and decay process  at a TOC. In using the methodology  for prediction of a single incident, the

prediction  stages will end when the incident clears.

Initially in the incident occurrence process, the models would “grow” in terms of

explanatory variables (rate of information acquisition at the TOC is greater than the rate of

information  decay); they may “sustain” themselves  during the middle, and “shrink” toward the end

(rate of information acquisition is less than the rate of information decay).

There are two criteria used to determine information decay. In selecting candidate variables

for decay, theoretical  justification and statistical significance of the variable should be considered.

It is asserted that only information about operational factors may decay, while information  about

incident  characteristics  and environmental  conditions will not. For example, if heavy wrecker

operation (whenever required) is completed within a certain time period from the incident
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occurrence, then it becomes a candidate for removal in models that predict durations after that time.

On the other hand, incident characteristics and environmental conditions are expected to be

constant.

We developed a series of truncated incident duration models using statistically significant

variables shown in Table 3, with each successive model changing the mix of explanatory variables.

The intent is to provide the capability to make a series of increasingly accurate duration forecasts,

with accuracy increasing as more information becomes available in a TOC.

We analyzed our sample of IDOT incident history records to determine the typical sequence

in which data items became available for prediction. The average time from initial report at which

each data item became available is shown in Table 4. Owing to the large variation in their time of

availability, it was decided to calculate the probability that a particular variable will be available for

inclusion in a model within a certain time (see Wang 1991 for details). The probabilities are

computed based on the mean and variance of the time a variable becomes available by considering

the normal probability distribution (although we did not conduct formal tests to determine the

realism of the normality assumption on the data presented in Table 4). Based on the probabilities,

satisfaction of the conditions elaborated previously and our judgement, it was decided to predict

incident durations at the time of detection (truncated at 10 minutes) and in increments of 5 minutes

after the incident is detected up to the time when information acquisition stabilizes.

Models estimated using variables available at specific intervals and their parameter estimates

are presented in Table 5. The parameters seem to have the expected signs and reasonable

magnitudes. The average for the dependent variables increases with each successive model

because with the passage of time only the larger incidents remain in the data set. The goodness of

fit improves due to two reasons: more information becomes available, and the sample size

decreases. Model 1, representing the time of incident detection, uses only weather (always

known), time of day, and location; the time and location variables capture the effects of other

variables not yet available and are included to reduce the bias due to exclusion of unavailable
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variables. Further, they may also reflect the influence of road geometry, pavement conditions and

flow characteristics. Although the weather and time of day variables are statistically significant,

this model is poor because of the exclusion of some important variables. However, it is realistic in

the variables included, and it reflects a reasonable model for an early prediction. As expected, the

magnitude of the effect of weather parameter is relatively large in Model 1 compared with the rest

of the models because it absorbs the effect of unavailable variables.

Note that starting with Model 6 the prediction time interval z is increased from 5 to 10

minutes simply for concision. The time of day variable TIME1 becomes statistically insignificant

at the 10% level in Model 2, but is kept in for demonstration purposes until it is dropped from

Models 9 and 10. Information decay starts in Model 9 where the response time of the first rescue

vehicle became insignificant and was dropped. Overall, the bulk of estimated parameters remain

statistically significant when considering only larger incidents.

We have used the HAR/CMS variable in Model 5, however, it is likely to be shifted to

earlier models after the time sequential methodology is implemented. This is because the TOC

personnel will have enhanced capability to predict incident durations and the ability to implement

their information dissemination decisions relatively sooner.

At any stage, the TOC personnel would be interested in disseminating information on the

remaining time needed to clear the incident. (Khattak (199 1) found that Chicago area automobile

commuters were strongly interested in knowing the time needed to clear an incident.) To predict

the remaining incident duration, the same model parameters can be used, except the constant term

should reflect the time elapsed since the beginning of the incident. For example, the remaining

time after an incident has lasted for x minutes is predicted by simply changing the constant for a

model to Estimated Constant - x. The models will be used in the following manner. When a

particular incident is first reported, the TOC personnel will predict a single value for the incident

duration using specific values for the explanatory variables in Model 1. They would disseminate
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the duration information  to travelers through electronic media. Note that the TOC personnel  may

also disseminate  information about the confidence intervals associated with the prediction. The

prediction interval for a particular incident can be easily calculated and it will  be greater than if we

were predicting  the mean incident duration for many incidents (Greene 1990). Upon the receipt  of

more information during the next (5 minute) interval, the TOC personnel will  update their duration

prediction  using Model  2, except they will adjust the constant  term from 12.57 to 12.57 - 5. This

reflects that a certain time (5 minutes) has elapsed in the life of the incident. They would continue

to update their predictions  similarly for the subsequent  models.

8. VALIDITY OF MODELS

The purpose behind estimation of time sequential models is to demonstrate  the

methodology  rather than its use in traffic operations. The next logical step would be to test and

validate the model. Larger and more representative  samples would be needed before the models

can become operational.  However, such data are not available at this time.  We considered

splitting the data set into two to test validity; however, the idea was dropped owing to the small

sample size. Another way to test model validity, without new data, is to assess the reasonableness

and consistency of the results and interpretation. The estimation  results are consistent  with our

expectations  and with findings from earlier studies. For example, it was confirmed in this study

that incident  durations were longer if the incident involved injuries (Golob et al. 1987;  Giuliano

1989;  Jones et al. 1991).  Moreover, the models are not “under-specified” in terms of operational

response factors.

9. CONCLUSIONS

Investigation of factors influencing the duration of Chicago-area freeway incidents  showed

that the most important  variables were incident characteristics  and the consequent  emergency

response  actions. Using data from reports of communications  between  incident  management
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personnel  in the field and TOC, a model of incident duration was estimated  which showed the

relative predictive  power of each of these variables. Analysis of historical incident communications

records showed, however, that the key variables in this model become available at various points

in the life of an incident, with the total set of variables available only when the incident  has cleared.

Thus, such a model based on historical records is of little  practical value for real-time incident

duration prediction.

Construction of a practical incident duration model must recognize the sequential

availability  of data items. The temporal patterns of the arrival of data elements were explored for

the Chicago data set, and the results were used to estimate  a series of incident  duration models.

The concept  underlying these models is that forecasts of incident duration made earlier in the life of

an incident may be useful both for incident management and for informing motorists, even if those

early estimates  are of restricted accuracy because of the lack of availability of some explanatory

variables.

Models were developed to include those variables typically available at the IDOT

Communications  Center at the time of the first report of an incident, and at subsequent  intervals

into the incident. We used a series of truncated regression  models for estimation;  however, we

recognize  that alternate models, based on conditional probabilities, can also be formulated. Each

successive  model can predict the remaining life of the incident, and, as expected, the goodness-of-

fit improved as additional variables were introduced.

While available information may differ in other settings, this  sequential approach to

forecasting incident  duration offers a framework for building other, more locally relevant models

of incident duration that reflect the increasing availability of detailed incident information as the

events proceed. This approach offers a reasonable balance between the values of early and accurate

incident  duration forecasts. Models of this type may be improved if field personnel  can be trained

to provide real-time reports of incident characteristics  and progress toward incident clearance in a

timely and systematic  manner, so that data for exercising the duration forecasting models will be
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available as needed.

Future research efforts might productively focus on examining alternate models for

prediction of remaining incident duration, and importantly establishing links between incident

duration and queue duration both at the theoretical and empirical levels. Further, there is a need to

explore how predictive  information would impact traveler behavior and whether  greater benefits

can be obtained by disseminating  predictive information.
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Figure 1. The incident  occurrence  process.
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IlH?yDATE  RECEIVED  .. -. 1’: ; : - - -..-

3:26am (TIwE:O), Wednesday iDATX:O) -'

mBJEcT:
Zolled over semi (~ypg:z) -

LOCATION: LOAD/WEIGET/TYPE OF TRUCK
3B Calumet at 130 exit [on ramp] 54,000 lbs of diapers

7OR R&CR ENTER TIME CR NA
XT: 3:45AH HAR: 3:4&H CMS:

SPRINGFIELD NOTIFICATION: [TIME] 4:36AH FAXED: [TIME] 7:3OAM

DETAILS  C NOTIFICATIONS
3:26am: Control was notified by Dist #4 that they have a rolled

over semi on the exit ramp from SE Calumet to EB 130th.
@ITRUCK: 1, DIR: 0,LOC:  6, DIS!T:16 miles)

3:27ant: Contro$ notified 912 [Cannatello] . .
3:27an: 954 [Hartin] enroute
3:28am: 914 [Smaladinol enroute
3:3Oam: Control notified T. Smith at home . -
3:44AM: 934 [IAU] Standing by 3501 for 923, heavy wrecker. i?

needed-.
3:44am: 954 stated that the ramp is blocked with a semi weight

of 50,000 lbs, the semi is mostly on the grass.
(RESP: 18 mx., LOAD: 1, NONOON: 0)

c

3:45am: Control did HA-R (EAR: 1)
3:46am: TK did CRT
3:55am: 914 stated to have 923 & 958 erqoute just in case.

(-: 1,sECCND: llmin.)
3:55am: 934 is now in 923, 964 [Bowen] enroute to 3501 for 951.
3:58am: 954 stated that the semi is loaded with 54,000 lbs of

diapers,' (EEXVY: I, NONCON: 0)
5:14am: Control asked 914 for an update, he'stated that,they

are uprising the semi with the air bags the semi
trailer might be split open.

5:lSam: Control Updated
5:26am: '914 stated that the semi is upright
5:51am: Ramp is open. BAR h CRT.
6:39am: Mr. Klafeta notified.

3 hours of lane blockage (Q;gAR: 180 min.)

Note: The words within (.) is the variable name and its
identified value. . A-0__ __

I '
Figure 3. Sample of IDOT incident log
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Figure 5. Illustration  of bias due to unobserved incident durations
(Modified from Hausman and Wise (1977))
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Table 1. Summary of selected  incident  studies.

DeRose Goolsby
(1964)

Juge et al.
(1971) (1974)

Golob et al.*
(1987)

Giuliano* *
(1989)

Jones et al. This study
(1991) (1992)

Average accident  duration (min.) 6.14 45

Average non-accident (stalls)
duration (min.)

5.24 18

Average duration of all ? ? 42 40-144
incidents  (min.)

37 50”“” 72

w
‘Sample size 927 ? 196 332 270 2156 109

Study location John Lodge F/way I-10
Detroit, MI

Gulf F/way
Houston, TX Los Angeles, CA Southern  CA Los Angeles, CA

Six F/ways
WA Chicago, IL

Data collection  method CCTV/Observers Police logs Time lapse camera Police  logs Police  logs State records State records

Data collection  period 1962-1963 1968-1969 1973-1974 1983-1984 1983-1984 1987-1989 1989-1990

*Truck accidents  onlv
**Bad weather days icreened out
***Estimated from graphical representation of data.
CCTV=Closed  Circuit Television.



Table 2. Comparison  of incidents  in the 1989-1990 sample and the
1988 Chicago Area Expressway Annual Report.

Sample % Total %
N=109 N=20,496

Incident location--Freeway

Edens 9.2 6.2
Kennedy 21.1 27.3
Eisenhower 17.4 23.9
Stevenson 15.6 10.2
Dan Ryan I 22.0 21.1
Dan Ryan II 6.4 3.7
Calumet 8.3 7.6

Distance from the Central Business District

O-5 miles 43.1 48.7
5-15 miles 47.7 44.0
more than 15 miles 8.3 7.3

Day of the week

Weekend
Weekday

Time of day

Peak period 22.9 38.4
Off-peak 77.1 61.6

Weather conditions

Clear 73.4 77.0
Not clear 26.6 23.0

26.6 24.1
73.4 ? 75.9

32



Table 3. Incident duration  truncated regression model (point of truncation = 10 minutes).

Variable D (t-statistics)

Operational/Response  Factors

RESPl (Response  time of first
rescue vehicle in minutes) 0.59 (3.89)

HARCMS (1 if incident  information
disseminated through HAR & CMS, 0 Otherwise) -5.34 (-2.39)

WRECKER (1 if a heavy wrecker was used
0 Otherwise) 12.66  (4.97)

SANDSALT (1 if sanding/salting  was done,
0 Otherwise) 21.24 (8.83)

OTHER (1 if other agencies
responded,  0 Otherwise) 28.38 (10.44)

Incident Characteristics

SEVINJ (1 if incident  involved severe
injuries/fatalities,  0 Otherwise)

NTRUCK (Number of trucks involved
in the incident)

28.14 (10.73)

18.07 (8.92)

LOAD (1 if the loading in vehicle was heavy,
0 Otherwise) 35.43 (11.41)

NONSOLID (1 if the loading was non-solid, 0 Otherwise) 39.33 (7.83)

DAMAGE (1 if State property was damaged, 0 Otherwise) 38.03 (13.87)

Environmental  Conditions

WEATHER (1 if weather was adverse, 0 Otherwise) 17.3 19 (7.03)

CONSTANT 10.34  (3.74)

0 9.85 (13.69)

Summary Statistics
N
w -3% 85
LOW -490:06

p2MS 0.2657

Note: pz~s=l-[L(p)/L(MS)].  L(MS) is the log-likelihood  at market shares, estimated with the
constant  term and 0. The sample size is 98 instead of 109 due to the deletion of missing data.
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Table 4. Descriptive statistics for times when significant  variables become available.

Variable Mean Std. Dev. Minimum Maximum

Clearance time 71.60

Extreme weather condition 0.0

Number of heavy vehicles
involved

Whether a heavy wrecker
was needed

Whether  the loading on
vehicle was non-solid

Whether freeway facility
was damaged

Whether there was
heavy loading on vehicle

Response  time of the
first rescue vehicle

Whether  there were
severe injuries/fatalities

Whether other response
agencies were needed

Whether sanding/salting
was needed

HARKMS incident report
disseminated  to public

6.93 8.21

7.30

7.45

7.55

7.66 7.22 0.0 38.0

7.70 7.28 0.0

0.0

38.0

7.74 7.46

10.21

12.02

15.85 10.56

41.64

0.0

13.0

0.0

0.0

232.0

0.0

8.74 0.0

44.0

50.0

7.22 0.0

0.0

38.0

7.01 38.0

38.0

11.72 0.0 69.0

14.74 0.0

1.0

78.0

44.0
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