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Organization of Action Sequences in Motor Learning:

A Connectionist Approach

Yoshiro Miyata
Institute for Cognitive Science
University of Calif ornia, San Diego

Abstract

This paper presents a connectionist model of motor learning in which performance
becomes more and more efficient by "chunking” output sequences, organizing small
action components into increasingly large structures. The model consists of two
sequential networks: one that maps a stationary representation of an intention to a
sequence of action specifications or action plans, and one that maps an action plan to a
sequence of action components. As the network is trained to produce output sequences
Sfaster and faster, the units that represemt the action plans gradually discover
representational formats that can encode larger and larger chunks of subsequences.
The model also shows digraph frequency effects similar to that observed in
typewriting, and it generates capture errors similar to that observed in hunan actions.

Organization of Action Sequences

The idea that the size of perceptual and motor units increases with experience is not
new. Various models have proposed different ways in which the units are organized: in a
hierarchical manner (Bryan & Harter 1897, Lashley 1951); as associative chains of small
elements (Wickelgren 1969); or elements linked together by inhibitory connections
(Rumelhart & Norman 1982), for example. Recently, Grudin and Larochelle (1982) and
Jordan (1986) have argued that when a complex motor skill such as typing is learned, the
learner develops representations of motor sequences at levels higher than individual action
components, such as digraphs in typing. Representation of "chunks” of motor sequences
seems to be formed.

The connectionist framework (Feldman & Ballard 1982, Rumelhart & McClelland 1986)
has been successfully applied to the domain of motor control in a number of studies
(Hinton & Smolensky 1984, Rumelhart & Norman 1982, Jordan 1986). These studies stressed
the role of parallel computation in solving the problems of many degrees of freedom and of
multiple and complex constraints. However, the issues of how representation of action
sequences is developed and how performance becomes increasingly efficient have not been
addressed directly by these models. In general, these models tended to focus on the
performance of an expert rather than the process of learning itself. This paper presents a
model of motor learning, of the shift from a novice to an expert performance.
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The Architecture of The Model

In the model, there are three basic levels of representation. The first is a conceptual
representation of the sequence to be produced, such as a word to be typed, that is more or
less independent of motoric components or physical requirements of the task. The second is
a representation in which actions are specified to the action system. The third is the output
of the action system that represents each component to be executed. The execution of an
action sequence in the model thus involves two mappings: the mapping from the conceptual
representation to the action specification, and the mapping from the action specification to
the actual action components. In both mappings, an input vector is mapped to a sequence
of output vectors.

Jordan's Network

One important requirement for a model of action control is that it is capable of
generating sequences of output vectors. The simulations described in this paper used a
technique developed by Jordan (1985) to generate sequences. Figure 1 shows the
architecture of a Jordan network. It receives an input to a layer of plan units, called the plan
vector. For example, a plan vector might specify the sequence "ABCD.." and the task of the
network is to produce first output vector A, then B, C, and so on. Once a plan vector is

Context Units

Plan Units

Hidden Units

Output Units

Figure 1. The basic architecture of a Jordan network. Output is determined by a stationary plan and temporal
context of past outputs.
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given, it produces the first output vector by sending activation forward through one layer of
hidden units. Then the output vector is fed back to a layer of comrexr units, which store the
history of output vectors by recurrent connections to themselves. At each time step, the
next output vector is determined both by the plan vector which does not change during the
sequence and by the context vector which changes at each time step and thereby specifies
place in the sequence.

The Hybrid Model

The model was constructed as a hybrid of two Jordan networks, one for each mapping
(the left half of Figure 2). The upper network, called Plan-net supplies plan vectors for the
lower network called Action-net. The right half of Figure 2 illustrates the time course of
updating the state of the network. At time 0, a specification of the sequence to be
produced is given at the layer of units labeled "Intention” which serves as the input to Plan-
net. Plan-net then generates its output as a sequence of three vectors at the layer of units
labeled "Plan” at time 0, 3, and 6. The plan units actually represent the input for Action-net.
In response to each plan vector, Action-net generates a sequence of three output vectors,
one at each time step, at the layer labeled "Output”. Then each output vector is converted
to another vector at the layer labeled "Action” by choosing the most active output unit.
Thus, Action-net updates its state more often than (in this particular simulation, three times
as often as) Plan-net. There is a connection from the context units of Action-net to the

Plan—net

Intention(12)  *Context(8)

N

Time course of updating network states.

—J i me ——>
0 1 2 3 4 5 6 7T 8

*hidden(8) Intention  (ABC)
T

Plon 4) /" Context(8) Plan0 Plan1 Plan2

Output ) =>Action(4 Out0 Out! Out2 Out3 Out4 Outd Qutb Out7 Qutd

Action—net Output >D C A
Target >A A A B

Figure 2. The architecture of the model (left) and the time course of updating the state of the network (right).
Plan-net maps from an Iatention to a sequence of three Plans. Action-net maps from each Plan to a sequence of
three Outputs.
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context units of Plan-net: this allows Plan-net to get some information about what Action-
net has done so far.

Training The Network

The entire network was trained using the back-propagation algorithm (Rumelhart,
Hinton & Williams 1986). The training procedure for a network with recurrent connections
is slightly more complicated than the training of a straight feedforward network and is
described in detail in Rumelhart et al., (1986).

Each output vector and each action vector were compared with a target vector.
Initially the target vector represented the first component to be produced in the sequence.
For example, suppose the target sequence is ABC. Then the target to compare with the
output and action vectors is initially A. If the action vector does not match the target then
the target stays the same so that the same target is used at the next time step. If the action
vector does match the target then the target for the next time step is changed to the next
component, B in this case. At each time step, the error between the output vector and the
target is propagated back through the network and all the weights in the network! are
modified so as to reduce the error.

Pre-training

In any learning situation for humans, the learner usually has a fair amount of a priori
or background knowledge before the learning starts. This prior knowledge was modeled by
dividing training into two parts: one to put background knowledge and one to train the task
itself. Consider the typing task : Even a novice typist can type correctly by "hunt and peck.”
The problem is that the novice is very slow. The network was pre-trained so that it can
perform the task analogous to the performance of a novice typist. Thus the Plan-net was
trained to generate a sequence of plan vectors, each plan vector representing only one action
component. The Action-net was pre-trained so that in response to each plan vector it could
generate the action represented by the plan vector.

Figure 3 illustrates the performance of the network after the pre-training phase. An
activity pattern in a layer of units (a vector) is shown as a row of vertical bars, the height of
a bar representing the activation level of a unit. A sequence of vectors is shown as a matrix
composed of several rows of vertical bars, each row representing the vector at each time
step. The bottom row represents the first vector produced and the top row the last vector.
The 12-dimensional vector labeled "Intention”, is the input pattern to Plan-net at Intention
layer. This pattern represents the output sequence ABC. In response to this input, Plan-net
produces a sequence of three 4-dimensional plan vectors, shown to the right as three rows of
vectors, representing the actions A, B, and C, respectively. In response to the first plan

! The recurrent connection from the units in Context layer to themselves had fixed set of weights which formed
a diagonal matrix: i.c., each unit in Context layer was connected oanly to itself.
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Figure 3. Response of the network after the pre-training phase: In response to an input (Intention) specifying
the sequence ABC, Plan-net produces a sequence of three plan vectors (Plan) specifying the actions A, B and C.
In response to each plan vector, Action-net produces the action specified by the plan. It takes seven time steps
to complete the sequence.

vector, Action-net then produces the action A, and in response to the second plan vector it
produces the action B, and so on. The three matrices at the bottom show sequences of nine
output vectors, action vectors, and target vectors, at time step 0 through 8. In this
simulation the network was trained on all the possible sequences of three outputs, each
output representing one of four actions, A, B, C and D. There are 64 such sequences. After
the pre-training the network can perform all the sequences but only very slowly.

Results - New Plan Representations

This situation changes as the result of training. Notice that as soon as the first action
is made correctly the target shifts to the second component and tries to turn on the unit
that corresponds to that component. In effect, this kind of training would be expected to
speed up the execution of the entire sequence. That is in fact what happens. Figure 4
shows the response of the network to the same input sequence as shown in Figure 3 after
some 1600 presentations of all 64 patterns. Before training, it took seven time steps to
complete each sequence. After training, all the sequences are completed in three steps,
which is the maximum rate. The plan units which, before the training, could represent only
one action component at a time, now represent the entire sequence. These units have
developed representational formats that can encode all 64 sequences.
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Figure 4. Response of the network after the training phase to the same input as in Figure 3. Only one plan vec-
tor is needed to specify the sequence ABC. The sequence is completed in three time steps.

The network, as the result of training, showed a transition from an inefficient
performance analogous to that of a novice to a more efficient performance. The next
section demonstrates that during the process of training, the performance of the network
exhibits a certain characteristic also observed in human experts.

Digraph Frequency Effects

One strong source of evidence for the existence of higher-order (multi-character)
representational units in typewriting comes from the digraph frequency effects. Grudin and
Larochelle (1982) found that the inter-keystroke-intervals for higher frequency digraphs were
reliably shorter than for lower frequency digraphs. The present model speeds up its output
by developing higher-order representation of the output sequences. It is interesting to see if
the model exhibits the same kind of effect: Does a transition from one action to another
become faster if that particular transition is experienced more frequently by the network?
To test this possibility, a set of twelve sequences of three actions were constructed using six
digraphs (Table 1). Each sequence was presented with different frequency, as shown in the
table, so that as a result three of the six digraphs (AC, BA, and CB) were presented twice as
often as the other three (AB, BC and CA). A frequency means the number of times an item
is presented to the network during each cycle of training. The network used in this
simulation was identical to the one described in the previous section except that, because
there were only three possible actions, there were only three units each in the output,
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Table 1

Twelve sequences were presented to the network with different frequencies so that
three of the digraphs contained were presented twice as often as the other three.

Frequency Sequences presented Frequency | Digraphs contained
to the network in the sequence
4 ACB, BAC, CBA High (8) | AC, BA,CB
2 ABA, ACA, BAB, BCB, CAC, CBC Low (4) AB, BC,CA
1 ABC, BCA, CAB

action, and plan layers and nine units in the intention layer. The training procedure was
identical to the one used before.

Results

Intervals (number of time steps) between two successive actions were recorded during
the training phase. Three pairs of digraphs were compared: AB vs. AC, BC vs. BA, and CA vs.
CB, the second digraph in each pair having the higher frequency. These pairs were chosen
because two digraphs in each pair appeared in very similar contexts during the training: for
example, AB appeared in the sequences ABA, ABC, BAB and CAB while AC appeared in ACA,
ACB, BAC and CAC.

The network was faster with the higher-frequency digraph than with the lower-
frequency digraph within every pair of digraphs. Table 2 shows the digraph frequency
effects in each pair of digraphs during five blocks of 100 learning cycles. Following Grudin
and Larochelle (1982), the "digraph frequency effect” (DFE) is defined as the average interval
for the lower-frequency digraph minus the average interval for the higher-frequency digraph.
This represents the time saved producing the second action of a higher-frequency digraph.
The interval for a digraph is defined as the time steps required between the first and the

Table 2

Digraph Frequency Effects (time saved producing
second action of higher-frequency digraph)

Digraph Pairs Compared

Blocks of learning cycles AB—AC BC—BA CA—CB

500-599 1.27 2.18 1.37
600-699 1.36 1.80 1.43
700-799 0.81 2.20 1.43
800-899 1.00 2.00 0.86
900-999 1.04 2.04 0.51
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second actions in the digraph. If the action B in the digraph AB is produced at time step
immediately following the time step the action A was produced, then the interval for the
digraph is 1. The overall digraph frequency effect was significant (i.e., DFE > 0), F(1, 2) =
20.72, p < 0.05, using the pairs as the random variable.

Capture Errors

One interesting aspect of action control is that errors seem to exhibit certain general
patterns. This has been shown in controlled experiments in speech (Motley, Camden &
Baars 1982, Dell 1984) and in typing (Grudin 1983, Sellen 1986) as well as observations in
natural settings (Norman 1982, Reason 1979). One class of errors are called capture errors.
"A capture error occurs when a familiar habit substitutes itself for an intended action
sequence. .. Pass too near a well-formed habit and it will capture your behavior (Norman
1982)." The present model seems to have a potential to generate this type of errors. This is
because the mappings in the network have the characteristic that similar inputs tend to be
mapped to similar outputs. If two output sequences have similar subsequences, this results
in similar contextual information in the context vector that might lead to an error.

This possibility was tested by simulating Sellen’s psychological experiment (1986) using
a Jordan network as the subject. The design of the experiment is summarized in Table 3.
The network was given four plan-target pairs to learn. In response to each of the four plan
vectors a, b, ¢, and d, the network was to generate four different output sequences ABC, ABD,
EFG, and EHI. The first two sequences — ABC and ABD — are very similar to each other:
these are called "high similarity sequences”. The last two sequences — EFG and EHI — have
only one common component: these are called "low similarity sequences”. The sequences
ABC and EFG are called "high familiarity sequences” because they are presented to the
network three times more often than the "low familiarity sequences” ABD and EHI. There
were nine possible actions, A, B, C, ..., H, I, and thus the network had nine output units.
The action produced by the network was decided by choosing the most active output unit.

Table 3

Similarity and familiarity of the four
plan-target sequence pairs learned by the network.

Plan —>  Target Sequence | Similarity | Familiarity

a ABC High High
b ABD High Low
c EFG Low High
d EHI Low Low
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Table 4 shows the four possible "capture errors” that can occur. A capture error can
occur either between two high similarity sequences ABC and ABC, or between two low
similarity sequences EFG and EHI. It can occur either from a high familiarity sequence to a
low familiarity sequence or vice versa. For example, if the network generates the sequence
ABD in response to the plan 'a’, it is a capture error between high similarity sequences and it
is a high-to-low familiarity error.

The network used was a Jordan network with four plan units, six hidden units, four
context units and nine output units. Each output unit represented one of the nine possible
actions: A, B, C,..., I. The network was trained on the four pairs of plans and output
sequences described above. Gaussian noise was added to each plan unit so that the network
continued to make some errors even after it learned the sequences. Testing was done by
presenting each plan, with noise added, one thousand times after the network had reached
stable state. Seven networks were run that were identical except for initial random weights.

Results

Figure 5 shows the results. Both similarity and familiarity affected the probability of
capture errors. There were more capture errors between the high similarity sequences ABC
and ABD than between the low similarity sequences EFG and EHI, F(1, 6) = 141.9, p < .001.
And there were more capture errors from a low-familiarity sequence to a high-familiarity
sequence than from high to low familiarity, F(1, 6) = 293.9, p < .001.

In Sellen’s '(1986) experiment the familiarity factor had a significant effect on the
probability of capture errors, but-the effect of similarity was small and not significant. The
discrepancy between her experimental results and this simulation can be attributed to a
number of factors: The difference can simply be because the experiment did not have enough
power to detect the effect (fewer trials, smaller overall error rate). Another possibility is
that the temporal context stored in the context units did not correspond to the experiment.
A finer grained manipulation of similarity in the experiment as well as manipulation of
temporal characteristic of the context units in the simulation might be needed to make them

Table 4

Four possible capture errors

Plan —>  Target | Capture Error | Similarity Familiarity

a ABC ABD High High -> Low
b ABD ABC High Low —> High
c EFG EHI Low High -> Low
d EHI EFG Low Low —> High
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CAPTURE ERRORS BY NETWORKS
8_ Low—>Hign
*L; __ Familiarity
1 High—>Low
0_ /L

Low Hign

Similarity

Figure 5. The effect of similarity and familiarity on capture errors made by seven networks: Capture errors were
more likely from low-familiarity sequence to bhigh-familiarity sequence than the reverse direction, and more like-
ly between more similar sequences.

more comparable.

This simulation used a single Jordan network with noise to generate capture errors.
Interestingly, capture errors were also observed without noise when the hybrid network
learned many sequences. When some of the sequences were presented more often than
other sequences, it was observed that a low-frequency sequence that shared a subsequence
with a high-frequency sequence was sometimes captured by the high-frequency sequence, but
a capture error in the reverse direction was rare. This suggests that some action errors can
occur as the result of interaction among many different mappings that a single network is
trying to leamn.

Summary

The model presented in this paper has a number of interesting properties. First, it was
able to model the shift from a serial, novice performance to a highly parallel, expert
performance. Training of the network started from an initial state where Action-net did
only a simple mapping of one plan to one action, and much of the work was done by Plan-
net that mapped an intention to a sequence of plans. The training reversed the situation:
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the mapping from intention to plan became one-to-one, and the mapping from plan to
action became one-to-sequence. For Plan-net, the task changed from a serial one to a highly
parallel one.

Second, this model seems to show a way "chunking” can be done in a connectionist
network. The network was able to discover new representation of action plans so that each
plan represents a increasingly large chunk of output sequence. The process of chunking in
the model is gradual rather than discrete, and no new representational entity needs be
created when chunks are formed. It is not necessary to presuppose what "level” of
information each component in the model should represent: rather suc. a "level” is a
dynamic property of each component that can change through learning.

Third, the model exhibits digraph frequency effects similar to those observed in studies
of typing. The model also simulated capture errors and has the property that capture errors
are more likely to be made from a low frequency sequence to a higher frequency sequence
than the reverse direction.
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