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ABSTRACT OF THE DISSERTATION 

 

Resilient Spatiotemporal Truck Monitoring System using  
Inductive Signature and 3D Point Cloud-based Technologies 

by 

Yiqiao Li 

Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Irvine, 2021 

Professor Stephen G. Ritchie, Chair 

 

Understanding the spatiotemporal distribution of commercial vehicles is essential for 

facilitating strategic pavement design, freight planning, and policy making. Hence, analysts 

and researchers have been increasingly interested in collecting more diverse high 

granularity truck data across different truck characterization schemes to meet these various 

needs across the roadway network to better understand their distinct operational 

characteristics and dissimilar impacts on infrastructure and the environment. Existing truck 

monitoring infrastructure is limited in spatial coverage across the roadway network due to 

high installation and maintenance costs. The recently developed Truck Activity Monitoring 

System (TAMS) by the University of California Irvine Institute of Transportation Studies 

provides a cost-effective solution for monitoring truck movements statewide across 

California along major freeways networks through existing inductive loop infrastructure 

enhanced with inductive signature technology. Nonetheless, it possesses three major 

limitations: model bias against underrepresented truck classes, spatial coverage limitation 

on rural highways, and system obsolescence over time.  
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This dissertation explored a resilient spatiotemporal truck monitoring system using 

inductive loop signature and multi-array Light Detection and Ranging (LiDAR) sensor 

technologies to address the aforementioned issues and to improve truck monitoring 

capabilities across the roadway network. The designed system comprises three major parts: 

Inductive loop sensors for major highway truck monitoring, multi-array LiDAR sensors for 

rural highway truck monitoring, and a self-learning truck classification framework through 

a sensor integration framework.  

The first part of the system was built upon the existing Truck Activity Monitoring 

System (TAMS) developed by ITS Irvine and addresses prediction model biasness caused by 

inherently imbalanced truck datasets to provide reliable truck speed estimation and truck 

classification data. 

The second part explored non-intrusive LiDAR-based sensing technologies to fill the 

surveillance gap along rural highway corridors. This section developed a truck classification 

method using a LiDAR sensor oriented to provide a wide field-of-view of roadways. 

Finally, a self-learning framework for truck classification systems was designed to 

address system obsolescence through the integration of inductive loop sensors and LiDAR 

sensors, the latter of which has been proven in this dissertation to have the ability to 

recognize truck axle configuration. This framework enhances the resilience of the signature-

based FHWA classification model with an intelligent system update to accommodate the 

change of the truck designations over time and significantly reduces the overall burden of 

periodic model calibration by utilizing the information stored in the legacy model. 
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CHAPTER 1 : Introduction 

1.1  Impacts of Trucks 

Trucks hauled 10.4 trillion dollars of domestic freight in 2017 and transported the highest 

percentage of freight in value (89 percent), tonnage (76 percent), and ton-miles (55 percent) 

among single modes (Commodity Flow Survey, 2017).  

 
Figure 1.1 Commodity Values, Tons and Ton-miles transported by Trucks (U.S. Department of Transportation 
et al., 2017) 

 

According to forecasts from the Freight Analysis Framework, the value of freight transported 

by trucks is expected to follow a rising trend. The per-ton values moved by trucks have been 

forecast to reach 18,735 dollars in 2045. The growing demand for highway freight 

transportation derives trucking-related concerns. These concerns come from the severe 

adverse impacts attributed by truck across different classification scheme on roadway safety 

(Dong et al., 2015), pavement design (Gillespie, T.D, Karamihas, S.M. & Sayer, 1993), as well 

as a greenhouse gas and pollutant emissions (Guensler et al., 2005). 

Roadway Safety: Commercial trucks account for 8 percent of U.S. highway traffic volume. 
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Yet, they are disproportionately involved in 11 percent of fatal crashes and responsible for 

4,500 deaths per year in the U.S. alone. Previous research shows that an increase in truck 

population on the highway results in a magnified increase in the probability of a severe crash 

(Dong et al., 2015).  Moreover, the contribution to the crash fatalities varies by location (e.g. 

rural, urban, work zone) and truck configuration (U.S. Department of Transportation, 2019). 

However, the roadway safety analysis concerning different truck types is a lack in 

comprehensive research due to the limited resolution of current truck data. 

Pavement Structural Damage: The American Association of State Highway and 

Transportation Officials (AASHTO) introduced the concept of 18,000 lbf (pound force) 

Equivalent Single Axle Loads (ESALs) to evaluate the impact of truck axle configuration on 

the pavement at various locations (AASHTO, 1993), based on a large-scale road test in the 

1960s. The reference unit of ESAL represents a level of damage that an 18,000 lbf single axle 

load would have on the pavement. As shown in Figure 1.2, the ESAL values of passenger 

vehicles are negligible and approximately equal to zero.  Compared to two-axle passenger 

vehicles, trucks produce disproportionally negative impacts on pavement structures, 

whereas different truck classes bring a varying degree of damage to various types of 

roadway facilities.  
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Figure 1.2 Average ESALs by FHWA Vehicle Classes and Infrastructure Functional Classes (Note: Since 
Motorcycles, passage cars, and SUV/Pickup trucks do not significantly contribute to the ESALs, they are 
negligible and their ESALs are approximately 0.) (Federal Highway Administration, 2013; Schmoyer & Hu, 
1998) 

Many transportation agencies rely on Weigh-In-Motion and Automatic Vehicle Classification 

sites to collect axle-based vehicle classification counts for the use in pavement design. 

However, the spatial coverage of these detection sites across the highway network is limited 

due to high installation and maintenance costs. Therefore, reliable truck data sources with 

extensive spatiotemporal coverage are required to evaluate the pavement design of truck 
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corridors in response to the potential damage caused by various compositions of truck 

classes. 

Environmental Impact: Commercial trucks are the main sources of air pollution on 

roadway networks, even though they only account for a small proportion of U.S. highway 

traffic. As illustrated in Figure 1.3, trucks, particularly heavy-duty trucks, contribute over 50 

percent of the pollutants, such as carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides 

(NOx), and particulate matter with a diameter of 2.5 micrometers or smaller (PM2.5). 

 

Figure 1.3 Percentage Estimated U.S. Average Vehicle Emission Rate per Vehicle by Vehicle Type using 
Gasoline and Diesel (Statistics Bureau of Transportation, 2021) Note: Light-duty vehicles: passenger cars. 
Light-duty trucks: trucks with two axles and four tires. Heavy-duty vehicles: trucks with more than two axles 
or four tires 
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In summary, analysts and researchers have been increasingly interested in collecting more 

diverse high-granularity truck data across different truck characterization schemes to meet 

these various needs across the roadway network to better understand their distinct 

operational characteristics and dissimilar impacts on infrastructure and the environment.  

1.2  Current Truck Data Sources and Concerns 

A comprehensive understanding of truck activities is required to address the adverse impact 

caused by trucks. Data sources, which are generally used for freight analysis, are summarized 

below as three primary parts: survey data, operation data source, and emerging technologies 

(Table 1.1). 

Table 1.1 Current Truck Data Sources 

Survey Data Operation Data Source Emerging Technologies 

Commodity Flow Survey Truck GPS Truck Activity Monitoring System 

 Freight Analysis Framework Weigh-In-Motion LiDAR data 

Vehicle Inventory and Use Survey ATR Classification Count Data Bluetooth data 
 

Data from such current detection technologies as truck Global Position System (GPS) data 

have been adopted for freight transportation planning purposes. Such data have been used 

in the development of truck tour-based models (Sharman & Roorda, 2011; Zanjani et al., 

2015), the identification of trip destinations (Sharman & Roorda, 2011), and the estimation 

of such truck performance measures as travel time, travel speed and travel distance (X. Ma 

et al., 2011; Wang et al., 2016). However, due to confidentiality, truck GPS data provide 

details of the truck characteristics on a limited level. For example, the truck GPS data from 

the American Transportation Research Institute (ATRI) contain only truck type information 

on an aggregated level (e.g., heavy trucks and light trucks) (Zanjani, 2014). On the other 
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hand, such infrastructure-based systems as Automatic Traffic Recorder (ATR) classification 

count data and Weigh-in-Motion (WIM) data can provide truck classification information. In 

particular, WIM devices are designed to capture and record gross vehicle weights (GVW), 

axle weights, axle spacing, and axle-based vehicle classification (FHWA 13 Vehicle Category 

Classification) (Federal Highway Administration, 2013) as vehicles traverse the WIM 

sensors. However, WIM stations are sparsely deployed across the network due to high 

construction and maintenance costs. Furthermore, although axle-based vehicle classification 

data are essential for estimating pavement damage caused by trucks with different axle 

configurations, such datasets provide limited information related to a truck’s commercial 

purpose, which is an important input to highway freight transportation planning models 

(Beagan et al., 2019; Schaefer, Ron; Worth, Monica; Heilman, Jonathan; Kehoe, 2017). U.S. 

Census Bureau data sources, such as the Commodity Flow Survey (CFS), Services Annual 

Survey, and Vehicle Inventory and Use Survey (VIUS) have been conducted in an attempt to 

fill this gap and meet the needs of planners and practitioners. Typically, such survey data as 

the VIUS tie truck body types to their commodities hauled, where the commodities hauled 

can be inferred from the available truck body type classification data. Hence, these types of 

data can provide the commercial and operational characteristics of the Nation’s truck 

population and support the analysis of environmental impacts of traffic emissions as well as 

estimating fuel demand. However, survey data are static in nature. It is hard for survey data 

to capture the dynamics of truck activities on both spatial and temporal dimensions. 

Additionally, a new publicly available data source – the Truck Activity Monitoring System 

(TAMS) (Tok et al., 2017)—has been developed by ITS-Irvine. This high-resolution data 

source, which leverages existing advanced loop sensor infrastructure, can provide truck data 
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with detailed truck body types (Hernandez, 2014). Nonetheless, this truck activity 

monitoring system currently experiences three limitations: model bias against under-

represented truck classes, spatiotemporal coverage limitation on rural highways, and model 

obsolescence over time. First, the truck class distribution for classification schemes such as 

the FHWA axle-based classification scheme is imbalanced in nature. The existing signature-

based FHWA classification model overlooks model performance on minority classes, even 

though many of them may pose disproportionately adverse impacts on infrastructure and 

the environment. Therefore, previous models have been unable to adequately classify under-

represented classes, and the overall performance of the models is often masked by excellent 

classification accuracy of majority classes, such as passenger vehicles and five-axle tractor-

trailers. Second, although inductive loop sensors are widely deployed in many urban and 

interstate highway corridors in the U.S., their coverage remains limited along rural highway 

corridors that also contribute significantly to the economy. However, the installation of such 

an intrusive sensor requires pavement intrusive installations and lane closures that are both 

cost- and labor-intensive. Therefore, it is impractical to implement pavement intrusive 

sensors extensively along the rural highway network which results in a truck monitoring gap 

in rural areas for long-term operations. Third, inductive loop sensor systems have the ability 

to provide truck classifications of comparable accuracy to current axle-based sensor systems 

when they are updated with inductive signature technology and advanced machine learning 

models. However, the existing truck population is expected to transition over time and be 

replaced with newer models that may possess distinct and different inductive signature 

characteristics. Consequently, the performance of inductive signature-based systems may 

not be optimal in classifying newer trucks operating on the highway over time.  
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1.3 Proposed Solution Overview 

This dissertation describes the design and development of a resilient spatiotemporal truck 

monitoring framework to fill the aforementioned gaps in the current system. This new 

framework comprises three major components to address the corresponding concerns: 

inductive loop sensors for major freeway truck monitoring, multi-array LiDAR sensor for 

rural highway truck monitoring, and a self-learning framework through the integration of 

inductive loops and LiDAR sensors. The first part of this dissertation develops an individual 

truck speed estimation model as well as a signature-based FHWA classification model with 

the focus on addressing the low performance of minority classes. The truck speed estimation 

model is developed on a truck-focused dataset and truck speed-related features were 

extracted to enhance the model performance on trucks. In addition, a bootstrap aggregation 

deep neural network model is proposed to classify vehicles on the basis of the FHWA-CA 

scheme using inductive loop signature data. This method attempts to remedy the imbalanced 

dataset issue in the process of developing prediction models on the algorithm level to 

provide reliable FHWA vehicle classification data. The second part of this dissertation is 

focused on filling the truck monitoring gap on rural highways using a mobile sensor 

solution—a multi-array LiDAR sensor. First, a new vehicle reconstruction framework with 

ground plane consideration is designed to enrich the sparse point cloud obtained from each 

LiDAR frame. Second, the lower profile of the truck is extracted from the reconstructed truck 

point cloud and used as input to an ensemble deep neural network model to classify trucks 

according to the FHWA classification scheme. Finally, the PointNet deep representation 

learning algorithm is utilized to classify trucks based on their detailed truck body types. The 
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final part of this dissertation describes the design of a self-learning framework through the 

integration of inductive loops and LiDAR sensors. The LiDAR-based FHWA vehicle 

classification model serves as an automated labeling platform to generate class labels to 

validate and calibrate the signature-based vehicle classification model without human 

involvement. This framework enhances the resilience of the signature-based FHWA 

classification model and significantly reduces the overall burden of periodic model 

calibration.  

1.4 Dissertation Outline 

The structure of this dissertation is described in Figure 1.4.  

 

Figure 1.4 Relationship between Each Chapter 
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The rest of this dissertation is organized as follows. Chapter 2 presents the 

enhancement of the truck monitoring framework on major highways using inductive loop 

signature data. This chapter addresses model bias issues on both the data and algorithm 

level. Chapter 2 presents the development of an individual truck speed estimation model 

with a truck-focused dataset using inductive loop signature data and subsequently 

demonstrates a bootstrap aggregation deep neural network model to resolve the challenge 

of imbalanced datasets in the FHWA vehicle classification problem. 

In Chapter 3, a new truck classification method is developed using a non-intrusive 

sensor – multi-array 3D LiDAR – that can be used to improve truck monitoring on the rural 

highway network. First, a new vehicle point cloud reconstruction framework with ground 

plane consideration is developed to merge multiple consecutive frames associated with each 

vehicle object to provide its dense point cloud representation. Next, the reconstructed point 

cloud is used to develop an FHWA vehicle classification model and a truck body type 

classification model using a classic deep neural network model architecture and a 

representation learning algorithm, respectively. 

In Chapter 4, a self-learning vehicle classification framework is designed through the 

integration of inductive loops and LiDAR sensors to address the system obsolescence issue 

as a result of truck population turnover. The LiDAR-based FHWA vehicle classification model 

developed in Chapter 3 serves as a data labeling platform to validate and calibrate the 

signature-based vehicle classification model proposed in Chapter 2. An adaptive transfer 

learning framework is adopted to enhance the overall model performance on both the 

archived statewide dataset and the newly collected dataset without compromising 

computation efficiency.  
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 Chapter 5 presents the conclusion of this dissertation with a discussion of potential 

future research directions. 
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CHAPTER 2 : Intrusive-Sensor Solutions: Major Highway Truck 

Monitoring using Advanced Inductive Loops 

2.1 Individual Truck Speed Estimation from Advanced Single Inductive Loops 

2.1.1 Introduction 

Truck speed has been considered an important traffic estimate that can be helpful for 

identifying congestion (Cambridge Systematics Inc. & Battelle Memorial Institute, 2005), 

evaluating roadway safety (Malyshkina & Mannering, 2008), and estimating emissions 

(United States Environmental Protection Agency, n.d.). Researchers have been attempting to 

improve the accuracy of truck speed estimation through the use of advanced traffic 

technologies. Traffic technologies used for speed estimation can be categorized as intrusive 

and non-intrusive. Non-intrusive detection technologies can provide relatively accurate 

measurements of aggregated vehicle speed and travel time. However, the spatial coverage of 

these technologies is limited. For example, the penetration rates of Bluetooth devices vary 

spatially and temporally (Vo, 2011). Therefore, speed estimation models developed by using 

non-intrusive sensors such as Bluetooth and Wi-Fi are not effective at locations where the 

traffic streams do not contain vehicles equipped with probe devices, such as in rural areas 

(Thiagarajan et al., 2014). Furthermore, it is hard to identify whether detected Bluetooth and 

Wi-Fi devices are associated with trucks or passenger vehicles. Compared to Bluetooth and 

Wi-Fi sensors, probe devices like truck Global Positioning System (GPS) provide better 

spatial coverage (Zanjani, 2014). However, sample truck GPS data are not necessarily 

representative of the population of all vehicles (Zanjani et al., 2015). Since different types of 

vehicles possess different speed characteristics (Mehar et al., 2013), information from biased 

sampling may lead to a biased speed representation of total truck and traffic flow. 
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            Conversely, information collected from conventional inductive loop detectors 

provides excellent temporal coverage since data can be collected continuously from these 

sensors. Single-loop detectors are widely installed in the US and are commonly used for 

freeway traffic surveillance. However, a conventional single inductive loop sensor provides 

only duration measurements at the vehicle level, which is both a function of vehicle speed 

and length.  Hence, aggregated speed estimates can be obtained from conventional single 

inductive loop sensors if the average vehicle length of the traffic stream is known.  This is 

typically done by assuming the effective vehicle length of vehicles traversing the sensor over 

a pre-defined time period. The effective vehicle length basically represents the sum of the 

single inductive loop sensor and vehicle length. However, the distribution of vehicle lengths 

can vary dynamically in a traffic stream and across lanes.  Hence, the conventional g factor 

method (Athol, 1965), which considers the effective vehicle length as a constant, may result 

in significant errors. The moving median method (Coifman et al., 2003), sequence method 

(Coifman & Kim, 2009), and distribution method (Coifman & Kim, 2009) were subsequently 

developed to improve the estimation accuracy of average speeds under heterogeneous 

traffic conditions. Nonetheless, these models still show limitations in estimating the speed of 

traffic streams accurately when a large percentage of long vehicles is present (Coifman & 

Neelisetty, 2014). The new sequence method and the hybrid method proposed by Coifman 

and Neelisetty ( 2014) improved estimation accuracy under high truck flows but still yielded 

5.6 percent average absolute percentage error at the 30-second aggregation level under free-

flow conditions. Although the hybrid model achieved better performance compared with 

previous studies, it was unable to provide accurate truck speed estimation. Hence, the 
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challenge remains for conventional single inductive loop detectors to provide accurate truck 

speed estimation. 

With advanced detector cards, the inductive loop detector system can provide much 

more detailed information through inductive waveforms (or signatures) generated by each 

individual vehicle. The potential for estimating vehicle speeds using inductive signature data 

was initially investigated by Sun and Ritchie (1999), and subsequently explored by others to 

further improve speed estimates (Oh et al., 2002; Park & Ritchie, 2010; Tok et al., 2009). 

However, a common weakness for truck speed estimation was that the datasets used 

contained only a limited proportion of trucks. Hence, the performance of these models has 

not been well-tested under traffic conditions with high truck proportions. In this chapter, a 

recent signature-based speed estimation model was tested on a truck-focused dataset and 

revealed a significant reduction in model accuracy.  

This research aims to fill the gap and improve the accuracy of individual truck speed 

estimation. First, compared to the simple moving average method adopted by previous 

research (Tok et al., 2009), a progressive moving average method preserves the old datum 

points at the leading edge of a signature even with a larger averaging window size. 

Subsequently, the optimal window size and the optimal cutting threshold are analyzed in 

this chapter. Then, a new speed-related feature was investigated and tested. Next, based on 

the new speed-related feature, all vehicle observations are clustered into groups by using a 

modified feature-weighted K-means algorithm. Finally, a new multi-layer perceptron neural 

network model is constructed to classify single loop signatures into pre-determined clusters. 

An accurate truck-focused individual vehicle speed estimation (ATISE) model is developed 
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and applied on both a truck-focused dataset as well as a general dataset comprising mostly 

non-trucks. Previous models have been applied only on general datasets and reported with 

the overall mean absolute error and the overall mean absolute percentage error. Since trucks 

only account for a small portion of most datasets, the average accuracy can still be high even 

if the truck speed estimates have significant errors. Hence, the deficiencies of previous 

models in estimating truck speeds may not be apparent. To address previous dataset 

limitations, we develop and test our model on a dataset comprising 80 percent trucks. The 

new model showed a significant improvement over the best previously developed signature-

based individual vehicle speed estimation (ISE) model. The overview of the ATISE model 

structure is shown in Figure 2.1.  
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Figure 2.1 Overview of the AISE Model 

 

2.1.2 Literature Review 

2.1.2.1 Conventional Loop Methods 

Most conventional loop speed estimation methods are based on the vehicle length and 

duration relationship discussed in the previous section. The first-speed estimation method 

that utilized data obtained from single inductive loop detectors was proposed by Athol ( 

1965). He introduced the g factor into speed estimation (𝑣 =
𝑁

𝑔×𝑇×𝑂𝑐𝑐
). Here, v represents 

space mean speed. T indicates the observed time interval. Occ represents the percentage of 

time that the loop sensor is occupied by vehicles within each interval. N denotes the number 

of vehicles within each time interval. The g factor is an estimator that incorporates site 

characteristics of effective vehicle length, and hence varies by site. However, effective vehicle 

lengths vary significantly in both the spatial and temporal domain. In response, many 
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researchers have sought improved methods to address the bias caused by dynamic vehicle 

mix and congestion effects. Pushkar et al (Pushkar & Acha-daza, 1994) first estimated 

average vehicle lengths based on cusp catastrophe theory, then developed a new speed 

model based on estimated average vehicle lengths. Their speed model showed improved 

performance over the use of constant average vehicle lengths. Rather than using a fixed 

pattern of effective vehicle lengths for different time periods within one day, Coifman (2001) 

used an exponential filter to dynamically update the average vehicle length, which improved 

the reliability of his speed model. Subsequently, Coifman et al  (2003) found that the use of 

median speed was much less sensitive to outliers compared to the use of mean speed. 

However, this model required observing several vehicles in a given sample duration to 

reduce the impact of long vehicles and was not advisable to apply on datasets with low 

volumes (Coifman et al., 2003). Then, Coifman and Kim (2009) refined the existing speed 

estimation methods, the sequence (Coifman & Neelisetty, 2004)  and moving median method 

(Coifman et al., 2003), and proposed a distribution method that used an on-time distribution 

to estimate vehicle on-times, in order to address the weakness of the sequence method under 

congested conditions. The transferability of the model was not validated. Later, Lao et al 

analyzed the on-time distribution pattern of vehicles and used a Gaussian Mixture Model 

(GMM) to classify different types of vehicles by their lengths (Lao et al., 2012). They 

iteratively updated the classified vehicle volume estimates and aggregated speeds of the 

traffic streams. Compared to previous methods (Coifman & Neelisetty, 2004) (Coifman et al., 

2003), Lao’s model provided improved speed estimation across a variety of traffic conditions 

and addressed transferability issues. However, the authors remarked that the model needs 

to be calibrated if long vehicles are dominant in the traffic stream. In 2014, Coifman and 
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Neelisetty (2014) presented a new sequence method to improve speed estimation under 

severely heterogeneous traffic conditions.  They deduced individual vehicle length by 

observing the extreme on-time ratios and extracted two types of sequences, a long vehicle 

followed by a short vehicle and a short vehicle followed by a long vehicle. Since the sequence 

method relied on the passage of sequences and the location, a hybrid method was proposed 

to reduce the estimation bias caused by different sequence occurrences. The model started 

by detecting the presence of sequences in the sample time period. If there was a sequence in 

the sample, the median speed of all vehicles in the sequence during the sampling time period 

was the estimated speed. Otherwise, if the sampling period was less than 2 minutes, the 

estimated speed was equal to the median speed of all vehicles in the sequence during the 

previous 2 minutes. Finally, they had to identify the free flow condition, with the assumption 

that the free flow speed was fixed. The model yielded a mean absolute error of 5.6% under 

40% truck flows in free flow conditions. However, model performance was not reported 

under congested conditions with high truck proportions. 

2.1.2.2 Speed Estimation with Non-Intrusive Sensors 

In recent years, various sensors have been used in traffic surveillance. Detection 

technologies can be broadly classified as intrusive and non-intrusive. Pneumatic road tubes, 

inductive loop detectors, piezoelectric sensors, magnetometer-based sensors, and Weigh-in-

Motion that involve in-pavement installations are examples of intrusive detectors. On the 

other hand, video image processing, microwave radar, infrared sensors, GPS, Bluetooth 

sensors, and probe vehicles that are installed out-of-pavement can be classified as non-

intrusive detectors. Non-intrusive detection technologies such as GPS, Bluetooth sensor, and 

probe vehicles are currently used for performance measurement of roadway networks. Since 
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vehicles equipped with a GPS device can report the individual vehicle speed, Cheu et al 

(2001) calculated the optimal sample size of probe vehicles equipped with GPS devices and 

obtained relatively accurate speed estimates along arterial links. Unfortunately, the sample 

GPS data are only a small portion of overall traffic and are not necessarily representative of 

the population of all vehicles (Zanjani et al., 2015). Different types of vehicles possess 

different speed characteristics (Mehar et al., 2013). Thus, sampling bias may adversely affect 

the speed representation of the truck population. Bachmann et al (2013) integrated 

Bluetooth data and conventional loop detector data by using a data fusion algorithm and 

improved aggregated speed estimation on freeways. However, such sensor technologies as 

Bluetooth and Wi-Fi are not designed to associate estimated vehicle speed with vehicle 

types. Therefore, these sensors inherently lack the ability to provide individual truck speed 

estimation. 

2.1.2.3 Inductive Signature Method 

Generally, the conventional inductive loop detector card with sampling rates of 240 Hz 

(Coifman & Neelisetty, 2014) is only capable of collecting bivalent data. The output of the 

detector card is either “0” or “1”, which can directly produce occupancy and vehicle counts. 

A “1” output signal represents the presence of a vehicle. Typically, the duration can be 

calculated from the presence of a vehicle passing over the loop detector. However, advanced 

detector cards can capture the detailed inductance change when a vehicle traverses an 

inductive loop sensor. The inductance change produces a high-resolution waveform called 

an “inductive vehicle signature”. The sampling rate of the detector cards used in this study 

was 1000 samples per second, which yielded a temporal gap of 0.001seconds between each 

data point.  
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Inductive signature data collected from a single loop sensor can also be used for speed 

estimation. Some features extracted from vehicle signatures may be associated with specific 

characteristics of the vehicle. Sun and Ritchie (1999) found that the inductive signature slew 

rate of individual vehicles had a strong linear correlation with vehicle speed, and developed 

a linear model between individual vehicle speed and slew rate. After conducting several 

statistical tests of the model, they found that their model was statistically significant, and the 

data could be well explained by the model. However, the linear relationship between 

different vehicles is different. To address this problem, Oh et al. (2002) used a probabilistic 

neural network (PNN) to group vehicles by vehicle length and applied a linear regression 

model for each vehicle group to increase the accuracy of the model. Later, Park and Ritchie  

(2010) introduced a shape parameter into a vehicle grouping model in order to get more 

specific vehicle types within each group in the model. Since two different vehicles traversing 

an inductive loop sensor with the same velocity may have different slew rates and duration, 

Tok et al. (2009) adopted an approach that applied k-means clustering and artificial neural 

network classification methods to group vehicles into homogeneous groups based on natural 

slew and signature length characteristics. The linear model within each group was improved. 

However, the regression of the speed model corresponding to the cluster representing long 

vehicles was found to be significantly weaker than for smaller vehicles. 

2.1.2.4 Summary 

Generally, models developed using the inductive signature approach have better accuracy 

and transferability compared with models that use only conventional loop data. Compared 

to non-intrusive technologies, the inductive signature approach provides both a better 

temporal and spatial coverage. However, since there is a wide range of vehicle lengths within 
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the truck population, it is hard to provide reliable estimates for trucks. With these challenges, 

there has been limited research into truck-focused speed estimation.  Unlike passenger 

vehicles, trucks have been found to generate distinct signature patterns across body types, 

and truck body types can be associated with different vehicle lengths. Hence, a well-

structured model is needed to handle the diversity of vehicle lengths within the truck 

population. In this dissertation, we describe the development of a truck-focused individual 

vehicle speed estimation model through the use of advanced loop signature data to fill this 

information gap. 

2.1.3 Data Description 

The data used in this section were obtained from two double inductive loop detector stations 

equipped with advanced loop detector cards. Both training and testing datasets were 

obtained from the inductive loop station along the I-680 freeway in the City of Walnut Creek, 

California near Oak Park Blvd. Data from three lanes in both directions were recorded at this 

station. In total, 21,127 vehicle signatures were collected at multiple periods over a one-

month span and were pre-classified into five vehicle types developed by Hernandez 

(Hernandez, 2014). These comprise 4,156 passenger vehicles (20%), 11,691 single-unit 

trucks (55%), 3,078 semi-trailer trucks (14%), 329 multi trailer trucks (2%), and 1,873 

single trailer trucks (9%). The second dataset used for validating the spatial and temporal 

transferability of the speed estimation model was obtained from the Patterson Pass double-

loop station along the I-580 freeway near the city of Tracy, California. The signature data 

were collected on July 13th and July 14th, 2018, with 23 percent and 16 percent truck 

volumes, respectively. The spacing between the leading edges between each double 

inductive loop sensor was approximately 20 feet. The length of each individual loop sensor 
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was approximately six feet. The configuration of the double loop speed trap at both these 

sites provides the ability to obtain accurate individual vehicle speeds for developing and 

evaluating the single inductive loop speed estimation models. 

2.1.4 Model Development 

2.1.4.1 Signal Processing 

Several steps were performed in the processing of raw inductive signatures generated by 

high-resolution inductive loop detector cards. First, dual inductive signature data were 

obtained from double loop inductive sensors to facilitate the measurement of vehicle speeds 

and the transformation of signature waveforms from the temporal to spatial domain to 

extract speed-invariant features. In this study, vehicle lengths less than 10 ft or larger than 

85 ft were considered to be outliers and excluded before the signal processing step. 

Incomplete signatures which were caused by vehicle lane changing behaviors were also 

excluded. A progressive moving average (PMA) filter was subsequently used to filter out 

noise in the signature data. When the window size (ws) was large, a simple moving average 

(SMA) will drop out the old datum points at the leading edge of a signature (Figure 2.2a) and 

may lead to an incomplete signature.  
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Figure 2.2 Comparison between simple moving average and progressive moving average (a) SMA with a 
window size of 79 (b) PMA with a window size of 79 

 

To avoid this problem, we gradually increased ws until the maximum window size 

(mws) was reached. The mws was subsequently maintained until the end of the signature 

where ws was gradually reduced. The ws of the progressive moving average method is a 

function of the index of each data point (i). The relationship between ws and i is shown below, 

where n indicates the total number of data points in a signature, and mws is odd.  
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            Next, we calculated the estimated points with the dynamic ws. The estimated value for 

each index is shown below. Here, 𝑃̅𝑃𝑀𝐴_𝑖  indicates each estimated value after applying the 

progressive moving average (PMA) filter. 
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            Compared to the SMA used by previous research (Tok et al., 2009), the PMA method 

can prevent information loss on the leading edge of a signature, especially with the use of a 

larger window size (Figure 2.2b).  

 The optimal mws was obtained when the correlation between the overall maximum 

slew and true speeds obtained from double loops for the progressive filter was maximized. 

Through an exhaustive search on the interval [3, 99] the optimal mws was found to be 79. 

Next, inductive loop signatures were normalized against the maximum value on the 

magnitude domain to address inconsistencies in sensitivities across loop sensors. Finally, 

oscillations observed near the baseline inductance were eliminated by applying an optimal 

cut-off threshold.  The purpose of the cut-off threshold is to exclude noise oscillations while 

preserving as much of the vehicle signature information as possible. Based on Figure 2.3, the 

correlation coefficient between overall maximum slew and true speeds was not found to be 

particularly sensitive to the cutting threshold.  
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Figure 2.3 The Optimal Window Size 

 

The cutting threshold was set to 0.1. The processed signature is shown in Figure 2.4. 

 

Figure 2.4 The Optimal Cutting Threshold 

A raw signature and a processed signature are shown in Figure 2.5. 

 

Figure 2.5 A Raw Signature and Processed Signature (a) A Raw Signature (b) A Processed Signature 
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2.2.4.2 Feature Extraction 

A new speed-related feature was investigated in this study to improve the speed estimation 

of vehicles, particularly for trucks. Instead of the steepest slope on the leading edge of a 

vehicle signature—defined as Maximum Initial Slew (MIS) in this paper—we capture the 

maximum positive slope along the temporal domain of each signature and define this value 

as the Overall Maximum Slew (OMS). Figure 2.6 shows an example where the green slope on 

the first peak of the processed signature is less steep than the red slope on the second peak.

 

Figure 2.6 Feature Extraction 

 

  In this case, we choose the red slope value as the OMS. A comparison was performed 

on the correlation coefficient value between the OMS and the MIS to the actual speed value 

in a dataset comprising of 20 percent passenger vehicles and 80 percent trucks. The 

correlations between the MIS and OMS with true speed were found to be 0.80 and 0.82, 

respectively. 
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           Duration (Dur) is the second feature adopted in the speed estimation model. The 

progressive moving average filter yields a complete signature pattern which is ideal for 

achieving a higher correlation with vehicle speeds.  

 

2.2.4.3 A Brief Introduction to the Speed Linear Regression Model 

Instead of using MIS, this research adopted OMS as the explanatory variable in the speed 

estimation model. 

𝑣𝑒𝑠𝑡 = 𝛽0 + 𝛽1 ⋅ 𝑂𝑀𝑆 + 𝛽2 ⋅ 𝐷𝑢𝑟
−1 (2.3) 

Here, 𝑣𝑒𝑠𝑡 indicates the estimated speeds. The 𝛽s are the model coefficients.   

 

2.2.4.4 Modified Weighted K-means Algorithm 

Two different types of vehicles traveling at identical speeds traversing an inductive loop 

sensor may generate different OMSs and Durs, as these two features may possess different 

linear relationships with speeds across different vehicle groups. This leads to a low adjusted 

R2 if one linear model is estimated on the whole dataset (Sun & Ritchie, 1999). Thus, vehicles 

should ideally be grouped by their length-related features. The K-means clustering algorithm 

was applied to group similar vehicles based on those features. The objective of the K-means 

algorithm is to minimize the sum of Euclidean distances between each data point and its 

assigned cluster, which matches the goal that we want to achieve. 

After proving that OMS is highly correlated with vehicle speeds, a temporal 

transformation should be applied to the extracted features (OMS and Dur). The mathematical 

explanation of the temporal transformation is as shown below: 
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𝑁𝑂𝑀𝑆 =
𝑂𝑀𝑆

𝑣𝑡𝑟𝑢𝑒
(2.4) 

𝐿𝑠𝑖𝑔 = 𝑣𝑡𝑟𝑢𝑒  ×  𝐷𝑢𝑟 (2.5) 

Here, NOMS represents the natural overall maximum slew. 𝑣𝑡𝑟𝑢𝑒 represents the true speed 

obtained from double loop signatures. 𝐿𝑠𝑖𝑔  stands for the signature length and 𝐷𝑢𝑟 is the 

duration measure. Prior to the clustering procedure, NOMS and 𝐿𝑠𝑖𝑔 are normalized against 

their standard deviation. 

            K-means can be considered as a heuristic search algorithm for discovering the cluster 

assignments that minimize the total sum of squares error. Therefore, there is a chance that 

a K-means algorithm may converge to the local minimum. To improve the odds of finding the 

global optimum, we ran 10 iterations with different randomly chosen initializations for each 

given K value and chose the solution with the lowest sum of squares value. 

            For deciding on the optimal cluster numbers of the K-means algorithm, we calculated 

the sum of squared error of each cluster given different K values. However, based on Figure 

2.7, there was no significant elbow point that could be used as the optimal K value.  

 

Figure 2.7 The Sum of Square Error for Different K values 
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Hence, the goodness of fit of the speed model within each cluster was used to determine the 

optimal cluster number. To establish a robust model across all types of vehicles, we selected 

the K values which could provide the optimal “lowest adjusted R2” value among all clusters. 

The relationship between the lowest adjusted R2 value across all clusters and the cluster 

numbers is shown in Figure 2.7. 

           There are two significant elbow points located corresponding to cluster sizes 10 and 

18 (Figure 2.8). 

 

Figure 2.8 The Lowest Adjusted R2 for Different K values 

 

Although cluster sizes above 18 provided improved adjusted R2 values, the performance of 

the multi-layer perceptron models (introduced in the following section) for classifying the 

single loop signatures degraded significantly above 18 classes (as shown in Figure 2.8). 

Therefore, the optimal cluster number range was further analyzed from 10 to 18. 

            A subsequent step was made to further improve the speed estimation model by 

modifying the feature-weighting K-means algorithm as proposed by Modha and Spangler 

(Modha & Spangler, 2003). They applied different weights on all the features and set the ratio 
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of the average within-cluster dispersion and the average between-cluster dispersion along 

all feature spaces as the objective function. An exhaustive search was performed to 

determine the best weight combinations which could minimize the objective function 

(Modha & Spangler, 2003). In this research, the feature-weighting method was adopted to 

maximize the lowest adjusted R2 value across all clusters. The feature weightings were: 

α1 + α2 = 1, α1, α2 ≥ 0 (2.6) 

Here, α1 is the weighting on Lsig. α2 is the weighting on NOMS. 

An exhaustive search was performed to determine the optimal feature weightings on five 

different settings of cluster numbers, with results shown in Figure 2.9.  

 

Figure 2.9 Feature Weighting on K-means Algorithm 

 

As the weighting on Lsig increased, the lowest adjusted R2 values across all clusters followed 

an increasing trend. When the weighting value was above 0.95, the lowest adjusted R2 values 

showed a slight reduction. Also, based on the results shown in Figure 2.9, increasing the 

clusters from 16 to 18 did not present a significant improvement on the performance of the 



31 
 

speed linear regression model. Therefore, the optimal cluster number was determined to be 

16 and the optimal weighting was 0.95. A comparison of uniform feature weighting versus 

optimal feature weighting effects on K-means clustering is presented in Figure 2.10.

  

Figure 2.10 K-means Clustering Results 

 

Figure 2.10 shows that the modified weighted K-means algorithm clusters the data 

predominantly across signature lengths. However, according to the statistical summary of 

the speed model shown in Table 2.1, the OMS is statistically significant for the linear 

regression model.  
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Table 2.1 Statistical Summary of Each Linear Model 

Cluster Constant OMS Dur-1 R2 Cluster Size 

14 2.055 -0.473*** 18.687*** 0.959 2,932 

5 1.393 0.728*** 17.110*** 0.986 4,580 

2 2.852 0.845*** 18.150*** 0.981 2,079 

12 2.288 0.806*** 20.645*** 0.981 2,349 

10 1.571 0.479*** 24.570*** 0.985 1575 

13 2.919 0.170*** 28.191*** 0.980 904 

6 2.279 0.177*** 31.905*** 0.977 706 

15 1.366 0.305*** 35.666*** 0.981 983 

8 1.662 0.314*** 39.232*** 0.981 940 

3 0.391 0.382*** 43.852*** 0.984 667 

9 1.347 0.373*** 48.268*** 0.981 441 

16 3.422 0.072*** 54.234*** 0.971 238 

4 2.206 -0.001*** 63.680*** 0.979 524 

11 1.236 0.153*** 68.020*** 0.986 780 

7 1.05 -0.036*** 74.075*** 0.984 903 

1 1.657 -0.008*** 79.482*** 0.965 613 

  Note: *** Significant at p-value < 0.001. 

Therefore, the NOMS feature was retained in the clustering algorithm.  

 

2.2.4.5 Multiple Linear Regression Model for Each Cluster 

The general representation of the linear model with each cluster is shown below. 

𝑣𝑒𝑠𝑡
𝑘 = 𝛽0

𝑘 + 𝛽1
𝑘 ∙ 𝑂𝑀𝑆𝑘 + 𝛽2

𝑘 ∙ 𝐷𝑢𝑟−1
𝑘
  (𝑘 = 1,2,3…16) (2.7) 

Here, k is the cluster label. We fit a multiple linear regression model over each pre-

determined group. The results are shown with the clusters ordered according to their 

arrangement shown in Figure 2.10b. 
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Based on the adjusted 𝑅2 values, we found that all the linear models could explain the data 

well in each cluster. T-tests were adopted to assess the coefficients of each model. The p-

values for both terms of all models were lower than 0.05. This indicates that the null 

hypothesis at 𝛼 = 0.05 can be rejected, and all the parameters are significant to the linear 

model. 

 

2.2.4.5 Cluster Classification using Multi-Layer Perceptron (MLP) Model 

Lastly, a supervised learning model was developed to assign the single loop signatures to 

each pre-determined cluster. A multi-layer perceptron neural network model was designed 

with 60 features from a single loop signature, with each feature used as the model inputs and 

the sixteen pre-determined clusters developed from the dual loop sensor data as the model 

targets. 

Feature Extraction for the Multi-Layer Perceptron Model 

Compared to signatures from passenger vehicles, truck signatures possess significantly 

more diversity. 30 horizontally evenly-spaced magnitude features were extracted from the 

magnitude-normalized signatures, together with 30 first-order differences obtained from 

the 30 magnitude features, as the inputs to the classification model. The extracted features 

are shown in Figure 2.11. 
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Figure 2.11 Feature Extraction for the Multi-layer Perceptron Model (a) Thirty Magnitude Features (b) Thirty 
Magnitude Differences Features 

 

Multi-Layer Perceptron Model 

The MLP model is an artificial neural network model with two or more hidden layers. In this 

research, a feed-forward multi-layer perceptron network was constructed and trained with 

backpropagation. The MLP model was developed with seven hidden layers and 250 neurons 

for each hidden layer. The rectified linear unit (ReLU) developed by Nair and Hinton (Nair & 

Hinton, 2010) was used as the activation function.  

          The overall dataset was separated into two independent datasets: a training and a test 

dataset. The multi-layer perceptron neural network model was trained using the training 

dataset with 11,880 observations and evaluated with the test dataset comprised of 6,364 

observations. The overall classification accuracy of the training set was 76 percent, with 74 

percent for the test dataset.  
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            Based on the model results shown in Table 2.2, the classification performance of the 

MLP model deteriorated with larger cluster sizes.  

Table 2.2 MLP Performance for Different Clustering Method 

Method Optimal feature weighting Uniform feature weighting 

Cluster Number Training Testing Training Testing 

20 68% 67% 65% 60% 

18 69% 67% 60% 56% 

16 76% 74% 66% 60% 

14 84% 78% 65% 62% 

12 83% 79% 74% 69% 

10 87% 85% 72% 69% 

 

The results also show that the MLP model performed significantly better with the optimal 

feature-weighting method. 

 

2.1.5 Model Results 

The mean absolute error (MAE) and mean absolute percentage error (MAPE) were used as 

the evaluation metric to assess the performance of the ATISE model. MAE indicates how 

close the estimated values are to the true speed values. MAPE is used to measure the 

percentage that estimated speeds deviated from true speeds. Leveraging the truck body type 

classification model (Hernandez, 2014), we present the performance of the ATISE model by 

truck body types on the training and test set. We also compared our model with a recent 

inductive signature-based individual vehicle speed estimation (ISE) model (Tok et al., 2009). 

The comparisons of these results are shown in Table 2.3. 
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Table 2.3 Evaluation of Individual Vehicle Speed Estimation on Training and Test Set 

 
Models ISE Model (Test) ATISE Model (Train) ATISE Model (Test) 

Measures MAE (mph) MAPE (%) MAE (mph) MAPE (%) MAE (mph) MAPE (%) 

100% Overall 4.18 7.61% 2.33 3.95% 2.45 4.12% 

20% PC 2.56 4.31% 2.03 3.20% 2.08 3.24% 

80% 

SU 4.39 7.72% 2.48 4.17% 2.54 4.21% 

Single 5.56 10.68% 2.71 4.95% 2.92 5.20% 

Semi 4.66 9.06% 2.00 3.57% 2.32 4.27% 

Multi 5.30 14.00% 1.75 3.78% 2.12 4.31% 

Note: PC: Passenger Vehicles, SU: Single Unit Trucks, Semi: Tractors pulling Semi-Trailer, Single: Trucks pulling 

Single Trailer, Multi: Tractors pulling Multiple Trailers. 

 

            For the truck-focused dataset, the performance of the ATISE model is better than the 

ISE model (Tok et al., 2009) across all vehicle types. The ISE model can estimate passenger 

vehicle speeds accurately. However, both MAE and MAPE show a significant drop when the 

model is applied for estimating truck speeds. Conversely, ATISE performs consistently 

across all vehicle types, even for long trucks such as tractors with multiple trailers. This 

demonstrates that the ATISE performance is not influenced by the variety of vehicle lengths. 

            Comparing the test results shown in Figure 2.12 and Figure 2.13, we find that the ISE 

model tends to overestimate vehicle speeds when the vehicles travel around the free-flow 

speed.  
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Figure 2.12 Testing Results for the ATISE Model 

 

Figure 2.13 Testing Results for the ISE Model 

 

Also, it underestimated vehicle speeds when the vehicles travel at relatively high speeds. 

Conversely, ATISE performed consistently across all traffic conditions and accurately 

estimated vehicle speeds within 5 mph error. We compared the cumulative probability 

distribution between the ISE and ATISE models. Previously, across all vehicle types, at least 

80 percent of vehicles had an estimation error of less than 10 mph. In the ATISE model, above 

80 percent of vehicles have estimation error less than 5 mph. Again, the ISE model only had 

a good performance on the passenger vehicle speed estimation. As before, the ATISE model 

performed consistently across all vehicle types.  
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            In summary, the results confirmed that the ATISE model can provide accurate 

individual vehicle estimation results across all vehicle types and different traffic conditions.  

            In this study, a transferability test has been conducted on both the ATISE model and 

the ISE model. One day of data for transferability testing was collected from the I-580 

freeway near the city of Tracy, California. For the ATISE method, the overall individual speed 

estimation MAE was 3.7 mph and the MAPE value was 5.4 percent.  However, the ISE model 

yielded a higher 9.8 mph MAE and the MAPE value was 13.9 percent. Meanwhile, we tested 

ATISE and ISE estimation results on 30-second aggregated data with 23 percent truck 

volumes on a weekday and 16 percent truck volumes on a weekend (Figure 2.14 and Figure 

2.15).  
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Figure 2.14 30 Second Aggregated Speed Estimation Result using ATISE Method: (a) 2018-7-13 (Weekday), (b) 
2018-7-14 (Weekend) 
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Figure 2.15 30 Second Aggregated Speed Estimation Result using ISE Method: (a) 2018-7-13 (Weekday), (b) 
2018-7-14 (Weekend) 

An analysis on a four-hour period that contained both congested and free-flow conditions 

with 23 percent truck volumes showed that the model overestimated the aggregated speed 

(Figure 2.15). However, the ATISE model performed well under high truck volumes across 

various traffic conditions. The MAE of the 30-second aggregated speed estimation using 

ATISE was 1.56 mph.  

2.1.6 Conclusion  

This section proposed a truck-focused individual speed estimation (ATISE) model. This new 

method adopted a similar model structure from previous studies (Sun & Ritchie, 1999; Park 

& Ritchie, 2010; Tok et al., 2009). However, improvements were made to the signal 
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processing procedure, feature extraction, and clustering approach. This new speed 

estimation model has demonstrated promising results on a variety of traffic conditions 

under high truck volumes, and at an independent test location. Moreover, the ATISE model 

performed consistently well across different vehicle types. 

            This new model has been compared to the previous model (ISE)(Tok et al., 2009) and 

showed a significant improvement in the accuracy of individual truck speed estimation. With 

accurate individual vehicle speed estimation results, this model was able to accurately 

estimate the 30-second aggregated speeds on a roadway section, even with high truck 

volumes. 

This section helps fill the gap on accurate individual-level truck speed estimation. 

Furthermore, this new model can be integrated into the existing California Truck Activity 

Monitoring System (Tok et al., 2017), which can provide detailed truck classification 

information at a statewide level. Accurate truck speeds and detailed truck classification can 

be helpful for emissions estimation (United States Environmental Protection Agency, n.d.), 

safety evaluation (Malyshkina & Mannering, 2008), and driving behavior analysis (Daganzo, 

2002).  
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2.2 A Deep Ensemble Neural Network Approach for FHWA Axle-based Vehicle 

Classification using Advanced Single Inductive Loops 

2.2.1 Introduction 

FHWA’s Traffic Monitoring Guide outlines a standardized classification scheme to serve 

various transportation needs. The FHWA vehicle classification scheme categorizes vehicles 

into thirteen classes based on tire and axle combination while partially taking into account 

general body configuration (Federal Highway Administration, 2013). This classification 

scheme has been widely used for pavement design to account for the dissimilar pavement 

impacts attributed to physical vehicle characteristics such as axle loads, spacing, and tire 

configuration (Gillespie, T.D, Karamihas, S.M. & Sayer, 1993). In addition, aggregated FHWA 

vehicle classes have been used as input for on-road emission estimation models (Guensler et 

al., 2005) as well as in freight forecast modeling (Beagan et al., 2019; Schaefer, Ron; Worth, 

Monica; Heilman, Jonathan; Kehoe, 2017) 

Since truck size and weight laws vary by states and truck configuration populations 

vary across states (Federal Highway Administration, 2019), some state agencies modify the 

FHWA’s 13 categories to meet their transportation application needs (Federal Highway 

Administration, 2013). For example, Class 9 type 32 trucks in California are distinguished 

from other Class 9 trucks in the FHWA 13-Category Scheme and form a standalone class 

labeled as Class 14 (Quinley, 2010). Since the data used in this dissertation was collected in 

California at the statewide level, the model was focused on classifying vehicles into the 

California-modified FHWA scheme (FHWA-CA). Table 2.4 provides a brief description of 

each class in the FHWA-CA classification scheme. 

 



43 
 

Table 2.4 FHWA-CA classification scheme definitions (FHWA (Federal Highway Administration), 2014) 

FHWA-CA 
Class Vehicle Description Class Includes # of axle 

1 Motorcycle Motorcycles 2 

2 Passenger Vehicles 
All cars, Cars with one-axle trailers,  
Cars with two-axle trailers 2, 3 or 4 

3 
Other two-axle four-tire 
Single-unit Vehicle 

Pickups and vans,  
Pickups and Vans with one- and two-axle trailers 2, 3 or 4 

4 Bus 
Two- and three-axle buses,  
Bus with trailer 2 or 3 (tractor) 

5 
Two-axle, Six-tire, single-
unit trucks 

Two-axle trucks,  
two-axle trucks with trailer 2 (tractor) 

6 
Three-axle single-unit 
trucks 

Three-axle trucks,  
Three-axle tractors without trailers 3 

7 
Four or more axle single-
unit trucks Four-, five, six- and seven-axle single-unit trucks 4 or more 

8 
Four or fewer axle single-
trailer trucks 

Two-axle trucks pulling one- and two-axle trailers,  
Two-axle tractors pulling one- and two-axle trailers, 
Three-axle tractors pulling one-axle trailers 3 or 4 

9 
Five-axle single-trailer 
trucks 

Two-axle tractors pulling three-axle trailers, 
Three-axle tractors pulling two-axle trailers,  
Three-axle trucks pulling two-axle trailers 5 

10 
Six or more axle single-
trailer trucks Three-axle tractors pulling three-axle trailers 6 or more 

11 
Five or fewer axle multi-
trailer trucks 

Multiple configurations (Multi-unit trucks) 
4 or 5 

12 
Six-axle multi-trailer 
trucks 

Multiple configurations (Multi-unit trucks) 
6 

13 
Seven or more axle multi 
trailer trucks 

Multiple configurations (Multi-unit trucks) 
7 or more 

14 

Single and tandem axle on 
tractor, single and single 
axle on the trailer 

Single and tandem axle on tractor, single and single 
axle on the trailer 5 

15 Unclassified vehicles Multiple configurations  2 or more 

 

Weigh-In-Motion (WIM) and Automatic Vehicle Classification (AVC) sites using axle 

sensor technologies can directly capture vehicle axle configuration information. Hence, these 

types of systems have been commonly used to report vehicle classification counts according 

to FHWA-based schemes. However, those sensors are not comprehensively deployed in the 

transportation highway network due to their high installation and maintenance costs. 

Conversely, inductive loop sensors are much more widely deployed in many jurisdictions as 

they have a much lower installation and maintenance cost. Studies have investigated the use 

of inductive vehicle signatures to classify vehicles based on the FHWA classification scheme 

(Jeng et al., 2013; Jeng & Ritchie, 2008). However, a closer evaluation of these efforts showed 
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that the performance of these models was skewed towards non-trucks—the high accuracy 

in classifying passenger vehicle classes and Class 9 trucks conceals the deficiencies of the 

models in identifying other FHWA truck-related classes. Even though trucks generally 

account for approximately 5 to 20 percent of traffic streams, the adverse impact of 

misclassifying trucks could be significant. For instance, implementation of a biased model 

may underestimate the pavement damage caused by trucks, since pavement structures are 

disproportionately impacted by heavy trucks (Gillespie, T.D, Karamihas, S.M. & Sayer, 1993). 

From a planning perspective, unreliable truck counts may result in a flawed understanding 

of truck activities and misinformed policy decisions to manage future demand for truck 

movements and operations. Furthermore, the class bias issue also occurs within truck-

related classes. Certain types of trucks in the FHWA classification scheme – such as Classes 

7, 11, 12 and 13 – are not as frequently on the roadway network. On the other hand, Class 9 

trucks are the most common multi-unit truck configuration observed along most corridors 

and show great variability in their body types. However, the basic assumption of canonical 

machine learning algorithms for classification problem is that the number of training 

instances in considered classes are relatively similar (Krawczyk, 2016). Consequently, the 

imbalanced dataset poses a natural difficulty for many classification algorithms to correctly 

classify minority classes, since they are naturally biased towards majority classes. 

Notwithstanding, some of the minority classes remain prominent components in both 

pavement design (Gillespie, T.D, Karamihas, S.M. & Sayer, 1993) and freight forecast 

modeling (Beagan et al., 2019; Schaefer, Ron; Worth, Monica; Heilman, Jonathan; Kehoe, 

2017). 
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To address this gap, this section details the development of an accurate and 

transferable FHWA vehicle classification model using a truck-focused dataset. The model 

shows significant improvement over previous signature-based FHWA vehicle classification 

models (Jeng et al., 2013; Jeng & Ritchie, 2008) for all truck classes in terms of F1 scores, 

especially on minority classes such as Classes 7 and 11 which were overlooked by previous 

studies (Jeng et al., 2013; Jeng & Ritchie, 2008). The algorithm development comprised three 

steps. First, the training and testing dataset was split using stratified sampling to retain the 

representativeness of the training instances for minority classes. Then, a deep neural 

network (DNN) with dropout layers was constructed to reduce the generalization error. 

Finally, a bootstrap aggregating ensemble (bagging) was developed to address the 

classification challenge with an imbalanced dataset. In this step, bootstrap resampling was 

applied on the training set to approximate the feature distribution of the under-represented 

classes to facilitate a better understanding of those classes with limited training instances to 

learn from. The bagging DNN successfully improved the model performance on minority 

classes without compromising the accuracy of majority classes. The spatial and temporal 

transferability of the model was empirically tested using independent datasets. 

2.2.2 Literature Review 

The state-of-the-art methods that were used to obtain FHWA axle-classification data can be 

summarized into two categories: axle sensor- and single inductive loop-based methods. 

Axle Sensor Methods  

FHWA axle-based vehicle classification data have been traditionally collected via axle-based 

sensors, such as road tube arrays (Beagan et al., 2019), piezoelectric sensors (Bitar & Refai, 

2017), WIM systems (Kwigizile et al., 2005), and wireless accelerometer sensors (W. Ma et 
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al., 2014), all of which have the ability to capture axle numbers and spacing configurations. 

Department of Transportation agencies across the U.S. rely on existing classification sites 

equipped with such axle-based sensors for reporting FHWA vehicle classification counts. 

Efforts have been devoted to testing the performance of classification sites and investigating 

methods to enhance the classification accuracy on these systems, which yield their own 

limitations in distinguishing classes with overlapping axle configurations (Bitar & Refai, 

2017; Kwigizile et al., 2005). For example Classes 2 through 5 include two-axle vehicles 

(Kwigizile et al., 2005) and the first axle-spacing of Classes 3, 5, and 8 share overlapping 

range values (Bitar & Refai, 2017). Kwigizile et al. improved the correct classification rate for 

overlapping classes by breaking down the 13 FHWA classes into 28 detailed subclasses and 

using a probabilistic neural network to assign axle spacing values from a calibrated WIM site 

to those predefined subclasses (Kwigizile et al., 2005). This model reduced the error rate of 

the calibrated WIM site from 9.5 percent to 6.2 percent. The author highlighted that the 

misclassification came from systematic errors due to overlapping axle configurations across 

FHWA classes. By introducing weight value as one of the input variables, the error rate was 

further reduced to 3.0 percent.  However, weight values vary spatially and temporally and 

may affect the transferability of their model. Bitar et al. adopted a probabilistic approach to 

improve the accuracy of the classification site equipped with piezoelectric sensors (Bitar & 

Refai, 2017). In their study, a comprehensive classification error analysis was conducted on 

the overlapping axle configuration across the FHWA scheme’s categories. Their hypothesis 

was that axle spacing distributions are different for classes that may share similar axle 

configurations. Hence, the axle spacings associated with each class were fitted into Gaussian 

distributions. Subsequently, the optimal class boundary thresholds for the overlapping axle 



47 
 

configuration were determined according to the estimated axle-spacing distributions. The 

error rate was significantly reduced from the original sensor outputs especially for Classes 

3, 6, and 7 (Bitar & Refai, 2017). However, axle-based sensors do not provide any truck 

general body type related information defined by the FHWA classification scheme. 

Therefore, it is a challenge for axle detectors to accurately differentiate trucks with 

overlapping axle-spacing distribution, even though they have distinctly different body types. 

For example, the error rate of their model on Class 4 (bus or bus with a trailer) was higher 

compared to the original sensor measurements. The first-spacing probability density 

distribution of Classes 4 and 5 had a significant overlap and did not present a clear class 

decision boundary, although those distributions came from two distinct body types -- buses 

in Class 4 and single-unit trucks in Class 5.  

In addition, a prototype wireless accelerometer system, which detects the pavement 

vibration when vehicles traverse the detection area, has also been explored for estimating 

axle-based classification (W. Ma et al., 2014). The sensor identified the axle configuration by 

locating the vibration peaks. The accelerometer-based classification was evaluated using 

calibrated WIM classification results. This wireless sensor was able to achieve the same level 

of accuracy as the current WIM system on estimating FHWA classes.  However, 

accelerometer sensors would experience the same limitations as other axle detectors in 

distinguishing classes with overlapping axle spacing ranges.  

The detection sites equipped with WIM systems or piezoelectric sensors are sparsely 

deployed in the roadway network due to their high installation cost. Hence, researchers 
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investigated existing inductive loop sensors as an alternative, since they are widely deployed 

across the U.S and their installation and operation costs are relatively cheap. 

 

Single Inductive Signature Methods 

Unlike conventional inductive loop detector cards which sample at a rate of 240 Hz (Coifman 

& Neelisetty, 2014), advanced loop detectors capture detailed inductance changes when a 

vehicle traverses an inductive loop sensor. The resulting high-resolution waveform 

generated by the inductance change measurements is known as an “inductive vehicle 

signature” (Sun & Ritchie, 1999). However, the exact axle locations cannot be directly 

identified from inductive vehicle signatures (Figure 2.16), which is one challenge in 

classifying vehicles into the FHWA scheme.  

 

Figure 2.16 Class 9 Enclosed Van and its corresponding raw signature 

 

Jeng and Ritchie made the first attempt to classify vehicles on the basis of the FHWA 

scheme using single inductive loop signature data (Jeng & Ritchie, 2008). The piecewise 
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slope rates (PSR) of each interpolated signature were used as a reduced representation of 

each signature pattern. The PSRs of each signature were separated into five groups by visual 

observation of PSR plots of all vehicle classes (Jeng, 2007). Unfortunately, due to the data 

limitation, Class 10 to Class 13 trucks, which have disproportionately severe negative 

impacts on pavement structure, were not considered in their model development process. 

Later, Jeng et al. enriched their dataset with multi-unit trucks and proposed a new vehicle 

classification algorithm (Jeng et al., 2013). The new algorithm is composed of two steps. First, 

vehicle signatures were transformed and reconstructed with wavelet transformation. Then, 

the transformed vehicle signatures were grouped into FHWA classes using K nearest 

neighbor. Even though the overall accuracy was 92 percent, the weakness on classifying 

minority classes was obscured by the high performance on predicting the majority classes 

(Class 2 and Class 3), which overlooked the poorer performance on several truck classes 

(Class 6, 7, 8, 11, 12, 13). Hence, the focus of this section is to address the effect of dataset 

imbalance on the performance of minority classes. 

2.2.3 Data Description 

The vehicle signature data used in this paper were collected at 20 different detection sites 

equipped with either 6ft square or 6ft round inductive loop sensors across California in 

2012, 2013, and 2016. The geographical distribution of the 20 data collection sites is shown 

in Figure 2.17. 
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Figure 2.17 Data Collection site for model training, hyperparameter tuning, and transferability testing 
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The selected detector sites experienced high truck volumes, a wide variety of truck 

types, and the data collection effort spanning various traffic conditions. A total of 44,438 

vehicle signature records were processed primarily at the truck lanes in each facility, with a 

resulting vehicle class distribution as shown in Table 2.5.  

Table 2.5 Vehicle Class Distribution from ground truth 

FHWA-CA Scheme Counts Imbalance Rate Number of Body Types 

1 2 0.0001 1 

2 2,946 0.1494 4 

3 8,203 0.4159 2 

4 772 0.0391 3 

5 7,055 0.3577 32 

6 1,535 0.0778 27 

7 279 0.0142 9 

8 1,463 0.0742 24 

9 19,724 1.0000 40 

10 138 0.0070 16 

11 1,518 0.0770 21 

12 268 0.0136 12 

13 3 0.0002 1 

14 764 0.0387 14 

 

The imbalance rate presented in Table 2.5 was the metric used to understand the 

quantitative relationship between majority and minority classes. It is defined as the ratio of 

each minority class to the majority class (Class 9). One key challenge in the model 

development was to accommodate the imbalanced dataset. When training an imbalanced 

dataset, models are generally prone to enhance the prediction accuracy of the majority class 

(Krawczyk, 2016). This will lead the majority classes and the overall model to achieve 

relatively high prediction accuracy at the expense of minority classes (Krawczyk, 2016). 

Typically, the issue of imbalanced datasets in classification is addressed at either the 

data or algorithm level (Aouatef Mahanil; Ahmed Riad Baba Ali, 2016). At the data level, 

minority classes are typically oversampled, while majority classes are undersampled to 
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balance the dataset. However, undersampling may compromise the generality of the model. 

For instance, Class 9 is a majority class comprising heterogeneous body types with distinct 

signature waveforms, as shown in Figure 2.18.  

 

Figure 2.18 Signatures of different truck body types 

 

Undersampling may cause the information to be lost by removing unique vehicle 

configurations that would have helped the model to better capture the characteristics of 

diverse vehicles found in this class. On the other hand, synthetic data methods which are 

generally used in oversampling could create overlapping instances between the minority 

class and the majority class, and further reduce the prediction accuracy for the majority class 

(Aouatef Mahanil; Ahmed Riad Baba Ali, 2016). Therefore, this study investigated algorithm-

level enhancements to improve the performance of the signature-based FHWA classification 

model. 

According to Table 2.5, both Classes 1 and 13 have training instances extremely small 

and less than thirty, which are empirically considered as insignificant sample sizes. 

Moreover, this research primarily focused on the FHWA-CA truck-related classes. Therefore, 

Classes 1 (motorcycle) and 15 (unclassified vehicle) were excluded in the modeling process. 

Since Class 13 shares similar body types as well as axle configurations with Class 12 vehicles, 
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they were combined in the model.  Classes 1 and 15 (Unclassified vehicle) may be included 

and Classes 12 and 13 may be split in the future with further enrichment of the dataset. 

2.2.4 Model Development 

Prior to model development, stratified sampling was initially used to partition the training 

and testing datasets with a 70-30 split, respectively, in order to ensure that a sufficient 

number of samples for each class can be observed in both the training and testing sets. 

2.2.4.1 Feature Extraction 

First, raw signatures were processed using cubic spline interpolation to eliminate noises and 

obtain a set of feature vectors with the same dimension and normalized on the vertical 

(magnitude) axis (Jeng, 2007). This yielded a vector of 31 magnitude features equally spaced 

along the normalized time domain with 30 degrees of freedom. Subsequently, 30 differences 

were derived from 31 magnitude values and then further normalized along the y-axis, which 

forced magnitude and difference values to fall into the same scale. Finally, the last value of 

the vector of 31 magnitudes was dropped to retain the independence of the feature vector. 

This resulted in 60 (30 magnitudes and 30 differences) independent features that were used 

as inputs for the vehicle classification model. The feature extraction process is presented in 

Figure 2.19. 



54 
 

 

Figure 2.19 Preprocessing and Feature Extraction 

 

2.2.4.2 Deep Neural Network Architecture  

Theoretically, the multiple layer structure with non-linear activation of a deep neural 

network allows it to approximate the shape of complex mapping functions (Goodfellow et 

al., 2016), which is suitable for the task of multi-class classification problems. Therefore, this 

study adopted a deep neural network model with dropout regularization to classify vehicles 

based on the FHWA-CA scheme. The model was constructed with 6 hidden layers, 256 

neurons on each hidden layer (shown in Figure 2.20). The Rectified Linear Unit (ReLU) (Nair 

& Hinton, 2010) was used as the activation function on each hidden layer, while the Softmax 

activation function was applied on the output layer to represent the probability distribution 

over the 12 FHWA categories (where Classes 12 and 13 were combined). To avoid gradients 

vanishing and exploding, He (He et al., 2015) and Xavier (Glorot & Bengio, 2010) weight 

initialization methods were applied to the hidden layers with ReLU and Softmax activation 

functions, respectively. The deep neural network model was trained with a minibatch size of 

100 and a learning rate of 0.001. The Adam optimizer (Kingma & Ba, 2015) was adopted to 

solve this highly non-linear optimization problem.   



55 
 

 

Figure 2.20 Model Structure 

Balancing bias and variance of the deep neural network model is an essential task during the 

hyperparameter tuning process. Bias represents the expected deviation from the true value 

of the function while variance measures the deviation from the expected estimator which is 

caused by the unseen dataset. The deep neural network model is typically prone to overfit 

the training set as models increase in complexity, especially for the majority classes.  This 

results in a trained model with low bias and high variance as shown in Figure 2.21a, where 

the training error tends to decrease (low bias) and the testing error tends to increase (high 
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variance). Dropout regularization—a computationally inexpensive but powerful 

regularization method for deep neural network models—was implemented at each layer in 

the deep neural network to prevent overfitting (Mele & Altarelli, 2014). Thirty percent of the 

neurons within each hidden layer were randomly dropped out while the remaining 70 

percent were retained (Figure 2.20b) during the training process. A comparison of early 

stopping without and with dropout regularization is shown in Figure 2.21c and Figure 2.21d, 

respectively.  The training process needed to be terminated significantly earlier at 5 epochs 

without dropout regularization.  This resulted in a poorer test data prediction accuracy of 

0.87, compared with 0.91 for the latter. 

 

Figure 2.21 Learning Curve 
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2.2.4.3 Bootstrap Aggregating 

As Table 2.4 shows, the labeled FHWA classes yielded an imbalanced class distribution. The 

number of instances belonging to a certain class, such as Class 9, was significantly higher 

than any other labeled class in the dataset. The objective function of the designed neural 

network model is to minimize the global error rate. The entire cost function for a multi-class 

classification problem given m training instances labeled with n classes can be written as: 

𝐽 =
1

𝑚
∑𝐿(𝑦̂(𝑖)
𝑚

𝑖=1

, 𝑦(𝑖)) = −
1

𝑚
∑(𝑦(𝑖)𝑙𝑜𝑔𝑦̂(𝑖) + (1 − 𝑦(𝑖)) log(1 − 𝑦̂(𝑖)))

𝑚

𝑖=1

(2.7) 

where, 𝑦(𝑖)  and 𝑦̂(𝑖)  represents the true class and the predicted class of 

training instances 𝑖 respectively.  

As Equation 2.7 shows, the cost function does not handle the class distribution in the dataset. 

Without enough training instances to approximate the feature distributions of minority 

classes, the model is inclined to compromise the performance of minority to achieve a low 

global error rate resulting in the poor performance of minority classes. 

In order to have a better understanding of feature distributions within each class, a bootstrap 

aggregating ensemble was adopted for the model development. Bootstrap aggregation 

(Bagging) is an ensemble strategy used to enhance the generalizability of the model through 

the combination of several models trained by multiple bootstrap samples (Breiman, 1994). 

The basic idea of Bagging comes from the bootstrapping resampling technique, which is used 

to approximate the empirical distribution of the observed data, especially for datasets with 

small class samples. Stratified bootstrapping was applied on the training set and ten sets of 

bootstrapped samples were formed by resampling the stratified training instances with 
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replacement. The bootstrap samples were fed into the DNN model with the same model 

structure. Subsequently, the prediction scores from ten models were averaged and the class 

corresponding to the highest averaged prediction score was considered as the final decision. 

The bagging DNN model structure is shown in Figure 2.22.  

 

Figure 2.22 Illustration of Bagging DNN 

 

2.2.5 Model Results 

2.2.5.1 Evaluation Metrics 

Determining appropriate performance measures is an essential task for evaluating the 

model built upon an imbalanced dataset. The accuracy measure (Equation 2.8)—which is 

derived from a confusion matrix (Table 2.6)—presents the percentage of total instances 

being correctly classified.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.8) 
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Table 2.6 Generic Confusion Matrix 

  
Predicted Class 

Positives Negatives 

Actual Class 
Positives* True Positives (TP) False Negatives (FN) 

Negatives* False Positives (FP) True Negatives (TN) 

Note: For the illustration purpose, the positive cases were assumed to be the minority class and negative cases 
were the majority class 

The accuracy measure is determined by both TP and TN (Table 2.6) on the numerator of the 

fraction. If the TN, which represents the correctly classified instance from the majority class, 

is disproportionally larger than TP, the accuracy value will still be large, even though the 

performance on the minority class remains poor. Therefore, this accuracy measurement is 

sensitive to class skews and is not a reasonable metric for selecting models developed on an 

imbalanced dataset (Joshi, 2002). 

This section discusses three metrics that have generally been used to evaluate the 

performance of classification models built with imbalanced datasets. Precision (Equation 

2.9) and recall (Equation 2.10) are two basic metrics, which are directly calculated from the 

confusion matrix (Table 2.6). Both precision and recall do not involve the true negative value, 

which represents the number of majority instances being correctly classified. Hence, these 

two metrics evaluate the model performance of majority and minority classes 

independently.  The F1 score in Equation 2.11 is the harmonic mean of precision and recall. 

This metric accounts for precision and recall simultaneously while evaluating the models. In 

order to evaluate the models developed using imbalanced datasets, the F1 score was 

primarily used in this paper for the model comparison. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.9) 
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2.2.5.2 Results Analysis 

Figure 2.23 shows the recall distribution – which is also referred to as “Correct Classification 

Rate” (CCR) in previous research (Hernandez et al., 2016; Sahin et al., 2020) – for the DNN 

models built with 10 sets of bootstrapped samples. Minority classes such as Classes 4, 7, 10, 

and 12 & 13 resulted in relatively high prediction variances since limited training instances 

were used to learn from the features for every single model. Therefore, the bagging ensemble 

model was needed.  

 

Figure 2.23 Correct Classification Rate across all Classes 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.10) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(2.11) 
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Table 2.7 shows the F1 score for each class of three model structures. The dropout technique 

enhanced the generality of the DNN model and improved the F1 score on the testing set for 

all classes. With bagging ensemble, the model performance improved across most of the 

minority classes without compromising the model performance on the majority classes. The 

overall accuracy of the final model was 0.92 and the average F1 score was 0.83. This bagging 

DNN was applied on a spatially and temporally independent detection site and was still able 

to achieve an accuracy of 0.87 and an average F1 score of 0.72. 

Table 2.7 Test Result Comparison 

 

The performance of the bagging DNN approach was also compared with a state-of-the-art 

Wavelet-KNN -based classification algorithm developed by Jeng et al.(Jeng et al., 2013). Jeng 

et al. evaluated their model performance on each class using CCR. For the overall model 

performance, the accuracy value was selected as the evaluation metrics in their paper. 

However, such accuracy is a bias towards the majority class, which was Class 2 in their 

dataset. Therefore, the F1 scores of their model were recalculated for a fair comparison. As  

  
F1 Score of Single DNN 

Without Dropout 
F1 Score of Single DNN 

With Dropout 
F1 Score of 

Bagging DNN 
Test Samples 

Class 2 0.85 0.85 0.87 847 

Class 3 0.87 0.88 0.89 2,057 

Class 4 0.71 0.81 0.83 268 

Class 5 0.82 0.85 0.87 1,579 

Class 6 0.72 0.80 0.80 362 

Class 7 0.77 0.86 0.84 77 

Class 8 0.69 0.73 0.78 427 

Class 9 0.98 0.98 0.99 4,318 

Class 10 0.22 0.35 0.36 29 

Class 11 0.96 0.94 0.96 276 

Class 12 & 13 0.78 0.79 0.81 66 

Class 14  0.96 0.97 0.97 175 

Accuracy 0.89 0.91 0.92 10,481 

Average F1 
score 

0.78 0.82 0.83 10,481 
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 shown, the bagging DNN model achieves the same level of accuracy in terms of the accuracy 

metric. Considering the F1 score, the bagging DNN outperform the previous model (Jeng et 

al., 2013). Except for Class 2, the F1 score for all classes are significantly higher than the 

previous approach (Jeng et al., 2013). This indicates that the imbalanced dataset issue was 

well-managed by the bagging DNN model.  

Table 2.8 Model Comparison 

  
Bagging Deep Neural Network Wavelet-KNN (Jeng et al., 2013) 

Recall 
(CCR) 

F1 Score 
Testing 
Samples 

Recall 
(CCR) 

F1 Score 
Testing 
Samples 

Class 1 N/A N/A N/A 0.83 0.81 74 
Class 2 0.85 0.87 847 0.97 0.97 11,177 
Class 3 0.93 0.89 2,057 0.78 0.79 1,568 
Class 4 0.78 0.83 268 0.59 0.10 17 
Class 5 0.86 0.87 1,579 0.67 0.72 543 
Class 6 0.75 0.80 362 0.48 0.39 65 
Class 7 0.87 0.84 77 0.67 0.13 3 
Class 8 0.71 0.78 427 0.46 0.33 48 

Class 91 0.99 0.99 4,318 0.86 0.91 754 
Class 10 0.17 0.36 29 0.67 0.11 3 
Class 11 0.97 0.96 276 0.58 0.26 14 

Class 12 & 132 0.76 0.81 66 0.75 0.50 4 
Class 14 0.97 0.97 175 N/A N/A N/A 
Accuracy 0.92 10,481 0.92 14,270 
F1 score 0.83 10,481 0.50 14,270 

Weighted 
Average  

F1 Score (1:2) 
0.82 10,481 0.47 14,270 

Note: 1 Class 9 in the Wavelet-KNN model was combined with Class 14.2 Classes 12 and 13 were split in the 
Wavelet-KNN model with CCR of 1.00 and 0.50 respectively, and with an F1 score of 0.45 and 0.50 
respectively. 

 

Since trucks have a disproportionately negative impact on pavement structures 

(Gillespie & Karamihas, 2009), having an accurate prediction result on truck-related classes 

(from Class 5 to Class 14)  is essential for effective pavement design. Therefore, these two 

models were also evaluated using weight average, where truck-related classes were 

assumed to be at least two times more important than passenger vehicles. As Table 2.8 
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 shows, the bagging DNN model was superior to the state-of-the-art signature-based FHWA 

vehicle classification algorithm on predicting truck-related class. The bagging ensemble 

model achieved a weighted average F1 score of 0.82, where the Wavelet-KNN model only 

had a value of 0.47. 

2.2.5.3 Error Analysis 

As Table 2.9 shown below, the model presented in this study achieved an F1 score greater 

than 0.80 for most classes, with the exception of Classes 8 and 10. According to the confusion 

matrix in Table 2.9, 8.7 percent of Class 8 vehicles are misclassified as Class 3 and 4.7 percent 

of Class 8 vehicles are misclassified as Class 5. This is mainly caused by the overlapping body 

types across Classes 3, 5, and 8.  

Table 2.9 Confusion Matrix for Test Set 

 Class 
2 

Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

Class 
9 

Class 
10 

Class 
11 

Class 
12&13 

Class 
14 

Testing 
Samples 

F1 
Score 

Class  
2 

716 122 0 8 0 0 1 0 0 0 0 0 847 0.87 

Class  
3 

75 1,921 1 44 0 0 13 3 0 0 0 0 2,057 0.89 

Class  
4 

1 6 208 39 7 1 4 2 0 0 0 0 268 0.83 

Class  
5 

6 165 12 1,359 23 1 10 3 0 0 0 0 1,579 0.87 

Class  
6 

1 0 8 72 271 9 1 0 0 0 0 0 362 0.80 

Class  
7 

0 0 0 3 7 67 0 0 0 0 0 0 77 0.84 

Class  
8 

0 37 4 20 0 0 303 63 0 0 0 0 427 0.78 

Class  
9 

0 1 0 8 0 0 18 4,286 3 0 0 2 4,318 0.99 

Class  
10 

0 0 0 0 0 0 3 20 5 0 0 1 29 0.36 

Class  
11 

0 0 0 1 1 0 0 1 0 267 6 0 276 0.96 

Class  
12 & 13 

0 0 0 0 0 0 1 1 0 13 50 1 66 0.81 

Class  
14 

0 0 0 0 0 0 0 4 1 1 0 169 175 0.97 

Note: Yellow cells indicate correct classifications by class. Grey cells highlight significant misclassifications. 
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These three classes are also hard to be distinguished using current classification sites 

(FHWA (Federal Highway Administration), 2014). As Figure 2.24 and  Figure 2.25 present, 

some Classes 3, 5 and 8 trucks share very similar body types and axle configurations on their 

drive unit. Therefore, it remains a challenge to classify these vehicles accurately using either 

inductive loops or any axle sensors. 

 

Figure 2.24 Class 3 vs Class 5 (FHWA (Federal Highway Administration), 2014) 

 

Figure 2.25 Class 3 vs Class 8 (FHWA (Federal Highway Administration), 2014) 

The main differences across Classes 8, 9, and 10 lay in the number of axles that the 

truck-trailer combination has. Since inductive loop signatures do not have the ability to 

directly capture the axle number of each truck-trailer combination, correctly distinguishing 

these classes has been a challenge for signature-based models (Jeng et al., 2013). 

Nevertheless, the bagging DNN model significantly improved the performance of such 

classes over Jeng et al.’s approach (Jeng et al., 2013). However, misclassified vehicles were 

still observed among those classes due to the overlapping body type across FHWA classes. 

As Figure 2.26 shows, a Class 8 enclosed van (Figure 2.26a) was misclassified as a Class 9 

(Figure 2.26b) vehicle, where Class 9 and Class 8 enclosed vans share similar shapes. 
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Likewise, the bagging DNN was found to misclassify a Class 10 drop frame van in Figure 2.27c  

into a Class 9, which is also a common axle configuration amongst drop-frame vans. 

 

Figure 2.26 Overlapping body type across FHWA classes 

 

Compared to conventional axle detectors, inductive loop signature data have 

demonstrated the ability to distinguish the body type of trucks with relatively high accuracy 

(Hernandez, 2016). Therefore, errors associated with overlapping axle configurations of 

different vehicle body types (refer to Figure 2.27) which are a major source of confusion at 

classification sites, were better managed by the signature-based bagging DNN model 

proposed in this study. 
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Figure 2.27 Error cases for piezoelectric sensors (Bitar & Refai, 2017) 

 

2.2.6 Conclusion 

This section proposed an accurate vehicle classification model to classify vehicles based on 

the FHWA-CA scheme using single inductive loops. The proposed model was developed on a 

truck-focused dataset and utilized the bagging ensemble technique to resolve the 

classification challenges of accommodating an imbalanced dataset which is typically 

observed in the FHWA classification scheme. The modeling process involved three major 

steps. First, the dataset was partitioned using the stratified sampling approach to retain a 

proportional number of samples from minority classes for both training and testing set. 

Then, a DNN model was constructed to assign signatures to their corresponding FHWA-CA 

classes. Dropout regularization was applied during the fine-tuning process, which 

successfully alleviated the overfitting of the DNN model. Finally, a bagging ensemble 

technique was used to address the imbalanced dataset issue. This bagging DNN model 

significantly outperformed a state-of-the-art FHWA classification model using inductive loop 

signature data (Jeng et al., 2013) for all truck-related classes. The bagging DNN model was 

able to achieve an F1 score of 0.83, where the comparable model obtained a value of 0.50. 

From the error analysis, it was observed that the majority of error cases came primarily from 
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the overlapping body types across FHWA classes. For instance, both Classes 8 and 9 shared 

body types such as semi-trailer enclosed van. In addition, semi-trailer drop-frame vans exist 

in both Classes 9 and 10. According to the error analysis, the proposed model likely inferred 

the FHWA classes through their corresponding body types. Notwithstanding, the 

overlapping axle configurations with different general body types, which is a common type 

of error at classification sites (Bitar & Refai, 2017) were still generally well-managed in the 

signature-based bagging DNN model. 

Inductive loop sensors remain the most widely deployed detector infrastructure in 

the State of California and the United States, and inductive signature-based classification 

models have been widely deployed in the State of California (Tok et al., 2017). This research 

demonstrates that the improvements in the inductive signature-based model described in 

this paper are a cost-effective solution that can provide accurate classification performance 

across truck categories according to the FHWA scheme, while concurrently addressing 

common body configuration confusion issues experienced by axle-based detection systems.  

Truck populations vary by state. The data used to train our model was obtained from 

several study sites across the state of California to capture a representative sample of trucks.  

However, some types of trucks found in the rest of the United States may not be represented 

in California.  For example, Class 13 includes triple-trailer trucks that are permitted in many 

other states but are restricted from operation in California and were not included in our 

training dataset. The model can be further enhanced through training on a nationwide 

comprehensive truck signature dataset. 
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CHAPTER 3 : Non-Intrusive-Sensor Solutions: Rural Highways Truck 

Monitoring using Multi-array LiDAR Sensors 

3.1 Introduction 

Although inductive loop sensors are widely deployed in many urban and interstate highway 

corridors in the U.S., their coverage remains limited along rural highway corridors that also 

contribute significantly to the economy (Aschauer, 1990). However, the implementation of 

pavement intrusive sensors across the extensive rural highway network is impractical. 

Therefore, researchers have begun to investigate non-intrusive solutions for collecting 

vehicle classification data. The rapid advancement of Light Detection and Ranging (LiDAR) 

technology in recent years provides further opportunities for non-pavement intrusive 

alternatives to collect detailed vehicle classification data. In this chapter, a new truck 

classification method is developed using a LiDAR sensor array in a horizontal orientation, 

utilizing a reconstruction procedure that combines frames of sparse point clouds to generate 

a dense point cloud representation of vehicle objects to facilitate accurate truck 

classification, while preserving the panoramic LiDAR Detection Zone (LDZ). First, vehicle 

point clouds were extracted by removing the background and clustering the residual points 

into objects. Then, a new vehicle reconstruction framework was built to enrich the sparse 

point cloud obtained from the horizontally oriented sensor.  Objects associated with the 

same vehicle from consecutive frames were grouped and combined to generate a dense 3D 

point cloud representation of each vehicle. Subsequently, the lower profile of the 

reconstructed vehicle point clouds was extracted and used to classify vehicles based on the 

FHWA-CA scheme. In contrast to previous studies, which used a classic machine learning 

framework, this chapter adopted the PointNet deep representation learning algorithm to 

train the classification model from the preprocessed point cloud data to classify trucks 
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according to their detailed body configurations. Both classification models are capable of 

producing promising prediction results. 

3.2 Literature Review 

LiDAR technology was initially adopted for vehicle classification applications in the early 

2000s when scanning laser sensors were available for the domain of traffic surveillance. 

Such sensors scan the cross-section of the roadway by taking several range measurements 

and generate gray-level intensity images for the vehicle passing through the scanning area. 

Abdelbaki et al (2001) used two laser scanners with a 10-degree separation to classify 

vehicles based on their aggregated bodies. In their study, high-level features such as vehicle 

length, vehicle width, vehicle height, and speed features were extracted from the intensity 

images and a rule-based classification lookup table was created to assign vehicles into their 

corresponding classes based on extracted features. Later, Hussain et al. (2005) adopted the 

same data collection setup with an additional feature, the average of the percent of edge 

points between two consecutive images, to further improve the classification accuracy. 

Instead of using a rule-based classification method, they constructed a random neural 

network model for the classification purpose. The prediction error was reduced with their 

improved classification method (Hussain & Moussa, 2005). Similarly, Sandhawalia et al. 

(2013) interpreted the 3D measurements acquired from a SICK laser scanner as a 2D image, 

where the pixel intensities were used as the depth values. The vehicle classification problem 

was posed as an image categorization problem. Instead of directly using the geometrical 

vehicle attributes from the profile image, Sandhawalia et al (2013) utilized the Fisher vector 

representation of the profile image, where a set of low-level local features obtained from the 

profile image was transformed into a high-level image representation.  Subsequently, high-
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level feature vectors were extracted from the fisher image signatures and were classified 

using the one-versus-all linear classifier. This model was able to classify vehicles into 6 

categories with an average accuracy of 82.5 percent. The three aforementioned papers 

adopted overhead sensor mountings which offered the capability to capture detailed 

information on each passing vehicle. However, the overhead mountings were subject to 

infrastructure constraint. Therefore, researchers started to investigate using roadside LiDAR 

as a cost-efficient alternative for vehicle classification. 

Lee and Coifman (2012) adopted side-fire LiDAR for vehicle classification. They 

designed a prototype data collection system consisting of a probe vehicle parked at the 

roadside, which was equipped with two vertically oriented laser scanners. Both sensors 

jointly scan the vertical planar of the road section. By merging successive 2D frames, a 3D 

LiDAR image can be constructed (Yang, 2009). After obtaining the 3D point cloud for the 

surveillance area, the vehicle objects were extracted from the background using a well-

established background subtraction algorithm originated from the domain of image 

processing. Then, six high-level features describing the physical characteristic of each vehicle 

were extracted from the vehicle cluster as inputs to the classification model. Finally, using a 

decision tree classifier, the vehicle clusters were classified into six distinct classes refined 

from the length-based classification scheme.  In addition, the researchers also explored using 

low-cost single-beam side-fire LiDAR to get truck body information. Asborno et al. (2019) 

grouped the raw distance measurements from the LiDAR sensor over time to build vehicle 

signatures and adopted a Bayesian combined predictor to classify trucks based on their 

aggregated body type classes. The roadside setup of the LiDAR sensors has been proved to 

be a cost-efficient and feasible solution for collecting classification data. However, neither 
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the laser scanner nor the single-beam LiDAR sensor is able to provide a detailed vehicle 

profile, which limited the classification accuracy and the total number of vehicles that can be 

classified. 

In recent years, multi-array rotating 3D LiDAR sensors have become popular due to 

the sensing needs of autonomous vehicles. Nezafat et al (2019) mounted such a sensor on a 

roadside pole with a vertical orientation. The LiDAR orientation is illustrated in Figure 3.1. 

 

Figure 3.1 Illustration of LiDAR Orientation 

 When a truck entered the LiDAR detection zone, each scan of the sensor can capture 

a 3D profile of one slide of the truck body within the scanning area. Due to the vertical 

orientation of the sensor, the detection zone was limited to 40 degrees of view (Figure 3.2). 

 

Figure 3.2 Truck Point Cloud Collection from Vertically Oriented LiDAR 
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Therefore, they had to merge all the frames associated with the same vehicle to 

generate the full profile of a truck. Then, they projected the 3D profiles of trucks to 2D images 

and adopted a pre-trained convolution neural network model to extract low-level features 

from the images. Such an image-based method was able to distinguish only 4 types of trucks 

with a similar configuration, yielding over 95% accuracy. However, the 3D information from 

the point cloud was not well-utilized in their research, which limited the total number of 

truck types that can be classified. Adopting the same data processing strategy with the 

vertical orientation of the sensor, Sahin et al (2020) utilized the 3D profile of the truck 

obtained from the merged frames to classify truck trailers in detail. Sahin et al. (2020) 

divided the 3D truck profile into six equal-sized rectangular voxels and extracted high-level 

features that represented the physical characteristics of different trailer types. Finally, five 

different classic matching learning algorithms were explored to classify 9 different trailers 

with the highest median accuracy of 94.2%. The vertical orientation of the multi-array 

rotating 3D LiDAR is able to capture a dense representation of each vehicle. However, the 

detection zone was narrow. It is hard to be extended for multi-lane traffic surveillance 

purposes. Wu et al. (2019) utilized a horizontally oriented LiDAR sensor, which provided a 

360-degree view of the ambient environment, for vehicle classification. Unfortunately, the 

sparse point cloud representation retrieved from the horizontally oriented LiDAR gave 

insufficient information for detailed truck classification. Therefore, they were only able to 

distinguish three different types of trucks (Table 3.1). The evolution of LiDAR-based vehicle 

classification is listed in Table 3.1. 
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Table 3.1 Summary of LiDAR-based Vehicle Classification 

Year Literature 
LiDAR 
Type 

Setup Methods Type Classification Method Correct Classification Rate 

2001 
Abdelbaki et 
al., (2001) 

Laser 
scanner 

Overhead 
mounted, 
two lasers 

High-level Hand-
designed features from 
Intensity Image 

Rule-based Lookup 
table 

Motorcycle: 66.6%  
Passenger vehicle: 87.2%;  
Pickup/Van/Sport Utility: 90.3%; 
Misc. Truck/Bus/RV: 84.7%;  
Tractor Trailer: 100.0% 

2005 
Hussain & 
Moussa, 
(2005) 

Laser 
scanner 

Overhead 
mounted, 
two lasers 

High-level Hand-
designed features from 
Intensity Image 

Classic machine 
learning (random 
neural network) 

Motorcycle: 60.0%;   
Passenger vehicle: 90.0%;  
Pickup/van: 94.4;  
Single unit truck or bus: 85.0%;  
Tractor Trailer: 100.0% 

2013 
Sandhawalia 
et al., (2013) 

Laser 
scanner 

Overhead 
mounted, 
each 
sensor per 
lane 

High-level hand-
designed features from 
raw profile feature, 
fisher image signatures, 
side projection profiles 

Classic machine 
learning 

Passenger vehicle: 99.8%;  
Passenger vehicle with one trailer: 89.8%;  
truck: 81.4%;  
truck with one trailer: 89.7%;  
truck with two trailers: 68.8%;  
motorcycle: 68.7% 

2012 
Lee & 
Coifman, 
(2012) 

Laser 
scanner 

Side-fire, 
vertically 
orientation, 
two lidars 

High-level hand-
designed feature from 
raw points 

Classic machine 
learning 

Motorcycle:91.2%;  
Passenger vehicle: 99.9;  
Passenger vehicle pulling trailer: 94.1%;  
Single unit truck: 94.5%; 
Single trailer: 68.9%;  
Multiunit truck: 98.6% 

2019 
Asborno et 
al., (2019) 

Single 
beam 

Side-fire, 
horizontal 
orientation 

Combination of High-
level hand-designed 
feature and low-level 
feature from LiDAR 
signature 

2D LiDAR signature 
pattern 
Classic machine 
learning (Bayesian 
combined predictor) 

Van and container: 94%;  
Platform type: 63%;  
Low-profile trailer: 44%;  
Tank: 33%;  
Hopper and end dump: 30% 

2019 
Wu et al., 
(2019) 

Multi-
array 
rotating 
3D LiDAR 

Side-fire, 
horizontal 
orientation 

Hand-designed features 
from raw points 

Max height, the nearest 
distance to lidar, 
number of points in the 
frame, the difference 
between length and 
height, object profiles 
Classic machine 
learning  

Bus: 100%;  
Five-axle, single-trailer truck: 94.1%;  
Bicycle; motorcycle: 5.9%; 
Three-axle, single-unit truck: 0%; 
Passenger car; four-tire, single unit; two-axle, 
six-tire, single-unit truck: 93.2%;  
Pedestrians and skateboarder:100% 

2019 
Vatani 
Nezafat et al., 
(2019) 

Multi-
array 
rotating 
3D LiDAR 

Side-fire, 
vertical 
orientation 

Low-level feature from 
2D images 

Transfer Learning 
(AlexNet, VggNet and 
ResNet 

Container: 98.4%;   
Ref Container:  90.1%;  
Ref Enclosed Van: 95.7%;  
Enclosed Van: 97.6% 

2020 
Sahin et al., 
(2020) 

Multi-
array 
rotating 
3D LiDAR 

Side-fire, 
vertical 
orientation 

Hand-designed features 
from vowelized point 
cloud 

 
Classic machine 
learning  

20ft Container: 96.3%;  
40ft Container: 97.7%;  
40ft reefer container:94%;  
Dry Van: 94.3%;  
Reefer dry Van:  91.0%;  
platform: 94.9%;  
Tank: 97.1%;  
Auto transport: 91.1;  
open top and dump: 85.1;  
other: 62.5 

 

Regarding system setup, the LiDAR placement gradually transitioned from overhead 

mounting to cost-efficient roadside mounting. However, it is hard to capture dense point 

clouds from the side-fire setup. A vertically oriented LiDAR sensor is able to get dense point 

cloud while its field of view is very limited. On the other hand, horizontally oriented LiDAR 
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has a larger field of view, but the resulting point cloud is too sparse to generate useful 

information, which affected the accuracy of the classification model. Regarding 

methodologies, most of the methods in the literature are carried out in the same fashion. 

First, high-level features were selected and derived from either raw or transformed points, 

such as 2D depth images and voxels. Then, the high-level features were directly used as input 

for classic machine learning algorithms. The classic machine learning algorithms may work 

fine for the classification scheme with a small number of defined features (e.g., the axle-

configuration in the FHWA classification scheme). However, for the task of body type 

classification problem, a combination of a myriad of features potentially can be used to 

differentiate various truck body types. Therefore, incorporating feature extraction into the 

optimization process of the classification algorithm would be much more ideal. In summary, 

it is challenging to collect enough information for truck classification while maintaining the 

view of detection. Therefore, in order to fill the gap, this chapter details a novel truck 

classification method, which presents a potential for multi-lane truck classification 

application and is capable of classifying based on both FHWA classification scheme and truck 

body types in detail with a promising classification result. 

 

3.3 Data Description and Preprocessing 

3.3.1 Study Site Layout 

The data used in this study were collected from the entrance ramp to the San Onofre truck 

scale from the Southbound I-5 Freeway in Southern California (as shown in Figure 3.3 Layout 
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of the Detection Site). Data under free flow and congested conditions were observed at the 

study site and included in the model development.  

 

Figure 3.3 Layout of the Detection Site 

 

3.3.2 Data Collection Setup 

A video camera, an advanced loop detector card, and a Velodyne VLP-32c LiDAR unit were 

installed at the study site as shown in Figure 3.4. All three sensors were connected to a solid-

state field processing unit. The video camera and loop detector were used to establish data 

ground truth. The Velodyne VLP-32c sensor has 32 infra-red lasers paired with infra-red 

detectors mounted on a motorized rotating platform to provide distance measurement 

between the sensor and objects (Velodyne Acoustics Inc., 2018).  

The LiDAR was configured to scan the surroundings at a frequency of 10 rotations per 

second and 180-degree LDZ, with each rotation generating a single 3D point cloud frame. 

The LiDAR sensor was horizontally mounted on a platform attached to the roadside pole of 

an existing traffic control cabinet.  
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Figure 3.4 System Setup 

 

The LiDAR sensor was mounted 2.05 meters above the ground plane and the top laser 

channel elevation angle was 15 degrees (Figure 3.5), which allowed the sensor to capture 

both the top and side view of passing vehicles. A sample of raw point cloud data frame 

showing a vehicle entering the truck scale within the LDZ is presented in Figure 3.6.  
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Figure 3.5 Illustration of the LiDAR Sensor 

 

 

Figure 3.6 The Raw Point Cloud of the Detection region 

 

3.3.3 Data Description 

The video data from the camera, inductive loop signature data from the loop detector, and 

point cloud data from the LiDAR sensor, were collected simultaneously. The data collection 

started on July 18th, 2019, and ended on August 5th, 2019. Overall, point clouds associated 

with 10,024 vehicles were processed, representing 30 different types of trucks (including a 

class labeled as “Other” which represented trucks not belonging to any of the classes shown 

in Figure 3.7) as well as passenger vehicles (Figure 3.7). The vehicle point clouds have also 
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been labeled according to their FHWA-CA classes in this dataset. 70 percent of the data were 

used for training and 30 percent were reserved for testing.  

 

Figure 3.7 Illustration of Vehicle Body Configuration used in the study (Note: SU: Single Unit Trucks, Semi: 
Tractors pulling Semi-Trailer, Multi: Tractors pulling Multiple Trailers.) 
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3.3.4 Semi-automatic Data Labeling Method 

Data labeling has been considered a critical but labor-intensive process in many existing 

studies on vehicle classification. Conventionally, the data labeling process requires a large 

amount of time to visually verify the body configuration of each detected vehicle through 

images from the video camera, and then to manually record the vehicle characteristics 

correspondingly. In this study, a semi-automatic data labeling strategy was developed to 

improve the efficiency of the data labeling process and further enrich the training dataset. 

The overall semi-automatic data labeling process is illustrated in Figure 3.8. First, the vehicle 

records from three data sources were aligned. Then, this study adopted a signature-based 

truck classification model to pre-label vehicle images (Hernandez, 2014). Subsequently, 

misclassified data were manually corrected from visual validation of the pre-labeled dataset. 

Finally, the labels were applied to corresponding point clouds as the data sources were 

aligned. The signature-based truck classification model had an overall 72.4 percent accuracy 

(Hernandez, 2014). Therefore, the labels of only around 30 percent of vehicles needed to be 

corrected, which significantly reduced the workload of data processing. This semi-automatic 

data labeling strategy greatly accelerated the labeling process for emerging sensors (Sensor 

2 in Figure 3.8) with the support of the existing technology (Sensor 1 in Figure 3.8). 
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Figure 3.8 Semi-automatic Data Labeling Framework 

 

3.3.5 Data Preprocessing 

3.3.5.1 Background Subtraction and Object Detection 

As shown in Figure 3.9, each raw LiDAR scan contains both static roadway environment and 

the vehicle objects of interest. Prior to the modeling process, points belonging to each vehicle 

point cloud need to be segmented from the roadway background, which is irrelevant to the 

task of vehicle classification and are grouped into vehicle objects. This research adopted the 

background subtraction and object detection method proposed in (Li et al., 2021). The 

background subtraction method first divided the conical surface generated by the LiDAR 

sensor into annular sector-shaped cells. Then, the foreground vehicle point clouds and the 

background environment are split according to the spatial occupancy of each cell. Finally, the 

segmented vehicle point cloud was grouped and identified as a vehicle based on their points’ 
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proximity using Density-based spatial clustering of applications with noise (DBSCAN) 

clustering algorithm (Daszykowski & Walczak, 1996). 

3.3.5.2 Data Association 

The same vehicle object presents in multiple consecutive LiDAR frames. The vehicle object 

in each LiDAR frame needs to be labeled with the same vehicle ID. This research utilized the 

Simple Online and Realtime Tracking (SORT) algorithm to associate the vehicle point cloud 

from each LiDAR frame to its corresponding vehicle object efficiently (Bewley et al., 2016). 

First, each vehicle point cloud was represented by the centroid of the minimum oriented 2D 

bounding box which was obtained from its ground projection. Next, the inter-frame 

displacements of each vehicle point cloud were estimated using a linear constant velocity 

model—Kalman Filter (Kalman, 1960). Finally, the vehicle point clouds were optimally 

assigned to their corresponding vehicle object group using the Hungarian algorithm (Kuhn, 

1955). SORT framework was claimed to be capable of handling short-term occlusion caused 

by passing objects (Bewley et al., 2016). 

 

3.4 Vehicle Point Cloud Registration Framework 

3.4.1 Point Cloud Registration 

3.4.1.1 Introduction to Point-Set Registration 

Point-set registration is an essential component that is widely used in the field of robotics 

and computer vision. It is the process of estimating the spatial transformation (e.g., 

translation, rotation, and scaling) that aligns two sets of points from the same object with a 

sensor that captures them from different views. Given two corresponding point sets 𝑃 =
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{𝒑𝟏, 𝒑𝟐, 𝒑𝟑, … , 𝒑𝒎}  and 𝑄 = {𝒒𝟏, 𝒒𝟐, 𝒒𝟑, … , 𝒒𝒏}  in ℝ𝑑 (𝑑  represents the dimension of each 

point. In this study, 𝑑  = 3), the goal of registration is to search for an optimal rigid 

transformation matrix 𝑻𝑃𝑄  composed of a rotation matrix 𝑹(𝜃𝑥, 𝜃𝑦, 𝜃𝑧)  and a translation 

vector 𝒕(𝑡𝑥, 𝑡𝑦, 𝑡𝑧) to match point set 𝑃 with point set 𝑄. The parameters 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧 represent 

the counter-clockwise rotation angle of the point set about the 𝑥, 𝑦, 𝑧 axis, respectively. The 

values  𝑡𝑥, 𝑡𝑦, 𝑡𝑧  are the translation of the point cloud along the corresponding axis. In a 

homogeneous coordinate, a transformation matrix 𝑻𝑃𝑄 that is used to align point set P and Q 

can be expressed as: 

𝑻𝑃𝑄 = 𝑻𝑃𝑄(𝜃𝑥 , 𝜃𝑦, 𝜃𝑧 , 𝑡𝑥, 𝑡𝑦, 𝑡𝑧) = [
𝑹 𝒕
𝟎 1

] (3.1) 

The 3D rotation about 𝑥, 𝑦, 𝑧 axis (𝑹𝑥, 𝑹𝑦, 𝑹𝑧) and translation matrix T is shown below: 

𝑹𝑥 = [

1 0 0 0
0 𝑐𝑜𝑠𝜃𝑥 −𝑠𝑖𝑛𝜃𝑥 0
0 𝑠𝑖𝑛𝜃𝑥 𝑐𝑜𝑠𝜃𝑥 0
0 0 0 1

] , 𝑹𝑦 = [

𝑐𝑜𝑠𝜃𝑦 0 𝑠𝑖𝑛𝜃𝑦 0

0 1 0 0
−𝑠𝑖𝑛𝜃𝑦 0 𝑐𝑜𝑠𝜃𝑦 0

0 0 0 1

] , 𝑹𝑧 = [

𝑐𝑜𝑠𝜃𝑧 −𝑠𝑖𝑛𝜃𝑧 0 0
𝑠𝑖𝑛𝜃𝑧 𝑐𝑜𝑠𝜃𝑧 0 0
0 0 1 0
0 0 0 1

] , 𝑻 = [

1 0 0
0 1 0
0 0 1

𝑡𝑥
𝑡𝑦
𝑡𝑧

0 0 0 1

] (3.2) 

The most classic method used for solving point set registration problems is called the 

iterative closest point (ICP) algorithm (Besl & McKay, 1992). The ICP algorithm starts with 

the initial transformation matrix 𝑻𝟎 = (𝑹𝟎, 𝒕𝟎)  and then selects a set of 𝑘  corresponding 

points pairs (𝒑𝒊, 𝒒𝒊 ) between point sets 𝑃  and 𝑄 . The distance between 𝑃  and 𝑄  can be 

written as: 

𝑑𝑖𝑠𝑡(𝑻𝑃𝑄(𝑃), 𝑄) (3.3) 

𝑻𝑃𝑄(𝑃)  represents rotating and translating 𝑃  with a transformation matrix 𝑻𝑃𝑄 . 𝑑𝑖𝑠𝑡() 

denotes the distance between point sets. In the literature, there are two common ways to 
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define the distance between point sets: Point-to-Point (Besl & McKay, 1992) and Point-to-

Plane distance (Chen & Medioni, 1991).  

1. Point-to-Point Distance Evaluation (Besl & McKay, 1992) 

Assuming there are N corresponding point pairs (𝒑𝒊, 𝒒𝒊), 𝑖 = 1…𝑁, the registration problem 

using point-to-point distance measurement can be formulated as: 

  𝑎𝑟𝑔𝑚𝑖𝑛𝑻𝑃𝑄  
1

𝑁
∑‖𝑻𝑃𝑄𝒑𝒊 − 𝒒𝒊‖

2
𝑁

𝑖=1

, 𝑠. 𝑡   𝑅𝑇𝑅 = 𝐼 (3.4) 

 

2. Point-to-Plane Distance Evaluation (Chen & Medioni, 1991). 

When Point-to-Plane distances are used as the error metric, the objective function can be 

formulated as the sum of the square error between 𝒑𝒊 and the tangent plane at 𝒒𝒊. The norm 

of the tangent plane at 𝒒𝒊 is denoted as 𝒏𝒐𝒓𝒊. The objective function is shown below: 

  𝑎𝑟𝑔𝑚𝑖𝑛𝑻𝑃𝑄  
1

𝑁
∑‖(𝑻𝑃𝑄𝒑𝒊 − 𝒒𝒊) · 𝒏𝒐𝒓𝒊‖

2
𝑁

𝑖=1

, 𝑠. 𝑡   𝑅𝑇𝑅 = 𝐼 (3.5) 

The next step of the ICP algorithm is to iteratively find the optimal 𝑻𝑃𝑄 which minimizes the 

distance between 𝑃 and 𝑄. Due to the simplicity of the original algorithm, hundreds of ICP-

based variants have been proposed over the past two decades; a comprehensive review of 

ICP-based methods has been documented in (Pomerleau et al., 2015).   

3.4.1.2 Probabilistic Point-set Registration 

However, the performance of ICP-based approaches suffers from the noisiness, outliers, and 

occlusions of point clouds that commonly occur in a real-world dataset, especially for data 
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collected from the outdoor environment (Pomerleau et al., 2013)(Myronenko & Song, 2010). 

In order to improve the robustness of point-set registration, many researchers started to 

investigate probabilistic approaches. The most popular probabilistic-based registration 

algorithm is called Coherent Point Drift (CPD) proposed by Myronenko and Song (2010), 

which treated registration as a probability density estimation problem. Instead of using the 

closest distance to define the corresponding point pairs, CPD assigned a probability value to 

the correspondence according to the proximity between points from two pointsets. Several 

studies followed the path of investigating new probabilistic approaches to further enhance 

the robustness of the registration algorithms (Evangelidis et al., 2014; Horaud et al., 2011; 

Jian et al., 2011).  Unfortunately, such approaches gain robustness while compromising the 

computation efficiency, limiting their application to large datasets. Gao and Tedrake (2019) 

developed a computationally efficient probabilistic-based registration model—FilterReg—

which adopted Gaussian filtering methods to enhance the model efficiency as well as to 

preserve the robustness and accuracy of the registration process. FilterReg has been proved 

to be computationally faster than the modern ICP variants (Gao & Tedrake, 2019). Therefore, 

this research adopted the FilterReg algorithm to estimate transformation matrices between 

consecutive frames.  

3.4.2 Vehicle Point Cloud Registration Framework 

Most of the previous research on point-set registration targeted aligning point sets obtained 

from mobile sensors, where the LiDAR unit is mounted on the top of a moving robot 

(Pomerleau et al., 2015) which allows the sensor to actively capture the object point clouds. 

As a consequence, every point cloud density associated with the same object is relatively 

uniform across LiDAR frames. However, for traffic surveillance applications, LiDAR sensors 
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are generally mounted on a static pole standing by the roadside to passively monitor 

roadway traffic. As a vehicle traverses the LDZ, the density of its point cloud will gradually 

increase and then decrease due to its proximity to the sensor. Therefore, this study modified 

the existing point-set registration framework to better adapt to the data characteristics of 

vehicle point clouds collected from roadside LiDAR sensors, and then to provide promising 

vehicle point cloud registration results to support the needs of FHWA axle-based vehicle 

classification. 

3.4.2.1 Eliminate Redundant Frames  

When a truck is entering or leaving the LDZ (Figure 3.9), the position of the truck is far from 

the LiDAR sensing unit which caused the sparseness of the truck point cloud (Figure 3.10).  

 

Figure 3.9 Samples of Truck Frames 

Those frames generally descript the driving unit and the rear edge of the truck as shown in 

Figure 3.10. 
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Figure 3.10 Samples of Redundant Frames 

Such information has been included in the frames while the truck is closer to the sensor 

(Figure 3.11). Thus, those sparse point cloud which is captured far from the sensor and has 

limited contribution to the registration process were intended to be eliminated to save the 

computation time. 

 

Figure 3.11 Samples of Frames used for Registration 
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Figure 3.12a presents the point counts profile while the truck is traversing the LDZ. Each 

point in the profile records the total number of points that the truck contained in its 

corresponding frame. Frame 22,138 and Frame 22,139 contain the highest number of points 

across all frames during its travel in the LDZ where the highest point count is denoted as 

𝑝𝑛𝑚𝑎𝑥 . The point count profile is subsequently normalized based on 𝑝𝑛𝑚𝑎𝑥  (Figure 3.12b). 

Finally, the truck point cloud which contains point counts less than 20 percent of 𝑝𝑛𝑚𝑎𝑥  were 

treated as redundant frames and eliminated. 

 

Figure 3.12 Elimination of Redundant Frames 

3.4.2.2 Statistical Outlier Removal and Voxel Down Sampling  

After the background subtraction step, there still existed noises and outliers which were 

statistically detectable. Therefore, prior to the vehicle point cloud registration, an outlier 

removal process is needed. In this step, two procedures are included, statistical outlier 

removal and voxel downsampling, which are suggested by a popular 3D data processing 

library—Open3D (Q. Y. Zhou et al., 2018). The statistical outlier removal method takes the 

50 nearest neighbors of a given point in the point cloud and considers the points which are 

2 standard deviations far from the given point as statistical outliers. Next, in order to increase 

the computational efficiency as well as preserve the structure of point clouds, point clouds 

are further uniformly downsampled using a voxel downsampling approach, where points 
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are bucketed into voxel with a size of vs_pre = 0.01 meter and represented by a single point 

calculated through averaging all points within the voxel.  

3.4.2.3 Vehicle Point Cloud Registration 

After the redundant frames and statistical outliers were removed, a pairwise registration 

with a coarse-to-fine strategy was applied on each pair of adjacent frames. The pairwise 

alignment was accomplished through the use of the FilterReg method (Gao & Tedrake, 2019). 

First, a coarse registration was conducted. All point clouds were coarsely downsampled with 

relatively larger voxel size vs_coarse = 1.5 meters and then each pair of point clouds was 

aligned based on the point-to-point distances metric. Transformation matrices were saved 

and denoted as 𝑻𝑗−1,𝑗
𝑐𝑜𝑎𝑟𝑠𝑒 = [𝑇12

𝑐𝑜𝑎𝑟𝑠𝑒 , 𝑇23
𝑐𝑜𝑎𝑟𝑠𝑒 , 𝑇34

𝑐𝑜𝑎𝑟𝑠𝑒, … , 𝑇𝑛−1,𝑛
𝑐𝑜𝑎𝑟𝑠𝑒], where j is the frame index. 

Second, the 𝑻𝑗−1,𝑗
𝑐𝑜𝑎𝑟𝑠𝑒  was fine-tuned using point-to-plane distances with voxel size vs_fine = 

0.015 meter. The transformation matrices obtained from fine registration was written as 

𝑻𝑗−1,𝑗
𝑓𝑖𝑛𝑒

=  [𝑇12
𝑓𝑖𝑛𝑒

, 𝑇23
𝑓𝑖𝑛𝑒

, 𝑇34
𝑓𝑖𝑛𝑒

, … , 𝑇𝑛−1,𝑛
𝑓𝑖𝑛𝑒

].  Since the basic assumption about vehicle point 

clouds is that all the point clouds associated with the same vehicle should land on the same 

plane, the vehicles will not rotate along the x and y-axis. Hence, the transformation matrices 

were constrained on x- and y-axis rotation, where the corresponding elements in the 

matrices were set to zero, as shown in Equation 6:  

𝑇𝑗−1,𝑗
𝑔𝑟𝑜𝑢𝑛𝑑

= [

𝑐𝑜𝑠𝜃𝑧 −𝑠𝑖𝑛𝜃𝑧 0 𝑡𝑥
𝑠𝑖𝑛𝜃𝑧 𝑐𝑜𝑠𝜃𝑧 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

] (3.6) 

Third, in order to reduce the cumulative errors which could be potentially caused by the 

sequential pairwise registration, the transformation matrices were further optimized using 
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the multiway registration which described a process of merging multiple frames of an object 

in a global space. In this study, multiway registration was implemented through the use of a 

pose graph optimization technique proposed in (Choi et al., 2015). The multiway registration 

process is illustrated as follows. First, the information matrices which represent the inverse 

correlation matrix between two consecutive transformation matrices were estimated. 

Second, a pose graph is defined with the transformation matrices ( 𝑻𝑗−1,𝑗
𝑔𝑟𝑜𝑢𝑛𝑑

) as the node and 

information matrices (𝐴𝑛−1)  as the edges in the graph, where each edge of the pose graph 

connects two nodes. The middle frame of the vehicle object was set to be the reference frame 

with index 𝑗 = 𝑚𝑖𝑑 = 𝑐𝑒𝑖𝑙(
𝑛

2
, 0.5). All frames were aligned to the reference frame during the 

optimization process. The pose graph is optimized using the G2O graph optimization 

framework (Choi et al., 2015). The final transformation matrices that were used to 

reconstruct the vehicle point cloud were 𝑻𝑗−1,𝑗
𝑓𝑖𝑛𝑎𝑙

=  [ 𝑇12
𝑓𝑖𝑛𝑎𝑙

, 𝑇23
𝑓𝑖𝑛𝑎𝑙

, 𝑇34
𝑓𝑖𝑛𝑎𝑙

, … , 𝑇𝑛−1,𝑛
𝑓𝑖𝑛𝑎𝑙

]. The 

overall vehicle point cloud registration framework is shown in Figure 3.13. 
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Figure 3.13 Vehicle Point Cloud Registration Framework 

When the vehicle is approaching the LiDAR sensor, most of the information is captured from 

the tractor unit. The distinctive details as well as the level of the sparseness of the point cloud 

on the truck tractor make the process of finding corresponding points between two point 

clouds easier. Hence, minimizing the point-to-point distance is capable of aligning the source 

(Yellow in Figure 3.14) to the target point cloud (Blue in Figure 3.14)  firmly. Figure 3.14a 

presents the point clouds from two consecutive frames. Figure 3.14b is the result of the 

coarse registration with point-to-point distance. 
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Figure 3.14 Examples of Pairwise Registration (Blue: target point cloud, Yellow: Source point cloud) 

On the contrary, while the truck is just passed the LiDAR sensor, points are densely 

distributed on the side view of the truck. Such point clouds contained a limited number of 

prominent features to align them by just minimizing the point-to-point distance. Figure 3.14c 

shows the failure case after coarse registration using the point-to-point distance. However, 

the dense point distribution on the truck sides creates well-defined planes which allow the 

fine registration with a point-to-plane strategy to successfully further tighten two point 

clouds (Figure 3.14d). 

3.4.2.4 Registration Framework Comparison 

The main purpose of the vehicle registration process is to enrich the information of the vehicle 

point clouds through merging multiple frames and to precisely portray the vehicle characteristics 

such that vehicles can be classified in detail. Therefore, if the reconstructed vehicle contains 

essential features which can be used to visually identify its vehicle class without any significant 

misalignment, it will be considered as a well-registered vehicle point cloud. Otherwise, it will be 

considered as a poor-registered vehicle point cloud. In this study, the vehicle point clouds 

registration precision (VPCRP) is defined as: 
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𝑉𝑃𝐶𝑅𝑃 =
𝑁𝑤𝑟

𝑁𝑤𝑟 + 𝑁𝑝𝑟
 

Where 𝑁𝑤𝑟 represents the number of well-registered vehicle point clouds and 𝑁𝑏𝑟 is the number 

of the poor-registered point clouds. The new framework has been compared with the previous 

registration framework through VPCRP value. The previous registration framework (Allu et al., 

2020) presents a VPCRP value of 0.168, where the new registration framework has a VPCRP 

value of 0.024. The registration performance has been significantly improved by adopting the new 

framework proposed in this study. 

FHWA-CA 
Classes 

Previous Registration Framework The New Registration Framework 

Class 8 

  

Class 9 

  

Class 10 

  

Class 11 

  

Class 12 

  

Class 14 
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3.4.2.4 Registration Performance with Missing Frames 

The data used in this study was collected from the single-lane off-ramp area. Therefore, the 

occluded vehicle point clouds were barely observed in this data collection site. In order to 

test the robustness of the new registration framework, random frames for a truck object 

were dropped to simulate the missing frames scenario caused by either fully vehicle 

occlusions or sensor errors. Figure 3.15 demonstrates the experiment of the missing frame 

test.  

 

Figure 3.15 Illustration of Experiment Design 

 

The duration that each vehicle traversing the LDZ was divided into three equal time 

slots denoted by Section 1, Section 2, and Section 3. Since vehicle occlusions generally 

happen on consecutive frames. 𝑚 random consecutive frames are dropped from each section 

at each time. 

Table 3.2 presents the results of the experiment. 
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Table 3.2 Experiment Results 

Number of 
Consecutive  
Frames 
Dropped 

 
Section 1: Approaching the LiDAR Sensor 

 
Section 2: In front of the LiDAR Sensor 

 
Section 3: Leaving the LiDAR Sensor 

0  

 
 
2 

   

 
 
3 

   

 
 
4 

   

 
 
5 

   

 
 
6 

   

7 Completely miss aligned Completely miss aligned Completely miss aligned 
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When 5 consecutive frames are dropped, meaning that 0.5 seconds of data are 

missing, from either Section 1 or Section 2, the reconstructed point cloud is still able to 

preserve the essential information that can be used to identify their FHWA classes. For 

Section 3, the reconstruction framework fails when the consecutive frame number equal to 

4. The random 5 consecutive frames dropped from Section 3 were the last 5 frames that are 

used for the vehicle reconstruction. Therefore, nearly a quarter of the points on the rear 

truck wheel were missing. 

This experiment demonstrated that the proposed framework is capable of 

reconstructing vehicle objects with 3-5 consecutive missing frames. A comprehensive 

vehicle occlusion analysis will be explored after real-world occlusion data are collected.

 

3.5 FHWA Axle-based Classification using Roadside LiDAR Sensor 

The lower profile of a truck contained information related to its axle and general body 

configuration which defines their FHWA-CA classes. Compared to each frame of a truck 

object, the lower profile of the reconstructed truck point cloud is well-defined (Figure 3.16).  

 

Figure 3.16 Truck Object from a Single Frame (Left) vs. A Reconstructed Truck Point Cloud (Right) 

Therefore, in this section, essential features from the lower profile of the reconstructed truck 

point cloud were extracted and used as inputs for the vehicle classification model. Next, a 

deep ensembled neural network model was developed to assign vehicle point clouds to their 

corresponding FHWA-CA classes. 
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3.5.1 Feature Extraction 

Prior to the feature extraction, statistical outliers on the reconstructed vehicle point cloud 

were further removed (Q. Y. Zhou et al., 2018). Subsequently, the pose of the vehicle point 

clouds was adjusted to align them with the 𝑧𝑦 plane using transformation matrix 𝑇𝑚𝑖𝑑−1,𝑚𝑖𝑑 

since the middle frame was used as the reference frame in the pose graph optimization. Then, 

the 3D point cloud was projected to 𝑧𝑦 plane to obtain its 2D representation of each vehicle. 

The feature extraction process is shown Figure 3.17.  

 

Figure 3.17 Feature Extraction 

First, a rolling window with a size of 0.1 was created, where the minimum 𝑧 value 

within the window was calculated. The size of the rolling window should be less than the 

radius of a regular wheel of a truck. The minimum 𝑧 value rolling window captures the raw 
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lower profile of each vehicle point cloud. Second, in order to obtain a better representation 

of the lower profile, the raw profile was smoothed using Hann window (Oppenheim, V. et al., 

1999) which is formulated as:  

𝑤(𝑖) = 0.5 − 0.5 cos (
2𝜋𝑖

𝑀 − 1
)    0 ≤ 𝑖 ≤ 𝑀 − 1 (7) 

   Where 𝑖 represents the index of each point in the profile. M is the window size of the 

filter. 

The smoothed lower profile of the truck point cloud presents both the axle and 

general body configuration of the truck. Third, the smoothed lower profiles were 

interpolated using cubic spline interpolation, and then 200 equally spaced z values were 

extracted from the interpolated profile to align the dimension of the training instances. 

Finally, the interpolated profile was normalized to the scale of -1 to 1. 
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Figure 3.18 Illustration of Features 

As Figure 3.18 shows, the valley in box 1 indicated the steer axle of the truck. Valleys in box 

2 represent the drive axles on the tractor and the valleys in box 3 are the spread axles on the 

trailer. The peak shown in box 2 presents the connector between the tractor and trailer unit.  

3.5.2 Bootstrap Aggregating Deep Neural Network for Vehicle Classification 

Neural Network models have been proved to be able to approximate any complex non-linear 

mapping functions (Hornik et al., 1989). Compared to the shallow neural network, a multi-

layer structure of a deep neural network model allows it to accomplish the same task with 

exponentially lower computation complexity (Shiyu Liang; R. Srikant, 2017). Therefore, this 

study developed a deep neural network (DNN) with dropout regularization (Mele & Altarelli, 

2014) to assign each vehicle point cloud to its corresponding FHWA-CA classes. The DNN 
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model was composed of 5 hidden layers with 512 neurons on each layer. Thirty percent of 

neurons were randomly dropped out on the last two hidden layers to remedy the overfitting 

issue. The Rectified Linear Unit (ReLU) (Nair & Hinton, 2010) with the He initialization 

method (He et al., 2015) was applied to each hidden layer and the Softmax activation 

function with Xavier initialization (Glorot & Bengio, 2010) was used on the output layer. The 

learning curve shown in Figure 3.19 traces the model performance histories during the 

training and testing process. After 100 epochs, the overall accuracy on the training set keeps 

gradually increasing while the testing accuracy converges to 0.95. Hence the model training 

converged after 100 epochs. 

 

Figure 3.19 Learning Curve 

In order to reduce the variability of the DNN prediction results, a bootstrap aggregating 

(bagging) (Breiman, 1994) ensemble approach was applied. In this study, the bagging 

ensemble method resamples the training set with stratified bootstrap resampling strategy 
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(Efron, 1988) to ten sets of bootstrapped training samples which were used to build ten 

different DNN models with the same model structure. The final prediction results were 

determined by the highest averaged prediction score of the ten DNN models. 

3.5.3 Model Results 

This section first evaluated the testing results of the proposed model using a normalized 

confusion matrix and then provide the error analysis on the misclassified vehicles. In 

addition, the proposed model was compared with the state-of-the-art FHWA axle-based 

classification model using a LiDAR sensor. 

3.5.2.1 Classification Results and Analysis 

The normalized confusion matrix of the classification model is presented in Figure 3.20.  

 

Figure 3.20 Normalized Confusion Matrix for the Test Set 

Each row of the red-colored confusion matrix is normalized by a total number of 

ground-truthed vehicles in their corresponding classes. Therefore, the diagonal elements 
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represent the recall values of each class, which was also referred to as “Correct Classification 

Rate” (CCR) in some literature (Hernandez et al., 2016; Sahin et al., 2020). Each column of 

the green-colored confusion matrix is normalized according to the total number of predicted 

values for each class. Hence, the diagonal elements are the precision values of each class. 

Based on the normalized confusion matrices, the proposed model is able to correctly 

classify Classes 5, 6, 8, 11, and 14 with over 80 percent CCR. However, the model is weak in 

predicting Class 10 and Class 12. Interestingly, in terms of Class 10, the precision value is 

higher than the recall value which means when this model is implemented, very few 

predictions on Class 10 will be received whereas most of them will be correctly classified. 

This is quite ideal for the model implementation. Conversely, Class 12 has a higher recall 

than its precision value which would cause that the model to return many Class 12 

predictions, but most of them are misclassified from other classes. 

The boxplot in Figure 3.21 shows the model recall distribution of the DNN models 

which are built with 10 sets of bootstrapped training instances. The bar plot represents the 

training sample size for each class. 
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Figure 3.21 CCR Distribution across All Classes 

As Figure 3.21 shows, the variability of the prediction results increases as the training 

sample size reduces, especially for Classes 10 and 12. Insufficient training samples were used 

to learn the key features from Classes 10 and 12 trucks which result in high variances in their 

prediction outcomes. In addition, Classes 2 and 3, passenger vehicles, are rarely observed at 

the entrance of the truck scale and those vehicles have larger diversity in terms of their body 

shape. Therefore, the model prediction variance is also high for Classes 2 and 3. Even though 

there is a limited number of training samples for Class 14, its prediction results are still 

promising since Class 14 represents a small homogeneous group of trucks. 

With sufficient training samples, the proposed classification model is capable of 

accurately distinguishing Classes 8 and 9 with overlapping body configuration (Figure 3.22a 

and b). However, Classes which have minor differences in their axle configuration but with 
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the same body type are hard to recognize when the training instances are yet adequate 

(Figure 3.22c, d, e, and f). Consequently, in order to further enhance the model performance 

on Classes 10 and 12, the training dataset needs to be enriched in future studies. 

 

Figure 3.22 Overlapping Body Configurations 
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3.5.2.2 Model Comparison 

The proposed model has been compared with the state-of-the-art LiDAR-based classification 

model which used the single frame of an object to classify vehicles on the basis of the FHWA 

scheme (Wu et al., 2019). The model comparison is shown in Table 3.3. 

Table 3.3 Model Comparison 

FHWA-CA 
CCR  

(Bagging DNN) 
Testing 
Samples 

Classes defined in (Wu et al., 2019) 
CCR (Random  
Forest) (Wu et 

al., 2019) 

Testing 
Samples (Wu 
et al., 2019) 

Class 2 
0.75 20 

Passenger Vehicle 0.84 150 

Class 3 Four-tire Single Unit 0.70 69 

Class 4 None None Bus 1.00 20 

Class 51 0.97 934 Two-axle, six-tire, single-unit truck 0.44 17 

Class 6 0.95 208 Three-axle, single-unit truck 0.00 4 

Class 7 0.76 17 Four or fewer axle, single-trailer truck None None 

Class 8 0.84 117 None None None 

Class 92 0.99 1,746 Five-axle, single-trailer truck 1.00 17 

Class 10 0.33 12 None None None 

Class 11 0.85 13 None None None 

Class 12 0.50 2 None None None 

Class 13 None None None None None 

Class 14 1.00 31 None None None 

Average CCR 0.79 - - 0.76 - 

Note: 1Class 5 used in this study contained a two-axle truck pulling a small trailer which was not included in (Wu et al., 2019). 2 In the 

FHWA-CA scheme, Class 9 type 32 was separated from the rest of Class 9 truck and labeled as Class 14. In (Wu et al., 2019), Class 14 

trucks are merged into Class 9 trucks. 

Compared to the previous model (Wu et al., 2019), the new classification framework 

proposed in this study is able to classify vehicles in much more detail with significantly 

higher accuracy, especially for heavy-duty trucks from Class 8 to Class 14 which have 

disproportionally adverse impacts on the pavement (Gillespie, T.D, Karamihas, S.M. & Sayer, 

1993) and the environment (Guensler et al., 2005). 
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3.6 Truck Body Type Classification using Roadside LiDAR Sensor 

3.6.1 PointNet-based Truck Classification Model 

3.6.1.1 The Deep Representation Learning Algorithm: PointNet 

The reconstructed 3D point cloud is an irregular type of geometric data structure, where 

each point is represented by its cartesian coordinates (𝑥, 𝑦, 𝑧). A conventional convolution 

neural network requires a regular data format such as image pixels and 3D voxels as inputs. 

Therefore, the point cloud cannot be directly fed into a typical convolutional architecture. 

Point clouds are generally transformed to other data types for classification purposes. In the 

literature, transportation researchers usually extract high-level physical characteristics 

from either raw points (Wu et al., 2019) or transformed point clouds, e.g., 2D images 

(Abdelbaki et al., 2001; Hussain & Moussa, 2005; Sandhawalia et al., 2013; Vatani Nezafat et 

al., 2019) or 3D voxels (Sahin et al., 2020) to solve the truck classification problem. Finally, 

these high-level features are used as inputs of classic machine learning algorithms. However, 

such data transformations and aggregations can introduce quantization error and further 

conceal the natural invariances of the point cloud data (Qi et al., 2017), which affects the 

accuracy and the variety of types of trucks that can be classified. In order to accommodate 

the characteristics of the point cloud data structure for improving truck classification 

accuracy, a novel deep neural network architecture—PointNet (Qi et al., 2017)—was 

adopted in this research. This neural network architecture can directly take point clouds as 

inputs and detect critical features for classification from the raw inputs. The architecture of 

PointNet is shown in Figure 3.23. 
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Figure 3.23 PointNet Architecture (Qi et al., 2017)  

PointNet primally benefits from two components of its architecture: the shared multi-

layer perceptron (MLP) and the max-pooling function. The shared MLP was constructed 

using 1D convolution with a kernel size of 1, which provides a dense connection across 

points with the shared parameters (weight and bias terms). This means that the spatial 

encoding of each point can be learned by the shared MLP. A max-pooling layer was applied 

as a symmetric function to gather information from all the points, in order to resolve the 

invariance to permutation issue of the point cloud data structure. A function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑁) 

of N variables are invariant under random permutation if the function value does not change 

over the permutation of its variables. The generic representation of symmetric functions can 

be written as: 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑁) = 𝑓(𝑥𝑁 , 𝑥2, … , 𝑥1) = 𝑓(𝑥2, 𝑥1, … , 𝑥𝑁) = ⋯ (3.1) 

The max-pooling function extracted the global critical feature of each truck point 

cloud and the overall model structure was able to learn the skeleton of each object. Since the 

truck body types are generally invariant and distinct in shape, PointNet ideally fits the task 

of truck body classification. 
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3.6.1.2 PointNet for Truck Classification Model 

In this research, the PointNet architecture was adopted to classify truck body types in detail. 

Prior to the training process, the reconstructed point cloud needed to be regularized. First, 

the variable number of data points in reconstructed point clouds was uniformly 

downsampled to a common number of points as inputs into the PointNet. The downsampling 

process contained three steps. First, a regular voxel grid with a resolution of 5 percent was 

generated for each reconstructed truck point cloud, where those points were bucketed into 

voxels. Second, each occupied voxel was represented by a single point, which was calculated 

by taking the average of all points within each voxel grid. Finally, 1024 points suggested by 

Qi et al. (2017) were randomly sampled from the uniformly downsampled point cloud. A 

truck point cloud 𝑘 can be written as a 3D point set, 𝑝𝑘 = {(𝑥𝑗
𝑘, 𝑦𝑗

𝑘, 𝑧𝑗
𝑘)|𝑗 = 1,… , 𝑛} ,where n 

= 1024 in this study. After the downsampling process, the centroid of the truck point cloud 

𝑘  was moved to the (0,0,0)  point in the coordinate and was represented as 𝑝𝑘𝑐 =

{(𝑥𝑗
𝑘𝑐, 𝑦𝑗

𝑘𝑐, 𝑧𝑗
𝑘𝑐)|𝑗 = 1,… , 𝑛} . The operation along the x axis is presented in Equation 3.2, 

where y and z follow the same calculation. 

𝑥𝑗
𝑘𝑐 = 𝑥𝑗

𝑘 −
𝑚𝑎𝑥{𝑥𝑗

𝑘} − 𝑚𝑖𝑛{𝑥𝑗
𝑘}

2
(3.2) 

Then, the truck point cloud 𝑘  was normalized to a unit sphere and denoted by 𝑝𝑘𝑐𝑛 =

{(𝑥𝑗
𝑘𝑐𝑠, 𝑦𝑗

𝑘𝑐𝑠, 𝑧𝑗
𝑘𝑐𝑠)|𝑗 = 1,… , 𝑛}. The operation along the x-axis is presented in Equation 3.3, 

where y and z follow the same calculation. 

𝑥𝑗
𝑘𝑐𝑠 =

𝑥𝑗
𝑘𝑐

𝑚𝑎𝑥{𝑥𝑗
𝑘𝑐}

(3.3) 
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The point cloud preparation step is shown in Figure 3.24. Here, a reconstructed point cloud 

of an auto transport with a conventional tractor is taken as an example. 

 

Figure 3.24 Point Cloud Preprocessing 

During the model training process, two data augmentation methods were applied (Qi 

et al., 2017). First, each training instance was randomly rotated along the z-axis. Second, each 

point of the truck point cloud was jittered with a Gaussian noise which followed a 𝑁(0, 0.02) 

distribution to increase the diversity of the training instances. 

The truck classification model was trained on 5,360 reconstructed truck point clouds 

with an RTX 2080 super GPU and took approximately 3 hours to converge. The learning 

process of the truck classification model is presented in the learning curve (Figure 3.25). The 

model accuracy on both training and test dataset improve in a similar trend until 100 epochs. 
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After this point, the model performance gradually plateaus on the test dataset but continues 

improving on the training dataset. The model converged after 250 epochs. 

 

Figure 3.25 Learning Curves 

 

3.6.2 Model Averaging 

A multiple layer structure with nonlinear activation functions on each layer provides deep 

neural networks with the ability to approximate any complex mapping function (Goodfellow 

et al., 2016). However, deep neural network models generally suffer from high variance 

issues, where model performance varies significantly by dataset (Z. H. Zhou et al., 2002).  

Hence, model averaging strategies were explored to reduce the model variance and further 

enhance the model performance. The simplest way to apply model averaging on deep neural 

networks is to train multiple deep neural networks with different initial values and have all 

the models cast their votes. In this study, two model averaging methods were explored, and 

are explained in the next subsection. 
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3.6.2.1 Simple Model Averaging (SMA) 

Let 𝑚𝑎 = {𝑚1,𝑚2, . . . , 𝑚𝑛} denote n PointNet models trained with various initial values. 𝑐𝑏 

denotes the class labels. 𝑝(𝑐𝑏|𝑚𝑎) represents the probability that model 𝑚𝑎 predicted class 

𝑐𝑏. The equation of SMA is shown below. 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐𝑏∈𝐶

∑𝑝(𝑐𝑏|𝑚𝑎)

𝑛

𝑎=1

(3.4) 

SMA assumes that 𝑚𝑎  produced an equal contribution to the final decision and gave the 

prediction results by averaging all the votes of the candidate models. 

3.6.2.2 Bayesian Model Averaging (BMA) 

Unlike simple model averaging, which treats candidate models 𝑚𝑎 equally, Bayesian model 

averaging assign a prior probability, presenting the subjective credibility of the model 

predicting a certain class. The posterior probability derived from the candidate models was 

used as the final prediction score (Hoeting et al., 1999; Raftery et al., 2005). In the case of a 

class 𝑐 to be predicted based on training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 using 𝑛 PointNets with initial value 

drawn from a normal distribution, the Bayesian model averaging provides final predictions 

based on the law of total probability: 

𝑝(𝑐) = ∑𝑝(𝑐𝑏|𝑚𝑎)𝑝(𝑚𝑎|𝐷𝑡𝑟𝑎𝑖𝑛)

𝑁

𝑎=1

(3.5) 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐𝑏∈𝐶

∑ 𝑝(𝑐𝑏|𝑚𝑎)𝑝(𝑚𝑎|𝐷𝑡𝑟𝑎𝑖𝑛)
𝑁
𝑎=1 (3.6)

As Equation 3.6 presents, the averaged model assigns higher weights to the candidate model 

which performs better for the specific class. The final prediction relies on the weighted 

average of the prediction scores. 
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3.6.3 Results 

Five PointNet models were trained with different initial values. Figure 3.26 shows the CCR 

of each class from five different models.  

 

Figure 3.26 Prediction Variance Analysis 

The same model structure yielded high variance to predict certain classes. For 

instance, model 4 obtained a CCR of 0 percent on predicting open-top vans, where model 5 

was able to achieve a CCR of 75 percent on predicting the same class. Conversely, model 4 

provided a CCR of 90 percent for single-unit stake body trucks. But the CCR for model 5 on 

predicting the same class was only 83 percent. Figure 3.26 thus reveals the need for an 

ensemble model. Auto (Conventional) and Auto (pickup) distinguish the tractor units of auto 

transport trucks. “Pickup-Utility-Service wTrailer” and “Platform wTrailer” are used to 

identify a straight driving unit pulling a small trailer. “End Dump wTrailer” considers an end 

dump truck pulling either a small trailer or another large dump trailer. “Other” represents 
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all the truck types that do not fit the definition of the previous 30 classes. “Tank Tank” 

represents a tank tractor with a tank trailer, which specifically belongs to Class 14 in the 

California-modified FHWA scheme (Quinley, 2010). 

The results from SMA and BMA are presented in Table 3.4. 

Table 3.4 Results from Test Dataset 

  Model 1 Model 2 Model 3 Model 4 Model 5 SMA BMA Test Sample 

20ft Container 0.98 0.98 1.00 1.00 0.93 1.00 1.00 59 

40ft Container 1.00 1.00 1.00 1.00 1.00 0.99 0.99 196 

53ft Container 0.94 0.97 0.97 0.97 0.97 0.96 0.96 170 

Auto (Conventional) 0.71 0.94 0.91 0.88 0.82 0.91 0.91 34 

Auto (Pickup) 0.90 0.95 0.79 0.90 0.74 0.89 0.89 19 

Bobtail 1.00 1.00 1.00 1.00 1.00 1.00 1.00 109 

Cab-over Enclosed Van (SU) 0.95 0.98 0.98 0.99 0.97 0.99 1.00 148 

Concrete 1.00 1.00 1.00 1.00 1.00 1.00 1.00 16 

Conventional Enclosed Van (SU) 0.97 0.96 0.97 0.97 0.97 0.97 0.97 362 

Drop Frame Van (Semi) 0.82 0.82 0.79 0.82 0.86 0.82 0.79 28 

Dry Bulk Transport 1.00 1.00 0.94 0.94 0.94 1.00 1.00 16 

Enclosed Van (Multi) 0.80 0.80 1.00 0.80 0.80 0.80 0.80 5 

Enclosed Van (Semi) 0.99 0.98 0.99 0.98 0.99 0.98 0.99 928 

End Dump (SU) 0.81 0.89 0.92 0.89 0.89 0.88 0.88 26 

End Dump (Semi) 0.83 1.00 0.96 0.91 0.87 0.96 0.96 23 

End Dump wTrailer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7 

Low Boy Platform 0.82 0.84 0.89 0.82 0.93 0.91 0.91 56 

Low Loading 0.86 0.91 0.88 0.90 0.90 0.90 0.89 116 

Open Top Van 0.00 0.25 0.25 0.00 0.75 0.25 0.00 4 

Passenger Vehicle 0.83 0.83 0.87 0.73 0.77 0.80 0.80 30 

Pickup-Utility-Service 0.81 0.71 0.76 0.73 0.79 0.79 0.79 94 

Pickup-Utility-Service wTrailer 0.79 0.67 0.88 0.75 0.71 0.88 0.83 24 

Plaform wTrailer 0.80 0.77 0.80 0.80 0.83 0.83 0.83 30 

Platform (SU) 0.87 0.86 0.90 0.86 0.84 0.90 0.89 135 

Platform (Semi) 0.91 0.93 0.93 0.91 0.91 0.94 0.94 160 

Stake Body (SU) 0.81 0.88 0.87 0.90 0.83 0.89 0.89 114 

Tank (Multi) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5 

 Tank (SU) 0.64 0.55 0.73 0.55 0.64 0.73 0.64 11 

Tank (Semi) 0.94 1.00 0.99 0.96 0.99 0.99 0.99 83 

 Tank Tank 1.00 0.96 1.00 1.00 1.00 1.00 1.00 27 

Others 0.29 0.37 0.45 0.47 0.22 0.37 0.18 49 

Accuracy 0.92 0.93 0.94 0.93 0.93 0.94 0.94 3,084 

Avg CCR 0.84 0.86 0.88 0.85 0.87 0.88 0.86 3,084 

Note: SU: Single-Unit Truck; Semi: Tractors pulling Semi-Trailer; Multi: Tractors pulling multiple trailers. Cells labeled 
with red colors represent CCR lower than 0.80. Green colors highlight the benefits of using the SMA model. 
 

After applying model averaging across five PointNet models, the number of classes 

with CCR value less than 80 percent was significantly reduced. The ensembled models 
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outperform most of the individual models in terms of accuracy, average class CCR, and F1 

score. SMA and BMA presented the same level of accuracy according to these aggregated 

measurements. The SMA outperforms the BMA method in terms of model performance on 

drop frame vans (Semi), low loading truck, open-top vans, pickup/utility/service with 

trailer, and single-unit tank while the CCR of single-unit cab-over enclosed van was slightly 

reduced. The two-sided non-parametric Wilcoxon signed-rank test (Wilcoxon, 1946), was 

conducted to test if a significant difference existed between the results of SMA and BMA. The 

p-value of 0.02 showed the null hypothesis for the difference between SMA and BMA was 

significant, and at a significance level of 5 percent could be rejected. Therefore, the 

performance of SMA is significantly better than the BMA method. 

A closer assessment of the minority classes found that the performance of the 

ensembled PointNet was not significantly biased towards the majority class since the 

minority class presented low variations in their body type design. Hence, the ensemble 

PointNet presents a promising result in solving truck body type classification problems.  

For illustration purposes, in Table 3.5 and Table 3.6, the “Others” class was split into 

“Others (SU)” and “Others (wTrailer)” to denote single-unit trucks and trucks with trailer(s) 

that were misclassified with other types of trucks respectively. 
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Table 3.5 Confusion Matrix for single-unit truck and passenger vehicles (SMA Approach) 

 Bobtail 
Cab-over 
Enclosed 
Van (SU) 

Concrete 
Mixer 

Conv 
Enclosed 
Van (SU) 

End 
Dump 
(SU) 

Low 
Loading 

Passenger 
Vehicle 

Pickup-
Utility-
Service 

Platform 
(SU) 

Stake 
Body 
(SU) 

Tank 
(SU) 

Others 
(SU) 

Test 
Counts 

CCR 

Bobtail 109 0 0 0 0 0 0 0 0 0 0 0 109 1.00 

Cab-over Enclosed Van (SU) 0 147 0 0 0 0 0 0 0 1 0 0 148 0.99 

Concrete 0 0 16 0 0 0 0 0 0 0 0 0 16 1.00 

Conv Enclosed Van (SU) 1 2 0 351 0 7 0 1 0 0 0 0 362 0.97 

End Dump (SU) 0 0 0 0 23 0 0 0 1 2 0 0 26 0.88 

Low Loading 0 1 0 7 0 104 0 4 0 0 0 0 116 0.90 

Passenger Vehicle 0 0 0 0 0 1 24 5 0 0 0 0 30 0.80 

Pickup-Utility-Service* 0 2 0 2 0 1 3 74 6 4 0 1 94 0.90 

Platform (SU) 1 0 0 2 0 0 0 3 121 5 1 2 135 0.79 

Stake Body (SU)** 0 0 0 2 1 0 0 3 4 102 0 1 114 0.89 

Tank (SU) 0 0 0 0 0 0 0 0 0 3 8 0 11 0.73 

Other (SU) 0 0 0 0 0 1 0 3 4 1 0 18 27 0.67 
Note: Cells labeled with red colors represent CCR lower than 0.80. The yellow cells highlight the correctly classified numbers. The grey cells point to the main causes of 
the misclassification. “Cov” is short for “Conventional”. *This row is not added up to 94, since one of the pickup/utility/service trucks was misclassified with 
pickup/utility/service with a trailer. ** In this row, one stake body (SU) was misclassed to a semi-trailer platform. This was identified as mislabeling through visual 
verification.  
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Table 3.6 Confusion Matrix for a truck with Trailer(s) (SMA Approach) 

Note: * In this row, a semi-trailer enclosed van was misclassed to a pickup/utility/service truck. This was identified as mislabeling through visual verification. 

** “P/U/S wTrailer” represents the pickup/utility/service truck.

  
20ft 

Container 
40ft 

Container 
53ft 

Container 
Auto 

(Conv) 
Auto 

(Pickup) 

Drop 
Frame 
(Semi) 

Dry Bulk 
Transport 

Enclosed 
Van  

(Multi) 

Enclosed 
Van  

(Semi) 

End 
Dump 
(Semi) 

End 
Dump 

wTrailer 

Low  
Boy 

Platform 

Open 
Top  
Van 

P/U/S 
wTrailer 

Plaform 
wTrailer 

Platform 
(Semi) 

Tank 
(Multi) 

Tank 
(Semi) 

Tank 
Tank 

Others 
(wTrail

er) 

Test  
Counts 

CCR 

(Sahin et 

al., 

2020) 
CCR 

 
20ft 

Container 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 1.00 0.96 
40ft 

Container 0 195 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196 0.99 0.98 
53ft 

Container 0 0 164 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 170 0.96 - 

Auto (Conv) 0 0 0 31 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 34 0.91 0.91 

Auto (Pickup) 0 0 0 1 17 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 19 0.89 - 
Drop Frame 

(Semi) 0 0 0 0 0 23 0 0 4 0 0 0 0 0 0 0 0 0 0 1 28 0.82 - 

Dry Bulk 
Transport 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1.00 - 

Enclosed Van 
(Multi) 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 5 0.80 - 

Enclosed Van 
(Semi)* 0 0 4 0 0 5 0 0 913 0 0 0 2 1 0 0 0 0 0 2 928 0.98 0.94 

End Dump 
(Semi) 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 1 0 0 0 0 23 0.96 0.85 

End Dump 
wTrailer 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 7 1.00 - 

Low Boy 
Platform 0 0 0 0 0 0 0 0 0 0 0 51 0 1 0 4 0 0 0 0 56 0.91 - 

Open Top 
Van 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 4 0.25 - 

P/U/S 
wTrailer** 0 0 0 0 1 1 0 0 0 0 1 0 0 21 0 0 0 0 0 0 24 0.88 - 

Plaform 
wTrailer 1 0 0 0 0 0 0 0 0 0 1 0 0 2 25 0 0 0 0 1 30 0.83 - 
Platform 

(Semi) 0 0 4 1 0 0 0 0 0 1 0 1 0 0 0 150 0 0 0 3 160 0.94 0.94 
Tank  

(Multi) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 1.00 - 

Tank 
 (Semi) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 82 0 0 83 0.99 0.97 

Tank 
 Tank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 27 1.00 - 

Others 
(wTrailer) 0 0 7 0 1 1 0 2 4 0 0 0 2 0 1 2 1 1 0 18 40 0.45 - 
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A comparison between the CCR values in Table 3.5 and Table 3.6 shows that the model was 

less competent in predicting single-unit trucks, where 18 percent of single-unit vehicles have 

an average CCR less than 0.80, while only 5 percent of trucks pulling trailer (s) have an 

average CCR less than 0.80. This was likely caused by the similarity across body types. For 

example, with different shapes of commodities or devices carried, single-unit platform 

trucks shared similar body configurations with pickup/utility/service trucks, single-unit 

stake body trucks, single-unit tank trucks, and single-unit dump trucks. In addition, the 

“passenger vehicle” class included 4-tire small pickups which shared a similar profile with 

6-tire utility pickups that were categorized in the “pickup/utility/service” class. 

Table 3.6 presents the confusion matrix of 19 truck body types, primarily including 

tractors pulling semi-trailers, tractors pulling a large single trailer, and tractors pulling 

multiple trailers. The body type confusion occurred primarily among auto transports, low 

boy platform, and semi-trailer platform trucks. Similar to the issues shown in single-unit 

trucks, the loading on the trailers is likely the cause of misclassifications across these three 

types. The performance of the SMA PointNet was compared with the state-of-art LiDAR-

based classification model. SMA PointNet presented higher CCR values than the previous 

model across most classes, except semi-trailer platforms. In this sense, the ensemble 

PointNet can be considered superior to the state-of-the-art truck classification model (Sahin 

et al., 2020). Platforms loaded with 53ft box containers were misclassified as 53ft box 

containers loaded on a container chassis, which was not included in the previous trailer type 

classification scheme (Sahin et al., 2020). Classifying trucks in more detail naturally 

increases the chances of misclassification among similar body types. Therefore, balancing 
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the total number of trucks that can be classified and high CCR values across all classes is 

critical. 

3.6.4 Conclusion 

To fill the truck monitoring gaps on rural highway corridors, this chapter presented novel 

LiDAR-based truck classification methods through the development of a new truck point 

cloud reconstruction framework that was able to retain a wide LDZ and accurately classify 

trucks on the basis of the FHWA-CA scheme and detailed truck body configurations. The data 

used for modeling was collected from a horizontally-oriented multi-array 3D LiDAR sensor, which 

had the ability to capture a wide field of view of the roadway. In this case, even though vehicles 

traveling in the outermost lanes presented in front of the LiDAR sensor for a short period of time 

and occluded vehicles traveling in the corresponding inner lanes, the point cloud originating from 

those occluded vehicles could be retrieved from consecutive frames. The sparse point clouds from 

individual frames resulting from a low vertical resolution were enriched by aggregating multiple 

frames associated with the same truck. Subsequently, the lower profile of the reconstructed vehicle 

point cloud was extracted and used as inputs for the deep neural network to classify vehicles based 

on the FHWA classification scheme. The classification model with the reconstruction framework 

outperforms the state-of-the-art axle-based classification model using LiDAR sensors in terms of 

both their accuracy and robustness. This LiDAR-based FHWA model presents a 79 percent 

average CCR. Furthermore, the proposed model is capable of accurately distinguishing Classes 3, 

5, and 8 which have overlapping axle configurations with a 98 percent and an 86 percent correct 

classification rate, respectively. Further, Classes 8 and 9 can be classified correctly with 84 percent 

and 99 percent CCR even though they share very similar body configurations. 
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In order to further classify trucks in their detailed body configurations, this chapter adopted 

a deep representation learning algorithm, PointNet. PointNet successfully learned the basic 

characteristics of each truck class by selecting the critical features from each preprocessed point 

cloud. Finally, two model ensemble strategies, SMA and BMA, were explored to improve the 

generality of the model and to further enhance the model performance. The LiDAR-based truck 

body type classification model was able to classify heavy-duty trucks in much more detail, with a 

close relationship to their industry affiliations. For example, the new model could accurately 

distinguish low boy platforms from general flatbed trucks, where these two types of platform 

trucks are designed to carry different types of payloads. This model was able to classify 31 

different vehicle types (advantageously mainly trucks) and achieve an average class CCR of 90 

percent for both a truck with trailer (s) and single-unit vehicles. Remarkably, the proposed method 

was able to distinguish 53ft containers and semi-trailer enclosed vans with over 95 percent CCR 

even though they share very similar physical characteristics, which is a significant improvement 

over previous models using the integration of WIM and inductive signature data (Hernandez et al., 

2016), as well as LiDAR (Sahin et al., 2020). 

In the future, more LiDAR data will be collected from other detection sites to test the 

transferability of the proposed model. Furthermore, multi-lane truck classification applications can 

be explored as the horizontal orientation of the LiDAR permits capturing a full 360-degree field 

of view. 
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CHAPTER 4 : A Self-Learning Framework for Truck Classification System 

through the Integration of Advanced Inductive Loops and Multi-array 

LiDAR Sensor 
 

4.1 Introduction 

As mentioned in Chapter 2, inductive loop sensors are widely deployed across the U.S. Each 

detection site comprises inductive loop sensors that monitor traffic traversing the detection 

site across all lanes. The vehicle signature data retrieved from the inductive loop sensors 

have been adopted to develop vehicle classification models to classify trucks on the basis of 

the FHWA-CA (Chapter 2) and the truck body configuration scheme (Hernandez, 2014). Such 

detection systems allow us to monitor truck activities extensively on major freeways. 

However, the performance of these models is expected to degrade as truck fleets turnover 

and newer truck models and configurations begin to operate on highway networks in the 

future. The newer trucks with different body-style designations may generate distinct 

signature patterns which may not be accurately classified by a legacy signature-based 

classification model since the signature-based model has been proved that primarily infers 

FHWA classes through their body configurations. On the contrary, the roadside LiDAR sensor 

is capable of capturing the detailed truck profile by merging multiple consecutive frames of 

the same truck and identifying their FHWA classes by recognizing their axle and general 

body types with a relatively high level of accuracy. By utilizing the superiorities of these two 

complementary data sources – the inductive signature data and the LiDAR vehicle point 

cloud data – a self-learning framework was designed to alleviate the obsolescence of the 

truck classification system, as well as to enhance the system resilience for its long-term 

operations.  
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In this chapter, both qualitative and quantitative analyses were performed on the 

input features for the signature- and LiDAR-based vehicle classification models to identify 

the key features that were used to distinguish trucks on the basis of the FHWA classification 

scheme. In this self-learning framework, the performance of the legacy signature-based 

model was initially validated at the detection sites where the inductive loop detector and the 

LiDAR were paired. At those detection sites, the LiDAR-based classification model served as 

an automated data labeling platform to generate labels for the newly collected signature 

data. The data labeled by LiDAR sensors were used for model validation. If the performance 

of the legacy signature-based classification model degrades and meets a given model-

updating criterion, the legacy signature-based FHWA classification model will be calibrated 

and updated with the newly LiDAR-labeled data to the state-of-the-art model using an 

adaptive transfer learning framework which exploit both the archived data and the newly 

labeled data from the LiDAR sensor to enhance the model performance.  Finally, the legacy 

signature-based classification model will be updated across all loop detection sites to 

produce reliable FHWA vehicle classification counts on both spatial and temporal levels. The 

integration of the inductive loop detectors and the LiDAR sensors enables the self-learning 

ability of the truck classification system without a labor-intensive manual data annotation 

process. The adaptive transfer learning module in this framework balanced the model 

performance on the statewide and the state-of-the-art datasets to remedy the model 

overfitting issue on each dataset. Meanwhile, this module reduces the computation burden 

of the model calibration procedure.  
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4.2 Interpreting DNN-based Vehicle Classification Model Predictions 

From a theoretical perspective, the multiple layer structure with a non-linear activation of 

the deep neural network (DNN) enables it to approximate any complex mapping function 

(Goodfellow et al., 2016). From a practical perspective, the DNN model has been adopted to 

solve various vehicle classification problems (Chapter 2 and 3) with relatively high accuracy 

in the transportation domain. However, the transportation literature generally overlooks the 

importance of interpreting feature characteristics that were used by DNN models, which is 

essential to facilitate the sensor integration task which is the focus of this section. Therefore, 

this section explains how the features obtained from different sensors were used by the DNN 

models to make predictions. First, this section provided a qualitative analysis of the input 

features extracted from inductive loop signatures and LiDAR point clouds. The 

interpretation of the input features is primarily based on human intuition. Second, the 

SHapley Additive exPlanations framework was used to quantify the importance of features 

for making certain predictions.    

 

4.2.1 Human Intuition 

The initial intention of creating neural network models was to let the model mimic the 

functionality of human brains, where a human recognizes certain objects according to their 

distinct features. Hence, the input features of the neural network model are required to 

contain essential features that differentiate predefined classes. The FHWA vehicle 

classification scheme was defined based on vehicles’ axle and general body configurations. 

Therefore, the feature vectors that are used by the FHWA classification models are expected 
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to carry vehicle axle configurations. Figure 4.1 shows the reconstructed point cloud of a 40ft 

container truck and its corresponding vehicle signature. 

 

Figure 4.1 A Vehicle Point Cloud and A Signature from the Same 40ft Container 

In Figure 4.1, there is no visually identifiable correspondence between the vehicle signature 

and its axle location. On the other hand, the reconstructed vehicle point clouds present a 

clear contour of the undercarriage of the truck. Therefore, from the perspective of human 

intuition, vehicle signature data contains limited information in terms of vehicle axle 

configuration while the vehicle lower profile of the LiDAR point cloud data reveals the 

essential information for the task of FHWA vehicle classification. 

4.2.2 Interpreting Vehicle Classification Model Predictions  

4.2.2.1 The Model Interpretation Method  

A qualitative analysis of input features for signature- and LiDAR-based model provides 

insights as to how each model presumably make predictions. However, the importance of 
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the input features for the classification model is yet to be quantified.  Lundberg & Lee (2017) 

proposed a unified framework, SHapley Additive exPlanations (SHAP), for interpreting 

complex machine learning model predictions. SHAP adopts Shapley value from coalitional 

game theory to interpret the prediction result of an instance, where the Shapley value 

presents the importance of each feature in the instance of the final prediction. SHAP treats 

each feature value as the player in the cooperative game. SHAP calculates the marginal 

contribution of a feature (players) while making the prediction (running the game) with or 

without it under all the possible subset of features (players) in the instance. 

4.2.2.2 Interpreting Vehicle Classification Model using SHAP 

SHAP feature importance was utilized in this session to identify the key features that are 

used for the signature- and LiDAR-based classification model, respectively. The features with 

higher absolute Shapley values indicated that they provide a more essential contribution to 

make a certain prediction. This research focuses on the global importance of each feature 

within each FHWA class. Therefore, the sum of absolute Shapley values per feature across 
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the instances in every class was calculated. Figure 4.2 shows samples of instances that were 

used in the signature-based FHWA classification model.  

 

Figure 4.2 SHAP Values for Features from Signature Data 

The sum of absolute Shapley values for each feature is denoted by colors. According to the 

color bar shown in Figure 4.2, the lighter the color presents, the greater the Shapely value is. 

For the signature-based model, the higher Shapely values are distributed mainly on the 

features which represent the magnitude differences of the signatures and spread all over the 

truck body. This implies that the signature-based FHWA classification model makes 

predictions by looking at the overall truck body instead of focusing on their axle 

configuration. However, the only difference among Classes 8, 9, and 10 (Similarly for Classes 



125 
 

11 and 12) is the number of axles. Therefore, it is hard for the signature-based model to 

differentiate those classes with the same body type but different axle configurations.  

On the contrary, the LiDAR-based FHWA classification focuses on the features located 

around the truck axle (Figure 4.3).  

 

Figure 4.3 SHAP Values for Features from Point Cloud Data 

For example, as Figure 4.3 shows, the features with higher Shapely values to determine 

Classes 8, 9, and 10 are positioned at the drive axle on the tractor unit and the tandem axle 

on the trailer unit, where those axle configurations are key to distinguishing their classes 

based on the FHWA  definition (Figure 4.4). 
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Figure 4.4 Differences among Classes 8, 9, and 10 

 

Similarly, the essential features that are used by the LiDAR model to determine Classes 11 

and 12 are located at split tandem axles on the trailer units (Definition finds in Figure 4.5).   

 

Figure 4.5 Differences between Classes 11 and 12 

 

4.2.2.3 Summary 
 

In summary, both the qualitative and quantitative analysis shows that the signature-based 

classification model infers the FHWA classes according to the truck body types while the 

LiDAR-based classification model recognizes the truck classes based on the definition of the 

FHWA classification scheme. As the truck body configuration changes over time or across 

states, the performance of the signature-based model may degrade. However, the 
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performance of the LiDAR-based model is expected to retain the same if the definition of the 

FHWA classification scheme is not changed. 

4.3 A Self-learning Framework for Truck Monitoring System 

The advanced loop sensors are widely deployed across the U.S. The vehicle signature data 

retrieved from such sensors provide a promising FHWA classification counts data on major 

freeways. However, as mentioned in the previous section, the signature-based model is 

possibly obsolete. Conversely, the LiDAR sensors are limited in their spatial coverage. But its 

performance may not degrade along the planning horizon since it is capable of identifying 

FHWA classes based on its definition. This section introduced a self-learning framework for 

the truck classification system by utilizing the advantages of inductive loop signature data 

and 3D point cloud data from the LiDAR sensor to reduce system obsolescence and enhance 

its resilience. 

4.3.1 The Self-learning Framework 

The self-learning framework proposed in this dissertation contains three major modules: the 

LiDAR labeling module, the model validation module, and the adaptive transfer learning 

module. The self-learning truck classification system is presented in Figure 4.6. 
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Figure 4.6 Self-Learning Truck Classification System 

 



129 
 

4.3.1.1 The LiDAR Labeling Module and the Model Validation Module 

The designed self-learning framework includes two types of detection sites: the inductive 

loop sensor only site and the sensors integration site, where the inductive loop sensors and 

LiDAR sensors are paired. The newly collected data from the sensor integration site is 

labeled by a pre-trained LiDAR-based FHWA classification model in the LiDAR labeling 

module of the self-learning framework and the legacy signature-based classification model 

is validated via the LiDAR-labeled data in the model validation module of the framework. If 

the performance of the legacy signature-based FHWA classification model on one of the 

classes significantly degraded and consequently met the model-upgrade criteria, the legacy 

signature-based model will be calibrated using an adaptive transfer learning framework.  

4.3.1.4 The Adaptive Transfer Learning Module 

The basic idea of transfer learning is to utilize the knowledge which has been learned from 

one task (Task 1) to improve generalization in a different task (Task 2) (Goodfellow et al., 

2016). Under the context of the truck classification system, the legacy signature-based FHWA 

model trained on the large archived dataset was designed to recognize the state-of-the-art 

truck designations. However, as the truck fleets turn over and newer truck body types came 

to the market, the previous “state-of-the-art” truck model will be obsolete. Thus, the legacy 

model may not be able to accomplish the new task—recognizing the newer truck models. 

The traditional way that is used to address such an issue is to manually label the new dataset 

and retrain the signature-based model with the overall dataset, including the archived and 

the new label signature data. Nevertheless, such an approach becomes computationally 

inefficient since the model needs to be trained with an incremental dataset at each time. 

Therefore, this research adopted the transfer learning framework to improve the 
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computation efficiency as well as the performance of the self-learning framework. Figure 4.7 

shows how the transfer learning framework is applied to the truck classification problem. 

 

Figure 4.7 Illustration of Transfer Learning 

 

Task 1 refers to predicting truck types with obsolete truck designations while task 2 

indicates the prediction of truck types with newer body designations. Instead of retraining 

the whole model with an incremental dataset, the transfer learning framework transmits the 

knowledge from task 1 to task 2 by freezing several hidden layers of the neural network 

model used in task 1 and retrains the last few layers with the newly labeled dataset (new 

truck designation dataset).  

Figure 4.8 presents the legacy signature-based FHWA classification with different 

numbers of layers fixed.  
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Figure 4.8 Adaptive Transfer Learning for Truck Classification 

For example, transfer DNN 1 represents a transfer learning model structure that fixes the 

weights of the first layer of the neural network model and fine-tunes the rest of the layers 

with the newly labeled data. Transfer DNN 6 shows the model structure which adapts the 

weights entirely while retraining the model with the new data. It can also be considered as 

directly using the legacy signature-based model on the newly labeled dataset. In this study, 

6 different transfer learning models (Transfer DNN 1 to 6) were designed and trained. 

Different from the conventional transfer learning framework which only focuses on 

improving the performance of the new task, this research developed an adaptive transfer 

learning framework to serve the needs of transportation applications. Since the newly 
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collected data can only be labeled at the sensor integration site, the model design which 

restrictive to the sensor integration site may compromise its performance on those 

statewide deployed loops only sites. Therefore, the designed adaptive transfer learning 

framework should be able to balance the model performance between the newly labeled 

dataset and the state-wide dataset. In the adaptive transfer learning framework, the best-

performed model is determined by the weighted average of the model performance on the 

statewide dataset and the newly collected dataset. 

 

4.3.2 System Implementation 

4.3.2.1 Data Description 

The data used for the implementation of the designed self-learning framework comprises 

two parts, the statewide and the state-of-the-art dataset. 

• The statewide dataset (𝐷𝑠𝑤): The statewide dataset is the dataset that was used to 

develop the signature-based vehicle classification model in Chapter 2; the spatial 

distribution of the detection sites are presented in Figure 2.17. The signature data in 

this dataset were collected at 20 different detection sites equipped with either 6ft 

square or round loop sensors across California in 2012, 2013, and 2016. In this 

chapter, it is also called the “Archived dataset”. A total of 34,039 vehicle signature 

records in the statewide dataset were used for the framework implementation in this 

chapter. Seventy percent of the data from the statewide dataset (𝐷𝑠𝑤
𝑡𝑟𝑎𝑖𝑛) was used to 

train the legacy signature-based model and the rest of the data (𝐷𝑠𝑤
𝑡𝑒𝑠𝑡) was used for 

the validation purpose. 
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• The state-of-the-art dataset (𝐷𝑛 ): The state-of-the-art dataset refers to the data 

collected from a sensor integration site located at the off-ramp area at San Onofre 

truck scale in Southern California. The data were collected from July 18th to August 

5th in 2019. Overall, 10,024 signatures were recorded. Seventy percent of them were 

used to train the state-of-the-art signature-based FHWA classification model. The 

class labels used in the training set (𝐷𝑛𝑙
𝑡𝑟𝑎𝑖𝑛) were produced by a pre-trained LiDAR-

based FHWA classification model while the signatures in the test set were labeled by 

both LiDAR-based model and the ground truth via visual verifications. The LiDAR-

labeled testing set was denoted by 𝐷𝑛𝑙
𝑡𝑒𝑠𝑡 and the ground truth-labeled testing set was 

represented by 𝐷𝑛𝑔
𝑡𝑒𝑠𝑡.  

The datasets that are used for system implementation are illustrated in Figure 4.9.  

 

 

Figure 4.9 Data Description 
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Since the Class 13 trucks were not observed in 𝐷𝑛 and Classes 2 and 3 were a lack of training 

samples in 𝐷𝑛, Class 13 was excluded in 𝐷𝑠𝑤  and Classes 2 and 3 were combined in 𝐷𝑠𝑤  to 

make the class numbers consistent between 𝐷𝑛 and 𝐷𝑠𝑤 . 

4.3.2.2 Implementation 

First, the legacy signature-based model was trained on 𝐷𝑠𝑤
𝑡𝑟𝑎𝑖𝑛 and tested on 𝐷𝑠𝑤

𝑡𝑒𝑠𝑡 .  Then, the 

model was validated on 𝐷𝑛𝑙
𝑡𝑒𝑠𝑡  and the performance degradation class was identified 

according to the reduction of the CCR value for every class. Subsequent, the overall 𝐷𝑛 was 

undersampled based on the sample size of the degradation class. Conventionally, the 

undersampling method that is used to address imbalanced dataset issues in predictive 

models could result in the overfitting of a certain class. However, the undersampling method 

perfectly suited the target of the self-learning framework.  During the model validation 

process, the consistency of the model performance on a certain class indicates that there is 

a limited number of new truck designations observed in this class. Thus, introducing more 

training samples will not provide a significant contribution to improving the CCR value of 

this class but let the model skew to it if it is a majority class. On the contrary, the performance 

degradation for certain classes could be caused by the truck type variations for this class in 

the new dataset. Therefore, all the samples should be considered during the training process 

to allow the model to recognize the new truck designations. The undersampling procedure 

is performed as follows. The performance degradation class is set as a target class. If the 

sample size of a certain class is larger than the sample size of the target class, this class will 

be randomly downsampled to align with the sample size of the target class. If the sample size 
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for a class is less than or equal to the sample size of the target class, all the samples belonging 

to this class will be retained for both training and testing purposes. 

Finally, the adaptive transfer learning framework was applied. The pre-trained legacy 

signature-based model was retrained with various number of hidden layers fixed, where the 

undersampled 𝐷𝑛𝑙
𝑡𝑟𝑎𝑖𝑛  was taken as the training set. Overall, 6 adaptive transfer learning 

models were trained and tested on both the 𝐷𝑠𝑤
𝑡𝑒𝑠𝑡 and 𝐷𝑛𝑙

𝑡𝑒𝑠𝑡. 

4.3.2.3 Result Analysis 

The boxplot in Figure 4.10 presents the results of 30 different runs of the legacy signature-

based classification model. The yellow line highlights the lower outlier boundary of the CCR 

of the 30-runs results on the statewide dataset. 

 

Figure 4.10 Model Validation 
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The red line in Figure 4.10 presents the model performance on the newly collected dataset. 

According to Figure 4.10, the CCR of Classes 5, 7, 11, and 14 on 𝐷𝑛𝑙
𝑡𝑒𝑠𝑡 lie below the CCR lower 

outlier boundary on the 𝐷𝑠𝑤
𝑡𝑒𝑠𝑡, especially for Class 7. Therefore, Class 7 is identified as the 

performance degradation class on which the self-learning framework is going to focus. 

After the model validation process, the adaptive transfer learning module was 

applied. Figure 4.11 presents the model results of the transfer learning model with a 

different number of layers fixed on both the statewide dataset and the newly collected 

dataset.  

 

Figure 4.11 The Testing Results of the Adaptive Transfer Learning on the San Onofre dataset and the Statewide 
dataset 

The blue line shows the model performance on the newly collected dataset. Fixing 0 hidden 

layer means that the legacy signature-based model was completely retrained using the small 
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dataset collected from the San Onofre detection site. With 1 hidden layer fixed, the model 

adopted the knowledge transferred from the previous task (predicting truck classes on the 

statewide dataset) and improved the model performance on the new task (predicting truck 

classes on the newly collected dataset). However, with the number of fixed layers increases, 

the model starts to overfit the statewide dataset. Thus, as the number of fixed layers 

increases, the model performance reduces on the San Onofre dataset while it rises on the 

statewide dataset. Besides, the prediction interval becomes much narrower when more 

hidden layers are fixed. The transfer learning framework also reduced the prediction 

variance and improved the generality of the model. Interestingly, the yellow graph shows a 

dip when the number of fixed layers equal to 4. Potentially, this could imply that fixing four 

hidden layers of neural network model may not serve as a good feature extractor for the 

legacy signature-based classification model. In this research, the statewide dataset was 

assumed to be two times more important than the newly collected data. Therefore, according 

to the weighted average of the median CCR on both the statewide and newly collected 

dataset, the model with 5 fixed hidden layers was selected as the model that performed best. 

Table 4.1 presents the results of 3 different models: the model that was only trained 

using the newly collected dataset (Fix 0 layers), the standalone legacy signature-based model 

(Fix all layers), the best performed adaptive transfer learning model with 5 hidden layers 

fixed. 
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Table 4.1 Model Comparison 

  Fix 0 hidden Layers Fix all hidden Layers Fix 5 hidden layers 
 

Detection 
Sites 

CCR on 

𝐷𝑠𝑤
𝑡𝑒𝑠𝑡   

CCR on 

𝐷𝑛𝑙
𝑡𝑒𝑠𝑡  

CCR on 

 𝐷𝑠𝑤
𝑡𝑒𝑠𝑡   

CCR on 

𝐷𝑛𝑙
𝑡𝑒𝑠𝑡  

CCR on 

 𝐷𝑠𝑤
𝑡𝑒𝑠𝑡   

CCR on 
𝐷𝑛𝑙
𝑡𝑒𝑠𝑡  

 

Class 2 0.90 1.00 0.98 0.78 0.94 0.89  

Class 5 0.72 0.78 0.86 0.78 0.63 0.78  

Class 6 0.65 0.89 0.74 0.89 0.81 0.89  

Class 7 0.68 1.00 0.86 0.00 0.68 0.89  

Class 8 0.68 0.89 0.73 0.67 0.61 0.78  

Class 9 0.92 1.00 0.99 1.00 0.95 0.89  

Class 10 0.45 1.00 0.17 0.40 0.52 1.00  

Class 11 0.79 0.86 0.96 0.86 0.95 0.86  

Class 12 0.68 0.00 0.83 1.00 0.91 1.00  

Class 14 0.97 0.89 0.97 0.78 0.98 0.89  

Avg CCR 0.74 0.83 0.81 0.71 0.80 0.89  

Weighted* 
Avg CCR 

0.77 0.78 0.83  

Approximate 
Run Time 
(min) 

05:00 0:08 00:10  

Note: *Here, the statewide dataset has been considered two times more important than the newly collected 
dataset at San Onofre.  

 

As Table 4.1 shows, with 0 hidden layers fixed, the model tends to overfit the new dataset 

and has poor performance on the statewide dataset. On the contrary, with all hidden layers 

fixed, the model is not capable of correctly classify newer trucks in Class 7. The CCR and F1 

score becomes 0 for Class 7 trucks on the newly collected dataset. The adaptive transfer 

learning framework balanced the performance on both the statewide dataset and the newly 

collected dataset without compromising the computation efficiency. This framework 

improves the overall model performance in terms of the weighted average CCR value and 

alleviated the model obsolescence issue in an automated fashion. 

The best-performing model has been evaluated on both the ground truth-labeled 

dataset and the LiDAR-labeled dataset. Table 4.2 presents model validation results on the 

ground truth-labeled dataset as well as the LiDAR-labeled dataset. The model presents a 

similar prediction performance in terms of CCR values on all classes except Classes 2, 3, and 
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5. The prediction results evaluated by the LiDAR-labeled dataset underestimated the true 

performance of the best model regarding CCR value. This could be likely caused by the poor 

performance of the LiDAR-based FHWA model on Classes 2 and 3 vehicles (Table 3.3). For 

the model performance on Class 5 vehicles, the evaluation results are high on the LiDAR-

labeled test set while low on the ground truth labeled test set. In this case, the LiDAR-based 

and signature-based models might be biased towards the same directions. 

Table 4.2 Model Validation on Ground truth-labeled dataset vs. LiDAR-labeled dataset 

  
The Best model CCR on Ground truth- 

Labeled test set 
The Best model CCR on LiDAR- 

Labeled test set 

Class 2 & 3 1.00 0.89 

Class 5 0.67 0.78 

Class 6 0.89 0.89 

Class 7 0.89 0.89 

Class 8 0.78 0.78 

Class 9 0.89 0.89 

Class 10 1.00 1.00 

Class 11 0.86 0.86 

Class 12 1.00 1.00 

Class 14 0.89 0.89 

Avg over All Classes 0.89 0.89 

 

The performance of LiDAR-based classification is sufficient to serve as a data labeling 

platform for the self-learning framework, especially for heavy-duty trucks. The LiDAR-based 

model still needs to be further enhanced on predicting pickup trucks and passenger vehicles, 

in order to provide reliable labels for the validation and calibration of the signature-based 

model across all classes. 

4.4 Conclusion and Discussion 

This chapter explored the use of advanced models using roadside LiDAR sensors, which have 

been proved to be capable of directly capturing truck axle configuration to update a legacy 

inductive signature model using a self-learning framework.  In this concept, LiDAR sensors 
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can be installed at a strategic subset of existing inductive loop signature sites to capture the 

characteristics of new trucks, and serve as an automated data labeling platform for 

enhancing the legacy signature-based classification model with its ability to directly capture 

axle configuration of trucks using dense reconstructed 3D point-clouds. The legacy model 

contains information that is needed to characterize a significant proportion of the truck 

population still in operations. However, a full replacement of the existing legacy signature-

based model to enable its ability to recognize new trucks requires a cost-intensive periodic 

data collection, annotation, and model training process. Therefore, this chapter developed a 

transfer learning framework to enhance the generality of the legacy signature-based model 

without a costly full model migration. In the transfer learning framework, the legacy 

signature-based model was updated with a small LiDAR-labeled newly collected dataset by 

fixing different numbers of hidden layers of the DNN model. Then, the transfer DNN models 

with different fixed layers were analyzed on both the archived signature and the newly 

collected dataset. The model with the optimal number of fixed layers was selected according 

to the weighted average of the model performance on both datasets such that the signature-

based transfer DNN model is capable of correctly classifying both old and new truck 

designations. The integration of the inductive loop detectors and LiDAR sensors enables the 

self-learning ability of the truck activity monitoring system without a labor-intensive data 

annotation process. This framework enhances the resilience of the signature-based FHWA 

classification model and reduces the obsolescence issue of the existing truck classification 

system. 

This self-learning framework can be potentially adopted to automatically upgrade 

and calibrate the signature-based FHWA classification when it is deployed outside California. 
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For example, triple-trailer trucks in Class 13 are permitted in many other states. But they are 

restricted in California and not included in our training dataset. When the model is re-

deployed in a state, where triple-trailer trucks are permitted. The designed self-learning 

framework is expected to be able to learn such information and further enhance its 

performance in predicting Class 13 vehicles. 
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CHAPTER 5 : Conclusion, Discussions, and Future Works 
 

5.1 Conclusion  

This dissertation designed a resilient spatiotemporal truck monitoring framework using 

advanced loop sensors and LiDAR sensing technologies. The major contributions of this 

dissertation can be summarized in three parts:  

1.  For major highway truck monitoring using inductive loop sensors, the model bias 

issue that occurred in the literature was confirmed. The previous signature-based 

truck speed estimation and FHWA classification model overlooked the model 

performance on minority classes, even though many of these minority classes may 

pose a disproportionately adverse impact on the pavement structure and roadway 

environment. In this dissertation, a signature-based individual truck speed 

estimation model and an FHWA vehicle classification model were developed with an 

emphasis on the enhancement of the model performance concerning minority classes 

without compromising the model performance on majority classes. The two models 

developed in this dissertation are capable of providing reliable truck speed and 

FHWA class data on major freeways.  

2. In order to address the truck surveillance gap on rural highways for long-term 

operations, a non-intrusive sensor solution – Multi-array LiDAR sensor – was used to 

develop a truck classification model on the basis of FHWA as well as the body 

configuration scheme. In this dissertation, a new vehicle point cloud reconstruction 

framework with ground plane consideration was first designed to merge multiple 

consecutive frames originating from the same vehicle point cloud and to further 
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obtain a dense representation of each vehicle. Then, the low profile of the vehicle 

point cloud was extracted and used to classify vehicles based on the FHWA 

classification scheme. Further, the reconstructed point cloud was adopted as input to 

a deep representation learning algorithm – PointNet- to classify trucks according to 

their detailed body configurations. The new LiDAR-based truck classification method 

was able to retain a wide LiDAR detection zone with a promising correct classification 

rate. 

3. A self-learning framework was designed to alleviate the obsolescence of the vehicle 

truck classification system through the integration of inductive loop sensors and 

LiDAR sensors, the latter of which has been proven to have the ability to recognize 

the truck axle configuration.  The self-learning framework adopted the LiDAR-based 

classification model as a data labeling platform to produce reliable FHWA class labels 

for validating and upgrading the legacy signature-based classification model, which 

may not be optimal in classifying newer trucks operating on the highway over time, 

since the signature-based classification model does not directly capture the axle 

configuration of trucks, but rather infers their FHWA classes based on inductive 

signature characteristics.  Subsequently, an adaptive transfer learning framework 

was developed to improve the performance of the new signature-based classification 

model without retraining the model with the overall dataset and to further reduce the 

computation burden. In the near future, conventional diesel and gasoline trucks may 

transition towards zero-emission (ZE) fuel cell or battery-electric trucks which may 

possess different truck body characteristics. The designed self-learning framework 
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possesses the potential to accommodate such changes and produce reliable FHWA 

classification data while the newer eco-friendly ZE trucks penetrate the market. 

 

5.2 Future Work 

Trucks can be characterized into different categories based on their diverse physical features 

(e.g. axle configurations, body configurations, weights, models, etc.) for the use of various 

transportation applications. Therefore, a single characterization scheme is never sufficient 

to provide a comprehensive understanding of truck movements and further address 

trucking-related concerns.  

One potential future direction of this dissertation is to leverage the existing sensor 

setup to provide much more detailed truck class information, such as the gross vehicle 

weight rating classification which can be directly used for emissions analysis, and in freight 

forecasting.  

In addition, the designed truck monitoring system can be further extended through 

fusion with tracking sensors, such as Global Positioning System (GPS) and Automated 

License Plate Readers (ALPR), to provide truck trajectories by their detailed classifications 

and further derive the truck origin-destination information to better support the task of 

freight forecasting in the future. 
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