UC Irvine
ICS Technical Reports

Title
UCI LISP Manual

Permalink
https://escholarship.org/uc/item/69j664cd

Authors

Bobrow, Robert J.
Burton, Richard R.
Jacobs, Jeffrey M.

Publication Date
1973

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/6qj664cd
https://escholarship.org/uc/item/6qj664cd#author
https://escholarship.org
http://www.cdlib.org/

UCI LISP MANUAL

by

Robert J. Bobrow
Richard R. Burton
Jetfrey M. Jacobs
- Daryle Lewis

“Notice: This Material
may be protected
by Copyright Law

(Title 17 U.S.C.)

Department of Information and Computer Science
University of California, Irvine
TECHNICAL REPORT #21 updated 10/73

Table of Contents;

Introduction ' . 0. O
Debugging Facilities : 1. 1
. Introduction ' 1. 1
Temporarily Interrupting a Computation 1. 5 7
BREAKL - The Function that Supervises all
Breaks ' 1. 6
What You Can Do In a Break 1. 8
Break. K Commands : 1. 8
Leaving a break with a value
(OK,GO; EVAL, FROM?) 1. 8
Correction of UNBOUND ATOM and
UNDEFIMNED FUNCTIOM errors (>, USE) 1- 9
Aborting to Higher Breaks or the Top
Level (T, TT) ‘ 1.10
Examining and Modifying the Context of
a Break 1.11
Searching for a Context on the Stack 1.11
Editing a Form on the Context Stack 1.12
Evaluating a Form in a Higher Context ‘ 1.12

Backtrace Commands
Printing the Functions, Forms and Variable

Bindings on the Context Stack 1.15
Breakmacros ' _ ‘

User Defined Break Commands 1.17

How to Use the Break Package 1.18

Setting a Break to Investigate a Function 1.18

Tracing the Execution of Functions’ 1.19

Setting a Break INSIDE a Function 1.19

Removing Breaks and Traces 1.21

Using BREAKO Directly to Obtain
Special Effects from the

Break Package 1.23
Error Package - Getting Automatic Breaks
When Errors Occur 1.24

summary of Break Commands 1.25

The LISP Editor
Intrecduction
Commands for the New User
Attention Changing Commands
Local Attention Changing Commands
Commands That Search
Search Algorithm
Search Commands
Location Specification

Commands That 5ave and Restore the

£dit Chain
Commands That Modify Structure
Implementation of Structure
Modification Commands
The A, B; : Commands
Form Oriented Editing and
the Role of UP
Extract and Embed
The MOVE Command
Commands That "Move Parenthecses"
TO and THRU
Commands That Print
Commands That Evaluate
Commands That Test
Macros
Miscellaneous Commands
BEditdefault
Editor Functions

Extended Interpretation of LISP Forms
Evaluation of Sequences of Forms
' Extended LA!MBDA Expressions
The Functions PROG1 and PROGH
Conditional Evaluation of Forms - SELECTO)
Changes to the Handling of Errors
Miscellania - APPLY#, NILL

2. 1
2. 2
2.10
2.15
2.16
2.22
20,24
2.26
2-30

2:45
2.46
2.50
2.54
2.57
2.62
2.63
2.66
2.68
2.71
2.78
2.80

3.
3.
3a
3.
3.

U WO N

Extensions to the Standard Input/Output Functions

Project-Programmer Numbers for Disk I/0

Saving Function Definitions, etc. on Disk Files

Reading Files Back In

Reading Directories

File Manipulation

Queuing Files

Recovery from OMANGR Errors

Printing Circular or Deeply Nested Lists

Spacing Control - TAB

"Pretty Printing"™ Function Definitions and

S-Expressions

Reading Whole Lines

Teletype and Prompt Character Control Functions

Read Macros - Extending the LISP READ Routine
Functions for Defining Read Macros
Using Read Macros :

Modifying the READ Control Table

Reading without Interning

New Functions on S~Fxpressions

S-Exrression Building Functions
S-Expression Transforming Functions
S-Expression Modifying Functions

Mapping Functions with Several Arguments
lapping Functions which use MCONC

S-Expression Searching and Substitution Functions
Zfficiently Working with Atoms as Character Strings

Mew Predicates

Data Tvpe Predicates

Alphabetic Ordering Predicate

Predicates That Return Useful Non-HIL Values
- Other Predicates

Mew HNumeric Functions

Mininum and Maximum
FORTRAN Functions in LISP

4o
4.
4.
4.
4.
4.
4.
4.
4.
4,

4.
4

4.

4ﬁ
.
4.
4.

5.
5.
5
5.
5.
5.

5.'

5.

6.
6.
6.
6.
6.

7
70
7o

OO O U & W NN == 2 2 e

WOy s W

0N

b

g N

Functions for the System Builder
Loading Conmpiled Code into the High Segment
The Compiler and LAP
Special Variables
Removing Excess Entry Points
Miscellaneous Useful Functions
Initial System Generation

The LISP Evaluation Context Stack
The Contents of the Context Stack
Examining the Context Stack
Controlling Evaluation Context

Storage Allocation _
Contiguous Blocks of Storage

Index

8.
8.
8.
8.
8.
8.
8.

9.
9.
9.
9.

10.
11.

INDEX.

B Lo NN

N e

1

1

1

. “INTRODUCTION

UCI LISP is a compatible extension of the Stanford LISP
1.6 programming system for the DEC PDP-10. The extensions
make UCI LISP a powverful and convenient interactive
pProgramming environment for ‘research and teaching in
artificial intelligence - and advanced list processing
applications. All Stanford LISP programs. (except those
using the BIGIUM package) can be run directly in UCI TLISP.
In addition, the extended features of UCI LISP make it much
easier to transfer interpreted LISP programs from BBN LISP
and MIT AI LISP (we have already converted several large
programs, including a " version of the Woods’ Augmented
Transition MHetwork Parser from BBN LISP, and a version of
Micro-Planner from IMIT AI LISP.)

This manual describes the extensions to the Stanford
LISP 1.6 system, and should thus be read in conjunction with
the latest Stanford LISP 1.6 manual, currently SAILOI 28.6
(Stanford Artificial Intelligence Laboratoryvy Operating Note
28.6). "As can be seen from the relative sizes of the two
~documents UCI LISP represents a substantial extension to
‘Stanford LISP, and from our own experience presents a major
improvement in the habitability of the svstem for both naive
and experienced users. (2 majority of the extensions were
suggested by the features of BBI LISP, probably the best
interactive LISP system in existence, but unfortunatelvy
available at the time UCI LISP was implemented only on
TENEX, a paged virtual memory system for the PDP-10,
produced by Bolts, Beranek and Mewman Inc.; this LISP system
is now or soon will be available on +the BURROUGHS RB6700 and

the IBM 5/360 and S/370 series machines, and is now called
INTERLISP.) '

The major extensions to Stanford LISP can bpe briefly
described as follows: '

1) Improvements in storage utilization:
a) UCI LISP is reentrant and compiled code nav be
placed in the sharable high segment
b) The allocator allows reallocation of all
spaces (including Binary Program Space) at anv
time, and new vVversions of GETSYM and PUTSYM
are now available to permit relocation of

c)

MACRO-10 and FORTRAN coded routines

A new data type, the BLOCK, which allow users
freer access +to Binary Program Space and
permits the construction of data items such as
the system OBLIST, which is both a list and a
contiguous block of storage (to provide
efficient use as a sequential hash table)

2) Powerful interactive debugging facilities,
including: ‘ '

a)
b)

c)

Sophisticated conditional breakpoint and
function tracing facilities

A powerful 1list structure editor for editing
function definitions and data

Facilities . for - examining, correcting and
continuing to run in the context of a program
which has »heen interrupted by an error or by a
user initiated temporary interrupt

3) Extensions to the I/0 facilities available in the
basic system:, including:

a)

b)
c)
a)

e)

Convenient I/0 to disk files, including use of
project/programmer designations and ways to
save and restore functions and data

Read Macros (patterned after MIT AI LISP) for
extending the LISP READ routine

A routine for printing circular or deeply
nested expressions

Routines to modify the control table of the
LISP READ routine

The ability to <change the OBLIST used by
INTERIl (and, hence, READ) at any time by
changing the wvalue of +the atom OBLIST to a
properly structured BLOCK 1list (see 1lc above
and Chaonter 11)

The ability to RENAME and DELETE files £from
within LISP

The abilityvy to read file directories for any
accessible project-programmer number, to see
if a file exists in a directory

Several useful functions for carriage
positioning, teletype echo and prompt
character control, reading input a line at a

time, reading list structures without
interning their atoms, etc. :

4) Functions for examining and modifving the special
pushdown stack which holds the context of ongoing

computations

5) Error protection facilities:

a) NMMIL, T and other atoms cannot bhe easily
damaged by RPLACA, RPLACD, SETC and SET

b) The system will no longer go into an infinite
loop when searching for the function
definition of the CAR of a form

¢) Changes to the disk output routine DSXOUT so
that it uses the RENAME facility to provide a.
backup for user files (minimizing the risk of
unintentionally clobbering files)

6) Fxtended basic functions including:

a) ¥New predicates for data tvypes, and most
predicates now return useful non-NIL values,
rather than T

b) llew list construction and modification

. functions

c) Multiple sequential form evaluation in LAMBDA
expressions

d) An efficient n-wav switch

e) Availability of the fORTRAN mathematical
functions _

f) Mapping functions with several arguments, and
ones which build new lists using NCONC to join
segments

7) The ability to use many of the system Queue
" Manager’s facilities without leaving L.ISP,
allowing:
a) Listing of files on the line printer
b) Initiation of batch jobs

As mentioned;, we have made UCI LISP a reentrant system
which may bhe used by several users simultaneously. Thus,
while the new features of UCI LISP require a larger system
than the original Stanford LISP, this inmpact is minimized in
any environment with more than ocne LISP user. In addition,
since the hkasic LISP system contains many features
previously available only in the various extension rfiles
(such as SMILE, ALVIMNE, TRACE, etc.) or which had to be
written by the user, it is possible to write and debuqg
meaningful Jjobs in the basic system, without getting extra
core. The UCI LISP svstem has a sharable hiqah segment of
14K and a user specific low seqment of BK. Thus, if there
are two users the virtual core load is 30K, while getting

the same capabilities in Stanford LISP would reaquire a load
of 32K for the two users, and of course the improvement is
even more noticeable with more users sharing UCI LISP (about
8K is scaved for each additional user)..

- The ability to put compiled code in the sharable
segment and to . reallocate Binary Program Space makes it
possible to build systems in which much of the systems code
is compiled LISP expressions. All of the advantages of
higher level coding are obtained, and the LISP compiler
(borrowed from' Stanford with some small modifications)
produces better results than most assembly language coders.
Such partially compiled svstems can now be used without
closing off the possibility of the user extending Rinary
Program Space to store his own compiled code. In general,
it is now possible to compile a system incrementally. The
user can save the low segment which contains the partially
compiled system, then test out new material in interpreted
form before extending the Binary. Program Spac¢e in the
segment to load the new compiled material. :

The debugging facilities form the bulkx of the
extensions to Stanford LISP, and are identical with the
equivalent facilities available in BBM LISP in the summer of
18971.° (BBM LISP has been extended in the intervening
period.) They make it possible for the user to track down
bugs in complicated recursive programs by making it easier
for him to investigate the context in which the bug occurred
(e-g. to see at what point erroneous data was passed as an
argument, or at what point the flow of control went awry,
etc.) The user does not have to plan in advance or set
breakpeoints to get access to the context of the error. The
system holds the context of any error automatically,
allowing the user to perform whatever investigations he
wishes, and make any corrections which may be useful. This
also makes it possible to Hatch up a small error, like an
unbound atom or simple undefined function, in the middle of
a large computation and to continue the computation without
having to start from scratch. Similarly, the user can try
out ideas for correcting the error, without 1leaving the
context of 'the error, and go on only when he has pinned down
the error and. its possible solution. If the information
available at the time the LISP.system discovers the error is
insufficient to pin down the cause of the error, the user
can have the system repeat the computation, with a special
trace feature that prints out whatever the user wishes to

O
°
IaN

know at various points in the computation. (The user can
specify both ‘what data is to ‘be printed and under what
conditions he wishes it printed.) The user can also force
the system +to establish ~a Dbreakpoint -anywhere in his
computation, so he can investigate the -context before the
error has covered its tracks. :

The UCI LISP editor (borrowed with some modifications
from the BBMN LISP system) 1is actually a language for
incremental modification of list structures. It can be used
by a user at a terminal to modify function definitions (even
during the middle of a break while the function is still on
the context stack) or to change complicated data structures.
It can also.be used as a subroutine by other functions,
making 1t convenient for one <function to modify another
functione This is actually done by the BREAK package, to
implement the function BREAKI! which inserts a breakpoint at
any arbitrary point in a user function. '

The editor can move around in a structure by small
local nmotions, or by searching for a portion of the
structure which matches some given pattern-. It can insert
new items, delete old ones, interchange items, chandge
structure, embed old items in new structure or extract then
from old structure, etc. In order to be able to edit a
function which is still on the context stack and toc have all
of the portions on the context stack be changed at once, the
modifications performed by the editor are pPhysical changes
of the existing structure. Although all the modifications
are "destructive", using RPLACA and PRPLACD to make changes
in the given structure, all of the modifications can be
selectively reversed bv means of the UNDO feature. Thus the
user can make rmodifications without worrving about
completely destroving his function definitions by accident.

The editor is a very large, complicated function, and its
documentation indicates that factoe However, the first part
of the editor documentation gives a convenient rundown on
how to wuse .the editor as a novice, and with that +the
beginning user can get quite a bit done. By skimming the
remainder of the editor chapter the user can get some idea
of the many extra useful features available, and can slowly
extend his capabilities with the editor. It has been a
common observation that in the process of writing and
debugging a large system, or even a small pProgram, the
average user spends most of his time in editing This
functions. By Dbecoming familiar with all the features of

the list structure editor the user can cut his editing tine
considerably, and make large or subtle changes easilve. The
user should also bear in mind that the editor is available
as a function. which can be used by other functions. This
can make many jobs substantially easier. '

HOTE: ALVIHNE 1is ngo longer available in the standard
version of UCI LISP because we bhelieve that the new editor
and I/0 facilities are substantially better than those
Pprovided by ALVINE. (There 15 an assembly switch which
makes it possible to run ALVINE in UCI LISP if necessarve.)

Some of the extended I/0 facilities of UCI LISP were
available in GSMILE, etc., but putting them in the shared
sSystem saves core. The Read Macro facility is a .great
-convenience and makes using Micro-Planner nuch simpler. The
user-modified READ control table is more general than that
available in the Stanford@ SCAN package (which is still
useful and available), and the new SPRINT is faster than the
original. The other functions are auite convenient, and
will make many tasks simpler. '

The special pushdown list has been extended to provide
the equivalent of the EBMN LISP context stack. This is the
backbone of the ERROR and BREAX packages, since it enables
running programs to examine their context, and to change it
i1f nécessary. The stack functions, particularly RETFROM and
OQUTVAL make it possible to experiment with various control
regimes, where subordinate functions can abort and return
from higher level functions on the basis of local
information. Indiscriminate fooling around with the stack
is likely to produce peculiar and unwanted results, but the
stack functions can be extremely helpful at times.

The error protection facilities are an attempt to catch
some of the common errxors of novices (and experienced users
too) which can clobber the system. There are few things
more confusing than what happens to the system when the
value of NIL is no longer MIL, or if the valuec of T bhecomes
NIL. In Stanford LISP this could easily happen if SETQ or
ST received a list as a first argument. This can no longer
happen in UCI LISP. Similarly, Stanford LISP occasionally
went into infinite loops because a form had a CAR which was
NI, or had no function definition and evaluated to NIL.

This has been corrected.

The extended basic functions are ones which were of
great use in writing the editor, 2RLCAK package, etc., and in
pringing up translated versions of RBRBM LISP and MIT AI LISP
programs. The multiple form LAMBDA expression and the n-way
switch SELECTQ should make many programming jobs much more

convenient, as shculd the availability of mapping functions
with several arguments. The user will almcst certainly
profit from skimming through the chapters on these extended
features, just to know what is available.

Credits and Acknewledgements

The decign and overall direction of the implementation
of this systen are the responsibility of Robert Bobrow, who!
also made the - first modifications to Stanford 1LISP,
including the original error package, accessible context
stack and storage reallocator. In large part the existence
of the final system and its extensive documentation is due
to the Herculean efforts of Daryvle Lewis, who did the bulk
of the modifications to the assembly language code
(including making Stanford LISP reentrant) and corrected the
compiler and LAP systems. lle singlehandedly transferred the
entire BBN LISP editor and its documentation to our system,
and in general performed ' vital and arduous design,
Programming and documentation tasks *o0o numerocus to mentione.
Richard Burton did vyeoman’s labor by transferring (and
eéxtending) the BBM ILISP ERROR and BREAK packages, and
providing their documentation. . Jeff Jacobs maintained +the
system for many months, correcting may old Stanford compiler
and garbage collector bugs; he also implemented many
extensions, such as the interface to the Queue Manager, disk
file directory functions, the user-switchable OBLIST, and
the BLOCK data tvpe. Bill Earl has also provided great
service in maintaining the system and its documentation.
Whitfield Diffie of Stanford has helped us out of several
sticky problems with the LISP system and its compiler. The
original implementation of the editor and ceveral 1I/0
functions is due to Rodger Knaus, as well as many helpful
suggestions. Finally, but of vital importance, is Alan
Bell, whose great knowledge of the PDP-10 operating svystem
helped us through many rough times, and who has done much of
the transferring of BBN LISP and MIT AI LISP programs.

Ye are triply indebted to the designers, implementers
and documenters of BBN LISP, particularly Daniel Bobrow and
Warren Teitelman. Most of the debugging and interactive
facilities as well as the general design philosophy of UCI
LISP were inspired by the BBN LISP systen. Secondly, we
were able to use much of their code directly, since it was
written in LISP, making it possipble to obtain a large,
well-written and ' debugged system in a fraction of the time
and effort it would have taken to write it from scratch.
Finally, we have made extensive use of the BBN LISP TENEY
REFERENCE MALUAL as a gource of raw material for our
documentation. In particular, nuch of the material in the

chapters on the BREAK and FRROR packages and the editor is a

revised version of the material in the BBRY LISP HMANUAL. We
take full responsibility for the errors and deficiencies
produced by such an arrangement, while greatfully

acknowledging BBI’s aid in providing much of. the basic
Cocumentation. We are also in debt toc several people at BBH
for their aid in obtaining and explaining this material,
particularly Jim Goodwin, Alice Hartley and the director of
the Artificial Intelligence Group, Jaime Carbonell.

This manual is the work of many people as well as the
listed authors =~ in particular Warren Teitelman, formerly of
BBH and now at Xerox Palo Alto Research Center, who produced
the original BBN LISP documentation and the 1lions share of
the original code. We are also in debt to Marion Xauiman
and Phyllis Siegel who did dailyv battle with the PDP-10 to
produce the RUNOFF files from which this documentation is
produced. :

Last, but most assuredly not 1least in the roster of
those who have made this system possible are Kathy Burton
and Connie Lewis who lived through the many discussions, all
night programming sessions and bpattle-fatigue of the year
during which this system was implemented.

ENJOY, ENJOY!

(@]
.
WD

IHDEX

A (edit command) —======meeemcmmeee____ 2,13, 41

ACO S == e - 7. 2

AN = - 6. 3

AP P LY — oo 3. 5

ARGS (break command) ===-=—=-m--—o—mmo o ___ 1.10

AT mm oo o e o 7. 2

ASSOCH# ===—=mmmmmeoo e m e B 5. 7

AT A m e 7. 2

B (edit command) ====—---emmmmm L 2.13, 31

SELOW (edit command) ======-mm-commmm e 2.32, 33

BF (edit command) =====--tcommmmme e 2.10, 28

BI (edit command) ====-==cmommmmmm 2.54

BIND (edit command) ==-—=-=---commmmm e 2.70

BK (break command) ==-===---ommmmmm e ___ 1.15

BK (edit command) ====—---eomm e __ 2-.10, 19

SKE (break command) ===-—---mommmmme 1.15

2KF (break command) ===-=----mmmmmm 1.15

BL KL T === o e e - 11. 1

30 (edit command) ===-=---mmmmmm . 2455

BREAK === e o e oo . 1. 1, 18

BREAKIN — e e o e 1.1, 20

BREAKMACROS == === oo s e ___ 1.17

BREAKD —m == e o e 1.23

BREAK] o m e e e 1. 6

BR R Y P~ m e o 1. 7

BROKENFNS === e e e oo e e e e e 1.18

CHANGE (edit command) =--===-ecommme . 2.43

CHRV AL == mm = e e 5. 9

O RBI L m == m o e e o e o o e 4. 5

COMS (edit command) ===-=====——mmeee . 2.64

COMSO (edit command) -—=-——====emmmommeo o _ 2.64

QOIS P == mm s e e e o 6. 1

CO Py == e e e e L 5. 3

OB mm e e o 7. 2

COS D == o e - 7. 2

COSH =~ mmm e e e e e 7. 2

DD T == e o 1. 5

DL BT L === o s o . 4. 1. 5

DEILETE (edit command) =----=-=—=mmmme . 2.14, 41, 43

DI R = e el 4o 1. 3

DREMOVE === e e e e 5. 4

DREVERSE === === o m e e e . 5. 4

DR == e e o 4. 6
INMDEY - 1

DSKIMN

DSKOUT

D e T et T T T g

DSUBST - :

E (edit command) ======--emcmmmmme e 2. 9, 63
ZDIT (break command) ====----mmmmm e 1.13
ED I T4 == oo o e . 2.83
EDITCOMSL === o mm oo m s e e o 2.78
EDITDEFAULT =--—---mm—mmmmem oo e 2.78
EDITE ====---—mommmmmmoim ol 2.81

B LT === = o o o e 2.81
EDITFINDP === ommmm o e e e L. 2.84
EDITFNS = e = s oo e o e e 2.83

ED I T FPAT === === e e e 2.84
ED I L == e m s o o 2.80
ED I TP mm = m oo o 2.82
EDITRACEFN === == oo m e o e e e 2.84
DI TV = m e e e o 2.82
EMBED (edit command) =—====m——m-mmme L 2.49
ER R = = e e o 3. 4
ERRCH = mm e s o e o e e e e e 4. 5. 1
ERROR ======mmeem B e T 3. 4
ERRSET == m oo oo e e e 3. 4
EVAL (break command) -—-=---=--=--—~e-mmmo__ 1. 8
EVALV == mmmmm e B e TR 9. 4

EX (break command)===---m-—momm e 1. 14

E NP == e e 7o 2
EZTRACT (edit command) —=-—-=——==m-meoooo o 2. 47
F(break command) =-=---=-----ocmmmmme e 1.11

F (edit command) -—=-=-==-om—mommmm 2. 6, 26, 27
FILBAK mm oo oo e o e e 4. 1. 6
FLATSIZEC ===m=-me———ee .= 5, g
PO AT mm e o 7. 2
FHDBRKPT == o m et o e e e 9. 3
FREE —====--- ——————- e 8. 3. 1
P REELIS T === e o m e e e 8. 3. 1
FROM?= (break command) ---—--——-—-mommmmmeo__ 1. 9, 14
FS (edit command) ==—=--=--mmmmmmm L --- 2.28

F= (edit command) ===Z-==--mmmmmm e 2.28

GO (break command) ==-==----c—mommmm e 1. 8
GRINDEF mmmm e s oo e 4. 3
CRINL === o s e e e 4. 3
GRINPROPS ~==--- e 4. 3
CTBLK === o e e s o e . 11. 1
HERE (in eGitor) ====--==—me—mmmmm e 2.44, 52
HGHCOR —~=—mmmemmmme T T e g. 1
HGHEND =~ o= o s o o o e o e e L. 8. 1
HOHORG === o o o e e 8. 1

I (edit command)} =----
IF (edit command) =m-=-=--=--mcmmm_

THITFL === oo o s s s e —
THITPROMPT === s s m e e e o

INSERT (edit comnand)

TN UMD = m s s e e e o —————
LAMBDA =—====-- e
S
LAPLST === m e m e e __

LASTWORD e e
LASTPOS —=~-meueemo ety U,

LC (edit command) =====--emoocm e
LCL (edit command) ====--=c-—mm o
LCONC === e s s o o e e e e e
LDIFF === R T I —
LEXORDER ===-———oomoo o
LI (edit command) ===-——=ee e
LINEREAD === m e e e e .
LITATOM == s o e e e e oo
LO (edit comman@d) ==-—==-—me e e
LG = m s
LOOKUP === = mm e e e e
LP (edit command) ====-—=--ommmmmm .
LPQ (edit command) ==--=----mmmm e ___
LSUBST ===m=m=mmmmmmem e R R
M (edit command) ======--=-cmmmmm . __

MAKEFIT (edit command)

e L [S—

M e e e
XL EVEL =— = e o m e e e e
MBD (edit command) =-==-———=—mmmom e ____
Y B = o e e L
,u;mmw ..

.Hi,\

11

p]

P VeN

mY

2.3

G

1

82

69

48

T H = o o e e e e e 5. 3

NTH (edit command) ===-=---oommmm e 2.21,
NTHCHAR === = e m s m o e e e e e o 5. 9
UMY PE mmmmm e e e o 7. 1
NX (edit command) -—=-—===--ooomo e 2. 8,
OK (break command) ====----omommmm e 1. 8
OK (edit command) ===---ceommmmm e 2.71
ORF (edit command) =-------=-—=-==v e bkl 2.28
ORR (edit command) ====-----mommmmmmee e 2.67
O e e 6. 3
OUTVAL ===mmmm e e e e .. —————e- 9. 4
P (edit command) =-==-=-c--mommmmm . 2. 2,
PAT O == e e e 6. 1
PP (edit command) ===---==—-—meau-- Sl b Lt 2. 2
PREVEV = m = = e e e e e e 9. 2
PRINTLEV === s e e o e e e 4o 2
PROGH == == s o e o e e . 3. 2
PROG] m = e o e o 3. 2
PROM P T == = e e e e o 4o 5
QUEUE === = mm oo e e 4. 1,
R (edit command) =—====--eccoomme e 2e 7,
RAND O == mm e e L 7. 2
L B D e T T T T U 4o 1.
R AN === e 4de 9
REA D —m oo o s oo e 4. 5,
RE D m o m o s s e e 1. 5
RENAME = m o m 4o 1.
REPACK (edit command) ===-=----emmmmm 2.74
REMOVE = o= s s m o e m o e e e e 5. 3
RETFROM === == e o e e oo o 9. 4
RETURN (break command) =—==--=-commommmmo___ 1. S
RI (edit command) ==-—=--commmmmm e 2.55
RO (edit command) =====--cco-cmmme—mmeee______ 9 5§
RGE TS YM — o m o oo e e e e~ 8. 3.
RPUTS Y mmmm o m s oo e e e e 8. 3.
S (edit command) ==-=-----mem e 2.37
SAVE (edit command) ------- e ittt b e 2.72
SECOHD (edit command) ==—-~=——----mmmmmme 2431
S L EC T mm = e 3. 3
SETCH R === m o o o 4. 8
STH == mmm oo ——————- ———= 7. 2
S e T L LT T ——— 7. 2
S IHHE m = e e e 7. 2
SPECIAL === o e . 8. 2
SPD L T === e . 9. 2
S P DL P T == o e 9. 2
D 9. 2
S P REDD == m e e e o 9. 4

DY . 4

60

NN

0§

‘91

8¢
LL
9L

61

9 XIdNI

Tl B e e HASLAOU
L Tl m e e ARGIE
b m e NI
b L mm - Xy
€0 mmmmmmmmm e (UZ233ed 2TPD® UT) wANVy
Yl e (DURWWOD 1TPB) g
VT T e (PURWWCD 3TPd) HIX
0L ¢ == o - SOUIVIHEE SN
OT°T === oo s (bupwmiod yesaq) dsn
P e DTAAIITAAN
TET ¢ mmmmmm e (PUrwIod 3Tp®) dn
G T e IXLtN
Gl mm e e JOVEINN
19 e . QI NN
SOl s . LST0aNn
fO0T"Z mmmmmmmm e (PURWWOD 3TP?d) odln
Tl mmmm e MVIYENN
€ B e AHNOERN
LL®T === e e (PUPWUOD 3TP®) YDOTHHN
T TP el mmmm—— e dNIadn
TL°C = mmm e e e (PURWWOD 3TPO) :ZLL
S P mmm e omumywe
BT T mm = . SHAQ
'T T e m——————— m————— ———————- —-——— uuqma
LG*T ==mmmmmmmmo o mmmmm e ————— ﬁwcmcsou 1TPa) 0oL
LG T mmmmmmmmmm e m==m=---- (PURWWOD 3TPO) NWHL
TE°C =mmmmmm e mmmm=-=---- (PURLWOD 3IP®) CJIIHL
LL*T —mmmmmmmm e -==m----- (PURLUCD 3TPI3) ISHEL
LG mmm e e L 2LODT
C L e e HNVL
€ L S 1YL
€ *9 ==-—mmmmm - e e e e dTIVL
 "p =mmmmmem e e T gva
€ "8 mmm—mmemee o ——————— e ——~=- WTIISAS
19°C —=-mmmmmm e ee—— -~ (PUBWIOD 3TP3) MS
6V ~---- i e (PUBMUWOD 3TP®) GHNNOUNUNS
L *G ==m——mmmeeme e T e mm—m—e o FEIVadns
L CG e —————— e S$I140S
T *9 =;emmmeee o e i dONIYLS
TLC == ——————ee Accmszoo 31TPa) dJdois
€ "0 —mrmm e ——————- HOYSULS
T °6 —mmmmmmmm e R —--= ¥IdJMLS
€ °6 ———mmmmmm o e et HILMLS
€ °6 —=----- e i e ———————— ~ IWYNALS
€ T e LNOODAL
2 L mmm————- ST e L. 1LY0S
£ *p =—==mm- mem——mm— - i el LHI¥dS
4

B T oo TYATYNGS

ARPUTSYM == mmmmmmmmm e e oo o e oo mmmmm

44 ---

(edit command) ===—===-emmm—mm e~
@ (at-sign, in edit pattern) =----- - mmmmme—-
T (break command) =--=--=-=---mmmmmm e
T (edit command) =—=-=------mommmc oo
TT (break command) =-=--—------mmommmmemem
& (break command) =--===—--c----- e
& (in edit pattern) —=--—----m--rmmmm oo
? (edit command) ———-mmmmmmmmm e
2? (edit command) —=--—==----mmmemm e
?= (break command) ==—-—==—-mmmmme e
< (in break package) =--=-=-=--=—=----—-——ow-—- ---
< (edit command) =-r----=---m-— e mm e

<« (edit command) —==--=----—=----——————— m———— :

(edit command) -—--—--===---mm e
(edit command) e el
(in ecit pattern) =—=-==---—cmemmmmmmm -

== (in
-- (in

\

edit pattern) -------------------—o——mo
edit pattern) ------------ S e mme— e — -

\ (edit command) -—=-==-=cm-mmm e

\P (edit command) —===--—-—meme e

(¢« pattern) (edit command) ---==—-=----meemeaa-
> (break command) -—-—----mmmmem e
-> (break command) —=--=------—m—m e ———mmem
BLOOKDPTH === — = oo oo m e e e
G PRINFN — = m o= mm e m e e
MY (edit command) ==—-=====—=--m—mmemm e~

!UNDO

(edit command) ==----===--~—cc-——m——————

10 (edit command) ==—==——===—e—mc o e~

!VALUE

INDEY « 6

] 1

41

22
36
37

DEBUGGING FACILITIES

Introduction

‘Debugging a collection. of LISP functions involves
isolating problems within particular functions and/or
determining when and where incorrect data are Dbeing
generated and transmitted. In the UCI LISP system, there
are five facilities which aid the user in monitoring his
pPrograme. One of these is the Error Package which takes
control whenever an error occurs in a program and which
allows the user to examine the state of the world (see
section on ‘ERROR PACKAGE’). Another facility allows the
user to temporarily interrupt his computation and examine
its progress. The other three facilities (BREAK, TRACE and
BREAKIN) allow the user to (teémporarily) modify selected
function definitions so that he can follow the flow of
control in his programs. All of these facilities use the
same system function, BREAK1, as the user interface.

BREAK, BREAKIN and TRACE together are called the Break
Package. BREAK and TRACE can be used on compiled and system
functions as well as EXPR’s, FEXPR’s and MACRO’s. BREAKIN
can be used only with interpreted functions.

BREAK modifies the definition of a function FN, so that
if a Dbreak condition (defined by the user) is satisified,
the process is halted temporarily on a call to FN. The user
can then interrogate the state of the machine, perform any
computations, and continue or return from the call.

TRACE modifies a definition of a function FN so that
whenever FN is called, its arguments (or some other values
specified by the user) are printed. When the value of FN is
computed it is printed also.

BREAKIN allows the user to insert a breakpoint inside
an expression defining a function. When the breakpoint is
reached and if a break condition (defined by the user) is
satisfied, a temporary halt occurs and the user can again
investigate the state of the computation.

The two examples on pages 1.3 and 1.4 illustrate these
facilities. In the first example, the user traces the
function FACTORIAL. TRACE redefines FACTORIAL so that it
calls BREAKI in such a way that it prints some information,
in this case the arguments and value of FACTORIAL, and then

goes on with the computation. When an error occurs on the
fifth recursion, BREAK!l reverts to interactive mode, and a
full break occurs. The situation is then the same as though
the user had originally performed (BREAK FACTORIAL) instead
of (TRACE FACTORIAL), and the user can evaluate various LISP
forms and direct the course of the computatione. In this
case: the user examines the variable N, instructs BREAK]l to
change L to 1 and continue. The > command, following an’
UNBOUND ATOM or UNDEFINED FUNCTION error: tells BREAX] to
use the next expression instead of the atom which caused the
@rrore- The > command does a destructiveée replacement of, in
this case, 1 for L, and saves an edit step by correcting the
typo in the function definition. The rest of the tracing
proceeds without incident.s The function UNTRACE restores
FACTORIAL to its original definition.

In the second example, the user has written Ackermann’s
function. He then uses BREAX to place a call to BREAKI1
around the body of the function. He indicates that ACK {is
to be broken when M equals N and that before the break
occurs, the arguments -to ACK are +to be printed. While
calculating (ACK 2 1), ACK 1is called twice when M = N.
During the first of these breaks, the user prints out a
backtrace of the function names and variable bindings. He
continues the computation with a GO which causes the value
of (ACK 1 1), 3, to be printed before the break is released.
The second break is released with an OK which does not print
the result of (ACK 1 1). The function UNBREAK with an
argument T restores the latest broken or traced function to
its original definition.

For further information on how to use BREAK, TRACE and
BREAKIN, see the section on The Break Package.

*(DE FACTORIAL (H)
(COND ((ZEROP N) L).
(T (TIMES M (FACTORIAL

FACTORIAL

" *(TRACE FACTORIAL)

(FACTORIAL)
*(FACTORIAL 4)
ENTER FACTORIAL:

! N = 4

! EHTER FACTORIAL:

! ! H = 3 :

! ! ENTER FACTORIAL:

! ! ! H =2 ,
! ! ! ENTER FACTORIAL:
! ! I ! N =1

i ! ! ! ENTER FACTORIAL:
! i ! i ! N =0
L .

UNBOUND VARIABLE - EVAL
(L BROKEN)

1:N

0

1:> 1

! ot { FACTORIAL = 1
! ! { FACTORIAL =1

! ! FACTORIAL = 2

! FACTORIAL = 6
FACTORIAL = 30

30

(UNTRACE FACTORIAL)

(FACTORIAL)
* (FACTORIAL 4)

30

(SUB1 N))))))

*(DE ACK (M 1)
(COND ({(ZEROP M) (ADPD1 1))

((ZEROP N) (ACK (SUB1 M) 1))

(T (ACK (SUBL M) (ACK M (SUB1 N))))))

ACK
* (BREAK (ACK (EQ N M) (ARGS})))
(ACK)

*(ACK 2 1)
M= 1
n=1

(ACK BROKEN)

1:BKFV

M =1
N =1

ACK -

M o= 2

N =0
ACK

Moo= 2

No=1

ACK

1:GO

3
M =1
M= 1

(ACK BROKEN)

1:0K

5

*(UNBREAK T)

(ACK)

Interruptinq a _computation-REE and DDT

A useful feature for debugging is a way to temporarily
suspend computatione. If the user wishes to know how. his
computation is proceeding (i.e. is he in an infinite loop
or 1is system response poor). Then type Control-C twice
(which will- cause a return to the monitor) followed by
either REE or DDT. After typing REE the user must respond
with one of the following control characters; Control-H,
Control-B; Control-G, Control-E or Control-Z. Typing DDT is
eguivalent to typing REE followed by Control-H.

1. Control-H: -This will cause the computation to continue,
but a break will occur the next time a function is called
(except for a compiled function called by a compiled
function). A message of the form (-- BROKEN) is typed and
the user 1is in BREAKl (see the next section)e. He can
examine the state of the world and continuve or stop his
computation using any of the BREAK]l commands. WARNING It is
possible to get into an infinite loop that does not include
calls to functions other than compiled functions called by
compiled functions. These will continue to run. (In such
cases, type Control-C twice, followed by REE, followed by
one of the other control characters).

2. Control-B: This will cause the system to bhack up to the
last expression to be evaluated and cause a break (putting
the wuser 1in BREAKl with all the power of BREAK1 at the
user’s command. This does not include calls to compiled
functions by other compiled functions.

3. Control-G: This causes an (ERR ERRORX) which returns to
the last (ERRSET ERRORX) - This enables the user to
Control-C out of -the Break package or the Editor, reenter
and return to the appropriate command level. (i.e. if the
User were several levels deep in the Editeor for example,
Control-G will return him to the correct command level of
the Editor).

4. Control-E: This does an (ERR NIL), which return NIL to

the --last ERRSET. (See section on changes to ERR and

ERRSET) .

5. Cohtrol-Z:_ This returns the user to the top-level of
LISP, (i-e. either the READ-EVAL-PRINT loop or the current
I_NITFN). ' . " o) .

6o Control-R: This restores the - normal system OBLIST.
Another of the above control characters must be typed after
this character is typed. This will often recover after a
GARBAGED OBLIST message.

BREAK1

The .heart of the debugglng pacxage is a functlon called
BREAK1. '~ BREAK and TRACE redefine your- functlons in terms of
BREAKl. ' When an error occurs control 1e passed to BREAKl.
The DDT break feature ‘is also 1mp1emented using BREAKl.«

Whenever LISP types a message of the form (-- BROKEN)
followed by ‘n:’ the user 1is then talklng to’ BREAK1l, and
he is-7in a break.’ BREAK1 allows the user to interrogate
the state of the world and affect the course of the
computation. ‘It uses the prompt character ‘:° to indicate
it is ready to’ accept 1nput(s) for evaluatlon, in the same
way ‘as the top level of LISP uses °“*’. The n before the “:°
is the 1level number which indicates how many levels of
BREAK]1 are currently open. The user mavy type in an
expression for evaluatlon and the value will be .printed out,
followed by another "'- Or the user can type in one of the
commands describhed below which are specifically recognized
by BRLAKl (for summary of commands'see Table I, page 1.25).

Since BREAKI1 puts all of the power of LISP at the
user’s command, he can do. -anything he can do at the top
level of LISP. For example; he can define new functions or
edit existing ones, set breaks, or . .trace functions. The
user may evaluate " an expresslon, see that the value was
incorrect, call the eéeditor, change a function, and evaluate
the expression again, all without leaving the break.

It is important to emphasize that once a break occurs,
the wuser is in complete control of the flow of the
computation, and the computation will not proceed without
specific instruction from him. Only if the user gives one
of the commands that exits from the break (GO, OK, RETURN,
FROM?=, EX) will the computation continue. If the user

wants to abort the computation, this also can be done (using
T oxr TT.

Note that BREAKl is just another LISP function, not a
special system feature 1like the interpreter or the garbage
collector. It has arguments and returns a value, the same
as any other function. A call to BREAK1 has the form

(BREAK1 BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE)

The arguments to BREAK1 are: BRKWHEN is a LISP function
which is evaluated to determine if a break will occure. If

S

BRKWHEN returns NIL, BRKEXP is evaluated and returned as the
value of the BREAK!L. Otherwise a break occurs. BRKFN 1is
the name of the function being broken and is used to print
an identifying message. BRKCOMS is a list of command lines
(as returnecd by READLINE) which are executed as if they had
been typed in from the teletype. The command lines on
BRKCOM5 are executed before commands are accepted from the
teletype, so that if one of the commands on BRKCOMS causes a
return, a break occurs without the need for teletype
interaction. BRXTYPE identifies the type of the break. It
is used primarily by the error package and in all cases the
user can use NIL for this argument.

The value returned by BREAK]l is called °‘the value of
the break.’ The user can specify this value explicitly by
using the RETURN command described below. In most cases,
however, the value of the break is given implicitly., via a
GO or OK command. and is the result of evaluating ‘the break
expression,’ BRKEXP.

BRKEX is, in general, an expression
equivalent to the computation that would have
taken place had no break occurred. In other

words, one can think of BREAK1 as a fancy EVAL,
which permits interaction before and after
evaluation. The break expression then corresponds
to the argument to EVAL. For BREAK and TRACE,
BRKEXP 1is a form equivalent +to that of the
function being traced or broken. For errors,
BRKEXP is the form which caused the error. For
DDT ©breaks, BRKEXP is the next form to be
evaluated.

WHAT YOU CAN DO IN A BREAK

Break Commands

Once in a break, in addition to evaluating expressions,
the user can ask BREAK1l to perform certain useful actions by
giving it atomic items as "break commands". The following
commands can be typed in by the user or may be put on the
list BRKCOMS. ' TABLE I (page 1.25) is a summary of these
commands. : ‘

All printing in BREAKl is done by calling (%PRINFN
expr). %PRINFN is an atom (not a function) which should
evaluate to the name of a printing function of one argument.
SPRINFN is initialized to use PRINTLEV because it can print
circular 1lists, which «quite often result from errors.
PRINTLEV only prints lists to a depth of 6. This depth
parameter may be changed by setting the value of %LOOKDPTH.
PRINTLEV 1is necessarily slow and if you are not printing
circular structures, traces can be speeded up greatly by
changing the value of $%PRINFN to PRINI1.

GO :

Releases the break and allows the computation
to proceed. BREAK1 evaluates BRKEXP, its first
argument, prints the value, and returns it as the
value of the break. BRKEXP is the expression set up
by the function that called BREAK1. For BREAKX or
TRACE, BRKEXP 1is equivalent to the body of the
definition of the broken function. For the error
package, BRKEXP is the expression in which the error
occurred. For DDT breaks, it is the next form to be
evaluated.

OK

Same as GO except that the value of BRKEXP is
not printede.

EVAL .

Causes BRKEXP to be evaluated. The break 1is
maintained and the value of the evaluation 1is
pPrinted and bound on the variable !VALUE. Typing GO
or OK will not cause reevaluation of BRKEX
following EVAL but another EVAL will. EVAL 1s a
useful command when the user is not sure whether or
not the bhreak will produce the correct value and

wishes to be able to do something about it if it is
Wwronge.

RETURN form
The form is evaluated and its value is returned
as the value of the break. For example, one might
use the EVAL command and follow this with
RETURI! (REVERSE !VALUE).

- This permits the user to release the break and
return to a previous context with form to be
evaluated. For details see context commands.

> {or ->1 expr .
For use either with UNBOUND ATOM error or
UNDEFINED FUNCTIOM error. Replaces the .expression
containing the error with expr (not the value of
eXpr) e<ge.,

FOO1

UNDEFINED FUNCTION
(FOO1 BROKEHN)

1:> FOO

changes FOOl to FOO and continues the computation.
EXpr need not be atomic, e.qg.,

FOO

UNBOUND ATOM
(FOO BROKEN)
1:> (QUOTE FO0O)

For UNDEFINED FUMNCTION breaks, the user can specify
a function and its first argument, e.g.,

MEMBERX

UMDEFINED FUNCTION
(MEMBERX BROKEN)
1:> MEMBER X

Note that in the some cases the form containing the
offending atom will not be on the stack (notably,
after calls to APPLY) and in these <cases the
function definition will not be changed. In most

cases, however, > will correct the function
definition.)

USE x FOR vy

)

ARGS

Causes all occurrences of y in the form on the
stack at LASTPOS (for Error breaks, unless a F
command has been used, this form is the one in which
the error occurred.) to be replaced (RPLACA’ed) by
X. Note: . This 1is a destructive change to the
s-expression involved and will, = for example,
permanently change the definition of a function and
make a edit step unnecessary.

Calls ERR and aborts the break. This is a
useful way to unwind to a higher level break. All
other errors, "~ including those encountered while
executing the GO, OK, EVAL, and RETURHN commands;
maintain the break.

. This returns_cdntrol directly to the top level
of LISP. : .

Prints’ the names and the current values of the
arguments of BPKFMN. In most cases, these are the

arguments of the broken function.

Context Commands

:

All information pertaining to thé evaluation of forms
in LISP is kept on the special push down stack. Whenever a
form is evaluated, that form is placed on the special 'push
down stack. Whenever a variable is bound, the o0ld binding
is saved on the special push down stack. The context (the
bindings of free variables) of a function is determined by
its position in the stack. When a break occurs, it is often
useful to explore the contexts of other functions on the
stack. BREAK] allows this by means of a context pointer,
LASTPOS, which is a pointer into the special push down
stack. BREAK] contains commands to move the context pointer
and to evaluate atoms or expressions as of its position in
the stack. For the purposes of this document, when moving
through the stack, "backward" is considered to be toward the
top level or, equivalently., towards the older function calls
on the stack.

F [or &} argl arg2 ... argh
Resets the variable LASTPOS, which establishes
a context for the commands 2=, USE, EX and FROM?=,
and the backtrace commands described helow. LASTPOS
is the position of a function call on the special
.push down 1liste. It is initialized to the function
just before -the call to BREAKI1.

F takes the rest of the teletype: line as its
list of arguments. F first resets LASTPOS to the
function call just before the call to BREAKLl, and
then for each atomic argument, F searches backward
for a call to that atom. The following atoms are
treated specially:

F
When used as the first argument
caused LASTPOS not to be reset to
above BREAKl but continues searching
from the previous position of LASTPOS.
NMumbers

If negative, move LASTPOS back
(i.e. towards the top level) that
numher of calls, if positive, forward.

" “search forward instead of
backward for the next atom

Example:

If the special push-down stack looks like

BREAK1 (13)
FOO (12)
SETQ (11)
COND (10)
PROG : (9)
FIE (8)
COMND (7)
FIE ‘ (6)
COND (5)
FIE (4)
COMND (3)
PROG (2)
FUM (1)
then _
' F FIE COUD will set LASTPOS to to (7)
F & COND will then set LASTPOS to- (5)
F FUM <« FIE will stop at (4)
F &2 will then move LASTPOS to (6)
F ' will reset LASTPOS to (12)

If F cannot successfully complete a search,
for argN or if argN is a number and F cannot move
the number of functions asked, "argN?" is typed.
In either case, LASTPOS is restored to its value
before the F command was entered. Mote: It 1is
possible to move past BRKEXP (i.e. into the break

package functions) when searching or moving
forwards.

When F finishes, it types the name of the
function at LASTPOS.

F can be used on BRKCOMS. In which case, the
remainder of the list is treated as the list of
arguments. (i.e. (F FOO FIE FOO)

EDIT argl arg2 ... argi

EDIT uses its arguments to reset LASTPOS in
the same manner as the F. command. The form at
LASTPOS is then given to the LISP Editor. This
commands can often times save the user from the
trouble of calling- EPITF and the finding the
expression that he needs to edite.

arg2 ... arghi

This 1is a multi-purpose command. Its most
common use 1s to interrogate the value(s) of the
arguments of the broken function, (ARGS is also
useful for this purpose.) e.g. if FOO has three
arguments (X Y 2Z), then typing ?= to a break of
FOO., will produce:

12=
= value of X

value of Y
value of 2 .

NS

?= takes the rest of the. teletype 1line as its
argumentse. If the argument 1list to ?= is NIL, as
in the above case, it prints all of the arguments
of the function at LASTPOS. If the user types

?2= ¥ (CAR Y)

he will see the value of X, and the value of (CAR
Y). The difference between using ?= and typing X
and (CAR Y) directly into BREAK1 is that 2=
evaluates its inputs as of LASTPOS. This provides
a way of examining variables or forms as of a
particular point on the stack. For example,

'F (FOC FOQO)

?= X

will allow thé user to examine the value of ¥ in an
earlier call to FOO.

?= also recognizes numbers as referring to the
correspondingly numbered argument. . Thus

F FIE
7= 2

© eo ee

FROM?=

EX

will print ‘the- name and value of thé second
argument of FIE (providing FIE is not compiled).

?= can also be used on BRKCOMS, in which case
the remainder of the list on BRKCOMS is treated as
the list of arguments. For example, if BRKCOMS is
((EVAL) (2= X (CAR Y)) GO)), BRKEXP will be
evaluated, the values of ¥ and (CAR Y) printed, and
then the function exited with its value being
printed. :

[form] ' e _

FROM?= exits from the break by undoing the
special push down stack back to LASTPOS. If FORM
is NIL or missing, re-evaluation continues with the
form on the push down stack at LASTPOS. If FORM is
.not HNIL, the function call on the push down stack
at LASTPOS 1is replaced by FORM and evaluation
continues with FORM. FORM is evaluated in the
context of LASTPOS. There is no way of recovering
the break because the push down stack has been
undone. FROM?= allows the user to, among other
things, return a particular value as the value of
any function call on the stack. To return 1 as the
value of the previous call to FOO:

:F FOO
:FROM?= 1

Since form is evaluated after it is placed on the

stack, a value of NIL can be returned by using
(QUOTE NMIL).

EX exits from the break and re-evaluates the
form at LASTPOS. . EX is equivalent to FROM?= NIL.

Backtrace Commands

The backtrace commands print information about
function calls on the special push down list. The
information is printed in the reverse order that the calls
were made. All backtraces ‘start at LASTPOS.

BKF . . :
BKF gives a backtrace of the names of
functions that are still_pending-
BKE . : v
BKE gives a backtrace of the expressions which
called functions still pending (i.e. It prints the
function calls themselves instead of only the names
as in BKF).
BK

_ BK gives a full backtrace of all expressions
still pending.

All of the backtrace commands may be suffixed by a ‘v’
-and/or followed by an integer. If the integer is included,
it specifies how many blocks are to be printed. The
limiting point of a block is a function call. This form is
useful when working. on a Data Point. Using the integer
feature in conjunction with the F command, which moves
LASTPOS, the user can display any contiguous part of the
backtrace. If a 'V’ 1is 1included, variable bindings are
printed along with the expressions in the backtrace.

Example:
BKFV would print the names and variable
bindings of the functions called before
LASTPOS.
BKV 5 _' would print everything (expressions and

variables) for 5 blocks before LASTPOS.

The output of the backtrace commands deserves some
explanation. Right circular lists are only printed up to
the point where they start repeatlng.and are closed with

‘.2.]” instead of a right parenthesis. Lists are only
printed to a depth of 2. /#/ . Is .a notation which
represents "the previous. eyvre551on" For example. {SETQ
FIE (FOO)) would appear in a BK bacxtrace as

(FCO)
(SETQ FIE /4/)

Breakmacros

Whenever an atomic command 1is encountered by BREAKXKI
that it does not recognize, either via BRKCOMS or the
teletype, it searches (using ASSCC) the list BREAKMACROS to
see 1if the atom has been defined as a break macro. The
form of BREAKMACROS definitions is (... (atom ttylinel
ttyline2 ... ttylineN) ...). ATOM is the command name.
ARGS is the argument(s) for the macro. The arguments of a
breakmacro are assigned values from the remainder of the
command line in which the macro is called. If ARGS is
atomic, it is assigned the remainder of the command line as
its value. If ARGS is a list, the elements of the rest of
the command line are assigned to the variables, in order.
If there are more variables in ARGS then items in the rest
of the command line, a value of WNIL is filled 1in. Extra
items on the command line are ignored. The TTYLINEs are
the body of the breakmacro definition and are 1lists of
break commands or forms to be evaluated. If the atom is
defined as a macro, (i.e. is found on BREAKMACROS) BREAK1
assigns values to the variables in ARGS, substitutes these
values for all occurrences of the variables in TTYLINEs and
appends the TTYLINEs to the front of BRKCOMS. When BREAKI1
is ready to accept another command, 1if BRKCOMS is non-NIL
it takes the first element of BRKCOMS and processes it
exactly as 1f it had been a line input from the teletype.
This means that a macro name can be defined to expand to
any arbitrary collection of expressions that the user could
type in. If the command is not contained in BREAXKMACROS,
it is treated as a function or variable as before.

Example: a command PARGS to print the arguments of the
function at LASTPOS could be defined by evaluating:

{NCONC BREAKMACROS (QUOTE ((PARGS NIL (?2=)))))
A command FP which finds a place on the SPD stack and
Prints the form there can be defined by:

(NCONC BREAKMACROS (QUOTE (FP X (F . X) ((PRINT (SPDLRT
LASTPOS))))))

BREAK PACKAGE

How To Set A Break

The following functions are useful for setting and
unsetting breaks and traces.

Both BREAK and TRACE use a function BREAKO to do the
actusal molification of Tunction definitionse. When BREAKO
breaks a SUBR or an FSUBR, it prints a message of the form
(--- - ARGUMENT L1IST?). The user should respond with a
list of arguments for the function being broken. (FSUBR’Ss
take only one argument and BREAKO checks for this.) The
arguments on this list are actually bound during the calls
to the broken function and care should be taken to insure
- that they do not conflict with free variables. For
LSUBR"s, the atom N? . Is used as the argument. It is
possible to CRINDEF and edit functions that are traced or
broken. BROKENFNS 1is a 1list of the functions currently

broken. TRACEDFNS is a 1list of the functions currently
traced.

BREAK

BREAK 1is an FEXPR. For each atomic argument, it
breaks the function named each time it is called. For each
list in the form (fnl 1IN fn2), it Dbreaks only those
occurrences of FN1 which appear in FN2. This feature 1is
very useful for breaking a function that is called from
many places, but where one is only interested in the call
from a specific function, e.g. (RPLACA IN FOO), (PRINT IN
FIE), etc. For each list not in this form, it assumes that
the CAR is a function to be broken; the CADR is the break
condition; (When the fuction is called, the break condition
is evaluated. If it returns a non-NIL value, the break
oCCcurs. Otherwise, the computation continues without a
break.) and the CDDR is a list of command lines to be
performed before an interactive break is made (see BRWHEN
and BRKCOMS of BREAKl). For example,

(BREAK FOOl1 (FCO2 (GREATERP N 5) (ARGS)))

will break all calls to FOOl1 and all calls on FOO2 when N

is greater than 2 after first printing the arguments of
FOO2

(BREAK ((FOO4 IN FOO05) (MINUSP X)))

will break all calls to F004 made from FOOS5 when ¥ is
negative.

Examples:
(BREAK FOO)
(BREAK ((GET IN FOO) T (G0O)))
(BREAK (SETQ (EQ N 1) ((PRINT (QUOTE N=1))) (2= M)))

TRACE

TRACE 1is an FEYPR. For each atomic argument, it
traces the function named (see form on page 1.3) each time
it is called. For each 1list in the form (fnl IN fn2), it
traces only those calls to FN1 that occur within FN2. For
each 1list argument not in this form, the CAR 1is the
function to be traced, and the CDR is a list of variables
(or forms) the user wishes to see in the trace.

For example, (TRACE (FOO1 Y) (SETQ IN FO003)) will
cause both FOOl and SETQ IM FOO3 to be traced. SETQ s
argument will be printed and the value of Y will be printed
for FOOI1.

TRACE uses the global variable #%INDENT to keep its
position on the line. The printing of output by TRACE is o
printed using %PRINFN (see page 1.9). TRACE can therefore’
be pretty printed by: . ’

(SETQ %PRINFN (QUOTE PRETPRIN))
(DE PRETPRIN (FORM) :
(SPRINT FORM (*PLUS 10 #%INDENT)))

Examples: T
(TRACE FO0O0)
(TRACE *TIMES (SELECTO IN DOIT))
(TRACE (EVAL IM FOD))
(TRACE (TRY M M X (*PLUS MM

Note: The wuser can always call BREAKO himself to
obtain combinations of options of BREAKI not directly
available with BREAK and TRACE (see section on BREAKO
below). These functions merely provide convenient ways ot
calling BREAXO, and will serve for most uses.

BREAKIN

BREAKIN enables the user to insert a break, i.e., a-
call to BREAK1l, at a specified location in an interpreted
function. For example, if FOO calls FIE, inserting a break
in FOO bpefore the call to FIE is similar to breaking FIE.
However, BREAKIN can be used to insert breaks before or
after prog labels, particular SETO expressions; or even the
evaluation of a variable. This is because BREAKIN operates
by calling the editor and actually inserting a call to
BREAKL at a specified point inside of the function.

The user specifies where the break is to be inserted
by a secquence of editor commands. These commands are
preceded by BEFORE, AFTER, or AROUND, which BREAKIN uses to
determine what to do once the editor has found the
specified point, i.e., put the call to BREAK1 BEFORE that
point, AFTER that point, or AROUND that point. For
example, (BEFORE COMD) will insert a break before the first
occurrence of COND, (AFTER COND 2 1) will insert a break
after the predicate in the first COND clause, (AFTER BF
(SETQ X F)) after the last place X is set. Note that
(BEFORE TTY:), (AROUND TTY:) or (AFTER TTY:) permit the
user to type in commands to the editor, locate the correct
point, and verify it for himself using the P command, if he
desires. Upon exit from the editor with OK, the break is
inserted. (A STOP command typed to TTY: produces the same
effect as an unsuccessful edit command in the original
specification, e.g., (BEFORE CONDD). In both cases, the
editor aborts, and BREAKIN types (NOT FOUND).)

for BREAKIN BEFORE or AFTER, the break expression is
NIL, since the value of the break is usuvally not of
interest. For BREAKIN AROUND, the break expression will be
the indicated form. When in the break, the user can use
the EVAL command to evaluate that form, and see its value,
before allowing the computation to Proceed. For example,
if the user inserted a break after a COND predicate, e.g.,
(AFTER (EQUAL X Y)), he would be powerless to alter the
flow fo computation if the predicate were not true, since
the break would not be reached. However, by breaking
(AROUND (EQUAL X Y)), he can evaluate the break expression,
i.ec, (EQUAL X Y), see its value and evaluate something
else if he wished. ‘

The message typed for a BREAKIN break identifies the
location of the break as well as the function, e.g.,

((FOO (AFTER COHND 2 1)) BROKEN).

BREAKIN is an FEXPR which has a maximum of four
arguments. The first argument is the function to be broken
ine. The second argument is a list of editor commands,
preceded by BEFORE, AFTER, or AROUND, which specifies the
location inside the function at which %o break. If there
is no second argument, a value of (BEFORE TTY:) is assumed.
(See earlier discussion.) The third and fourth arguments
are the break condition and the 1list of commands to be
performed before the interactive break occurs, (BRXKWHEN and
BRKCOMS for BREAKL) respectively. If there is no third
argument, a value of T is assumed for BRKWHEN which causes
a break each time the BREAKIN break is executed. If the
fourth argument is missing, a value of NIL is assumed. For
example, -

{BREAKIN FOO (AROUND COHND))
inserts a break around the first call to COMND in FOO.

It is possible to insert multiple break points, with a
single call to BREAKIN by using a list of the form ((BEFORE
see) oo (AROUND +.-)) as the second argument. It is also
possible to BREAK or TRACE a function which has been
modified by BREAKIN, and conversely to BREAKIN a function
which is broken or traced. UNBREAK restores functions
which have been broken in. CRIMDEF makes no attempt to
correct the modification of BREAKIN so functions should be
unbroken before they ‘are stored on disk.

Examples: '
(BREAKIN FOO (AROUND TTY:) T (?= M N) ((*PLUS X.Y)))
(BREAKIN FOO2 (BEFORE SETQ) (EQ X Y))

UNBREAK -

UNBREAK is an FEXPR. It takes a 1list of functions
modified by BREAK or BREAKIN and restores them to their
original state. It°s value is the 1list of functions that
were "unbroken". ‘

(UNBREAK T) will unbreak the function most recently
broken. .

(UNBREAK) will unbreak all of the functions currently

broken (i.e. all those on BROKENFNS) .

If one.of the functions is not broken, UNBREAK has a
value of (fn NOT BROKEN) for that function and no changes
are made to fne . .

Hote: 1If a function is both traced and broken in,
either UNTRACE or UNBREAK will restore the original
function definition.

UNTRACE

UNTRACE is an FEXPR. It takes a 1list of functions
modified by TRACE and restores them to their original

state. It°s wvalue is the 1list of functions that were
"untraced”. '

(UNTRACE T) will unbreak the function most recently
traced. .

(UNTRACE) will untrace all of the functions currently
traced (i.e. all those on TRACEDFNS) «

If one of the functions is not traced, UNTRACE has a
value of (fn NOT BROXEN) for that function and no changes
are made to fn.

BREAKO [FN WEEN COMS]

BREAKO is an EXPR. It sets up a break on the function
FHN by redefining FN as a call to BREAK1l with BRKEXP a form
equivalent to the definition of FN, and WHEN, FN and COMS
as BRKWHEN, BRKFN, and BRKCOMS, respectively (see BREAK1).
BREAKO also adds FM to the front of the list BROKENFNS.
It°s value is FN. ' '

If FN is non-atomic and of the form (fnl IN fn2),
BREAKO first calls a function which changes the name of fnl
wherever it appears inside of fn2 to that of a new
function, fnl-IN-fn2, which is initially defined as fnl.
Then BREAKO proceeds to break on fnl-IN-fn2 exactly as
described above. This procedure is useful for breaking on
a function that is called from many places, but where one
is only interested in the call from a specific function)
e.g. (RPLACA IN FOO), (PRINT IN FIE), etc. This only works
in interpreted functions. If fnl is not found in £n2,"
BREAKO returns the value (fnl NOT FOUND IN fn2).

If FN is non-atomic and not of the above form, BREAKO
is called for each member of FN using the same values for
WHEN and COMS specified in this call to BREAKO. This
distributivity permits the user to specify complicated
break conditions without excessive retyping, e.g.,

(BREAKO (QUOTE (FOOl ((PRINT PRIN1)IN (F0O02 FOO3))))
(QUOTE (EQ X T))
(QUOTE ((EVAL) (2= Y Z) OK)))

will break on FoO1, PRINT-IN-FOO2, PRINT-IN-FOO0O3,
PRIN1-IN-FO02, and PRINI1-IlN-F0O03. '
If FN is non-atomic, the value of BREAKO is a list of
the individual values.
For example, BREAK(O can be used to trace the changing
of particular values by SETQ in the following manner:
*(SETQ VARLIST (QUOTE (X Y FOO)))

*(BREAKO (QUOTE SETQ) (QUOTE (MEMQ (CAR XXXX) VARLIST))

* (QUOTE ((TRACE) (?=)(UNTRACE))))
(SETQ ARGMENTS?) * (XXXX)

SETQ will be traced whenever CAR of its argument (SETQ is
an F5UBR) is a member of VARLIST.

ERROR PACKAGE

Introduction

When an error occurs during the evaluation of a LISP
expression, control is turned over to the Error Package.
The I/0 is forced to the TTY (channel NIL) but will be
restored to its previous channels if the user continues the
evaluation. The idea behind the error package is that it
may be possible to “patch up’ the form in which the error
occurred and continue. Or, at least, that vou can find the
cause of the error more easily if vou can examine the state
of the world at the time of the error. Basically, what the
Error Package dcoes 1is call BREAKI with BRKEXP set to the
form in which the error occurred. This puts the user “in a
break’ around the form in which the error occurred. BREAKI
acts_ Jjust like the top level of the interpreter with some
added commands (see section on BREAK1) . The main
difference when you are in the Error Package is that the
variable bindings that were in effect when the error
occurred are still in effect. Furthermore, the expressions
that were in the process of evaluation are still pending.
While in the Error Package, variables may be examined or
changed, and functions may be defined or edited just as if
you were at the top level. In addition, there are several
ways in which you can abort or continue from the point of
€rrore. In particular. if you can patch up the error, you
can continue by typing OK. If you can’t patch the error, T
will get you out of the break. When you are in the error
package, the prompt character is ‘:’ and is preceded by a
level number. Note: if you don’t want the error package
invoked for- some reason, it can be turned off by evaluating
(*RSET NIL). Similarly, (*RSET T) will turn the error
package back on.

Commands

There are several atoms which will cause special
actions when typed into BREAK]1 (the error package). These
actions are useful for examining the push down stack (e.g.
backtraces), changing forms and exiting from the break in
various wayse. Table I (on the next page) gives a summary
of the actions. For a complete description, see the
section on “What You Can Do In A Break’.

Table I

Break Package Command Summarv

(for complete description see pp. 1.8-1.16)

Command

GO

OK

EVAL

RETURNM xx

1
TT
> [->] expr
FROM?= form
ex

USE x FOR vy

F [&] al..al

EDIT Al..An

2= fl ... fN
ARGS
3KF
BKE

BK

Note:

All of the backtrace commands can be combined with a
'V’ or followed by an
values of variables to be printed.

Action

Evaluates BRKEXP, prints its value,
and continues with this value '

Same as GO but no print of value

Reevaluate BRKEXP and print its value.
Its value is bound to !VALUE

Evaluate xx and continue with its value
Escape one level of BREAKI1 |

Iscape to the top level

After an error, use expr for the erring atom
Continues by re-evaluating form at LASTPOS
Same‘as FROM?= NIL

Supstitutes x for vy in form at LASTPOS
(destructively)
Resets LASTPOS (stack context)

Resets LASTPOS and gives the form at LASTPOS
to the LISP Editor

Evaluates forms fI as of LASTPOS

Prints arguments of the broken function
Backtrace Function Names
Backtrace Function Calls

Backtrace Expressions

will cause the
The integer will limit

integer. The °‘V°

the trace to that number of blocks. For example, BK 3,
BKEV, BKFV 5 and BKEV are all legitimate commands.

The LISP Editor
Contents

2 CURRENT EXPRESSION, P, ‘&, PP, EDIT CHAIN, 0, T
5 {n), (n el, «ce, em), (-n el, <c., em), N, F, R, NX, RI,
10 UNDO, BK, BF, \, \P, &, --, @ (AT-SIGNM),
13 Upp B' Ap- L DELETE, MBD' XTRa UP' eoco g Ny =N,
18 0, 10, T, NX, BK, (NX n), (BK.n), !NX, (NTH n),
22 PATTERN MATCH, &, *¥ANY*, —=, ==, <.e,
24 SEARCH ALGORITHM, MAXLEVEL, UNFIND, F, (F pat n).,

27 (F pat T), (F pat N), (F pat), FS, F=, ORF, BF, (BF pat T).,

30 LOCATION SPECIFICATION, IF, ##, $, LC, LCL, SECOND, THIRD,
32 (<« pat), BELOW, NEX, (NTH $), .., MARK, <, <<, \, UNFIND,
37 \P, S, (nysy (n el, «.., em), (-n el, .o, em), N,

41 B, A, :, DELETE, INSERT, REPLACE, DELETE, ##, UPFINDFLG,
46 XTR, EXTRACT, MBD, EMBED, MOVE, BI, BO, LI, LO., RI, RO,
57 THRU, TO, R, SW, P, 2, E, I, ##, COMS, COMSQ,

66 IF, LP, LPQ, ORR, MACROS, M, BIND, USERMACROS,

71 NIL, TTY:, OK; STOP, SAVE, REPACK, MAKEFN,

76 UNDO, TEST., 22?2, !UNDO, UNBLOCK, EDITDEFAULT, EDITL,

81 EDITF, EDITE, EDITV, EDITP, EDITFNS, EDITA4E,

84 EDITFPAT, EDITFINDP ’

The LISP editor allows rapid, convenient modification
of list structures. Most often it is used to edit function
definitions, (often while the function itself is running)
via the function EDITF, e.g., (EDITF FOO). However, the
editor can also be used to edit the value of a variable, via
EDITV. to edit special properties of an atom, via EDITP, or
to edit an arbitrary expression, via EDITE. It is an
important feature which allows good on-line interaction in
the UCI LISP system-

This chapter begins with a lengthy introduction
intended for the new user. The reference portion begins on
page 15. _

Introduction

Let us introduce some of the basic editor commands, and
give a flavor for the editor’s language structure by guiding
the reader through a hypothetical editing session. Suppose
we are editing the following incorrect definition of APPEND

(LAMBDA (X)
Y
(COND ((NUL X) 2Z)
(T (CONS (CAR) (APPEND (CDR X Y))))))

We call the editor via the function EDITF:

(EDITF APPEND)
EDIT
#

The editor responds by typing EDIT followed by #, which is
the editor’s ready character, i.e., it signifies that the
editor is ready to accept commands. (In other words, all
lines beginning with # were typed by the user, the rest by
the editor-)

At any given moment, the editor’s attention is centered
on some substructure of the expression being edited. This
substructure is called the current expression, and it is
what the user sees when he gives the editor the command P,
for printe Initially, the current expression is the top
level one, i.e., the entire expression being edited. Thus:

#P
(LAMBDA (X) Y (COND & &))
4 ‘

Note that the editor prints the current expression,
using PRINTLEV, to a depth of 2, i.e., sublists of sublists
are printed as &. The command ? Will print the current
expression as though PRINTLEV was given a depth of 100.

#2

(LAMBDA (X) Y (COND ((NUL X) z) (T (CONS (CAR) (APPEND (CDR
X ¥

#

and the command PP (for PrettyPrint) will GRINDEF the
current expression.

A positive integer is interpreted by the editor as a
command to descend into the correspondingly numbered element
of the current expression. Thus: :

#2
3%
(X)
#

A negative integer has a similar effect, but counting
begins from the end of the current expression and proceeds
backward, i.e., -1 refers to the 'last element in the
expression, =2 the next to the last, etcs For either
positive integer or negative integer, if there is no such
element, an error OCCUrS- "Editor errors’ are not the same
~as ‘LISP errors’ , i.e., they never cause breaks or -even go
through the error machinery but are direct calls to ERR
indicating that a command is in some way faulty. What
happens next depends on the context in which the command was
being executed. For example, there are conditional commands
which branch on errors. In most situations:, though, an
error Wwill cause the editor to type the faulty command
followed by a ? And wait for more input. 1In this case: the
editor types the faulty command followed by a 2, and then
another #o. The current expression is never changed when a
command causes an errorx. thus:

#P
(x)
#2

2 2
#1
#p

X

#

A phrase of the form ‘the current expression is
changed’ or ‘the current expression becomes’ refers to a
shift in the editor’s ATTENTION, not to a modification of
the structure being edited.

When the user changes the current expression by
descending into it, the old current expression is not lost.
Instead, the editor actually operates by maintaining a chain
of expressions leading to the current one- The current
expression is simply the last link in the chain. Descending
adds the indicated subexpression onto - the end of %Zhe chain.,
thereby making it be the current expression. The command 0

is used to ascend the chain; it removes thé last 1link of the

chain, thereby making the previous 1link be the current
expression. Thus:

#p

X

40 P

(X)

#0-1 P .
(COND (& 2) (T &))
#

Note the use of several commands on a single line in the
previous output. The editor operates in a 1line buffered
mode. Thus no command is actually seen by the editor, or
executed until the line is terminated, either by a carriage
return, or an escape (alt-mode).

In 'our editing session, wWe will make the following
corrections to APPEND: delete Y from where it appears, add Y
to the end of the argument list, (These two operations could
be thought of as one operation, i.e., move Y from its
current position to a new position, and in fact there is a
MOVE command in the editor-s However, for the purposes of
this introduction, we will confine ourselves to the simpler
edit commands.) change NUL to NULL, change 2 to Y, add X
after CAR, and insert a right parenthesis following CDR X.

First we will delete Y. By now we have forgotten where
we are in the function definition, but we want to be at the
“top," so we use the command f, which ascends through the
entire chain of expressions to the top 1level expression,
which then becomes the current expression, i.e., T removes
all links except the first one.

#T P
(LAMBDA (X) Y (COND & &))
#

Note that if we are already at the top, T has no
effect, i.e.;, it 1is a NOP. However, 0 would generate an
€Irore. In other words, T means “go to the top," while 0
means "ascend one link."®

The basic structure modification commands in the editor
are »

(n)
n>1 deletes - the corresponding
element from theucurrent expression.

(n,elneeo,em) . . :

n:m>1 replaces the nth element in
the current expression with
el;-s..,em.

(-n el;eeceo,em)
n:m>1 inserts el;...,em before the

nth element in the current
expression.
Thus:
#P
(LAMBDA (X) Y (COND & &))
#(3) :
$(2 (X ¥))
#P
(LAMBDA (X Y) (COND & &))
#

All structure modification done by the editor 1is
destructive, i.e-, the editor uses RPLACA and RPLACD to
physically change the structure it was given. Note that all
three of the above commands perform their operation with
respect to the nth element from the front of the current
expression; the sign of n is used to specify whether the
operation is replacement or insertion. Thus, there 1s no
way to specify deletion or replacement of the nth element
from the end of the current expression, or insertion before
the nth element from the end without counting out that
element’s position from the front of the 1list. Similarly.
because we cannot specify insertion after a particular
element, wWe cannot attach something at the end of the
current expression using the above commandse. Instead, we
use the command N (for NCONC). Thus we could have performed
the above changes instead by:

#P

({LAMBDA (X) Y (COND & &))
#(3)

#2 (N Y)

#P

(X Y)

#T P

(LAMBDA (X Y) (COND & &))
.

Now we are ready to change NUL to NULL. Rather than
specify the sequence of descent commands necessary to reach
NULL, and then replace it with NULL, i.e., 3 2 1 (1 NULL),
we will use F, the find command, to- f£ind NULL:

#P

(LAMBDA (X Y) (COND & &))
#F NUL

#p

(NUL X)

(1 NULL)

#0 P

((NULL X) 2Z)

#

Note that F is special -in that it corresponds to TWO
inputs. In other words, F says to the editor. "treat your
next command as an expression to be searched for."™ The
search 1is carried out in printout order in +the current
expression. If the target expression is not found there, F
automatically ascends and searches those portions of the
higher expressions that would appear after (in a printout)
the current expression. If the search is successful, the
new current expression will be the structure where the
expression was found, (If the search is for an atom, e.g., F
NUL, the current expression will be the structure containing
the atom. If the search is for a list, e.g., F (NUL X). the
current expression will be the 1list Ftself.) and the chain
will be the same as one resulting from the appropriate
sequence of ascent and descent commands. If the search is
not successful, an error occurs, and neither the current
expression nor the chain is changed: (F is never a NOP,
i.e., if successful, the current expression after the search
will never be the same as the current expression before the
search. Thus F EXPR repeated without intervening commands
that change the edit chain can bhe used to find successive
instances of EXPR.)

#p L
((NULL Xy 2Z)
#F COND P

COND 2?2

4P

((NULL X)..2).
#

Here the search failed to €ind a COND following the
current expression, although of course a COND does appear
earlier in the structure. This last example illustrates
another facet of the error recovery mechanism: to avoid
further confusion when an error occurs, all commands on the
line pbevond the one which caused the error (and all commands
that may have been 'typed ahead while the editor was
computing) are forgotten. :

We could also have used the R command (for Replace) to
change NUL to NULL. A command of the form (R el e2) will
replace all occurrances of el in the current expression by
e2. There must be at least one such occurrence or the R
command will generate an error. Let us use the R command to

change all Z°s (even though there is only one) in APPEND to
Y: ’

#T (R 2 Y)
#F 2

YA
#PP
(LAMBDA (X Y)
(COND ((NULL X) Y)
(T (CONS (CAR) (APPEND (CDR X Y¥Y))))))
#

The next task is to change (CAR) to (CAR X). We could
do this by (R (CAR) (CAR X)), or by:

#F CAR
$(N X)
#p

(CAR X)
#

The expression we now want to change is the next
expression after the current expression, i.e., we are

currently looking at (CAR X) 'in (CONS (CAR X) (APPEND (CDR X
Y))). We could get to the APPEND expression by typing 0 and

then 3 or -1, or we can use. the command NX, which does both
operations:

$P

(CAR X)

#NX P

(APPEND (CDR X Y))

#

Finally, to change (APPEND (CDR X Y)) to (APPEND (CDR

X) Y), we could perform (2 (CDR X) Y), or (2 (CDR X)) and (N
Y), or 2 and (3), deleting the Y, and then 0 (N Y).

However, if Y were a complex expression we would not want to
have to retype 1it. Instead, we could use a command which
effectively inserts and/or removes left and right
parentheses. There are six of these BI, BO, LI, LO, RI, and
RO, for Both In, Both Out, Left In, Left Out, Right In, and
Right Out. Of course, we will always have the same number
of left parentheses as right parentheses, because the
parentheses are just a notational guide to structure that 1is
provided by our print program. (Herein 1lies one of the
principal advantages of a LISP oriented editor over a text
editor: unbalanced parentheses errors are not possible.)
- Thus, left in., left out, right in, and right out actually do
not insert or remove just one parenthesis, but this is very
suggestive of what actually happens.

In this case, we would 1like a right parenthesis to
appear following X in (CDR X Y). Therefore, we use the
command (RI 2 2), which means insert a right parentheses
after the second element in the second element (of the
current expression):

#pP

(APPEND (CDR X Y))
#(RI 2 2)

#p -
(APPEND (CDR X) Y)
#

We have now finished our editing, and can exit from the
editor, to test APPEND, or we could test it while still
inside of the editor, by using the E command:

#E (APPEND (QUOTE (A B)) (QUOTE (C D E)))
({2 B CDE)

_ The E command causes the next input to be given to
EVAL. P ’ ’ :

We GRINDEF APPEND, and leavé the editor.

#PPp
(LAMBDA(X Y)
(COND ((NULL X) Y) -)
» (T (CONS (CAR X) (APPEND (CDR X) Y)))))
#OK '
APPEND
*

Commands for the New User

This manual is intended primarily as a reference
manual, and the remainder of this chapter is organized and
presented accordingly. While the commands introduced in the
previous scenario constitute a complete set; i.e., the user
could perform any and all editing operations using just
those commands, there are many situations in which knowing
the right command(s) can save the user considerable effort.
We include here as part of the introduction a list of those
commands which are not only frequently applicable but also
easy to use- They are not presented in any particular
order, and are all discussed in detail in the reference
portion of the chapter.

UNDO

Undoes the last modification to the
structure being edited, e.g., if the
user deletes the wrong element, UNDO
will restore it. The availability
of UNDO should give the user
confidence to experiment with any
and all editing commands, no matter
how complex, because he can always
reverse the effect of the command.

BK
Like NX, except makes the expression
immediately before the current
expression become current.

BF
Backwards Find. Like F except
searches backwards, i.e., in inverse
print order.

Restores the current expression to
the expression before the 1last "big
jump”, e.g., a find command, an T,
or another \. For example, if the
user types F COND, and then F CAR, \
would take him back to the COND.
Another \ would take him back to the

CAR.

\P ' ‘

Like \ except it restores the edit
chain to its state as of the last
‘print, either by P, ?, or PP. If
the edit chain has not been changed

© since the last print, \P restores it
to its state as of the printing
before that one, i.e., two chains
are always saved.

Thus if the user types P followed by 3 2 1 P, \P will
take him back to the first P, i.e., would be equivalent to 0
0 0. Another \P would then take him back to the second D,
i.e-; he can use \P to flip back and forth between two
current expressionss.

&'y"'
The search expression given to the F
or BF command need not be a literal
S-expression. Instead, it can be a
pattern. The symbol & can be used
anywhere within this pattern to
‘match with any single element of a
list, and -~ can be used to match
with any segment of a 1list. Thus,
in the incorrect - definition of
APPEND used earlier, F (NUL &) could
have been used to find (NUL X), and
F (CDR --) or F (CDR & &), but not F
(CDR &), to find (CDR X Y).

Note that & and -~ can be nested arbitrarily deeply in
the pattern- For example, if there are many places where
the varaible X 1is set, F SETO may not find the desired
expression, nor may F (SETQ X &). It may be necessary to use
F (SETQ X (LIST --)). However, the usual technique in such a
case is to pick out a unique atom which occurs prior to the
desired expression and perform two F commands. This "homing
in" process seems to be more convenient than ultra-precise
specification of the pattern.

@ (at-sign)

. Any atom ending in @ (at-sign) in a
pattern will match with the first
atom or string that contains the
same initial characters- For
example, F VER@ will find
VERYLONGATOM. @ can be nested inside
of the pattern, e.g., F (SETQ VERG@
(CONS =--)).

If the search is successful, the
editor will print = followed by the
atom which matched with the @-atom,
€,

#F (SETQ VERe &)

=VERYLONGATOM

#

Frequently the user will want to replace the entire
current expression or insert something before it. In order
to do this using a command of the form (n el,...,em) or (-n
el,-«.,em), the user must be above the current expressione.
In other words, he would have to perform a 0 followed by a
command with the appropriate number- However, if he has
reached the current expression via an F command, he may not
know what that number is. 1In this case, the user would like
a command whose effect would be to modify the edit chain so
that the current expression became the first element in a
new, higher current expression. Then he could perform the
desired operation via (1 el,...,em) or (-1 elieccos,em)s UP
is provided for this purpose. :

. After UP operates, the old current
expression is the first element of
the new current expression- Note
that if the current expression
happens to be the first element in
the next higher expression, then UP
is - exactly the same as 0.
Otherwise, UP modifies the edit

. chain S0 that the new current
expression 1is a tail (Throughout
this . chapter “tail’ means ‘proper
tail’) of the next higher
expression:

#¥ APPEND

(APPEND (CDR X) Y)

$Up P

... (APPEND & Y))

#0 P

(CONS (CAR X) (APPEND & Y))
#

The ... 1s used by the editor to
indicate that the current expression
is a tail of the next Thigher
expression as opposed to being an
element (i.e., a member) of the next

higher expression. Note: if <the
current expression is alreadvy a

tail, UP has no effect.

(B ely°°'rem)
Inserts el;...,em before the current
expression, i.e., does an UP and
then a -1.

(A el,-ouaem)
Inserts el,...,em after the current
expression, 1i.e., does an UP and
then either a (-2 el;....em) or an
(N elyese,em), if the current
expression is the last one in the
next higher expression.

(: el,--a,em)
Replaces current expression hy
elys..,em, ise., does an UP and then
a (1 el;.--;,em).

DELETE S
Deletes current expression, i.e.,
equivalent to (:).

Earlier, we introduced the RI command in the APPEND
example. The rest of the commands in this family:, BI, RO,
LI, LO, and RO, perform similar functions and are useful in
certain situations. In addition, the commands MBD and XTR:
can be used to combine the effects of several commands of
the BI-BO family. MBD is used to embed the current
expression in a larger expressione For example, if the
current expression is (PRINT bigexpression), and the user
wants to replace it by (COND (FLG (PRINT bigexpression))),
he can acomplish this by (LI 1), (-1 FLG), (LI 1), and (-1
COND), or by a single MBD command-.

XTR 1is used to extract an expression from the current
expressions For example, extracting the PRINT expression
from the above COND could be accomplished by (1), (LO 1),
and (LO 1) or by a single XTR command. The new user is
‘encouraged to include XTR and MBD in his repertoire as soon
as he is familiar with the more basic commands.

Attention Changing Commands

Commands to the editor fall into three classes:
commands that change the current expression (i.e., change
the edit chain) thereby "shifting the editor’s attention,®
commands that modify the structure being edited, and
miscellaneous commands, €.g., exiting from the editor,
Printing, evaluating expressions.

. within the context of commands that shift the editor’s
attention, we can distinguish among (1) those commands whose
operation depends only on the structure of the edit chain,
esg., 0, UP, NX:; (2) those which depend on the contents of
the structure, i.e., .commands that search; and (3) those
commands which simply restore the edit chain to some

Previous state, e-.g., \, \P. (1) and (2) can also be
thought of as local, small steps versus open ended, big
jumps. Commands of type (1) are discussed on pp.

2015-2.21; type (2) on pp. 2.22-2.35: and type (3) on pp-
2936-2037? : :

Local Attention-Changing Commands

up

(1) If a P command would cause the
editor to type ... before typing
the current expression, i.e., the .
current expression is a tail of the
next higher ‘expression, UP has no
effect; otherwise

(2) UP modifies the edit chain so
that the old current expression
(i.e., the one at the time UP was
called) is the first element in the

new current expression. (If the
current expression is the first
element in the next higher

exXpression UP simply does a 0.
Otherwise UP adds the corresponding
tail to the edit chain.

Examples: The current expression in each case is (COND
((NULL X) (RETURN Y))). '

1. #1 p
COND
$up p
(COND (& &))

2. #~-1 p
((NULL X) (RETURN Y))
#UP P
<o« ((NULL ¥) (RETURN Y)))
#UP P
+»+ ((NULL X) (RETURN Y)))

3. #F NULL P
(NULL X)
#UP P
. ((NULL X) (RETURN Y))
#UP P
oo {(NULL X) (RETURN Y)))

The execution of UP is straightforward, except in those
cases where the current expression appears more than once in
the next higher expression. For example:, if the current
expression is (A NIL B NIL C NIL) and the user performs 4
followed by UP, the current expression should then be ...
NIL C NIL.) UP can determine which tail is the correct one

because the commands that descend save the last tail on an
ilrternal editor .variable, LASTAIL. Thus after the 4 command
is executed, LASTAIL is (NIL C NIL). When UP is called, it
first determines if the current 'expression is a tail of the
next higher expression. ' If it is, UP 1is finished.
Otherwise, UP computes A . _

(MEMB current-expression next-higher-expression) to obtain a
tail beginning with the current expression. (The current
expression .should always be either a tail or an ‘elemeént of
the’ next. higher expression. If it is neither, for example
the user' has directly (and incorrectly) manipulated the edit
chain, UP generates an error.) If there are no other
instances of the current-expression in the next higher
expression, this tail is the correct one. Otherwise UP uses
LASTAIL to select the correct tail. (Occasionally the user
caq}get the edit chain into a state where LASTAIL cannot
resolve the ambiguity, - for example if there were two
non-atomic structures in the came expression that were EQ,
and the user descended more than one level into one of them
and then tried to come back out using UP. In this case, UP
'selects the first tail and prints LOCATION UNCERTAIN to warn
the user- Of course, we could have solved this problem
completely in our implementation by saving at each descent
both elements and tails. However, this would be a costly
solution to a situation that arises infrequently, and when
it does;, has no detrimental effects. The LASTAIL solution
is cheap and resolves 99% of the ambiguities.

n (n>0)

' Adds the nth element of the current
‘expression to the front of the edit
chain, thereby making it be the new
current expression. Sets LASTAIL
for use by UP. Generates an error
it the current expression is not a
list that contains at 1least n
elements.

~n (n>0) ‘

Adds the nth element from the end of
the current expression to the front
of the edit chain, thereby making it
be the new current expression. Sets
LASTAIL for use by UP. Generates an
error 1if the current expression is
not a list that contains at least n
elementss

. Sets edit chain to CDR of edit
chain,’ . thereby making the next
higher expression be the new correct
expression. Generates an error if
there is no higher expression; i.e.,
CDR of edit chain is NIL.

Note that 0 usually cbrresponds_to going back to the next
higher left parenthesis, but not always. For example, if
the current expression is (A B C D & F' G), and the user
performs : '

up P S
e« CDEF G)
#3 UP P

«e« EF G)

#0 P

«+«« CDETF G)

If the intention is to go back to the next higher left

parenthesis, regardless of any intervening tails, the
command !0 can be used. (!0 is pronounced bang-ze:o.)
10 |

Does repeated 0°s until it reaches a
point where the c¢urrent expression
is not a tail of the next higher
expression, i.e.; always goes back
to the next higher left parenthesis.

Sets edit chain to LAST of edit
chain, thereby making the top level

expression- _be - the current
expression-. Never gdenerates an
€rror.

Effectively does an UP followed by a
2, (Both NX and BX operate by
performing a {0 £followed by an
appropriate number, i.€o There
won’t be an extra tail above the new
current expression, as there would
be if NX operated by performing an
UP followed by a 2.) thereby making
the current expression be the next
expression. Generates an error if
the current expression is the last

one in a listo {However, INX
described below will handle this
case.) ‘

lakes the current expression be the
previous expression in the next
higher expression. Génerates an
error if the current expression is
the first expression in a liste

For example, if the current expression is (COND ((NULL X)
(RETURN Y))) '

#F RETURN P

(RETURN Y)
$BK P
{(NULL X)
(NX n) n>0
Equivalent to n N¥X commands. except
if an error occurs, the edit chain
1s not changed.

{BK n) n>0
: Equivalent to n BK commands, except

if an error occurs, the edit chain
is not changed.

Note: (NX -n) is equivalent to (BK n), and vice versa.

INX

Makes current expression be the next
expression- at a higher level;, i.e.,
goes through any number of right
parentheses to get to the next
expression.

For example:

#PpP
(PROG (UF)
E (SETQ UF L) : : '
LP (COND ((NULL (SETQ L (CDR L))) (ERR NIL))
‘ ((NULL (CDR (MEMQ# (CAR L) (CADR L))))
(GO LP)))
(EDITCOM (QUOTE NX))
(SETQ UNFIND UF)
(RETURN L))
#F CDR P
(CDR L)
#NX

NX ?

#INX P

(ERR NIL)

#NX P

((NULL &) (GO LP))
$1NX P

(EDITCOM (QUOTE NX))
#

!NX operates by doing 0°s until it reaches a stage
where the current expression is not the last expression in
the next higher expression, and then does a NX. ' Thus INX
always goes through at least one unmatched right
parenthesis, and the new current expression is always on a
different level, i.e., INX and NX always produce different
results. For example using the previous current expression:

- #F CAR P-
(CAR L)
#INX/ P
(60 LP)
#\P P
(CAR L)
#NX P
(CADR L)
#

(NTH n) n>0

- Equivalent .to pn. followed by UP,
i.e.;, causes the list starting with
the nth element of the current
expression. ~ ((NTH 1) is a NOP.)
Causes an error if current
expression does not have at least n
elements.

A generalized form of NTH us1ng location specifications is
described on page 2.34.

Commands That Search

All of the editor commands that search use the same
pattern matching routine. (This routine is available to the
user directly, and is described later in this chapter in the
section on "Editor Functions.") We will therefore begin our
discussion of searching by describing the pattern match
mechanism. A pattern PAT matches with X if

1. PAT is EQ to X.

2. PAT is &

3. PAT is a number and EQUAL to X.

4. If (CAR pat) is the atom *ANY*, (CDR pat) is a
list of patterns, and PAT matches X if and only
if one of the patterns on (CDR pat) matches X.

5. If PAT is.a literal atom or string, and (NTHCHAR
pat -1) is @, then PAT matches with any literal
atom or string which has the same initial

characters as PAT, e.g. VER@ matches with
VERYLONGATOM, as well as "VERYLONGSTRING".
6. If (CAR pat) is the atom --, PAT matches X if

A. (CDR pat)=NIL, i.e. PAT=(--),
‘@¢ge.y (A =--) matches (A) (A B C) and
(A . B)
In other words, -~ can match any tail of
a list.
B. (CDR pat) matches with some tail of X,
e.g. (A -- (&)) will match with (A B
C (D))s but not (A B C D), or (A B C
(D) E). However, note that (A -- (&)
--) will match with (A B C (D) E).
In other words, -- will match any
interior segment of a liste
7. If (CAR pat) is the atom ==, PAT matches X if
and only if (CDR pat) is EQ to X. (This pattern
is for use by programs that call the editor as a
subroutine, since any non-atomic expression in a
command type in by the user obviously cannot be
EQ to existing structure.)
8. Otherwise if X is a list, PAT matches X if (CAR
pat) matches (CAR x), and (CDR pat) matches (CDR
X)o

When searching, the pattern matching routine is called
only to match with elements in the structure, unless the

pattern begins with :::, in which case CDR of the pattern is
matched against tails in the structure. (In this case, the
tail does not have to Dbe a proper tail, e.g. (::: A --)

will match with the element (A B ¢)

as well as with CDR of

(X A B C), since (A B C) is a tail of (A B C).) Thus if the

current expressiion is (A B C (B C)),

#F (B --)

#P

(B C) : :
#0 F (s::2° B =-=~)
#p :

coe B C (B C))
#F (23: B =-=)
#p

(B C)

¥ .

Search Alqorithm

Searching begins with the current 'eXpression and

" proceeds in print order. Searching usually means find the

next instance of this pattern, and consequently a match is
not attempted that would leave the edit chain unchanged.:
(However, there is a version of the find command which can
succeed and leave the current expression unchanged.) At each
step, the pattern is matched against the next element in the
expression currently being searched, unless the pattern
begins with ::: in which case it is matched against the
corresponding tail of the expression. (EQ pattern
tail-of-expression)=T also indicates a successful match, so
that a search for FOO will find the FOO in (FIE . FOO)
The only exception to this occurs when PATTERN=NIL, e.g., F
NIL. In this case, the pattern will not match with a null
tail (since most lists end in NIL) but will match with a NIL
element.

If the match is not successful, the search operation is
recursive first in the CAR direction and then in the CDR
direction, i.e., if the element under examination 'is a list,
the search descends into that 1ist before attempting to
match with other elements (or tails) at the same level.
(There is also a version of the find command which only
attempts matches at the top level of the current expression.,
i.e., does not descend into elements, or ascend to higher
eXpressions.)

However, at no point 1is the total recursive depth of
the search (sum of number of CARs and CDRs descended into)
allowed to exceed the value of the variable MAXLEVEL. At
that point, the search of that element or tail is abandoned.,
exactly as though the element or tail had been completely
searched without finding a match, and the search continues
with the next element or tail for which the recursive depth
is below MAXLEVEL. This feature is designed to enable the
user to search circular list structures (by setting MAXLEVEL
small), as well as protecting him from accidentally
encountering a circular list structure in the course of
normal editinge MAXLEVEL is initially set to 300. If a
successiul match is not found in the current expression, the
search automatically ascends to the next higher expression,
and continues searching there on the next expression after
the expression it Jjust finished searching. If there 1is
none, it ascends again, etce This process continues until
the entire edit chain has been searched, at which point the
search fails, and an error is generated. If the search

fails the edit <chain is. not "changed - (nor- are any"CONSes
performed.) . : :

If the search is successful, i.e., an expression 1is
found that the pattern matches., the edit chain is set to the
value it would have had had the user reached that expression
via a sequence of integer commands.

~If the expression that matched was a list, it will be
the final 1link in the edit chain, i.e.; the new current
expressions If the expression that matched is not a list,
€-g., 1is an atom, the current expression will be the tail .
beginning with that atom, (Except for situations where match
is with Y in (X - . Y), Y atomic and not NIL. In this case,
the current expression will be (X . ¥Y)) i.e., that atom
will be the first element in the new current expression. 1In
other words, the search effectively does an UP. (Unless
UPFINDFLG=NIL (initially set to T). For discussion, see
page 2.45).

Search Commands

All of the commands below set LASTAIL for use by Up,
set UNFIND for use by \ (p. 2.36), AaAnd do not change the
edit chain or perform any CONSes if they are unsuccessful or
aborted.

F pattern :
i-e., two commands: the F informs
the editor that the next command is
to be interpreted as a pattern-
This is the most common and useful
form of the find command . If
successful, the edit chain always
changes, i.e., F pattern means find
the next instance of PATTERN.

If (MEMB pattern current-expression)
is true, F does not Proceed with a
full recursive search.

If the value of the MEMB is NIL, F
invokes the search algorithm
described earlier.

Thus if the current expression were (PROG NIL LP (COND
(==(GO LP1))) oo LP1 ...), F LP1 would find the prog
label, not the LP] inside of the GO expression, even though
the latter appears first (in print order) in the current
expression. Note that 1 (making the. atom PROG be the

current expression), followed by F LP1 would find the first
LP1.

(F pattern N)
Same as F pattern, i.e., finds the
next instance of pattern, except the
MEMB check of F pattern is not
performed.

(F battern T)

Similar to F pattern, except may
succeed without changing edit chain,
and does not perform the MEMB check.

Thus if the current expression is (COND ..), F COND
will look for -the next COND, but (F COND T) will ‘stay

here’.

(F pattern n) n>0

(F pattern) or
(F pattern NIL)

For example,

Finds the nth place that pattern

~ matches.. Equivalent to (F pattern

T) followed by (F pattern N)
repeated n-1 times. Each time
PATTERN successfully matches, n 1is
decremented by 1, and the search
continues, until n reaches 0. Note
that the pattern does not have to
match with n identical expressions;
it just has to match N times. Thus
if the current expression is (F0O1
FOO2 FO003), (F FO00@ 3) will find
F0OO3.

If the pattern does not match

- successfully N times, an error is

generated and the edit chain is
unchanged {even if the PATTERN
matched n-1 times).

Only matches with elements at the
top level of the current expression,
i.e.; the search will not descend
into the current expression, nor
will it go outside of the current

‘eXxpressions May succeed without

changing edit chain-

if the current expression is

(PROG NIL (SETQ X (COND & &)) {COND &) ooo)
F (COND =--) will find the COND inside the SETQ, whereas (F
(COND =-~)) will find the top level COND, i.e., the second

oneo.

(FS pattern(l} ... patterninl)
Equivalent to F patternil] followed
by F pattern(2] ... followed by F
pattern n, so that if F pattern m
fails, edit chain is left at place
pattern m-1 matched.

(F= expression x)
Equivalent to (F (== . Expression)
X): i.e., searches for a structure
EQ to expression;, see p. 2.22.

(ORF pattern{l] ... patternlin])
Equivalent to (F (*ANY* pattern[l]
eoo pattern[n]) N), i.e., searches
for an expression that is matched by
either pattern(l] or o
patternin}. See p. 2.22.

BF pattern

Backwards Find. Searches in reverse
print order, beginning with
expression immediately before the
current expression (unless the
current expression is the top level
expression, in which case BF
searches the entlre expression., in
reverse order.)

BF uses the same pattern match
routine as F, and MAXLEVEL and
UPFINDFLG have the same effect, but
the searching begins at the end of
each 1list, and descends into each
element before attempting to match
that element. If unsuccessful, the
search continues with the next
previous element, etc., until the
front of the 1list is reached, at
which point BF ascends and backs up,
etce.

For example, if the current expression is

(PROG NIL (SETQ X (SETQ Y (LIST Z))) (COND ((SETQ W --) --))
F LIST followed by BF SETQ will leave the current
expression as (SETQ Y (LIST 2)), as will F COND followed by
BF SETQ

(BF pattern T) - . o . :
' ' - Search always includes current
- expression, i.e., starts at end of

'~ current expression and works
backward, then ascends and backs up,

etc.

Thus in the previous example, where F COND foliowed by

BF SETQ found (SETQ Y (LIST Z)), F COND followed by (BF SETQ
T) would find the (SETQ W --) expression.

(BF pattern)Same as BF pattern.
(BF pattern NIL)

Location Specification

Many of the more sophisticated commands described ‘later
in this. chapter use a more general method of specifving
position called a LOCATION SPECIFICATION. A LOCATION
SPECIFICATION is a list of edit commands that are executed
in the normal fashion with two exceptionse. First, all
commands not recognized by the editor are- interpreted as
though they had been preceded by F. (Normally such commands
would cause errors.) For example, the location specification
(COND 2 3) specifies the 3rd element in the first clause of
the next COND. (Note that the user could always write (F
COND 2 3) for (COND 2 3) if he were not sure whether or not

COND was the name of an atomic command.)

Secondly;, if an error occurs while evaluating one of
the commands in the 1location specification, and the edit
chain had been changed, i.e., was not the same as it was at
the beginning of that execution of the location
specification, the 1location operation will continue. In
other words, the location operation keeps going unless it
reaches a state where it detects that it is “looping’, at
which point it gives up. Thus, if (COND 2 3) is being
located, and the first clause of the next COND contained
only two elements, the execution of the command 3 would
cause an error. The search would then continue by looking
for the next COND. However, if a point were reached where
there were no further CONDs, then the first command, COND,
would cause the error; the edit chain would not have been

changed, and so the entire location operation would fail,
and cause an errore. :

The IF command and the ## function provide a way of
using in lccation specifications arbitrary predicates
applied to elements in the current expression. IF and ##
will be described in detail later in the chapter, along with
examples ilustrating their use in location specifications.

Throughout this chapter, the meta-symbol $§ is used to
denote a 1location specificatione. Thus $ is a 1list of
commands interpreted as described above. $ 'Can also be
atomic, in which case it is interpreted as (LIST $)e

(LC + §)

(LCL .

(SECOND

(THIRD

$)

$)

$).

‘Providés ‘a . way of explicitly

invoking . the location operation,
€.g. (LC COND 2 3) will perform the
seqrch’described above.

Same as LC except search is confined

‘to- current: expression, i.e.; the

edit chain 1is rebound during. the
search so it looks as if the editor
were called on Jjust the current
expressione. For example, to find a
COND containing a RETURN, one might
use the location specification (COND
(LCL RETURN)} \) where the \ would
reverse the effects of the LCL

- command, and make the final current

expression be the COND.

Same as (LC . S) . Followed by
another (LC. . $§) Except that if
the first succeeds and second fails, -
no change is made to the edit chaine

Similar to second.

(¢« pattern)

Ascends the edit chain looking for a
link which matches PATTERN. in other
words, it keeps doing 0°s until it
gets to a specified point. = If
PATTERN is atomic, it is matched
with the first element of each link,
otherwise with the entire link. (If
pattern is of the form (1F
expression), EXPRESSION is evaluated
at each 1link, and if its wvalue is
NIL, or the evaluation causes an
error, the ascent continues.)
For example:

#ppP _
(PROG NIL _
(COND ((NULL (SETQ L (CDR L)))
(COND (FLG (RETURN L))))
((NULL (CDR (MEMB (CAR L (CADR L)))))

(GO LP))))

#F CADR

4 (< COND)

#P ,

(COND (& &) (& &))

#

Note that this command differs from BF in that it does
noct search inside of each link, it simply ascends. Thus in
the above example, F CADR followed by BF COND would find
(COND (FLG (RETURN L))), not the higher_COND.

If no match is found, an error is
generated and the edit chain 1is
unchanged.

{BELOW com x)

Ascends the edit chain looking for a
link specified by COM, and stops x
links below that, i.e. BELOW keeps
doing 0°s until it gets to a
specified point, and then backs off
N 0°s. (X 1is evaluated:, e.g.,
(BELOW com (*PLUS X Y)))

(BELOW com)

Same as (BELOW com 1)

For example, (BELOW COND) will cause the COND clause
containing the current expression to become the new current
expressiono Thus if the current expression is as shown
above, F CADR followed by (BELOW COND) will make the new
expression be ({NULL (CDR (FMEMB (CAR L) CADR L] (GO LP)),
and is therefore equivalent to 0 0 0 0.

BELOW operates by evaluating X and
then executing COM, or (_ com) if
COM is not a recognized edit
command, and measuring the length of
the edit chain at that point. It
that length is M and the length of
the current edit chain is N, then
BELOW ascends n-m-y links where Y is
the value of X Generates an error
if COM causes an error, i-.e., it
can‘t find the higher 1link, or if
n-m-y is negative.

The BELOW command is useful for locating a substructure
by specifying something it contains. For example, suppose
the user is editing a list of 1lists, and wants to find a
sublist that contains a FOO (at any depth)- He simply
executes F FOO (BELOW \).

(NEX x)
Same as (BELOW x) followed by NX.

For example, if the user is deep inside of a SELECTO clause,
he can advance to the next clause with (NEX SELECTQ).

NEX
Same as (NEX «).

The atomic form of NEX is useful if the user will be
performing repeated executions of (NEX x). By simply
MARKing (see p. 2.36) The chain corresponding to X, he can
use NEX to step through the sublists.

(NTH $)

Generalized - MTH command.
Effectively performs - (LCL . S),
Followed by (BELOW \), followed by
UP.

In other words, NTH locates $, using a search restricted to
the current expression, and then backs up to the current
level, where the new current expression is the tail whose
first element contains, however deeply, the expression that
was the terminus of the location operation. For example:

- #P
(PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND UF) (RETURM L)
(NTH UF)

#P
-+ (SETQ UNFIND UF) (RETURN L))
#

If the search 1is unsuccessful, NTH
generates an- - error and the edit
chain is not changed.

Note that (NTH n) is just a special case of (NTH $), and in
fact, no special check is made for $ a number; both commands
are executed identically.

(pattern :: . §) _
E.g., (COND :: RETURN}) . Finds a
COND that contains a RETURN, at any
depth. Equivalent to (F pattern N),
(LCL . $) followed by (_ pattern).

For example, if the current expression is (PROG NIL
(COND ((NULL L) (COND (FLG (RETURN L))))) --), then (COND ::
RETURN) will make (COND (FLG (RETURN L))) be the current
expression. Note that it is the innermost COND that is
found, because this is the first COND encountered when
ascending from the RETURN. In other words, (pattern :: $)
is not equivalent to (F pattern N), followed by (LCL . $)
folliowed by \.

Note that $ is a location specification, not just a
pattern. Thus (RETURN :: COND 2 3) can be used to find the
RETURN which contains a COND whose first clause contains (at
least) three elements. Note also that since $ permits any
edit command, the user can write commands of the form (COND

(RETURN :: COND)), which will locate the first COND that

contains a RETURHW that contains a COND.

Commands That Save and Restore the Edit Chain

Three facilities are available for saving the current
edit chain and later retrieving it. The commands are MARK,
which marks the current chain for future reference, <, (An
atomic command:; do not confuse with the list .command (<
pattern).) which returns to the last mark without destroving
it. and <<, which returns to the last mark and also erases
ite

MARK
Adds the current edit chain to the
front of the list MARKLIST.

Q’_
Makes the new edit chain be {CAR
MARKLIST). Generates an error if
MARKLIST is NIL, i.e.; no MARKS have
been performed. or all have been
eraseds

(-(..

Similar to <« but also erases the
MARK, 1.e., performs (SETQ MARKLST
{CDR MARKLST)}).

If the user did not prepare in advance for returning to
a particular edit chain, he may still be able to return %o
that chain with a single command by using \ or \P.

\

Makes the edit chain be the value of
UNFIND. Generates an error if
UNFIND=NIL.

UNFIND is set to the current edit chain by each command
hat makes & "big jump®, i.e., a command that usually
:xforms more than a single ascent or descent, namely 7. <,

iX, all! commands that involve a search, €ag.; ©r, LC,
BELOW, et &l and \ and \P themselves. (Except that
is not reset when the current edit chain is the top
9] ion; since this could always be returned to via

J

} if the user types F COND, and then F CAR,
im back to the COND. Another \ would take him

Restores the edit chain to its state
as of the 1last print operation,
i.e<,, P, ?, or PP. If the edit
chain has not changed since the last
printing, \P restores it to its
state as of the printing before that
one, 1i.e.,; two chains are always
saved. . \

For example, if the user types P followed by 3 2 1 p,
\P will return to the first P, i.e., would be equivalent to
0 0 0. (Note that if the user had typed P followed by F
COND, he could use gither \ or \P to return to the P, ice.,
the action of \ and \P are independent.) another \P would
then take him back to the second P, i.e., the user could use
\P. to flip back and forth between the two edit chains.

(S var . §)
Sets var (using SETQ) to the current

expression after performing (LC .
$)- Edit chain is not changed.

.. Thus fS‘FOO) will set FOO to the current expression, (S
FOO -1 1) will set FOO to -the first element in the -last
element of the current expressions

Commands That Modifv Structure

The basic structure modifications commands in the
editor are:

(n) :
n>1 deletes the corresponding
element from the current expression.

(n el «o+. em)

n:,m21 replaces the nth element in
the current expression with el ...
eMo

(_n el s o0 em) .
n:m>1 inserts el ... em before the
n element in the current expression.

(N el © e o em)

m>]1 attaches el ... em at the end
of the current expressione

As mentioned earlier:

All structure modificaton done by the editor is destructive,
i-e.y; the editor uses RPLACA and RPLACD to physically
change the structure it was given.

However, all structure modification is undoable, see
UNDO p. 2.76.

All of the above commands generate errors if the
current expression is not a 1list, or in the case of the
first three commands, if the 1list contains fewer than n
elements. In addition, the command (1), i.e., delete the
first element, will cause an error if there is only one
element, since deleting the first element must be done by
replacing it with the second element, and then deleting the
second element. Or, to look at it another way, deleting the
first element when there is only one element would require

. changing a 1list to an atom (i.e. to NIL) which cannot be

done. (However, the command DELETE will work even if there
is only one element in the current expression, since it will
ascend to a point where it can do the deletion.)

Implementation of Structure Modification Commands

Note: Since all commands that insert, replace, delete or
attach structure use the same low level editor functions,
the remarks made here are valid for all structure changing
commands.

For all replacement, insertion, and attaching at the
end 'of a list, unless the command was typed in directly to
the editor, copies of the corresponding structure are used,
because of the possibility that the exact -same command,
(i.e. same 1list structure) might be used again. (Some
editor commands take as arguments a list of edit commands,
e.gs .{(LP F FOO (1 (CAR F00))). In this case, the command
(1 (CAR FOO)) is not considered to have been "typed in® even
though the LP command itself may have been typed in.
Similarly, . commands originating from macros, or commands
given to the editor as arguments to EDITF, EDITV, et al,
e.g- (EDITF FOO -F COND (N =--)) are not considered typed
in.) Thus if the program constructs the command (1 (A B C))
via (LIST 1 FOO), and gives this command to the editor, the
(A B C) used for the replacement will NOT be EQ to FO00O.
(The user can circumvent this by using the I command, which
computes the structure to be used. In the above example;
the form of the command would be (I 1 FOO), which would
replace the first element with the value of FOO itself. See
Pe 2.63) . - '

The rest of this section is included for applications
wherein the editor is used to modify a data structure, and
pointers into that data structure are stored elsewhere. 1In
these cases, the actual mechanics of structure modification
must be known in order to predict the effect that various
commands may have on these outside pointerss For example,
if the value of FOO is CDR of the current expression, what
will the commands (2), (3), (2 X Y Z), (=2 X Y Z), etc., do
to FOO?

Deletion of the first element in the current expression
is performed by replacing it with the second element and
deleting the second element by patching around it. Deletion
of any other element is done by patching around it, i-.e.,
the previous. tail is altered. Thus if FOO is EQ to the
current expression which is (A B C D), and FIE is CDR of
FOO, after executing the command (), FOO will be (B C D)
{(which is EQUAL but not EOQ to FIE). However, under the same
initial conditions, after executing {(2) FIE will Dbe
unchanged, i.e., FIE will still Dbe (B C D) even though the

current expression and FOO are now (A C D). (A general

solution of the problem just isn’t possible, as it would
require being able to make two lists EQ to each other that
were originally different. Thus if FIE is CDR of the
current expression, and FUM is CDDR of the current
expression, performing(Z) would have to make FIE be EQ to
FUM if all subsequent operations were to update both FIE and
FUM correctly. Think about it.) : :

Both replacement and insertion are accomplished by
smashing bYoth CAR and CDR of the corresponding tail. . Thus,
if FOO were EQ to the current expression, (A B C D), after
(1 XY Z), FOO would be (X Y Z B C D). Similarly, if FOO
were EQ to the current expression, (A B C D), then after (-1
XY Z), FOO would be (X Y Z A B C D). . '

The N command is accomplished by smashing the last CDR"
of the current expression a la NCONC. Thus, if FOO wereé EQ
to any tail of the current expression, after executing an N
command, the corresponding expressions would also appear at
the end of FOO. :

In summary, the only situation in which an edit.
operation will pot change an external pointer occurs when
the external pointer is to a proper tail of the data
structure, i.e., to CDR of some node in the structure, and
the operation is deletion. If all external pointers are to
elements of the structure, i.e., to CAR of some node, or if
only insertions, replacements, or attachments are performed,
the edit operation will alwavs have the same effect on an
external pointer as it does on the current expression.

to

The_ A,;B;: Commands

In the (n), (n el ... em),. and (-n el ... em)
commands, the sign of the integer is used to indicate the
operation. As a result, there is no direct way to express
insertion after a particular element, (hence the necessity
for a separate N command). Similarly, the user cannot
specify deletion or replacement of the NTH element from the
end of a list without first converting - n to the
corresponding positive integer. Accordingly, we have: :

(B el ... em) :
Inserts el oo e em before the
current expression. Equivalent to
UP followed by (-1 el .¢. em).

For example, to insert FOO before the last element in
the current expression, perform -1 and then (B FOO).

(A el - em) ' :

. Inserts el ... em after the current
expressione. Equivalent to Up
followed by (-2 el .. em) or (N el
e em) or (N el .o em) whichever
is appropriate.

(¢ el ... em) : ,
' Replaces the current expression by
el cee . em. Equivalent to UP
’ followed by (l.el ... em).

DELETE or (:)

Deletes the current expression., or
"if the current expression is a tail,
deletes its first element.

DELETE first tries to delete the current expression by
performing an UP and then a (1). This works in most cases.
However, if after performing UP, the new current expression
contains only one element, the command (1) will not works
Therefore DELETE starts over and performs a BK, followed by
UP; followed by (2). For example, if the current expression
is' (COND ((MEMB X Y)) (T Y)), and the user performs -1, and
then DELETE., the BK-UP-(2) method is used, and the new
current expression will be ... ((MEMB X Y)))

Howévér. if the next higher expression contains only
one element, BK will not worke. So in this case, DELETE
performs UP, followed by (: NIL), i.e., it REPLACES the

higher expression by ©NIL. For example, if the current

eXpression is (COND {(MEMB ¥ Y)) (T Y)) and the user
performs»F MEMB and then DELETE, the new current expression
will be ... NIL (T Y)) and the original expression would

now be (COND NIL (T Y)). The rationale behind this is that
deleting (MEMB X Y) from ((MEMB X ¥)) changes a list of one
element to a list of no elements, i.e., () or NIL. Note
that 2 followed by DELETE would DELETE ((MEMB X Y)) NOT
replace it by NIL.

If the current expression is a tail, then B, A, and
will work exactly the same "as” though the current expression
were the first element in that tail. Thus if the current
expression were so-. (PRINT Y) (PRINT 2Z)), (B (PRINT X))
would insert (PRINT X) before (PRINT Y), leaving the current
expression ... (PRINT X) (PRINT Y) (PRINT Z)).

The following forms of the. A, B, and : ~commands
incorporate a location specification: ’

(INSERT el -e. em BEFORE . $)
Similar to (LC. $) followed by (B
el ... em). :

#p
(PROG (W Y X) (SELECTQ ATM & NIL) (OR & &) (PRIN1 &))

(INSERT LABEL BEFORE PRIN1)

i | »

(PROG (W Y X) (SELECTQ ATM & NIL) (OR & &) LABEL (PRIN1 &))

Current edit chain is not changed,
but UNFIND is set to the edit chain
after the B was performed, i.e., \
will make the edit chain be that
chain where the insertion was
performed.

(INSERT el ... em AFTER . §)
Similar to INSERT BEFORE except uses
A instead of B.

(INSERT el ««« em FOR . §) . E : .
Similar to INSERT BEFORE except uses
: for B.

{REPLACE $ WITH el ... em)
' Here $§ is the seament of the command
between REPLACE and WITH. Same as
(INSERT el «¢« em FOR . $). (BY
can be used for WITH.)

Example: (REPLACE COND -1 WITH (T (RETURN L)))

(CHANGE $ TO el ¢.. em)
Same as REPLACE WITH

(DELETE . §)

Does a (LC . $) followed by
DELETE. Current edit chain is not
changed (Unless the current

expression is no longer a part of
the expression being edited, e.g.,
if the current expressionh iS ... C)
and the user performs (DELETE 1),

the tail, (C), will have .been cut
off. Similarly, if the current
expression is (CDR Y) and the user
performs (REPLACE WITH (CAR X})a)
but UNFIND is set to the edit chain
after the DELETE was performed.

Example: (DELETE -1), (DELETE COND 3)

Note that if $ is NIL (empty), the corresponding
operation is performed here (on the current edit chain),
€.g., (REPLACE WITH (CAR X)) is equivalent to (:(CAR X)).
For added readability, HERE is also permitted, e.g., (INSERT
(PRINT ¥X) BEFORE’ HERE) will insert (PRINT X) before the
current expression (but not change the edit chain).

Note also that $ does not have to specify a location
WITHIN the current expression, i.e., it is perfectly legal
to ascend +to INSERT, REPLACE, or DELETE. For example
(INSERT (RETURN) AFTER T PROG -1) will go to the top, find
the first PROG, and insert a (RETURN) at its end, and not
change the current edit chain.

Finally. the A, B, and : commands, (and consecuently
INSERT, REPLACE, and CHANGE), all make special checks in E1
thru Em for expressions of the form (§## - coms). In this
case;, the expression used for inserting or replacing is a
copy of the current expression aftgy executing coms, a list
of edit commands. (The execution of coms does not change
the current edit chain.) For example, (INSERT (§ F COND ~1
-1) AFTER3) [pot (INSERT F COND -1 (4% -1) AFTER 3), which
inserts four elements after the third element, nanely F,
COnID, =1, and a copy of the last element in the current
expression] will make a copy of the last form in the last
clause of the next COND, and insert it after the third
element of the current expression-

Form Oriented Editing and the Role of UP

The UP that is performed before A, B, and : commands
(and therefore in INSERT, CHANGE,;, REPLACE, and DELETE
commands after the 1location portion. of the operation has
been performed.), makes these operations form~oriented. For
example, 1if the user types F SETQ, and then DELETE, or
simply (DELETE SETQ), he will delete the entire SETQ
expression, whereas (DELETE X) if ¥ is a variable, deletes
just the variable X. In both <cases, the operation is
performed on the corresponding FORM and in both cases is
probably what the user intended. .. Similarly, if the user
types (INSERT (RETURN Y) BEFORE SETQ), he means before the
SETQ expression., not before the atom SETQ. (*There is some
ambiguity in (INSERT expr AFTER functionname), as the user
might mean make expr be the function’s first argument.
Similarly, the user cannot write (REPLACE SETQQ WITH SETQ)
meaning change the name of the function. The user must in

these cases write (INSERT expr AFTER functionname 1), and
(REPLACE SETQQ 1 ‘WITH SETQ).) A consequent of this
procedure is that a pattern of the form (SETQ Y --) can be

viewed as simply an elaboration and further refinement of
the pattern SETQ. Thus (INSERT (RETURN Y) BEFORE SETQ) and
(INSERT (RETURN Y) BEFORE (SETQ Y --)) perform the same
operation (Assuming the next SETQ is of the form (SETQ
¥-))+.) and, in fact, this is one of the motivations behind
making the current expression after F SETQ, and F (SETQ Y
--) be the same. : '

Occasionally. however, a user may have a data structure
in which no special significance or meaning is attached to
the position of an atom in a list, as LISP attaches to atoms
that appear as CAR of a 1list, versus those appearing
elsewhere in a list. In general, the user may not even Xnow
whether a particular atom is at the head of a list or not.
Thus, when he writes (INSERT expression AFTER FOO), he means
after the atom FOO, whether or not it is CAR of a list. By
setting . the variable UPFINDFLG to ©NIL (Initially, and
usually, set to T.) the user can suppress the implicit UP
that follows searches for atoms, and thus achieve the
desired effect. With UPFINDFLG = NIL then following F FOO,
for example, the current expression will be +the atom FOO.
In this case, the A, B, and : operations will operate with
respect to the atom FOO. If the user intends the operation
to refer to the list which FOO heads, he simply uses instead
the pattern (F0O0O --).

Extract and Embed

Extraction involves replacing the current expression with
one of its subexpressions (from any depth) .

{XKTR - §) _
Replaces the original current
expression with the expression that

is current after performing (LCL =
S)e o

For example, if the current expresSion’is (COND ((NULL X)
(PRINT Y))), (XTR PRINT), or (XTR 2 2) will replace the COND
by the PRINT. - : :

If the current expression after (LCL

'+ $8) is a tail of a higher
expression, its first element 1is
used.

For example, if the current expression is

(COND ((NWULL X) Y) (T 2)), then (XTR Y) will replace the .
COND with Y. i : . : . .

If the extracted expression is a
list, then after XTR has finished,

the current expression will be. that
list.

Thus, in the first example, the current expression after the
XTR would be (PRINT Y). :

If the extracted expression is not a
list, the new current expression
will be a tail whose first element
is that non-list.

Thus, in the second example, the current expression after .

the XTR would be ... Y followed by whatever followed by
COND .

If the current expression initially is a tail,
extraction works exactly the same as though the current
expression were the first element in that tail. Thus is the
current expression is (XTR PRINT) will replace the COND by
the PRINT, leaving (PRINT Y) as the current expression.

The extract command
specification.

(EXTRACT $1 FROM $2)

can also incorporate a location

(S1 is the segment between EXTRACT
and FROM.)

Performs (LC « $2) And then (XTR .
$1). Current edit chain is not
changed, but UNFIND is set to +the
edit chain' after the XTR was
performed. o

Example: If the current expression is

(PRINT (COND ((NULL X)
(EXTRACT Y FROM COWND),
(PRINT Y).

¥Y) (T Z))) then following
the current expression will be

(EXTRACT 2 -1 FROM COND), (EXTRACT Y FROM 2),
(EXTRACT 2 -1 FROM 2) will all produce the same result.

While extracting replaces the current expression by a
subexpression, embedding replaces the current expression
A} ’

with -one containing it as a subexpression. .

(MBD x)

X 1is a 1list, substitutes (a 1la
SUBST, i.e., a fresh copy is used
for each 'substitution) the current
expression for all instances of the
atom- * in x., and replaces the
current expression with the result
of that substitution.

Example: If the current expression is (PRINT Y), (MBD (COND
((NULL X) *) ((NULL (CAR Y)) * (GO LP))) would replace
(PRINT Y) with (COND((NULL X) (PRINT Y)) ((NMULL (CAR Y))
(PRINT Y) (GO LP))).

{MBD el ..o em)
Eguivalent to (MBD (el -+ em *)).

Example: If the current expression is (PRINT Y), then (MBD
SETQ X) will replace it with (SETQ X (PRINT Y)).

(MBD x)
: X atomic., same as (MBD (x *)).

Example: If the current expression is (PRINT Y), (MBD
RETURN) will replace it with (RETURN (PRINT Y)).

All three forms of MBD leave the edit chain so that the
larger expression is the new current expression.

If +the current expression initially is a tail,
embedding works exactly the same as though the current
expression were the first element in that tail. Thus if the
current expression were (PRINT Y) with (SETQ X (PRINT Y)).

The embed command can also incorporate a location
specification.

(EMBED $ IN . x) , |
($ is the segment between EMBED and

IN.) Does (LC . $) and then (MBD .
X). Edit 'chain is not changed, but
UNFIND is set to the edit chain
‘after the MBD was performed.

Example: (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURHN),
(EMBED COND 3 1 IN (OR * (HULL X))). ‘

WITH can be used for IN, and SURROUND can be used for EMBED,
@sg., (SURROUND NUMBERP WITH (AND * (MINUSP X))).

The MOVE Command . .

The "MOVE command allows the user to specify (1) the
expression to be moved, (2)-thevplace it is to be moved to,
and (3) the operation to be performed there, e.g., insert it
before, insert it after, replace, etc. :

(MOVE $1 TO com . $2) : S “ _ -

(S1 is the segment between MOVE and

TO.) Where COM is BEFORE, AFTER, or

-~ .the name ‘'of a list .command, e.g., :,

N, etc. Performs (LC . $1),
Obtains the current expression there
(or its first element, if it is a
tail), let us call this expr; MOVE
then goes back to original edit
chain, performs (LC . $2), Peforms
(com expr), then goes back to $1 and
deletes 'expr. Edit chain is not
changed. UNFIND is set to edit
chain after . (com expr) was
performed.

For example, if the current expression is (A B D C), (
| MOVE 2 TO AFTER '4) will make the new current expression be
| (A € D B). Note that 4 was executed as of the original edit
chain, and that the second element had not yet been removed.

As the following examples taken from actual editing
will show, the MOVE command is an extremely versatile and
powerful feature of the editor. '

#? '

(PROG (L) (EDLOC (CDDR C)) (RETURN (CAR L)))
#(MOVE 3 TO : CAR)

$2 :

(PROG (L) (RETURN (EDLOC (CDDR C))))

.

#P

oo« (SELECTQ OBJPR & &) (RETURI &) LP2 (COND & &))
#(MOVE 2 TO N 1)

#p

+oo (SELECTQ OBJPR & & &) LP2 (COND & &))

#

#P
(OR (EQ ¥ LASTAIL) (NOT &) (AND & & &))
(MOVE 4 TO AFTER (BELOW COND))

#p

({OR (EQ X LASTAIL) (NOT &))

#\ P

coo (& &) (AND & & &) (T & &))
.

#P

{ (WULL X) (COND & &))

#{-3 (GO DELETE))

#{(MOVE 4 TO N (_ PROG))

#P

((NMULL X) (GO DELETE))

#\ P

(PROG (&) (COND & & &) (COND & & &) (COND & &))

(INSERT DELETE BEFORE -1)

#p

(PROG (&) (COND & & &) (COND & & &) DELETE (COND & &))

@€
W

Note that in the last example, the user could have
added the prog. label DELETE and moved the COND in one
operation by performing (MOVE 4 TO N (_ PROG) (N DELETE)).

Similarly., in the next example, in the course of specifying
$2, ‘the location where the expression was to be moved to,
the user also performs a structure modification, wvia (N
(T))s thus creating the structure that will receive the
expression being moved.

#P _
({CDR &) (SETQ CL &) (EDITSMASH CL & &))
#(MOVE 4 TO N 0 (N (T)) - 1]

#p

((CDR &) (SETQ CL &))
#\ P

(T (EDITSMASH CL & &))
#

If $2 is NIL, or (HERE), the current position specifies
where the operation is to take place. In this case, UNFIND

is set to where the expression that was moved was originally

located, i.e., $1. For example:

4P

(TENEX) v

#(MOVE T F APPLY TO N HERE) °
#P

(TENEX (APPLY & &))

4 .

#P

(T (PRIN1 C-EXP))

#(MOVE BF PRINI TO N HERE)
#p

(T (PRIN1 C~EXP) (PRIN1 &))
4

W

Finally, if $1 is NIL, the MOVE command allows the user
to specify some place the current exXpression is to be moved
toe. In this case, the edit chain is changed, and is the
chain where the current expression was moved to; UNFIND is
set to where it was.

e~ i
[¢2Bsv]

ELECTQ OBJPR (&) (PROGN & &))

(MOVE TO BEFORE LOOP)

#p

= o+ (SELECTQ OBJPR & &) LOOP (RPLACA DFPRP &)
#

to
©

w
w

(RPLACD DFPRP &))

Commands That "Move Parentheses”

The commands ‘presented in this section permit
modification of the 1list structure itself, as opposed to
modifying components thereof. Their effect can be described
as inserting or removing a single left or right parenthesis,
or pair of left and right parentheses. Of course, there
will always be the same number of left parentheses as right
Parentheses in any list structure, since the parentheses are
just a notational guide to the structure provided by PRINT.
Thus, no command can insert or remove just one parenthesis,
but this is suggestive of what actually happens.

In all six commands, n and m are used to specify an
element of a 1list, usually of the current expression. In
practice, n and m are usually positive or negative integers
with the obvious interpretation. However, all six commands
use the dgeneralized NTH command, po. 2.34, To find their
element(s), so that nth element means the first element of
the tail found by performing (NTH n). In other words, if
the current expression is (LIST (CAR X) (SETQ Y (CONS W
Z2))), then (BI 2 CONS), (BI X -1), and (BI ¥ 2) all specify
the exact same operation.

All six commands generate an error if the element is
not found, i.e., the NTH fails. All are undoable.

(BI n m)

Both in, inserts a left parentheses
before the nth element and after the
mth element in the current
expressione. Generates an error if
the mth element is not contained in
the pnth tail, i.e., the nth element
must be "“to the right" of the nth
element.

Example: If the current expression is (A B (C D E) F G),
then (BI 2 4) will modify it to be (A (B (CDE)F) G)o
Same as (BI n n).

Example: If the current expression is (A B (C D E) F G),
then (BI -2) will modify it to be (A B (CDE) (F) G)-

Both Qut. Removes both parentheses
from the nth element- Generates an
error if pnth element is not a liste.

Example: If the current expression is (A B (CDE)F G),
then (BO D) will modify it to be (A B C D E F G)e.

(LI n) ,
Left in, inserts a left parenthesis
weiors “he nth element (and a
matching right parenthesis at the
end of the current expression),
i-e., equivalent to (BI m ~1)-

Example: If the current expression is (A B (C D E)Y F G),
then (LI 2) will modify it to be (A (B (CDE)F G))o

(LO n)

Left out, removes a left parenthesis
from the pnth element. All elements
following the nth element are
deleted. Generates an error if nth
element is not a list.

Example: If the current expression is (A B (C D E) F G),
then (LO 3) will modify it to be (A B C D E).

(RI n m)
Right in, inserts a right
parenthesis after the mth element of
the nth element. The rest of the
hth element is brought up to the
level of the current expression.

Example: If the current expression is (A (B C D E} F G), (RI
2 2) will modifv it to be (A (B'C) DEF G). BAnother way of
thinking about RI is to read it as "move the right

parenthesis at the end of the nth element IN to after the
mth element.®

3]

{RO n) .

Right Qut," removes the right
parenthesis from the nth element,
moving it to the end of the current
expressione. All elements following
the nth element are moved inside of
the nth element. Generates an error
if nth element is not a list-.

Example: If the current expression is (A B (CDE)F G), (RO
3) will modify it to be (A.B (C D E F G)). Another way of
thinking about .RO is to read it as "move the right
parenthesis at the end of the nth element OUT to the end of
the current expression."

TO _and THRU

EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made
to operate on several contiquous elements, i.e., a segment
of a 1list, by using the TO or THRU command in their
respective location specifications.

(S1 THRU $2)
Does a (LC . $1), Followed by an
UP, and then a (BI 1 $2), thereby
grouping the segment intoc a single
element, and finally does a 1,
making the final current expression
be that element.

For example, if the current expression is (A (B (C D) (E) (F
G H) I) J K), following (C THRU G), the current expression
will be ({(C D) (E) (F G H)).

($1 TO $2)
Same as THRU except last element not
included; i-.e., after the BI, an (RI
1 -2) is performed-

If both S$S1 and $2 are numbers, and $2 is greater than
$1, then $2 counts from the beginning of the current
expression, the same as $1l. In other words, if the current
expression is (A B C D.E F G), (3 THRU 4) means (C THRU D),
not (C THRU F). In this case, the corresponding BI command
is (BI 1 $2-$1+1).

THRU and TO are not very useful commands by themselves,
and are not intended to be used "solo”, but in conjunction
with EXTRACT, EMBED, DELETE, REPLACE, and MOVE. After THRU
and TO have operated, they set an internal editor flag
informing the above commands that the element: they are
operating on is actually a segment, and that the extra pair
of parentheses should be removed when the operation is
complete. Thus:

4p
(PROG HIL (SETQ A &) (RPLACA & &) (PRINT &) (RPLACD & &))
#(MOVE (3 THRU 4) TO BEFORE 5) P

(PROG NIL (PRINT &) (SETQ A &) (RPLACA & &) (RPLACD & &))
#

Note that when specifing $2 in the MOVE, 5 was used instead

of 6. This is because the $2. is located after $1 is. The

THRU location groups items together and thus changes the
numeric location of the following items.

#p = :
(PROG NIL (PRINI1 &) (PRINI &) (SETQ IND &) (SETQ VAL &) (PRINT &}))
#(MOVE (5 THRU 7) TO BEFORE 3)

#P :

(PROG NIL (SETQ IND &) (SETQ VAL &) (PRINT &) (PRINL &) (PRIN1 &))
(DELETE (SETQ THRU PRI@))

= PRINT o
#p

(PROG NIL (PRIN1 &) (PRIN1 &))
:

#P
«-« LP (SELECTQ & & &) (SETQ Y &) OUT (SETQ FLG &) (RETURN Y))
#(MOVE (1 TO OUT) TO N HERE)
#pP
ce+ OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ & & &) (SETQ Y &))
#
PP
(PROG (TEMP1l TEMP2) ,

(COND ((NOT (MEMQ REMARG LISTING))

(SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS))
(SETQ TEMP2 (CADR TEMP1)))
(T (SETQ TEMP1 REMARG)))

(NCONC LISTING REMARG)

(RETURN (CONS TEMP1 TEMP2)))
(EXTRACT (SETQ THRU CADR) FROM COND) PP
(PROG (TEMP1 TEMP2)
(SETQ TEMP1 (ASSOC REMARG HAMEDREMARKS))
(SETC TEMP2 (CADR TEMP1))
(NCONS LISTING REMARG)
(RETURN (CONS TEMP1l TEMP2)))

TO and THRU can also be used directly with XTR.
(Because XTR involves a location specification while A.,B,:,
and MBD do not.) Thus in the previous example, if the
current expression had been the COND, e-g-, the user had
first performed F COND , he could have used (XTR (SETQ THRU
CADR)) to perform the extraction.

(S1 TO), (S1 THRU)

Both same as ($1 THRU =-1), i.e.,
from Sl thru the end of the list.

#P

(VAL (RPLACA DFPRP &) (RPLACD & &) (RPLACA VARS &) (RETURN g&))
#(MOVE (2 TO) TO N (< PROG)) :
#(N (GO VAR))

#P

(VAL (GO VAR))

#

#P

(T (COND &) (EDITSMASH CL & &) (COND &))

#(-2 (GO REPLACE))

#(MOVE (COND TO) TO N PROG (N REPLACE))

#p

(T (GO REPLACE))

#\N P '

(PROG (&) (COND & & &) (COHD & & &) DELETE (COND & &) REPLACE
(COND &) (EDITSMASH CL & &) (COHD &))

#

#op
(LAMBDA (CLAUSALA X)
(PROG (A D)
(SETQ A CLAUSALA)
LP (COND ((NULL A) (RETURN NIL)))
(SERCH X A)
(RUMARK (CAR A))
(NOTICECL (CAR A))
(SETQ A (CDR A)).
(GO LP})) '
(EXTRACT (SERCH THRU NOT@) FROM PROG) P
= NOTICECL
(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &))

(EMBED (SERCH TO) IN (MAP [FUNCTION (LAMBDA (A) *] CLAUSALA]
PP

(LAMBDA (CLAUSALA ¥X)
"~ (MAP (FUNCTION
(LAMBDA(A)
(SERCH X A)
(RUMARK (CAR A))
(NOTICECL (CAR A))))
CLAUSALA))

Replaces all instances of x by v in
the current expression, e-.g., (R
CAADR CADAR). Generates an error if
there is not at least one instance.

R operates by" performing a DSUBST. The current
expression 1is the third argument to DSUBST, i.e«, the
expression being substituted into, and Y 1s the first
argument. to DSUBST, i.e., the expression being substituted.
R computes the second argument to DSUBST, the expression to
be substituted for, by performing (F x T). The second
argument is then the current expression at that point, or if
that current expression is a list and x is atomic, then the
first element of that current expression.. Thus x can be the
S-expression (or atom) to be substituted for, or can be a
pattern which specifies that S-expression (or atom).

For example, if the current eXpression is (LIST FUNMYATOM1
FUNNYATOM2 (CAR FUNNYATOM1)), then (R FUNe@ FUNNYATOM3) will
substitute FUNNYATOM3 for FUNNYATOMI throughout the current
expression. Note that FUNNYATOM2, even though it would have
matched with the pattern FUN@, is NOT replaced.

Similarly, 1if (LIST(CAR X) (CAR Y)) is the first
expression matched by (LIST =--), then (R (LIST --) (LIST
(CAR Y) (CAR Z2))) 1is equivalent to (R (LIST (CARX) (CARY))
(LIST (CAR Y) (CAR 2))), 1i.e., both will replace all
instances of (LIST (CAR X) (CAR Y)) by (LIST (CAR Y¥) (CAR
Z))o Note that other forms beginning with LIST will not be
replaced, even though they would have matched with (LIST
=) To change all expressions of the form (LIST --) to
(LIST (CAR Y) (CAR 2)), the user should perform (LP (REPLACE
(LIST ~-) WITH (LIST (CAR Y) (CAR]. :

UNFIND is set to the edit chain following the find command
so that \ will make the current expression be the place
where the first substitution occurred.

(SW n m)

Switches the nth and mth elements of
the current expression.

For example, if the current expression is (LIST (CONS (CAR
X) (CAR Y)) (CONS (CDR Y))), (SWw 2 3) will modify it to be
({LIST (CONS (CDR X) (CDR Y)) (CONS (CAR X) (CAR Y))). The
relative order of 1 and m is not important, ie, (SW 3 2)
and (SW 2 3) are eguivalent.

SW uses the generalized NTH command
--.to find the nth and mth elements, a
la the BI-BO commands.

Thus in the previous example, (SW CAR CDR) would produce the
same result.

'.Commands-That Print

P
Prints current expression as though
PRINTLEV were given a depth of 2.

(P m) :
Prints . mth element of current
expression as though PRINTLEV were
given a depth of 2.

(P 0) o '
Same as P

(P m n) .
Prints mth element of current
expression as though PRINTLEV were
given a depth of N.

(P 0 n)

Prints current expression as though
PRINTLEVEL were given a depth of N.

28]

Same as (P 0 100)

Both (P m) and (P m n) use the general NTH command to
obtain the corresponding element, so that m does not have to
be a number, e.g. (P COND 3) will worke.

All printing functions pPrint to the teletype,
regardless of the primary output file. No printing function
ever changes the edit chain. All record the current edit
chain for use by \P, p. 2.37.

Commands That Evaluate

E
only when tvped in, (i.e., (INSERT D
BEFORE E) will treat E as a pattern)
causes the editor to call the LISP
interpreter giving it the next input
as argument.
Example:
#£ (BREAK FIE FUM)
(FIE FUM) '
#E (F0O)
(FIE BROKEN)
1:
(E x) .
Evaluates ¥, i.e., performs (EVAL
X)s and prints the vresult on the
teletype- '
(E x T)

Same as (E x) but does not print.

The (E x) and (E x T) commands are mainly intended for
use by MACROS and subroutine calls to the editor; the user
would probably type in a form for evaluation using the mor
convenient format of the (atomic) E command.

(ICXI oo Xn)
Same as (c vyi oo vn) where
yi=(EVAL xi).

Example: (I 3 (GETD (QUOTE -FOO)) will replace the 3rd
element of the current expression with the definition of
FOO. (The I command sets an internal flag to indicate to
the structure modification commands not to copy
expression(s) when inserting, replacing, or attaching.) (I N
FOO (CAR FIE)) will attach the value of FOO and CAR of the
value of FIE to the end of the current expressione. (I F=
FOO T} will search for an expression EQ to the value of FO0O.

If ¢ is not an atom, it is evaluated
as well. '

Example: (I (COND ((NULL FLG) (QUOTE -1)) (T 1)) FOO), if
FLG is WNIL, inserts the value of FO0O before the first
element of the current expression, otherwise replaces the

first element by the value of FOO.

(## comil] coml2] ... com[n])
is an FSUBR (not a command). Its
value is what the current expression
would be after executing the edit
commands com[l] ... comin] starting

from the present edit chain.
Generates an error if any of comill]
‘thru comlin] cause errors. The

current edit chain is never changed.
(Recall that A,B, :, INSERT, REPLACE,
and CHANGE make special checks for
##% forms in the expressions used for
inserting or replacing, and use a
copy of ## form instead (see Da
2:44). thus, (INSERT (## 3 2) AFTER
1) is equivalent to (I INSERT (Copy
(#%# 3 2)) (QUOTE AFTER) 1).)

Example: (I R (QUOTE X) (## (CONS «+Z))) replaces all X’s in
the current expression by the first CoONS containing a Z.

The I command is not very convenient for computing an
entire edit command for execution, since it computes the
command name and its arguments separately. Also, the I
command cannot be used- to compute an atomic command. The
following two commands provide more general ways of
cemputing commands.

(COMS x1 «.. xn)

Each xi is evaluated and its value
executed as a command.

For example, (COMS (COMND (X (LIST 1 X)))) will replace the
first element of the current expression with the value of X
if non-NIL, otherwise do nothing. (NIL as a command is a
HOP, see p. 2071.)

(COMSQ com{il ... comi{nl)
Executes com{l] ... comin}.

COMEQ is mainly useful in conjunction with the COMS command.
For example; suppose the user wishes to compute an entire
list of commands for evaluation, as opposed to computing
each command one at a tine as does the COMS command. He
would then write (COWMS (CONS (QUOTE. COMSQ) %)) where ¥
computed the list of commands, e,

(COMS (CONS .(QUOTE COMSQ) (GET FOO (QUOTE COMMANDS)))).

2
'

"Commands That Test

(IF %)

Generates an error unless the value
of (EVAL x) is true, i.e., if (EVAL
X) causes an error or (EVAL X)=NIL,
IF will cause an error.

For some editor commands, the occurrence of an error
has a well defined meaning, i.2., they nse srrors to Lranch
on as COND uses NIL and non-NIL. For example, an error
condition in a location specification may simply mean "not
this one;, try the next." Thus the location specification

(*PLUS (E (OR (HUMBERP (## 3)) (ERR NIL)) T))
specifies the first *PLUS whose second argument is a number.
The IF command, by equating !NIL to error, provides a more
natural way of accomplishing the same result. Thus, an
equivalent location specification is (*PLUS (IF (MUMBERP (44
3Y))).

The IF command can also be used to select bhetween two
alternate lists of commands for execution.

(IF x comsl coms2)
If (EVAL x) is true, execute comsl;
if (EVAL x) causes an error or is
equal to NIL, execute coms2.

For example, the command (IF (NULL A) NIL (P)) will print
the current expression provided A=NIL.

(IF x comsl)

If (EVAL x) is true, execute comsl:
otherwise generate an error.

(LP . coms)
Repeatedly executes coms, a list of
commands, until an error occursS.

For example, (LP F PRINT (N T)) will attach a T at the
end of every PRINT expression. (LP F PRINT (IF (## 3) NIiL
((0 T)))) will attach a T at the end of each print
expression which does not already have a second argument.
{(i.e. The form (## 3) will cause an error if the edit
command 3 causes an error, thereby selecting ((IM T)) as the
list of commands to be executed. The IF could also be
written as (IF (CDDR (##)) NIL ((N T))).)

When an error occurs, LP Prints n
'OCCURRENCES, where n is the number
of times COMS was successfully
executed. The edit chain is left as
of the 1last complete successful
execution of COMS.

-S5ame as LP but does not print n
OCCURRENCES.

In order to prevent non-terminating loops, both LP and
LPQ terminate when the number of iterations reaches MAXLOOP,
initially set to 30.

(ORR coms[l] ... ComslIn])
ORR begins by executing comsl[l], a
list of commands. If no error
occurs, ORR is finished. Otherwise,
ORR restores the edit chain to its
‘original wvalue;, and continues by
executing coms{2], etc. If none of
the command 1lists execute without
errors, i.e., the ORR "drops off the
end", ‘ORR generates an error.
Otherwisé, the edit chain is left as
of the completion of the first
command list which executes without
error-. (NIL as a command list is
perfectly 1legal, and will always
execute successfully. Thus, making
the last ‘argument’ to ORR be NIL
will insure that the ORR never
causes an error. Any other atom is
treated as (atom);, i.e., the example
given below could be written as (ORR
NX INYX MIL).) '

For example, (ORR (NX) (INX) NIL) will perform a NX, if
possible, otherwise a INX, 1f ©possible, otherwise do
nothing. Similarly, DELETE could be written as (ORR (UP
(1)) (BK UP (2)) (UP (: HNIL))).

Macros

Many of the more sophisticated branching commands in
the editor, such as ORR, IF, etc., are most often used in
conjunction with edit macros. The macro feature permits the
user to define new commands and thereby expand the editor’s
repertoire. (However, built in commands always take
precedence over macroS; i.e., the editor’s repertoire can be

expanded, but not modified.) Macros are defined by using the
M commande.

(M ¢ « coms) ,
For ¢ an atom. M defines ¢ as an
atomic command. (If a macro 1is
redefined, its new definition
replaces its old.) Executing c¢ is
then the same as executing the 1list
of commands COMS.

For example, (M BP BK UP P) will define BP as an atomic
command which does three things, a BK, an UP, and a P. Note
that macros can use commands defined by macros as well as
built in commands in their definitions- For example,
suppose Z is defined by (M 2 =1 (IF (NULL (##)) NIL (P))),
lees Z does a -1, and then if the current expression is not
NIL, a P. ©Now we can define ZZ by (M 22 -1 Z), and ZZ%Z by
(M 222 -1 -1 Z) or (M 222 -1 2%2).

Macros can also define 1list commands, i.e., commands
that take arguments. ’

(M (c) (argil] ... arglnl]) . coms)
C an atoms M defines ¢ as a list
command. Executing (¢ el ... en)
is then performed by substituting el

for arglil., oo en for argin]
throughouﬁ COMS, and then executing
COMS.'

For example, we could define a more general BP by (M
(BP) (N) (BK Nj UP. P). Thus, (BP 3) would perform (BK 3);
followed by an UP, followed by a P.

A list command can be defined via a macro so as to take
a fixed or indefinite number of ‘arguments’. The form given
above specified a macro with a fixed number of arguments, as
indicated by its argument list. If the “argument list’ 1is
atomic, the command takes an indefinite number of arguments.

(M (c¢) args - coms) ‘
' Name, args both atoms, defines c as
a list command. executing (¢ el ...
en) is performed by substituting (el
cso @n), i.e., CDR of the command,
for args throughout coms, and then
executing coms.

For example, the command SECOND, Do 2.31, can be .
defined as a macro by (M (2ND) X (ORR ((LC . X}y (LC .
X))))oe Note that for all editor commands, ‘built in°’
commands as well as commands defined by macros, atomic
definitions and list definitions are completely independent.
In other words, the existence of an atomic definition for ¢
in no way affects the treatment of c when it appears as CAR
of a list command, and the existence of a list definition
for ¢ in no way affects the treatment of ¢ when it appears
as an atome. in particular, ¢ can be used as the name of
either an atomic command, or a list command, or both. In
the latter case, two entirely different definitions can be
used-.

Note also that once c is defined as an atomic command
via a macro definition, it will not be searched for when
used in a location specification., unless c is preceded by an

F. Thus (INSERT -~ BEFORE BP) would not search for BP., but
instead perform a BK, an UP, and a P, and then do the
insertion. The corresponding also holds true for 1iist

commands.

Occasionally, +the wuser will want to employ the S
command in a macro to save some temporary resulte. For
example, the SW command could be defined as

(M (SW) (N M) (NTH N) (S FOO 1) MARK 0 (NTH M) (S FIE 1) (I
1 FOO) <<« (I 1 FIE))

(A more elegant definition would be (M (SW) (M M) (NTH N)
MARK O (NTH M) (S FIE 1) (I 1 (## < 1)) <« (I 1 FIE)), but
this would still use one free variable.)

Since SW sets FOO and FIE, using SW may have
undesirable side effects, especially when the editor was
called from deep in a computation. Thus we must always be
careful to make up unique names for dummy variables used in
edit macros, which is bothersome. Furthermore, it would be
impossible to define a command that called itself
recursively while setting free variables. The BIND command

solves both problemsf

(BIND . coms)

Binds three dummy variables #1, #2,
#3. (initialized to NIL), and then
executes the edit commands COMS.
Note that these bindings are only in
effect while the commands are being
executed, and that BIND can be used
recursively; it will rebind #1, #2,
;- and #3 each time it is invoked.
(BIND is implemented by (PROG (#1 #2
#3) (EDITCOMS (CDR COM))) where COM
corresponds to the BIND command, and
EDITCOMS is an internal editor

- function which executes a 1list of
commands.)

thus we could now write SW safely as

(M (SW) (N M) (BIND (NTH N) (S #1 1) MARK 0 (NTH M) (S #2 1)
(I 1 #1) << (I 1 #2))).

User macros are stored on a 1list USERMACROS.
(USERMACROS is initially WNIL.) thus if the user wants to
save his macros, he should save the value of USERMACROS.
(The user probably should also save the value of EDITCOMSL).

Miscellaneous Commands

NIL '
Unless preceded by F or ©BF, 1is
always a NOP.

Calls the editor recursively. The
user can then type in commands. and

have them executed. The TTY:
command is completed when the user

exits from the lower editor. (See
OK and STOP belowe.) :

The TTY: command is extremely useful. -It enables the
user to set up a complex operation, and perform interactive
attention-changing commands part way through 1it. For
example the command (MOVE 3 TO AFTER COND 3 P TTY:) allows
t+he user to interact, in effect, within the MOVE command.
Thus he can verify for himself that the correct location has
been found:. or complete the specification "by hand". In
effect, TTY: says "I‘1ll tell you what you should do when Yyou
get there.”

The TTY: command operates by printing TTY: and then
calling the editors The initial edit chain in the lower
editor is the one that existed in the higher editor at the
time the TTY: command was entered. Until the user exits
from the lower editor, any attention changing commands he
executes only affect the lower editor’s edit chain. (Of
course, if the user performs any structure modification
commands while under a TTY: command, these will modify the
structure in both editors, since it is the same structure.)
When +the TTY: command finishes, the lower editor’s edit
chain becomes the edit chain of the higher editor-.

CK
Exits from the editor.

Exits from the editor with an error.
Mainly for use 1in conjunction with
TTY: commands that the user wants to
abort.

Since all of the commands in the editor are ERRSET
protected, the user must exit from the editor via a command.
STOP provides a way of distinguishing between a successful
and unsuccessful J(from +the user’s standpoint) editing
session. For example, if the user is executing (MOVE 3 TO
AFTER COND TTY:), and he exits from the lower editor with an
OK, the MOVE command will then complete its operation. If
. the user wants to abort the MOVE command, he must make the
TTY: command generate an error. He does this by exiting
from the lower .editor with a STOP command- In this case,
the higher editor’s edit- chain will not be changed by the
TTY: command.

SAVE

~Exits from the editor and saves the
“state of the edit® on the property
list of the function/variable being
edited under the property EDIT-SAVE.
If the editor is called again on the
same structure, the editing is
effectively -"continued,” i.e., the
edit . chain, mark 1list, value of
UNFIND and UNDOLST are restored.

For example:

#p

(NULL X)

#F COND P

(COND (& &) (T &))
$SAVE

FOO

*(EDITF FOO)

EDIT

3P

(COND (& &) (T &))
#\ P

(NULL X)

#

SAVE 1s necessary only ifthHe - - user is .editing many
different expressions; an exit from the editor via OK always
saves the state of the edit of that call to the editor. (On
the property 1list of the atom EDIT, under the property name
LASTVALUE. OK also remprops EDIT-SAVE from the property
list of the function/variable being edited.) Whenever the
editor 1s entered, it checks to see if it is editing the
same expression as the last one editeds In this case, it
restores the mark list, the undolst, and sets UNFIND to be
the edit chain as of the previous exit from the editor. For
example:

*(EDITF FOO)

EDIT

#P

(LAMBDA (¥X) (PROG & & LP & & & &})

#D

(COND & &)

#OK

FOO

#
. Any number of inputs except for
. calls to the editor.

*(EDITF FO0O) '

EDIT

#p

(LAMBDA (X) (PROG & & LP & & & &))

#\ P :

(COND & &)

#

The user can always continue editing, including undoing
changes from a previous editing session, if

(1) Yo other expressions have been edited since
that session;: (since saving takes place at exit
time, intervening calls that were exited via STOP
will not affect the editor’s memory of this last
session.) or

(2} It was ended with a SAVE commands

REPACK

Permits the ‘editing’ of an atom or

string.
For example:
#P .
esee "THIS IS A LOGN STRING")
#REPACK '
EDIT
14p

(/* THIS/ IS/ A/ LOGHN/ STRING/ /")
14#(SW G 1)

140K

"THIS IS A LONG STRING®

#

REPACK operates by calling the editor recursively on
UNPACK of the current expression, or if it is a list, on
UNPACK of its first element. If the lower editor is exited
successfully, i.c. wvia OK as ogpposed to STOP, the list of
atoms is made into a single atom or string, which replaces
the atom or string being ‘repacked.’ The nhew atom or string
is always printed.

(REPACK §) -

Does (LC . $) followed by REPACK,
e.g. (REPACK THISQ).

(MAKEFN form args n m)

Makes (CAR form) an EXPR‘with the

nth through mth elements
current expression with
- occurance of an element
form) replaced by the corresponding
element of args. The nth through
mth elements are replaced by form-

For example:

#P ,

=+« (SETQ A NIL) (SETQ B T) (CONS C D))
(MAKEFN (SETUP C D) (W X) 1 3) P

s« (SETUP C D))

#£ (GRINDEF SETUD)

(DEFPROP SETUP

(LAMBDA (W X) (SETQ A NIL) (SETC B T) (CONS W X))
EXPR)

#

(MAKEFN form args n)

Same as (MAKEFN form args n n).

UNDO

Each command that causes structure modification
automatically adds an entry to the front of UNDOLST
containing the information réquired to restore all pointers
that were changed by the command.

UNDO

Undoes the last, i.e., most recent,
structure modification command that
has not yet been undone, (Since UNDO
and 'UNDO causes structure
nodification, they also add an entry
to UNDOLST. However, UNDO and !UNDO
entries are skipped by UNDO, oo,
if the user performs an INSERT, and
then an MBD, the first UNDO will
undo the MBD, and the second will
undo the INSERT. However, the user
can also specify precisely which
command he wants undone- In this
case, he can undq an UNDO command,
e<g., by typing UNDO UNDO, or undo a
'UNDO command, or undo a command
other than that most recently
performed.) and prints the name of
that command, e.g., MBD UNDONE. The
edit chain is then exactly what it
was before the ‘undone’ command had
been performed. If there are no
commands to undo, UNDO tvpes NOTHING
SAVED.

fUNDO
Undoes all modifications performed
during this editing session, i-e.,
this call to the editor. As each

command is$ undone, its name 1is
printed a 1la UNDO. If there isi
nothing to be undone, !UNDO prints

NOTHING SAVED.

Whenever the wuser continues an editing session as
described on pages 2.72-2.73, the undo information of the
previous session(s) is protected by inserting a special
blip, called an undo-block on +the front of UNDOLST. This
undo-block will terminate +he operation of a !UNDO, thereby
confining its effect to the current session, and will

o

similarly prevent an UNDO command from operatlng on commands
executed in the previous session.

Thus, if the wuser enters the .editor continuing a
session, and immediately executes an UNDO or !UNDO, UNDO and
YUNDO will type " BLOCKED, instead of MOTHING SAVED.
Similarly, if the user executes several commands and then
undoes them all, either v1a several UNDO commands or a !UMNDO
command, another UNDO or !UNDO will also type BLOCKED.

UNBLOCK)
Removes an undo-block. If executed
at a non-blocked state, i.e., if
UNDO or !UNDO could operate, types
" NOT BLOCKED.
TEST

Adds an undo-block at the front of
UIlIDOLST.

Note that TEST together with - fUNDO ° provide a
‘tentative’ mode for editing, i.e., the user can perform a
number of changes, and then undo all of them with a single
'UNDO command. '

27
Prints the entries on UNDOLST. The
entries are listed in the reverse
order of their execution, i.e., the
most recent entry first. For
example: :

#P

(COMS (T &) (& &))
#(1 COND) (SW 2 3) p
(COMD (& &) (T &))
22

SW (1 --)

#

o

Lditdefault

Whenever a command is not recognized, i.e., ig not
‘built in° or defined as a macro, the editor calls an
internal function, EDITDEFAULT to determine what action to
take. If a location specification is being executed, an
internal flag informs EDITDEFAULT to treat the command as
though it had been preceded by an F.

If the command is atomic and tvped in directly, the
Procedure followved“is as given belowe.

1)

If the command is one of the list commands, ji.e.,
a member of ZDITCOMSL, and there is additional input on
the same teletype line, treat the entire 1line as a
single list command. (Uses READLINE. Thus the line
can be terminated by carriage return, right parenthesis
Oor sdquare bracket, or a list.) Thus, the user may omit
Parentheses for any list command typed in at the top
level (which is not also an atomic command, e.g., HY,

. BK). For example:

4P

(COMD (& &) (T &))

#(XTR 3 2)

#MOVE TO AFTER LP :

#
If the command is on the list EDITCOMSL but- no
additional input is on the teletype line, an error is
generated, e-g.,
#P
(COND (& &) (T &))
#MOVE
MOVE 2
:
|
|
2)

If the last craracter in the command is P, and the
.Tirst n-1 characters comprise the command <<, <, UP,
Nx, BK, INX, UNDO, or REDO, assume that the user
intended two commands, €eGoy

#P

(COMD (& &) (T &))
#2 NXP

(T (CONS X Y))

3)

Otherwise, generate an error.

Editor Functions

(EDITL L coms atm marklst mess)

EDITL is the editor. Its first
argument is the edit chain, and its
value is an edit chain, namely the
value of L at the time EDITL is
exited. (L is a special variable,
and so can be examined or. set by
edit commands. For example, | is
equivalent to (E (SETO L{LAST 1))
T).)

Coms is an optional list of
commands. For interactive editing,
coms is NIL. In this case, EDITL
types EDIT and then waits for input
from the teletype. (If mess is not
NII, EDITL types it instead of EDIT.
For example, the .TTY: command is
essentially (SETQ L (EDITL L NIL NIL
NIL (QUOTE TTY:))).) Exit occurs
only wvia an OK, STOP, or SAVE
commande.

If coms is NOT NIL, no message is
typed, and each member of coms is
treated as a command and executed.
If an error occurs in the execution
of one of the commands, no error
message is printed , the rest of the
commands are ignored, and EDITL
exits with an error, ie€0, the
effect is the same as though a STOP
command had been executed. If all
commands execute successfully, EDITL
returns the current value of L.

Marklst is the list of marks.

On calls from EDITF, Atm is the name
of the function being edited; on
calls from EDITV, the name of the
variable, and calls from EDITP, the
atom of which some property of its
property 1list is being edited. The
property list of atm is used by the:
SAVE command for saving the state of

the edit. Thus SAVE will not save
anything if atm=NIL i.e., when
editing arbitrary expressions via
EDITE or EDITL directly.

(EDITF x) . ’ .
FSUBR function for editing a
function. (CAR x) 1is .the name of
the function, (CDR x) an optional
list of commands. .For the rest of
the discussion, fn is (CAR x), and
conms is (CDR x).
If x is NIL, fn is set to the value
of LASTWORD, coms is set to NIL, and
the value of LASTWORD is printed.
The value of EDITF is fn.

(1) In the most common case, fn is an non-compiled

function, and EDITF simply performs
(EDITE (CADR (GETL fn (QUOTE (FEXPR EXPR MACRO)))) coms fn)
and sets LASTWORD to fn. '

(2) If fn is not.an editable function, but has a value,
EDITF assumes the user meant to call EDITV, prints =EDITV,
calls EDITV and returns. :

Otherwise, EDITF generates an fn NOT EDITABLE error.

(EDITE expr coms atm)
Edits an expressione. Its value is
the 1last element of (EDITL (LIST
exXxpr) coms atm NIL NIL). Generates
an error if expr is not a list.

(EDITV editvx)

FSUBR function, similar to EDITF,
for editing values. (CAR editvx)
specifies the value, (CDR editvx) is
an optional list of commands.

If editvx is NIL, it is set to the
value of (NCONS LASTWORD) and the
value of LASTWORD is printed.

If (CAR editvx) is a list, it is evaluated and its
value given to EDITE, e.g-. (EDITV (CDR (ASSOC (QUOTE FO00)
DICTIONARY)))}). In this case, the value of EDITV is T.

However, in most cases, (CAR editvx) 1is a variable,
€-go (EDITV FOO); and EDITV calls EDITE on the value of the
variables

1f the value of (CAR editvx) is atomic then EDITV
Prints a NOT EDITABLE error message-

When (if) EDITE returns, EDITV sets the variable to the
value returned, and sets LASTWORD to +the name of the
variable.

The value of EDITV is the name of the variable whose
value was edited.

(EDITP x)

FSUBR function, similar to EDITF for
editing property lists. Like EDITF,
LASTWORD is used if x is NIL. EDITP
calls EDITE on the property list of
(CAR x). When (if) EDITE returns,
EDITP RPLACD’s {(CAR %) with the
value returned, and sets LASTWORD to
(CAR x).

The value of EDITP is the atom whose
property list was edited.

(EDITFNS ¥x)

FSUBR function, used to perform the
same editing operations on several
functions. (CAR x) is evaluated to
obtain a list of functions. (CDR x)
is a list of edit commands. EDITFNS
maps down the 1list of functions,
prints the name of each function,
and calls the editor (via EDITF) on
that function.

For example, (EDITFNS FOOFNS (R FIE FUM)) will change
every FIE to FUM in each of the functions on FOOFNS.

The call to the editor is ERRSET
protected, so that if the editing of
one function causes an error,
EDITFNS will proceed to the next
function.

Thus in the above example, if one of the functions did
not contain a FIE, the R command would cause an error. but
editing would continue with the next function.

The value of EDITFNS is NIL

(EDIT4E pat y)
Is the pattern match routine. Its
value is T if pat matches Yo See
PP 2:22-2.23 For definition of
“match’. ‘ '

Note: Dbefore each search operation in the editor
begins, the entire pattern is scanned for atoms or strings
that end in at-signs. These are replaced by patterns of the
form :

(CONS (QUOTE /@) (EXPLODEC atom)).
Thus from the standpoint of EDIT4E, pattern type 5, atoms or
strings ending in at-signs, is really "If carlpat] is the
atom @ (at-sign), PAT will match with any literal atom or
string whose initial character codes (up to the @) are the
same as those in cdrlpat]."

If the user wishes to call EDIT4E directly, he must
therefore convert any patterns which contain atoms or
strings ending in at-signs to the form recgnized by EDIT4E.
This can be done via the function EDITFPAT.

(EDITFPAT pat flg)

Makes a copy of pat with all
patterns of type 5 converted to the
form expected by EDIT4E. Flg should
be passed as NIL (£1g=T is for
internal use by the editor).

(EDITFINDP x pat flg)

Allows a program to use the edit
find command as a pure predicate
from outside the editor. X is an
expression, pat ‘'a pattern. The
value of EDITFINDP is T if the
command F pat would succeed, NIL
otherwise. EDITFINDP calls EDITFPAT
to convert pat “o the form expected
by EDIT4E, unless flg=T. Thus, if
the program is applying EDITFINDP to
several different expressions using
the same pattern, it will be more
efficient to call EDITFPAT once, and
then call EDITFINDP with the
converted pattern and flg=T.

(EDITRACEFN com)

Is available to help the user debug
complex edit macros, or subroutine
calls to the editor. EDITRACEFN is
to be defined by the user. Whenever
the value of EDITRACEFN is non=NIL,
the editor calls the function
EDITRACEFN before executing each
command (at any level), giving it
that command as its argument.

For example, defineing EDITRACEFN as

(LAMBDA (C) (PRINT C) (PRINT (CAR L)))
will print each command and the corresponding current
expression. (LAMBDA (C) (BREAK1 T T NIL NIL NIL)) will
cause a break before executing each command.

EDITRACEFN 1is initially equal to
HIL, and undefined.

EXTENDﬁD INTERPRETATION OF LISP FORMS

Extended Lambda Expressions

When solving problems in LISP, it is very often convenient
to have a functicn which executes more than one form but does
not need the variable and label features of PROG. We have added

this capability to UCI LISP by extendlng LAMBDA expre551ons to
handle more than one form.

(LAMBDA "ARGUMENT—LIST“ "FORM1" "FORM2" . . . "FORMNn")

When such a LAMBDA expression is applied to a list of
arguments each FORM is evaluated in secquence and the
value of the LAMBDA expression is FORMn (after the
arguments are bound to the LAMBDA variables).

Examples:
((LAMBDA(X) (CAR X) (CPhR ¥)) (QUOTE (A))) = MNIL
((LAMBDA(X Y) X Y (CONS X Y)) NIL T) = (NIL . T)

This means that functions defined by DF or DE evaluate
all of forms in their definition, instead of just the
first one as in Stanford’s version. The value of the
function is the value of the last form.

WARNING: This 1is not a PROG; GO and RETURN do not have the
expected result.

The Functions PROG1 and PROGH

(PROG1 X1 X2 ... Xn) .n<6

PROG1 evaluates all expressions
returns ¥1 as its value.

(PROGN X1 X2 ... Xn)

PROGI -evaluates all expressions
returns Xn as its value.

Conditional Evaluation of Forms

(SELECTQ X "Y1" "y2" ... "yYn" 7)

This very useful function is used to select a seguence
of instructions based on the value of its first argument
X Each of the Yi is a 1list of the form (Si E{l,1]
E[2,i] <o« E[k,i]) where Si is the "selection key".

If Si is an atom the value of X is tested to see if it
is EQ to Si (not evaluated). If so, the expressions
Ef1,i1 ... E[{k,i] are evaluated in secuence, and the

value of SELECTQ is the value of the last expression
evaluated, i.e. El[k,i]. :

If Si is a list, and if any elemen® (not evaluated) of
Si is EQ to the value of 2, then E(l,i] ... E[k,i] are
evaluated in turn as above.

If Yi is not selected in one of the two wavs described
then Y[i+l] is tested, etc. until all the Y‘s have been
tested- If none is selected, the ‘value of SELECTQ is
the value of Z. 2 must be present.

An examnple of the form of a SELECTQ is:

(SELECTQ (CAR W)
(Q (PRINT FOO) (FIE W))
((A E I O U) (VOWEL W))
(COND (W (QUOTE STOP))))

which has two cases, Q and (A E I O U) and a default
condition which is a COMND-. ,

SELECTQ compiles open, and is therefore very fast;
however, it will not work if the value of ¥ is a list:, a
large integer, or floating point number, since it uses

£Q.

Changes

to _the Handling of Errors

(ERRSET E “F")
ERRSET has been changed slightly. If F=NIL the error
message 1s suppressed and the error will not cause a
break to the Break Pdckage. If F is not given then
ERRSET assumes that F=T. If F=0 (i.e. zero) then the
error message will be printed on the current output
device, otherwise it will be printed on the teletype.

(ERR _FE
There is now a special case of ERR. If the value of E
is ERRORX, then ERR will return to the most recent
ERRSET which has F=ERRORY. This allows two levels of
user errors. If a Control-G is typed in by the user it
generates a (ERR (QUOTE ERRORX)). This means that the
User can now protect himself against this type of input
error. ’

(ERROR_E)

ERROR generates a real LISP error. E is evaluated and
pPrinted {(unless error messages are suppressed) and then
a break occurs just as for any other LISP error.

Miscellania

(APPLY# FN ARGS)

APPLY# is similar to APPLY except that FN may be a
function of any type including MACRO. llote that when
either APPLY or APPLY# are given an E¥PR as their first
argument, the second argument is evaluated by APPLY# or
APPLY, but the elements of the resulting 1list are
directly : bound to +the lambda variables of the first

argument, and are pnot evaluated again even though it is
an EXPR. ' '

Examples:
(APPLY# (QUOTE PLUS) (QUOTE (3 2 2))) = 7
(APPLY# (QUOTE CONS) (LIST (QUOTE A) (QUOTE B))) = (A . B)

{HILL "X1" "X2" ... "¥n") = NIL

This function allows the user to stick S-Expressions in
the. middle of a function definition (e.g. as a PROG
element) without having them evaluated or otherwise
noticed. HILL is also wuseful for giving a dummy
definition to a function which has not yet been defined-.

EXTENSIONS TO THE STANDARD INPUT/OUTPUT FUNCTIONS

Project-Programmer Mumbers for Disk I1/0

In all I/0 functions (including INPUT and OUTPUT), the use of a
two element list (not a dotted pair) in place of a device will
cause the function to assume DSK: and use the 1list as the
project-programmer number.

Saving Fdnction Definitions, etc. On Disk Files

!

(DSKOUT “FILE" "EXPRSLIST")

DSKOUT is an FEXPR and is used to create an entire
output file on disk file DSK: "FILE". It sets the
linelength to LPTLENGTH, and evaluates all of the
expressions in "EXPRSLIST". If an expression on
"EXPRSLIST" is atomic, then that atom is given to GRINL
instead of being evaluated directly. If the value of
FILBAK is non-NIL and the file already exists., DSKOUT
will attempt to rename the file with an extension of the
value of FILBAK. An error message will be printed on
the TTY: 1if the file cannot be backed up. FILBAK 1is
initially set to LBK.

For example, if FNLIST is a list of your functions, they can be
saved on a disk file, FUNCS.LSP by:

(DSKOUT (FUNCS.LSP) FNLIST (PRINT (QUOTE END-OF-FILE)))

and the file FUNCS.LSP will be renamed to FUNCS.LBK if it
already existse

Reading Files Back In

{DSKIN "LIST OF FILE-NAMES").

READ-EVAL-PRINTs the contents of the given files. This
is the function to use to read files created by DSKOUT.

/

i

Examnple: ’
{DSKIN (FUNCS.LSP)} DTAQO: {DATA.LSP))
Reads FUNCS.LSP from DSK: and DATA.LSP from DTAQ:.

{DSKIN (667 2) {DSKLOG.LSP)) .
Reads DSKLOG.LSP from the disk area of [667,2].

Reading Directories

The following functions are for reading directories. UFDINP 1is
analogous to the function INPUT in that it opens a file on a
specified channel. The channel must be selected via INC in
order to be read- The file is opened in binary image mode and
should not be read by the normal LISP read functions. All
functions are SUBRS and thus evaluate their arguments.

{UFDINP CHANNEL PPN)

UFDINP opens the directory of - PPN on ""CHANNEL. ° It
returns the value of CHANNEL as it’s result. PPN 1is
either of the form (PROJ PROG) where PROJ and PROG are

both inums or NIL. If PPN is NIL the user’s directory
is assumed.

EXAMPLE:

*(UFDINP T (QUOTE (2206,1)))

T

(RDFILE)

RDFILE returns the next file in the directory that is
open on the current input channel. It return a file
which 1is either an atom or an atomic dotted pair. It
does an (ERR SEOFS$) when it reaches the end of file.

EXAMPLE:

*(PROG (%) (INC (UFDINP T NIL) NIL)
(SETQ X (ERRSET (RDFILE)))
(INC NIL NIL)
(COND ((CONSP X)(RETURN (CAR X)))

(DIR PPN)

DIR returns a list of files from the directory of PPH.
If PPN is HNIL, the user’'s directory is assumed-.

EXAMPLE: ‘
(DIR (QUOTE (2206 4)))

((INIT - L5P) (FOO .LSP) MYFILE))

File Manipulation

The following functions enable the user to manipulate files in
those directories to which he has legitimate access. The
definition of access privileges is ' system dependent. These
functions use the RENAME uuo to effect the desired
manipulations. A FILESPEC is defined as follows:- '

(DEV FILNAM)

A DEV is either an atom whose last charactér is a colon, I.E.
DSK: or a a list of the form:

(PROJ PROG)

where PROJ and PROG are both numbers. DEV is optional and if
ommitted the user’s disk area is assumede.

A FILNAM is either an atom or an atomic dotted pair.
EXAMPLE:

MYFILE

(FILE . EXT)

(*RENAME FILESPECI FILESPEC2)

*RENAME is a SUBR that renames FILESPECl to FILESPEC2.
It returns T if the rename is successful and NIL if it
fails. If a device is specified in FILESPECI and no
device is specified in FILESPEC2 the device specified in
FILESPEC1 is carried over to FILESPEC2. Thus:

(*RENAME (QUOTE ((2206 4)(FOO . LSP)))
(QUOTE ((FOO . BAK))))

is equivalent to:
(*REIIAME (QUOTE ({2206 4)(FOO . LSP)Y))
(QUOTE-((2206 4) (FOO - BAK))))

If no device is specified in either FILESPEC, the user’s
Gisk area is assumed.

(RENAME DEV1 FILNA!M] DEV2 FILMNAM2)

RENAME is an FSUBR that renames FILNAM] to FILNAM2. The
DEV’s are optional. If DEV2 is not specified, DEVI1 is
assumedo. If both DEV’s are not specified;, the default

is the user’s disk area. RENAME returns T if the
-renaming is successful and NIL if it fails.

EXAMPLES:
*(RENAME DSK: (FOO . LSP)(FOO . BAK))

T
*{RENAME FOO FIE)

T
*(RENAME (2206 4) (FOO . LSP)(2206 3)(FOO . LSP))

T

(DELETE DEV1 FILNAM1l DEV2 FILNAMZ ...)

DELETE is an FSUBR that deletes the files in the 1list.
The DEV's are optional, and a DEV is effective over the
following FILNAM s until a new DEV is encountered.
DELETE always returns NIL. The wuser’s disk area is
assumed if no DEV has been specified. '

EXAMPLES:

*(DELETE FOO (FOO1 . LSP) (2206 4) (OLDFIL . COM))

NIL

(FILBAK FILE NEWEXT)

FILBAK is & SUBR that attempts to rename FILE with the
extension of NEWEXT. FILE can be either a FILNAM or a
FILSPEC. FILBAK returns T if the renaming was
successful and MNIL if it fails. '

EXAMPLES:
(FILBAK (QUOTE FOO) (QUOTE BAK))
will rename the file FCO to F0O0.BAK.
(FILBAX (QUOTE (FOO'G LSP)} (QUOTE BAK))
will rename the file FOO.LSP to FOO.BAK.

(FILBAK (QUOTE ({2206 4) (FOO . LSP)))
(QUOTE BAK))

Will rename the file FOO.LSP[2206,4] to FOO.BAK([2206,4].

(MYPPMN)
MYPPHN returns the user’s project programmer number in a
form suitable for use by the directory and I/0
functions. :

EXAMPLE:
* (MYPPH)
(2206 4)

{LOOKUP DEV FILNAM)

LOOKUP is a SUBR that determines whether the file DEV
FILNAM exists or note. LOOKUP returns NIL if it can’t
find the file and (LIST DEV FILNAM) 1if the file does
existe. If DEV is NIL, DSK: is assumed and (LIST FILNAM)
is5 returned.

Queueing Files

(QUREUE QNAM: DEV: FILNAM SWITCHES DEV: FILNAM SWITCHES .e..)

QUEUE is an FSUBR that queues files to the specified
device or queue. It 1is essentially the same as the
monitor command QUEUE, both in syntax and effect. The
main use of this function is to get output to 1line
printer, paper tape punches etc. However, the input
queue can also be specified in order to batch a jobo

A gueue name QMAM: is an atom~cf three to six letters
whose last letter is a colon. The first three letters
indicate the general queue (see below) and the following
letters indicate the specific aqueue.

LPT =LINE PRINTER QUEUE

PTP =PAPER TAPE PUNCH QUEUE
PLT =PLOTTER QUEUE

Cbhp =CARD PUNCHE QUEUE

INP =JOB BATCH QUEUE

Thus (QUEUE LPT: ...) would queue to the line printer
without specifying a specific 1line printer = gueue.
(QUEUE LPTO: ...) would queue to line printer 0. As in
the monitor command, if the queue name QNAM: is not
specified, the default is to LPT:.

If an INPUT queue is specified, a maximum of two files
is permnitted. The second file is taken as the name of
the log file- If it is not specified, the filename of
the first file with an extension of .LOG is assumed.

Switches consist of two element 1lists, the first
element pbeing the switch and the second the values
In the case cf a recquired non-numeric value (as in
DISP) only the first three letters of the argument
are looked at i.e. PRESEZRVE and PRE are equivalent.

SWITCH ARGUMENT EXPLANATION QUEUES ALLOWED
COPIES MUIMERIC HUMBER OF COPIES LPT,PTP,CDP,PLT
- ' TO BE 0OUTPOT
FORM MOM-MUMERIC FORMS FOR DEVICE LPT,PTP,CDP,PLT
LIMIT NUMERIC OUTPUT LIMIT LPT,.PTP,CDP,PLT
DISP ‘PRE" PRESLRVE FILE ALL
‘REN’ RENAME FILE OUT OF
DIRECTORY AMD DRELETFE
AFTER SPOOLING ALL
‘DEL’ DFLETE AFTER SPCOLING ALL
CPU IMUMERIC MAYIMUM CPU SECS FOR JOB IHNP ONLY

Defaults are system defined except for DISP which
defaults to PRE so that all files are preserved,.

As in the monitor command, switches are in effect
until superseded by another instance of the switche
Switches may precede the first file or devicee

DEV’s are either an atom whose last character is a
colon or a ppn specification. A device affects
only the files following it. It is superseded by
another device. If no device is specified, DSK: is
assuned.

Lxamples:

: | : | ,
*(QUEUE LPT:. DSK: FOO (FOO -+ 1LSP))

Prints the files FOQ andg FOO-LSP on ' the

line
printer.

*(QUEUE LPT: (FOO . LSP) (COPIES 2))
Prints two copies of FO0.LSP on the line printer.

*(QUEUE INP: (FOO v " CTL))

Queues a job using FOO.CTIL as its command file,
leaving a LOG file in FOC.ILOG.

*(QUEUE INP: (FOO . CTL)(FOO . 10OG))

Same as above.

Recovery From QMANGR Errors

The QUEUE function must swap the LISP high segment for the
CMANGR high segment. It then transfers control to the
CHMANGR high segment. In most cases, if QMANGR finds an
error, it simply prints an error message. In a few cases,
however, it returns control to the monitor. The REE
command will restore the appropriate high segment and
pProcessing will continue. Hlote that in this instance, the
system does not wait for control characters.

A .START command to the monitor will al;o»m:g§ﬁpre the
user’s high segment. However, this is not recommended as
the reallocation procedure will be entered.

Printing Circular or Deeply Mested Lists

(PRINTLEV _EXPRESSION DEPTH)

Spacing

PRINTLEV is a printing routine similar to PRINT.
PRINTLEV, however, only prints to a depth of DEPTH. 1In
addition, PRINTLEV recognizes 1lists which are circular
down the CDR and closes these with ‘...}‘ instead of
). The combination of these two features allows

PRINTLEV to print any circular 1list without an infinite
loop. ‘

The value of PRINTLEV is the value of EXPRESSION. This
means that PRINTLEV should not be used at the top level
if EXPRESSION is a circular 1list structure, since the
LISP executive would then attempt to print the circular
structure which is returned as the value.

Control

(TAB N)

TAB tabs to position N on the output line doing a TERPRI
if the current position is already past M. HNote should
be taken that TAB outputs spaces only when necessary and
outputs tab characters otherwise.

"Pretty Printing” Function Definitions and S-Expressions

LGRII]DEF IlFl" IIFZIV “FB" ° o o IIFIJII)V

GRIIDEF is used to print the definitions of functions
and the values of variables in a format suitable for
reading back in to LISP, in what is known as DEFPROP
format. GRINDEF uses SPRINT (see below) to print these
s—-expressions in a highly readable format, in which the
levels of 1list structure (or parentheses levels) are
indicated by indentation. GRINDEF prints all the
properties of the identifiers Fl, F2, +«..: Fn which
appear on the 1list GRIMPROPS. If Fi is non-atomic, it
will be SPRINTed.

GRINPROPS

The variable GRINIPROPS contains the properties which
will be printed by GRINDEF. This variable can be set by
the user to print special properties which he has placed
on atoms. The initial value of GRINPROPS is (EXPR FEXPR
MACRO VALUZ SPECIAL).

IIFl" "F2ll o o o FIFI\]II)

GRINL causes all of the atoms, "F1" "F2" ... "Fn", and
all of the atoms on the lists which are the values of
the atoms Fl1 F2 ... Fn to be GRINDEFed-. GRINL
correctly prints out read macros and 1is the only
function which does. GRINDEF does not save the

activation character for the read macros. Warning: Each
Fi must be an atome

(SPRINT EXPR I}D)

SPRINT is the function which does the "pretty printing®
of GRINDEF. EXPR is printed in a human readable form,
with the levels of 1list structure shown by indentation
along the line. This 1s useful for printing large
complicated structures or function definitionse. The
initial indentation of the top level 1list 1is 1IND-1
spaces. In normal use, IND should be given as 1.

Reading

Whole Lines

(LINEREAD)

Example:

LINEREAD reads a line, returning it as a list. If some

expression takes more than one line or a line terminates
in a conmna, space or tab, then LINEREAD continues
reading until an expression ends at the end of a line.
This 1is the function wused by the EDITOR and BREAK
Package supervisors to read in commands, and may be.
useful for other supervisor-type functions.

*(LINEREAD)
*» B (C D

*E) F G

(A B (CDE) F G)

*({LINEREAD)
*A B (C D E),

*F G

(A B (CDE) F G)

Teletvpe and Prompt Character Control Functions

(CLRBFI)

CLRBFI clears the Teletype input buffer.

{(TTYECHQ)

(PROMPT

ITYECHO complements the Teletype echo switch. The value
of TTYECHC is 7T if the echo is being turneéd on, and NIL
if it is being turned off.

M)

The LISP READ routines tvpe out a "prompt character" for
the user when they expect to read from the teletype.
This character is normally a "*". PROMPT resets this
prompt character. M is the ASCII representation of the
new prompt character.

The ASCII representation of the old prompt character is
returned as the value of PROMPT. (PROMPT NIL) returns
the current prompt character without changing it.

Example:

* (PROMPT

52

53)

{INITPROMPT N)

Whenever LISP is forced back to the top level (e-g. by
an error or Control-G), the prompt character is reset.
INITPROMPT is similar to PROMPT except that it sets the
top level prompt character. {INITPROMPT NIL) returns

the ASCII wvalue of the top level prompt character
without changing it.

(READP)

{(UHTYT)

Exanple:

READP returns T if a character can be input and NIL
otherwise. READP does not input a character.

\

UNTYI Munreads" a character (such as a character
input by a TYI or a READCH), so that the next call
to READ, TYI, etc., will pick up the UNTYI'ed
character as the next character to be read, and
returns the ASCII code for that character. lote:
In the LISP READ routine, an aton may be terminated
either by a break character (a character which must
be interpreted Dby READ as well as serving to
terminate the atom, such as "(", ")", "([", and . ")
Or a separator character (a charactsr used only to
Separate atoms, etc.,; but not in itself meaningful,
such as carriage return or blank). In order to
save a ‘break charactér for 1later interpretation,
the LISP READ routines use a one-charaacter buffer.
UNTYI simply stores its argument in this bufter:
thus there are two problems in using UNTYI. First,
if UNTYI is used several times in succession with -
no intervening READ's, TYI's, etc.,then only the
most recent character .is actually "unread"--all
others are lost. = Second, if there is a break
character in the one-character buffer when an UNTYI
is performed, the break character will be lost.

The following example illustrates how the next
character may be examined without affecting the
read routines:

*(DE PEEKC . () (UNMTYI (TYI)))

*(PROG () (CLRBFI) {PEEKC) (RETURI (TYI))

*A

101

(ERRCH 1)

ERRCH chahg@s the bell character that causes an
{ERR (PUOTE ERRORX)). 18| is the ASCII
representation of the character. ERRCH returns the

ASCII representation of the o0ld character. Note
that if the new character is not a break character
to the monitor,

it will not he processed until it
is read in the normal course of reading.

READ MACROS - Extending the LISP READ ROUTINE

Read Macros allow the user to specify a function to be
executed each time a selected character is read during input of
his data or programs. This function is generally used to
produce one or more elements of the input list which are built
up in some way from later characters of the input string. There
are two types of Read Macros; Normal Read Macros whose result is
used as an element of the input list in the position where the
macro character occurred, and Splice Macros whose result (must
be a list which) ics spliced sequentially into the input list.

WARNING: Read macro characters will not be recognized if they
occur 1inside of an atom name unless the character is first
defined to be equivalent to a break Oor separator character (e.g.
Space Oor comma) using MODCHR.

Functions for Defining Read Macros

(DRM "CHARACTER" "FUNCTION")

CHARACTER is. defined as a lMormal Read Macro with
"FUNCTION" being a function name or a LAMBDA expression
of no arguments which will be evaluated each <time
CHARACTER is detected as a macro during input. FUNCTION
is put on the property 1list of CHARACTER under the
property READMACRO. The value of DRM is CHARACTER.

Examples: (DRM * (LAMBDA () (NCONS (READ)))
(DRM = (LAMBDA () (REVERSE (READ)))

(DSM_"CHARACTER™ "FUNCTION")

DSYM is exactly like DRM except that CHARACTER is defined
as a Splice Macro.

Ixample: (bSM : (LAMBDA () (CONS NIL (READ)))

Using Read Macros

The use of Read !lMacros is best describeéd with examples-.
The Read Macros defined above will be used for the examples.

Example 1
If the expression (A B C = (D EF) G H) is read in the
apparent input will be (A B C (F E D) G H).

Example 2
If (FOO1l FOO2 *FQO3 FOO4) is read the apparent input is
(FOO1 F00O2 (F0O03) FO04) .

In each case the associated function was evaluated and the
result was returned as the next elemént of the input list.
Example 3

Reading (ATl :(AT2 AT3) AT4) will result in
(AT1 NIL AT2 AT3 AT4) .

Example 4
If the input is (AN AB :AC) the result is (AA AR NIL . AC) .
It can be seen that the effect of a Splice Macro is to

place the result of the function evaluation into the input
stream ninus the outermost set of parentheses.

Modifving the READ Control Table

\

, Since the LISP READ routines are table driven, it is
possible to redefine the meaning of a character by changing its
table entry. In each of the following functions CH is the ASCII
representation of the character being modified.

{MODCHR CH)

The value of MODCHR is the old table entry for CH. If M
is non-NIL it must be a number which represents a valid
table entry. The entry for CH is changed to N. If M is
NIL, no change is made, e.g. to make "." a letter (so it
‘Will behave 1like the letter "A") execute (MODCHR 56
(MODCHR 101 HWIL)).

{SETCHR CH 1)

SETCHR is similar to MODCHR except that it only modifies
the portion of the entry associated with read macros.

Reading without Interning-

(RDNAM)
RDNAM. functions in the same manner as READ except that
it does not intern the atoms that it reads. Thus an
atom read by RDHNAM and an atom read by READ are **NOT**
EQ. :

Example:
*(PROG () (CLRBFI) (RETURN (EQ (RDNAM) (READ))))
*F00 . .
*FOO
NIL

NEW FUNCTIONS ON S-EXPRESSIONS

S-ExXpression Building Functions

{TCONC _PTR X)

TCONC is useful for building a list by adding elements
one: at a time at the end. This could be done with
‘NCONC. However, unlike NCONC, TCONC does not have to
search to the end of the list each time it is called.
It does this by keeping a pointer to the end of the list
being assembled, and updating this pointer after each
call. The savings can be considerable for long lists.
The cost is the extra word required for storing both the
list being assembled, and the end of the list. PTR is
that word: (CAR PTR) is the 1list being assembled, (CDR
PTR) 1is (LAST (CAR PTR)). The wvalue of TCONC is PTR,
with the appropriate modifications to its CAR and CDR.
Note that TCONC is a destructive operation, using RPLACA
and RPLACD.

| Example:

*(MAPC (FUNCTION (LAMBDA (X) (SETQ FOO (TCONC FOO X))))
(QUOTE (5 4 3 2 1)))

*FOO

((5 43 21)1)

ICONC can be initialized in two wavs. . If PTR is NIL,
TCONC will make up a ptre. In this case, the program
must set some variable to the value of the first call to
TCOIIC. After that it 1is unnecessary to reset since
LCONC physically changes PTR thus:

*(SETQ FOO (TCONC NIL 1))

((1) 1)

*(MAPC (FUNCTION (LAMBDA (X) (TCONC FOO X)))
(QUOTE (4 3 2 1))

“*FO0O

((1 432 1) 1)

If PTR is initially (MIL), the value of TCONC is the
same as for PTR=NIL, but TCONC changes PTR, e.g.

*{(SETQ FOO (NCONS NIL))

(HIL) : '

*(MAPC - (FUNCTION (LAMBDA (X) (TCONC FOO ¥X)))
(QUOTE (5 4 3 2 1)))

*FOO

((5 4321) 1)

The latter method allows the prbgraﬂ to initialize, and
then call TCONC without having to perform SETQ on its

. value.

-~

(LCONC PTR_X) .

Where TCONC is used to add elements at the end of a

list, LCONC is used for building a list by adding lists
at the end. For example:

*(SETQ FOO (NCOHNS NIL))
(NIL)

*(LCONC FOO (LIST 1 2))
((1 2) 2) '

*(LCONC FOO (LIST 3 4 5))
({1 2 3 4 5) 5)

*(LCONC FOO HIL)

((1 2 3 4 5) 5)

Note that LCONC uses the same pointer conventions as
TCONC for eliminating searching to the end of the list,

so that the same p01nter can be given to TCONC and LCOHNC
1nterchangeaoly-

*(TCONC FOO NIL)

((1 2 3 4 5 NIL) NIL)
*(LCONC FOO (LIST 3 4 5))
({1 2 3 45 NIL 3 4 5) 5)

S-Expression Transforming Functions

(HTH ¥ M)

The value of MNTH is the tail of ¥ beginning with the Nth
element, e.g. if =2, the value is (CDR X)), if u=3,
(CDDR X)), etc. If 1=1, the value is X, if N=0, for
consistency, the value is (CONS NIL X).

{REMOVE ¥ L)

Removes all top level occurrences of X from the 1list L,

giving a COPY of L with all top level elewents EQUAL to
X removed-

(COPY X))

~

The value of COPY is a copy of ¥X. COPY 1is equivalent
to: (SUBST 0 0 ¥).

(LSUBST ¥ Y 2Z)

Like SUBST except ¥ is substituted as a segment. Note
that if X is MNIL, LSUBST returns a copy of Z with all
Y’s deleted. For example:

(LSUBST (QUOTE (A B)) (CUOTE Y) (QUOTE (X Y 2))) = (X A B 2)

S-Expression Modifving Functions

All these functions physically modifv their arguments by
changing appropriate CAR’s and CDR s

{DREMOVE

A 1)

Similar to REMOVE, but uses EQ instead of EQUAL, and
actually modifies the 1list L when removing X, and thus

does not use any additional storage. More efficient
than REMOVE.

HOTE: If ¥ = (L <o L) (i.e. a list of any length all
of whose top level elements are EQ to L) then the value
returned by (DREMOVE X L) is NIL, but even after the
destructive changes to ¥ there is still one CONS cell
left in the modified list which cannot be deleted. Thus
if X is a variable and it is possible that the result of
(DREMOVE X L) might be NIL the user must set the value
of the variable given to DRFMOVE to the value returned
by the function.

(DREVERSE L)

(BSUBST

The value of (DREVERSE L) is EQUAL to (REVERSE L), but
DREVERSE destroys the original list L and thus does not

use any additional storage. More efficient than
REVERSE.

X Y 7)

Similar to SUBST, but uses EQ and does not copy Z, but
changes the 1list structure 2 itself. DSUBST substitutec
Wwith a copy of X. More efficient than SUBST.

Mapping Functions with Several Arquments

All of the map funqtibns have heen extended to allow called

functions which need more than one argument. The function FN to
be called is still the first argument. Arguments 2 thru ¥ (M <
7) are used as arguments 1 thru N-1 for FN. If the arguments to
the map functions are of unecual length, the map function
terminates when the shortest 1list becomes NIL. The functions

behave the game as the previous definitions of the functions

when used with two arguments.

Example: This will set the values of A; B and C to 1, 2 and 3,
respectively.

* (MAPC (FUNCTICN SET) (QUOTE (A B C)) (QUOTE (1 2 3)))

MIL

Mapping Functions Which Use NCONC

The functions MAPCON and MADCAN produce lists by MNCONC +to

splice together the values returned by reppated applications of
their functional argument.

MAPCOIT and MAPCAN are especially useful in the case where
the function returns NIL. Since NIL does not affect a list if
NCOIC’ed to it, the output from that function does not appear 1in
the result returned from MAPCON or MAPCAN. For example, a

function to remove all of the vowels from a word can be easily
written as: " .

(READLIST (MAPCAM (FUNCTION VOWELTEST) (EXPLODE WORD)}))

where VOWELTEST is a procedure which takes one argument.iLETy
and returns NIL if LET is a vowel, and (LIST LET) otherwise.

(MAPCON_FN ARG)

MAPCON calls the function FN to the list ARG. It then
takes the CDR of ARG and applies FN to it. It continues
this until ARG is HIL. The value is each of the lists
returned by FN NCONC’ed together.

For a single list MAPCON is equivalent to:
(DE MAPCON (FNM ARG)
(COND (({NULL ARG) MIL)

(T (NCONC (FN ARG)
(MAPCON FN (CDR ARG))))))

Lxample
* (MAPCON (FUNCTIONM COPY) (QUOTE (1 2 3 4)))

(1 2 3 42 3 43 4 4)

(MAPCAN FMN ARG)

(MAPCONC FN_ARG)

MAPCAN is similar to LIAPCON except it calls FN with the
CAR of ARG instead of the whole liste.

S-Expression Searching and Substitution Functions

(SUBLIS ALST EXPR)

ALST is a list of pairs ((Ul « V1) (U2 « V2) eeo

(Un . Vn)) with each Ui atomic. - The value of SUBLIS is
the result of substituting each V for the corresponding
U in EXPR.

Example:

*{(SUBLIS (QUOTE ((& . ¥) (C - Y))) (QUOTE (A B C D)))
(¥ B Y D)

New structure is created only if needed, e.g. if there
are no substitutions, value is EQ to EXPR.

(SUBPAIR OLD NEW EXPR)

Similar to SUBLIS except that elements of NEW are
substituted for corresponding atoms of OLD in EXPR.

ExXample:

*(SUBPAIR (QUOTE (A C)) (QUOTE (X Y)) (QUOTE (A B C D)))
(X B Y D) :

Hote: SUBLIS and SUBPAIR do not substitute copies of the
appropriate expression, but substitute the identical structure.

(ASSOCH# ¥ ¥)

Similar to ASSOC, but uses EQUAi instead of EQ.

(LDIFF X Y)

Y must be a tail of ¥, i.e. EQ to the result of applying
some number of CDRs to Y. LDIFF gives a 1list of all
elements in 2 but not in Y, i.e., the list difference of
X and Y. Thus (LDIFF ¥ (MEMB FOO ¥)) gives all elements
in X up to the first FOO.

Mote that +the wvalue of LDIFF is always new 1list
structure unless Y=NI1IL, in which case (LDIFF ¥X NIL) is ¥
itself.

If Y is not a tail of ¥, LDIFF generates an error.
LDIFF terminates on a HULL check.

Efficiently Working with Atoms as Character Strindas

EXPLODEC L))

(FLATSIZEC L) = (LENGTH

{HMTHCHAR X H) = (CAR (MNTH (EXPLODEC L) M)) if N>0
= (CAR (NTH (REVERSE (EXPLODEC L)) N)) if N<O
0 or > (FLATSIZEC L)

WIL if (ABS 11) =

The above functions do not really perform the operations
methods that

Note:
listed- They actually use far more efficient
but the effects are as given.

require no CQNSes,

(CHRVAL X)
CHRVAL returns the ASCII representation of the first

character of the print name of X.

NEW PPEDRICATES

Data Tvpe Predicates

(CONSP ¥

The value of COHSP is ¥ iff

¥ is not an atom.
CONEP is ecuivalent to:

(LAMBDA (X)) (COMD ((MOT (ATOM ¥)) X)))

Cxamplec: (COHSP T) = NIL
(CONSP 1.23) = NIL
{CONSP (QUOTE (X Y 2))) = (¥ Y %)
(CONSP (CDR (QUOTE (X)))) = NIL

(STRINGP X)

The value of STRINGP is T iff ¥ is a string.

(PATOM)

The value of PATOIl is T iff ¥ is

an atom or ¥ 1is a
pointer outside of free storage.

{LITATOM ¥)

The value of LITATOM is T iff ¥ is a literal atom,
le€o, an atom nut pnot a number.

Alphabetic Ordering Predicate

{LE¥ORDER X Y)

The value of LEXORDER is T iff ¥ is lexically less. than
or equal to Y. llote: Both arguments must be atoms and
numeric arguments are all lexically less than symbolic
atoms.

Examples: (LEXORDER (QUOTE ABC) (QUOTE CD)) =T
(LEXORDER (QUOTE B) (QUOTFE A)) = NIL
(LEXORDER 123999 (QUOTE A))
(LEXORDER (QUOTE B) (QUOTE B)) =

Il
-3

Predicates that Return Useful 'on-MIL Values

(MEMBER ¥ Y)

MEMBER is the same as the old MEMBER except that it

returns the tail of Y starting at the position where X
is found-

Examples:
(MEMPER (QUOTE (C D)) (QuoTE ((A BY(C DYEY))

= ((C D) &)
(MEMBER (QUOTE C) (QUOTE C))) = NIL

(MEMB_X ¥)
{MEMO ¥_Y)

MEMQ is the same as the old MEMQ except that it returns
the tail of Y starting at the position where ¥ is found.

Examples:
(MEMQ (QUOTE (C D)) (QUOTE ((A B)(C DYE))) = NIL
(MEMB (QUOTE A) (QUOTE (Q A B))) = (A B)

(TAILP ¥ Y)

The value of TAILP is X iff ¥ is a list and a tail of v,
i-e., X is EQ to some number of CDRs & 0 of Y.

{AND %1 X2 ... ¥n) = ¥Xn if al1ll1 Xi are non-MNIL
. ‘1MIL otherwise

{OR_¥1 %2 ... Xn) = The first non-HNIL argument
= NIL if all ¥i are NIL

with the old AND and OR these functions only evaluate as many
o) their arguments as necessary to determine the answer (eaqg.
AlID stops evaluation after the first MIL argument).

6 . 3

Other Predicates

(HEQ X ¥)

The value of HEQ is T iff ¥ is not EQ to Y.
HEC 1s equivalent to: :

(LAMBDA(X Y) (10T (EQ ¥ ¥Y)))

Examples: (HEQ T T) = 1IL
(NEQ T HIL). =T
(NEQ (QUOTE A) (QUOTE B)) : =T
(NEQ 1 1.0) =T
(NEQ 1 1) MIL
(HEQ 1.0 1.0) T

MEW NUMERIC FUNCTIONS

Minimum and Maximum

(*MIN X ¥) =:Minimum of ¥ and Y

(MIN X1 X2 .o ¥n) Min;mum of %1, X2y << , Xn

(*MAX % Y) = Maximum of ¥ and ¥

(MAX X1 X2 ... _¥n) = Haximum of X1, X2, ... , Xn

{INUMP X)

IUUMP returns X iff X is an INUM. It returns NIL
otherwise. ’

(HNUMTYPE X)

NUMTYPE returns FIXNUM if the number ¥ is a fixed point
number and FLONUM if it is a floating point number.

FORTRAN Functions in LISP

It 1is now possible to use the FORTRAM Math
Functions in LISP. This allocws the ser- to perform
computations that previously were difficult to do in
LIsp. All functions return FLOMUMs for values bhut may
have either a FLONUM or a FIXNUM for an argument.

To load the Arithmetic Package execute the
following at the top level of LISP: -

*(INC(INPUT SYS: (ARITH.LSP)))
<SEQUEHNCE OF OUTPUT>
*(LOAD)SYS:ARITHS

<LOADER TYPES BACK>

*(ARITH)

The above will 1load the Arithmetic Package into

expanded core. Tc load the package into BIMNARY PROGRA
SPACE type (LOAD T) instead of (LOAD)

Availabhle Functions

Function Hame Meaning
SIn Sine with argument in radians
SIND Sine with argument in degrees
COoSs ' Cosine with argument in radians
COSD Cosine with argument in degrees
TAN Tangent
ASIN Arc Sine
ACOS Arc Cosine
ATAN Arc Tangent
SIHH Hyperbolic Sine
COSH Hyperbolic Cosine
TAMH Hyperbolic Tangent
LOG Log base e
EXP . Take e to a power
SORT Square Root
FLOAT Convert to a FLONUM
RAITDOM Generates a random number

petween 0.0 and 1.0

FUNCTIONS FOR THE SYSTEM BUILDER

Loading Compiled Code into the Hich Segnent

The UCI LISP System has a sharable high segment. This high
segment contains the interpreter, EDITOR, BREAK package, and all
of the utility functions. If the user wants to create his own
system he must be able to load compiled code into the high
segment. To allow the loading of code into the high segment,
the user must both own the file and have write priveleges; to be
write priveleged, the user must either be creating the system
from UCILSP.REL (see the section on creating the system) or
follow the procedure indicated in the function SETSYS. The
following three functions are for the purpose of loading code

into the high segment and will only work if the user is write
priveleged.

{HGHCOR X)

If X=NIL the “read-only" flag is turned on (it 1is
initially on) and HGHCOR returns T. Otherwise X is the
anount of space needed for compiled code. The space is
then allocated (expanding <core if necessary), the
"read-only" flag is turned off and HGHCOR returns T.

{HGHORG X))

If X=NIL the address of the first unused location is
returned as the value of HGHORG. Otherwise the address
of the first unused location is set to X and the old
value of the high seg. origin is returned.

(HGHEND)

The value of HGHEND is the address of the last unused
location in the high seqge.

(SETSYS DEVICE FILE)

SETSYS enables the user to create his own sharable
system. DEVICE is either a pProject-programmer number or
a device name followed by a colon (i.e. DSK:). FILE is
"the name of the system -the user is creating. In order
to create the system, the user must Control-C out and do
an SSA FILE, then run the systems After this procedure,
the user has write priveleges and may load code into the
sharable high segment. (Ylote that the user need not use
this to save a low segment only). This procedure is not
necessary for generating the system.

The Conpiler and LAP

Special variables

In order to print variable bindings in the backtraces, we
have put a pointer to thje atom header in the CAR of the SPECIAL
cell of all bound atoms not used free in compiled code.
Unfortunately, for compiled code code to fun, the CAR of the
SPECIAL cell of free variables pmust be NIL. This, when loading
LAP code, special variables must be saved if they are to be
printed properly in a backtrace. The necessary information is
stored on LAPLST which contains the name and the special .cell of
each special variable in the system. Since this wmeans a two
word overhead for each special variable, there is a flag which
controls the adding of items to LAPLST. Special variables are-
added to LAPLST iff the variable SPECIAL is non-NIL. The
initial value of SPECIAL is T.

Removing Excess Entrv Points - NOCALL Feature

If, during compilation, a function has a non-NIL MNOCALL
property, all calls to that function are compiled as direct
PUSHJ"s to the entry point of that function with no reference to
the atom itself. After loading, all funétions used in this
manner will be left as a list on the variable REMOB. ThisS means
that many functions which are not major entry points can often
times be REMOBed to save storage. The user may use (NOCALL FOO1
FOO2 .. FOOn) to make several NOCALL declarations. Like
SPECIAL and DECLARE, when NOCALL is used outside of the
compiler, it acts the same an NILL. '

Miscella

neous Useful Functions

{UNBOUND)

{(SYSCLR)

(INITFL

UNBOUNIID returns the un-interned atom UHBOUND which the -
system places in the CDR of an atom’s SPECIAL (VALUE)
cell to indicate that the atom currently has no assigned
value even though it has a. SPECIAL (VALUE) cell on its
Property list.) :

Re-initializes LISP to read the user’'s INIT.LSP file
when it returns to the top level, e.g9. by a Control-G or
a START, or a REF!ITER. .SYSCLR also resets the garbage
collection time indicator to 0 and the CONSes performed
indicator to 0. It also performs an EXCISE.

"FILELST")

INITFL is an FSUBR that sets up the file list for the

user’s IHNIT file. FILELST may consist of more than one
file. However, if there is more than one file in the
list, the files following the first one must be found or
an error will be generated. The first file in the list
is optionale. The TINIT file is initially INIT.LSP.

INITFL returns the old file list as its result.

Example:

*(INITFL (INIT1 . LSP) (MYFILE . LSP) FQO)

((INIT . LSP))

*'k****V,]ARI]I}‘\]G******:

The following two functions can catastrophically destroy
the garbage collector by creating a circle in the free list if
they are used to return to the free list any words which are
still in use. Do not use these functions unless you are certain
what you are doing. (They are only useful in rare cases where a
small amount of working storage is needed by a routine which is
called quite often.)

(FREE X)

FREE returns the word ¥ to the free storage 1list and
returns HIL.

{FREELIST X)

FREELIST returns all of the words on the top level of
the list X to the free storage 1list and returns MNIL.
FREELIST terminates on a MULL check.

New Symbol Table Functions

The functions in this section _are similar .to the currently
existing symbol table functions except that they either strip
off (for storing) or add on the atom relocation. This allows
MACRO code to use the atom relocation register S to refer to
free storage and thus allow '‘éxpansion of binarv program space
without destroving- LOADed code. They 'operate in -exactly the
same manner as their older counterparts. An error is generated
if the arguments or returning value is not a true cons cell.

{*RPUTSYM SYM VAL)

*RPUTSYM puts VAL - relocation in the symbol table under
SYM. o - T

(RPUTSYM X1 X2 ...)

RPUTSYM functions in the same manner as PUTSYM, i.e. if
“n is an atom, then ¥n is placed in the symbol table
with ¥n less the relocation as. it’s value. Otherwise
(EVAL (CADR ¥N)) 1is placed in the symbol table as the
value of (CAR Xi). ‘

(*GETSYM X)

*GILTSYM gets the value of the symhol X, adds on the
relocation and returns the cell pointed to as it’s
value.

(GETSYM P S1 S2 ...)

GETSYM searches the symbol table for the symbol Sn and
places the relocated wvalue on the property 1list of Sn
under property P.

Initial System Generation

1) To Generate UCILSP.REL

- R MACRO
*UCILSPaREL/P/P/P/P/P/P/P/P/P/P_UCILSPaMRC

(Meeds to be done only when UCILSP.MAC is changed.)

2) To Generate the LISP System (LISP.SHR.and LISP.LOW)

R LOADER

*UCILSP.RELLS

-CORE 15

- START

FULL YWORD 5P. = 750
BIN. PROG. SP. = 5
(IHC (INPUT DSK: LAP))
<RANDOM MESSAGES>

TC

«S35A LISP

<The preceeding loads the following files:
UCILSP-REL, LAP, SYS1l.LAP, SYS2.LSP, ERRORX.LSP, ERRORX.LAP,
BREAK.LAP, EDIT.LAP> ' ’

(Needs to be done whenever any of the above files are changed.)

(If during the course of the above the message "NO FW STORAGE LEFT"

appears, experiment with variations in the allocation for Full
Word Space.)

3) To Generate LISP.SYi, the LISP LOADER SYMBOL TABLE

RU 1052a (Version 52 of the DEC Loader.

This file is included with the LISP System)
*UCILSP-REL/J,SY!MAK.RELS
« START

(tlust be done whenever Step 1 is performed.)

4) To Generate COMPLR.SAV, The LISP COMPILER

5)

«AS DSKX SYS

+R LISP 36

FULL VIORD SP. = 2000

BIN. PROG. SP. = 15000

*(INC (INPUT DSK: (COMPLR<LAP)))
<RAIDOM MESSAGES>

*(1IOUUO NIL)

*(CINIT)

TC
« SA COMPLR.SAV
«DEL COMPLR.HGH

(Must be done whenever Step 3 is performed.)

To Generate LISP.LOD, the LISP LOADER

.R LOADER
*LOADER.RELS
« START

(Needs to be done only when LOADER.MAC is changed.)

THE LISP LVALUATION CONTEXT ~STACK.

A L

‘The Contents of the Context Stack

Whenever a form is given to EVAL, it is pushed onto the
top of the Special Pushdown List in the form of an Eval-Blip.
This information is used for backtraces. An Eval-Blip entrv
has NIL in the left half (see SPDLFT) and the form being
evaluated in the right half (see SPDLRT) .

Also, variable Dbindings are saved on the Special
Pushdown List. The left side of the entry contains a pointer

to the special cell and the right side contains the value
which was saved.

The only other items on the Special Pushdown List are
used by the LISP interpreter, and alwavs havVe a non-NIL atom
in the left half. '

In the user’s programs, stack pointers are alwavs
represented as IlUMS. This allows the program to easily
nodify them with the standard arithmetic functions so that a
program can step either up (toward the most recent Eval-Blip)

or down (toward the top level of the interpreter) of the
stack at will. '

All of the functions in this chapter take INUM’s for the
pointer arguments. The actual pointer to the stack element
reguires an offset from the beginning of the stack. For the
user to obtain a true LISP pointer he must call the function
STXPTR (with an INUH argument also). (i-@. if the user
wishes to do an RPLACA or RPLACD on an element of the stack,
he must get a pointer via STKPTR.)

Lxamining the Context Stack

{(SPDLPT)

The value of SPDLPT is a stack pointer to the current
top of the stack. (Returns an INUM).

(SPDLFT P)
The value of SPDLET is the left side of the stack.item
pointed to by the stack pointer P.

(SPDLRT P)

The value of SPDLRT is the right side of the stack

item pointed to by the stack pointer P.

{STKPTR)
The value of STKPTR is a true LISP pointer to a stack
item. ' ' '

(MEXTEV P)
If the stack pointer P is a pointer to an Eval-Blip, the
value of HNEXTEV is P. Ctherwise, NEXTEV searches down
the' stack, starting from P, and returns a stack pointer
to the first Eval-RBlip it finds. If HEXTEV can not find
an Eval-Blip it returns NIL.

(PREVEV _P)

PREVEV is similar to IEXTEV except that it moves up the
stack instead of down it.

{STKCOUNT 1IAME P PEND)

The value of STKCOUNT is the number of Eval-Blips with a
STKIIAME of NAME occurring between stack positions P-1
and PEND, where PLEIID < P.

l

(STXHAME P)

If position P is not an Eval-Rlip, the value of STKNAME
is MNIL. If position P is an Eval-Blip and the form is
atomic, then the value of STKNAME is that atom. If the
form 1is non-atomic, STKNAME returns. the CAR for the
form; i.e. the name of the functione.

M P)

The wvalue of STXNTH .is a stack- pointer to the Nth
Eval-Blip starting at position P. If N is positive,
STKNTH moves up the stack, and if 11 is negative, STKNTH
moves down the stack.

{STKSRCH HAME P FLAG)

The value of STKSRCH is a stack pointer to the first
Eval-Blip with a STKNAME of NAME. The direction of the
search is controlled by FLAG. If FLAG=NIL, STKSRCH
moves down the stack. Otherwise STKSRCH moves up the
stack. STKSRCH never returns P for its value, i.e. it

steps once before checking for MNAME.

(FHDBRKPT P)

The wvalue of FHDBRKPT is a stack pointer to the
beginning of the Eval-Block that P is in. The beginning
of a Eval-Block is defined as an Eval-RBlip which does
not contain the next hiqgher Eval-Blip within it This
function is used by the backtrace functions.

Controlling Evaluaticn Context

(OUTVAL P V)

OUTVAL adjusts P to an'Eval—Blip and returns from that
position with V.

s

{SPREDO P V)

\

SPREDO adjusts P to an Eval—Blip'and re-evaluates from
that point. '

(SPREVAL P V)

SPREVAL evaluates its argument v in its local context to
get a form, and then it returns to the context specified
by P and evaluates the form in that context, returning
from that context with the value. This is very similar

to GSPREDO except that the EVAL-Rlip on the stack is
changed. .

Hote: OQUTVAL, SPREDO and SPREVAL all use NEXTEV to adjust P to
an Eval-Blip.

{EVALV A P)

The value of EVALV is the value of the atom A evaluated
as of position P. If A is not an atom then it must be
the special cell of an atom. By using the special cell
instead of the atom, special variables can be handled
properlve. EVALV ie similar to EVAL with two arguments,
but is more efficient.

(RETFROM FMN VAL)

RETFROI1 returns VAL from the most recent call to the
function ¥l with the value VAL. For RETFROM to work,
there must be an Eval-Rlip for FH. The only way to be
gsure to et an Eval-Blip in compiled code is to call the
function with no arguments inside of an XERRSET, 0
(ERRSET (FUNC)).

Storage Allocation

When the LISP system is run with a core specification given
(ice.y, ".R LISP n", n>22), LISP types "ALLOC? (Y OR H)". If
you type "N"™ or space (for no) then the system uses the current
allocationse. If you type "Y" (for ves) then the system allows
you to specify for each area either an octal number followed by
a space designating the number of words to added to that area,
Or a space designating an increase of zero words.

Example: (user input is underlined)

ALLOC? (Y OR N) Y
FULL WORD SP. = 200
BIN. PROG. SP. = 2000
REG. PDL. = _

SPEC. PDL. = 1000

Any remaining storage is divided between the spaces as follows:
1716 for full word space,

1/64 for each push down list, _
the remainder to free storage and bit tables.

Reallocation of Storage

If you exhaust one of the storage areas it is possible to
increase the size of that area by wusing the reallocation
rocedure- First, expand core with the time sharing system.
command CORE and then reenter LISP with the REE command. For

example, if the original core cize was 22K, vou could increase
it by 4K as follows:

% TC
-.CORE 26
«REL

When you reenter LISP, the same allocation procedure is followed
as described above.

Initial Allocations

The following are the initial allocations for the various
storage areas when LISP is initially run.

I'REE STORAGE = 2200
rUULL WORD SD. = 700
BIN. PROG. SP. = 100
REG. PDL. 1000

SPEC. PDL. 1000

10 . 2

CONTIGUOUS BLOCKS_ OF STORAGE

A new data type, BLOCK, bhas been added to UCILSP. A BLOCK
consist of a block of contiguous storage 1locations . in Binary
Program Space. BLOCKs are similar to arrays in that they may
contain pointers that are protected from garbage collection, or
their contents may be ignored by the garbage collector. They
differ, however:. in the means of access. BLOCKs are accessed by
a pointer into Binary Program Space and all of the functions
which will act on a cons cell will work eaqually well on an
element of a block (except for printing). BLOCKs can be used
for setting up 1lists that are also tables, as in setting up
multiple OBLISTs. NOTE BENE: the value returned by the BLOCE
functions is a true address, not a LISP number.

(GTBLK LENGTH GC)

GTBLK 1is a SUBR that returns a zeroed BLOCK of LENGTH
words. If GC is NMIL, then the contents of the BLOCK are
ignored by the garbage collector. If GC is non-NIL then
the contents are treated as prointers and the cells
pointed to will not be collected.

(BLKLST LIST LENGTH)

BLKLST is a SUBR that returns a pointer type BLOCK of
LENGTH wordss It chains the words in the BLOCK such
~ that the CDR of each word is the succeeding word. The
top level of LIST is then mapped into the CAR’s of the
block. If LENGTH is NIL, then the length of the list is
used. If (LENGTH LIST) is less than LENGTH, then the
CAR s of the remaindef of the BLOCK are set to NIL. " If
(LENGTH LIST) 1is greater than LENGTH, the 1list is
truncated. ‘ : '

11 .1

A

SRy

