
UC Irvine
ICS Technical Reports

Title
UCI LISP Manual

Permalink
https://escholarship.org/uc/item/6qj664cd

Authors
Bobrow, Robert J.
Burton, Richard R.
Jacobs, Jeffrey M.
et al.

Publication Date
1973

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6qj664cd
https://escholarship.org/uc/item/6qj664cd#author
https://escholarship.org
http://www.cdlib.org/

UCI LISP MANUAL

by

Robert J. Bobrow

Richard R= Burton
Jeffrey lU Jacobs
' Daryle Lewis

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Department of Information and Computer Science
University of California, Irvine

TECHNICAL REPORT #21 updated 10/73

Table of Contents.

Introduction Oo 0

Debugging Facilities 1» 1
Introduction 1= 1

Temporarily Interrupting a Computation 1» 5
BREAKl - The Function that Supervises all

Breaks 1= 6

What You Can Do In a Break 1- 8

Break.Commands 1. 8

Leaving a break with a value
(0 K,GO,EVAL,FROM ?) 1.8

Correction of UNBOUMD ATOM and

UNDEFINED FUNCTION errors (>, USE) 1. 9
Aborting to Higher Breaks or the Top

Level (t, TT) 1-10
Examining and Modifying the Context of

a Break 1.11

Searching for a Context on the Stack 1.11
Editing a Form on the Context Stack 1.12
Evaluating a Form in a Higher Context 1.12
Backtrace Commands

Printing the Functions, Forms and Variable
Bindings on the Context Stack 1.15

Breakmacros

User Defined Break Commands 1.17

How to Use the Break Package 1.18
Setting a Break to Investigate a Function 1.18
Tracing the Execution of Functions 1.19
Setting a Break INSIDE a Function 1.19
Removing Breaks and Traces 1.21
Using BREAKO Directly to Obtain
Special Effects from the
Break Package 1.23

Error Package - Getting Automatic Breaks
'When Errors Occur 1.24

Summary of Break Commands 1.25

The LISP Editor 2o 1

Introduction 2. 2

Coinmands for the Nev/ User 2.1Q

Attention Changing Commands 2.15
Local Attention Changing Commands 2.16
Commands That Search 2.22

Search Algorithm 2.24
Search Commands 2.26

Location Specification 2.30
Commands That Save and Restore the

Edit Chain 2.36

Commands That Modify Structure 2.33
Implementation of Structure

Modification Commands 2.39

The A, R, : Commands 2.41
Form Oriented Editing and

the Role of UP 2.45*

Extract and Embed 2.46

The MOVE Command 2.50

Commands That "Move Parentheses" 2.54

TO and THRU 2.57

Commands That Print 2.62

Commands That Evaluate 2.63

Commands That Test 2.66

Macros • 2.68

Miscellaneous Commands 2.71

Editdefault 2.78

Editor Functions 2.80

Extended Interpretation of LISP Forms 3. 1
Evaluation of Sequences of Forms

Extended LAflBDA Expressions 3. 1
The Functions PROGl and PROGU 3. 2

Conditional Evaluation of Forms - SELECTQ 3. 3
Changes to the Handling of Errors 3. 4
Miscellania - APPLY ff, MILL 3. 5

Extensions to the Standard Input/Output Functions
Project-Programmer numbers'for Disk I/O
Saving Function Definitions, etc. on Disk Files
•Reading Files Back In .
Reading Directories
File Manipulation
Queuing Files
Recovery from QMANGR Errors
Printing Circular or Deeply Nested.Lists
Spacing Control - TAB
"Pretty Printing" Function Definitions and
S-Expressions

Reading VJhole Lines
Teletype and Prompt Character Control Functions
Read Macros - Extending the LISP READ Routine

Functions for Defining Read Macros
Using Read Macros

Modifying the READ Control Table
Reading without Interning

New Functions on S-Expressions
S-Expression Building Functions
S-Expression Transforming Functions
S-Expression Modifying Functions
Mapping Functions with Several Arguments
Mapping Functions v/hich use NCCrJC
S-Expression Searching and Substitution Functions
Efficiently 'Norking v.'ith Atoms as Character Strings

Nev/ Predicates

Data Type Predicates
Alphabetic Ordering Predicate
Predicates That Return Useful Non-NIL Values
Other Predicates

Nev/ Numeric Functions

Minimum and Maximum
FORTRAN Functions in LISP

4» 1

4. 1

4o 1

4. 1. 1

4. 1. 2

4. 1. 4

4. 1. 7

4. lo 10

4o 2

4o 2

4. 3

4. 4

4.. 5

4» 6

4o 6

4. 7

4. 8

4. 9

5. 1

5. 1

5. 3

5. 4

5. 5

5o 5

5. 7

5. 9

6 . 1

6. 1

6o 2

6. 3

6 = 4

7o 1

7. 1

7 = 2

Functions for the Systen Builder 8. 1
Loading Conpiled Code into the High Segment 8. 1
The Compiler and LAP -8o 2

Special Variables 8» 2
Removing Excess Entry Points • 8. 2

MiscellaneousUsefulFunctions 8. 3

Initial System Generation 8. 4

The LISP Evaluation Context Stack 9. 1

The Contents of the Context Stack 9= 1

Examining the Context Stack 9» 2
Controlling Evaluation Context 9. 4

Storage Allocation 10. 1
Contiguous Blocks of Storage 11. 1

Index INDEX.

•INTRODUCTIOM

UCI LISP is a compatible extension of the Stanford LISP
1=6 programming system for the DEC PpP-lOo The extensions
make UCI LISP a pov/erful and convenient interactive
programming environment for research and teaching in
artificial intelligence and advanced list processing
applications= All Stanford LISP programs, (except those
using the ' BIGMUM package) can be run directly in UCI LISP.
In addition, the extended features of UCI LISP make it much,
easier to transfer interpreted LISP programs from BBN LISP
and MIT AI LISP (we have already converted several large
programs, including a version of the Woods' Augmented
Transition Network Parser from BBM LISP, and a version of
Micro-Planner from MIT AI LISP.)

This manual describes the extensions to the Stanford
LISP 1.6 system, and should thus be read in conjunction v/ith
the latest Stanford LISP 1.6 manual, currently SAILOH 28.6
(Stanford Artificial Intelligence Laboratory Operating Note
28.6). As can be seen from the relative sizes of the tv/o
documents UCI LISP represents a substantial extension to
Stanford LISP, and from our ov;n experience presents a major
improvement in the habitability of the system for both naive
and experienced users. (A majority of the extensions were
suggested by the features of BBN LISP, probably the best
interactive . LISP system in existence, but unfortunately
available at the time UCI LISP v.'as implemented only on
TENEX, a paged virtual memory system for the PDP-10,
produced by Bolt, Beranek and Nev^man Inc.; this I,ISP system
is now or soon will be available on the BURROUGHS 36700 and
the IBM S/360 and S/370 series m.achines, and is nov; called
IMTERLISP.)

The major extensions to Stanford LISP can be briefly
described as follov/s:

1) Improvements in storage utilization:
a) UCI LISP is reentrant and com.piled code may be

placed in the sharable high segment
b) The allocator a1lows reallocation of all

spaces (including Binary Program Space) at any
time, and new versions of GETSYM and PUTSYM
are now available to permit relocation of

MACRO-10 and FORTRAN coded routines

c) A new data type, the BLOCK, v^;hich allov/ users
freer access to Binary Program Space and
permits the construction of data items such as
the system OBLIST, which is both a list and a
contiguous block of storage (to provide
efficient use as a sequential hash table)

2) Powerful interactive debugging facilities,
including:

a) Sophisticated conditional breakpoint and
function tracing facilities

b) A powerful list structure editor for editing
function definitions and data

c) Facilities for examining, correcting and
continuing to run in the context of a program
v/hich has been interrupted by an error or by a
user initiated temporary interrupt

3) Extensions to the I/O facilities available in the
basic system, including:

a) Convenient I/O to disk files, including use of
project/programmer designations and v/ays to
save and restore functions and data

b) Read Macros (patterned after MIT AI LISP) for
extending the LISP READ routine

c) A routine for printing circular or deeply
nested expressions

d) Routines to modify the control table of the
LISP READ routine

e) The ability to change the OBLIST used by
INTERN (and, hence, READ) at any time by
changing the value of the atom OBLIST to a
properly structured BLOCK list (see Ic above
and Chapter 11)

f) The ability to RENAME and DELETE files from
within LISP

g) The ability to read file directories for any
accessible project-programmer number, to see
if a file exists in a directory

h) Several useful functions for carriage
positioning, teletype echo and prompt
character control, reading input a line at a
time, reading list structures v;ithout
interning their atoms, etc-

4) Functions for examining and modifying the special
pushdown stack v/hich holds the context of ongoing

computations

5) Error protection facilities:
a) NIL, T and other atoms cannot be easily

damaged by RPLACA, RPLACD, SETP and SET
b) The system v;ill no longer go into an infinite

loop V7hen searching for the function
definition of the CAR of a form

c) Changes to the disk output routine DSKOUT so
that it uses the RENAME facility to provide a
backup for user files (m.inimizing the risk of
unintentionally clobbering files)

6) Extended basic functions including:
a) New predicates for data types, and most

predicates now return useful non-MIL values,
rather than T

b) New list construction and modification
functions

c) Multiple sequential form evaluation in LAMBDA
expressions

d) An efficient n-v;ay switch
e) Availability of the FORTRAN mathematical

functions

f) Mapping functions with several arguments, and
ones which build new lists using NCONC to join
segments

7) The ability to use. many of the system Queue
Manager's facilities without leaving LISP,
a 1 lov^ing:

a) Listing of files on the line printer
b) Initiation of batch jobs

As mentioned, v/e have made UCI LISP a reentrant system
which may be used by several users simultaneously. Thus,
v/hile the new features of UCI LISP reouire a larger system
than the original Stanford LISP, this impact is minimized in
any environment with more than one LISP user. In addition,
since the ba sic LISP system contains many features
previously available only in the various extension files
(such as SMILE, ALVINE, TRACE, etc.) or which had to bo
written by the user, it is possible to write and debug
meaningful jobs in the basic system, without getting extra
core. The UCI LISP system has a sharable high segment of
14K and a user specific low segment of 8K. Thus, if there
are two users the virtual core load is 30K, while getting

the sarne capabilities in Stanford LISP v/ould require a load
of 32K for the tv/o users, and of course the inprovement is
even more noticeable with more users sharing UCI LISP (about
8K is saved for each additional user).-

The ability to put compiled code in the sharable
segment and to , reallocate Binary Program Space makes it
possible to build systems in which much of the systems code
is compiled LISP expressions. All of the advantages of
higher level coding are obtained, and the LISP compiler
(borrowed from ; Stanford with some small modifications)
produces better results than most assembly language coders.
Such partially compiled systems can nov/ be used without
closing off the' possibility of the user extending Binary
Program Space to store his own compiled code. In general,
it is now possible to compile a system incrementally. The
user can save the low segment which contains the partially
compiled system, then test out new material in interpreted
form before extending the Binary Program Space in the
segment to load the nev/ compiled material.

The debugging facilities form the bulk of the
extensions to Stanford LISP, and are identical v;ith the
equivalent facilities available in B3M LISP in the summer of
1971. (BEN LISP has been extended in the intervening
period.) They make it possible for the user to track dov/n
bugs in complicated recursive program.s by making it easier
for him to investigabe the context in which the bug occurred
(e.g. to see at v;hat point erroneous data v;as passed as an
argument, or at v/hat point the flow of control v.'ent awry,
etc.)' The user does not have to plan in advance or set
breakpoints to get access to the context of the error. The
system holds the context of any error automatically,
allowing the user to perform, whatever investigations he
'Wishes, and m.ake. any corrections which may be useful. This
also makes it possible to patch up a small error, like an
unbound atom or simple undefined function, in the middle of
a large computation and to continue the computation v/ithout
having to start from scratch. Similarly, the user can try
out ideas for correcting" the error, v/ithout leaving the
context of the error, and go on only when he has pinned dov/n
the error and. its possible solution. If the information
available at the time the LISP.system discovers the error is
insufficient to pin do'wn the cause of the error, the user
can have the system repeat the computation, v;ith a special
trace feature that prints out whatever the user v/ishes to

knov; at various points in the' computation" (The user can
specify both -what data is to be printed and under what
conditions he wishes it printed.) The user can also force
the system to establish a breakpoint anywhere in his
computationj so he can investigate the context before the
error has covered its tracks.

The UCI LISP editor (borrowed with some modifications
from the BBII LISP system) is actually a language for
incremental modification,of list structures. It can be used
by a user at a terminal to modify function, definitions (even
during the middle of a break while the function is still on
the context stack) or to change complicated data structures.
It can also be used as a subroutine by other functions,
making it convenient for one function to modify another
function. This is actually done by the BREAK package, to
implement the function BREAKI!] which inserts a breakpoint at
any arbitrary point in a user function.

The editor can move around in a structure by small
local m^otions, or by searching for a portion of the
structure which matches some given pattern. It can insert
new items, delete old ones, interchange items, change
structure, embed old items in new structure or extract them
from old structure, etc. In order to be able to edit a
function v/hich is still on the context stack and to have all
of the portions on the context stack be changed at once, the
modifications performed by the editor are physical changes
of the existing structure. Although all the'modifications
are "destructive", using RPLACA and P.PLACD to make changes
in the given structure, all of the modifications can be
selectively reversed by means of the UNDO feature. Thus the
user can make modifications without worrying about
completely destroying his function definitions by accident.

The editor is a very large, complicated function, and its
documentation indicates that fact. However, the first part
of the editor documentation gives a convenient rundown on
how to use .the editor as a 'novice, and with that the
beginning user can get quite a bit done. By skimming the
remainder of the editor chapter the user can get some idea
of the many extra useful features available, and can slowly
^k.tend his capabilities with the editor. It has been a
common observation that in the process of writing and
debugging a large system, or even a small program, the
average user spends m.ost of his time in editing his
functions. By becoming familiar v/ith all the features of

0 •. 5

the list structure editor the user can cut his editing time
considerablyf and make large or "subtle changes easily- The
user should also bear in mind that the editor is available
as a function, v/hich can be used by other functions. This
can make many jobs substantially easier..

nOTE: ALVIHE is no longer available in the standard
version of UCI LISP because we believe that the nev/ editor
and I/O facilities are substantially better than those
-provided by ALVIME. (There is an assembly sv/itch which
makes it possible to fun ALVTNE in UCI LISP if necessary.)

Some of the extended I/O facilities of UCI LISP v/ere
available in SMILE, etc., but putting them in the shared
system saves core. The Read Macro facility is a great
convenience and makes using Micro-Planner much simpler. The
user-modified READ - control table is more general than that
available in the Stanford SCAN package (which is still
useful and available), and the new SPRINT is faster than the
original. The other functions are auite convenient, and
will m.ake many tasks simpler.

The special pushdown list has been extended to provide
the cguivalent of the BDII LISP context stack. This is the
backbone of the ERROR and BREAK packages, since it enables
running programs to examine their context, and to change it
if necessary. The stack functions, particularly RETFP.OM and
OUTVAL make it possible to experiment with various control
regimes, where subordinate functions can abort and return
from higher level functions on the basis of local
information. Indiscriminate fooling around with the stack
-is likely to produce peculiar and • unv/anted results, but the
stack functions can be extremely helpful at times.

The error protection facilities are an attempt to catch
some of the common errors of novices (and experienced users
too) v;hich can clobber th.e system. There are few things
more confusing than v/hat happens to the system v/hen the
value of NIL is no longer NIL, or if the value of T becomes
NIL. In Stanford LISP this,could easily happen if SETQ or
SE^ received a list as a first argum.ent. This can no longer
happen in UCI LISP. Similarly, Stanford LISP occasionally
went into infinite loops because a form had a CAR which was
NIL or had no function definition and evaluated to NIL.

This has been corrected.

The extended basic functions are ones
great use in writing the editor, 3?,EAK

which

etc <package,
were

, and

of

in
oringing up translated versions of BBN LISP and
programs* The multiple form LAMBDA expression and
sv/itch SELECTO should make many programming jobs
convenient, as should the availability of
V7ith several arguments. The user v/ill
profit from skimming through the chapters
features, just to knovy what is available.

MIT AI LISP

the n-v/ay
much more

mapping functions
almost certainly

on these extended

Credits and •'^cknowledcfemGnt'.Fi

of f-^irection of the irnplementation
3TC.O 4-v, ® responsibility of Robert Bobrow, who
includina ^the* ^ riodif ications to Stanford LISP,including the original error package, accessible context
stack and storage reallocator. In large part the exiSnce
to P I ^ts extensive documentation is due
of the efforts of Daryle Lewis, who did the bulkof the modifications to the assembly language code
(incluoing making Stanford LISP reentrant) and corrected the
enTire^mTLlfp' singlehandedly transferred the, . _rej-tor and its aocumentation to our system,and in general performed vital and arduous desian

pIcharr^Bur^o'̂ documentation tasks too numerous to mention!Richard Burton did yeoman s labor bv transferrina fand
BPEAK pacSgeL aSddocumentation. . Jeff Jacobs maintained the

a^d nonths, correcting may old Stanford compilerlector bugs; he also implemented manv

^iir diveeV interface to the Queue Manager, disk
the%!orJ the user-switchable OBLIST, and
service f ^ provided great
VJhitf?^d system and its documentation.cg+. • ^ -Stanford has helped us out of several
oriai"naf^° system and its compiler. The^ f^^ttation of the editor and several I/O

Rodger Knaus, as well as many helpful
Bell *wh°"^* finally, but of vital importance, is Alan
helDPd knowledge of the PDP-10 operating systemhelped us through many rough times, and who has done much of
the transferring of BBri LISP and MIT AI LISP programs.

We are triply indebted to the designers, implementers

Sarrer^eTi'T' T ^-ticularly Daniel Bobr" ^nd
faSnti^s ao w";. debugging and interactive®^^^^ties a. v/elx as the general design philosophy of UCI

w2e ah,/ y the BBM LISP system. Secondly, „e
writt^f in l/n "f their code directly, since it was
wrhJ'̂ ^r, --l 'f' It possible to obtain a large,
3nd system in a fraction of the time
^i^nallv It. would have taken to write it from scratch,rinaily, wo have made extensive use of the BBM LISP TENEX
T? T? FEPEIICE f^AMUAL

— SOUirCG of ^TciW rnBtGfisl foT onr-aocumentation. In particular, much of the material in ?he

chapters on the BREAK and ERROR packages and the editor is a
revised version of the material in the BB?] LISP MAHUAL» We
take full responsibility for the errors and deficiencies
produced by such an arrangement* while greatfully
acknov;ledging BBTl's aid in providing much of, the basic
documentation- He are also in debt to several people at BBN
for their aid in obtaining and explaining this material*
particularly Jim Goodwin, Alice Hartley and the director of
the Artificial Intelligence Group* Jaime Carbonell.

This manual is the v;o,rk of many people as v;ell as the
listed authors - in particular Warren Teitelman* formerly of
BBN and now at Xerox Palo Alto Research Center* who produced
the original BBN LISP documentation and the lions share of
the original code- He are also in debt to Marion Kaufman
and Phyllis Siegel who did daily battle with the PDP-10 to
produce the RUNOFF files from which fhis documentation is
produced-

Last* but most assuredly not least in the roster of
those who have made this system possible are Kathy Burton
and Connie Lev/is who lived through the many discussions, all
night programming sessions and battle-fatigue of the year
during v;hich this system v/as implemented-

EHJOY, ENJOY

0 - 9

A
(
e
d

it
c
o

in
m

a
n

d
)

A
G

O
3

A
N

D

A
P

P
L

Y
#

A
R

C
S

(b
re

a
k

c
o

n
ria

n
d

)
A

S
I
N

A
S

S
O

C
#

A
T

A
N

-
-
-

B
(
e
d

it
co

m
iT

ian
d

)
B

E
L

O
V

r
(
e
d

it
c
o

rn
n

a
n

d
)

B
F

(
e
d

it
c
o

m
n

a
n

d
)

H
I

(
e
d

it
c
o

n
n

a
n

d
)

B
IN

D
(
e
d

it
c
o

m
m

a
n

d
)

-
B

K
(b

re
a
k

c
o

m
m

a
n

d
)

-
-

B
K

(
e
d

it
c
o

m
n

a
n

d
)

B
K

E
(b

re
a
k

c
o

m
m

a
n

d
)

-
B

K
F

(b
re

a
k

c
o

m
m

a
n

d
)

-
B

L
K

L
3

T

3
0

(
e
d

it
c
o

m
n

a
n

d
)

B
R

E
A

K

B
R

E
A

K
IH

B
R

E
A

K
M

A
C

R
O

S

3
R

E
A

K
0

B
R

E
A

K
l

B
R

K
E

X
P

B
R

O
K

E
N

F
N

S

C
H

A
N

C
E

(
e
d

it
co

m
m

an
d

)
C

H
R

V
A

L

C
L

R
B

F
I

C
O

M
S

(
e
d

it
c
o

m
m

a
n

d
)

-
C

O
M

SQ
(
e
d

it
c
o

m
m

a
n

d
)

C
O

N
S

P

C
O

P
Y

C
O

S

C
O

S
D

.

C
O

S
H

,
,

D
D

T

D
E

L
E

T
E

D
E

L
E

T
E

(
e
d

it
co

m
m

an
d

)
D

I
R

D
R

E
M

O
V

E

D
R

E
V

E
R

S
E

D
R

M

I
N

D
E

X

IN
D

E
X

o
1

-
2

.1
3

,
4

1

-
7

.
2

-
6

.
3

-
3

.
5

-
1

.1
0

-
7

.
2

-
5

.
7

•
7

.
2

-
2

.1
3

,
3

1

•
2

.3
2

,
3

3

•
2

.1
0

,
2

8

•
2

.5
4

•
2

.7
0

•
1

.1
5

•
2

.1
0

,
1

9

•
1

.1
5

•
1

.1
5

•1
1

.
1

•
2

.5
5

1
.

1
,

1
8

1
.

1
,

2
0

1
.1

7

1
.2

3

1
.

6

1
.

7

1
.1

8

2
.4

3

5
.

9

4
.

5

2
.

6
4

2
.

6
4

6
.

1

5
.

3

7
.

2

^
7

.
2

7
.

2

1
.

5

4
.

1
.

5

2
.1

4
,

4
1

,

4
.

1
.

3

5
.

4

5
.

4

4
.

6

DSKin 1
DSKOUT 4 1
Ds,i J
DSUBST 5. 4
E (edit corninand) 2» 9, 63
EDIT (break command) 1„13
EDIT4E 2.83
EDITCOMSL 2.* 78
EDITDSFAULT V 73
EDITE — 2!81
EditF 2.81
EDITFIEDP 2 Q4
EDITFNS 2°83
EDITFPAT 2° 84
EDITL ______ 2lc0
EDITP ^ 2, 82
EDITRACEFH 2'"4
EDITV — — 2*82
EMBED (edit command) 2.49
err 3^ 4
ERRCH

ERROR -) 4
ERRSET 3] 4
EVAL (break command) 1. 3
EVALV • 9^ 4
EX (break command) 1, 14
EXP 7„ 2
EXTRACT (edit command) 2.47
F (break command) 1.11
F (edit command) 2. 6, 26, 27
FILRAK 4. 5
FLATS IZ EC 3 n
FLOAT _____ 7° 2
FNDBRKPT ^ 9] 3
FREE ' : 80 3. 1
FREELIST 8. 3. 1
FROM?= (break command) 1. 9, 14
FS (edit command) 2.2 8
F= (edit command) 2.28
GO (break command) 1. 3
GRINDEF 4. 3
GRINL 4] 3
GRIMPROPS 4° 3
gtblk _ii; 1
HERE (in editor) 2.4'i, 52
HGHCOR • p 1
HGHEMD 8°]_
KGHORG g[4

INDEX

4. 5.

I
(e

d
it

com
rnand)

2
.6

3
IF

(e
d

it
co

m
m

an
d

)
2

.6
6

IIIIT
F

L
3

IN
ITPRO

M
PT

4°
5

IN
S

E
R

T
(e

d
it

c
o

n
n

a
n

d
)

2
.4

3
IN

U
M

P
7^

I
LAM

BDA
•

3^
^

L
A

P
2

L
A

P
L

S
T

8
.

2
LA

STV
JO

RD
L

2
.8

1
,

82
L

A
ST

PO
S

•
'1

,1
1

LC
(e

d
it

com
m

and)
2

.3
1

L
C

L
(e

d
it

com
m

and)
2

.3
1

5^
2

L
D

IF
F

—
—

—
g

LEXORDEF
.

5"
2

L
I

(e
d

it
com

m
and)

2
.5

5
LIN

ER
EA

D
4'

4
LITATOH

—
g]

1
LO

(e
d

it
com

m
and)

2
.5

5
LiOG

—
—

—
y

lookup
4;

6
L

P
(e

d
it

com
m

and)
2

.6
6

L
PQ

(e
d

it
com

m
and)

2
.6

7
LSUBST

5°
3

M
(e

d
it

com
m

and)
2

.6
8

,
69

M
AKEFM

(ed
it

com
rnand)

2
.1

b
'

M
A

P
CAM

5^
5

M
APCON

5]
g

5]
5

M
ARK

(e
d

it
com

m
and)

2
.3

6

M
AXLEVEL

2°
24

I4BD
(e

d
it

com
m

and)
2

1-3
4

8
M

EM
B

3"
M

EM
BER

g
3

m
em

o
g]

3
M

iM
7_

^8
M

OVE
(e

d
it

com
m

and)
2

50
M

yPPN
4:

1.
6

N
(e

d
it

com
m

and)
2

5
38

LEQ
g]

4'
N

EX
(e

d
it

com
m

and)
2

.3
3

9°
2

N
IL

(e
d

it
com

m
and)

2
.7

1
M

T
7

T
^

*
—

—
—

—
—

—
—

—
g

g

—
p

IH
D

E
X

rjT
H

5
,

3
NTH

(e
d

it
com

m
and)

2
.2

1
,

33
NTHCHAR

,
5.

"g
7]

I
NX

(e
d

it
com

m
and)

2.
8,

33
O

K
(breal-v

com
m

and)
i.'

g
O

K
(e

d
it

com
m

and)
2

.7
1

O
R

E
(e

d
it

co
m

m
an

d
)

2
.2

8
O

R
R

(e
d

it
co

m
m

an
d

)
2

.6
7

O
R

3
OUTVAL

9]
4

P
(e

d
it

com
m

and)
2

6?
p

a
to

m

PP
(e

d
it

com
m

and)
2

.
2

PR
E

V
E

V
9^

2
PRINTLEV

4]
2

PROGN
3*

9
PROGl

3]
2

PROM
PT

4°
5

Q
U

EU
E

4^
7

R
(e

d
it

com
m

and)
2

.
7,

60
R

A
N

D
O

M
7

9
rd

file
4:

1.
2

RD
M

A
M

4
.

9
R

E
A

D
P

R
E

E
3

renam
e

4°
1.

5
R

E
PA

C
K

(e
d

it
co

m
m

an
d

)
2

.7
4

R
EM

O
V

E
5

,
3

RETFROM
g]

4
R

E
T

U
R

N
(b

re
a
lc

co
m

m
an

d
).

1
.

9
R

I
(e

d
it

com
m

and)
2

.5
5

RO
(e

d
it

co
m

m
an

d
)

2
.5

6
R

G
E

T
S

Y
M

R
2

9
rputsym

e!
3:

2
S

(e
d

it
co

m
m

an
d

)
2

.3
7

SA
V

E
(e

d
it

co
m

m
an

d
)

2
.7

2
SE

C
O

N
D

(e
d

it
co

m
m

an
d

)
2

.3
1

SE
L

E
C

T
Q

3
.

3
SETCHR

4'
g

SIN
7;

2
S

I
N

D

S
IN

K

P
E

C
IA

L

4
.

5
.

7
.

2

7
.

2

8
.

2
S

P
D

L
F

T
9

.
2

O
P

D
L

P
'

9
.

2
S

P
D

L
R

T
9

2
SPREDO

g"
4

IN
D

E
X

SP
R

E
V

A
L

9
4

SP
RI

N
T

4*
3

SO
RT

:
-j

'
2

ST
KC

OU
NT

^_
__

_
:

:
9]

3
ST

KN
AM

E
9°

3
ST

KI
JT

H
•

g[
3

ST
KP

TR
.

•
9°

2
ST

KS
RC

K.
—•

9]
3

ST
O

P
(e

d
it

co
rn

m
an

d)
'

2
72

ST
RI

N
G

?
;

g'
,

SU
BL

IS
5*

y
SU

BP
A

IR
•

3*
y

SU
RR

O
U

N
D

(e
d

it
co

m
m

an
d)

^
2

.4
9

SV
/

(
e
d

it
co

rn
m

an
d

)
^

o
c
i

SY
SC

LR
g°

3
TA

B
.

4_
2

T
A

IL
P

g.
3

.T
A

N
y

^
TA

NH
-

y'
2

TC
ON

C
3]

^
"^

ES
T

(e
d

it
co

m
m

an
d)

2
.7

7
TH

IR
D

(e
d

it
co

m
m

an
d)

^
:

2
.3

1
TH

RU
(e

d
it

co
m

m
an

d)
;

•
:

2
.5

7
TO

(e
d

it
co

m
m

an
d)

;
o

5y
T

R
A

C
E

-

T
R

A
C

E
D

F
N

S

TT
Y

EC
H

O
—

4_
3

T
T

Y
:

(e
d

it
co

m
m

an
d

)
o

71
UF

DI
NP

4!
1.

2
U

N
BL

O
CK

(e
d

it
co

m
m

an
d)

2
77

UN
BO

UN
D

g'
3

UN
BR

EA
K

j_
[2

1
U

N
D

O
(e

d
it

co
m

m
an

d
)

•;>
1

n
7

e
U

N
D

O
LS

T
7

7
e
'

77
UM

FI
IID

"
"

\l
U

B
T

R
A

C
E

UM
TY

I
5_

j
U

P
(e

d
it

co
m

m
an

d
)

7
1

7
1

k
c,

n
U

P
F

IN
D

F
L

G
US

E
(b

re
ak

co
m

m
an

d)
I'

ln
US

ER
M

AC
RO

S
2.°

70
XT

R
(e

d
it

co
m

m
an

d)
2

.1
4

,
46

0
(e

d
it

co
m

m
an

d)
2.

4'
i'r

*A
NY

'*
(i

n
e
d

it
p

at
te

rn
)

2
'7

7
'

*M
A

X
°

.
*M

IN
:

°
I

.re
na

m
e

1
4;

*R
GE

TS
YM

8.
3o

2

IN
D

I

1
.

1
,

1
9

1
.1

8

*RPUTSYM 8. 3. 2
2.64
(edit command) 2.44
0 (at-sign, in edit pattern) . 2.12, 22
t (breal' command) 1.10
r (edit command) 2. 4, 18
tt (break command) 1.10
& (break command) . ; 1.11
St (in edit pattern) 2.11, 22
? (edit command) 2. 2, 62
?? (edit command) 2.77
?= (break command) 1.13

(in break package) , 1.12
<- (edit command) 2.35

(edit command) , 2.36
: (edit command) 2.14, 41

(edit command) 2.34
(in edit pattern) 2.22

== (in edit pattern) 2.2 2
— (in edit pattern). 2.11, 22
\ (edit command) 2.10, 35
\P (edit command) 2.11, 37
(<- pattern) (edit command) 2.32
> (break command) 1. 9
-> (break command) 1. 9
ILOOKDPTH : 1. 8
%PRINFN 1. 8
!NX (edit command) ' 2.20
(UNDO (edit command) 2.76
!.0 (edit command) 2.18
iVALUE 1. g

IPDEX

DEBUGGING FACILITIES

Introduction

Debugging a collection of LISP functions involves
isolating problems within particular functions and/or
determining when and V7here incorrect data are being
generated and transmitted. In the UCI LISP system, there
are five facilities ivhich aid the user in monitoring his
program. One of these is the Error Package v/hich takes
control whenever an error occurs in a program and v/hich
allows the user to examine the state of the world (see
section on 'ERROR PACKAGE'). Another facility allows the
user to temporarily interrupt his computation and examine
its progress. The other three facilities (BREAK, TRACE and
BREAKIH) allov; the user to (temporarily) modify selected
function definitions so that he can follow the flov? of'
control in his programs. All of these facilities use the
same system function, BREAKl, as the user interface.

BREAK, BREAKIN and TRACE together are called the Break
Package. BREAK and TRACE can be used on compiled and system
functions as well as EXPR's, FEXPR's and MACRO'S. BREAKIN
can be used only with interpreted functions.

BREAK modifies the definition of a function FN, so that
if a break condition (defined by the user) is satisified,
the process is halted temporarily on a call to FN. The user
can then interrogate the state of the machine, perform any
computations, and continue or return from the call.

TRACE modifies a definition of a function FN so that
whenever FN is called, its arguments (or some other values
specified by the user) are printed. VJhen the value of FN is
computed it is printed also.

BREAKIN allov7s the user to insert a breakpoint inside
an expression defining a function. VJhen the breakpoint is
reached and if a break condition (defined by the user) is
satisfied, a temporary halt occurs and the user can again
investigate the state of the computation.

The two examples on pages 1.3 and 1.4 illustrate these
facilities. In the first example, the user traces the
function FACTORIAL. TRACE redefines FACTORIAL so that it
calls BREAKl in such a way that it prints some information,
in this case the arguments and value of FACTORIAL, and then

•1

goes on v;ith the computation. When an error occurs on the
fifth recursionf BREAKl reverts to interactive mode, and a
full break occurs. The situation is then the same as though
the user had originally performed (BREAK FACTORIAL) instead
of (TRACE FACTORIAL), and the user can evaluate various LISP
forms and direct the course of the computation. In this
case, the user examines the variable M, instructs BREAKl to
change L to 1 and continue. The > command, follov/ing an
UNBOUND ATOM or UNDEFINED FUNCTION error, tells BREAKl to
use the next expression instead of the atom v;hich caused the
error. The > command does a destructive replacement of, in
this case, 1 for L, and saves an edit step by correcting the
typo in the function definition. The rest of the tracing
proceeds v/ithout incident. The function UNTRACE restores
FACTORIAL to its original definition.

In the second example, the user has written Ackermann's
function. He then uses BREAK to place a call to BREAKl
around the body of the function. He indicates that ACK ,is
to be broken when M equals N and that before the break
occurs, the arguments to ACK are to be printed. While
calculating (ACK 2 1), ACK is called twice when H = N.
During the first of these breaks, the user prints out a
backtrace of the function names and variable bindings. He
continues the computation with a GO which causes the value
of (ACK 1 1), 3, to be printed before the break is released.
The second break is released with an OK which does not print
the result of (ACK 1 1). The function UNBREAK with an
argument T restores the latest broken or traced function to
its original definition.

For further information on how to use BREAK, TRACE and
BREAKIN, see the section on The Break Package.

*(DE FACTORIAL (N)
(COND ((ZERO? N) L)

(T (TIMES N (FACTORIAL (SUBl M))))))

FACTORIAL

*(TRACE FACTORIAL)

(FACTORIAL)
*(FACTORIAL 4)
ENTER FACTORIAL:

! N = 4

! ENTER FACTORIAL:

! S N = 3

! i ENTER FACTORIAL:

! ! ! N = 2

! ! ! ENTER FACTORIAL:

i ! ! I N = 1

! i ! ! ENTER FACTORIAL:

! ! ! ! ! . N = 0

L

UNBOUND VARIABLE - EVAL

(L BROKEN)
1: N

0

1: > 1

1 !• ! ! FACTORIAL = 1

FACTORIAL = 1

FACTORIAL = 2

! FACTORIAL = 6

FACTORIAL =30

30

t I I

I ?

(UNTRACE FACTORIAL)

(FACTORIAL)

•^(FACTORIAL 4)

30

1 . 3.

*(DE ACK (M N)
(COND ((ZEROP M) (ADDl N))

((ZERO? N) (ACK (SUBl M) 1))
(T (ACK (SUDl M) (ACK M (SUBl N))))))

ACK

*(BREAK (ACK (EQ U M) (ARCS)))

(ACK)
*(ACK 2 1)

M = 1

n == 1

(ACK BROKEN)
1:BKFV

M = 1

N = 1

ACK

M = 2

N = 0

ACK

. = 2

N. = 1

ACK

1 :G0

3

M = 1

N = 1

(ACK BROKEN)
l:OK

5

*(UNBREAK T)

(ACK)

1 . 4

Interrupting a computation-REE and DDT

A useful feature for debugging is a way to temporarily
suspend computation- If the user wishes to know how., his
computation is proceeding (i-e- is he in an infinite loop
or is system response poor) - Then type Control-C twice
(which will cause a return to the monitor) followed by
either REE or. DDT. After typing REE the user must respond
with one of the following control characters; Control-H,
Control-B, Control-G, Control-E or Control-Z. Typing DDT is
equivalent to typing REE followed by Control-H.

1. Control-H: This will cause the computation to continue,
but a break will occur the next time a function is called

(except for a compiled function called by a compiled
function). A message of the form (-- BROKEN) is typed and
the user is in BREAKl (see the next section). He can
examine the state of the world and continue or stop his
computation using any of the BREAKl commands. WARNING It is
possible to get into an infinite loop that does not include
calls to functions other than compiled functions called by
compiled functions. These will continue to run. (In such
cases, type Control-C twice, follovv'ed by REE, followed by
one of the other control characters).

2. Control-B: This v/ill cause the system to back up to the
last expression to be evaluated and cause a break (putting
the user in BREAKl with all the power of BREAKl at the
user's command. This does not include calls to compiled
functions by other compiled functions.

3. Control-G: This causes an (ERR ERRORX) which returns to

the last (ERRSET ERRORX). This enables the user to

Control-C out of -the Break package or the Editor, reenter
and return to the appropriate command level. (i.e. if the
user were several levels deep in the Editor for example,
Control-G will return him to the correct command level of
the Editor).

4. Control-E: This does an (ERR NIL) . which return NIL to
the last ERRSET. (See section on changes to ERR and
ERRSET).

5o Control-Z: This returns the user to the top-level of
LISP, (i«e. either the READ-EVAL-PRINT loop or the current
INITFN). ,

^ Control-R: This restores the • normal system OBLIST.
Another of the above control characters must be typed after
this character is typed. This will often recover after a
GARBAGED OBLIST message.

1.5.1

BREAKl'- • ' - ^ . . •

The. heart of .the debugging package is a function called
BREAKl. BREAK and TRACE redefine your,functions in terms of
BREAKlo VJhen an error occurs .control is passed to BREAKl.
The DDT break feature is also implemented using BREAKl.

Whenever LISP types a message of the form {-- BROKEN)
followed by 'n:' the user is then 'talking to' BREAKl, and
he is • in a break. BREAKl allows the user to interrogate
the state of the world and affect the course of the
computation. It uses the prompt character ':' to indicate
it is ready to accept input(s) for evaluation, in the same
way as the top level of LISP uses The n before the ':'
is the level number which indicates how many levels of
BREAKl are currently open. The user may type in an
expression for evaluation and the value will be printed out,
followed by another Or the user can type in one of the
commands described below which are specifically recognized
by BREAKl (for summary of commands see Table I, page 1.25).

^Since BREAKl puts all of the power of LISP at the
user's command, he can do. anything he can do at the top
level of LISP. For example, he can define nev/ functions or
edit existing ones, set breaks, or. trace functions. The
user may evaluate an .expression, see that the value was
incorrect, call the editor, change a function, and evaluate
the expression again, all without leaving the break.

It is important to emphasize that once a break occurs,
the user is in complete control of the flow of the
computation, and the computation will not proceed without

instruction from him. Only if the user gives one
of the commands that exits from the break (GO, OK, RETURN,
FROM? =, EX) will the computation continue. If the user
wants to abort the computation, this also can be done (using
1 or it).

Note that BREAKl is just another LISP function, not a
special system feature like the interpreter or the garbage
collector. It has arguments and returns a value, the same
as any other function. A call to BREAKl has the form

(BREAKl BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE)

The ^arguments to BREAKl are: BRKWHEN is a LISP function
which IS evaluated to determine if a break will occur. If

1 . 6

BRKVvHEN returns NIL/ BRKEXP is evaluated and returned as the

value of the BREAKl. Otherwise a break occurs. BRKFN is
the name of the function being broken and is used to print
an identifying message- BRKCOMS is a list of command lines
(as returned by READLINE) which are executed as if they had
been typed in from the teletype- The command lines on
BRKCOMS are executed before commands are accepted from the
teletype/ so that if one of the commands on BRKCOMS causes a
return/ a break occurs without the need for teletype
interaction- BRKTYPE identifies the type of the break- It
is used primarily by the error package and in all cases the
user can use NIL for this argument.

The value returned by BREAKl is called 'the value of
the break.' The user can specify this value explicitly by
using the RETURN command described below- In most cases/
however, the value of the break is given implicitly/ via a
GO or OK command/ and is the result of evaluating 'the break
expression/' BRKEXP.

BRKEXP is/ in general/ an expression
equivalent to the computation that would have
taken place had no break occurred. In other
words, one can think of BREAKl as a fancy EVAL,
which permits interaction before and after
evaluation- The break expression then corresponds
to the argument to EVAL- For BREAK and TRACE,
BRKEXP is a form equivalent to that of the
function being traced or broken- For errors,
BRKEXP is the form which caused the error- For

DDT breaks, BRKEXP is the next form to be

evaluated.

1-7

VJHAT YOU CAN DO IN A BREAK

Break CominandF:

Once in a break# in addition to evaluating expressions#
the user can ask BREAKl to perform certain useful actions by
giving it atomic items as "break commands". The following
commands can be typed in by the user or may be put on the
list BRKCOMS. TABLE I (page 1.25) is a summary of these
commands.

All printing in BREAKl is done by calling (%PRINFN
expr). %PRINFN is an atom (not a function) which should
evaluate to the name of a printing function of
%PRINFN is initialized to use PRINTLEV because
circular lists# which quite often result
PRINTLEV only prints lists to a depth of 6.
parameter may be changed by setting the value
PRINTLEV is necessarily slow and if you are
circular

changing
structures,

the value of
traces can be speeded
%PRINFN to PRINl.

one argument-

it can print
from errors.

This depth
of %LOOKDPTH.

not printing
up greatly by

GO

OK

EVAL

Releases the break and allows the computation
to proceed. BREAKl evaluates 3RKEXP# its first
argument, prints the value# and returns it as the
value of the break. BRKEXP is the expression set up
by the function that called BREAKl. For BREAK or
TRACE, BRKEXP is equivalent to the body of the
definition of the broken function. For the error
package# BRKEXP is the expression in which the error
occurred. For DDT breaks# it is the next form to be
evaluated.

Same as GO except that the value of BRKEXP is
not printed.

Causes

maintained

printed and bound on the variable 1VALUE,
or OK will not cause reevaluation
following EVAL but another EVAL will,
useful command when the user is not sure
not the break v/ill produce the correct

BRKEXP to be evaluated. The break is
and the value of the evaluation is

Typing GO
of BRKEXP

EVAL is a

whether or

value and

1 .

v/ishes to be able to do something about it if it is
wrong.

RETURN form

The form is evaluated and its value is returned
as the value of the break. For example/ one might
use the EVAL command and follow this with
RETURN (REVERSE !VALUE).

.FROM?= form

This permits the user to release the break and
return to a previous context with form to be

• evaluated. For details see context commands.

> [or ->] expr
For use either with UNBOUND ATOM error or

UNDEFINED FUNCTION error. Replaces the expression
containing the error with expr (not the value of
expr) e.g.,

FOOl

UNDEFINED FUNCTION

(FOOl BROKEN)
1: >- FOO

changes FOOl to FOO and continues the computation.
Expr need not be atomic/ e.g./

FOO

UNBOUND ATOM

(FOO BROKEN)
1:> (QUOTE FOO)

For UNDEFINED FUNCTION breaks/ the user can specify
a function and its first argument/ e.g./

MEMBERX

UNDEFINED FUNCTION

(MEMBERX BROKEN)
l:> MEMBER X

Note that in the some cases the form containing the
offending atom will not be on the stack (notably/
after calls to APPLY) and in these cases the
function definition will not be changed. In most
caseSf however/ > v;ill correct the function
definition.

USE X FOR y

Causes all occurrences of y in the form on the
stack at LASTPOS (for Error breaks, unless a F
command has been used, this form is the one in which
the error occurred.) to be replaced (RPLACA'ed) by
Xo Note: This is a destructive change to the
s-expression involved and will, for example,
permanently change the definition of a function and
make a edit step unnecessary.

rr

Calls ERR and aborts the break. This is a
useful way to unwind to a higher level break. All
other errors, including those encountered v/hile
executing the GO, OK, EVAL, and RETURN commands,
maintain the break.

This returns control directly to the top level
of LISP.

ARCS

Prints the names and the current values of the
arguments of BRKFN. in most cases, these are the
arguments of the broken function.

1 . 10

Context Commands

All information pertaining to the evaluation of forms
in LISP is kept on the special push down stacks Whenever a
form is evaluated, that form is placed on the special push
down stack. Whenever a variable is bound, the old binding
is saved on the special push down stack. The context {the
bindings of free variables) of a function is determined by
its position in the stack. 'When a break occurs, it is often
useful to explore the contexts of other functions on the
stack. BREAKl allows this by means of a context pointer,
LASTPOS, v/hich is a pointer into the special push down
stack. BREAKl contains commands to move the context pointer
and to evaluate atoms or expressions as of its position in
the stack. For the purposes of this document, when moving
through the stack, "backward" is considered to be toward the
top level or, equivalently, towards the older function calls
on the stack.

F [or &] argl arg2 . .. argN
Resets the variable LASTPOS, which establishes

a context for the commands ? = , USE, EX and FROEi? = ,
and the backtrace commands described below. LASTPOS

is the position of a function call on the special
push down list. It is initialized to the function
just before the call to BREAKl.

F takes the rest of the teletype line as its
list of arguments. F first resets LASTPOS to the
function call just before the call to BREAKl, and
then for each atomic argument, F searches backward
for a call to that atom. The following atoms are
treated specially:

V/hen used as the first argument
caused LASTPOS not to be reset to

above BREAKl but continues searching
from the previous position of LASTPOS.

Numbers

If negative, move LASTPOS back
(i.e. towards the top level) that
number of calls, if positive, forward.

11

Search forward instead
backward for the next atom

of

Example:

If the special push-down stack looks like

then

F

F

F

F

BREAKl

FOO

SETQ

COND

PROG

FIE

COND

FIE

COND

FIE

COND

PROG

FUM '

FIE COND

& COND

FUM FIE

& 2

(13)
(12)

(11)
(10)

(9)
(8)
(7)
(6)
(5)

(4)
(3)
(2)

(1)

will set LASTPOS to to (7)
will then set LASTPOS to (5)
wil1 stop at (4)
will then move LASTPOS to (6)
will reset LASTPOS to (12)

If F cannot successfully complete a search,
for argN or if argN is a number and F cannot move
the number of functions asked, "argl'I?" is typed.
In either case, LASTPOS is restored to its value
before the F command was entered. Note: It is
possible to move past BRKEXP (i.e. into the break
package functions) when searching or moving
forv;ards.

V7hen F finishes,
function at LASTPOS.

it types the name of the

F can be used on BRKCOMS. In
remainder of the list is treated
arguments, (i.e. (F FOO FIE FOO)

1 . 12

which case, the
as the list of

EDIT argl arg • •. argN
EDIT uses its arguments to reset LASTPOS in

the same manner as the F, command. The form at
LASTPOS is then given to the LISP Editor. This
commands can often times save the user from the
trouble of calling EDITF and the -finding the
expression that he needs to edit.

9 — argl arg2 ... argN
This is a multi-purpose command. Its most

common use is to interrogate the value(s) of the
arguments of the broken function, (ARCS is also
useful for this purpose.) e.g. if FOG has three
arguments (X Y Z), then typing ?= to' a break of
FOG, will produce:

n:? =

X =

Y =

Z =

value of X

value of Y

value of Z

?= takes the rest of the teletype line as its
arguments. If the argument list to 1- is MIL, as
in the above case, it prints all of the arguments

at LASTPGS. If the user typesof the function

X (CAR Y)O =

he will see the value of X, and the value of (CAR
Y). The difference between' using ?= and typing X
and (CAR Y) directly into BREAKl is that ?=
evaluates its inputs as of LASTPOS. This provides
a way of examining variables or forms a_s of. a
particular point oh the stack. For example,

F (FGG FGG)

will allow the user to examine the value of X in an
earlier call to FGG.

?= also recognizes numbers as referring to the
correspondingly numbered argument. Thus

:F FIE

:?= 2

13

will print the name and value of the second
argument of FIE (providing FIE.is not compiled).

?= can also be used on BRKCOMSf in which case
the remainder of the list on BRKCOMS is treated as
the list of arguments. For example, if BRKCOMS is
((EVAL) (?= X (CAR Y)) GO)), BRKEXP will be

• evaluated, the values of. X and (CAR Y), printed, and
then the function exited with its value being
printed.

FROM?= [form]

FROM?= exits from the break by undoing the
special push down stack back to LASTPOS. If FORM
is NIL or missing, re-evaluation continues with the
form on the push down stack at LASTPOS. If FORM is
not. NIL, the function call on the push down stack
at LASTPOS is replaced by FORM and evaluation
continues with FORM. FORM is evaluated in the
context of LASTPOS. There is no way of recovering
the break because the push down stack has been
undone. FROM?= allows the user to, among other
things, return a particular value as the value of
any function call on the stack. To return 1 as the
value of the previous call to FOO:

EX

:F FOO

:FR0M?= 1

Since form is evaluated after it is placed on the
stack, a value of NIL can be returned by using
(QUOTE NIL).

EX exits from the break and re-evaluates the
form at LASTPOS. . EX is equivalent to FROM?= NIL.

1 . 14

Backtrace Commands

The backtrace commands print information about
function calls on the special push down list. The
information is printed in the reverse order that the calls
were made. All backtraces start at LASTPOS.

BKF

BKE

BK

BKF gives a backtrace of
functions that are still pending.

the names of

BKE gives a backtrace of the expressions which
called functions still pending (i.e. It prints the
function calls themselves instead of only the names
as in BKF).

BK gives
still pending.

full backtrace of all expressions

All of the backtrace commands may be suffixed by a 'V
and/or followed by an integer. If. the integer is included,
it specifies how many blocks are to be printed. The
limiting point of a block is a function call. This form is
useful when v/orking. on a Data Point. Using the integer
feature in conjunction with the F command, which moves
LASTPOS, the user can display any contiguous part of the
backtrace. If a 'V is included, variable bindings are
printed along with the expressions in the backtrace.

Example:

BKFV

BKV

would print the names and variable
bindings of the functions called before
LASTPOS.

would print everything (expressions and
variables) for 5 blocks before LASTPOS.

1 . 15

The output of the backtrace commands deserves some
explanation. Right circular lists are only printed up to
the point v/here they start repeating and are closed with

"• •] instead of a right parenthesis. Lists are only
3 depth of 2. /#/ Is a notation which

represents "the previous expression". For example, (SETQ
FIE (FOO)) v;ould appear;in a BK backtrace as

(FOO)
(SETQ FIE /#/)

1 . 16

Dreakrnacros

Whenever an atonic command is encountered by BREAKl
that it does not recognize* either via BRKCOMS or the
teletype* it searches (using ASSOC) the list BREAKMACROS to
see if the atom has been defined as a break macro. The

form of BREAKMACROS definitions is (... (atom ttylinel
ttyline2 ... ttylineN) ...). ATOM is the' command name.
ARCS is the argument(s) for the macro. The arguments of a
breakmacro are assigned values from the remainder of the
command line in which the macro is called. If ARCS is

atomic, it is assigned the remainder of the command line as
its value. If ARCS is a list* the elements of the rest of

the command line are assigned to the variables* in order.
If there are more variables in ARCS then items in the rest

of the command line* a value of NIL is filled in. Extra

items on the command line are ignored. The TTYLINEs are
the body of the breakmacro definition and are lists of
break commands or forms to be evaluated. If the atom is

defined as a macro* (i.e. is found on BREAKMACROS) BREAKl
assigns values to the variables in ARCS* substitutes' these
values for all occurrences of the variables in TTYLINEs and

appends the TTYLINEs to the front of BRKCOMS. When BREAKl
is ready to accept another command* if BRKCOMS is non-NIL
it takes the first element of BRKCOMS and processes it
exactly as if it had been a line input from the teletype.
This means that a macro name can be defined to expand to
any arbitrary collection of expressions that the user could
type in. If the command is not contained in BREAKMACROS,
it is treated as a function or variable as before.

Example: a command PARGS to print the arguments of the
function at LASTPOS could be defined by evaluating:

(NCONC BREAKMACROS (QUOTE ((PARGS NIL (?=)))))

A command FP which finds a place on the SPD stack and
prints the form there can be defined by:

(NCONC BREAKMACROS (QUOTE (FP X (F . X) ((PRINT (SPDLRT
LASTPOS))))))

17

BREAK PACKAGE

How To Set A Break

The following . functions are useful for setting and
unsetting breaks and traces.

Both BREAK and TRACE use a function BREAKO to do the
actu-il fication of Liuictlon definitions. When BREAKO
breaks a SUBR or an FSUBR, it prints a message of the form
('• ARGUMENT LIST?). The user should respond with a
list of arguments for the function being broken. (FSUBR's
take only one argument and BREAKO checks for this.) The
arguments on this list are actually bound during the calls
to the broken function and care should be taken to insure
that ^they do not conflict with free variables. For
LSUBR Sf the atom N? Is used as the argument. It is
possible to GRINDEF and edit functions that are traced or
broken. BRQKENFNS is a list of the functions currently
broken. TRACEDFNS is a list of the functions currently
traced.

BREAK

BREAK is an FEXPR.

breaks the function named
list in the form (fnl
occurrences of FNl which
very useful for breaking
many places, but where one is
from a specific function, e-g
FIE), etc. For each list not in this form, it assumes that
the CAR is a function to be broken; the CADR is the break
condition; (V7hen the fuction is called, the break condition
is evaluated. If it returns a non-NIL value, the break
occurs. Otherwise, the computation continues without a
break.) and the CDDR is a list of command lines to be
performed before an interactive break is made (see BRNHEN
and BRKCOMS of BREAKl). For example,

(BREAK FOOl (F002 (GREATERP N 5) (ARGS)))

For each atomic argument, it
each time it is called. For each
IN fn2), it breaks only those
appear in FN2. This feature is

a function that is called from
only interested in the call

(RPLACA IN FOO), (PRINT IN

v\;ill break

is greater
FOO 2.

all calls to FOOl and all calls
than 2 after first

on FOO2 when N

printing the arguments of

1 . l;

(BREAK ((F004 IN F005) (MINUSP X)))

will break all calls to F004 made from F005 when X is
negative.

Examples:
(BREAK FOO) .
(BREAK ((GET IN FOO) T (GO)))
(BREAK (SETQ (EQ N 1) ((PRINT (QUOTE N=l)))(?= M)))

TRACE

TRACE is an FEXPR. For each atomic argumentr it
traces the function named (see form on page 1.3) each time
it is called. For each list in the form (fnl IN fn2), it
traces only those calls to FNl that occur within FN2. For
each list argument not in this form, the CAR is the
function to be traced, and the CDR is a list of variables
(or forms) the user wishes to see in the trace.

For example, (TRACE (FOOl Y)
cause both FOOl and SETQ IN F003 to be traced,
argument will be printed and the value of Y will be
for FOOl.

TRACE uses the global variable #%INDENT to keep its
position on the line. The printing of output by TRACE is
printed using %PRINFN (see page 1.9). TRACE can therefore
be pretty printed by:

(SETQ %PRINFN (QUOTE PRETPRIN))
(DE PRETPRIN (FORM)

(SPRINT FORM (*PLUS 10){%INDENT)))

Examples: '
(TRACE FOO)
(TRACE *TIMES (SELECTQ IN DOIT))
(TRACE (EVAL IN FOO))
(TRACE (TRY M NX (*PLUS NM)))

(SETQ IN F003)) will

SETQ's
printed

Note: The user can always call BREAKO himself to
obtain combinations of options of BREAKl not directly
available with BREAK and TRACE (see section on BREAKO
below). These functions merely provide convenient ways of
calling BREAKO, and will serve for most uses.

1 . 19

BREAKIN

BREAKIN enables the user to insert a break, i.e., a
call to BREAKl, at a specified location in an interpreted
function. For example, if FOO calls FIE, inserting a break
in FOO before the call to FIE is similar to breaking FIE.
However, BREAKIN can be used to insert breaks before or
after prog labels, particular SETQ expressions, or even the
evaluation of a variable. This is because BREAKIN operates
by calling the editor and actually inserting a call to
BREAKl at a specified point inside of the function.

The user specifies v;here the break is to be inserted
by a secuence of editor commands. These commands are
preceded by BEFORE, AFTER, or AROUND, which BREAKIN uses to
determine what to do once the editor has found the
specified point, i.e., put the call to BREAKl BEFORE that
point, AFTER that point, or AROUND that point. For
example, (BEFORE COND) will insert a break before the first
occurrence of COND, (AFTER COND 2 1) will insert a break
after the predicate in the first COND clause, (AFTER BF
(SETQ X F)) after the last place X is set. Note that
(BEFORE TTY:), (AROUND TTY:) or (AFTER TTY:) permit the
user to type in commands to the editor, locate the correct
point, and verify it for himself using the P command, if he
desires. Upon exit from the editor with OK, the break is
inserted. (A STOP command typed to TTY: produces the same
effect as an unsuccessful edit command in the original
specification, e.g., (BEFORE CONDD). In both cases, the
editor aborts, and BREAKIN types (NOT FOUND).)

for BREAKIN BEFORE or AFTER, the break expression is
NIL, Since the value of the break is usually not of
interest. For BREAKIN AROUND, the break expression will be
the indicated form. VJhen in the break, the user can use
the EVAL command to evaluate that form, and see its value,
before allowing the computation to proceed. For example,
If the user inserted a break after a COND predicate, e.g.,
(AFTER (EQUAL X Y)), he would be powerless to alter the
flow fo computation if the predicate were not true, since
the break would not be reached. However, by breaking
(AROUND (EQUAL X Y)), he can evaluate the break expression,
i°e., (EQUAL X Y), see its value and evaluate something
else if he wished.

The message typed for a BREAKIN break identifies the
location of the break as well as the function, e.g.,

1 . 20

((FOO (AFTER COND 2 1)) BROKEN).

BREAKIN is an FEXPR which has a maximum of four

arguments. The first argument is the function to be broken
in. The second argument is a list of editor commands,
preceded by BEFORE, AFTER, or AROUND, which specifies the
location inside the function at which to break. If there
is no second argument, a value of (BEFORE TTY:) is assumed.
(See earlier discussion.) The' third and fourth arguments
are the break condition and the list of commands to be
performed before the interactive break occurs, (BRW'JHEN and
BRKCOHS for BREAKl) respectively. If there is no third
argument, a value of T is assumed for BRKWHEN vrhich causes
a break each time the BREAKIN break is executed. If the
fourth argument is missing, a value of NIL is assumed. For
example, '

(BREAKIN FOO (AROUND COND))

inserts a break around the first call to COND in FOO.

It is possible to insert multiple break points, with a
single call to BREAKIN by using a list of the form ((BEFORE
...) ... (AROUND ...)) as the second argument. It is also
possible to BREAK or TRACE a function which has been
modified by BREAKIN, and conversely to BREAKIN a function
which is broken or traced. UNBREAK restores functions
which have been broken in. CRINDEF makes no attempt to
correct the modification of BREAKIN so functions should be

unbroken before they are stored on disk.

Examples:
(BREAKIN
(BREAKIN

UNBREAK

FOO (AROUND •;

F002 (BEFORE
'TY:) T (?= M N)

SETQ) (EQ X Y))
((*PLUS X.Y))

UNBREAK is an FEXPR. It takes a list of functions
modified by BREAK or BREAKIN and restores them to their
original state. It's value is the list of functions that
v/ere "unbroken".

(UNBREAK T) v/ill unbreak the function most recently
broken.

(UNBREAK) will unbreak all of the functions currentlv

1.21

broken (i.e. all those on BROKENFNS).

If one of the functions is not broken, UNBREAK has a
value of (fn NOT BROKEN) for that function and no changes
are made to fn-

Note: If a function is both traced and broken in,
either UNTRACE or UNBREAK will restore the original
function definition.

UNTRACE

f

UNTRACE is an FEXPR. It takes a list of functions
modified by TRACE and restores them to their original
state. It s value is the list of functions that were
untraced".

(UNTRACE T) will unbreak the function most recentlv
traced.

(UNTRACE) v/ill untrace all of the functions currently
traced (i.e. all those on TRACEDFNS).

If one of the functions is not traced, UNTRACE has a
value of (fn NOT BROKEN) for that function and no changes
are made to fn.

1 . 22

.y

BREAKO [FN VJKEN COMS]

BREAKO is an EXPR. It sets up a break on the function
FN by redefining FN as a call to BREAKl v/ith BRKEXP a form
equivalent to the definition of FN, and WHEN, FN and COMS
as BRKWHEN, BRKFN, and BRKCOMS, respectively (see BREAKl).
BREAKO also adds 'FN to the front of the list BROKENFNS.
It's value is FN.

If FN is non-atomic and of the form (fnl IN fn2),
BREAKO first calls a function which changes the name of fnl
wherever it appears inside of fn2 to that of a new
function, fnl-IN-fn2, which is initially defined as fnl.
Then BREAKO proceeds to break on fnl-IN-fn2 exactly as
described above. This procedure is useful for breaking on
a function that is called from many places, but where one
is only interested in the call from a specific function',
e.g. (RPLACA IN FOO), (PRINT IN FIE), etc. This only works
in interpreted functions. If fnl is not found in fn2, '
BREAKO returns the value (fnl NOT FOUND IN fn2).

If FN is non-atomic and not of the above form, BREAKO
is called for each member of FN using the same values for
V7HEN and COMS specified in this call to BREAKO. This
distributivity permits the user to specify complicated
break conditions without excessive retyping, e.g.,

(BREAKO (QUOTE (FOOl ((PRINT PRIN1)IN (F002 F003))))
(QUOTE (EQ X T))
(QUOTE ((EVAL) (?= Y Z) OK)))

will break on FOOl, PRINT-IM-F002, PRINT-IN-F003,
PRIN1-IN-F002, and PRIN1-IN-F003.

If FN is non-atomic, the value of BREAKO is a list of
the individual values.

For example, BREAKO can be used to trace the changing
of particular values by SETQ in the following manner"

*(SETQ VARLIST (QUOTE (X Y FOO)))
*(BREAKO (QUOTE SETQ) (QUOTE (MEMO (CAR XXXX) VARLIST))
* (QUOTE ((TRACE) (?=)(UNTRACE))))
(SETQ ARGMENTS?)*(XXXX)

SETQ will be traced v/henever CAR of its argument (SETQ is
an FSUBR) is a member of VARLIST.

1 . 23

ERROR PACKAGE

Introduction

v;hen an error occurs during the evaluation of a LISP
expression, control is turned over .to the Error Package^
The I/O is forced to the TTY (channel NIL) but v;ill be
restored to its previous channels if the user continues the
evaluation. The idea behind the error package is that it
may be possible to 'patch up' the form in which the error
occurred and continue. Or, at least, that you can find the
cause of the error more easily if you can examine the state
of the world at the time of the error. Basically, what the
Error Package does is call BREAKl with BRKEXP set to the
form in which the error occurred. This puts the user 'in a
break' around the form in which the error occurred. BREAKl
acts^ just like the top level of the interpreter with some
added commands (see section on BREAKl). The main
difference when you are in the Error Package is that the
variable bindings that v/ere in effect when the error
occurred are still in effect. Furthermore, the expressions
that were in the process of evaluation are still pending.
While in the Error Package, variables may be examined or
changed, and functions may be defined or edited just as if
you were at the top level. In addition, there are several
ways in which you can abort or continue from the point of
error. In particular, if you can patch up the error, you
can continue by typing OK. If you can't patch the error, t
will get you out of the break. When you are in the error
package, the prompt character is ':' and is preceded by a
level number. Note: if you don't want the error package
invoked for- some reason, it can be turned off by evaluating
(*RSii,T NIL). Similarly, (*RSET T) will turn the error
package back on.

Commands

There are several atoms which will cause special
actions v/hen typed into BREAKl (the error package). These
actions are useful for examining the push down stack (e.g.
backtraces), changing forms and exiting from the break in
various ways. Table I (on the next page) gives a summary
of the actions. For a complete description, see the
section on 'What You Can Do In A Break'.

24

Table I

Break•Package Command Summary
(for complete description see pp. 1.8-1-16)

Action

Evaluates BRKEXP, prints its value#
and continues with this value

Same as GO but no print of value

Reevaluate BRKEXP and print its value-
Its value is bound to IVALUE

Evaluate xx and continue with its value

Escape one level of BREAKl

Escape to the top level

After an error, use expr for the erring atom

Continues by re-evaluating form at LASTPOS

Same as FROM?= MIL

Substitutes x for y in form at LASTPOS
(destructively)

Resets LASTPOS (stack context)

Resets LASTPOS and gives the form at LASTPOS
to the LISP Editor

. fN Evaluates forms fl as of LASTPOS

Prints arguments of the broken function

Backtrace Function Names

Backtrace Function Calls

Backtrace Expressions

Command

GO

OK

EVAL

RETURN XX

T

rr

> [->] expr

FROM?= form

EX

USE X FOR y

F [&] al»»aN

EDIT A1..An

?= fl

ARCS

3KF

BKE

BK

Note: All of the backtrace commands can be combined with a
'V or followed by an integer. The 'V will cause the
values of variables to be printed. The integer will limit

25

the trace to that number of blocks. For example, BK
BKEV, BKFV 5 and BKEV are all legitimate commands.

26

The LISP Editor

Contents

2 CURRENT EXPRESSION, P, &, PP, EDIT CHAIN, 0, tf
5 (n), (n el, em), (-n el, em), N, F, R, NX, RI,

10 UNDO, BK, BE, \, \P, &, —, @ (AT-SIGN),
13 UP, B, A, DELETE, MBD, XTR, UP, n, -n,
18 0, !0, t. NX, BK, (NX n), (BK.n), !NX, (NTH n),
22 PATTERN MATCH, &, *ANY*, ==,
24 SEARCH ALGORITHM, MAXLEVEL, UNFIND, F, (F pat n),
27 (F pat T), (F pat N), (F pat), FS, F.= , ORE, BE, (BE pat T)
30 LOCATION SPECIFICATION, IF, ##, $, LC, LCL, SECOND, THIRD,
32 (<- pat), BELOW, NEX, (NTH $), MARK, <?-, 4^, \, UNFIND,

(n), (n el, em), (-n el, em), N,
41 B, A, :, DELETE, INSERT, REPLACE, DELETE, ##, UPFINDFLG,
46 XTR, EXTRACT, MBD, EMBED, MOVE, BI, BO, LI, LO, RI, RO,
57 THRU, TO, R, SW, P, ?, E, I, ##, COMS, COMSQ,
66 IF, LP, LPQ, ORR, MACROS, M, BIND, USERMACROS,
71 NIL, TTYs, OK, STOP, SAVE, REPACK, MAKEFN,
76 UNDO, TEST, ??, (UNDO, UNBLOCK, EDITDEFAULT, EDITL,
81 EDITF, EDITE, EDITV, EDITP, EDITFNS, EDIT4E,
84 EDITFPAT, SDITFINDP

The LISP editor allows rapid, convenient modification
of list structuresc Most often it is used to edit function
definitions, (often while the function itself is running)
via the function EDITF, e.g., (EDITF F00)o However, the
editor can also be used to edit the value of a variable, via
EDITV, to edit special properties of an atom, via EDITP, or
to edit an arbitrary expression, via EDITEo It is an
important feature which allows good on-line interaction in
the UCI LISP system.

This chapter begins with a lengthy introduction
intended for the new user. The reference portion begins on
page 15.

2 . 1

Introduction

Let us introduce some of the basic editor commands, and
give a flavor for the editor's language structure by guiding
the reader through a hypothetical editing session- Suppose
we are editing the following incorrect definition of APPEND

(LAMBDA(X)
Y

(COND ((NUL X) Z)
(T (CONS (CAR) (APPEND (CDR X Y),)))))

We call the editor via the function EDITF:

#(EDITF APPEND)
EDIT

#

The editor responds by typing EDIT followed by #, which is
the editor's ready character, i.e., it signifies that the
editor is ready to accept commands. (In other words, all
lines beginning with # were typed by the user, the rest by
the editor.)

At any given moment, the editor's attention is centered
on some substructure of the expression being edited. This
substructure is called the current expression. and it is
what the user sees when he gives the editor the command P,
for print. Initially, the current expression is the top
level one, i.e., the entire expression being edited. Thus?

#P
(LAMBDA (X) Y
#

(COND & &))

Note that the editor prints the current expression,
using PRINTLEV, to a depth of 2, i.e., sublists of sublists
are printed as &. The command ? Will print the current
expression as though PRINTLEV was given a depth of 100.

#?
(LAMBDA (X)

X Y))))))
#

Y (COND ((NUL X) Z) (T (CONS (CAR) (APPEND (CDR

and the command PP

current expression.
(for PrettyPrint) will GRINDEF the

2 . 2

A positive integer is interpreted by the editor as a
command to descend into the correspondingly numbered element
of the current expression. Thus:

#2

#P
(X)

#

A negative integer has a similar effect? but counting
begins from the end of the current expression and proceeds
backward? i.e.? -1 refers to the last element in the
expression? -2 the next to the last? etc. For either
positive integer or negative integer? if there is no such
element? an error occurs. 'Editor errors' are not the same
as 'LISP errors' ? i.e.? they never cause breaks or even go
through the error machinery but are direct calls to ERR
indicating that a command is in some way faulty- What
happens next depends on the context in which the command was
being executed. For example? there are conditional commands
which branch on errors. In most situations? though? an
error will cause the editor to type the faulty command
followed by a ? And wait for more input. In this case? the
editor types the faulty command followed by a ?? and then
another #« The current expression is never changed when a
command causes an error, thus:

#P
(X)
#2
2 ?

#1
#P
X

#

A phrase of the form 'the current expression is
changed' or 'the current expression becomes' refers to a
shift in the editor's ATTENTION? not to a modification of
the structure being edited.

When the user changes the current expression by
descending into it? the old current expression is not lost.
Instead? the editor actually operates by maintaining a chain
of expressions leading to the current one. The current
expression is simply the last link in the chain. Descending
adds the indicated subexpression onto the end of the chain?
thereby making it be the current expression. The command 0

2 . 3

is used to ascend the chain; it removes the last link of the

chain» thereby making the previous link be the current
expression. Thus:

#P
X

#0 P
(X)
#0-1 P
(COND (& Z) (T &))

Note the use of several commands on a single line in the
previous output. The editor operates in a line buffered
mode. Thus no command is actually seen by the editor» or
executed until the line is terminated? either by a carriage
return? or an escape (alt-mode).

In our editing session? we will make the following
corrections to APPEND: delete Y from where it appears? add Y
to the end of the argument list? (These two operations could
be thought of as one operation? i.e.? move Y from its
current position to a new position? and in fact there is a
MOVE command in the editor. However? for the purposes of
this introduction? we will confine ourselves to the simpler
edit commands.) change NUL to NULL? change Z to Y? add X
after CAR? and insert a right parenthesis following CDR X.

First we will delete Y. By now we have forgotten where
we are in the function definition? but we want to be at the
"top?" so we use the command t? which ascends through the
entire chain of expressions to the top level expression?
which then becomes the current expression? i.e.? t removes
all links except the first one.

#t P
(LAMBDA (X) Y (COND & &))
#

Note that if we are

effect? i.e.? it is a NOP

error. In other words, t
means "ascend one link."

already at the top? T has no
However? 0 would generate an

means "go to the top?" while 0

2 . 4

The basic structure modification commands in the editor
are

(n)

(n.el# o e o #em)

{~n elf««»#em)

Thus:

n>l deletes the corresponding
element from the current expression.

n»m^l replaces the nth element in
the current expression with
el#,.». # em.

n#m^l inserts el#...»em before the
nth element in the current
expression.

#P
(LAMBDA (X) Y (COND & &))
#(3)

#(2 (X Y))
#P
(LAMBDA (X Y) (COND & &))
#

All structure modification done .by the editor is
destructive# i.e.. the editor uses RPLACA and RPLACD to
Physically change the structure it was given. Note that all
three of the above commands perform their operation with
respect to the nth element from the front of the current
expression; the sign of n is used to specify whether the
operation is replacement or insertion. Thus# there is no
way to specify deletion or replacement of the nth element
from the end of the current expression# or insertion before
the nth element from the end without counting out that
element's position from the front of the list. Similarly#
because we cannot specify insertion after a particular
element# we cannot attach something at the end of the
current expression using the above commands. Instead# we
use the command N (for NCONC). Thus we could have performed
the above changes instead by2

2 . 5

#p
(LAMBDA (X) Y (COND & &))
#(3)
#2 (N Y)
#P
(X Y)

#t P
#(LAMBDA (X Y) (GOND & &))

Now we are ready to change NUL to NULL. Rather than
specify the sequence of descent commands necessary to reach
NULL, and then replace it with NULL, i.e., 3 2 1 (1 NULL),
we will use F, the find command, to-find NULL:

#P
(LAMBDA (X Y) (COND & &))
#F NUL

#P
(NUL X)
#(1 NULL)
#0 P

((NULL X) Z)
#

Note that F is special in that it corresponds to TWO
inputs. In other words, F says to the editor, "treat your
next command as an expression to be searched for." The
search is carried out in printout order in the current
expression. If the target expression is not found there, F
automatically ascends and searches those portions of the
higher expressions that would appear after (in a printout)
the current expression. If the search is successful, the
new cur;rent expression will be the structure v^rhere the
expression was found, (If the search is for an atom, e.g., F
NUL, the current expression will be the structure containing
the atom. If the search is for a list, e.g., F (NUL X), the
current expression will be the list itself.) and the chain
will be the same as one resulting from the appropriate
sequence of ascent and descent commands. If the search is
not successful, an error occurs, and neither the current
expression nor the chain is changed: (f is never a NOP,
i.e., if successful, the current expression after the search
will never be the same as the current expression before the
search. Thus F EXPR repeated without intervening commands
that change the edit chain can be used to find successive
instances of EXPR.)

2 . 6

#p
{(NULL, :f) Z)
#F COND P

COND ?

#P
#((NULL ,X) ,Z)
#

Here the search failed to find a COND following the
current expression^ although of course a C0^7D does appear
earlier in the structure. This last example illustrates
another facet of the error recovery mechanism: to avoid
further confusion when an error occurs, all commands on the
line heyon<3 the one which caused the error (and all commands
that may have been typed ahead while the editor was
computing) are forgotten.

We could also have used the R command (for Replace) to
change NUL to NULL. A command of the form (R el e2) will
replace all occurrances of el in the current expression by
e2. There must be at least one such occurrence or the R
command will^generate an error. Let us use the R command to
change all Z's (even though there is only one) in APPEND to
Y:

#T (R Z Y)
#F Z

Z ?

#PP
(LAMBDA(X Y)

(COND ((NULL X) Y)
(T (CONS (CAR) (APPEND (CDR X Y))))))

#

The next task is to change (CAR) to (CAR X). VJe could
do this by (R (CAR) (CAR x)), or by:

#F CAR

#(N X)
#P
(CAR X)
#

The expression we now want to change is the next
expression after the current expression, i.e., we are

currently looking at (CAR X) in (CONS (CAR X) (APPEND (COR X
Y))). We could get to the APPEND expression by typing 0 and
then 3 or -1, or we can use the command NX, which does both
operations:

#P
(CAR X)
#NX P

(APPEND (CDR X Y))
#

Finally, to change (APPEND (CDR X Y)) to (APPEND (CDR
X) Y), we could perform (2 (CDR X) Y), or (2 (CDR X)) and (N
Y), or 2 and (3), deleting the Y, and then 0 (NY).
However, if Y were a complex expression we would not want to
have to retype it. Instead, we could use a command which
effectively inserts and/or removes left and right
parentheses. There are six of these BI, BO, LI, LO, RI, and
RO, for Both In, Both Out, Left In, Left Out, Right In, and
Right Out. Of course, we will always have the same number
of left parentheses as right parentheses, because the
parentheses .are just a notational guide to structure that is
provided by our print program. (Herein lies one of the
principal advantages of a LISP oriented editor over a text
editor: unbalanced parentheses errors are not possible.)
Thus, left in, left out, right in, and right out actually do
not insert or remove just one parenthesis, but this is very
suggestive of what actually happens.

In this case, we would like a right parenthesis to
appear following X in (CDR X Y). Therefore, we use the
command (RI 2 2), which means insert a right parentheses
after the second element in the second element (of the
current expression):

#P
(APPEND (CDR X Y))
#(RI 2 2)

#P
(APPEND (CDR X) Y)
#

We have now finished our editing, and can exit from the
editor, to test APPEND, or we could test it while still
inside of the editor, by using the E command:

#E (APPEND (QUOTE (A B)) (QUOTE (C D E)))
(ABODE)

2 .

E VAL.

The E command causes the next input to be given to

We GRINDEF APPEND, and leave the editor..

#PP
(LAMBDA(X Y)

(COND ((NULL X) Y) •
(T (CONS (CAR X) (APPEND (CDR X) Y)))))

#0K
APPEND '
*

2 . 9

Commands for the New User

This manual is intended primarily as a reference
manual, and the remainder of this chapter is organized and
presented accordingly- VJhile the commands introduced in the
previous scenario constitute a complete set, i-e-, the user
could perform any and all editing operations using just
those commands, there are many situations in which knowing
the right command(s) can save the user considerable effort.
V7e include here as part of the introduction a list of those
commands which are not only frequently applicable but also
easy to use- They are not presented in any particular
order, and are all discussed in detail in the reference
portion of the chapter.

UNDO

BK

BF

\

Undoes the last modification to the

structure being edited, e.g., if the
user deletes the wrong element, UNDO
will restore it. The availability
of UNDO should give the user
confidence to experiment with any
and all editing commands, no matter
how complex, because he can always
reverse the effect of the command.

Like NX, except makes the expression
immediately before the current
expression become current.

Backv/ards Find. Like
searches backwards, i.e.,
print order.

F, except
in inverse

Restores the current expression to
the expression before the last "big
jump", e.g., a find command, an
or another \. For example, if the
user types F COND, and then F CAR, \
would take him back to the COND.
Another \ would take him back to the
CAR.

2 . 10

\p

Like \ except it restores the edit
chain to its state as of the last
print, either by P, ?, or PP. If
the edit chain has not been changed
since the last print, \P restores it
to its state as of the printing
before that one, i.e., two chains
are always saved.

Thus if the user types P followed by 3 2 1 P, \P will
take him back to the first P? i.e., would be equivalent to 0
0 0. Another \P would then take him back to the second P,
i.e., he can use \P to flip back and forth between two
current expressions.

The search expression given to the F
or BF command need not be a literal

S-expression. Instead, it can be a
pattern. The symbol & can be used
anywhere within this pattern to
match with any single element of a
list, and -- can be used to match
with any segment of a list. Thus,
in the incorrect ~ definition of
APPEND used earlier, F (NUL &) could
have been used to find (NUL X) , and
F (CDR --) or F (CDR & &), but not F
(CDR &), to find (CDR X Y).

Note that & and -- can be nested arbitrarily deeply in
the pattern. For example, if there are many places where
the varaible X is set, F SSTQ may not find the desired
expression, nor may F (SETQ X &). It may be necessary to use
F (SETQ X (LIST)). However, the usual technique in such a
case is to pick out a unique atom which occurs prior to the
desired expression and perform tv;o F commands. This "homing
in'° process seems to be more convenient than ultra-precise
specification of the pattern.

11

@ (at-sign)
Any atom ending in 0 (at-sign) in a
pattern will match with the first
atom or string that contains the
same initial characterso For
example, F VER0 will find
VERYLONGATOM• 0 can be nested inside
of the pattern, e.g., F (SETQ VER0
(CONS --))o
If the search is successful, the
editor will print = followed by the
atom which matched with the 0-atom,
G o ^ f

#F (SETQ VER0 &)
=VERYLONGATOM

Frequently the user will want to replace the entire
current expression or insert something before it<. In order
to do this using a command of the form (n el,»«o,Gm) or (-n
el,=..,em), the user must be above the current expression.
In other words, he would have to perform a 0 followed by a
command with the appropriate number. However, if he has
reached the current expression via an F command, he may not
know what that number is. In this case, the user would like
a command whose effect would be to modify the edit chain so
that the current expression became the first element in a
new, higher current expression. Then he could perform the
desired operation via (1 el,...,em) or (-1 el,...,em). UP
is provided for this purpose.

12

UP

(B el,.o.,em)

(A el;®ooj0rn)

After UP operates, the old current
expression is the first element of
the new current expression= Note
that if the current expression
happens to be the first element in
the next higher expression, then UP
is exactly the same as 0.
Otherwise, UP modifies the edit
chain so that the new current
expression is a tail (Throughout
this^ chapter 'tail' means 'proper
tail') of the next higher
expression:

#F APPEND

(APPEND (CDR X) Y)
#UP P

-o » (APPEND & Y))
#0 P

(CONS (CAR X) (APPEND & Y))
#

The ... is used by the editor to
indicate that the current expression
is a tail of the next higher
expression as opposed to being an
element (i.e., a member) of the next
higher expression. Note: if the
current expression is aIreadv a
tail, UP has no effect.

Inserts el,...,em before the current
expression, i.e., does an UP and
then a -1.

Inserts el,...,em after the current
expression, i.e., does an UP and
then either a (-2 el,...,em) or an
(N el,...,em), if the current
expression is the last one in the
next higher expression.

13

(" Gm)

DELETE

Replaces
el»o = • fGiTij
a (1 elf*o

current expression by
i.e., does an UP and then

.tem)•

Deletes current expression, i.e.,
equivalent to (:)•

Earlier, we introduced the RI command in the APPEND
example. The rest of the commands in this family:, BI, RO,
LI,- LO, and RO, perform similar functions and are useful in
certain situations. In addition, the commands MBD and XTR
can be used to combine the effects of several commands of
the BI-BO family. MBD is used to embed the current
expression in a larger expression. For example, if the
current expression is (PRINT bigexpression) , and the user-
wants to replace it by (COND (FLG (PRINT bigexpression))),
he can acomplish this by (LI 1), (-1 FLG), (LI 1), and (-1
COND), or by a single MBD command.

XTR is used to extract an expression from the current
expression. For example, extracting the PRINT expression
from the above COND could be accomplished by (1), (LO 1),
and (LO 1) or by a single XTR command. The new user is
encouraged to include XTR and MBD in his repertoire as soon
as he is familiar with the more basic commands.

2.14

Attention Chanaina Commands

Cornmands to the editor fall into three classes?
commands that change the current expression (ioe.,, change
the edit chain) thereby "shifting the editor's attention*"
commands that modify the structure being edited* and
miscellaneous commands* e<.g», exiting from the editor*
printing* evaluating expressions«

within the context of commands that shift the editor's
attention* we can distinguish among (1) those commands whose
operation depends only on the structure of the edit chain,
e»g», 0* UP* NX; (2) those which depend on the contents of
the structure* ioOo* commands that search; and (3) those
commands which simply restore the edit chain to some
previous state* e.g., \, \p. (i) and (2) can also be
thought of as local* small steps versus open ended* big
jumps. Commands of type (1) are discussed on pp.

PP" 2.22-2.35; and type (3) on pp.
^ooo""2o3/o

2 . 15

Local—Attention-Chanqincr Commands

UP

(1) If a P command would cause the
editor to type ... before typing
the current expression/ i.e./ the
current expression is a tail of the
next higher expression, UP has no
effect; otherwise
(2) UP modifies the edit chain so
that the old current expression
(i»e., the one at the time UP was
called) is the first element in the
new current expression. (If the
current expression is the first
element in the next higher
expression UP simply does a 0.
Otherwise UP adds the corresponding
tail to the edit chain.

/ current expression in each case is (COND((NULL X) (RETURN Y))).

1° #1 P
COND

#UP P

(COND (& &))

2. #-l P

((NULL X) (RETURN Y))
#UP P

... ((NULL X) (RETURN Y)))
#UP P

((NULL X) (RETURN Y)))

3. #F NULL P
(NULL X)
#UP P

((NULL X) (RETURN Y))
#UP P

... ((NULL X) (RETURN Y)))

The execution of UP is straightforward, except in those
cases where the current expression appears more than once in
the next higher expression. For example, if the current
expression is (A NIL B NIL C NIL) and the user performs 4
followed oy UP, the current expression should then be ...
NIL C NIL.) UP can determine which tail is the correct one

16

because the commands that descend save the last tail on an
internal editor variable, LASTAIL. Thus after the 4 command
is executed, LASTAIL is (NIL G NIL). VJhen UP is called, it
first determines if the current expression is a tail of the
next higher expression. If it is, UP is finished.
Otherwise, UP oomputes
(MEMB current-expression next-higher-expression) to /obtain a
tail beginning v;ith the current expression." (The current
expression should always be either a tail or an element 'of
the next^ higher expression. If it is neither, for example
the user has directly (and incorrectly) manipulated the edit
chain, UP generates an error.) If there are no other
instances of the current-expression in the next higher
expression, this tail is the correct one. Otherwise UP uses
LASTAIL to select the correct tail. (Occasionally the user
can- get the edit chain into a state where LASTAIL cannot
resolve the ambiguity, for example if therb were two
non-atomic structures in the same expression that were EQ,
and the user descended more than one level into one of them
and then tried to come back out using UP. In this case, UP
selects the first tail and prints LOCATION UNCERTAIN to warn
tne user. Of course, we could have solved this problem
completely in our implementation by saving at each descent
Mth elements and tails. However, this would be a costly
solution to a situation that arises infrequently, and when
it does, has no detrimental effects. The LASTAIL solution
is cheap and resolves 99% of the ambiguities.

n (n>0)

-n (n>0)

Adds the nth element of the current
expression to the front of the edit
chain, thereby making it be the new
current expression. Sets LASTAIL
for use by UP. Generates an error
if the current expression is not a
list that contains at least n
elements.

Adds the nth element from the end of
the current expression to the front
of the edit chain, thereby making it
be the new current expression. Sets
LASTAIL for use by UP. Generates an
error if the current expression is
not a list that contains at least n
elements.

17

Sets edit chain to CDR of edit
chain, thereby making the next
higher expression be the new correct
expression* Generates an error if
there is no higher expression, i.e.,
CDR of edit chain is NIL.

Note that 0 usually corresponds to going back to the next
higher left parenthesis, but not always. For example, if
the current expression is (A B C D E F G), and the user
performs

• UP P

• . . C D E F G)
#3 UP P

. . . E F.G)
#0 P

• • • C D E F G)

If the intention is to go back to the next higher left
parenthesis, regardless of any intervening tails, the
command !0 can be used. (!0 is pronounced bang-zero.)

!0

Does repeated O's until it reaches a
point where the current expression
is npt a tail of the next higher
expression, i.e., always goes back
to the next higher left parenthesis.

Sets edit chain to LAST of edit
chain, thereby making the top level
expression be the current
expression. Never generates an
error.

2 . 18

NX

BK

Effectively does an UP followed by a
21 (Both NX and EX operate by
performing a SO followed by an
appropriate number^ i^e. There
won't be an extra tail above the nev;
current expression? as there would
be if NX operated by performing an
UP followed by a 2o) thereby making

expression be the next
Generates an error if

expression is the last
listo (However? !NX

the current

expression^

the current

one in a

described

case«)
below will handle this

Makes the current expression be the
previous expression in the next
higher expression.. Generates an
error if the current expression is
the first expression in a list»

For example?
(RETURN Y)))

if the current expression is (COND ((MULL X)

#F RETURN P
(RETURN Y)
#BK P

(NULL X)

(NX n) n>0

(BK n) n>0

Equivalent to n NX commands? except
if an error occurs, the edit chain
is not changedo

Equivalent to n BK commands, except
if an error occurs, the edit chain
is not changed^

Notes (NX -n) is equivalent to (BK n), and vice versa.

2 » 19

iNX

Makes current expression be the next
expression/at a higher level? i.e»,
goes through any number of right
parentheses to get to the next
expression.

For example!

#PP

(PROG (UP)
(SETQ
(COND

UP L)
LP (COND ((NULL (SETQ L (CDR L))) (ERR NIL))

((NULL (CDR (MEMQ# (CAR L) (CADR L))))
(GO LP)))

(EDITCOM (QUOTE NX))
(SETQ UNPIND UP)
(RETURN D)

#P CDR P
(CDR L)
#NX

NX ?

#!NX P
(ERR NIL)
SNX P

((NULL &) (GO LP))
#!NX P

(EDITCOM (QUOTE NX))
#

INX operates by doing O's until it reaches a stage
where the current expression is not the last
the next higher expression, and then does
always goes through at least one
parenthesis, and the new current expression is always on a
different level, i.e., INX and NX always
results. For example using the

2 . 20

expression in
a NX. Thus INX

unmatched right

produce different
previous current expression:

#F CAR P

(CAR L)
#!NX^P
(GO LP)

#\P P
(CAR L)
#NX P

(CADR L)
#

(NTH n) n>0

Equivalent to n followed by UP,
i»G., causes the list starting with
the nth element of the current
expression^ ((NTH 1) is a NOP.)
Causes an error if current
expression does not have at least n
elements.

A generalized form of NTH using location specifications is
described on page 2.34.

2 . 21

Coinmands That Search

All of the editor commands that search use the same
pattern matching routine- (This routine is available to the
user directly, and is described later in this chapter in the
section on "Editor Functions-") We will therefore begin our

of searching by describing the pattern match
A pattern PAT matches with X if

discussion

mechani sm-

1.

2o

3.

4-

PAT

PAT

PAT

If

is EQ to X.

is & -

i s a number and EQUAL
(CAR pat) is the atom

to X.

ANY, (CDR pat) is a
list of patterns, and PAT matches X if and only
if one of the patterns on (CDR pat) matches X-
If PAT is a literal atom or string, and (NTHCHAR
pat -1) is then PAT matches with any literal
atom or string which has the same initial
characters as PAT, e«g- VER@ matches with
VERYLONGATOM, as well as "VERYLONGSTRING"-
If (CAR pat) is the atom PAT matches X if

A- (CDR pat)=NIL,
G-g-, (A ')
(A . B)

In other words,
a list-

B. (CDR pat) matches with some tail of X,
e-g- (A — (&)) will match with (A B
C (D)), but not (A B C D), or (ABC
(D) E)» However, note that (A — (&)
--) will match with (ABC (D) E)-

In other words, -- will match any
interior segment of a list.

If (CAR pat) is the atom = = , PAT matches X if
and only if (CDR pat) is EQ to X- (This pattern
is for use by programs that call the editor as a
subroutine, since any non-atomic expression in a
command type in by the user obviously cannot be
EQ to existing structure-)
Otherwise if X is a list, PAT matches X if (CAR
pat) matches (CAR x), and (CDR pat) matches (CDR
x) -

i-G- PAT —("*"•),

matches (A) (A B C) and

— can match any tail of

VJhen searching, the pattern matching routine is called
only to match with elements in the structure, unless the
pattern begins with s::, in which case CDR of the pattern is
matched against tails in the structure. (In this case, the
tail does not have to be a proper tail, e°g. (;;: a --)

22

will match with the element (A B C) as well as with CDR of
(X A B C), since (A B C) is a tail of (A B C).) Thus if the
current expressiion is (A- B C (B C)),

#F (B --)
#P
(B C)
#0

#P

B --)

#F

#P
(B C)
#

F (;

B C
/ ® • ©
I • • •

(B O)
B —)

23

Search Algorithm

Searching begins with the current expression and
proceeds in print order. Searching usually means find the
next instance of this patternf and consequently a match is
not attempted that would leave the edit chain unchanged.
(However» there is a version of the find command which can
succeed and leave the current expression unchanged.) At each
step, the pattern is matched against the next element in the
expression currently being searched, unless the pattern
begins with ::: in which case it is matched against the
corresponding tail of the expression. (EQ pattern
tail-of-expression)=T also indicates a successful match, so
that a search for FOO will find the FOO in (FIE . FOO) .
The only exception to this occurs when PATTERN=NIL, e.g., F
NIL. In this case, the pattern will not match with a null
tail (since most lists end in NIL) but will match with a NIL
element.

If the match is not successful, the search operation is
recursive first in the CAR direction and then in the CDR
direction, i.e., if the element under examination is a list,
the search descends into that list before attempting to
match with other elements (or tails) at the same level.
(There is also a version of the find command which only
attempts matches at the top level of the current expression,
i.e., does not descend into elements, or ascend to higher
expressions.)

However, at no point is the total recursive depth of
the search (sum of number of CARs and CDRs descended into)
allowed to exceed the value of the variable MAXLEVEL. At
that point, the search of that element or tail is abandoned,
exactly as though the element or tail had been completely
searched without finding a match, and the search continues
with the next element or tail for which the recursive depth
is belov; MAXLEVEL. This feature is designed to enable the
user to search circular list structures (by setting MAXLEVEL
small), as well as protecting him from accidentally
encountering a circular list structure in the course of
normal editing. MAXLEVEL is initially set to 300. If a
successful match is not found in the current expression, the
search automatically ascends to the next higher expression,
and continues searching there on the next expression after
the expression it just finished searching. If there is
none, it ascends again, etc. This process continues until
the entire edit chain has been searched, at which point the
search fails, and an error is generated. If the search

24

fails the edit

performed.)
chain is not changed (nor are any CONSes

If the search is successful; i.e.; an expression is
found that the pattern matches, the edit chain is set to the
value it would have had had the user reached that expression
via a sequence of integer commands.

If the expression that matched was a list, it will be
the final link in the edit chain, i.e., the new current
expression. If the expression that matched is not a list,
e.g., is an atom, the current expression will be the tail
beginning with that atom, (Except for situations where match
is with Y in (X . Y), Y atomic and not NIL. In this case,
the current expression will be (X . Y).) i.e., that atom
will be the first element in the new current expression. In
other words, the search effectively does an UP. (Unless
UPFINDFLG=NIL (initially set to T). For discussion,
page 2.45).

see

25

Search Commrinds

set UNFiND'tor'"'us?Tr\%p°'°2
qj-. , . \ 'P" ^o36), And do not chanae t-ho

aborted?'" perform any CONSes if they are unsuccessful or
F pattern

Thus if the
{--(GO LPl))) .
label, not the LPl
the latter appears
expression. Note
current expression)
LPl.

(F pattern N)

i =eo, two commands: the F informs
the editor that the next command is
to be interpreted as a pattern^
This is the most common and useful
form of the find command. if
successful, the edit chain always
changes, i.e., F pattern means find
the next instance of PATTERN.

If (MEMB pattern current-expression)
IS true, F does not proceed with a
full recursive search.

If the value of the MEMB
invokes the search
described earlier.

is NIL, F

algorithm

current expression were (PROG NIL LP (COND
. LPl =..), F LPl would find the prog

inside of the GO expression, even though
first (in print order) in the current

that 1 (making the atom PROG be the
followed by F LPl would find the first

Same

next

MEMB check

performed.

as F pfsttern, i.e., finds the
instance of pattern, except the

of F pattern is not

26

(F pattern T)

Similar to F patternf
succeed without changing
and does not perform the

except may
edit chain,
MEMB checko

Thus if the current expression is (COND F COND
will look for the next COND, but (F COND T) will 'stay
here'.

(F pattern n) n>0

(F pattern) or
(F pattern NIL)

Finds the nth place that pattern
matches.,. Equivailent to (F pattern
T) followed by (F pattern N)
repeated n-1 times. Each time
PATTERN successfully matches, n is
decremented by 1, and the search
continues, until n reaches 0. Note
that the pattern does not have to
match with n identical expressions;
it just has to match N times. Thus
if the current expression is (FOOl
F002 F003), (F F00@ 3) will find
F00 3.

If the pattern does not match
successfully N times, an error is
generated and the edit chain is
unchanged (even if the PATTERN
matched n-1 times).

Only matches with elements at the
top level of the current expression,
i.e., the search will not descend
into the current expression, nor
will it go outside of the current
expression. May succeed without
changing edit chain.

For example, if the current expression
(PROG NIL (SETQ X (COND & &)) (COND &) ...)
F (COND --) will find the COND inside the
(COND —)) will find the top level COND,
one.

IS

SETQ,
i.e.,

whereas (F
the second

2 . 27

(FS pattern[i:

(F= expression x)

(ORF pattern[1] .

BF pattern

pattern[n])
Equivalent to
by F pattern[2] .».
pattern n, so that if F pattern m
fails, edit chain is left at place
pattern m-l matched.

F pattern[l] followed
followed by F

Equivalent to (F (== .
x) , i.e., searches for
EQ to expression, see p.

Expression)
a structure

2. 22.

pattern[n])
Equivalent to (F (*ANY*
... pattern[n]) N), i.e.
for an expression that is matched by
either pattern[1] or ...
pattern[n]. See p. 2.22.

pattern[1]
, searches

Backwards Find. Searches in reverse
print order, beginning with
expression immediately before the
current expression (unless the
current expression is the top level
expression, in which case BF
searches the entire expression, in
reverse order.)

BF uses the same pattern match
routine as F, and MAXLEVEL and
UPFINDFLG have the same effect, but
the searching begins at the end of
each list, and descends into each
element before attempting to match
that element. If unsuccessful, the
search continues with the next
previous element, etc., until the

front of the list is reached, at
which point BF ascends and backs up,
etc.

For example, if the current expression is
(PROG NIL (SETQ X (SETQ Y (LIST Z))) (COND ((SETQ W --) —))
F LIST followed by BF SETQ will leave the current
expression as (SETQ Y (LIST Z)), as will F COND followed by
BF SETQ

2 . 28

(BF pattern T)

Search always includes current
expression, i.e., starts at end of
current expression and works
backward, then ascends and backs up,
etc.

Thus in the previous example, where F COND followed by
BF SETQ found (SETQ Y (LIST Z)), F COND followed by (BF SETQ
T) would find the (SETQ W ~) expression.

(BF pattern)
(BF pattern NIL)

Same as BF pattern.

29

Location Specification

Many of the more sophisticated commands described later
in this chapter use a more general method of specifying
position called a LOCATION SPECIFICATION. A LOCATION
SPECIFICATION is a list of edit commands that are executed
in the normal fashion with two exceptions. First, all
commands not recognized by the editor are interpreted as
though they had been preceded by F. (Normally such commands
would cause errors.) For example, the location specification
(COND 2 3) specifies the 3fd element in the first clause of
the next COND. (Note that the user could always write (F
COND 2 3) for (COND 2 3) if he were not sure whether or not
COND was the name of an atomic command.)

Secondly, if an error occurs while evaluating one of
the commands in the location specification, and the edit
chain had been changed, i.e., was not the same as it was at
the beginning of that execution of the location
specification, the location operation will continue. In
other words, the location operation keeps going unless it
reaches a state where it detects
which point it gives up. Thus,
located, and the first clause of
only two elements, the execution
cause an error. The search would
for the next COND. However, if a
there were no further CONDs, then
would cause the error; the
changed, and so the entire
and cause an error.

that it is 'looping', at
if (COND 2 3) is being
the next COND contained
of the command 3 would
then continue by looking
point were reached where
the first command, COND,

edit chain would not have been
location operation would fail.

The IF command
using in location
applied to elements
will be described in

examples ilustrating

and the ## function provide a way of
specifications arbitrary predicates

in the current expression. IF and ##
detail later in the chapter, along with
their use in location specifications.

Throughout this chapter, the meta-symbol $ is used to
denote a location specification. Thus $ is a list of
commands interpreted as described above. $ Can also be
atomic, in which case it is interpreted as (LIST $).

2 . 30

(,LC o $)

(LCL . $)

(SECOND . $)

(THIRD . $)

Provides a way of
invoking . the location
e.g. (LC COND 2 3) will
search described above.

explicitly
operation,

perform the

Same as LC except search is confined
to current expression/ i.e./ the
edit chain is rebound during the
search so it looks as if the editor
were called on just the current
expression. For example/ to find a
COND containing a RETURN/ one might
use the location specification (COND
(LCL RETURN) \) where the \ would
reverse the effects of the LCL
command/ and make the final current
expression be the COND.

Same as (LC . $) Followed by
another (LCv . $) Except that if
the first succeeds and second failS/
no change is made to the edit chain.

Similar to second.

31

(<- pattern)

For examples

#PP
(PROG NIL

(COND

(BELOW com x)

Ascends the edit chain looking for a
link which matches PATTERN, in other

words, it keeps doing O's until it
gets to a specified point. If
PATTERN is atomic, it is matched

with the first element of each link,

otherwise with the entire link. (If
pattern is of the form (IF
expression), EXPRESSION is evaluated
at each link, and if its value is

NIL, or the evaluation causes an

error, the ascent continues.)

((NULL
(COND

((NULL
(GO

(SETQ L (COR L)))
(FLG (RETURN L))))
(CDR (MEMB (CAR L (CADR L)))))

)))LP)
#F CADR
{<r COND)

#P
(COND (& &) (& &))
#

Note that this command differs from BF in that it does

not search inside of each link, it simply ascends. Thus in
the above example, F CADR followed by BF COND would find
(COND (FLC (RETURN L))), not the higher COND.

If no match is

generated and
unchanged.

found, an

the edit

error

chain

IS

i s

Ascends the edit chain looking for a
link specified by COM, and stops x
links below that, i.e. BELOW keeps
doing O's until it gets to a
specified point, and then backs off
N O's. (X is evaluated, e.g.,
(BELOW com (*PLUS X Y)))

2 . 32

(BELOW com)

Same as (BELOV? com 1)

For example, (BELGIV COMD) will cause the COND clause
containing the current expression to become the new current
expression^ Thus if the current expression is as shown
above, F CADR followed by (BELOW COND) will make the new
expression be ((NULL (CDR (FMEMB (CAR L) CADR L] (GO LP)) ,
and is therefore equivalent to 0 0 0 Oo

BELOW operates by evaluating X and
then executing COM, or (_ com) if
COM is not a recognized edit
command, and measuring the length of
the edit chain at that point. If
that length is M and the length of
the current edit chain is N, then
BELOW ascends n-m-y links where Y is
the value of X. Generates an error

if COM causes an error, i.e., it
can't find the higher link, or if
n-m-y is negative.

The BELOW command is useful for locating a substructure
by specifying something it contains. For example, suppose
the user is editing a list of lists, and wants to find a
sublist that contains a FOO (at any depth). He simply
executes F FOO (BELOW \).

(NEX x)

Same as (BELOW x) followed by NX.

For example, if the user is deep inside of a SELECTQ clause,
he can advance to the next clause with (NEX SELECTQ).

NEX

Same as (NEX «-)

The atomic form of NEX is useful if the user will be
performing repeated executions of (NEX x). By simply
MARKing (see p. 2.36) The chain corresponding to X, he can
use NEX to step through the sublists.

33

(NTH $)

.Generalized

Effectively
Followed by
UP.

NTH

performs
(BELOVJ \) ,

command.

(LCL . $),
followed by

In other words, NTH locates $, using a search restricted to
the current expression, and then backs up to the current
level, where the new current expression is the tail whose
first element contains, however deeply, the expression that
was the terminus of the location operation. For example:

#P
(PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND UF) (RETURN L)|
#(NTH UF)

#P
... (SETQ UNFIND UF) (RETURN L))

If the search is unsuccessful, NTH
generates an error and the edit

chain is not changed.

Note that (NTH n) is just a special case of (NTH $), and in
fact, no special check is made for $ a number; both commands
are executed identically.

(pattern $)
E.g., (COND :: RETURN). Finds a
COND that contains a RETURN, at any
depth. Equivalent to (F pattern N),
(LCL • $) followed by (_ pattern).

For example, if the current expression is (PROG NIL
(COND ((NULL L) (COND (FLG (RETURN L))))) .—), then (COND ::
RETURN) will make (COND (FLG (RETURN L))) be the current
expression. Note that it is the innermost COND that is
found, because this is the first COND encountered when
ascending from the RETURN. In other words, (pattern :: $)
is not equivalent to (F pattern N), followed by (LCL . $)
followed by \.

Note that $ is a location specification, not just a
pattern. Thus (RETURN :: COND 2 3) can be used to find the
RETURN which contains a COND whose first clause contains (at
least) three elements. Note also that since $ permits any
edit command, the user can write commands of the form (COND
:: (RETURN :: COND)), which will locate the first COND that

2 . 34

contains a RETURN that contains a COND.

2 c 35

Comtnands That Save and Restore the Edit Chain

Three facilities are available for saving the current
edit chain and later retrieving it. The commands are MARK;
which marks the current chain, for future reference; (An
aroiTiic command; do not confuse with the list , cominand
pattern).) which returns to the last mark without destroying
it, and which returns to the last mark and also erases
it.

HARK

Adds the current edit chain
front of the list MARKLIST.

to the

Makes the new edit chain be (CAR
MARKLIST). Generates an error if
MARKLIST is NIL; i.e., no MARKS have
been performed, or all have been
era sed.

Similar to

MAR K, i.e.

(CDR HARKLST))

but al

performs
;o erases the

(SETQ MARKLST

If the user did not prepare in advance for returning to
a^ particular edit chain, he may still be able to return to
that chain v/ith a single cominand by using \ or \P.

\

UKFIMD is

that makes a

performs more

/ « i -l S J. 1

: • 3 BELOW, e-

UNFIND is not

IC'ivel express,
the f command.)

Makes the edit chain be the value of
UNFIND. Generates an error if
UNFIND=NIL.

set to the current edit chain by each command
"big jump", i.e., a cominand that usually

man a single ascent or descent

commands that involve a search
al and \ and \P themselves.

, namely t» •^s
t e.g., F, LC,

(Except

For example, if the
\ v;ould take him back to
back to the CAR, etc.

that
reset when the current edit chain is the top

on, since this could always be returned to via

user types F COND, and then F CAR,
the COND. Another \ would take him

2 . 3(

\p

\P
For example,

will return to

(S var $)

Restores the edit chain to its state
as of the last print operation,
i=eo, Pf ?f or PP« If the edit
chain has not changed since the last
printing, \P restores it to its
state as of the printing before that
one, ioG-, two chains are always
savedo

if the user types P followed by 3 2 1 P,
the first P, i.e«, would be equivalent to

0 0 Oo (Note that if the user had typed P followed by F
COND, he could use either \ or \P to return to the P, ioOo,
the action of \ and \P are independent.) another
then take him back to the second P, i.e., the
\P to flip back and forth between the

>Q o f

two

\P would
user could use

edit chains.

Sets var (using SETQ) to the current
expression after performing (LC
$). Edit chain is not changed.

Thus (s FOO) will set FOO to the current expression, (S
FOO -1 1) will set FOO to the first element in the last
element of the current expression.

37

Commands That Modify Structure

The basic structure modifications commands in the
editor are:

(n)

(n el em)

(""n el ana em)

{N el o•o em)

n>.l deletes the corresponding
element from the current expression.

n;mll replaces the nth element in
the current expression with el ...
em.

n,mil inserts el ... em before the
n element in the current expression.

m^l attaches el ... em at the end
of the current expression.

As mentioned earlier:

AJJ^ structure modificaton done bv the editor is destructive>
f'6° > the editor uses RPLACA and RPLACD to physical]v
change the structure it was given.

However, all structure modification is undoable, see
UNDO p. 2.75.

All of the above commands generate errors if the
current expression is not a list, or in the case of the
first three commands, if the list contains fewer than n
elements. In addition, the command (1), i.e., delete
first element, will cause an error if there
element, since deleting the
replacing it with the second
second element. Or, to loolc
first element when there is
changing a list to an atom
done. (However, the command
is only one
ascend to a

first element must be done by
element, and then deleting the

at it another way, deleting the
only one element would require
(i.e. to NIL) which cannot be
DELETE will work even if there

element in the current expression, since it will
point where it can do the deletion.)

is only
the

one

Irnplementation of. Structure Modification Commands;

Note: Since all commands that insert, replace, delete or
attach structure use the same low level editor
the remarks made here are valid for all
command s.

end

the

because

For

of a

all replacement,
list, unless the

(1 (CAR FOO)) is not considered to have been "typed in" even
though the LP command itself may have been typed in =
Similarly, commands originating from macros, or commands
given to the editor as arguments to EDITF, EDITV, et al,
e«g» (EDITF FOO F COND (N)) are not considered typed
ino) Thus if the program constructs the command (1 (ABC))
via (LIST 1 FOO), and gives this command to the editor, the
(A B C) used for the replacement will NOT be EQ to FOOo
(The user can circumvent this by using the I command, which
computes the structure to be used= In the above
the form of the command would be (I 1 FOO),
replace the first element with the value of FOO
po2o63) -

functions,
structure changing

insertion,' and attaching at the
command was typed in directly to

editor, copies of the corresponding structure are used,
possibility that the exact same command

(i.e= same list structure) might be used
editor commands take as arguments a list of
eog. (LP F FOO (1 (CAR FOO))) » In this

.9

again.. (Some
edit commands,

case, the command

example,
which would

itself. See

The resL of this section is included for applications
wherein the editor is used to modify a data structure, and
pointers into that data structure are stored elsewhere. In
these cases, the actual mechanics of structure modification
must be known in order to predict the effect that various
commands may have on these outside' pointers. For example,
if the value of FOO is CDR of the current expression, what

S^FOO?^ (2), (3), (2 XYZ), (-2 X YZ), etc., do
of the first element in the current expression

IS perrormed by replacing it with the second element and
deleting the second element by patching around it. Deletion
of any other element is done by patching around it, i.e.,
che previous- tail is altered. Thus if FOO is EQ to the
current expression which is (A B C D), and FIE is CDR of
.00, after executing the command (1), FOO will be (B C D)
(v/hich iS EQUAL but not EQ to FIE). However, under the same
initial conditions, after executing (2) FIS will be
uncnanged, i.e., FIE will still be (BCD) even though the

39

current expression and FOO are now (A C D) <. (A general
solution of the problem just isn't possible, as it would
require being able to make two lists EQ to each other that
were originally different. Thus if FIE is CDR of the
current expression, and FUM is CDDR of the current
expression, performing(2) would have to make FIE be
FUM if all subsequent operations were to update both
FUM correctly. Think about it.)

EQ to

FIE and

Both replacement and insertion are accomplished by
smashing both CAR and CDR of the corresponding tail. Thus,
if FOO were EQ to the current expression, (A BCD), after
(1 X Y Z), FOO would be (X Y Z B C D). Similarly, if FOO
v/ere EQ to the current expression, (A B C D), then after (-1
X Y Z), FOO would be (X Y Z A B C D).

The N command is accomplished by smashing the last CDR
of the current expression a la NCONC. Thus, if FOO were EQ
to any tail of the current expression, after executing an N
command, the corresponding expressions would also appear at
the end- of FOO.

In summary, the only situation in which an edit
operation will not change an external pointer occurs when
the external pointer is to a proper tail of the data
structure, i.e., to CDR of some node in the structure, and
the operation is deletion. If all external pointers are to
elements of the structure, i.e., to CAR of some node, or if
only insertions, replacements, or attachments are performed,
the edit operation will always have the same effect on an
external pointer as it does on the current expression.

40

The Commands

In the (n) » (n el .«« em) » and (-n el ... em)
commandSf the sign of the integer is used to indicate the
operation. As a result? there is no direct way to express
insertion after a particular element? (hence the necessity
for a separate N command). Similarly? the user cannot
specify deletion or replacement of the NTH element from the
end of a list without first converting 2. to
corresponding positive integer. Accordingly? we haves

the

(B el em)
Inserts el ... em before the
current expression. Equivalent to
UP followed by (-1 el ... em).

For example? to insert FOO before the last element in
the current expression? perform -1 and then (B FOO).

(A el em)

(. el ... gin)

DELETE or (:)

Inserts el ... em after the current
expression. Equivalent to UP
followed by (-2 el ... em) or (N el
... em) or (N el ... em) whichever
is appropriate.

Replaces the current expression by
el ••• em. Equivalent to UP
followed by (1 el ... em).

Deletes the current expression? or
if the current expression is a tail?
deletes its first element.

DELETE first tries to delete the current expression by
performing an UP and then a (1). This works in most cases.
However? if after performing UP, the new current expression
contains only one element? the command (1) will not work.
Therefore DELETE starts over and performs a BK? followed by
UP? followed by (2). For example? if the current expression
is (COND ((MEMB X Y)) (T Y))? and the user performs -1? and
then DELETE, the BK-UP-(2) method is used? and the new
current expression will be ... ((MEMB X Y)))

However? if the next higher expression contains only
one element,? BK will not work. So in this case? DELETE
performs UP? followed by (: NIL)? i.e.? it REPLACES the

2 . 41

higher expression by NIL. For example, if the current
expression is (COND ((MEMB X Y)) (T Y)) and the user
performs F MEMB and then DELETE, the new current expression

and the original expression would
The rationale behind this is that

((MEMB X Y)) changes a list of one
elements, i.e., () or NIL. Note

will be ... NIL (T 'Y))
now be (COND NIL (T Y)).
deleting (ME?4B X Y) from
element to a list of no
that 2

replace
followed by
it by NIL.

DELETE would DELETE ((MEMB X Y)) NOT

If the current expression is a tail, then B, A, and :
will work exactly the same"as though the current expression
were the first element in that tail. Thus if the current
expression were ... (PRINT Y) (PRINT Z)), (B (PRINT X))
would insert (PRINT X) before (PRINT Y), leaving the current
expression ...(PRINT X) (PRINT Y) (PRINT Z)).

42

The following forms of the- A» B# and : commands
incorporate a location specification:

(INSERT el em BEFORE . $)

Similar to (LC. $) followed by (B
elo®o em)o

#P
(PROG (W Y X) (SELECTQ ATM & NIL) (OR & &) (PRINl &))
#(INSERT LABEL BEFORE PRINl)
#P •
(PROG (W Y X) (SELECTQ ATM & NIL) (OR & &) LABEL (PRINl &))
#

Current edit chain is not changed»
but UNFIND is set to the edit chain
after the B was performed, i.e®, \
will make the edit chain be that
chain where the insertion was
performed®

(INSERT el em AFTER . $)

Similar to INSERT BEFORE except uses
A instead of B®

(INSERT el em FOR . $)
Similar to INSERT BEFORE except uses
: for B.

em)

Here $ is the segment of the command
betv/een REPLACE and WITH. Same as
(INSERT el .e « em FOR ® $) • (BY
can be used for WITH.)

(REPLACE $ VHTH el

Example: (REPLACE COND -1 WITH (T (RETURN L)))

em)(CHANGE $ TO el

(DELETE . S)

Same as REPLACE WITH

Does a (LC . $) followed by
DELETE. Current edit chain is not
changed (Unless the current
expression is no longer a part of
the expression being edited, e.g.,
if the current expression is ... C)
and the user performs (DELETE 1),

the tail, (C), will have .been cut
off. Similarly, if the current
expression is (CDR Y) and the user
performs (REPLACE WITH (CAR X)).),
but UNFIND is set to the edit chain
after the DELETE was performed.

Example: (DELETE -1), (DELETE COND 3)

Note that if $ is NIL (empty), the corresponding
operation is performed here (on the current edit chain),
e.g., (REPLACE V'JITH (CAR X)) is equivalent to (: (CAR X)) .
For added readability, HERE is also permitted, e.g., (INSERT
(PRINT X) BEFORE HERE) will insert (PRINT X) before the
current expression (but not change the edit chain).

Note also that $ does not have to specify a location
WITHIN the current expression, i.e., it is perfectly legal
to ascend to INSERT, REPLACE, or DELETE. For example
(INSERT (RETURN) AFTER f PROG -1) will go to the top, find
the first PROG, and insert a (RETURN) at its end, and not
change the current edit chain.

Finally, the A, B, and : commands, (and consequently
INSERT, REPLACE, and CHANGE), all make special checks in El
thru Em for expressions of the form (## . coins). In this
case, the expression used for inserting or replacing is a
COPY of the current expression aft^k" executing 'corns, a list
of edit commands. (The execution of corns does not change
the current edit chain.) For example, (INSERT (## F COND -1
-1) AFTER3) [not (INSERT F COND -1 (## -1) AFTER 3), which
inserts four elements after the third element, namely F,
COND, -1, and a copy of the last element in the current
expression] will make a copy of' the last form in the last
clause of the next COND, and insert it after the third
element of the current expression.

2 . 44

Form Oriented Editing and the Role of UP

The UP that is performed before A, B, and : commands
(and therefore in INSERT, CHANGE, REPLACE, and DELETE
commands after the location portion of the operation has
been performed«), makes these operations form-oriented« For
example, if the user types F SETQ, and then DELETE, or
simply (DELETE SETQ), he will delete the entire SETQ
expression, whereas (DELETE X) if X is a variable, deletes
just the variable X. In both cases, the operation is
performed on the corresponding FORM and in both cases is
probably what the user intended-. Similarly, if the user
types (INSERT (RETURN Y) BEFORE SETQ), he means before the
SETQ expression, not before the atom SETQ. (*There is some
ambiguity in (INSERT expr AFTER functionname), as the user
might mean make expr be the function's first argument.
Similarly, the user cannot write (REPLACE SETQQ WITH SETQ)
meaning change the name of the function. The user must in
these cases v*/rite (INSERT expr AFTER functionname 1), and
(REPLACE SETQQ 1 WITH SETQ).) A consequent of this
procedure is that a pattern of the form (SETQ Y —) can be
viewed as simply an elaboration and further refinement of
the pattern SETQ. Thus (INSERT (RETURN Y) BEFORE SETQ) and
(INSERT (RETURN Y) BEFORE (SETQ Y --)) perform the same
operation (Assuming the next SETQ is of the form (SETQ
Y-)).) and, in fact, this is one of the motivations behind
making the current expression after F SETQ, and F (SETQ Y
—) be the same.

Occasionally, however, a user may have a data structure
in which no special significance or meaning is attached to
the position of an atom in a list, as LISP attaches to atoms
that appear as CAR of a list, versus those appearing
elsewhere in a list. In general, the user may not even know
whether a particular atom is at the head of a list or not.
Thus, when he writes (INSERT expression AFTER FOO), he means
after the atom FOO, whether or not it is CAR of a list. By
setting the variable UPFINDFLG to NIL (Initially, and
usually, set to T.) the user can suppress the implicit UP
that follows searches for atoms, and thus achieve the
desired effect. With UPFINDFLG = NIL then following F FOO,
for example, the current expression will be the atom FOO.
In this case, the A, B, and : operations will operate with
respect to the atom FOO. If the user intends the operation
to refer to the list which FOO heads, he simply uses instead
the pattern (FOO --).

2 . 45

Extract and Embed

Extraction involves replacing the current expression with
one of its subexpressions (from any depth).

(XTR $)

Replaces

expression
is current

$).

the original current
with the expression that
after performing (LCL .

For example# if the current
(PRINT Y))), (XTR PRINT)# or
by the PRINT.

expression is
(XTR 2 2) will

(COND ((NULL X)
replace the COND

If the current expression after (LCL
$) is a tail of a higher

expression, its first element is
used.

For example, if the current
(COND ((NULL X) Y) (T Z))

COND with Y.

expression is
then (XTR Y) will replace the

Thus, in the

XTR would be

If the extracted expression is a
list# then after XTR has finished#
the current expression will be that
list.

first example, the current expression after the
(PRINT Y). .

If the extracted expression is not a
list, the new current expression
will be a tail whose first element
is that non-list.

Thus, in the second example, the current expression after
the XTR would be ... Y followed by whatever followed bv
COND.

If the current expression initially is a tail,
extraction worlcs exactly the same as though the current
expression were the first element in that tail. Thus is the
current expression is (XTR PRINT) will replace the COND by
the PRINT, leaving (PRINT Y) as the current expression.

46

The extract

specification.
command can also incorporate a location

(EXTRACT $1 FROM $2)

($1 is the segment between EXTRACT
and FROMo)
Performs (LC o $2)
$1)» Current edit
changed, but UNFIND
edit chain after

performed.

And then (XTR .

chain is not

is set to the

the XTR was

Example: If the current expression is
(PRINT (COND ((NULL X) Y) (T Z))) then following
(EXTRACT Y FROM COIID) , the current expression will
(PRINT Y).
(EXTRACT 2 -1 FROM COND), (EXTRACT Y FROM 2),
(EXTRACT 2 -1 FROM 2) will all produce the same result.

oe

47

While extracting replaces the current expression by a
subexpression? embedding replaces the current expression
with-one containing it as a subexpression.

(MBD x)

X is a list? substitutes (a la
SUBST? i.e.? a fresh copy is used
for each substitution) the current
expression for all instances of the
atom * in x? and replaces the
current expression with the result
of that substitution.

Example: If the current expression is (PRINT Y), (MBD (COND
((NULL X) *) ((NULL (CAR Y)) * (GO LP))) would replace
(PRINT Y) with (COND ((NULL X) (PRINT Y)) ((MULL (CAR Y))
(PRINT Y) (GO LP))).

(MBD el . em)

Equivalent to (MBD (el em *))

Example: If the current expression is (PRINT Y), then (MBD
SETQ X) will replace it with (SETQ X (PRINT Y)).

(MBD x)

X atomic? same as (MBD (x *)).

Example: If the current expression is (PRINT Y)? (MBD
RETURN) will replace it with (RETURN (PRINT Y)).

All three forms of MBD leave the edit chain so that the
larger expression is the new current expression.

If the current expression initially is a tail,
embedding works exactly the same as though the current
expression were the first element in that tail. Thus if the
current expression were (PRINT Y) with (SETQ X (PRINT Y)).

The embed command can also incorporate a location
specification.

2 . 41

(EMBED $ IN X,

($ is the segment between EMBED and
INo) Does (LC . $) and then (MBD .
x)o Edit, chain is not changed, but
UNFIND is set to the edit chain
after the MBD was performed»

Examples (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN),
(EMBED COND 3 1 IN (OR * (NULL X))}.

WITH can be used for IN, and SURROUND can be used for EMBED,
eog., (SURROUND NUMBERP WITH (AND * (MINUSP X))).

49

The MOVE Command . - ,

The MOVE command allows the user to
expression to be moved* (2.) the place it is
and (3) the operation to be performed there*
before* insert it after* replace* etc.

specify (1) the
to be moved to*
e.g.* insert it

(MOVE $1 TO com . $2)

($1 is the segment between MOVE and
TO.) VJhere COM is BEFORE* AFTER* or
the name of a list command, e.g.* ;*
N* etc. Performs (LC
Obtains the current expression
(or its first element, if it
tail)* let us call this expr;
then goes baclc to original
chain, performs (LC .
(com expr), then goes
deletes exnr. Edit
changed. UNFIND is
chain after . (com
performed.

$1) ,
there

is a

MOVE

edit

$2), Peforms
back to $1 and
chain is not
set to edit

expr) was

For example, if the current expression is (A B D C), (
MOVE 2 TO AFTER 4) will make the new c.urrent expression be
(A C D B). Note that 4 was executed as of the original edit
chain* and that the second element had not yet been removed.

2 . 50

As the following examples taken from actual editing
will show, the MOVE command is an extremely versatile and
powerful feature of the editor.

#?
(PROG (L) (EDLOC (CDDR G)) (RETURN (CAR L)))
#(MOVE 3 TO s CAR)
#?
(PROG (L) (RETURN (EDLOC (CDDR C))))
#

.#P
.o. (SELECTQ OBJPR & &) (RETURN &) LP2 (COND & &))
#{MOVE 2 TO N 1)
#P
... (SELECTQ OBJPR & & &) LP2 (COND & &))
#

#P
(OR (EQ X LASTAIL) (NOT &) (AND & & &))
#(MOVE 4 TO AFTER (BELOW COND))
#P
(OR (EQ X LASTAIL) (NOT &))
#\ P
... (& &) (AND & & &) (T & &))
#

#P

((NULL X) (COND S &))
#(-3 (GO DELETE))
D(MOVE 4 TO N (_ PROG))
#P
((NULL X) (GO DELETE))
#\ P
(PROG (&) (COND & & &) (COND & & &) (COND & &))
#(INSERT DELETE BEFORE -1)
#P

(PROG (&) (COND & & &) (COND & & &) DELETE (COND & &))

Note that in the last example, the user could have
added the prog label DELETE and moved the COND in one
operation by performing (MOVE 4 TO N (_ PROG) (N DELETE)).

51

Similarly, in the next example, in the course of specifying
$2, the location v;here the expression was to be moved to,

performs a structure modification, via (N
IT)), thus creating the structure that will receive the
expression being moved.

#P
({CDR &) (SETQ CL &) (EDITSMASH CL & &))
#(MOVE 4 TO N 0 (N (T)) - 1]
#P
{(CDR &) {SETQ CL &))
#\ P
{T {EDITSMASH CL & &))
#

If $2 is NIL, or (HERE), the current position specifies
where the operation is to take place,
is set to where the expression that
located, i.e., $1. For example:

In this case, UNFIND
was moved v/as originally

#P
(TENEX)
#{MOVE t F APPLY TO N HERE)
#P
{TENEX {APPLY & &))

#P

{T {PRINl C-EXP))
#{MOVE BF PRINl TO N HERE)
#P
(T {PRINl C-EXP) {PRINl &))

4
17

i"indlly, if $1 is NIL, the MOVE command allows the user
to specify some place the current expressj on is to be moved
to.^ In this case, the edit chain is changed, and is the
chain v.?here the current expression was moved to? UNFIND is
set to where it was.

#P

{SELECTQ OBJPR (&) (PROGN & &))

52

#(MOVE TO BEFORE LOOP)

.(SELECTQ OBJPR & &) LOOP (RPLACA DFPRP &) (RPLACD DFPRP &))
#

53

Comm5nds iliQt "Movg pQFGnthGSGS'

The cominands' • presented in "this section permit
structure itself, as opposed to

difying components thereof. Their effect can be described
^ 1° ^ single left or right parenthesis,rignt parentheses. Of course, therewill always be the same number of left parentheses a.s right

parentheses in any list structure, since the parentheses are
iust a notational guide to the structure provided by PRINT.

command can insert or remove just one parenthesis,
but this IS suggestive of what actually happens.

In all six commands, n and m are used to specify an
^ usually of the current expression. In

^ ID are usually positive or negative integers
interpretation. However, all six commandsuse the generalized NTH command, p. 2.34, To find their

element s), so that nth element means the first element of
the tail found by performing (NTH n). In other words, if
the current expression is (LIST (CAR X) (SETQ Y (CONS W

thi exa^f".; CONS), (Bi X -1) , and (BI XZ) all specifythe exact same operation.

not

All six

found, i.

(BI n m)

commands generate
e., the NTH fails.

an error if the element is
All are undoable.

B^oth i^n, inserts a left parentheses
before the nth element and after the
mth element in the current
expression® Generates an error if
the rnth element is not contained in
the n.th tail, i.e., the mth element
must be to the right" of the iith
element•

pample: If the current expression is (A B (C D E) F G),
then (BI 2 4) will modify it to be (A (B (C D E) F) G).

(BI n)

Same as (BI n n)®

Example: If the current expression is (A B (C D E) F G),
then (BI -2) will modify it to be (A B (CD E) (F) G).

54

(BO n)

Both outo Removes both parentheses
from the nth elemento Generates an
error if nth element is not a list»

Example; If the current expression
then (BO D) will modify it to be (A

1 s

B C

(A B
D E F

(C
G)

D E) F G)

(LI n)

Example;
then (LI

(LO n)

Example:
then (LO

(HI n m)

Left in» inserts a left parenthesis
t;i0 n.tl'i element (and a

matching right parenthesis at the
end of the current expression)»
i->e.f equivalent to (BI ei ~1) «,

If the current expression is (A B (CD E)
2) will modify it to be (A (B (C D E) F G))c

F G)

If the

3) 11

Left outf removes a left parenthesis
from the nth element® All elements
followipq the nth element are
deleted. Generates an error if nth
element is not a list®

current expression is (A B (C D E) F G),
modify it to be (ABODE).

Right in, inserts a right
parenthesis after the mth element of
the nth element. The rest of the
nth element is brought up to the
level of the current expression.

Example; If the current expression is (A (B ODE) EG), (RI
2 2) will modii.y it to be (A (B C) D E F G) ® Another way of
thinking about RI is to read it as "move the right
parenthesis at the end of the nth element IN to after the
mth element."

55

(RO n)

Right out," removes the right
parenthesis from the _nth element,
moving it to the end of the current
expression. All elements follov/ing
the nth element are moved inside of
the nth element. Generates an error
if nth element is not a list.

Example: If the current expression is (A B (C D E) F G), (RO
it to be (A B (C D E F G)). Another way of

thinking about . RO is to read it as "move the right
parenthesis at the end of the nth element OUT to the end of
the current expression."

2 . 56

TO and THRU

EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made
to operate on several contiguous elements, i»e=, a segment
of a list, by using the TO or THRU command in their
respective location specifications.

($1 THRU $2)

Does a (LC .
UP, and then

grouping the
element, and

$1), Follov/ed by an
a (BI 1 $2), thereby

segment into a single
finally does a 1,

making the final
be that element.

current expression

For example, if the current
G H) I) J K), following (C
will be ((CD) (E) (F G H)).

expression is
THRU G), the

(A (B (C D) (E) (F
current expression

($1 TO $2)

Same as THRU except last element not
included, i.e., after the BI, an (RI
1 -2) is performed.

If both $1 and $2 are numbers, and $2 is greater than
$1, then $2 counts from the beginning of the current
expression, the same as $1. In other words, if the current
expression is (A B C D E F G), (3 THRU 4) means (C THRU D),
not (C THRU F). In this case, the corresponding BI command
is (BI 1 $2-$l+l).

THRU and TO are not very useful comimands by themselves,
and are not intended to be used "solo", but in conjunction
with EXTRACT, HIBED, DELETE, REPLACE, and MOVE. After THRU
and TO have operated, they set an internal editor flag
informing the above commands that the element- they are
operating on is actually a segment, and that the extra pair
of parentheses should be removed when the operation is
complete. Thus:

#P
(PROG NIL (SETQ A &) (RPLACA & &) (PRINT &) (RPLACD & &))
#(MOVE (3 THRU 4) TO BEFORE 5) P
(PROG NIL (PRINT &) (SETQ A &) (RPLACA & &) (RPLACD & &))

Note that when specifing 52 in the MOVE, 5 was used instead

57

of 6. This is because the $2 is located after $1 is» The
THRU location groups items together and thus changes the
numeric location of the following items.

#P
(PROG NIL (PRINl &) (PRINl &) (SETQ IND &) (SETQ VAL &) (PRINT &))
#(MOVE (5 THRU 7) TO BEFORE 3) ^ w ; IfKiwi i,, ;
#P

(SETQ IND S) (SETQ VAL &) (PRINT &) (PRINl &) (PRINl &))
(DELETE (SETQ THRU PRI@))
= PRINT

#P
(PROG NIL (PRINl &) (PRINl &))
#

#P
y LP (SELECTQ & & &) (SETQ Y &) OUT (SETQ FLG 6) (RETURN Y))
#(MOVE (1 TO OUT) TO N HERE) X))
#P
.o. OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ & & &) (SETQ Y &))
TT

#PP
(PROG (TEMPI TEMP2)

(COND ((NOT (MEMQ REMARG LISTING))
(SETQ TEMPI (ASSOC REMARG NAMEDREMARKS))
(SETQ TEMP2 (CADR TEMPI)))

(T (SETQ TEMPI REMARG)))
(NCONC LISTING REMARG)
(RETURN (CONS TEMPI TEMP2)))

#(EXTRACT (SETQ THRU CADR) FROM COND) PP
(PROG (TEMPI TEMP2)

(SETQ TEMPI (ASSOC REMARG NAMEDREMARKS))
(SETQ TEMP2 (CADR TEMPI))
(NCONS LISTING REMARG)
(RETURN (CONS TEMPI TEMP2)))

#

TO and THRU can also be
(Because XTR involves a location
and MBD do not.) Thus in the
current expression had been the
first performed F COND , he could
CADR)) to perform the extraction.

2 . 51

used directly with XTR.
specification while A,Bi,:,
previous example, if the
COND, e.g., the user had
have used (XTR (SETQ THRU

($1 TO), ($1 THRU)

Both same as ($1 THRU -1), i.e.,
from $1 thru the end of the list.

#P
(VAL (RPLACA DFPRP &) (RPLACD & &) (RPLACA VARS &) (RETURN &))
#(MOVE (2 TO) TO N (<• PROG))
#(N (GO VAR))
#P
(VAL (GO VAR))
#

#P
(T (COND &) (EDITSMASH CL & &) (COND &))
#(-2 (GO REPLACE))
#(MOVE (COND TO) TO N PROG (N REPLACE))
#P
(T (GO REPLACE))
#\ P
(PROG (&) (COND & & &) (COND & & &) DELETE (COND & &) REPLACE
(COND &) (EDITSMASH CL & &) (COND &))
#

#PP

(LAMBDA(CLAUSALA X)
(PROG (AD)

(SETQ A CLAUSALA)
LP (COND ((NULL A) (RETURN NIL)))

(SERCH X A)
(RUMARK (CAR A))
(NOTICECL (CAR A))
(SETQ A (CDR A)),
(GO LP)))

^(EXTRACT (SERCH THRU HOT0) FROM PROG) P
= NOTICECL

(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &))
#^EMBED (SERCH TO) IN (MAP [FUNCTION (LAMBDA (A) *] CLAUSALA]
(LAMBDA(CLAUSALA X)

(MAP (FUNCTION

(LAMBDA(A)
(SERCH X A)
(RUMARK (CAR A))
(NOTICECL (CAR A))))

CLAUSALA))

59

(R X y)

R

Replaces all instances of x by y in
the current expression, e.g., (R
CAADR CADAR). Generates an error if
there is not at least one instance.

^operates by performing a DSUBST. The current
expression is the third argument to DSUBST, i.e
expression being substituted into, and y is the
argument, to DSUBST, i.e., the expression
R computes the second argument to DSUBST
be substituted for, by performing (F

, ± o t; • , t he

Y is the first
being substituted.

, the expression to
X T). The second

argument is then the current expression at that point, or if
that current expression is a list and x is atomic, then the
first element of that current expression. Thus x can be the
S-expression (or atom) to be substituted for, or can be a
pattern which specifies that S-expression (or atom).

For example, if the current expression is (.LIST FUNNYATOMl
FUNHYAT0M2 (CAR FUNNYATOMl)), then (R FUN@ FUNNYAT0M3) will
substitute FUNNYAT0M3 for FUNNYATOMl throughout the current
expression. Note that FUNNYAT0M2, even though it would have
matched with the pattern FUN(3, is NOT replaced.

Similarly, if (LIST(CAR X) (CAR Y)) is the first
expression matched by (LIST --), then (R (LIST --) (LIST
(CAR Y) (CAR Z))) is equivalent to (R (LIST (CARX) (CARY))
(LIST (CAR Y) (CAR Z))), i.e., both will replace all
instances of (LIST (CAR X) (CAR Y)) by (LIST (CAR Y) (CAR
Z)). Note that other forms beginning with LIST will not be
replaced, even though they would have matched with (LIST
--). To change all expressions of the form (LIST --) to
(LIST (CAR Y) (CAR Z)), the user should perform (LP (REPLACE
(LIST --) VJITH (LIST (CAR Y) (CAR).

UNFIND is set to the edit chain following' the find command
so that \ will make the current expression be the place
where the first substitution occurred.

60

(SW n rn)

Switches the nth and mth elements of
the current expression.

For example, if. the current expression is (LIST (CONS (CAR
X) (CAR Y)) (CONS (CDR Y))), (SW 2 3) will modify it to be
(LIST (CONS (CDR X) (CDR Y)) (CONS (CAR X) (CAR Y))). The
relative order of ri and m is not important, ie, (SW 3
and (SW 2 3) are equivalent.

2)

SW uses the generalized NTH command
..to find the nth and mth elements, a

la the BI-BO commands.

Thus in the previous example, (SW CAR CDR) would produce the
same result.

2 . 61

Commands That Prini-

P

(P m)

(P 0)

(P m n)

(P 0 n)

Prints current expression as though
PRINTLEV were given a depth of 2.

Prints . mth element

expression as though
given a depth of 2o

Same as P

of current

PRINTLEV V7ere

Prints mth element of overrent
expression as though PRINTLEV were
given a depth of No

Prints current expression as though
PRINTLEVEL were given a depth of N.

Same as (P 0 100)

Both (P m) and (P m n) use the general NTH command to
obtain the corresponding element, so that m does not have to
be a number, e.g. (p COND 3) will worko

All printing functions print to the teletype,
regardless of the primary output fileo No printing function
ever changes the edit chain» All record the current edit
chain for use by \P, p.. 2o37o

62

Commands That Evaluate

Example i

(E x)

(E X T)

Only when typed in, (i»e., (INSERT D
BEFORE E) v/ill treat E as a pattern)
causes the editor to call the LISP
interpreter giving it the next input
as argument.

#E (BREA.K FIE
(FIE FUM)
#E (FOG)
(FIE BROKEN)
It

FUM)

Evaluates X, i.e.,
x) , and prints the
teletype.

performs (EVAL
result on the

Same as (Ex) but does not print.

The (E x) and (E x T) commands are mainly intended for
use by MACROS and subroutine calls to the editor; the

probably type in a form for evaluation using the
format of the (atomic) E command.

would

convenient

user

more

(I c xl xn)

Example: (I 3
element of the
FOOo (The I command

Same as (c yl
yi=(EVAL xi).

yn) where

(GETD (QUOTE FOG)) will replace the 3rd
current expression with the definition of

sets an internal flag to indicate to
the structure modification commands not to copy
expression(s) when inserting, replacing, or attaching.) (I N
FOO (CAR FIE)) will attach the value of FOO and CAR of
value of FIE to the end of the current
FOO T) will search for an expression EQ

If c is not an atom,
as well.

the

expression. (I F=
to the value of FOO.

it is evaluated

Example: (I
FLG is NIL,
element of the

(COND ((NULL FLG) (QUOTE -1))
inserts the value of FOO

(T D) FOO), if
before the first

current expression, otherwise replaces' the

63

first Glement by the value of FOO.

(## con [1] corn [2 ^ corn [n])
is an FSUBR (not a conimand). Its
value is what the current expression
would be after executing the edit
commands com[l] o.. com[n] starting
from the present edit chain.
Generates an error if any of com[l]

cause errors. The

chain is never changed.
A, B , :,INSERT, REPLACE,

make special checks for
the expressions used for

thru com[n]
current edit

(Recall that
and CHANGE

forms in
inserting or replacing? and use a
copy of ## form instead (see p.
2=44). thus, (INSERT (## 3 2) AFTER
1) is equivalent to (I INSERT (COPY
(## 3 2)) (QUOTE AFTER) 1).)

Example: (I R (QUOTE X) (## (CONS ..Z))) replaces all X's in
the currenr expression by the first CONS containing a Z.

entire^^pB^-1 convenient for computing anentire edit command for execution, since it computes the
command name and its arguments separately. Also, the I

foTTow?nr.^^^^°^ compute an atomic command. Thetollowing two commands provide more general ways of
computing commands. ^

(COMS xl xn)

Each xi is evaluated and its value
executed as a command.

For example, (COMS (COND (X (LIST 1 x)))) will replace the
irsu element or the current expression with the value of X

HOP,''°s''ee nothing. (NIL as a command is a
(COMSQ com[l] com[n])

Executes com[1] com[n]

COMoQ IS mainiy userul in conjunction with the COMS command,
^or example, suppose the user wishes to compute an entire
list of commands for evaluation, as opposed to computing

^ command. He//ouiQ uhen write (COMS (CONS (QUOTE, COMSQ) x)) where x
computed the list of commands, e.g.,

64

(COMS (CONS (QUOTE COMSQ) (GET FOO (QUOTE COMMANDS))))

Commands That Tpri-

(IF X)

Generates an error unless the value
of (EVAL x) is true, i=e., if (EVAL
x) causes an error or (EVAL x)=NIL,
IF will cause an error.

For some editor commands, the occurrence of an error
has a well defined meanin-, i.e., they use errors to' Lrancli

COND uses NIL and non-NIL. For example, an error
condition in a location specification may simply mean "not
tnis onCf try the next." Thus the location specification

_(*PLUS (E (OR (NUMBERP (## 3)) (ERR NIL)) T))
specifies the first *PLUS whose second argument is a number.
he IF command, by equating NIL to error, provides a more

natural way of accomplishing the same result. Thus, an
equivalent location specification is (*PLUS (IF (NUMBFRP f«
3) j)) .

ihe IF command can also be used to select between two
alternate lists of commands for execution.

(IF x comsl coms2)
If (EVAL x) is true, execute comsl;
if (EVAL x) causes an error or is
eaual to NIL, execute coms2.

For example, the command (IF (NULL A) NIL (P)) will print
the current expression provided A=NIL.

(IF X comsl)

(LP . corns)

If (EVAL x) is true, execute comsl;
otherwise generate an error.

Repeatedly executes corns, a list of
commands, until an error occurs.

For example, (L? F PRINT (N T)) will attach a T at the
end of every PRINT expression. (LP F PRINT (IF (## 3) NIL
((NT)))) will attach a T at the end of each print
expression which does not already have a second argument,
(i.e. ihe form (## 3) will cause an error if the edit
command^ 3 causes an error, thereby selecting ((N T)) as the
list of commands to be executed. The IF could also be
written as (IF (CDDR (##)) NIL ((N T))).)

66

(LPQ Corns)

Vi/hen an error occurs, LP prints n
OCCURRENCES, where n is the number
of times COMS was successfully
executedo The edit chain is left as
of the last complete successful
execution of COMS«

Same as LP but does not print n
OCCURRENCES.

Tor, 4-^" order to prevent non-terminating loops, both LP andQ erminate v/hen the number of iterations reaches MAXLOOP,
initially set to 30.

(ORR corns [1] Corns [n])
ORR begins by executing coms[l], a
^ist of commands. if no error
occurs, ORR is finished. Otherwise,
ORR restores the edit chain to its
original value, and continues by
executing corns [2], etc. If none of
the command lists execute
errors, i.e., the ORR "drops
end", ORR generates an
Otherwise, the edit chain is
of the completion of the
command list which executes
error. (NIL as a command
perfectly legal, and will
execute successfully. Thus,
the last 'argument' to ORR
will insure that the ORR never
causes an error. Any other atom is
treated as (atom), i.e., the example
given belov; could be written as (ORR
NX !NX MIL).)

without

off the

error.

left as

first

without

list is

always
making

be MIL

For example, (ORR (NX) (!NX) NIL) will perform a NX, if
possible, otherwise a -MX, . if possible, otherwise
nothing. Similarly, DELETE could be written
(D) (BK UP (2)) (UP (: NIL))).

as (ORR

2 . 67

do

(UP

Macros

Many of the more sophisticated branching commands in
the editor, such as ORR, IF, etc., are most often used in
conjunction with edit macros.. The macro feature permits the
user to define, new commands and thereby expand the editor's
repertoire. (However, built in commands always take
precedence over macros, i.e., the editor's repertoire can be
expanded, but not modified.) Macros are defined by using the
H command.

(M c corns)

For c an atom, M defines c as an

atomic command. (If a macro is

redefined, its new definition
replaces its old.) Executing c is
then the same as executing the list
of commands COMS.

For example, (M BP BK UP P) will define BP as an atomic
command which does three things, a BK, an UP, and a P. Note
that macros can use commands defined by macros as well as
built in commands in their definitions. For example,
suppose Z is. defined by (M Z -1 (IF (NULL (##)) NIL (P))),
i.e. Z does a -1, and then if the current expression is not
NIL, a P. Now we can define ZZ by (M ZZ -1 Z), and ZZZ by
(M ZZZ -1 -1 Z) or (M ZZZ -1 ZZ).

Macros can also

that take arguments.
define list commands, i. command s

(M (c) (arg[l] arg[n]) . corns)
C an atom. M defines c as a list
command. Executing (eel ... en)
is then performed by substituting el
for arg[l], ... en for arg[n]
throughout COMS, and then executing
COMS.

For example, we could define a more general BP by (M
(BP) (N) (BK N) Up. P). Thus, (BP 3) would perform (BK 3),
followed by an UP, followed by a P.

A list command can be defined via a macro so as to take
a fixed or indefinite number of 'arguments'. The form given
above specified a macro v;ith a fixed number of arguments, as
indicated jay its argument list. If the 'argument list' is
atomic, the command takes an indefinite number of arguments.

2 .

(M (c) args coms)

Name, args both atoms, defines c as
a list commands executing (c el =
en) is performed by substituting (el
° en), ioe», CDR of the command,
for args throughout coms, and then
executing corns.

For example, the command SECOND, p. 2.31, can be
defined as a macro by (M (2ND) X (ORR ((lc . X) (LC
'^)))) ' Note that for all editor commands, 'built in'
commands as well as commands defined by macros, atomic
definitions and list definitions are completely independent.
In other words, the existence of an atomic definition for c
in no way affects the treatment of c when it appears as CAR
of a list command, and the existence of a list definition
for c in no way affects the treatment of c when it appears
as an atom. in particular, c can be used as the name of
either an atomic command, or a list command, or both. In
the latter case, two entirely different definitions can be
used.

Note also that once c is defined as an atomic command
via a macro definition, it will not be searched for when
used in a location specification, unless c is preceded by an
F. Thus (INSERT -- BEFORE BP) would not search for BP, but
instead perLorm a BK, an UP, and a P, and then do the
insertion. The corresponding also holds true for list
commands.

Occasionally, the user will want to employ the S
command in a macro to save some temporary result,
example, the SW command could be defined as

For

(M (SW) (N M) (NTH N)
1 POO) «<- (I 1 FIE))

(S FOO 1) MARK 0 (NTH M) (S FIE 1) (I

(A more elegant definition would be (M
MARK 0 (NTH M) (S FIE 1) (I 1 (##-^-1))
this would still use one free variable.)

(SW) (N
(I 1

M) (NTH N)
FIE)), but

Since SW sets FOO and FIE, using SW may have
undesirable side effects, especially when the editor was
called from deep in a computation. Thus we must always be
careful to make up unique names for dummy variables used in
edit macros, which is bothersome. Furthermore, it would be
impossible to define a command that called itself
recursively while setting free variables. The BIND command

2. 69

solves both problems.

(BIND » corns)

Binds three dummy variables #1, #2,
#3, (initialized to NIL), and then
executes the edit commands COMS.
Note that these bindings are only in
effect while the commands are being
executed, and that BIND can be used
recursively; it v;ill rebind #1, #2,

/ and #3 each ; time it is invokedo
(BIND is implemented by (PROG (#1 #2
#3) (EDITCOMS (CDR COM))) where COM
corresponds to the BIND command, and
EDITCOMS is an internal editor

• function which executes a list of
commands.)

thus we could now write SVJ safely as

(M (SVJ) (N M) (BIND (NTH N) (S #1 1) MARK 0 (NTH M) (S #2 1)
(I 1 #1) (I 1 #2))) ,

User macros are stored on a list USERMACROS.
(USERMACROS is initially NIL.) thus if the user wants to
save his macros, he should save the value of USERMACROS.
(The user probably should also save the value of EDITCOMSL).

2 . 70

Miscellaneous Commands

NIL

Tty;

Unless preceded by F
always a NOP.

or BF, is

Calls the editor recursively. The
user can then type in cominandSf and
have them executed. The TTY:
command is completed when the user
exits from the lower editor. (See
OK and STOP below.)

The TTY: command is extremely useful. It enables the
user to set up a complex operation* and perform interactive
attention-changing commands part way through it» For
example the command (MOVE 3 TO AFTER COND 3 P TTY:) allows
the user to interact, in effect, within the MOVE command.
Thus he can verify for himself that the correct location has
been found, or complete the specification "by hand". In
effect, TTY: says "I'll tell you what you should do when you
get there."

The TTY: command operates by printing TTY: and then
calling the editor. The initial edit chain in the lower
editor is the one that existed in the higher editor at the
time the TTY: command was entered. Until the user exits
from the lov/er editor, any attention changing commands he
executes only affect the lower editor's edit chain. (Of
course, if the user performs any structure modification
commands while under a TTY: command, these will modify the
structure in both editors, since it is the same structure.)
When the TTY: command finishes, the lov/er editor's edit
chain becomes the edit chain of the higher editor.

OK

Exits from the editor^

2 . 71

STOP

Exits from the editor with an error.
Mainly for use in conjunction with
TTY: commands that the user wants to
abort o

Since all of the commands in the editor are ERRSET
protected, the user must exit from the editor via a command.
STOP provides a way of distinguishing betv/een a successful
and unsuccessful (from the user's standpoint) editing
session. For example, if the user is executing (MOVE 3 TO
AFTER COHD TTY:), and he exits from the lower editor with an
OK, the MOVE command will then complete its operation. If
the user v/ants to abort the MOVE command, he must make the
TTY: command generate an error. He does this by exiting
rrom the lov/er editor with a STOP command. In this case,
the higher editor s edit - chain will not be changed by the
TTY: command.

SAVE

For example:

#P
(NULL X)
#F COND P

(COKD (& &)

FOO

(T S))

*(EDITF
EDIT

#P

(COND (&
#\ P
(NULL X)

FOO)

&) (T f,))

Exits from the editor and saves the
state of the edit' on the property

list of the function/variable being
edited under the property EDIT-SAVE.
If the editor is called again on
same structure, the editing
effectively "continued," i.e.,
edit . chain, mark list, value
UNFIND and UMDOLST are restored.

72

the

i s

the

of

SAVE is necessary only if the - user is editing many
different expressions; an exit from the editor via OK always
saves the state of the edit of that call to the editor. (On
the property list of the atom EDIT, under the property name
LASTVALUE. OK also remprops EDIT-SAVE from the property
list of the function/variable being edited.) Whenever the
editor is entered, it checks to see if it is editing the
same expression as the last one edited. In this case, it

restores the mark list, the undolst, and sets UNFIND to be
the edit chain as of the previous exit from the editor. For
example:

*(EDITF
EDIT

#P
(LAMBDA

FOO)

(X) (PROG & & LP S & & &))

(COND & &)
#0K

FOO

#

Any number of inputs except for
calls to the editor.

*(EDITF FOO)
EDIT

((P
(LAMBDA (X) (PROG & & LP & & S &))
#\ P
(COND & &)

The user can always continue editing, including undoing
changes from a previous editing session, if

(1) No other expressions have been edited since
that session; (since saving takes place at exit
time, intervening calls that were exited via STOP
will not affect the editor's memory of this last
session.) or

(2) It was ended with a SAVE command.

73

REPACK

Permits the 'editing' of' an atom or
string.

For example:

#P

... "THIS IS A LOGN STRING")
#REPACK
EDIT

1#P

(/"THIS/ IS/ A/ LOGN/ STRING/")
1#(SW G N)
IdOK

"THIS IS A LONG STRING"

REPACK operates by calling the editor recursively on
UNPACK of the current expression, or if it is a list, on
UNPACK of its first element. If the lower editor is exited
successfully, i.e. via OK as opposed to STOP, the list of
atoms is made into a single atom or string, which replaces
the atom or string oeing repacked. The nev/ atom or string
is always printed.

(REPACK $)

Does (LC . $) followed
e.g. (REPACK THISg).

74

by REPACK,

(MAKEFN form args n m)
Makes (CAR form) an EXPR with the
nth through mth elements of the
current expression with each
occurance of an element of (CDR
form) replaced by the corresponding
element of arcrs»' The jnth through
mth elements are replaced by form •
For example:

#P

" (SETQ A NIL) (SETQ B T)
#(MAKEFN (SETUP C D) (W X) '
- - - (SETUP CD))
#E (GRINDEF SETUP)
(DEFPROP SETUP

(LAMBDA (iJ X) (SETQ A NIL)
EXPR)

#

(CONS

3) P
C D))

(SETQ B T) (COMS V7 X))

(MAKEFN form args n)
Same as (flAKEFN form args n n)

75

UNDO

Each command that causes
automatically adds an entry to
containing the information required
that were changed by the commando

structure

the front

to restore

modification
of UNDOLST

all pointers

UNDO

;UNDO

Whenever the

Undoes the lastf ioOo? most recentf
structure modification command that
has not yet been undone, (Since UNDO
and [UNDO causes structure
modification, they also add an entry
to UNDOLST. However, UNDO and lUNDO
entries are skipped by UNDO, eog.,
if the user performs an INSERT, and
then an MBD, the first UNDO will
undo the MBD, and the second will
undo the INSERT. However, the user
can also specify precisely which
command he wants undone. In this
case, he can undo an UNDO command,
e.g., by typing Ulbo UNDO, or undo a
lUNDO command, or undo a command
other than that most recently _
performed.) and prints the name of
that command, e.g., MBD UNDONE,
edit chain is then exactlv what
was before the 'undone' command
been performed. If there are

The

i t

had

no

command s

SAVED.

to undo, UNDO types NOTHING

Undoes all modifications performed
during this editing session, i.e.,
this call to the editor. As each
command is undone, its name is
printed a la UNDO. if there is
nothing to be undone, "UNDO prints
NOTHING SAVED.

user continues
described on pages 2.72-2.73, the
previous session(s) is protected
blip, called an undo-block on the
undo-block will terminate
confining its effect to

75

an editing session as
undo information of the
by inserting a special
front of UNDOLST. This

the operation of a iUNDO, thereby
the current session, and will

similarly prevent an UNDO command from operating on commands
executed in the previous session.

Thus, if the user enters the editor continuing a
session, and immediately executes an UNDO or iUNDO, UNDO and
lUNDO will^ type BLOCKED, instead of NOTHING SAVED.
Similarly, if the user executes several commands and then
undoes them all, either via several UNDO commands or a lUNDO
command, another UNDO or' lUNDO will also type BLOCKED.

UNBLOCK

TEST

Removes an undo-block. If executed
at a non-blocked state, i.e., if
UNDO or lUNDO could operate, types
NOT BLO.CKED.

Adds an undo-block at
UNDOLST.

the front of

Note ^ that TEST together v/ith
'tentative' mode for editing, i.e., the
number of changes, and then undo all of
lUNDO command.

!U!^DO • provide a
user can perform a

them with a single

•3 -p

#P

(CONS (T &) {& &))
#(1 COND) (SW 2 3)
(COND {& &) (T &))
•a??
SW (1 —)

#

Prints the entries on UNDOLST. The
entries are listed in the reverse
order of their execution, i.e.,
most recent entry first,
example:

77

the

For

Kditdefault

V/henever
built in'

a comnahd not recognized, i.e
or defined as a macro, the editor

internal function, EDITDEFALJLT to determine
takeo If a location specification
internal flag informs EDITDEFAULT
though it had been preceded DV an F.

is not

calls an
what action to

is being executed, an
to treat the command as

If the command is
procedure follo\/ed'i:

atonic and typed
as given belov;.

in directly, the

1)

If the command is one of the list commands, i^e.,
a mem.oer of EDITCOMSL, and there is additional input on
the same teletype line, treat the entire line as a
single list command. (Uses READLIIIE. Thus the line
can be terminated by carriage return, right parenthesis
or square bracket, or a list.) Thus, the user may omit
parentheses for any list command typed in at the top

(v;hich is not also an atomic command, e.g., NX,
. BK). For example:

#P
(COMD (& Si) (T &))
#(XTR 32)
JfMOVE TO /i.FTEP, LP
#

If the command is on the list EDITCOMSL
additional input is on the
generated, e.g.,

HP

(COMD

#MOVE

MOVE

#

2)

teletype line. an

(& &) (T &))

but' no

error is

L-he. last character in the command is P, and the
•Lirst n 1 characters comprise the. command UP,
V' ' , ' UXPOf or REDO, assume that the userintended tv/o commands, e.g..

2 . 78

#p

(COMD {& &) (T &))
#2 NXP

(T (CONS X Y))

3)

Otherwise, generate an error.

79

Editor Functinn.s

(EDITL L corns atm marklst mess)
EDITL i_s the editor. Its first
argument is the edit chain; and its

edit chain; namely the
at the time EDITL is

value is an

value of L

exited. (L
and so can

edit commands

equivalent to
T) .)

is a special variable,
be examined or. set by

For example, t is
(E (SETQ L(LAST D)

Corns is an optional list of
commands. For interactive editing,
soms is NIL. In this case, EDITL
types EDIT and then waits for input
from the teletype. (If mess is not
Nil- EDITL types it instead of EDIT.
For example, the .TTY: command is
essentially (SETQ L (EDITL L NIL NIL
NIL (QUOTE TTY:))).) Exit occurs
only via an OK, STOP, or SAVE
command.

I f coms i s

typed, and
treated as

If an error
of one of

message is printed ,
commands are igno:
exits with an error, i.e
effect is the same as though
command had been executed.
commands execute successfully
returns the

NOT NIL, no me

each member of
a com.mand and executed,

occurs in the execution
the commands, no error

the rest

ed, and

isage

coms

is

i s

of the

EDITL

, the

a STOP

If all

EDITL

current value of L.

Marklst is the list of marks.

On calls from EDITF, Atm is the
of the function being edited;
calls from EDITV, the name of
variable, and calls from EDITP,
atom of which some property of
property list is being edited,
property list of atm is used by
SAVE command for saving the state

2 . 80

name

on

the

the

its

The

the •

of

(EDITF x)

the edit- Thus SAVE will not save

anything if atm^NIL i-e-, when
editing arbitrary expressions via
EDITE or EDITL directly- •

FSUBR function for editing

f.unction. (CAR x) is the name of
the functionr (CDR x) an optional
list of commands. For the rest of
the discussionj fn is (CAR x)? and
coms i s (CDR x)-

If X is NIL, fn. is set to the value
of LASTWORD, coms is set to NIL, and
the value of LASTVJORD is printed.

The value of EDITF is fn.

(1) In the most common case, fri is an non-compiled
function, and EDITF simply performs
(EDITE (CADR (GETL fn (QUOTE (FEXPR EXPR MACRO)))) corns fn)
and sets LASTWORD to fn.

(2) If fn is not.an editable
EDITF assumes the user meant to

calls EDITV and returns.

function, but has a value,
call EDITV, prints =EDITV,

Otherwise, EDITF generates an fn NOT EDITABLE error.

(EDITE expr coms atm)
Edits an expression. Its value is
the last element of (EDITL (LIST
expr) corns atm NIL NIL). Generates
an error if expr is not a list.

2 - 81

(EDITV editvx)

If (CAR editvx)
value given to EDITE,
DICTIONARY)))). In thi

FSUBR function, similar to EDITF,
for editing values. (CAR editvx)
specifies the value, (CDR editvx) is
an optional list of commands.

If editvx is NIL,
value of (NOONS
value of LASTWORD

it is set to the
LASTWORD) and the
is printed.

However,
e.g. (ED.ITV

variable.

is a list, it is evaluated and its
e.g. (EDITV (CDR (ASSOC (QUOTE FOO)

3 case, the value of EDITV is T.

cases, (CAR editvx) is a variable,
EDITV calls EDITE on the value of the

in most

FOO); and

If the value of (CAR editvx) is
prints a NOT EDITABLE error message. atomic then EDITV

When (if) EDITE returns, EDITV sets the variable to the
value returned, and sets LASTVJORD to the name of the
variable.

The value of EDITV
value was edited.

is the name of the variable whose

(EDITP x)

FSUBR function, similar to EDITF for
editing property lists. Like EDITF,
LASTV70RD is used if x is NIL. EDITP
calls EDITE on the property list of
(CAR x). When (if) EDITE- returns,
EDITP RPLACD's (CAR x) With the
value returned, and sets LASTWORD to
(CAR x).

The value of EDITP is the atom whose
property list was edited.

82

(EDITFNS x)

FSUBR function, used to perform the
same editing operations on several
functions. (CAR x) is evaluated to
obtain a list of functions. (CDR x)
is a list of edit commands. EDITFNS
maps down the list of functions,
prints the name of each function,
and calls the editor {via EDITF) on
that function.

For example, (EDITFNS FOOFNS (R FIE FUM)) will change
every FIE to FUM in each of the functions on FOOFNS.

The call to the editor is ERRSET
protected, so that if the editing of
one function causes an error,
EDITFNS will proceed to the next
function.

Thus in the above example, if one of the functions did
not contain a FIE, the R command would cause an error, but
editing would continue with the next function.

The value of EDITFNS is NIL

(EDIT4E pat y)

Note:

begins, the
that end in

form

Is the pattern
value is T if

pp. 2.22-2.23
'match'.

match routine. Its
matches y. See

For definition of

before each search operation in the editor
entire pattern is scanned for atoms or strings
at-signs. These are replaced by patterns of the

(CONS (QUOTE /0) (EXPLODEC atom)).
Thus from the standpoint of EDIT4E, pattern type 5, atoms or
strings ending in at-signs, is really "if car[pat] is the
atom @ (at-sign), PAT will match with any literal atom or
string wnose initial character codes (up to the @) are the
same as those in cdr[pat]."

If the user wishes to call EDIT4E directly, he must
therefore convert any patterns which contain atoms or
trings ending in at-signs to the form recgnized by EDIT4E.

ihis can be done via the function EDITFPAT.

83

(EDITFPAT pat fig)

(EDITFINDP X pat fig)

(EDITRACEFN com)

For example, defineing
(LAMBDA (C)

each command

(LAMBDA (C)

will print

expression.

Makes a copy of pat with all
patterns of type 5 converted to the
form' expected by EDIT4E= Fig should
be passed as NIL (flg[=T is for
internal use by the editor) <.

Allows a program to use the edit
find command as a pure predicate
from outside the editor. X is an
expression, pat 'a pattern. The
value of

command F

otherv/i se.

to convert

by EDIT4E,
the program

EDITFINDP is T if the
pat would succeed, NIL
EDITFINDP calls EDITFPAT

pat to the form expected
unless f1q=T. Thus, if
is applying EDITFINDP to

several different expressions using
the same pattern, it will be more
efficient to call EDITFPAT once, and
then call EDITFINDP with the
converted pattern and fla=T.

Is available

complex edit
calls to the

to be defined
the value of

the editor

to help the user debug
macros, or subroutine

editor. EDITRACEFN is
by the user. Whenever
EDITRACEFN is non-NIL,
calls the function

EDITRACEFN before executing each
command (at any level), giving it
that command as its argument.

EDITRACEFN as

(PRINT C) (PRINT (CAR L)))
and the corresponding current

(BREAKl T T NIL NIL NIL)) will
cause a break before executing each command.

EDITRACEFN is initially
NIL, and undefined.

2 . 84

equal to

:XTENDED INTERPRETATION OF LISP FORMS

Extended Lambda Expressions

VJhen solving problems in . LISP, it is very often convenient
to have a function v/hich executes more than one form but does
not need the variable and label features of PROG. We have added
this capability to UCI LISP by extending LAMBDA expressions to
handle more than one form.

(LAMBDA "ARGUMENT-LIST" "FORMl" "F0RM2' 'FORMn'

When such

arguments

value of

arguments

Examples:

a LAMBDA expression is applied to a list of
each FORM is evaluated in sequence and the
the LAMBDA expression is FORMn (after the
are bound to the LAMBDA variables).

((LAMBDA(X) (CAR X) (CDR
((LAM3DA(X Y) X Y (CONS X

X)) (QUOTE (A))) = NIL
Y)) NIL T) = (NIL . T)

This means that functions defined by DF or DE evaluate
all of forms in their definition, instead of just the
first one as in Stanford's version. The value of the
function is the value of the last form.

WARNING; This is not
expected result.

a PROG; GO and RETURN do not have the

:he Functions PROGl and ppog 11

(PROGl XI X2 ... Xn) .n<6

evaluates all expressions Xl X2
returns XI as its value-

(PROGN XI X2 Xn)

PROGN evaluates all expressions XI X2
returns Xn as its value-

Xn and

Xn and

Conditional Evaluation of ForniF;

(SELECTQ X "Yl" "Y2' "Yn" Z)

This very useful function is used to select a sequence
of instructions based on the value of its first argument
X. Each of the Yi is a list of the form (Si E[l,i]
E[2,i] <. =» E[k,i]) where Si is the "selection key"®

If Si is an atom the value of X is tested to see if it
is EQ. to Si (not evaluated). If sof the expressions
E[l,i] ... E[k,i] are evaluated in seauence? and the
value of SELECTQ is the value of the last expression
evaluated, i.e. E[k,i].

If Si is a list, and if any element
Si is EQ to the value of X, then E[l,
evaluated in turn as above.

(not evaluated) of
i] •.. E[k,i] are

If Yi is not selected in one of the two v;ays described
then Y[i+1] is tested, etc. until all the Y's have been
tested. If none is selected, the value of SELECTQ is
the value of Z. Z must be present.

An example of the form of a SELECTQ is;

(SELECTQ (CAR 'W)
(Q (PRINT FOG) (FIE V7))
((A E I 0 U) (VOWEL VI)) .
(COND (W (QUOTE STOP))))

which has two cases, Q and
condition which is a COND.

(A E I 0 U) and a default

SELECTQ compiles open, and is therefore very fast;
however, it will not work if the value of X is a list, a
large integer, or floating point number, since it uses
EQ"

Changes to the Handling of Errors

(ERRSET E "F")

ERRSET has been changed slightly. if F=NIL the error
message is suppressed and the error will not cause a

Package. If f is not given then
assumes that F=T. if f =0 ' (i.e. zero) then the

error message ^will be printed on the current output
device, otherv/ise it will be printed on the teletype.

(ERR E)

There is now a special case of ERR. if the value of E
is ERRORX,, then ERR will return to the most recent
ERRSFT which has F^ERRORX. This allows two levels of
user errors. if a Control-G is typed in by the user it
generates a (ERR (QUOTE ERRORX)). This means that the
user can now protect himself against this type of input
error.

(ERROR E)

ERROR generates a real LISP error,
printed (unless

E is evaluated and
srror messages are suppressed) and then

a break occurs just as for any other LISP error.

Miscellania

(APPLY# FN ARGS^

APPLY # is similar to APPLY except that FN may be a
function of any type including MACRO. Note that when
either APPLY or APPLY# are given an EXPR as their first
argumentf the second argument is evaluated by APPLY# or
APPLY» but the elements of the resulting list are
directly •• bound to the lambda variables of the first
argument, and are not evaluated again even though it is
an EXPR.

Examples:
(APPLY# (QUOTE PLUS)
(APPLY# (QUOTE CONS)

(QUOTE (3 2 2))) = 7
(LIST (QUOTE A) (QUOTE B))) =

(NILL "XI" "X2" "Xn") = NIL

(A . B)

This function, allows the user to stick S-Expressions in
the- middle of a function definition (e.g. as a PROG
element) without having them evaluated or otherwise
noticed. NILL is also useful for giving a dummy
definition to a function which has not yet been defined.

EXTENSIONS TO THE STANDARD INPUT/OUTPUT FUNCTIONS

Proiect-ProarammGr Numbers for Disk I/O

In all I/O functions (including INPUT and OUTPUT), the use.of a
two element list (not .a dotted pair) in place of a device will
cause the function to assume DSK: and use the list as the
project-programmer number.

I

Saving Function Definitions, etc. On Disk Files

(DSKOUT "FILE" "EXPRSLIST")

DSKOUT is an FEXPR and is used to create an entire
output file on disk file DSK: "FILE". It sets the
linelength to LPTLENGTH, and evaluates all of the
expressions in "EXPRSLIST". If an expression on
"EXPRSLIST" is atomic, then that atom is given to GRINL
instead of being evaluated directly. If the value of
FILBAK is non-NIL and the file already exists, DSKOUT
will attempt to rename the file with an extension of the
value of FILBAKo An error message will be printed on
the TTY: if the file cannot be backed up. FILBAK is
initially set to LBK.

For example, if FNLIST is a list of your functions, they can be
saved on a disk file, FUNGS.LSP by:

(DSKOUT (FUNGS.LSP) FNLIST (PRINT (QUOTE END-OF-FILE)))

and the file FUNGS.LSP will be renamed to FUNGS.LBK if it
already exists.

4 . 1

Reading Files Back In

(DSKIN "LIST OF FILE-NAMES")•

READ-EVAL-PRINTs the contents of the given fileso This
is the function to use to read files created by DSKOUT.

Example:

(DSKIN (FUNGS»LSP) DTAO: (DATA.LSP))
Reads FUNCSoLSP from DSK: and DATA.LSP from DTAO:.

(DSKIN (667 2) (DSKLOG.LSP))
Reads DSKLOG.LSP from the disk area of [667,2] .

4.1.1

Reading Director i rf;

The following functions are for reading directories. UFDINP is
analogous to the function INPUT in that it opens a file on a
specified channel. The channel must be selected via INC in
order to be read. The file is opened in binary image mode and
snould not be read by the normal LISP read functions. All
functions are SURRS and thus evaluate their arguments.

(UFDINP CHANNEL PPN)

UFDINP opens the directory of • PPN on •CHANNEL. ' It
returns the value of CHANNEL as it's result. PPN is
either of the form (PROJ PROG) v;here PRGJ and PROG are
both inums or NIL. If PPN is NIL the user's directory
is assumed.

EXAMPLE

*(UFDINP T (QUOTE (2206,1)))

(RDFILE)

EXAMPLE

RDFIhE returns the next file in the directory that is
open on the current input channel. It return a file
which is either an atom or an atomic dotted pair. It
does an (ERR EOF) when it reaches the end of file.

*(PROG (X) (INC (UFDINP T NIL) NIL)
(SETQ X (ERRSET (RDFILE)))
(INC NIL NIL)
(COND ((CONSP X)(RETURN (CAR X)))

(IHIT o LSP)

1 . 2

(DIR PPIil

EXAMPLE:

DIR. returns a list of files from the directory of PPN.
If PPN is NIL, the user's directory is assumed^

(DIR (QUOTE (2206 4)))

((INIT = L3P) (FOG -LSP) MYFILE))

1 « 3

File Manipulation

The following functions enable the user to manipulate files in
those directories to which he has legitimate access. The
definition of access privileges is '• system dependent. These
runctions use the RENAME UUO to effect the desired
manipulations. A FILESPEC is defined as follows:

(DEV FILNAM)

A DEV is either an atom whose last ' character is a colon, I.E.
DSK: or a a list of the form:

(PROJ PROG)

where PROJ and PROG are both numbers. DEV is optional and if
ommitted the user's disk area is assumed.

A 1.^ ILNAM is either an atom or an atomic dotted pair.

EXAMPLE;

MYFILE

(FILE . EXT)

(*RENAME FILESPECT FILESPEC2)

^RENAME is a SUBR that renames FILESPECl to FILESPEC2.
It returns T if the rename is successful and NIL if it
fails. If a device is specified in FILESPECl and no
device is specified in FILESPEC2 the device snecified in
FILESPECl is carried over to FILESPEC2. Thus:

{^RENAME (QUOTE ((2206 4)(F00 . LSP)))
(QUOTE ((FOO . BAK))))

is equivalent to:
(*REnAME (QUOTE ({2206 4)(FOO . LSP)))

(QUOTE ((2206 4)(FOO . BAK))))

If no device is specified in either FILESPEC, the user's
disk area is assumed.

(RENAME DEVI FILNAMl DEV2 FILMAM2)

RENAME is an FSUBR that renames FILNAMl to FILNAM2. The
DEV s are optional. If DEV2 is not specified, DEVI is
assumed. If^both DEV's are not specified, the default
IS the user s disk area. RENAME returns T if the

.renaming is successful and' NIL if it fails.

EXAMPLES:

*(RENAME DSK: (FOO . LSP)(FOO , BAK))

T

*(RENAME FOO FIE)

T

*(RENAME (2206 4)(FOO . LSP)(2206 3)(FOO . LSP))

T

(DELETE DEVI FILNAMl DEV2 FILNAM2 .
1

is an FSUBR that deletes the files in the list,
ite D^-^ s are optional, and a DEV is effective over the

FILNAM's until a new DEV is encountered.
DELETE always returns NIL. The user's disk area is
assumed if no DEV has been specified.

EXAMPLES:

*(DELETE FOO (FOOl . LSP) (2206 4) (OLDFIL - COM))

NIL

(FILBAK FILE NEWEXT) !

FILBAK is a SUBR that attempts to rename FILE with the
extension of NEWEXT. FILE can be either a FILNAM or a
FILSPEC. FILBAK returns T if the renaming was
successful and NIL if it fails.

EXAMPLES:
I _ ' "

(FILBAK (QUOTE FOG)(QUOTE BAK))

will rename the file FOO to FOO.BAK.

(FILBAK (QUOTE (FOO'. LSP))(QUOTE BAK))

will rename the file FOO.LSP to FOO.BAK.

(FOO . LSP)))

(MYPPN)

(FILBAK (QUOTE ((2206
(QUOTE BAK))

will rename the file FOO.LSP[2206,4] to FOO.BAK[2206,4].

MYPPN returns the user's project programmer number in a
form suitable for use by the directory and I/O
functions.

EXAMPLE:

*(MYPPN)

(2206 4)

(LOOKUP DEV FILNAM)

LOOKUP is a. SUBR that determines whether the file DEV
FILNAM exists or not. LOOKUP returns NIL if it can't
find the file and (LIST DEV FILNAM) if the file does
exist. If DEV is NIL, DSK: is assumed and (LIST FILNAM)
is returned.

Queueing Files

(QUEUE QNAH: DEV: FILHAM. SVJITCHES DEV: FILUAM SVJITCHES

QUEUE is an FSUBR that queues files to the specified
device or queue« It is essentially the same as the
monitor command QUEUE, both in syntax and effect- The
main use of this function is to get output to line
printer, paper tape punches etc- However, the input
queue can also be specified in order to batch a job-

A queue name QNAM: is an atom "of three to six letters

whose last letter is a colon- The first three letters
indicate the general queue (see below) and the following
letters indicate the specific queue-

LPT =LINE PRINTER QUEUE
PTP =PAPER TAPE PUNCH QUEUE
PLT ^PLOTTER QUEUE

CDP =CARD PUNCH QUEUE
INP =JOB BATCH QUEUE

Thus (QUEUE LPT: would queue to the line
without specifying a specific line' printer
(QUEUE LPTO: would queue to line printer 0.
the monitor command, if the queue name QNAM:
specified, the default is to LPT:-

printer
- queue.

As in

is not

If an INPUT queue is specified, a maximum of two files
is permitted. The second file is taken as the name of
the log file- If it is not specified, the filename of
the first file v;ith an extension of -LOG is assumed-

1 - 7

Switches consist of tv/o element lists,
element being the switch and the second
In the case of a required non-numerLc value (as in
DISP) only the first three letters of the argument
are looked at i.e. PRESERVE and PRE are equivalent.

the first

the value.

SVJITCH ARGUMEM':

COPIES NUiiERIC

FORM

LIMIT

DISP

CPU

MOM-NUMERIC

NUMERIC

'PRE'

'REN'

'DEL'

NUMERIC

EXPLANATION

MUMF3ER OF COPIES

TO BE OUTPUT

FORMS FOR DEVICE

OUTPUT LIMIT

PRESERVE FILE

RENAtlE FILE OUT OF

DIRECTORY AND DELETE
AFTER SPOOLING ALL

DELETE AFTER SPOOLING ALL

MAXIMUM CPU SECS FOR JOB INP ONLY

QUEUES ALLOVJED

LPT,PTP,CDF,PLT

LPT,

LPT,

ALL

PTP,COP,PLT

PTP,CDP,PLT

Defaults are system defined except for DISP v/hich
defaults to PRE so that all files aie preserved.

As in the monitor command, switches are in effect
until superseded by another instance of the switch.
Switches may precede the first file or device.

DEV s are either an atom whose lasi; character is a
colon or a ppn specification. A device affects
only the files following it. It is superseded by
another device. If no device is specified, DSK: is
assumed.

ilxarT'.Dlfjs:

(QUEUE LPT.V DSK: FOO (FOO « LSP))

Prints the files FOO and FOO.LSP on the line
printer o

*(QUEUE LPT: (FOO . LSP)(COPIES 2))

Prints two copies of FOO.LSP on the line printer.

*(CUEUE lUP:' (FOO V- CTL))

Queues a job using FOO.CTL as its command file,
leaving a LOG file in FOO.I,OG.

*(QUEUE IMP: (FOO . CTL)(FOO . LOG))

Same as above.

Recovery From 0MANOR Errors

The QUEUE function -inust swap the LISP hioh segment for the
LMANGR high segment. It then transfers control to the
QMAI-^GR -high segment. In most cases, if QHANGR finds
error, it simply prints an error message. In a "
hov/ever, it returns control to the
command will restore the
processing will continue. Note that in thi
system does not wait for control characters.

an

few cases,
monitor. The REE

appropriate high segment and
instance, the

A .START command to the monitor will also restore the
user s high segment. However, this is not recommended as
the reallocation procedure will be entered.

4 . 1 . 10

Printing Circular or Deeply Nested List.?^

(PRINTLEV EXPRESSIOH DKPTH

PRIMTLEV is a printing routine, similar
PRINTLEV, however, only prints to a depth of DEPTH» In
addition, PRINTLEV recognizes lists which are circular
down the CDR and closes these with '.o.]' instead of

) « The combination of these two features allows
PRIMTLEV to print any circular list without an infinite
loop =

to PRirr

The value of PRINTLEV is the value of EXPRESSION. This
means that PRINTLEV should not be used at the top level
if EXPRESSION is a circular list structure,, since the
LISP executive would then attempt to print the circular
structure which is returned as the value.

Spacing Control

(TAB H)

37^ tabs to position N on the output line doing a TERPRI
if the current position is already past N. Note should
be taken that TAB outputs spaces only when necessary and
outputs tab characters otherwise.

"Pretty Printing" Function Definitions and S-Expressions

(GRIIIDEF "Fl" "F2" "r3" o.. "FN"V

GRINDEF is used to print the definitions of functions
and the values of variables in a format suitable for
reading back in to LISP, in what is known as DEFPROP
format- GRIMDEF uses SPRINT (see below) to print these
s-expressions in a highly readable form,at, in which the
levels of list structure (or parentheses levels) are
indicated by indentation- GRINDEF prints all the
properties of the identifiers Fl, F2, .00, Fn which
appear on the list GRINPROPS. If Fi is non-atomic, it
will be SPRINTed-

GRINPROPS

The variable GRINPROPS contains the properties which
will be printed by GRINDEF. This variable can be set by
the user to print special properties which he has placed
on atoms. The initial value of GRINPROPS is (EXPR FEXPR
MACRO VALUE SPECIAL).

(GRINL "Fl" "F2" ..c "FN'M

GRINL causes all of the atoms, "Fl" "F2" ... "Fn", and
all of the atoms on the lists vjhich are the values of
the atoms Fl F2 ... Fn to be GRINDEFed. GRINL
correctly prints out read macros and is the only
function which does. GRINDEF does not save the
activation character for the read macros. V-Jarnina ^ Each
Fi must be an atom.

(SPRINT EXPR TND^

SPRINT is the function which does the "pretty printing"
of GRINDEF. EXPR is printed in a human readable form,
with the levels of list structure shov^n by indentation
along the line. This is useful for printing large
complicated structures or function definitions. The
initial indentation of the top level list is IND-1
spaces. In normal use, IND should he aiven as 1.

Reading V7hole Lines

giHEREAD 1

LINEREAD reads a line, returning it as a listc If some
expression takes more than one line or a line terminates
in a comma, space or tab, then LINEREAD continues
reading until an expression ends at the end of a line.
This is the function used by the EDITOR and BREAK
Package supervisors to read in commands, and may be.
useful for other supervisor-type functions.

Example:

*(LINEREAD)
*A B (C D
*E) F G

(A B (C D E) F G)

*(LINEREAD)
*A B (C D E) ,
*F G

(A B (C D E) F G)

•4

Teletype and Prompt Character Control Functions

(CLRBFI)

CLRDFI clears the Teletype input buffer.

(TTYECHO

TTYECHO complements the Teletype echo switch,
of TTYECHO is T if the echo is being' turned
if it is being turned off.

The value

on, and NIL

'PROMPT

The LISP READ routines type
the user when they expect
This character is normally „
prompt character. N is the ASCII
new prompt character.

out

to

a "prompt
read from

II * 11

character" for
the teletype.

PROMPT resets this

representation of the

The ASCII representation of the old prompt character is
returned as the value of PROMPT. (PROMPT NIL) returns
the current prompt character without changing it.

Example:

*(PROMPT
52

53

(INITPROHPT N'

VJhenever LISP is forced back to the top level (e.g. by
an error or Control-G), the prompt character is reset.
INITPROMPT is similar to PROMPT except that it sets the
top level^ prompt character. (INITPROMPT NIL) returns
the ASCIi value of the top level prompt character
v/ithout changing it.

(READP)

(UHTYI)

Rii-ADP returns T if a character can be input and MIL
otherv/isco P.EADP does not input a character.

UNTXi "unreads" a character (such as a character
input by a.TYi or a READCH), so that the next call
to READ, TYI, etc., v;ill pick up the UNTYI'ed
character as the next character to be read, and
returns the ASCII code ' for that chara..cter. Mote:
In the LISP READ routine, an aton nay be terninated
either by a break character (a character which must
be interpreted by READ as well as serving to
terminate the atom, such as "[", and "o")
or a separator character (a character used only to
separate atoms, etc., but not in itself meaningful,
such as carriage return or blank). in order to
save a break character for later interpretation,
the LISP READ routines use a one-charaacter buffer.
UMTYI simply stores its argument in this buffer;
thus there are tv/o problems in usihn UMTYI. First,
if UMTYI is used several times in succession v/ith
no intervening READ's, TYI's, etc.,then onlv the
most recent character is actually "unread"--all
others are lost. • Second, ' if there is a break
character in the one-character buffer v/hen an UMTYI
is performed, the break character will be lost.

Example:

The following example illustrates how the next
character may be examined without affecting the
read routines:

*(DE PEEKCO (UMTYI (TYI)))

*(PROG () (CLRBFI) (PESKC) (RETURM (TYI))

*A

101

(ERRCH M)

ERRCH changes
(ERR (QUOTE
representation

the bell character that causes an
ERRORX)). M is the ASCII

of the character. EP.RCH returns the

ASCII representation of the old character. Note
that If the new character is not a break character
to the monitor, it v/ill not be processed until it
is read in the normal course of reading.

.5.2

READ MACROS - Extending the? LISP READ ROUTTNK

Read r-5acros allow the user to specify a function to be
executed each time a selected character is read during input of
his da^a or programs. This function is generally used to
produce one or more elements of the input list which are built
up in some way from later characters of the input string. There
are two types of Read Macros; Normal Read Macros whose result is
used as an element of the input list in the position where the
macro character occurred, and .Splice Macros whose result (must
be a list v/hich) is spliced sequentially into the input list.

warning: Read macro characters will not be recognized if they
occur inside of an atom name unless the character is' first
defined to be equivalent to a break or separator character (e.g.
space or comma) using MODCHR.

Functions for Definincr Read Macros

(CRM "CHARACTER" "FlINCTTON")

CHARACTER^^ is defined as a Normal Read Macro with
FUNCTION" being a function name or a LAMBDA expression

ol no arguments which will be evaluated each time
CHARACTER is detected as a macro during input. FUNCTION
is put on the property list of CHARACTER under the
property READMACRO. The value of DRM is CHARACTER.

Examol er.: (DRM * (LAMBDA ()
(DRM = (LAMBDA ()

(NCONS (READ))}
(REVERSE (READ)))

(DSM "CHARACTER" "FUNCTION")

is exactly like DRM except that CHARACTER is defined
as a Splice Macro.

Example: (DSM : (LAMBDA () (CONS NIL (READ))

Using- Read Macros

The use of Read Macros is best described with examples.
The Read i-'lacros defined above will be used for the examples.

Example 1

If the expression (A B C = (D E F) G H) is read in the
apparent input will be (ABC (FED) G H).

Example 2 i

If (iOOl F002 *F003 F004) is read the apparent input is
(FOOl F002 (F003) F004).

In each case the associated function was evaluated and the'
result v/as returned as the next element of t.he input list.

Example 3

Reading (ATI :(AT2 AT3) AT4) will result in
(ATI NIL AT2 AT3 AT4).

Example 4

If the input is (AA AB :AC) the result is (AA AB NIL . AC).

It can be seen that the effect of a Splice Macro is to
place the result of the function evaluation into the input
scream minus the outermost set of parentheses.

4 . 7

Hodifving thp. READ Control Tahl o

Since the LISP READ routines are table driven, it is
redefine the meaning of a character by changing its

entry. In each of the follov/ing functions CH i s the ASCII
representation of the character being modified.

(MODCHR CH rn

The value of MODCHR is the old table entry for CH. if n
IS non-NIL it must be a number which represents a valid
table entry. The entry for CH is changed to N. if n is
NIL, no change is made, e.g. to make a letter (so it

'mODCHR''lorHl"n. "

(SETCHR CH T]^

JJTCHR is Similar to MODCHR except that it only modifies
the portion of the entry associated with read macros.

4 .

Reading v/ithout Interning

(RDNAM)

RDNAM functions in the same manner as READ except that
it does not intern the . atoms that it reads. Thus an
atom read by RDNAM and an atom read by READ are * *NOT * *
m- •

Example:

*(PROG (
*F00

*F00

NIL

(CLRBFI) (RETURN (EQ (RDNAM) (READ))))

4 . 9

Example:

MEVJ FUNCTIONS ON S-EXPRESSIONS

S-Expression Building Functions

(TCONC PTR XM

TCONC is useful for building a list by adding elements
one; at a time at the end. This could be done with
NCONC. However, unlike MCONC, TCONC does not have to
search to the end of the list each time it is called.
It does this by keeping a pointer to the end of the list
being assembled, and updating this pointer after each
call. The savings can be considerable for long lists.
The cost is the extra word required for storing both the
list being assembled, and the end of the list. PTR is
that v/ord: (CAR PTR) is the list being assembled, (CDR
PTR) is (LAST (CAR PTR)). The value of TCONC is PTR,
with the appropriate modifications to its CAR and CDR.
Note that TCONC is a destructive operation, using RPLACA
and RPLACD.

*(MAPC (FUNCTION (LAMBDA (X) (SETQ FOO (TCONC FOO X))))
(QUOTE (5 4 3 2 1)))

*F00

((54321)1)

can be initialized in two v/ays. . If PTR is NIL,
TCONC V7ill make up a ptr. In this case, the program
must set some variable to the value of the first call to
TCONC. After that it is unnecessary to reset since
TCONC physically changes PTR thus:

*(SETQ FOO (TCONC NIL 1))
((1)1)
*(MAPC (FUNCTION (LAMBDA (X) (TCONC FOO X)))

(QUOTE (4 3 2 1)))

'*FQO

{(1 4 3 2 1)1)

If PTR is initi3lly (NIL) « thG valUG of TCONC is thG
same as for PTR=NIL, but TCONC changes PTR, G.g.

*(SETQ FOG (NCONS NIL))
(NIL)

*(MAPC • (FUNCTION (LAMBDA (X) (TCONC FOO X)))
(QUOTE (5 4 3 2 1)))

*F00

((54321)1)

ThG latter method allov7s the program to initialize, and
then call TCONC without having to perform SETO on its
value-

(LCONC PTR X)

Where TCONC is used to add elemen ts at the end of a
list, LCONC is used for building a list by adding lists
at the end- For example:

*(SETQ FOO (NCONS NIL))
(NIL)
*(LCONC FOO (LIST 1 2))
((12)2)
*(LCONC FOO (LIST 3 4 5))
((12345)5)
*(LCONC FOO NIL)
((12345)5)

Note that LCONC uses the same pointer conventions as
fCONC for eliminating searching to the end of the list,
so that the same pointer can be given to TCONC and LCONC
interchangeably-

*(TCONC

((1 2
*(LCONC
((123

FOO

5

FOO

4 5

3 4

NIL)

NIL) NIL)
(LIST 3 4

NIL 345

5))
5)

5 o 2

S-Expression Transforinina Function:

(NTH X H)

The value of NTH_ is the tail of X beginning with the Nth
element, e.g. if ?.i =2, the value is (CDR X), if N=3,
(CDDR X), etc. If n=l, the value is X, if N=0, for
consistency, the value is (CONS NIL X).

(REMOVE X T.I

Removes all top level occurrences of X from the list L,
giving a COPY of L with all top level elements EQUAL to
X removed.

(COPY X)

The value of COPY is a copy of X. COPY is eatn'valont
to: (SUBST 0 0 X).

(LSUBST X Y Z)

Like SUBST except X is substituted as a segment. Mote
that if X is MIL, LSUBST returns a copy of Z with all
Y s deleted. For example:

(LSUBST (QUOTE (A B)) (QUOTE Y) (QUOTE (X Y Z))) = (X A B Z)

5 . 3

S-Expression Modifvincr Functions

All these functions phvsica11v modi fv their arguments bv
changing appropriate CAR's and CDR's.

(DREMOVE X T,1

Similar to REMOVE, but uses ^ instead of EQUAL, and
actually modifies the list L when removing X, and thus
does not use any additional storage* More efficient
than REMOVE.

MOTE: If X = (L ... L) (i.e. a list of any length all
of whose top level elements are EC to L) then the value
returned by (DREMOVE X L) is NIL, but even after the
destructive changes to X there is still one CONS cell
left in the modified list v/hich cannot be deleted. Thus
if X is a variable and it is possible that the result of
(DREMOVE X L) might be NIL the user must set the value
of the variable given to DREMOVE to the value returned
by the function.

(DREVERSE T, 1

The value of (DREVERSE L) is EQUAL to (REVERSE L), but
DREVERSE destroys the original list L and thus does not
use any additional storage. More efficient than
REVERSE.

(DSUBST X Y

Similar to SUBST, but' uses ^ and does not copy Z, but
changes the list structure Z itself. DSUBST substitutes
with a copy of X. More efficient than SUBST.

5 . 4

Mapping Functions v/ith Several Arcrurnents

Ml of. .the map functions have been extended to a llov; called
.functions which need more than one arc?ument» The function FM to
be called is still the first argument. Arguments 2 thru N (N <
7) are used as arguments 1 thru N-1 for FN. If the arguments to
the map functions are of uneoual length? the map function
terminates when the shortest list becomes NIL. The functions

same the previous definitions of the functions
when used with tv/o argument:

Example.;. This v/ill set the values of A, B and C to 1, 2 and 3
respectively.

I

* (MAPC (FUNCTION SET) (QUOTE (A B C)) (QUOTE (1 2 3)))

NIL

Mapping Functions Which Use NCOMC

The functions MAPCON and MAPCAH produce lists by NCONC to
splice together the values returned by repeated applications of
their functional argument»

MAPCOiI and MAP CAM are especially useful in the case v/here
the function returns NIL« Since NIL does not affect a list if
NCONC ed to iti the output from that function does not appear in
the result returned from MAPCON or MAPCANo For example, a
function to remove all of the vowels from a word can be easily
v/ritten as:

(READLIST (MAPCAN (FUNCTION VOWELTEST) (EXPLODE VJORD)))

where VOVJELTEST is a procedure which takes one argument, LET,
and returns NIL if LET is a vowel, and (LIST LET) otherwise"

(MAPCON FM ARC)

MAPCON calls the function FN to the list ARC" It then
takes the CDR of ARC and applies FN to it« It continues
this until ARC is NIL. The value is each of the lists
returned by FN NCONC'ed together.

For a single list MAPCON is equivalent to:
(DE MAPCON (FN ARC)

(COND ((NULL ARC) NIL)
(T (NCONC (FN ARC)

(MAPCON FN (CDR ARC))))))

Example

* (MAPCON (-FUNCTION COPY) (QUOTE (1 2 3 4)))

(1 23423434 4)

(MAPCAN FN ARC)

(MAPCONC FN ARC)

MAPCAN is similar' to MAPCON except it
CAR of ARC instead of the whole list.

calls FN with the

—Expression Searching and Substitution Funct-i on:

(SUBLIS ALST EXPP1

ALST is a list of pairs ((U1 . vl) (02 . V2)
(On o Vn)) with each Ui atonic- The value of SUBLIS is
the result of substituting each V for the corresponding
U in EXPR

Exarnnle:

*(SUBLIS (QUOTE ((A . X) (C . Y))) "(QUOTE (A B C D)))
(X B Y D)

New structure is created only if needed, e-g. if there
are no substitutions, value is ^ to EXPR.

(SUBPAIR OLD NEW EXPR)

Similar to SUBLIS except that elements of NEW are
substituted for corresponding atoms of OLD in EXPR.

Example:

*(SUBPAIR (QUOTE (A C)) (QUOTE (X Y)) (QUOTE (A B C D))1
(X B Y D)

Note. SUBLIS and SUBPAIR do not substitute copies of the
appropriate expression, but substitute the identical structure.

(ASSOC# X Y)

Similar to ASSOC., but uses EQUAL instead of EQ.

5 . 7

(LDIFF X Y)

Y must be a tail of X, i.e. to the result of applying
some number of CDR s to X. LDIFF gives a list of all
elements in X but not in Y, i-Oo, the list difference of
X and Y. Thus (LDIFF X (MEMB FOO X)) gives all elements
in X up to the first FOO.

Note that the value of LDIFF is alv/ays new
structure unless Y=!nL, in which case (LDIFF v t.
itself.

list

XA i'JIL) is

If Y is not a tail of X# LDIFF generates an error.
LDIFF terminates on a NULL check.

5 . 8

Efficiently VJorkina with Atoms as Character Strings

(FLATSIZEC L) = (LENGTH (EXPLODEC L))

(HTHCHAR X in = (CAR (MTH (EXPLODEC L) N)) if N>0
,= (CAR (NTH (REVERSE (EXPLODEC L)) N)) if N<0

= NIL if (AB3 N) = 0 or > (FLATSIZEC L)

Note: The above functions do not really perform the operations
listed" They actually use far moire efficient methods that
require,no CONSes, but the effects are as given.

(CHRVAL XI

CHRVAL returns the ASCII representation of the first
character of the print name of X.

HEVJ PPEDICATES

Data Type Predicateg

(COMSP >n

The value of COMSP is X iff X is not an atom.
COMSP is equivalent to:

(LAMBDA (X) (COMD ((MOT (ATOM X)) X)))

Examples: (COMSP T) = MIL
(COMSP lo23) - MIL

.(COMSP (QUOTE (X Y Z))) = (X Y Z)
(COMSP (CDP (QUOTE (X)))) =NIL

ISTRINGP_X1

The value of STRIMGP is T iff X is a strinoo

(PATOM X)

The value of PATO'I is T iff X is an atom or X is a
pointer outside of free storage.

(LITATOM X^

The value of LITATOM is T iff X is a literal atom,
i.e., an atom but not a number.

Alphabetic Ordering Predi Crfl-.p

(LEXORDER X Y)

The value of LEXORDER
or equal to Yo note:

numeric arguments are
atoms«

is T iff X is lexically less, than
Both arguments must be atoms and
all lexically less than symbolic

Examples: (LEXORDER (QUOTE ADC) (QUOTE CD))
(LEXORDER (QUOTE B)' (OUOTE A))
(LEXORDER 123999 (QUOTE A))
(LEXORDER (QUOTE B) (QUOTE R))

6 . 2

= T

= MIL

= T

= T

Predicates that. Return Useful Mnn-NIL Vnlnps

(MEMBER X

MEMBER is the same as the old .MEMBER except that it
returns the tail of Y starting at the position v/here X
is foundo

Exam.n 1 es:

(MEMBER (QUOTE (C D)') (QUOTE ((A B)(C D)E)))
= ((C D) E) ,

(MEMBER (QUOTE C) (QUOTE C))) =NIL

(MEMB X Y)

(MEMO X

MEM2 is the same as the old MEMO except that it returns
the tail of Y starting at the position where X is found»

Examples;

(MEMQ (QUOTE (C D)) (QUOTE ((A B)(C D)E))) = NIL
(MEMB (QUOTE A) (QUOTE (Q A B))) = (7^ B)

(TAILP y V)

The value of TAILP is X iff X is a list and a tail of Y
i«G=, X is ^ to some number of CDRs & 0 of Y.

(AND XI X2—° • •> XnJ. = Xn if all Xi are non-NIL
= NIL otherv/ise

_l0R XI X2—- ' ' Xn) = The first non-HIL argument
= NIL if all Xi are NIL

I

''c ° functions only evaluate as manvarguments as necessary to determine the' answer (e =gl
ikiD stops evaluation after the first NIL argument).

G . 3

Other Predicates

fNEO X Y)

Example;

The value of HEQ. is T iff x is not to Y.
NEC is equivalent to:

{LAMBDA(X Y) (XOT (EQ X Y)))

= IlIL(NEQ T T)
(NEQ T hid; = T
(NEQ (QUOTE A) (QUOTE B))
(MEQ 11.0) = T
(NEQ 11) = NIL
(MEQ 1.0 1.0) = T

= T

Minimum and Maximum

(*MIN X \')

(MIN X] y? Xn)

(*MAX X Y)

(MAX XI X2 ...

(INUMP xn

NEW NUMERIC FUNCTIONS

= Minimum of X and Y

= Minimum of XI, X2, ... , xn

= Maximum of X and Y

= Maximum of XI, X2, ... , Xn

INUMP returns X iff x is an INUM. it returns NIL
otherv/ise.

(NUMTYPE XI

NUMTYPE returns FIXNUM if the number X is a fixed point
number and FLONUM if it is a floating point number.

FORTRAN Function.q in LI.SP

It is now possible to use the FORTRAN Math
Functions in LISP. Thin allows the user to perform
conputations that previously were difficult to do in
u±bp. All funcrions return FLONUMs for values but nav
have either a FLOMUH or a FIxnUM for an argument.

Arithmetic Package execute the
roiiowing at the top level of LISP:

*{INC(INPUT SYS: (ARITH.LSP)))
<SEQUENCE OF OUTPUT>
*(LOAD)SYS:ARITHS
<LOADER TYPES BACK>
*(ARITH)

Arithmetic Package into

SPACF Package into BINARY PROGRAM.SPACn type (LOAD i,) instead of (LOAD)o

Available Functions

F unction Name f-leanina

SIJ]

SIND

COS

COSD

'j^AN Tangent
Arc Sine

Arc Cosine

Arc Tangent
Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic Tangent
Log base e

" Take e to a pov/er
Square Root
Convert to a FLONUM
Generates a random number
between 0.0 and 1.0

Sine with argument in radians
Sine with argument in degrees
Cosine with argument in radians
Cosine with argument in degrees

7 . 2

FUMCTIONS FOR THE SYSTEM BUILDER

Loading Compiled Code into the' High Segment

The UCI LISP System has a sharable high segment" This high
segment contains the interpreter, EDITOR, BRE;^K package, and all
of the utility functions.. If the user wants to create his own
system he must be able to load compiled code into the high
segment" To allow the loading of code into the high segment,
the user must both ovm the file and have write priveleges; to be
write priveleged, the user must either be creating the system
from UCILSPoREL (see the section on creating the system) or
follow the procedure indicated in the function SETSYS. The
follov/ing three functions are for the purpose of loading code
into the high segment and will only work if the user is v;rite
priveleged.

(HGHCOR X]

If X-NIL the "read-only" flag is turned on (it is
initially on) and HGHCOR returns T. Otherwise X is the
amount of space needed for compiled code. The space is
then allocated (expanding core if necessary), the
"read-only" flag is turned off and HGHCOR returns T.

(HGHORG X)

If X NIL the address of the first unused location is
returned as the value of HGHORG. Otherwise the address
of the first unused location is set to X and the old
value of the high seg. origin is returned.

(HGHEHD)

The value of HGHEND is the address of the last unused
location in the high seg.

8 . 1

(SETSYS DEVICE FTT.F.'

SETSYS enables the user to create his own sharable
system. DEVICE is either a project-programmer number or
a device name follov;ed by a colon (i.e. DSK:) ., FILE is
the name of the system the- user is creating. In order
to create the system, the user must Control-C out and do
an SSA FILE, then run the system. After this procedure,
the user has write priveleges and may load code into the
sharable high segment. (Mote that the user need not use
this to save a low segment only). This procedure is not
necessary for generating the system.

8 . 1

The Compiler and LAP

Special variables

In order to print variable bindings in the backtraces,
have put a pointer to thje atom, header in the CAR of the SPECIAL
cell of all bound atoms not used free in compiled code-
Unfortunately, for compiled code code to fun, the CAR of the
SPECIAL cell of free variables must be NIL. This, when loading
LAP code, special variables must be saved if they are to be
printed properly in a backtrace. The .necessary information is
stored on LAPLST v/hich contains the name and the special cell of
each special variable in the system. Since this means a tv/o
v;ord overhead for each special variable, there is a flag v^hich
controls the adding of items to LAPLST. Special variables are
added to LAPLST iff the variable SPECIAL is non-NIL. The
initial value of SPECIAL is T.

Removing Excess Entry Points - HOCALL Feature

If, during compilation, a function has a non-NIL NOCALL
property, all calls to that function are compiled as direct
PUSHJ s to the entry point of that function with no reference to
the atom itself. After loading, all functions used in this
manner will be left as a list on the variable REMOB. This means
that many functions which are not major entry points can often
times be REMOBed to save storage. The user may use (NOCALL FOCI
F002 ... FOOn) to make several NOCALL declarations. Like
.jPECIAL ano DECLARE, when NOCALL is used outside of the
compiler, it acts the sane an NILL.

we

Miscellaneous Useful Functions

(UNBOUND)

UNBOUND returns the un-interned atom UNBOUND which the
system places in the CDR of an atom's SPECIAL (VALUE)
cell to indicate that the atom currently has no assigned
value even though it has a . SPECIAL (VALUE) cell on "its
property list

(SYSCLR)

Re initializes LISP to read the user's INIT.LSP file
v/hen it returns to the top level, e.g. by a' Control-G or
a START, or a REENTERo -SYSCLR also resets the garbage
collection time indicator to 0 and the CONSes performed
indicator to 0» it also performs an EXCISE.

(INITFL "FILELST")

Examnle

INITFL is an FSUBR that sets up the file -list for the
user s INIT file. FILELST may consist of more than one
file. However, if there is more than one file in the
list, the files follov/ing the first one must be found or
an error v/ill be generated. The first file in the list
is optional. The INIT file is initially INIT.LSP.

returns' the old file list as its result.

*(IHITFL (IMITl . LSP) (MYFILE ' .' LSP) FOO)

((INIT . LSP))

*** ** *v./ARr]IMG***** * :

The following two functions can catastrophically
the garbage collector by creating a circle in the free list i^
they are used to return to the free list any words v/hich are
still in use. Do not use these functions unless you are certain
what you are doing. (They are only useful in rare cases where a
small amount of working storage is needed by a routine which is
called quite often.)

(FREE X)

destroy
-p

returns the word X to the free storage list and
returns NIL.

(FREELIST

FREELIST

the list

FREELIST

returns all of
X to the free

terminates on a

the words on the
storage list and

NULL check.

top level of
returns NIL.

New Symbol Table Functions

ihe functions in this section are similar to the currently
existing symbol table functions except that they either strip
off (for storing) or add on the atom relocation. This allows
I^ACRO code to use the atom relocation' register S_ to refer to
free storage and thus allov; expansion of binary program space
without destroying • LOADed code. They operate in exactly the
same manner as their older counterparts,. An error is generated
if the arguments or returning value is not a true cons cell.

(*RPUTSYM SYM VAT. ^

*RPUTSYM puts VAL - relocation in the symbol table under
SYM.

(RPUTSYH XI X2 ...^

RPUTSYM functions in the same manner as PUT5YM, i.e. if
Xn is an atom, then Xn is placed in the symbol table
wiuhXn less the relocation as, it's value. Otherwise
(EVAL (CADR XN)) is placed in the symbol table as the
value of (CAR XN).

11GETSYM_X1

IGETSYM gets the value of the symbol X, adds on the
relocation and returns the cell pointed to as it's
value.

(GETSYH P Si S2 ... 1

GETSYM searches the symbol table for the symbol Sn and
places the relocated value on the property list of Sn
under property P.

Initial Svstern Generation

1) To Generate UCILSP.REL

•R MACRO

*UCILSPo REL/P/P/P/P/P/P/P/P/P/P_UCILSP= MAC

(Needs to be done only when UCILSP.MAC is changed.)

2) To Generate the LISP System (LISP. SKR-.and LISP.LOVO

R LOADER

*UCILSP.REL$
.CORE 15

.START

FULL V/ORD SP. =75 0
BIN. PROG. SP. = 5

(IMC (INPUT DSK: LAP))
<RANDOM MESSAGES>
tc
.S3A LISP

<The preceeding loads the following files:
UCILSP.REL, LAP, SYSl.LAP, SYS2.LSP, ERRORX.LSP, ERRORX.LAT^,
BREAK.LAP, EDIT.LAP>

(Needs to be done v/henever any of the above files are changed.)

(If during the course of the above the message "NO FVJ STORAGE LEFT"
appears, experiment with variations in the allocation for Full
Nord Space.)

3) To Generate LISP.SYM, the LISP LOADER SYMBOL TABLE

.RU L052A (Version 52 of the DEC Loader.
This file is included with the LISP System)

*UCILSP.REL/J,SYMriAK.REL$
.START

(Must be done v/henever Step 1 is performed.)

8 . 4

4) To Generate COriPLR.SAV, The LISP COMPILER

oAS DSK SYS

«R LISP 36 ' -
FULL V/ORD SP. = 2000
BIN. PROG. SP. = 15000
*(INC (IMPUT DSK: (COMPLR.LAP)))

<RAnDOM MESSAGES>

*(I]OUUO NIL)
.*(CINIT)
tc
.SA CGMPLR.SAV

•DEL COMPLR.HGH

(Must be done whenever Step 3 is perforned.)

5) To Generate LISP.LOD, the LISP

.R LOADER

*LOADERoREL$
.START

LOADER

(Needs to be done only when LOADER.MAC is changed.)

rFfE LISP EVALUATION. CONTE-XT-STAC.K,,

The Contonts of the Cnnteyf. Sl-nrV

Whenever a form is given to EVAL > it is pushed onto the
top of the Special ?ushdov/n List in the form of an Eval-Blip.
This information is used for backtraces. An Eval-31ip entrv
nas NIL in the left half (see SPPLFT) and the form beina
evaluated in the right half (see SPDLRT).

Also,^ variable bindings are saved on the Special
Pushdovm List. The left side of the entry contains a pointer
to the special cell and the right side contains the value
v/hich was saved.

The only other items on the Special Pushdov;n List are
used by the LISP interpreter, and always have a non-NIL atom
in the left half.

In the user's programs, stack pointers are alv/ays
represented as INUHs. This allov/s the program to easily
modify them with the sfandard arithmetic functions so that a
program can step either up (toward the most recent Eval-Blip)
or down (tov/ard the top level of the interpreter) of the
stack at will.

All of the functions in this chapter take INUM's for the
pointer arguments. The actual pointer to the stack element
requires an offset from the beginning of the stack. For the

^ pointer he must call the functionSTNPT-. (with an INUM argument also). (i.e. if the user
Wishes to do an RPLACA or P.PLACD on an element of the stack,
he must get a pointer via STKPTR.)

Examining the Context Stack

(SPDLPT)

The value of SPDLPT is a stack pointer' to the current
top of the stack" (Returns an INUM).

(SPDLFT PI

The value of SPDLFT is the left side of the stack- item
pointed to by the stack pointer P-

(SPDLRT P)

The value of SPDLRT is the right side of the stack
item pointed to by the stack pointer Po

(STKPTR)

The value of STKPTR is a true LISP pointer to a stack
item-

(NEXTSV P)

If the stack pointer P
value of NEXTSV is P-

is a pointer to an Eval-Blip, the
Otherwise» HEXTEV searches dov^n

a stack pointerthe- stack, starting from P, and returns
to the first Eval-Blip it finds. If NEXTEV can not find
an Eval-Blip it returns. NIL.

(PREVEV PI

PREVEV is similar to NEXTEV

stack instead of do\'m it.

except that it moves up the

(STKCOUHT NAME P FEND)

The value of STKCOUN

STKNAHE of NAM

and FEND, v;here PEWD

is the number of Eva1-Blips with a
occurring between stack positions P-1

< P.

(STKHAME P)

If position P is not an Eval-Blip, the value of STKNAME
is NIL. If position P is an Eval-Blip and the form is
atomic, then the value of STKHAME is that atom- If the
form is non-atomic, STKNAME returns, the CAR for the
form, i.e. the name of the function.

(STKHTH N ^1

The value

Eval-Blip
STKHTH moves up the stack,
moves down the stack.

of STKHTH is a stack-- pointer to the Nth
starting at position P. If M is positive,

and if H is negative, STKHTH

(STKSRCH NAME P FT.AC^

The value of STKSRCH is a stack
Eval-Blip with a STKNAME of MArlE.
search is controlled by FLAG,
moves down the stack. Otherwise
stack. STKSRCH never returns
steps once before checkina for

pointer to the first
The direction of the

If FLAG=NIL, STKSRCH
STKSRCH moves

P for

NAME.

its value.
up

i. e -

the

it

(FHDBRKPT

The value of FHDBRKPT is a stack pointer to the
beginning^ of the Eval-Block that P is in. The beginning
of a Eval-Block is defined as an Eval-Blip which does
not contain the next higher Eval-Blip within it. This
function is used by the backtrace functions.

Controlling Evaluation Context

(OUTVAL P

OUTVAL adjusts P to an Eval-Blip and returns
position v/ith V =

(SPREDO P V)

:rom that

;PREDO

that points
adjusts P to an Eval-Blip and re-evaluates from

(SPREVAL P V)

SPREVAL evaluates its argument v in its local context to
get a form, and then it
by P and evaluates the

from that context with
to SPREDO except that
changed.

returns to the context specified
form in that context, returning
the valueo This is very similar
the EVAL-blip on the stack is

Mote: OUTVAL

an Eval-Blipo
L, SPREDO and SPREVAL all use MEXTEV to adjust P to.

(EVALV A P)

The value of EVALV

as of position P»

the special cell
instead of the atom,
properly. EVALV is similar
but is more efficient.

is the value of the atom A evaluated

If A is not an atom then it must be
of an atom. By using the special cell

special variables can be handled
to EVAL with tv/o arguments,

(RETFROM FM VAL)

RETFROn returns VAL from the most recent call to the
function FII with the value VAL.
there must be an Eval-Elip
sure to get an Eval-Qlip
function x-iit'n no arguments inside ot an ERRSET, e.g.
(ERRSET (FUMO).

f rom

For RETFROM to work,
for FN. The only way to be

in compiled code is to call the
arguments inside of an ERRSET, e

Storage Allocflt.inn

VJhen the LISP system is run with a core specification given
(loG., '.R LISP n", n>22), LISP types "ALLOC? (Y OR N)"= If
you type "P" or space (for no) then the system uses the current
allocations^ If you type "Y" (for yes) then the system allows
you to specify for each area either an octal number followed by
a space designating^ the number of words to added to that area,
or a space designating an increase of zero words.

Example: (user input is underlined)

ALLOC? (Y OR N) Y
FULL WORD SP. = 200
Bin. PROG. SP. = 2000

REG. PDL. = _
SPEC. PDL. = 1000

Any remaining storage is divided between the spaces as follows:

1/16 for full word space,
1/64 for each push down list,
the remainder to free storage and bit tables.

Reallocation of Storage

If you exhaust one of the storage areas it is possible to
increase the size of that area by using the reallocation
rocedure. First, expand core with the time sharing system
command CORE and then reenter LISP with the REE command. For'

« a's 5'°" increase
* tc
.CORE 26

.REE

When you reenter LISP, the same allocation procedure is followed
as described above.

10

Initial Allocations

The following are the initial allocations for the various
storage areas when LISP is initially run.

FREE STORAGE = 2200
FULL WORD SP. =700
BIN. PROG. SP. = ICQ

REG. POL. = 1000
SPEC. PDL. = 1000

10 . 2

CONTIGUOUS BLOCKS OF STORAGE

A new data type, BLOCK, has been added to UCILSP. A BLOCK
consist of a block of contiguous storage locations . in Binary
Program Space. BLOCKS are similar to arrays in that they may
contain pointers that are protected from garbage collection, or
their contents may be ignored by the garbage collector. They
differ, however, in the means of access. BLOCKs are accessed by
a pointer into Binary Program Space and all of the functions
which will act on a cons cell v.'ill work eaually well on an
element of a block (except for printing). BLOCKS can be used
for setting up lists that are also tables, as in setting up
multiple OBLISTso NOTE BENE: the value returned by the BLOCK
functions is a true address, not a LISP number.

(GTBLK LENGTH GC)

GTBLK is a SUBR that returns a zeroed BLOCK of LENGTH

words. If GC is NIL, then the contents of the BLOCK are

ignored by the garbage collector. If GC is non-NIL then
the contents are treated as pointers and the cells
pointed to will not be collected.

(BLKLST LIST LENGTH)

BLKLST is a SUBR that returns a pointer type BLOCK of
LENGTH words. It chains the words in the BLOCK such

that the CDR of each word; is the succeeding word. The
top level of LIST is then mapped into the CAR's of the
block. If LENGTH Is NIL, then the length of the list is
used. If (LENGTH LIST) is less than LENGTH, then the
car's of the remaindef of the BLOCK are set to NIL. If
(LENGTH LIST) is greater than LENGTH, the list is
truncated.

11

4/n^l

4

