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Modified Method of Characteristics for Solving Population
Balance Equations

Laurent Pilon 1 and Raymond Viskanta 2

1 University of California, Los Angeles
Mechanical and Aerospace Engineering Department

2 Purdue University -West Lafayette
School of Mechanical Engineering

SUMMARY

This paper presents a new numerical method for solving the population balance equation using the
modified method of characteristics. Aggregation and break-up are neglected but the density function
variations in the three dimensional space and its dependence on the external fields are accounted for.
The method is an intepretation of the Lagrangian approach. Based on a pre-specified grid, it follows the
particles backward in time as opposed to forward in the case of traditional method of characteristics.
Unlike the direct marching method, the inverse marching method uses a fixed grid thus, making it
compatible with other numerical schemes (e.g., finite-volume, finite elements) that may be used to
solve other coupled equations such as the mass, momentum, and energy equations. The numerical
solutions are compared with the exact analytical solutions for simple one-dimensional flow cases. Very
good agreement between the numerical and the theoretical solutions has been obtained confirming the
validity of the numerical procedure and the associated computer program. Copyright c© 2003 John
Wiley & Sons, Ltd.

key words: Population balance theory, method of characteristics, dispersed phases, particulate

flows, two-phase flow

1. INTRODUCTION

Physical modeling of multidimensional particulate flows has been the subject of intense
research over the last half century. The two-fluid model is often considered as the most
sophisticated multidimensional models available in the literature [1, 2]. In three-dimensional
gas/liquid flows, the two-fluid model is comprised of ten scalar partial differential equations, five
scalar algebraic interfacial jump conditions and eleven state variables. However, as reviewed by
Lahey and Drew [2] while the rigorous derivation of the two-fluid models has made significant
progresses, “no model exists to date which is completely acceptable”. Moreover, mechanistic
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1212 L. PILON AND R. VISKANTA

interfacial and wall closure laws are still needed to accurately model three-dimensional
two-phase flow [2]. More recently, Carrica et al. [3] have presented a three-dimensional
computational model for two-phase flow around a naval surface ship. The formulation is based
on a multidimensional two-fluid model [2]. consisting of the continuity and the momentum
equations for both the gas and the liquid phases combined with the conservation equation for
the total number of bubbles. The numerical algorithm is based on a finite-difference method
and can calculate the gas volume fraction and bubble radius and accounts for the coupling
between the gas and the liquid equations. However, it is limited to monodispersed bubble
population, i.e. all the bubbles at each location have the same radius. This was recognized as
an obvious limitation. Such limitation could be overcome by solving the bubble population
balance equation for a polydisperse bubble density function.

Indeed, population balance offers a framework to solve various dispersed phase systems with
applications ranging from crystallization and fluidized bed reactors to microbial cultures and
aerosol reactors. As discussed in detail by Ramkrishna [4, 5], the particle population can be
described by a state vector defined in a so-called state space. The state space consists not
only of the physical space but also of an abstract “property” space. In the physical space,
the state vector coordinates consist of the spatial coordinates [e.g., (x, y, z) in Cartesian
coordinates]. In the property space, the system is characterized by its property coordinates.
For example, each particle is characterized by its radius r and other properties denoted pi

such as gas molar fractions inside the bubbles in the case of gas/liquid flows. The spatial and
property coordinates are also referred to as the external and internal coordinates, respectively.
Considering the particles transported by the liquid flow and characterized by their radius r
and l other properties pi the state vector ~S can be expressed as ~S = [x, y, z, t, r, (pi)1≤i≤l]. Let
f1 be the average number density function of particles/bubbles. The average number density
function f1[~x, t, r, (pi)1≤i≤l] is assumed to be sufficiently smooth to allow differentiation with
respect to any of its variables as many times as necessary [5]. Then, the population balance
equation can be expressed as [5]

∂f1

∂t
+

∂

∂x
(ubf1) +

∂

∂y
(vbf1) +

∂

∂z
(wbf1) +

∂

∂r
(ṙf1) +

l∑

i=1

∂

∂pi
(ṗif1) = h (1)

where ub, vb and wb are the components of the particle velocity vector ~vb. The time rate of
change of the radius and of the other properties of the particles are denoted by ṙ and ṗi,
respectively. Finally, h = h(~x, t, r, pi, Yi) represents the net rate of production of particles of a
particular state (~x, r, (pi)1≤i≤l) at time t.

Three levels of complexity arise in solving the population balance equation: (1) the
source and sink terms resulting from breakage and agglomeration and expressed as integral
functions in the population balance equation, (2) the variation of the density function in the
multidimensional space, and (3) the dependency of the density function on external variables
Yi. Reference is deliberately made to papers dealing only with density function depending
on the three dimensions and on external variables. The numerous publications in which
spatial variation of the density functions was neglected by assuming perfectly mixed tank
(e.g., Ref.[6, 7, 8, 9]) are not discussed. However, the method can be extended to situations
where the sink and the source are present. In these cases, comparison with numerical solution
is required but falls beyond the scope of the present study.

Both analytical and numerical methods for solving the population balance equation have
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MODIFIED METHOD OF CHARACTERISTICS FOR SOLVING PBE 1213

been recently reviewed by Ramkrishna [5]. For the most practical problems, numerical methods
are required if one wants to avoid simplistic assumptions. Discretization of the density function
combined with finite difference method has been one of the most popular numerical methods
[5, 10, 11, 12, 13]. It consists of discretizing the particle density function in the internal space,
thus forming groups of particles and solving the resulting equations for the total number of
particles in each group by a finite-difference method. Such a method has the advantage of
reducing computational times, a valuable feature in control and optimization of particulate
systems [5]. However, the discrete formulation has major drawbacks that have been discussed
extensively by Kumar and Ramkrishna [7, 9]. In brief, the discrete formulation lacks of internal
consistency, i.e. some of the moments of the particle density function f1 cannot be predicted
accurately. For example, in gas/liquid flows in which bubbles are characterized by their radius
r at time t, the mth sectional and total moments of the bubble density function f1 in terms of
bubble radius, denoted by µ

(i)
m (~x, t) and µm(~x, t), respectively, are defined as

µ(i)
m (~x, t) =

ri+1∫

ri

rmf1(~x, r, t)dr and µm(~x, t) =

rN∫

r0

rmf1(~x, r, t)dr =
N−1∑

i=0

µ(i)
m (t) (2)

where r0 and rN are the minimum and maximum bubble radius. The total number of particles,
the average particle radius, the interfacial area concentration, the local volume fraction of the
dispersed phase are essential physically important moments of the particle density function
and correspond to zero, first, second and third order moments in terms of the particle radius,
respectively. For bubbles containing a single gas or a diffusing and a non-diffusing gas, the
bubble radius r is treated as the independent internal variable and N , Ai, fv and r̄ are defined,
respectively, as

0th moment N(x, y, z) =
∫ ∞

0

f1(x, y, z, r)dr (3)

1st moment r̄(x, y, z) =
[∫ ∞

0

rf1(x, y, z, r)dr

]
/N(x, y, z) (4)

2nd moment Ai(x, y, z) =
∫ ∞

0

4πr2f1(x, y, z, r)dr (5)

3rd moment fv(x, y, z) =
∫ ∞

0

4πr3

3
f1(x, y, z, r)dr (6)

Another important moment in gas/liquid flows is the total mass of gas contained in the
bubbles defined as the third order moment in terms of variable 4πr3ρg/3. In the discretization
technique, the calculation is designed for certain selected moments of the particle density
function rather than for an estimate of the particle density function accurate enough
for estimating all moments of the population [5]. In addition to the total number of
particles/bubbles for each discrete group, the discretized formulation for the second and third
order moments should also be solved if one wants to accurately predict (1) the interfacial
mass and momentum transfer between the phases [1, 2], (2) the flow regime often determined
from the void fraction and (3) the corresponding closure laws [1]. For example, Rousseaux et
al. [12] solved the coupled conservation equations for the total zeroth to fourth moments of
the density function of pseudo-boehmite particles accounting for growth and precipitation in
sliding surface mixing devices. However, this approach does not provide detailed information
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1214 L. PILON AND R. VISKANTA

about the densiy function unless one assumes an arbitrary prespecified form with four unknown
parameters such as the modified Gamma distribution.

The method of characteristics offers an alternative and more accurate method to
discretization method combined with finite-difference methods. Instead of creating groups of
particles/bubbles, it solves directly for f1 and consists of transforming the partial differential
population balance equation into a system of ordinary differential equation which is then solved
along the pathline of the particles (characteristic curves). The conventional implementation
(or direct marching method) of the method of characteristics is based on the Lagrangian
formulation: the particles or the particle density function are identified and located at initial
time t = t0 and followed at subsequent time as the particles are transported. In three-
dimensional flows, however, the deformation that the initial mesh undergoes as time progresses
might lead to deterioration of the numerical solution [14].

The modified method of characteristics (or inverse marching method) is an intepretation
of the Lagrangian approach that overcomes the difficulties related to mesh deformation [14].
Based on a pre-specified grid, it follows the particles backward in time as opposed to forward, in
the case of direct marching method. Unlike the direct marching method, the inverse marching
method uses a fixed grid that can be used for solving other transport equations such as the
continuity, momentum and energy equations by finite-difference methods using a staggered
grid, as suggested by Patankar [15]. The advantages of the modified method of characteristics
are the following:

• unlike finite-difference methods in which the information propagates along coordinate
lines, the method of characteristics propagates the information along the pathlines and
thus matches the physics of the flow resulting in extremely accurate numerical results
[16].

• it overcomes the numerical diffusion introduced by finite-difference methods [15].
• it does not require any outflow boundary conditions [17].
• Since the method uses a pre-specified computational grid, it can easily account for the

coupling between the density function f1 and the external fields such as the temperature,
velocity and concentrations which can be obtained by other numerical methods based
on an Eulerian field description (e.g., finite volume method [15]).

• The modified method of characteristics can be used for both transient and steady-state
calculations with great accuracy and without problems of numerical instability.

However, it possesses significant, although not overwhelming, disadvantages [16]: (1) it is a
relatively complicated procedure, especially for more than three or four independent variables,
(2) the method is restricted to flows and variables without discontinuities and (3) due to the
large amount of required interpolations and integration of the governing ordinary differential
equations, the computer programs require long execution times.

The modified method of characteristics has been successfully used for predicting high speed
three-dimensional single phase inviscid flows in subsonic and supersonic propulsion nozzles
[18, 17, 16, 19] and combined with finite elements method for solving unsteady incompressible
Navier-Stokes equations [14]. On the other hand, the conventional method of characteristics for
solving the population balance equation has been mainly used (1) for mathematical arguments
to show the existence of solutions [5], (2) for obtaining analytical solutions [20, 21, 5, 22] and
(3) for obtaining numerical solution for two independent variables problems [9]. However, to the
best of our knowledge, no attempt has been made to solve the population balance equation by
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MODIFIED METHOD OF CHARACTERISTICS FOR SOLVING PBE 1215

the modified method of characteristics. As computers become more powerful and cheaper, the
present approach favors accuracy and numerical stability over short computational time and
algorithm simplicity. This paper presents a numerical implementation of the modified method
of characteristics for solving the population balance equation in multiphase particulate systems
that could be coupled to other numerical schemes for solving the two-fluid model equations,
or any other transport equations.

2. MODIFIED METHOD OF CHARACTERISTICS

The present study is concerned with solving the population balance equation for solid particle,
gas bubbles, or solid drolets transported in three-dimensional flow using the modified method of
characteristics. A Cartesian coordinate system was employed in the analysis. The formulation
of the population balance equation is based on the following general assumptions that hold for
many different multiphase particulate systems:

1. The particles are perfectly spherical in shape.
2. The effects of particles on the velocity and temperature fields as well as on the

thermophysical properties of the liquid phase are not considered.
3. Bubble radius and local concentration are small.
4. The particles have negligible inertia (ρb ¿ ρ∞). This hypothesis is reasonable since very

small particles are considered.
5. The liquid phase is incompressible.
6. Local thermal equilibrium exists between the gas and liquid phases, i.e. T∞ = Tb = T .
7. Aggregation and break up of particles are not considered, i.e. the net production rate of

particles vanishes (h = 0).
8. The components of the particle velocity vector, are taken to be the same as those of the

liquid phase ~v∞ = (u∞, v∞, w∞), except in the vertical direction where the buoyancy
force has to be taken into account, i.e.,

~vb(r) = u∞~i + v∞~j + (w∞ + wr)~k (7)

with wr being the upward particle velocity relative to the liquid phase due to the
buoyancy force and is assumed to follow Stokes’ law, i.e.,

wr =
2
9

ρ∞gr2

µ∞
(8)

Note that Equation (8) corresponds to the terminal (i.e. steady state) velocity of spherical
particles in Stokes’ flow, i.e. the transient motion and inertia of particles have not been
considered for the sake of simplificity and since the formulation of transient forces is still
incomplete [23].

Based on the above assumptions, the population balance equation simplifies to

∂f1

∂t
+

∂

∂x
(u∞f1) +

∂

∂y
(v∞f1) +

∂

∂z
[(w∞ + wr)f1] +

∂

∂r
(ṙf1) +

l∑

i=1

∂

∂pi
(ṗif1) = 0 (9)
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1216 L. PILON AND R. VISKANTA

In the present study, the population balance equation [Equation (1)] is solved using the
modified method of characteristics. This method consists of solving the population balance
equation along the pathline of the particles and transforms the governing partial differential
equation into a system of ordinary differential equations.

If we assume that the liquid phase can be treated as incompressible, the mass conservation
equation for the liquid phase can be expressed as [24]

∇ · ~v∞ =
∂u∞
∂x

+
∂v∞
∂y

+
∂w∞
∂z

= 0 (10)

Expanding the partial derivatives on the left-hand side of Equation (1) and using Equation
(10) yields

∂f1

∂t
+ u∞

∂f1

∂x
+ v∞

∂f1

∂y
+ w∞

∂f1

∂z
+ ṙ

∂f1

∂r
+

l∑

i=1

ṗi
∂f1

∂pi
= −f1

[
∂wr

∂z
+

∂ṙ

∂r
+

l∑

i=1

∂ṗi

∂pi

]
(11)

By definition, the total time derivative of f1 = f1[x, y, z, t, r, (pi)1≤i≤l] with respect to time t
can be written as

df1

dt
=

∂f1

∂t
+

dx

dt

∂f1

∂x
+

dy

dt

∂f1

∂y
+

dz

dt

∂f1

∂z
+

dr

dt

∂f1

∂r
+

l∑

i=1

dpi

dt

∂f1

∂pi
(12)

We further define the characteristic curves in the particle state space as

dx

dt
= u∞(x, y, z) (13)

dy

dt
= v∞(x, y, z) (14)

dz

dt
= w∞(x, y, z) + wr(x, y, z, r) (15)

dr

dt
= ṙ[x, y, z, , r, (pi)1≤i≤l, (Yj)1≤j≤l, t] (16)

dpi

dt
= ṗi[x, y, z, r, (pi)1≤i≤l, (Yj)1≤j≤l, t] for i = 1, ..., l (17)

where (Yj)1≤j≤l are the local continuous phase variables e.g., the gas concentration dissolved
in the liquid phase, the liquid temperature, or velocity. These variables are introduced to
consider the coupling between the density function f1 and the external fields. Then, along the
characteristic curves in the [x,y,z,r,(pi)1≤i≤l, t] space, the population balance equation can be
written as

Df1

Dt
= −f1

[
∂wr

∂z
+

∂ṙ

∂r
+

l∑

i=1

∂ṗi

∂pi

]
(18)

where Df1/Dt denotes the substantial derivative of f1, i.e. the total time derivative along
the pathline of the particle. The partial derivative of wr with respect to z is obtained from
Equation (8) and is expressed as

∂wr

∂z
=

4ρ∞grṙ

9µ∞(w∞ + wr)
(19)
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Similarly, expressions for ṙ and ṗi and their derivatives with respect to r and pi, respectively,
can be obtained based on physical considerations of the specific process to be modeled.

In the method of characteristics, no boundary condition is required at the outflow [17] while
the particle density function is specified at the inlet boundary (x0, y0, z0)

f1(x0, y0, z0, t) = f1,0[r, (pi)1≤i≤l, t] (20)

At the container wall/liquid interface the gradient of the particle density function f1 in the
normal direction vanishes,

∇~nf1 = ~0 at the liquid/walls interface (21)

Assumptions regarding the bubble velocity and neglect of the effects of particles on the liquid
phase flow and temperature fields are the most severe one and their limitations will be discussed
later in this document. They have been used to decouple the conservation, momentum and
energy equations of the liquid and gas phases. This approach can be justified by the facts
that particle radius and concentration are small and that the alternative approach solving
the coupled governing equations using the multidimensional two-fluid model lacks mechanistic
closure laws accounting, for example, for the interfacial mass and momentum transfer [2].

3. NUMERICAL METHOD

In the present model, the liquid flow is assumed not to be affected by the presence of particles;
therefore, the velocity and temperature fields in the liquid phase are treated as fixed input
parameters. The system of equations for the velocity and temperature fields are parabolic in
nature and can be discretized in space using a (l1×m1×n1) staggered grid for the scalar and
vector variables and can be solved, for example, by using the SIMPLER algorithm [15]. Indices
i, j, k correspond to the vector grid points while indices I, J,K correspond to the scalar grid
points as illustrated in Figures 1 and 2 for two-dimensional geometry. Other external variables
related to the liquid phase, such as the dissolved gas concentrations, can be computed in a
similar manner.

The governing equations [Equations (13) to (21)] for the particle density function are solved
by the modified method of characteristics [18, 16, 19]. Figure 3 shows a three-dimensional
computational cell whose corner points belong to the vector component grid. The modified
method of characteristics consists of determining the coordinates (xn, yn, zn) of the point in
space from where the particles located at the grid point (xa, yb, zc) at time t + ∆t originate
from at time t. In other words, for each point of a specified grid, the pathline is projected
rearward to the initial data surface to determine the initial data point. For example, in Figure
3 the point (xa, yb, zc) is the point (xi+1, yj+1, zk+1). The solid line represents the section of
the characteristic curve along which the particle traveled from location (xn, yn, zn) to location
(xa, yb, zc) during the time interval between t and t + ∆t.

To avoid numerical instabilities, it is necessary to insure that the particles do not leave the
computational cell between the time t and t + ∆t. In other words, each computational cell
traveled by the particle should contain at least two consecutive points on the characteristic
curve. Therefore, the initial time step ∆t is determined by the equation,

∆t = min
2≤i≤l1−1
2≤j≤m1−1
2≤k≤n1−1

{∣∣∣∣
xi+1 − xi

2u∞(i, j, k)

∣∣∣∣ ,

∣∣∣∣
yj+1 − yj

2v∞(i, j, k)

∣∣∣∣ ,

∣∣∣∣
zk+1 − zk

2[w∞(i, j, k) + wr(i, j, k)]

∣∣∣∣
}

(22)
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1218 L. PILON AND R. VISKANTA

The factor 2 appearing in the denominator was arbitrarily introduced to assure that each
computational cell contains at least two consecutive points on the characteristics curve. A
larger value of the factor could have been chosen but was proven to have no significant effect on
the final numerical results, while slowing down the convergence to steady-state. However, when
particles can grow, the particle radius and upward velocity can change making the particles
leave the computational cell after one time step. Then, the time step has to be reduced in
order to assure the stability requirement.

Figure 4 shows the general block diagram of the computational procedure in performing a
steady-state calculation for a given particle size distribution f1,0[r, (pi)1≤i≤l, t] at the inlet
boundary. First, the variables across the computational domain are all initialized to an
arbitrarily small value except at the inlet boundary where the variables r, (pi)1≤i≤l and
f1 are set to be equal to r0, (p0,i)1≤i≤l and f1,0, respectively. In other words, an arbitrary
point is selected on the initial particle density function f1,0[r, (pi)1≤i≤l, t]. Then, the time step
is computed according to Equation (22). Finally, the ordinary differential equations for the
variables r, (pi)1≤i≤l and f1 [Equations (13) to (18)] are solved at all interior points and outflow
boundaries, followed by the computation of the variables at the solid boundary points. The
solution of the governing ordinary differential equation at the interior points and specification
of the variables at the boundaries is repeated until a steady state has been reached. The same
sequence takes place for another arbitrary point with coordinates [r′0, (p

′
0,i)1≤i≤l] on the initial

particle density function f1,0 imposed at the inlet boundary.
The computational domain for solving the particle density function, the particle radius and

the other particle internal coordinates consists of four basic types of points (or nodes): interior,
solid boundary, inlet and exit points. The basic features of the interior point unit process are
presented in the following discussion followed by a brief description of the other three unit
processes.

3.1. Interior Point Unit Process

Figure 5 shows the detailed numerical procedure used for solving the governing ordinary
differential equations [Equations (13) to (18)] at every interior point (xa, yb, zc) such that
2 ≤ a ≤ l1 − 1, 2 ≤ b ≤ m1 − 1 and 2 ≤ c ≤ n1 − 1 as well as at the outlet boundary.

1. First, the coordinates (xn, yn, zn) are determined by assuming that the velocity
component (un, vn, wn) and the particle radius rn at location (xn, yn, zn) and time
t are the same as those at location (xa, yb, zc) at time t + ∆t, i.e. (un, vn, wn) =
(u∞, v∞, w∞ + wr. Thus solving Equations (13) to (15) and are calculated as

xn = xa − u∞(xa, yb, zc)∆t (23)
yn = yb − v∞(xa, yb, zc)∆t (24)
zn = zc − [w∞(xa, yb, zc) + wr(xa, yb, zc, r)]∆t (25)

2. Second, let us call (xi, yj , zk) the closest point to (xn, yn, zn) in the vector grid such that
xi ≤ xn ≤ xi+1, yj ≤ xn ≤ yj+1, zk ≤ xn ≤ zk+1. Similarly, let us call (xI , yJ , zK) the
closest point to (xn, yn, zn) in the scalar grid such that xI ≤ xn ≤ xI+1, yJ ≤ xn ≤ yJ+1,
zK ≤ xn ≤ zK+1. Then, the computational cells containing the point (xn, yn, zn) in both
the vector grid and the scalar grid of the staggered grid system, i.e. i, j, k and I, J,K,
are determined.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1211–1236
Prepared using fldauth.cls



MODIFIED METHOD OF CHARACTERISTICS FOR SOLVING PBE 1219

3. Third, the velocity components at (xn, yn, zn) are determined by Lagrangian
interpolation using their values at the eight corners of the computational cell in the
vector grid containing the point (xn, yn, zn),

φn = (1− βu)(1− βv)(1− βw)φi,j,k + βu(1− βv)(1− βw)φi+1,j,k +
(1− βu)βv(1− βw)φi,j+1,k + βu × βv(1− βw)φi+1,j+1,k +
(1− βu)(1− βv)βwφi,j,k+1 + βu(1− βv)βwφi+1,j,k+1 +
(1− βu)βv × βw × φi,j+1,k+1 + βu × βv × βw × φi+1,j+1,k+1 (26)

where the variable φ corresponds to the liquid velocity components u∞, v∞ and w∞ and
φn is their interpolated value at location (xn, yn, zn), while φi,j,k is their known values
at the vector grid point (xi, yj , zk). The weights βu, βv and βw vary between zero and
unity and are defined as

βu =
(xn − xi)

(xi+1 − xi)
, βv =

(yn − yj)
(yj+1 − yj)

, and βw =
(zn − zk)

(zk+1 − zk)
(27)

4. Similarly, the scalar variables ψ such as the temperature T , the radius of the particles r,
the internal coordinate (pi)1≤i≤l and the thermophysical properties are interpolated at
location (xn, yn, zn) and time t using the equation

ψn = (1− γx)(1− γy)(1− γz)ψI,J,K + γx(1− γy)(1− γz)ψI+1,J,K +
(1− γx)γy(1− γz)ψI,J+1,K + γx × γy(1− γz)ψI+1,J+1,K +
(1− γx)(1− γy)γz × ψI,J,K+1 + γx(1− γy)γz × ψI+1,J,K+1 +
(1− γx)γy × γz × ψI,J+1,K+1 + γx × γy × γz × ψI+1,J+1,K+1 (28)

where the function ψ corresponds to scalar variables and ψn is their extrapolated value
at location (xn, yn, zn) and time t from the knowledge of their values at the scalar grid
points (xI , yJ , zK). The weights γx, γy and γz vary between zero and unity and are
defined as

γx =
(xn − xI)

(xI+1 − xI)
, γy =

(yn − yJ)
(yJ+1 − yJ)

, and γz =
(zn − zK)

(zK+1 − zK)
(29)

5. The coordinates (xn, yn, zn) of the particle at time t are recomputed using the
interpolated values of the liquid velocity components [obtained at Step 3], while the
relative particle velocity wr is computed from Equation (8) using the particle radius rn

and the thermophysical properties of the liquid interpolated at location (xn, yn, zn) and
time t [obtained at Step 4],

xn = xa − u∞,n∆t (30)
yn = yb − v∞,n∆t (31)
zn = zc − (w∞,n + wr,n)∆t (32)

with wr,n =
2
9

ρ∞gr2
n

µ∞,n
(33)

6. The ordinary differential equations for the particle internal coordinates [r, (pi)(1≤i≤l)]
and for the density function f1 [Equations (16) to (18)] at location (xa, yb, zc) and time
t + ∆t can then be integrated by the fourth order Runge-Kutta method [25].
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7. Steps 2 to 6 are repeated until the difference between two successive computed values of
xn, yn and zn is less than an arbitrary value ε1, i.e.

Max[|xn(iter+1)−xn(iter)|, |yn(iter+1)−yn(iter)|, [|zn(iter+1)−zn(iter)|] ≤ ε1 (34)

where iter is the iteration step number. A sensitivity study has been performed and
showed that the numerical solution was independent of ε1 provided that it is less than
1.0× 10−4m.

8. Steps 1 to 7 are repeated for all interior points (xa, yb, zc).
9. For steady state calculations, steps 1 to 8 are repeated until the maximum relative

difference in the predictions of the particle internal coordinates [r, (pi)1≤i≤l] and of the
density function f1 between two successive iterations fall under an arbitrary constant ε2:

max
2≤i≤l1−1
2≤j≤m1−1
2≤k≤n1−1

[ |X(iter + 1)−X(iter)|
X(iter)|

]
≤ ε2 (35)

where X represents the internal coordinates r, (pi)1≤i≤l and f1.
10. Steps 1 to 9 are repeated for all the points on the initial particle density function

f1,0(r, (pi)1≤i≤l, t)

3.2. Boundary Point Unit Processes

The initial density function at the inlet boundary f1,0 is determined from physical
considerations or based on experimental data. The exit points are treated as interior points
and the same procedure as that previously described is followed. Finally, Dirichlet, Neuman or
mixed boundary conditions can be applied at the solid boundary points. In the present work,
the weak boundary conditions were assumed for r, f1 and pi at the walls.

The advantage of the proposed method is that even the most complicated problem may be
solved with relative ease. As the complexity of the problem increases, the complexity of the
formulation and the solution effort increase much more rapidly for conventional techniques.
Therefore, the modified method of characteristics will be preferable for problems beyond a
certain complexity. For example, the present method is recommended for multidimensional
problems with complex flow pattern where the density function depends on the external
fields. In addition, the method is compatible and can be used in combination with other
numerical schemes (e.g., finite-volume, finite elements) that may be used to compute the
external variables.

4. COMPUTER PROGRAM VALIDATION

A set of test problems was chosen in order to compare the numerical predictions against
practical problems whose analytical solutions are known and can be summarized as follows:

1. Solid particle in one-dimensional laminar flow - transient and steady-state situations.
2. Bubble or droplet transport and growth in one-dimensional vertical laminar flow.

In all the cases considered for validation, the liquid temperature, the liquid viscosity and
density are assumed to be uniform and constant with time over the entire computational
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domain and the coupling between the particles and the external fields is not accounted for,
i.e. the variables Yj are constant. Even though the flow considered are one-dimensional (i.e.
u∞ = v∞ = 0) the calculations were performed for a three-dimensional computational domain.
The container is taken to be a parallelepiped of height, length and width denoted by H, L and
W , respectively.

4.1. Solid Particles in One-Dimensional Laminar Flow

For validation purposes, we consider the physical situation when monodispersed solid particles
of constant radius r are injected at the bottom of a vertical container. The liquid under one-
dimensional laminar flow conditions with a uniform and constant upward velocity of 0.2 m/s,
i.e. ~v∞ = w∞~k = 0.2~k, is considered. The particles are subject to buoyancy and are assumed
to be small and in low concentration so that their presence does not affect the liquid flow.
Then, the population balance equation simplifies to

∂f1

∂t
+ (w∞ + wr)

∂f1

∂z
= 0 (36)

Transient Situation
In this example, the particles are injected uniformly across the bottom of the container (at
z=0) and the injection rate varies with time so that the particle density function at z = 0 and
time t is denoted F (t). In the present study we assume that the particle density function at
the bottom of the column varies with time according to the following Fermi function,

f1(z = 0, t) = F (t) = f0

[
ea(t−t0)

1 + ea(t−t0)

]
(37)

where a, t0 and f0 are arbitrary constants. Thus, the transient particle density function at
time t and location z solution of Equation (36) is given by

f1(z, t) = F (u) where u = t + z/(w∞ + wr) (38)

i.e., f1(z, t) =
{

ea[t+z/(w∞+wr)]

1− ea[t+z/(w∞+wr)−t0]

}
f0 (39)

The numerical calculations were performed with the particle radius and the fluid properties
such that the fluid flow is laminar and that the particle upward velocity (w∞+wr) is equal to
4 cm/s while the parameters at the particle injection cross-section (i.e. at z=0) are a = 1.4s−1,
t0 = 2 s and f0 = 105/m3of liquid/m. Figure 6 shows a comparison of the particle density
function using dimensionless variables along the z-axis at time t = 20.4 s obtained numerically
using the method of characteristics with the exact solution. One can see that as the grid size is
refined, the predictions of the numerical model converge toward the exact solution [Equation
(38)]. The rapid changes in the particle injection rate with time forces one to reduce the grid
size significantly in order to capture the sharp variation of the injection rate.
Steady-State Situation
Here, the particles are not injected uniformly at the bottom of the container, instead the
particle density function at z = 0 varies in the x-direction, i.e. f1(x, y, 0, r, t) = G(x) as
illustrated in Figure 7. Then, under steady-state conditions, the particle density function at
any location z should be the same as that at the bottom of the container, i.e.,

f1(x, y, z, r) = G(x) (40)
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Figure 8 illustrates a comparison of the numerical results with the analytical solution for
the particular example when

G(x) =
[

ea(x−x0)

1 + ea(x−x0)

]
f0 (41)

with the parameters a = 1.5m−1, x0 = 0.7 m and L = 1 m. The tank was discretized in
Cartesian coordinates using a 24× 15× 9 grid. All the particles were assumed to be 1 mm in
radius. Very good agreement exists between the numerical and the analytical solutions even
with a coarse grid.

A monodispersed particle distribution has been chosen for illustrative purposes but similar
results can be obtained for any arbitrary polydispersed population of solid particles. It suffices
only to perform the same calculation for different radii and the corresponding values of the
particle density function.

In conclusion, for solid particles transport in a one-dimensional vertical flows, the numerical
scheme based on the modified method of characteristics yields results which are in very good
agreement with theoretical solutions for both transient and steady-state conditions.

4.2. Bubbles Rise at Constant Growth Rate

This section is limited to bubble transport in steady-state one-dimensional laminar flow with
constant particle growth rate ṙ as shown in Figure 9. The population balance equation to be
solved is written as

∂

∂z
[(w∞ + wr)f1] +

∂

∂r
(ṙf1) = 0 (42)

where wr is given by Equation (8). The liquid upward velocity is assumed to be w∞ = 0.2 m/s
and the growth rate is taken as constant and equal to ṙ = ṙ0 = 1.0× 10−5 m/s. The governing
equations to be solved simplify to

dz

dt
= w∞(z) + wr(r, z) (43)

dr

dt
= ṙ0 (44)

df1

dt
= −f1

∂wr(r, z)
∂z

(45)

The bubble density function at the injection cross-section z = 0 is assumed to follow a normal
distribution , i.e.

f1(r, z = 0, t) =
1

σ0

√
2π

exp

[
− (r − µ0)2

2σ2
0

]
(46)

with a mean value µ0 = 1 mm and a deviation σ0 = 0.25 mm.
In this specific case, an analytical solution to the population balance equation can be found

if one recognizes that the bubbles are small and their relative velocity with respect to the
liquid wr is negligible compared with the velocity of the liquid (wr ¿ w∞). In other words,
the bubble density function f1(z, r) shifts toward larger r in the r-space when bubbles are
transported from location z = 0 m to z = H m, i.e. a bubble entering the column at z = 0
with a radius r reaches the location z with a radius r + ṙ0z/w∞. Then, the bubble density
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function f1 at location z is given by

f1(z, r) =
1

σ0

√
2π

exp

[
− [(r − ṙ0z/w∞)− µ0]2

2σ2
0

]
(47)

Figure 10 compares the bubble density function at locations z = 0 m obtained numerically
with the analytical solution given by Equation (47). The results clearly indicate that the
numerical model agrees very well with the exact solution. Note also that extension of this
example to droplet transport and evaporation in one-dimensional gas flow is straightforward.

4.3. Bubbles Transport and Growth Due to Pressure Changes

In this section, the gas bubbles are transported with the upward flowing liquid and by buoyancy
while they can grow due the change in hydrostatic pressure as shown in Figure 9. The pressure
drop in the liquid phase is neglected and the pressure at z = 0 m is assumed to equal the
atmospheric pressure p0. The following equations are to be solved by the modified method of
characteristics,

dz

dt
= w∞(z) + wr(r, z) (48)

dr

dt
= ṙ(r, z) (49)

df1

dt
= f1

[
∂wr(r, z)

∂z
+

∂ṙ(r, z)
∂r

]
(50)

where wr and its derivative with respect to z are given by Equations (8) and (19), respectively.
The bubble growth rate ṙ and its derivative with respect to bubble radius are expressed as

ṙ = − ρ∞g(w∞ + wr)r/3
p0 + ρ∞gz + 4σ/3r

(51)

∂ṙ

∂r
= −ρ∞g

3

[
(w∞ + 3wr)

p0 + ρ∞gz + 4σ/3r

]
+

4σ

3r2

[
ṙ

p0 + ρ∞gz + 4σ/3r

]
(52)

Here, the liquid density, viscosity and surface tension correspond to those of soda-lime silicate
glass at 1800 K and are equal to 2406 kg/m3, 5.53 Pa.s and 296 mN/m, respectively. The
initial bubble density function is assumed to follow a normal distribution [Equation (46)] with
a mean value of µ0 = 1 mm and a deviation σ0 = 0.25 mm.

4.3.1. Bubble Rise Dominated by the Upward Liquid Flow In the present example, the relative
velocity of the bubble with respect to the liquid wr can be neglected compared with the liquid
velocity w∞. Its partial derivative with respect to z is also negligible in comparison with that
of ṙ with respect to the bubble radius r. Moreover, the term due to surface tension in the
denominator is assumed to be negligible, i.e. 4σ/3r ¿ (p0 + ρ∞gz). This assumption is valid
for bubble radii larger than 0.2 mm. Note that, if the liquid flows upward (w∞ > 0), the
bubbles grow and the growth rate dr/dt is positive. The approximate solution to the problem
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of interest can be written as

z(t) = w∞t (53)

r(t) = r0

(
p0 + ρ∞gz

p0

)1/3

(54)

f1(r) = f1(r0)
(r0

r

)
(55)

where r0 is the bubble radius at location z=0 m at time t=0 s. Note that the approximate
analytical solution satisfies the conservation of the same total number of bubbles N ,

N(z) =
∫ ∞

0

f1(r)dr =
∫ ∞

0

f1(r0)
r0

r
dr =

∫ ∞

0

f1(r0)dr0 = N(z = 0) (56)

Figure 11 illustrates a comparison of the approximate analytical solution given by Equation
(55) with the numerical results for Equations (50) to (52). The numerical solutions compare
very well with the approximate analytical solution. The slight discrepancies may be explained
by the approximation made to solve the problem analytically that tend to underestimate the
bubble growth. One can see that unlike the results for constant growth rate, the bubble density
function at the top of the column (z=4 m) is not symmetric around the mean value due to the
fact that the growth rate increases linearly with the bubble radius as given by Equation (51)
when wr is negligible compared with w∞, i.e. the large bubbles grow faster than the smaller
ones. Finally, the variation of the bubble radius r(z) and the bubble density function f1(r, z)
with the vertical location z for an initial bubble radius r0 = 2 mm at z = 0 m is shown in
Figures 12 and 13, respectively. Again, good agreement between the approximate analytical
and the numerical solution is observed.

4.3.2. Bubble Rise Dominated by Buoyancy Here, the gas bubbles rise by buoyancy only, i.e.
w∞ = 0m/s and can grow due the changes in the hydrostatic pressure. Similarly, assuming that
the term due to surface tension in the denominator is negligible compared with the hydrostatic
pressure, i.e. 4σ/3r ¿ (p0 + ρ∞gz), an analytical solution can be found for the radius r and
the bubble density function f1 at every location z in the column are given by

r(z) = r0

(
p0 + ρ∞gz

p0

)1/3

(57)

f1(z) = f1(r0)
(r0

r

)5

(58)

where r0 and f1(r0) are the bubble radius and the bubble size distribution at location z = 0
m, respectively.

Figure 14 shows a comparison of the approximate analytical solution given by Equation
(58) and the numerical results. The latter are in very good agreement with the approximate
analytical solution. Note that the variations of the bubble radius r(z) with the vertical location
z for an initial bubble radius r0 = 2 mm at z = 0 m are the same as those when the bubble rise
is dominated by the upward liquid flow (see Figure 12) and need not be repeated. The bubble
density function f1(r, z) with the vertical location z for an initial bubble radius r0 = 2 mm
at z = 0 m is shown in Figure 15. Excellent agreement between the approximate analytical
solution and the numerical solution is evident. Note that in the present case, the total number
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of bubbles is not conserved, i.e.
∫∞
0

f1(r)dr 6= ∫∞
0

f1(r0)dr0. This is due to the fact that
the gas and liquid momentum equations have been decoupled and it was assumed that the
vertical component of the bubble velocity vector was given by wb = w∞ + wr. Thus, this
assumption implies that the bubble velocity field does not satisfy the steady-state continuity
equation, i.e. ∇ ·~vb 6= 0. Therefore, the conservation of the total number of bubbles cannot be
assured. For example, in the case of convective transport of solid particles without generation
and growth, the conservation equation [Equation (36)] along the pathlines of the particles
may be written as df1/dt = f1∂wr/∂z. However, physically it is clear that the bubble density
function is transported unchanged along the particle pathlines and the conservation equation
can be written as df1/dt = 0. Therefore, the assumption on the bubble velocity introduces an
artificial source in the population balance equation. In order to approximately conserve the
total number of bubbles the bubble velocity vector should satisfy

∇ · ~vb ≈ 0 (59)

Since the liquid is treated as incompressible, Equation (59) is satisfied if ∂wr/∂z ¿ 1.
Physically, this corresponds to situation when the bubble growth rate and liquid velocity
do not vary significantly with position and time. This problem does not occur either in the
case of bubble growth and rise dominated by the liquid flow since ∇ · ~vb ≈ ∇ · ~v∞ ≈ 0 or for
solid particle rise by buoyancy without growth since then ∂wr/∂z = 0. However, for bubble
rise dominated by buoyancy, the simplifying assumption wb = w∞ + wr must be relaxed and
the coupling between the bubble rise and the liquid flow should be accounted for. To do so,
one could couple the mass and momentum conservation equations for both phases using the
two-fluid model [1, 2]. However, this task is complicated and beyond the scope of this study.

In conclusion, the results reported in this section validate the numerical computer program.
Previous examples have analytical solutions and could have been solved using the conventional
method of characteristics (direct marching method) since they were concerned with one-
dimensional flow and with bubbles having one internal coordinate (their radius r). The
numerical results obtained compare well with the analytical solution and validate the numerical
scheme.

5. CONCLUSION

This paper has described in detail a new numerical method for solving the population balance
equation using the modified method of characteristics. The numerical solution has been
compared with the analytical solution for simple one-dimensional flow cases when it was
possible. Very good agreement between the numerical and the theoretical solutions has been
obtained confirming the validity of the numerical procedure and the associated computer
program.

The modified method of characteristics enables one to solve the population balance equation
for complicated problems with relative ease while conventional techniques become rapidly
complex or inadequate. In addition, the method is compatible and can be used in combination
with other numerical schemes (e.g., finite-volume, finite elements) that may be used to compute
the external variables. For example, the numerical scheme developed in the present study could
easily be coupled to the three-dimensional two-fluid model to solve for polydispersed bubble
size distribution and could be applied, for example, to two-phase flow around a naval surface
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ship [3].
Finally, since computations for each point on the initial bubble density function f1,0 are

independent from one another, parallel computing is highly recommended to significantly
reduce the computational time. Moreover, the local particle density function and the
conditions in the surrounding liquid phase (temperature, velocity vector, gas concentration)
are interdependent. Accounting for the coupling between the particle density function and
the external fields is straightforward but time consuming. Indeed, accounting for the coupling
requires iteratively solving for the external fields and then for the population balance equation
until the convergence criteria are met. However, such a procedure falls beyond the scope of this
study and has been disregarded for the sake of clarity as the authors wanted to emphasize on
the modified method of characteristics. Applications to bubble transport and growth/shrinkage
in three-dimensional flow will be reported shortly.
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NOMENCLATURE

f1 Particle density function
g Specific gravity
h Particle generation rate per unit volume in the state space
H Height of the column
~i,~j,~k Unit vectors in the physical space
l Number of internal coordinates other than the particle radius
m Number of variables in external fields
N Total number of particles
pi Particle internal coordinates other than radius (1 ≤ i ≤ l)
p Pressure
r Particle or bubble radius
ṙ Time rate of change of particle or bubble radius
R Universal gas constant = 8.314J/molK
t Time
u Projection of the velocity vector on the x-axis
v Projection of the velocity vector on the y-axis
~v Velocity vector
w Projection of the velocity vector on the z-axis
wr Vertical upward velocity of the particle relative to the glass melt
~x Spatial or external coordinates
x Longitudinal location
y Spanwise location
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Y Local continuous phase variables
z Vertical location oriented upward
Greek symbols
α Arbitrary constant with values between 0 and 1
βu,v,w Weighting parameters for Laplacian interpolation for the vector variables
γx,y,z Weighting parameters for Laplacian interpolation for the scalar variables
ε Arbitrary small constant for numerical converge criteria
σ Surface tension
σ0 Standard deviation of the particle density function
ρ Density
µ Kinematic viscosity
µ0 Mean value of the particle density function
µ

(i)
m Sectional moment of the density function of order m [Equation (2)]

µm Total moment of the bubble density function of order m [Equation (2)]
Subscripts
0 Refers to initial values
b Refers to the particles or bubbles
i, j, k Indices for the vector nodes of a staggered grid (see Figure 1)
I, J,K Indices for the scalar nodes of a staggered grid (see Figure 1)
i Index of the internal variable
n Index of the particle group
∞ Refers to the bulk of the liquid phase
Notation
Ẋ Derivative of property X with respect to time
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Figure 1. Schematic of a 8×8 staggered grid in a two-dimensional representative longitudinal plane
(l1 = m1 = 8).
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Figure 2. Definition of control volume in a two-dimensional representative longitudinal plane.
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Figure 3. Typical computational cell used for inverse marching method containing the pathline of the
bubbles.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1211–1236
Prepared using fldauth.cls



1232 L. PILON AND R. VISKANTA

Initialize

Compute ∆t

Compute 
Internal points

Impose 
Boundary Conditions

Steady-State?Steady-State?
no

t=t+∆t

Choose r0, pi,0, and f1,0

at the inlet

yes

Figure 4. Block diagram of the numerical procedure for solving the population balance equation by the
method of characteristics using inverse marching method.
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Figure 5. Block diagram of the computation of the interior point for solving the population balance
equation by the method of characteristics using inverse marching method.
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Figure 6. Comparison between the predictions of the method of characteristics and the analytical
solution for solid particle density function under one-dimensional transient flow at time t=20.4s.
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Figure 7. Schematic of the rectangular container for the code validation for the steady-state flow of
solid bubbles.
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Figure 8. Comparison between the numerical solutions and the analytical solution for bubble density
function under one-dimensional steady-state flow.
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Figure 9. Schematic of a rectangular vertical container used for the code validation.
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Figure 10. Comparison between the numerical solution and the analytical solution for bubble rise
at constant growth rate (ṙ = 0.01mm/s) under one-dimensional steady state flow at z = 4m with

µ0 = 1mm, σ0 = 0.25mm, ~w∞ = 0.2~k m/s.
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Figure 11. Comparison between the method of characteristics and the approximate analytical solution
for bubble rise and growth due to pressure change under one-dimensional steady state flow with

µ0 = 1mm, σ0 = 0.25mm, ~w∞ = 0.2~k m/s.
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Figure 12. Comparison between the method of characteristics and the approximate analytical solution
[Equation (54)] for the profile of bubble radius r(z) as a function of z with r0 = 2mm at z = 0m and

~w∞ = 0.2~k m/s.
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Figure 13. Comparison between the method of characteristics and the approximate analytical solution
[Equation (55)] for the profile of bubble density function f1(z) as a function of z with r0 = 2mm at

z = 0m and ~w∞ = 0.2~k m/s.
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Figure 14. Comparison between the method of characteristics and the approximate analytical solution
for bubble rise due to buoyancy and growth due to pressure change under one-dimensional steady state

flow with µ0 = 1mm, σ0 = 0.25mm, ~w∞ = 0.0~k m/s.
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Figure 15. Comparison between the method of characteristics and the approximate analytical solution
[Equation (58)] for the profile of bubble density function f1 as a function of vertical location - one-

dimensional steady state flow with r0 = 2mm at z = 0m and ~w∞ = 0.0~k m/s.
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