
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Structural Analysis and Design Optimization of Non-matching Isogeometric Shells

Permalink
https://escholarship.org/uc/item/6qh0w8x8

Author
Zhao, Han

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6qh0w8x8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Structural Analysis and Design Optimization of Non-matching Isogeometric Shells

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Engineering Sciences (Mechanical Engineering)

by

Han Zhao

Committee in charge:

Professor Jiun-Shyan Chen, Chair
Professor John T. Hwang
Professor H. Alicia Kim
Professor Shabnam J. Semnani

2024

Copyright

Han Zhao, 2024

All rights reserved.

The Dissertation of Han Zhao is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

iii

DEDICATION

To my family

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xiv

Acknowledgements . xv

Vita . xvii

Abstract of the Dissertation . xix

Chapter 1 Introduction . 1
1.1 Motivation . 1

1.1.1 Integration of design and analysis for complex shell structures 1
1.1.2 Design optimization of complex shell structures . 3

1.2 Objectives . 5
1.3 Outline . 7

Chapter 2 Literature Review . 10
2.1 Isogeometric analysis . 10
2.2 Structural analysis of shell structures . 11
2.3 Coupling methods for isogeometric shells . 13
2.4 Design optimization for shell structures . 14
2.5 Open-source shape optimization of isogeometric shells . 15

Chapter 3 Non-matching coupling of isogeometric shells . 18
3.1 Kirchhoff–Love shell theory . 18
3.2 Penalty-based non-matching shell coupling . 20
3.3 Numerical procedures for shell coupling . 23
3.4 Benchmark problems . 27

3.4.1 Scordelis-Lo roof . 27
3.4.2 Torsion of a T-beam . 30
3.4.3 Nonlinear analysis of a slit annular plate . 33
3.4.4 Shell structures with curved intersections . 34

Chapter 4 Shape optimization using FFD . 38
4.1 Automate IGA with Lagrange extraction . 39
4.2 Non-matching shells update through FFD block . 41

4.2.1 Sensitivities for shape optimization . 45

v

4.2.2 Sensitivities for thickness optimization . 48
4.3 Benchmark Problems . 50

4.3.1 Arch shape optimization . 50
4.3.2 Tube shape optimization . 52
4.3.3 T-beam shape optimization . 53
4.3.4 Thickness optimization of a clamped plate . 55

Chapter 5 Shape optimization with moving intersection . 60
5.1 Shape optimization of non-matching shells with moving intersections 60

5.1.1 Shape optimization of isogeometric Kirchhoff–Love shell 60
5.1.2 Shape optimization of multi-patch isogeometric Kirchhoff–Love shells . 62
5.1.3 Implicit relation between shell control points and intersections’ paramet-

ric coordinates . 64
5.1.4 Partial derivatives of the non-matching residual . 66
5.1.5 Partial derivatives of the implicit intersection representation 68

5.2 Shape optimization implementation details . 70
5.2.1 Multilevel design for IGA-based optimization . 70
5.2.2 Intersection types in shape optimization . 72
5.2.3 Optimization scheme . 74
5.2.4 Software elements for open-source implementation 74

5.3 Benchmark problems . 76
5.3.1 T-beam under distributed load . 76
5.3.2 Tube with follower pressure . 81

Chapter 6 Application to aircraft wings . 85
6.1 Integration of design and analysis for aerospace structures 85

6.1.1 Design of eVTOL wing geometry . 85
6.1.2 Analysis of an eVTOL wing . 87

6.2 PEGASUS wing thickness optimization . 91
6.2.1 Structural analysis of the PEGASUS wing . 91
6.2.2 Thickness optimization of the PEGASUS wing . 94

6.3 Simultaneous optimization for eVTOL wing . 95
6.4 Shape optimization of wing internal structures . 100

Chapter 7 Open-source implementation . 109
7.1 Analysis framework for non-matching shells . 109

7.1.1 Design of PENGoLINS . 110
7.1.2 Assembling the full system . 116

7.2 Optimization framework for non-matching shells . 120
7.2.1 Software dependencies and workflow . 120
7.2.2 Optimization components of shell shape optimization 123
7.2.3 Components for FFD-based shape optimization . 124
7.2.4 Components for moving intersections . 128

7.3 Numerical examples with code implementation . 133

vi

7.3.1 Non-matching arch shape optimization . 133
7.3.2 T-beam shape optimization with moving intersections 138
7.3.3 Tube under internal pressure . 142

Chapter 8 Conclusions and future work . 147
8.1 Conclusions . 147
8.2 Future work . 149

Bibliography . 152

vii

LIST OF FIGURES

Figure 1.1. Discretization schemes comparison of an eVTOL wing using FEM and
IGA. High-quality connected meshes generation is required in the classical
FEM, while mesh generation is circumvented due to the use of splines as
basis functions in IGA. 2

Figure 1.2. An illustrative example of a pair of shell patches with a single surface–
surface intersection, where displacement and angular compatibility need to
be maintained in structural analysis. 3

Figure 3.1. Spline patches SA and SB with one intersection L (indicated with red
curves), where u and a3 are displacement and unit normal vector of mid-
surface, at and an are unit tangent vector and unit conormal vector on the
intersection. 22

Figure 3.2. An illustrative example of two shell patches with one intersection. Shell
patches SA and SB are discretized isogeometrically using NURBS basis
functions NA(ξξξ) and NB(ξξξ). 26

Figure 3.3. (a) Scordelis–Lo roof geometry, consisting of nine non-matching NURBS
surfaces, with a total of 2259 DoFs. (b) Vertical displacement of the
Scordelis–Lo roof, using a scale factor of 10 to warp the initial geometry. . 28

Figure 3.4. Convergence of Scordelis–Lo roof example for different orders of NURBS
surfaces. Results from [77] (using a different mesh structure) are included
for reference. 29

Figure 3.5. A wide range of penalty coefficients compute accurate results for Scordelis–
Lo roof example. Results from [77, Figure 6(a), non-matching] are in-
cluded for reference. 29

Figure 3.6. Stress resultants from the Scordelis–Lo roof with 9 non-matching shell
patches and 9819 DoFs in total. (a) First component of normal forces n̂11.
(b) First component of bending moments m̂11. (c) First component of shear
forces q̂1. 30

Figure 3.7. (a) T-beam geometry consisting of two separate NURBS surfaces with 648
DoFs in total. Note that the non-matching interface does not coincide with
a knot of the horizontal patch. (b) Displacement of the T-beam benchmark
test, using a scale factor of 10 to warp the initial geometry. 31

viii

Figure 3.8. (a) The angle between the two patches of the T-beam at the free end, as a
function of penalty coefficient. (b) The twist angle of the vertical patch as
a function of the penalty coefficient. Results from [77] (using a different
mesh and definition of element size) are included for reference. 32

Figure 3.9. (a) Slit annular plate geometry, split into four NURBS surfaces, with a total
of 2052 DoFs. The three non-matching interfaces are marked by red lines.
(b) Displacement of the slit annular plate at the maximum magnitude of
the applied line load. 33

Figure 3.10. Comparison between our computations and reference data for vertical
displacement at points A and B. 34

Figure 3.11. Distorted parameterization of the Scordelis–Lo roof. 35

Figure 3.12. Convergence of displacement in the Scordelis–Lo roof with a distorted
parameterization. 35

Figure 3.13. T-beam with a distorted parameterization of the top patch. 36

Figure 3.14. The angle between the T-beam patches (a) and the twist angle of the vertical
patch (b) as functions of the penalty coefficient α , using the distorted
parameterization of Figure 3.13. 36

Figure 4.1. Workflow of FFD-based shape optimization for non-matching shell struc-
tures. A cylindrical roof consisting of four non-matching NURBS patches
is first immersed in a trivariate B-spline block. 41

Figure 4.2. (a) Initial configuration of the cylindrical roof geometry consisting of four
non-matching NURBS patches. (b) Updated NURBS surfaces using FFD
block. 44

Figure 4.3. Sliced view of the intersecting edges between shell patches SC and SD of
the cylindrical roof. The two edges remain overlapping in the updated
configuration. 46

Figure 4.4. (a) Baseline geometry of a non-matching arch consisting of four NRUBS
patches, three surface–surface intersections are indicated with red lines. (b)
Initial configuration of the arch immersed in an FFD block, where black
lines and dots denote the control net. 51

Figure 4.5. Snapshots of non-matching arch shape optimization. 51

ix

Figure 4.6. (a) Baseline geometry of the square tube, a quarter of the tube is modeled
using four non-matching B-spline patches with four intersections. (b) Initial
configuration of the FFD block with control net. The optimal cross-section
is depicted by a red circle. 52

Figure 4.7. Iteration history for tube shape optimization under follower pressure. 53

Figure 4.8. (a) Baseline configuration of a T-beam whose vertical patch is at the three-
quarter position of the horizontal patch. (b) The T-beam is placed in an
FFD B-spline block. The optimal position of the vertical patch is depicted
with red lines. 54

Figure 4.9. Screenshots of T-beam shape optimization process. 55

Figure 4.10. (a) A unit square plate consisting of six non-matching patches, intersections
are indicated with red lines. (b) Final plate thickness for piecewise constant
thickness optimization. 56

Figure 4.11. (a) The non-matching plate is immersed in an FFD block. (b) Optimized
thickness distribution using the FFD-based approach. 57

Figure 4.12. (a) Optimization process of normalized internal energy for two approaches.
(b) Cross-sectional view of piecewise constant thickness and variable thick-
ness, and comparison with Euler-Bernoulli beam thickness optimization. . 58

Figure 5.1. Illustration of shape updates and changes in the relative location for two
shell patches during shape optimization. The parametric coordinates of the
patch intersection are updated from iteration i to i+1 accordingly. 67

Figure 5.2. Multilevel design approach for shape optimization problems. The coarse
design model is employed to update the shape of the geometry, while the
refined analysis model is used for structural analysis. Both the design
model and the analysis model represent the same geometry. 71

Figure 5.3. Types of shell patch intersection in shape optimization problems. 73

Figure 5.4. Parametric configuration of two shell patches with an interior–edge inter-
section. 73

Figure 5.5. Workflow of the IGA-based shape optimization for non-matching shell
structures with moving intersections. 75

Figure 5.6. (a) The isogeometrically discretized T-beam geometry with a flat top sur-
face in the initial configuration. (b) The T-beam’s internal energy depends
on the location of the vertical surface. 77

x

Figure 5.7. Optimized geometry of the T-beam with a flat top surface. The optimizer
with a tolerance of 10−15 terminates after 4 iterations. 78

Figure 5.8. Initial configuration of a T-beam geometry with a curved top surface, where
the green line indicates the initial location of the intersection. 79

Figure 5.9. Snapshots of the shape optimization history of the T-beam featuring a
curved top surface. The SNOPT optimizer requires 49 iterations to con-
verge to the tolerance of 10−6. 80

Figure 5.10. (a) A quarter of the initial tube geometry consists of four non-matching
cubic B-spline patches. (b) Initial configuration of the tube geometry and
FFD blocks. 82

Figure 5.11. Representative snapshots of the shape optimization history for the cross-
sectional view of tube geometry with interior–interior intersections. The
interior–interior intersections converge to edge–edge intersections in the
optimized design to minimize the internal energy of the tube. 83

Figure 5.12. (a) Optimized geometry of the tube, the red curve represents an exact circle
for comparison. (b) Cross-sectional view of the tube geometry in the initial
and optimized configurations. 84

Figure 6.1. (a) eCRM-002 CAD model of format vsp3 in the main window of OpenVSP.
(b) Geometry browser of OpenVSP for eCRM-002. (c) Aircraft wing
design menu in OpenVSP. 86

Figure 6.2. (a) eVTOL wing geometry, comprising 21 NURBS patches in total, with
internal stiffeners. Upper surfaces are set translucent for visualization. (b)
Computed non-matching intersections of eVTOL wing; 87 intersection
curves are displayed. 87

Figure 6.3. Exploded view of the eVTOL wing geometry of the eCRM-002 model,
consisting of 21 NURBS shell patches with 87 intersections. The total
number of displacement DoFs is 5524. Lower and upper surfaces are
displaced vertically, to show the internal stiffeners. 88

Figure 6.4. Distribution of von Mises stresses of the eVTOL wing. Wing displacements
are scaled by a factor of 100, and the upper surfaces are translucent for
visualization. 89

Figure 6.5. Convergence of the vertical displacement at the wingtip of the trailing edge. 90

Figure 6.6. (a) Displacement solution for an eVTOL wing using PENGoLINS. (b)
Displacement solution using the Reissner–Mindlin shell element of [26]. . 91

xi

Figure 6.7. CAD geometry of the PEGASUS wing which is composed of 90 NURBS
patches with 280 intersections, totaling 19572 DoFs. 92

Figure 6.8. Structural analysis of the PEGASUS wing using PENGoLINS, and the
resulting displacement magnitude and von Mises stress are compared with
the corresponding outputs obtained from COMSOL. 93

Figure 6.9. Optimization result of the PEGASUS wing with piecewise constant thick-
ness. 95

Figure 6.10. (a) Configuration of the combined thickness optimization. Each group
of outer skins and spars is placed in one FFD block, and the remaining
internal ribs have a piecewise constant thickness. (b) Optimal thickness
distribution of PEGASUS wing. 96

Figure 6.11. (a) FFD blocks for eVTOL wing thickness optimization, where the lower
and upper skins have a variable thickness. Wingtips and internal ribs
and spars have a piecewise constant thickness. (b) FFD block for shape
optimization. 97

Figure 6.12. Optimized solutions of the eVTOL wing with varying regularization coeffi-
cient. 99

Figure 6.13. Exploded view of optimal design of eVTOL wing with regularization
coefficient λ = 10−3, which results in 83.23% reduction of internal energy
compared to the baseline design. 100

Figure 6.14. The CAD geometry of an eVTOL aircraft wing comprises 11 spline patches
with 32 intersections. There are 28 movable intersections highlighted by
green curves and 4 fixed intersections are indicated by red curves. 101

Figure 6.15. The initial eVTOL wing geometry discretization with B-spline basis func-
tions, followed by the displacement result using the penalty-based non-
matching coupling method for isogeometric Kirchhoff–Love shells. 102

Figure 6.16. (a) The optimized geometry with rigid body translation for spars and ribs
and associated displacements. (b) The optimized geometry with rigid body
translation for spars and planar ribs and corresponding displacements. The
displacement field is scaled by a factor of 20. 104

Figure 6.17. (a) The optimized geometry with planar spars and ribs and contour plot of
the displacements. (b) The optimized geometry with quadratic spars and
planar ribs and resulting displacements. The displacement field is scaled
by a factor of 20. 106

xii

Figure 6.18. The displacement field of the optimized geometry incorporating updates of
outer skins and rigid body translation of spars ribs and resulting displace-
ments. The displacement field is scaled by a factor of 20. 108

Figure 7.1. Schematic configuration of spline patches and quadrature mesh used for
penalty quadrature. Patches are tesselated into triangles for technical reasons. 114

Figure 7.2. The design of Python library GOLDFISH and its software dependencies. . 123

Figure 7.3. Component structure for shell shape optimization using the FFD-based
approach. 126

Figure 7.4. Component structure for shape optimization with moving intersections and
the multilevel design method. 130

Figure 7.5. (a) The initial design of an arch geometry consisting of four non-matching
NURBS patches. (b) The initial arch geometry is embedded in a 3D
B-spline block for FFD-based shape optimization. 134

Figure 7.6. (a) The optimized design of the arch geometry. (b) The cross-sectional
view of the optimized arch compared with the analytical optimum. 138

Figure 7.7. (a) The baseline design of the T-beam geometry consists of two B-spline
patches. (b) Isogeometric discretization of the initial T-beam geometry. . . 139

Figure 7.8. (a) The optimized T-beam geometry with a curved top patch. (b) Cross-
sectional view of the optimized T-beam, the vertical patch is moved to the
center of the top patch and maintains the T-junction. 143

Figure 7.9. (a) The baseline design of a tube geometry, with a quarter of the tube
modeled by four non-matching B-spline patches. (b) Two FFD blocks are
employed, one for each pair of B-spline surfaces with an edge intersection.
Relative movement is allowed between the two FFD blocks. 144

Figure 7.10. (a) The resulting geometry of the tube with minimum internal energy. Sur-
face intersections between the spline patches transit to edge intersections
in the optimized design. (b) Comparison of the optimized geometry with
an exact cylindrical tube in the cross-sectional view. 146

xiii

LIST OF TABLES

Table 3.1. Comparison of stress resultants between non-matching Kirchhoff–Love
shell analysis and the Abaqus reference computation, as well as single patch
analysis results reported in [103, Section 6.2.4]. 31

Table 4.1. Reduction of internal energy of the clamped plate for different degrees of
the FFD block. 59

Table 6.1. Reduction of internal energy of the eVTOL wing after simultaneous opti-
mization with varying regularization coefficients. 98

xiv

ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude to my advisor, Professor J. S. Chen, for

his constant guidance, support, and encouragement throughout my Ph.D. journey. His expertise,

patience, and insightful feedback have been invaluable. I am deeply grateful for the opportunity

to be part of Professor Chen’s group and learn from his extensive knowledge and dedication to

research. I am also immensely thankful to Dr. David Kamensky for his excellent and patient

mentoring, and for introducing me to the world of isogeometric analysis.

I would like to acknowledge my defense and candidacy committee members, Professor

John T. Hwang, Professor H. Alicia Kim, and Professor Shabnam J. Semnani, for their helpful

feedback and serving on my committee. I also want to thank Professor John T. Hwang for

his research suggestions and excellent collaboration. I would like to thank Professor Nicholas

Boechler for his guidance and support during my initial time at UCSD. A special thanks to

Professor Ming-Chen Hsu for his support and great discussions.

I would like to extend my appreciation to the members and friends of our research group,

Ru Xiang, Jennifer Fromm, Kristen Susuki, Ryan Schlinkman, Yanran Wang, Samuel Casebolt,

Dr. Karan Taneja, Dr. Jonghyuk Baek, Dr. Marco Pasetto, Joshua Krokowski, Sebastiaan van

Schie, for their collaboration, company, and for making my Ph.D. experience both productive

and enjoyable.

I am also thankful to my colleagues and friends at UCSD, Dr. Maroun Abi Ghanem, Dr.

Reza Behrou, Michael Warner, Marius Ruh, Anugrah Jo Joshy, Andrew Fletcher, Xiangbei Liu,

Dr. Darshan Sarojini, Tianshi Feng, Ning Li, Dr. Zichen Zhang, Dr. Li Tan, Dr. Erbin Qiu, Dr.

Liang Ji, Yida Wu, Aobo Yang, Jie Feng, Robert Chambers, Putian He and many others, whose

support and friendship have greatly motivated me throughout this journey.

Finally, I would like to express my sincere gratitude to my mom, dad, sister, and grand-

parents for their unconditional love and always believing in me. I would not have been able to

accomplish this without them. I would like to thank Yunzhao Qiao for her companionship and

constant encouragement.

xv

The support from the National Aeronautics and Space Administration (NASA) is greatly

appreciated.

Portions of Chapters 1, 2, 3, 6, 7, and 8 have been published in “H. Zhao, X. Liu, A. H.

Fletcher, R. Xiang, J. T. Hwang, and D. Kamensky. An open-source framework for coupling non-

matching isogeometric shells with application to aerospace structures Computers & Mathematics

with Applications, 111:109–123, 2022.” The dissertation author is the primary investigator and

author of this paper.

Portions of Chapters 1, 2, 4, 6, and 8 have been published in “H. Zhao, D. Kamensky,

J. T. Hwang, and J. S. Chen. Automated shape and thickness optimization for non-matching

isogeometric shells using free-form deformation. Engineering with Computers, 1-24, 2024.” The

dissertation author is the primary investigator and author of this paper.

Portions of Chapters 1, 2, 3, 5, 6, and 8 have been published in “H. Zhao, J. T. Hwang, and

J. S. Chen. Shape optimization of non-matching isogeometric shells with moving intersections.

Computer Methods in Applied Mechanics and Engineering, 431:117322, 2024.” The dissertation

author is the primary investigator and author of this paper.

Portions of Chapters 1, 2, 7, and 8 are currently being prepared for submission for

publication of the material. “H. Zhao, J. T. Hwang, and J. S. Chen. Open-source shape

optimization for isogeometric shells using FEniCS and OpenMDAO”. The dissertation author

was the primary investigator of this material.

xvi

VITA

2024 Ph.D. in Engineering Sciences (Mechanical Engineering), University of California
San Diego

2020 M.S. in Engineering Sciences (Mechanical Engineering), University of California
San Diego

2018 B.S. in Vehicle Engineering, Liaoning Technical University

PUBLICATIONS

JOURNAL ARTICLES

• H. Zhao, J. T. Hwang, and J. S. Chen. Open-source shape optimization for isogeometric
shells using FEniCS and OpenMDAO. In preparation.

• H. Zhao, J. T. Hwang, and J. S. Chen. Shape optimization of non-matching isogeo-
metric shells with moving intersections. Computer Methods in Applied Mechanics and
Engineering, 431:117322, 2024.

• H. Zhao, D. Kamensky, J. T. Hwang, and J. S. Chen. Automated shape and thickness opti-
mization for non-matching isogeometric shells using free-form deformation. Engineering
with Computers, 1-24, 2024.

• J. E. Fromm, N. Wunsch, R. Xiang, H. Zhao, K. Maute, J. A. Evans, and D. Kamensky.
Interpolation-based immersed finite element and isogeometric analysis. Computer Methods
in Applied Mechanics and Engineering, 405:115890, 2023.

• G. E. Neighbor, H. Zhao, M. Saraeian, M.-C. Hsu, and D. Kamensky. Leveraging code gen-
eration for transparent immersogeometric fluid–structure interaction analysis on deforming
domains. Engineering with Computers, 39(2):1019–1040, 2023.

• H. Zhao, X. Liu, A. H. Fletcher, R. Xiang, J. T. Hwang, and D. Kamensky. An open-source
framework for coupling non-matching isogeometric shells with application to aerospace
structures. Computers & Mathematics with Applications, 111:109–123, 2022.

• X. Liu, C. Du, X. Fu, H. Zhao, J. Zhang, and X. Yang. Wear analysis and performance
optimization of drum blade in mining coal gangue with shearer. Engineering Failure
Analysis, 128:105542, 2021.

• M. A. Ghanem, A. Khanolkar, H. Zhao, and N. Boechler. Nanocontact tailoring via mi-
crolensing enables giant postfabrication mesoscopic tuning in a self-assembled ultrasonic
metamaterial. Advanced Functional Materials, 30(10):1909217, 2020.

xvii

CONFERENCE PROCEEDINGS

• D. Sarojini, M. L. Ruh, J. Yan, L. Scotzniovsky, N. C. Orndorff, R. Xiang, H. Zhao, J.
Krokowski, M. Warner, S. P. van Schie, A. Cronk, A. T. Guibert, J. T. Chambers, L. Wolfe,
R. Doring, R. Despins, C. Joseph, R. Anderson, A. Ning, H. Gill, S. Lee, Z. Cheng, Z. Cao,
C. Mi, Y. S. Meng, C. Silva, J. S. Chen, A. A. Kim, J. T. Hwang. Review of Computational
Models for Large-Scale MDAO of Urban Air Mobility Concepts. AIAA SciTech 2024
Forum, 2024.

• M. L. Ruh, A. Fletcher, D.Sarojini, M. Sperry, J. Yan, L. Scotzniovsky, S. P. van Schie,
M. Warner, N. C. Orndorff, R. Xiang, A. J. Joshy, H. Zhao, J. Krokowski, H. Gill, S.
Lee, Z. Cheng, Z. Cao, C. Mi, C. Silva, L. Wolfe, J. S. Chen, J. T. Hwang. Large-scale
multidisciplinary design optimization of a NASA air taxi concept using a comprehensive
physics-based system model. AIAA SciTech 2024 Forum, 2024.

• S. P. van Schie, H. Zhao, J. Yan, R. Xiang, J. T. Hwang, and D. Kamensky. Solver-
independent aeroelastic coupling for large-scale multidisciplinary design optimization.
AIAA SciTech 2023 Forum, 2023.

xviii

ABSTRACT OF THE DISSERTATION

Structural Analysis and Design Optimization of Non-matching Isogeometric Shells

by

Han Zhao

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2024

Professor Jiun-Shyan Chen, Chair

Isogeometric analysis (IGA) has emerged as a powerful approach in the field of structural

analysis, benefiting from the seamless integration between the computer-aided design (CAD)

geometry and the analysis model by employing non-uniform rational B-splines (NURBS) or

other types of splines as basis functions. The spline basis functions naturally satisfy the C1

continuity making it particularly suitable for the approximation of the Kirchhoff–Love shell

formulation for thin shells. Despite its advantages, the application of IGA to structural analysis

and design optimization of complex shell CAD geometries consisting of multiple non-matching

spline patches remains challenging due to arbitrary surface intersections. To achieve the stream-

lined design-analysis-optimization workflow, effective coupling of intersecting shell patches in

xix

structural analysis and special handling to maintain intersections during design optimization is

essential.

In this work, a shell coupling algorithm is developed to directly analyze complex shell

structures represented as collections of untrimmed NURBS patches. Shell patches are modeled

mechanically as Kirchhoff–Love shells and discretized isogeometrically. Coupling of non-

matching patches uses a penalty-based formulation, employing a series of topologically 1D,

geometrically 2D quadrature meshes. The quadrature meshes act as integration domains for the

penalty energy to preserve displacement and rotational continuities at patch intersections. For

design optimization, a free-form deformation (FFD)-based formulation is proposed for shape

and thickness optimization of non-matching shell structures, ensuring compatibility of design

variables at patch intersections throughout the optimization process. Lagrange extraction is

employed to link control points associated with the B-spline FFD block and shell patches, and

the extraction operators are also used to represent NURBS functions by Lagrangian bases in IGA

analysis. Analytical sensitivities are derived to facilitate efficient gradient-based optimization

algorithms. Additionally, a novel method for shape optimization of non-matching isogeometric

shells incorporating intersection movement is introduced, allowing shell patches to move inde-

pendently during shape updates. This flexibility is achieved by an implicit state function, with

analytical sensitivities derived for the relative movement of shell patches. The differentiable

intersections expand the design space and overcome challenges associated with large mesh

distortion when optimal shapes involve significant movement of patch intersections in physical

space. Shell patches are represented by the NURBS bases during the optimization process,

enabling efficient integration of analysis and design models, and allowing for the multilevel

design concept.

The proposed structural analysis algorithm and design optimization methods are validated

through various benchmark problems and applied to practical aircraft wings, demonstrating their

effectiveness for complex shell structures.

xx

Chapter 1

Introduction

1.1 Motivation

1.1.1 Integration of design and analysis for complex shell structures

It is well-established that the analysis bottleneck in exploring geometrical design spaces

is mesh generation [76]. The field of IGA [88, 45] aims to directly analyze spline-based geometry

representations used in computer-aided design programs, bypassing mesh generation entirely.

A comparison of discretization schemes for an electric vertical take-off and landing (eVTOL)

aircraft wing between classical finite element method (FEM) and IGA is shown in Figure 1.1. The

spline function spaces used in CAD also have mathematical properties that make them particularly

useful for approximating solutions to partial differential equations (PDEs), independent of IGA’s

initial goal of streamlining design-through-analysis. In particular, smooth polynomial splines

have superior approximation power per degree-of-freedom relative to traditional high-order

finite elements [49], and the additional regularity permits Bubnov–Galerkin approximations of

high-order PDEs.

Shell structures exhibit exceptional stiffness and high strength-to-self-weight ratios,

making them widely used in various engineering fields, including aerospace, automotive, and

marine engineering [51]. These structures are characterized by thin and curved geometries,

which require precise modeling and analysis to accurately predict their structural behavior. The

Kirchhoff–Love shell theory [105, 103], which assumes negligible transverse shear strains,

1

FEM

IGA

CAD geometry
of eVTOL wing

Figure 1.1. Discretization schemes comparison of an eVTOL wing using FEM and IGA. High-
quality connected meshes generation is required in the classical FEM, while mesh generation is
circumvented due to the use of splines as basis functions in IGA.

is particularly suited for thin shell structures but requires C1 continuity in the displacement

field. Achieving higher-order continuity is intractable in classical FEM, as it requires specially

designed elements. In contrast, the spline basis functions used in IGA naturally provide the

C1 continuity across element boundaries, making IGA an ideal approach for approximating

solutions to Kirchhoff–Love shell problems.

However, challenges arise when applying IGA to practical CAD geometries composed

of multiple non-matching spline patches. Complex shell models often feature arbitrary surface

intersections, as both displacement and rotational continuities need to be maintained at these

intersections. Figure 1.2 shows a pair of intersecting shell patches with a single intersection.

To address these challenges, coupling methods must be developed to ensure displacement and

angular compatibility at surface intersections, which are essential for accurate displacement

predictions. Furthermore, with the implementation of coupling methods, complex shell CAD

geometries are directly available for structural analysis without the need for FE mesh generation,

2

thereby fulfilling the potential of IGA to streamline design through analysis.

Figure 1.2. An illustrative example of a pair of shell patches with a single surface–surface
intersection, where displacement and angular compatibility need to be maintained in structural
analysis.

1.1.2 Design optimization of complex shell structures

The performance of shell structures is significantly influenced by their geometric and

material properties. Thus, structural optimization plays a critical role in enhancing structural

performance. Structural optimization for shell structures can be categorized into four main

types: material optimization, sizing optimization, shape optimization, and topology optimization

[103]. Topology optimization [48, 17] focuses on the optimal distribution of material within the

design domain. It has gained significant attention in the design of shell structures, leading to

many lightweight and highly efficient designs. However, the non-intuitive and complex material

layouts resulting from topology optimization pose additional complexities for manufacturing,

necessitating additional constraints and considerations for feasible production. Material opti-

mization [155] explores the optimal selection of materials with specific properties that best meet

the design requirements, which is particularly beneficial for composite structures. In shell design,

3

this approach allows for the use of different materials or layouts in each layer to optimize the

overall structural performance. Sizing optimization [102] for shell structures targets the optimal

distribution of thickness to achieve lightweight and efficient designs. This approach directly

addresses the challenge of reducing material usage while maintaining structural performance.

Moreover, shape optimization [21] aims to determine the optimal geometry of shell structures,

where applied loads are primarily supported by membrane forces and the bending moments are

minimized. Unlike material and thickness optimizations, shape optimization alters the shell

patches’ geometry by adjusting their curvature, orientation, and layouts. This approach can lead

to significant improvement of shell structures’ mechanical characteristics, enhancing their overall

performance and efficiency.

Structural analysis provides essential insights into the structural performance of updated

configurations during design optimization. Therefore, the accuracy and efficiency of structural

analysis are critical for achieving optimal designs. In the conventional approach, FEM is

commonly used for structural analysis throughout the optimization process. However, inherent

difficulties arise in the FEM-based design optimization for shell structures. In the case of

the Kirchhoff–Love shells, the requirement of C1 continuity is difficult to satisfy using FEM,

necessitating specialized elements. Additionally, FEM is sensitive to mesh quality, and variations

in element size, shape, and aspect ratio can result in ill-conditioned numerical systems, adversely

affecting analysis accuracy and optimization results. Shape changes in shell structures often

demand re-meshing to maintain mesh quality, which is intractable and time-consuming in

practice. Moreover, each iteration of generating the FE mesh from the updated shell design

introduces geometric errors, compromising the accurate representation of the actual geometry

and reducing the accuracy of the FEM-based optimization solution.

On the contrary, IGA offers a robust and accurate approach to the design optimization

of shell structures by integrating CAD models with analysis models directly, overcoming many

limitations faced in classical FEM. In IGA-based shape optimization, the coordinates of control

points that define the shell CAD geometry serve as design variables. The updated design is

4

achieved by modifying these control points, allowing for the direct evaluation of structural

response without FE mesh generation, thus eliminating geometric errors. Higher analysis

accuracy and effective shape sensitivities can also be achieved using spline basis functions,

which ensure the quality of optimal solutions and efficient convergence. Furthermore, the

geometry preservation properties in p-, h-, and k-refinements enable multilevel design, where

the dimension of design space can be selected independent of the highly refined analysis model,

enhancing convergence and realistic designs without compromising the geometric accuracy.

Despite the exceptional properties of IGA in the design optimization of shell structures,

the handling of patch intersections, where shell patches do not share conforming degrees of

freedom (DoFs), in complex shell geometries remains an active research direction. Ensuring

robust and accurate structural analysis in the optimization loop is crucial, as compatibility

conditions need to be maintained at patch intersections. Without proper handling, shell patches

may become disjointed during shape updates, leading to unrealistic designs. Additionally, large

movement of patch intersections when optimizing shell layouts can result in extremely skinny

shell elements, particularly if intersecting shell patches are optimized concurrently. Advanced

numerical methods are necessary to address these challenges in shape optimization of shell

structures using IGA so that the entire design-analysis-optimization workflow can be streamlined

and automated, thereby, facilitating the conceptual development of novel shell structures in

engineering design. Establishing the workflow will enable engineers to fully leverage the

potential of IGA.

1.2 Objectives

The objective of this work is to develop numerical methods and establish a streamlined

workflow for the design-analysis-optimization process of complex shell structures, with appli-

cations to aircraft wing designs. The main contributions of this dissertation are summarized as

follows:

5

1. Development of a penalty-based coupling algorithm based on the formulation proposed

in [77] for isogeometric shell structures consisting of collections of untrimmed NURBS

surfaces. Shell patches are modeled using Kirchhoff–Love shell theory, where the C1

continuity requirement is automatically satisfied by NURBS basis functions. With the cou-

pling algorithm, displacement and angular compatibility are maintained by integrating the

penalty energy along patch intersections, which involves the displacements and curvilinear

basis vectors of the intersecting shell patches. The penalty energy integration domains are

represented by geometrically 2D, topologically 1D quadrature meshes in the parametric

space. With automated shell coupling and isogeometrically discretized shell patches, CAD

geometries of complex shell structures can be used for analysis directly without the need

for FE mesh generation, thus streamlining the design-through-analysis workflow.

2. Development of an FFD-based [152] shape and thickness optimization approach for

non-matching isogeometric shells. The shape of the shell structure is updated through

a trivariate B-spline FFD block that encompasses the entire shell structure. The FFD

block modifies the Lagrange nodal points of all shell patches concurrently, preserving

the surface–surface intersections. Subsequently, the resulting NURBS surfaces of shells

are obtained using the Lagrange extraction technique [148], which is implemented in

IGA using FE subroutines. Meanwhile, this approach is applicable to shell thickness

optimization where the thickness distribution is continuous at patch intersections. By

integrating these two design variables, simultaneous shape and thickness optimization for

non-matching shells can be effectively achieved. This combined optimization approach

enables the exploration of complex design spaces while preserving the compatibility of

the non-matching shell structure.

3. Development of a general shape optimization approach for non-matching shell structures

where intersecting shell patches are allowed to move independently and have relative

movements. Parametric locations of intersections are no longer fixed in the optimization

6

process. The optimization process considers shape changes of selected sub-structures,

allowing intersections to relocate to accommodate these changes. Control points of shell

patches are optimized directly without additional operations, while the locations of the

surface intersections are updated accordingly through an implicit relation between surface

control points and intersections’ parametric coordinates. This enables relative movement

between shell patches without distorting the shell elements. The penalty method is

employed to couple the non-matching shell patches in structural analysis. Throughout the

optimization process, parametric coordinates of intersections are solved correspondingly

when updating the geometry of shell patches. Sensitivities of the implicit relation and

penalty residual with respect to intersections’ parametric coordinates are derived to obtain

the total derivative of the optimization problem and facilitate gradient-based optimization

algorithms.

4. Implementation of the proposed methods mentioned above into open-source Python li-

braries to promote code transparency and contribute to the IGA-based design optimization

community. The open-source implementations make use of the code generation capabil-

ities and automatic differentiation provided by the FEniCS project [122] to streamline

the design-analysis-optimization workflows for non-matching isogeometric shells. As-

sembly subroutines in FEniCS are used to automate the computation. Additionally, the

optimization framework inherits the modular design from OpenMDAO [63], allowing for

flexible multidisciplinary optimization. The open-source frameworks are verified through

numerical benchmark problems and applied to real-world CAD geometries of aircraft

wings, demonstrating their effectiveness for complex shell structures.

1.3 Outline

The remainder of the dissertation is outlined as follows. An overview of structural analysis

and design optimization methods for complex shell structures, along with coupling methods

7

for non-matching shell patch intersections, are discussed in Chapter 2. The coupling algorithm

using the penalty-based formulation for isogeometric Kirchhoff–Love shells is illustrated in

Chapter 3. Chapter 4 presents the detailed formulations of the FFD-based thickness and shape

optimization approach, integrated with the Lagrange extraction technique, for non-matching shell

structures. In Chapter 5, a general shape optimization method involving moving intersections

is demonstrated. Various benchmark problems with reference solutions are used to verify the

proposed analysis and optimization frameworks. Chapter 6 showcases the application of the

proposed methods to structural analysis and design optimization of practical aircraft wings,

yielding promising analysis results and innovation designs for aerospace structures. The open-

source implementation and usage of the analysis and optimization frameworks, based on FEniCS

and OpenMDAO, are illustrated in Chapter 7. Finally, Chapter 8 provides concluding remarks

on the proposed methods and discusses future research directions.

Acknowledgements

A portion of this chapter has been published in “H. Zhao, X. Liu, A. H. Fletcher, R.

Xiang, J. T. Hwang, and D. Kamensky. An open-source framework for coupling non-matching

isogeometric shells with application to aerospace structures Computers & Mathematics with

Applications, 111:109–123, 2022.” The dissertation author is the primary investigator and author

of this paper.

A portion of this chapter has been published in “H. Zhao, D. Kamensky, J. T. Hwang,

and J. S. Chen. Automated shape and thickness optimization for non-matching isogeometric

shells using free-form deformation. Engineering with Computers, 1-24, 2024.” The dissertation

author is the primary investigator and author of this paper.

A portion of this chapter has been published in “H. Zhao, J. T. Hwang, and J. S. Chen.

Shape optimization of non-matching isogeometric shells with moving intersections. Computer

Methods in Applied Mechanics and Engineering, 431:117322, 2024.” The dissertation author is

8

the primary investigator and author of this paper.

A portion of this chapter is currently being prepared for submission for publication in

“H. Zhao, J. T. Hwang, and J. S. Chen. Open-source shape optimization for isogeometric shells

using FEniCS and OpenMDAO”. The dissertation author was the primary investigator of this

material.

9

Chapter 2

Literature Review

This chapter reviews the basics of IGA and structural analysis of shell structures, discusses

coupling methods for non-conforming intersections, and presents design optimization strategies

of shell geometries.

2.1 Isogeometric analysis

IGA [88, 45] has gained increasing attention since its introduction in 2005, as it integrates

the CAD and analysis models into a unified framework using spline basis functions, e.g., B-

splines, NURBS [138], T-splines [153, 9], THB-splines [58], and U-splines [159]. IGA addresses

the key bottleneck in classical FEA, which involves intricate and time-consuming FE mesh

generation process [76]. Geometric errors are introduced in this process, particularly for complex

geometries, and the analysis accuracy is highly sensitive to the quality of elements in FE meshes.

IGA was developed to eliminate the FE mesh generation by performing analysis directly

on the input CAD geometries, thereby preserving the exact geometry in analysis and streamlining

the numerical analysis workflow. Similar to the h-refinement and p-refinemenet in FEM, IGA

has corresponding methods that are achieved by knot insertion and order elevation of NURBS,

both of which maintain the original geometry without introducing geometric errors. Additionally,

IGA uniquely offers k-refinement, achieved by order elevation followed by inserting unique

knots, providing increased continuity of the basis functions, which is difficult to accomplish

10

in classical FEM. The smoothness of spline basis functions in IGA allows direct discretization

of higher-order PDEs and has been successfully applied to models such as Kirchhoff–Love

shells [103, 105, 106] and the Cahn–Hilliard phase field model [71]. Moreover, the spline basis

functions exhibit excellent approximation properties per DoFs [49], making them highly effective

for complex engineering applications.

2.2 Structural analysis of shell structures

Shell structures are a fundamental class of structural elements widely used in engineering

applications due to their efficient load-carrying capabilities. Shell theory models the structural

behavior of these structures under various load and boundary conditions, ensuring that shell

designs meet the performance and safety requirements. A key assumption in shell theory is that

the thickness is much smaller than other dimensions, allowing the geometry to be simplified

and represented by its mid-surface. Two primary shell theories are commonly employed in

structural analysis. The first one is the Reissner–Mindlin shell theory [14], which accounts

for transverse shear strains and describes the deformed state using displacement and rotational

fields. The Reissner–Mindlin shell theory only requires C0 continuity for the solution, making it

suitable for implementation with FEM. Due to its consideration of the transverse shear strains,

the Reissner–Mindlin shell theory can be applied to thin to moderately thick shells. On the

other hand, the Kirchhoff–Love shell theory [14] is ideal for very thin shells, where transverse

shear strains are negligible. It assumes that cross-sections remain straight and normal to the

mid-surface after deformation and thickness keeps constant, allowing for the deformed state

to be described solely by the displacement field of the mid-surface. The Kirchhoff–Love shell

theory leads to a fourth-order PDE and therefore requires C1 continuity for the displacement.

These theories provide the fundamental framework for analyzing shell structures.

Computational analysis of shell structures has been investigated extensively in mechanical

and civil engineering. Various numerical methods have been developed and successfully applied

11

to industrial problems. FEM [87, 14] remains the industrial standard and is widely used in

both academia and industry. In FEM, shell structures are divided into small, simple elements,

such as triangles or quadrilaterals, with interconnected nodes that approximate the initial shell

geometry. Then the weak form or variational equation of the shell’s governing PDE is discretized

and formulated into a system of linear equations using Galerkin approximation to solve for

the unknowns. Due to the use of Lagrange polynomials as basis functions, standard FEM

elements only provides C0 continuity on element boundaries, making them suitable for Reissner–

Mindlin shell models. However, careful selection of function spaces is needed to mitigate shear

locking in very thin shells, a common numerical issue that can compromise analysis accuracy.

Implementing FEM for Kirchhoff–Love shells poses additional complexities due to the C1

continuity requirement, which standard FEM elements do not naturally support. Moreover, the

generation of FE meshes remains a bottleneck in FEM applications, accounting for up to 80% of

the total analysis time [76].

Another popular class of computational methods for shell structures is meshfree methods

[32, 13], such as reproducing the kernel particle method (RKPM) [121, 120, 37, 40, 35, 36] and

the element-free Galerkin (EFG) method [15, 124, 114, 115, 96]. Interconnected FE meshes are

no longer required in these methods. Instead, they rely on a collection of discrete points with

constructed shape functions, significantly simplifying the analysis workflow. Furthermore, the

C1 continuity in the Kirchhoff–Love shell theory can be easily satisfied in meshfree methods,

making them suitable for thin shell analysis. Despite these advantages, meshfree methods tend

to have higher computational costs compared to classical FEM. To address this, more advanced

integration techniques [38, 39, 167, 141, 33, 80] can be considered to improve computational

efficiency.

On the other hand, the requirement of the C1 continuity across element boundaries in

the Kirchhoff–Love shell theory is naturally satisfied without additional efforts in IGA. This

makes IGA an attractive analysis method for Kirchhoff–Love shells and other higher-order PDEs

without the additional complexities required in classical FEM. The seamless integration between

12

CAD models and analysis models simplifies the analysis workflow significantly since the CAD

geometry can be analyzed directly. This integration also makes IGA a more ideal approach

for shape optimization shell structures compared to other numerical methods. Isogeometric

Kirchhoff–Love shells have been studied extensively in [105, 103, 106, 135, 149, 28, 30, 126],

and have been applied across a variety of domains with excellent results, including analysis of

wind turbine blades [10, 94, 12, 78], heart valve leaflets [100, 127, 99, 171, 95, 170, 97, 130],

graphene sheets [154, 56, 57], and aerospace structures [81, 181, 74, 144]. Furthermore, various

approaches [156, 64, 19, 27, 29, 65, 134, 145] have been proposed to address the membrane

locking issues in Kirchhoff–Love shell problems.

2.3 Coupling methods for isogeometric shells

Multiple patches are typically required to model complex, realistic shell structures using

NURBS surfaces. To make the CAD geometries with multiple patches directly available for

structural analysis, coupling between adjacent NURBS patches to maintain displacement and

angular compatibility across patch intersections becomes essential. The bending strip method

[104] and the kinematic constraints [47] have been proposed for coupling NURBS surfaces

with conforming discretizations. For isogeometric Kirchhoff–Love shells with non-matching

intersections, a series of coupling techniques have been explored, including mortar methods

[25, 85, 82], Nitsche-type methods [69, 68, 70, 18, 168, 176, 136, 31], projected super-penalty

methods [44, 43], penalty methods [77, 116, 140, 181, 67], and embedded surfaces methods

[83, 74]. Streamlined design through analysis workflow is achieved by employing multipath

coupling in isogeometric shell structures, where displacement differences and rotational changes

are eliminated at patch intersections. This approach completely bypasses the FE mesh generation

within the workflow, thereby significantly reducing manual effort in analysis.

13

2.4 Design optimization for shell structures

A well-designed shell structure features excellent performance by distributing load

through membrane forces while minimizing bending moments [20], with the mechanical char-

acteristics significantly affected by its shape. Consequently, shape optimization plays a critical

role in the development of novel shell structures. The unified model between geometric de-

sign and structural analysis in IGA renders particular advantages for shell shape optimization

[166, 41, 72, 142, 117, 4], with many superior designs such as composite shells [129, 75], wind

turbine blades [79, 78], and stiffened thin-wall structures [81, 74].

Traditionally, shape optimization relies on the FEM with parametric models [46]. How-

ever, the classical FEM-based approach encounters difficulties in the precise representation of

the updated geometry and accurate solution of structural behavior [90]. Shape optimization

using meshfree methods, such as RKPM-based design optimization [111, 108, 110, 109, 66, 34],

offers an effective solution to many difficulties encountered in FEM-based shape optimization,

particularly issues related to mesh quality and low-order continuous basis functions. RKPM

bypasses these challenges by eliminating the dependency on FE meshes. In addition, RKPM

demonstrates distinct advantages in topology optimization [132, 133, 131] with an exact repre-

sentation of geometry and straightforward control of the order of continuity, ensuring smoother

topology evolution during the optimization process. Despite these benefits, the meshfree method

still requires additional steps to generate the point clouds that accurately represent the geometry

and generation of RK shape functions.

Shape optimization using IGA addresses these challenges by directly performing struc-

tural analysis on the CAD model, circumventing the intermediate steps as in the FEM-based

approach or the RKPM-based method. The geometric error between design and analysis models

is eliminated and the continuity of the geometry is preserved by adjusting the coordinates of

the control points during the optimization process. Nonetheless, updating complex geometries

with multiple NURBS patches necessitates additional efforts to represent surface intersections

14

accurately. The works in [83, 24, 74] utilized the spline composition. This method involves

combining a volume spline mapping, which is created by extruding a “master” surface to form a

3D block, and a surface spline mapping to align the stiffeners (sub-structures) with the “master”

surface perfectly. The “master” surfaces need to be identified to perform the extrusion, and spline

composition between volume and surface mappings is required in the former method. [180] em-

ployed the FFD technique [152] in conjunction with Lagrange extraction [148] to perform shape

optimization for the non-matching shell patches while maintaining the intersection geometries.

However, this method may lead to substantial distortion of elements when surface intersections

undergo large movement. The recent work in [179] allows relative movement between intersec-

tion shell patches during shape optimization, circumventing the element distortion issue with

moving intersections.

2.5 Open-source shape optimization of isogeometric shells

Code transparency in the field of design optimization has been gaining more interest.

OpenMDAO [63], an open-source framework for multidisciplinary design optimization (MDO),

uses a modular architecture that allows users to create custom models for different disciplines

and integrate them with various optimization algorithms. Successful applications of OpenMDAO

span aerospace engineering [92, 91, 2], wing energy [78], robotics [173, 118], and topology

optimization [42, 174, 93]. The Python library CSDL [55] addresses large-scale MDO problems

using a graph representation to automatically generate adjoint sensitivities. The CSDL-based

Python library FEMO [169], coupled with the FEniCS project [123, 122, 3], was developed

to solve partial differential equation (PDE)-constrained optimization problems, significantly

reducing the coding effort for PDE components such as structural mechanics, fluid mechanics,

and heat transfer, etc. Despite these advancements, an open-source design optimization frame-

work using IGA has been lacking. This contribution fills that gap by developing an open-source

Python library for shape optimization of complex shell structures using IGA, enabling researchers

15

to explore the benefits of IGA in shape optimization problems and advance structural design

optimization.

In the proposed code framework [178], OpenMDAO is used as the optimization toolkit.

For the IGA solver for structural analysis of non-matching shell structures, the open-source

package PENGoLINS [181] is employed. PENGoLINS, a Python framework based on tIGAr

[98], uses extraction techniques [23, 150, 148, 54, 53] to construct spline basis functions from

Lagrange basis functions in the FEM solver FEniCS. tIGAr has been successfully applied in

various fields [11, 158, 177, 175]. Additionally, an open-source fluid–structure interaction frame-

work [97, 130] is developed based on tIGAr and shows a good application for prosthetic heart

valve simulation with isogeometric leaflets. PENGoLINS employs a penalty-based formulation

[181] to couple the non-matching isogeometric Kirchhoff–Love shells, which is automated with

the code generation technology in FEniCS. The current code framework incorporates IGA for

complex Kirchhoff–Love shells with a penalty formulation [77], and employs the FFD-based

and moving intersection approaches [180, 179] to handle patch intersections. The modular archi-

tecture of OpenMDAO ensures that the open-source implementation of isogeometric shell shape

optimization can readily couple with other disciplines and extend to more practical problems.

Acknowledgements

A portion of this chapter has been published in “H. Zhao, X. Liu, A. H. Fletcher, R.

Xiang, J. T. Hwang, and D. Kamensky. An open-source framework for coupling non-matching

isogeometric shells with application to aerospace structures Computers & Mathematics with

Applications, 111:109–123, 2022.” The dissertation author is the primary investigator and author

of this paper.

A portion of this chapter has been published in “H. Zhao, D. Kamensky, J. T. Hwang,

and J. S. Chen. Automated shape and thickness optimization for non-matching isogeometric

shells using free-form deformation. Engineering with Computers, 1-24, 2024.” The dissertation

16

author is the primary investigator and author of this paper.

A portion of this chapter has been published in “H. Zhao, J. T. Hwang, and J. S. Chen.

Shape optimization of non-matching isogeometric shells with moving intersections. Computer

Methods in Applied Mechanics and Engineering, 431:117322, 2024.” The dissertation author is

the primary investigator and author of this paper.

A portion of this chapter is currently being prepared for submission for publication in

“H. Zhao, J. T. Hwang, and J. S. Chen. Open-source shape optimization for isogeometric shells

using FEniCS and OpenMDAO”. The dissertation author was the primary investigator of this

material.

17

Chapter 3

Non-matching coupling of isogeometric
shells

Structural analysis is crucial for the evaluation of the structural performance and sensi-

tivity calculation for shape optimization. In this work, shell structures are modeled using the

Kirchhoff–Love shell theory discretized by NURBS basis functions with higher order continu-

ity. Under this framework, separate shell patches in the CAD geometry are coupled using a

penalty-based formulation.

3.1 Kirchhoff–Love shell theory

This section only provides an overview to lay the foundation for the subsequent optimiza-

tion approach. In the Kirchhoff–Love shell theory [103], the 3D shell continuum is represented

by its mid-surface, which can be parametrized in a 2D space using coordinates ξξξ = {ξ1,ξ2}. We

denote the geometry of the mid-surface in the reference configuration as X(ξξξ) and the deformed

configuration as x(ξξξ). The displacement field of the mid-surface is given by

x(ξξξ) = X(ξξξ)+u(ξξξ) . (3.1)

18

Covariant basis vectors of the mid-surface are defined as

Aα = X,ξα
and aα = x,ξα

, (3.2)

where (·),ξα
= ∂ (·)

∂ξα
and α = {1,2}. Unit vectors that are normal to the mid-surface are given by

A3 =
A1 ×A2

∥A1 ×A2∥
and a3 =

a1 ×a2

∥a1 ×a2∥
, (3.3)

where ∥ · ∥ is the L2 norm. With surface basis vectors in (3.2), metric coefficients in both

configurations are defined as

Aαβ = Aα ·Aβ and aαβ = aα ·aβ , (3.4)

for α,β = {1,2}, and curvature coefficients read as

Bαβ = Aα,ξβ
·A3 =−Aα ·A3,ξβ

and bαβ = aα,ξβ
·a3 =−aα ·a3,ξβ

. (3.5)

The membrane strain tensor and curvature change tensor coefficients are formulated as

εαβ =
1
2
(aαβ −Aαβ) and καβ = Bαβ −bαβ . (3.6)

We employ the St. Venant–Kirchhoff material model in this paper with material tensor C to

express normal forces and bending moments

n = t C : εεε and m =
t3

12
C : κ . (3.7)

19

Using membrane strains and changes in curvature defined in (3.6) and associated force resultants

in (3.7), the virtual work of the Kirchhoff–Love shell reads as

δWs = δW int
s −δW ext

s =
∫

S
δεεε : n+δκκκ : mdS−

∫
S

δu · fdS , (3.8)

where S is the shell mid-surface and f is the external force acting on S, and δW int
s and δW ext

s

represent the internal and external virtual work, respectively1. A detailed derivation is presented

in [103, Section 3].

It is noted that the curvature coefficients in (3.5) involve second-order derivatives of

the displacements u and mid-surface geometry X, therefore basis functions with at least C1

continuity on element boundaries is required. Discretization using NURBS basis functions

automatically meets this requirement without additional treatment.

3.2 Penalty-based non-matching shell coupling

Many complex shell structures comprise more than one NURBS patch. A coupling

approach is needed for a collection of isogeometrically discretized shell patches to make them

directly available for analysis. A penalty-based coupling formulation proposed by Herrema et

al. [77] is employed in our current framework. The penalty energy preserves both displacement

and rotational continuities on the intersection L between shell patch SA and SB, as depicted in

Figure 3.1. The virtual work of the penalty energy is given by

δW AB
pen =

∫
L

αd (uA −uB) · (δuA −δuB)dL

+
∫
L

αr
(
(aA

3 ·aB
3 −AA

3 ·AB
3)(δaA

3 ·δaB
3 −δAA

3 ·δAB
3)

+(aA
n ·aB

3 −AA
n ·AB

3)(δaA
n ·δaB

3 −δAA
n ·δAB

3)
)

dL ,

(3.9)

1We use subscript “s” in symbols such as δW int
s and δW ext

s to denote the quantities on shell patches.

20

where a3 and an are normal and conormal vectors on the deformed configuration, while their

counterparts in the reference configuration are denoted with uppercase letters. Computation of

an is discussed in detail in Section 3.3. The scalar values αd and αr are penalty parameters for

displacement and rotational continuities. These two parameters are constructed to account for

material and geometric properties and are scaled by a problem-independent and dimensionless

penalty coefficient α

αd = α
Et

h(1−ν2)
and αr = α

Et3

12h(1−ν3)
, (3.10)

where E, ν , and t are Young’s modulus, Poisson’s ratio, and shell thickness, respectively.

The average element length of shell patches SA and SB is denoted by h. On nonuniform

and anisotropic meshes, the element size “h” can be ambiguous. In this work, we take h =

1
2

(
hA

X +hB
X
)

with

hX = hξ

√√√√tr

(
∂X
∂ξξξ

· ∂X
∂ξξξ

T
)

, (3.11)

where hξ is element diameter in the spline surface parameter space with coordinates ξξξ , and X

are Cartesian physical-space coordinates in the shell’s reference configuration.2 The reference

[77] reports averaging “the lengths of the local elements in the direction most parallel to the

penalty curve” [77, page 818] to obtain “h”, but we prefer the isotropic definition (3.11) to

accommodate arbitrary surface–surface intersections. In any case, asymptotic behavior with

respect to uniform h-refinement is the same, and numerical results from both [77] and the

present study indicate that results are insensitive to moderate O(1) constant factors in the penalty

parameters. In particular, sensitivity with respect to the coefficient α will be explored through

numerical experiments in Section 3.4, producing results similar to those of [77], despite the

minor differences in formulation and entirely disjoint software implementations.

Details of the penalty formulation and coupling for composite shell structures can be

2For technical reasons, (3.11) is projected (in a lumped-mass L2 sense) onto a piecewise-linear finite element
space on each patch before being evaluated on the intersection curve.

21

found in [77, Section 2], where a wide range of effective penalty coefficients α was proposed. In

this paper, we use α = 1000 for all numerical examples, as recommended and tested in [77, 181].

𝐚!"𝐚#"

𝐚$"

𝐚$%

Intersection ℒ

Spline patch 𝑆"

Spline patch 𝑆%

𝐮"

𝐮%

Figure 3.1. Spline patches SA and SB with one intersection L (indicated with red curves), where
u and a3 are displacement and unit normal vector of midsurface, at and an are unit tangent vector
and unit conormal vector on the intersection.

With the virtual work of the shell patch in (3.8) and penalty energy in (3.9), the total

virtual work of two coupled shell patches SA and SB in the equilibrium state is expressed as

δW = δW A
s +δW B

s +δW AB
pen = 0 . (3.12)

22

3.3 Numerical procedures for shell coupling

With the NURBS basis functions, Kirchhoff–Love shell geometry and displacement field

are discretized isogeometrically. The position vector on the mid-surface of the shell patch in the

reference configuration and the associated displacement vector are formulated as

X(ξξξ) =
n

∑
i=1

Nip(ξξξ)Pi = N(ξξξ)P and u(ξξξ) =
n

∑
i=1

Nip(ξξξ)di = N(ξξξ)d , (3.13)

where

N(ξξξ) =

[
IsdN1p(ξξξ) IsdN2p(ξξξ) . . . IsdNnp(ξξξ)

]
(3.14)

is the matrix of NURBS basis function with degree p, and n is the number of control points, Isd

is the identity matrix in Rsd with sd as the spatial dimension. We neglect NURBS degree p in the

matrix notation for conciseness. The parametric coordinate ξξξ ∈ Rpd , where pd is the parametric

dimension. For the isogeometric Kirchhoff–Love shell, sd = 3 and pd = 2. Pi and di are vectors

of mid-surface geometry control points and displacements associated with node i. Accordingly,

the position vector on the mid-surface shell patch in the deformed configuration given by (3.1) is

x(ξξξ) = X(ξξξ)+u(ξξξ) = N(ξξξ)(P+d) . (3.15)

Substituting (3.13) and (3.15) into (3.2) and following the procedures (3.4) – (3.8), we can

assemble the residual force vector by taking the first derivative of the internal work (3.8) and the

stiffness matrix for the second derivative3, respectively,

3We use dv(·) and ∂v(·) to denote the total derivative and partial derivative, respectively, of a function with
respect to the discrete variables v. This notation distinguishes from the functional derivative in the continuous
setting, denoted as (·),v, to avoid confusion.

23

Rs = ∂dWs and Ks = ∂dRs . (3.16)

For shell structures with single patch NURBS surface, the displacement increments can be solved

by Ks ∆d =−Rs.

For multi-patch shell structures, contributions of the coupling term outlined in (3.9) to

both membrane and bending stiffness need to be taken into consideration. Using a shell structure

with two patches as an example, depicted in Figure 3.2, a topologically 1D, geometrically 2D

quadrature mesh Ω̃ 4 is constructed in the parameter space to represent the integration domain

of the patch intersection. We first move the quadrature mesh to the parametric location of the

intersection relative to shell patch SA. The reference geometry and displacements of the patch

intersection are obtained by interpolating corresponding functions from SA to Ω̃,

X̃A(ζ) = Ñ(ζ)NA(ξ̃ξξ
A
)PA = Ñ(ζ)P̃A and ũA(ζ) = Ñ(ζ)NA(ξ̃ξξ

A
)dA = Ñ(ζ)d̃A ,

(3.17)

where

Ñ(ζ) =

[
IsdÑ1(ζ) IsdÑ2(ζ) . . . IsdÑm(ζ)

]
(3.18)

denotes the basis function of the quadrature mesh to approximate quantities in the physical space.

Standard liner basis functions are employed for Ñ(ζ) in this paper, and m is the number of nodes

of the quadrature mesh. ξ̃ξξ
A ∈ Rm·pd refers to the vector of nodal coordinates of the quadrature

mesh relative to shell patch SA with ξ̃ξξ
A
i ∈ Rpd . The calculation of ξ̃ξξ

A is discussed in Section

5.1.3. Additionally, ζ is the isoparametric coordinate of the quadrature mesh, with ζ ∈ R1 due

to Ω̃ being a topologically 1D mesh. NA(ξ̃ξξ
A
) ∈ R(m·sd)×(n·sd) is the interpolation matrix, each

4In this paper, all symbols indicated with ˜ denote quantities defined on the quadrature mesh of patch intersections.

24

row is the evaluation of the NURBS basis function of shell SA at ξ̃ξξ
A
i . P̃A and d̃A are vectors of

interpolated control points and displacements on the intersection. Substituting (3.17) into (3.1)

and (3.2), covariant basis vectors of the mid-surface on the intersection L are obtained as

ÃA
α = X̃A,ξα

= Ñ(ζ)NA,ξα
(ξ̃ξξ

A
)PA = Ñ(ζ)P̃A

ξα
and

ãA
α = x̃A,ξα

= Ñ(ζ)NA,ξα
(ξ̃ξξ

A
)(PA +dA) = Ñ(ζ)(P̃A

ξα
+ d̃A

ξα
) ,

(3.19)

where NA,ξα
(ξ̃ξξ

A
) is the first order derivative of the interpolation matrix along parametric

direction ξα , and P̃A
ξα

and d̃A
ξα

are interpolated first order derivative of the control points and

displacement functions with respect to the parametric coordinates ξ̃ξξ
A of intersection L . Plugging

(3.19) into (3.3), normal vectors of the intersection on shell SA in the reference and deformed

configurations can be computed as ÃA
3 and ãA

3 . It is notable that (3.19) requires the first order

derivatives of the NURBS basis functions, ensuring rotational continuity is preserved at patch

intersections.

Tangent vectors of the intersection on both configurations have to be computed before

acquiring conormal vectors in (3.9), and they are given by

ÃA
t = X̃A,ζ = Ñ,ζ (ζ)P̃A and ãA

t = x̃A,ζ = Ñ,ζ (ζ)(P̃A + ũA) . (3.20)

Subsequently, conormal vectors on reference and deformed configurations are defined as

ÃA
n =

ÃA
t × ÃA

3

∥ÃA
t × ÃA

3 ∥
and ãA

n =
ãA

t × ãA
3

∥ãA
t × ãA

3 ∥
. (3.21)

Next, we move the quadrature mesh Ω̃ to the parametric position defined by coordinates

ξ̃ξξ
B relative to shell patch SB, where the calculation of ξ̃ξξ

B is discussed in Section 5.1.3. By

repeating (3.17) and (3.19), we can determine the displacements ũB and normal vectors ÃB
3 and

ãB
3 of SB at the intersection L . Substituting these displacements and geometry vectors from the

25

𝜉!

𝜉"

𝜁

𝐍"(𝜁)

𝐍!(𝝃) 𝐍"(𝝃)

ℒ

𝑆!

𝑆"

Ω" at 𝝃*"
Ω" at 𝝃*!

𝑥" 𝑥!

𝑥#

Figure 3.2. An illustrative example of two shell patches with one intersection. Shell patches
SA and SB are discretized isogeometrically using NURBS basis functions NA(ξξξ) and NB(ξξξ). A
topologically 1D quadrature mesh Ω̃, discretized using linear basis functions Ñ(ζ), is created in
the parametric space to integrate the penalty energy for shell coupling.

quadrature mesh into (3.9), the penalty virtual work δW AB
pen (d̃, d̃ξξξ , P̃, P̃ξξξ) can be integrated on Ω̃,

where d̃ and P̃ are the interpolated displacements and geometric control points for both surfaces.

d̃ξξξ and P̃ξξξ are the associated first order derivatives. Consequently, the residual force vector and

stiffness matrix of the coupled shell structure are

R =

RA
s +RA

pen

RB
s +RB

pen

 and K =

KA
s +KAA

pen KAB
pen

KBA
pen KB

s +KBB
pen

 , (3.22)

where components of penalty energy contribution, e.g., RA
pen and KAB

pen, are defined as

RA
pen = (NA(ξ̃ξξ

A
))T

∂d̃AW AB
pen +(N,A

ξξξ
(ξ̃ξξ

A
))T

∂d̃A
ξξξ

W AB
pen and (3.23)

KAB
pen = (NB(ξ̃ξξ

B
))T

∂d̃BRA
pen +(N,B

ξξξ
(ξ̃ξξ

B
))T

∂d̃B
ξξξ

RA
pen . (3.24)

26

And N,A
ξξξ
(ξ̃ξξ

A
) ∈ R(m·pd·sd)×(n·sd) is the first order derivative of the interpolation matrix on both

parametric directions.

The displacement increments for both spline patches can be solved using the Newton–

Raphson method, as expressed by K∆d = −R. Equation (3.24) indicates that KAB
pen = KBA

pen
T,

enabling the lower triangle blocks in K to be obtained from the upper triangle counterparts,

thereby improving computational efficiency. Readers are referred to [181] for details about

implementation and code framework. A series of benchmark problems in [181, Section 4] have

been utilized to verify the accuracy of this method, which shows good results for the application

of aircraft wings [180, Section 6].

3.4 Benchmark problems

This section demonstrates the use of penalty-based coupling formulation to solve several

benchmark problems from the literature. Each problem is selected to verify specific functionality

from PENGoLINS. Unless otherwise specified, results are obtained using the default value of

α = 103 for the dimensionless penalty coefficient.

3.4.1 Scordelis-Lo roof

The first benchmark we consider is the Scordelis–Lo roof example [16], where we divide

its geometry into nine separately-parameterized NURBS surfaces, as depicted in Figure 3.3a.

In this benchmark, the cylindrical roof is subjected to self-weight while constraints are applied

to the two curved edges. Full details of the geometry, boundary conditions, material properties,

etc. are provided in [77, Section 3.1]. The computed displacement in the vertical direction for

geometry in Figure 3.3a is shown in Figure 3.3b. This plot clearly indicates that our framework

is able to maintain approximate displacement continuity on the non-matching interfaces during

deformation.

To verify the numerical solution, the convergence of a quantity of interest (QoI), viz.,

vertical displacement at the midpoint of a free edge, is plotted for quadratic, cubic, and quartic

27

(a) (b)

Figure 3.3. (a) Scordelis–Lo roof geometry, consisting of nine non-matching NURBS surfaces,
with a total of 2259 DoFs. The twelve non-matching interfaces are indicated with red color. (b)
Vertical displacement of the Scordelis–Lo roof, using a scale factor of 10 to warp the initial
geometry. Results are interpolated onto piecewise linear triangle elements for visualization
purposes.

NURBS surfaces in Figure 3.4. The converged solution of the QoI is reported in [103, Section

6.2.1] as 0.3006. All three degrees of NURBS surface converge to the reference value when re-

fined uniformly via knot insertion. The representative solution plotted in Figure 3.3b corresponds

to the first data point of cubic NURBS surfaces in Figure 3.4.

To investigate the sensitivity of results with respect to the dimensionless penalty coef-

ficient, we plot the QoI as a function of penalty coefficient (for cubic NURBS) in Figure 3.5.

The results indicate that a wide range of penalty coefficients can produce accurate results in the

Scordelis–Lo roof example, even with relatively few DoFs. Overall, the default value of α = 103

recommended by [77] works for all mesh refinements, despite slight changes to the formulation,

and we see a similar overall sensitivity to α .

An important application of this work is stress analysis of shell structures. We compute

the stress resultants, viz., normal forces, bending moments, and transverse shear forces, for the

Scordelis–Lo roof and plot their first components in Figure 3.6. Methods for stress resultant

28

20 60 100 140 180 220 260 300
DoFs

0.2970

0.2975

0.2980

0.2985

0.2990

0.2995

0.3000

0.3005

0.3010

Ve
rt

ic
al

 d
is

pl
ac

em
en

t a
t m

id
po

in
t o

f f
re

e
ed

ge

Reference value
Herrema et al., cubic NURBS
PENGoLINS, quadratic NURBS
PENGoLINS, cubic NURBS
PENGoLINS, quartic NURBS

Figure 3.4. Convergence of Scordelis–Lo roof example for different orders of NURBS surfaces.
Results from [77] (using a different mesh structure) are included for reference.

10 1 101 103 105 107 109 1011

Penalty coefficient

0.29

0.30

0.31

0.32

0.33

0.34

0.35

0.36

Ve
rt

ic
al

 d
is

pl
ac

em
en

t a
t m

id
po

in
t o

f f
re

e
ed

ge

Reference value
Herrema et al.
PENGoLINS, DoFs 2259
PENGoLINS, DoFs 6147
PENGoLINS, DoFs 19755

Figure 3.5. A wide range of penalty coefficients compute accurate results for Scordelis–Lo roof
example. Results from [77, Figure 6(a), non-matching] are included for reference.

computation and stress recovery in isogeometric Kirchhoff–Love shells are detailed by [103,

Section 3.4], and we follow the notation of the cited reference when reporting results here.

Reference values for stress resultants, computed by Abaqus shell analysis, are given in [103,

Section 6.2.4]. The resultant distributions shown in Figure 3.6 qualitatively agree with the

reference results. Slight oscillations are visible in the transverse shear resultant, where corners

29

of multiple patches are joined together, but the resultant distributions are otherwise free from

visible artifacts at the non-matching interfaces. A quantitative comparison of extreme values is

compiled into Table 3.1, also demonstrating good agreement, especially of maximum absolute

values, which are most relevant to design.

Instability in transverse shear resultants at intersections is not surprising, because these

resultants are obtained by directly evaluating third derivatives of the displacement [103, (3.61)].

The cited formula assumes C2 continuity of the displacement; C2 continuity holds within patches

for the cubic displacement solutions postprocessed in Figure 3.6, but the penalty formulation

only (approximately) enforces C1 continuity at intersections.

(a) (b) (c)

Figure 3.6. Stress resultants from the Scordelis–Lo roof with 9 non-matching shell patches and
9819 DoFs in total. (a) First component of normal forces n̂11. (b) First component of bending
moments m̂11. (c) First component of shear forces q̂1.

3.4.2 Torsion of a T-beam

We now consider a benchmark in which shell patches are joined together at an angle.

In particular, we consider a T-beam consisting of two mismatched cubic NURBS surfaces, as

30

Table 3.1. Comparison of stress resultants between non-matching Kirchhoff–Love shell analysis
and the Abaqus reference computation, as well as single patch analysis results reported in [103,
Section 6.2.4].

Stress
resultants

Non-matching
shell analysis

Abaqus shell
analysis

Single patch
shell analysis

Min Max Min Max Min Max
n̂11 -3487 336 -3417 127 -3510 25
m̂11 -95 2055 -93 2079 -91 2053
q̂1 -273 273 -278 278 -280 280

depicted in Figure 3.7a, with 648 DoFs. One end of the T-beam is fully pinned, and a downward

vertical point load is applied to one corner of the opposite end. Complete dimensions, boundary

conditions, loading, and material parameters for this example can be found in [77, Section 3.3].

However, unlike the problem setup in [77], our discretization uses only one patch for the top of

the “T”, and the junction with the vertical patch is not located at a knot of the top patch. The

displacement distribution of the deformed T-beam is shown in Figure 3.7b.

(a) (b)

Figure 3.7. (a) T-beam geometry consisting of two separate NURBS surfaces with 648 DoFs in
total. Note that the non-matching interface does not coincide with a knot of the horizontal patch.
(b) Displacement of the T-beam benchmark test, using a scale factor of 10 to warp the initial
geometry.

We use this benchmark to test the formulation’s ability to maintain the 90◦ angle between

31

the horizontal and vertical shell patches at the free end. In particular, we examine the sensitivity

of the deformed angle to the dimensionless penalty coefficient, as illustrated in Figure 3.8a.

The angle between the two patches cannot be approximated well in the deformed state for a

penalty coefficient smaller than 100, but, as the value of penalty coefficient increases, the penalty

terms become sufficiently strong, and the angle converges to exactly 90◦, as expected. A similar

convergence pattern is seen in Figure 3.8b, where the twist angle between two ends of the vertical

patch converges to a specific value for penalty coefficient greater than 100. Both figures display

similar effects of penalty coefficient to results in [77, Figure 15]. Thus, Figure 3.8 demonstrates

that the recommended penalty coefficient of 103 identified in Section 3.4.1 remains effective at

preserving rotational continuity when patches meet at a nonzero angle in the initial configuration.

Comparing with the results of [77] for this problem, we see that the interpretation of “α” differs

by roughly a constant factor (i.e., a horizontal translation when using a log scale) over most of

the range considered. This is consistent with what we expect from using a different mesh and

definition of “h” in the penalty parameters, but even with these differences, results are practically

indistinguishable for α around or beyond the recommended value of 103.

10 6 10 4 10 2 100 102 104 106 108 1010

Penalty coefficient

89.7

90.2

90.7

91.2

91.7

92.2

92.7

93.2

93.7

An
gl

e
be

tw
ee

n
tw

o
pa

tc
he

s
(

)

90
Herrema et al.
PENGoLINS

(a)

10 6 10 4 10 2 100 102 104 106 108 1010

Penalty coefficient

0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

Tw
is

t a
ng

le
 (

)

Herrema et al.
PENGoLINS

(b)

Figure 3.8. (a) The angle between the two patches of the T-beam at the free end, as a function
of penalty coefficient. (b) The twist angle of the vertical patch as a function of the penalty
coefficient. Results from [77] (using a different mesh and definition of element size) are included
for reference.

32

3.4.3 Nonlinear analysis of a slit annular plate

This section considers geometrically nonlinear analysis of a slit annular plate. The plate

is subjected to a vertical line force along one side of the slit, with a maximum magnitude of

Pmax = 0.8 per unit length. The other side of the slit is clamped. This benchmark test was first

proposed by Sze et al. [157], and readers can find the full problem definition in Section 3.3

of the cited reference. The geometry is composed of four cubic NURBS surfaces, as shown

in Figure 3.9a. Figure 3.9b shows the resulting deformed configuration at the maximum load.

Displacement remains qualitatively smooth across the non-matching interfaces.

(a) (b)

Figure 3.9. (a) Slit annular plate geometry, split into four NURBS surfaces, with a total of 2052
DoFs. The three non-matching interfaces are marked by red lines. (b) Displacement of the slit
annular plate at the maximum magnitude of the applied line load.

We compare the vertical displacements of two points, labelled A and B in Figure 3.9a,

with reference values provided in [157, Table 4] and benchmark results reported in [77, Figure

23]. Figure 3.10 shows that the vertical displacements at points A and B, WA and WB, are

consistent with the reference values. The recommended value for the penalty coefficient, 103, is

still sufficient to maintain approximate displacement and rotational continuity in this benchmark.

The slit annular plate example demonstrates that our framework produces accurate results for

33

geometrically nonlinear problems with large rotations.

0 2 4 6 8 10 12 14 16 18
Vertical displacement at points A and B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rc

e
pe

r
un

it
le

ng
th

WA WB

Sze et al.
Herrema et al.
PENGoLINS

Figure 3.10. Comparison between our computations and reference data for vertical displacement
at points A and B.

3.4.4 Shell structures with curved intersections

In the benchmark tests of Section 3.4.1–3.4.3, the intersection curves between patches

are parallel to coordinate lines of one spline parameter and orthogonal to coordinate lines of the

other. This section considers cases where the intersection curves are not aligned with the spline

parameterizations. In particular, we modify the Scordelis–Lo roof and T-beam examples to have

more complex parameterizations.

For the Scordelis–Lo roof, we distort the parameterization as shown in Figure 3.11,

such that the intersection is no longer orthogonal (in physical space) to parametric coordinate

lines running in the axial direction. Figure 3.12 compares the convergence of displacement

using this parameterization with the results from Section 3.4.1. The formulation clearly still

converges rapidly under h-refinement using discretizations of various polynomial degrees, albeit

with moderately weaker per-DoF approximation power, especially for quadratic NURBS. For

the T-beam, we distort the parameterization of the top patch as shown in Figure 3.13, such that

the intersection becomes curved in the spline parameter space. Figure 3.14 demonstrates that

34

Figure 3.11. Distorted parameterization of the Scordelis–Lo roof.

20 40 60 80 100 120 140 160 180
DoFs

0.288

0.290

0.292

0.294

0.296

0.298

0.300

0.302

Ve
rt

ic
al

 d
is

pl
ac

em
en

t a
t m

id
po

in
t o

f f
re

e
ed

ge

Reference value
Herrema et al., cubic NURBS
PENGoLINS, distorted quadratic NURBS
PENGoLINS, distorted cubic NURBS
PENGoLINS, distorted quartic NURBS

Figure 3.12. Convergence of displacement in the Scordelis–Lo roof with a distorted parameteri-
zation.

the angular constraint between the patches and the overall twist angle are still approximated

accurately, with similar dependencies on α as observed when the intersection is aligned with the

top patch’s parameterization, as in both Figure 3.8 of this paper and [77]. We can conclude from

35

Figure 3.13. T-beam with a distorted parameterization of the top patch.

10 6 10 4 10 2 100 102 104 106 108 1010

Penalty coefficient

89.7

90.2

90.7

91.2

91.7

92.2

92.7

93.2

93.7

An
gl

e
be

tw
ee

n
tw

o
pa

tc
he

s
(

)

90
Herrema et al.
PENGoLINS, distorted

(a)

10 6 10 4 10 2 100 102 104 106 108 1010

Penalty coefficient

0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

Tw
is

t a
ng

le
 (

)

Herrema et al.
PENGoLINS, distorted

(b)

Figure 3.14. The angle between the T-beam patches (a) and the twist angle of the vertical patch
(b) as functions of the penalty coefficient α , using the distorted parameterization of Figure 3.13.
We again include the results of [77] for comparison, although the interpretation of α differs by a
constant factor when using a different mesh.

the additional tests of this section that the penalty formulation is robust with respect to different

relative orientations of intersection curves and parametric coordinate lines.

36

Acknowledgements

A portion of this chapter has been published in “H. Zhao, X. Liu, A. H. Fletcher, R.

Xiang, J. T. Hwang, and D. Kamensky. An open-source framework for coupling non-matching

isogeometric shells with application to aerospace structures Computers & Mathematics with

Applications, 111:109–123, 2022.” The dissertation author is the primary investigator and author

of this paper.

A portion of this chapter has been published in “H. Zhao, J. T. Hwang, and J. S. Chen.

Shape optimization of non-matching isogeometric shells with moving intersections. Computer

Methods in Applied Mechanics and Engineering, 431:117322, 2024.” The dissertation author is

the primary investigator and author of this paper.

37

Chapter 4

Shape optimization using FFD

CAD geometries of Kirchhoff–Love shells can be used for analysis without finite element

mesh generation by employing formulations from Chapter 3. This provides attractive features for

shape optimization of shell structures, where the discretization of shell patches stays unaltered

during shape evolution. The updated geometry in optimization iterations stays consistent with the

analysis model. As a result, this approach minimizes the effort required for geometry processing

while simultaneously enhancing accuracy.

In the context of shape optimization for non-matching shell structures, it is crucial to

ensure that updated shell patches remain properly connected. Failure to maintain this connectivity

can result in separation or self-penetration of shell patches during the optimization iteration. Such

issues would lead to false analysis and yield unrealistic optimal shapes. To tackle this challenge,

we adopt the FFD-based [152] technique combined with Lagrange extraction to update shell

geometry and demonstrate the workflow in Section 4.2. A comparable concept can be applied

to thickness optimization to ensure continuous thickness distribution at the surface–surface

intersections if needed. Sensitivities for both shape and thickness optimization are given in the

subsequent sections.

38

4.1 Automate IGA with Lagrange extraction

The concept of extraction [23, 150, 148, 54] is utilized in the implementation of IGA,

whose spline basis functions can be represented exactly by the linear combination of Lagrange

basis functions. These Lagrange basis functions can be used in the classical FEM, allowing

IGA to be implemented using finite element software with pre-defined extraction operators. An

open-source IGA Python library named tIGAr is developed by Kamensky et al. [98] using the

finite element software FEniCS [122]. Implementation and technical details are discussed in

Chapter 7. In this section, we illustrate the basic mathematical operations and workflow of IGA

using extraction.

To perform IGA, an extraction matrix M is generated to represent functions defined in

spline function space V with FE basis functions in V FE. The relation between these two sets of

basis functions is given by

N = MTNFE , (4.1)

where N are IGA basis functions and NFE are FE basis functions. Each column of M is the linear

combination of NFE giving an IGA basis function. In the analysis, we first create an extraction

matrix M and assemble the stiffness matrix KFE and force vector FFE in V FE using existing

finite element subroutines. Then the displacement in V is solved as

(MTKFEM)d = MTFFE , (4.2)

with problem-specific boundary conditions applied to MTKFEM and MTFFE.

For the purpose of clarity, we assume control points of spline surfaces have unit weights.

Therefore, rational spline basis functions are the same as homogeneous spline basis functions,

both denoted as N. In practice, weights need to be taken into consideration for correct geometric

mapping and analysis.

39

For single patch Kirchhoff–Love shell analysis, stiffness matrix KFE is the second

derivative of total work ∂dFE(∂dFEW). MT∂dFE(∂dFEW)M changes basis of ∂dFE(∂dFEW) from

V FE to V , and the formulation of IGA stiffness matrix can also be expressed as

MT
∂dFE(∂dFEW)M =

(
∂ddFE)T

∂dFE(∂dFEW)∂ddFE = ∂d(∂dW) . (4.3)

The right-hand side (RHS) of (4.2) for Kirchhoff–Love shell is equivalent to

MT (−∂dFEW) =
(
∂ddFE)T

(−∂dFEW) =−∂dW . (4.4)

Therefore, (4.2) is recovered as the linear system in V to solve for displacements increments in

IGA DoFs,

∂d(∂dW)∆d =−∂dW . (4.5)

While the Kirchhoff–Love shell theory neglects transverse shear strains, membrane

locking can still occur in cases of curved geometry. In our current implementation, we use

the standard Gauss quadrature rule to perform numerical integration without including special

treatment to avoid membrane locking. We have conducted numerical studies in our earlier

work [181, Section 4] to assess the accuracy and convergence of the framework for a series

of benchmark problems. Solutions converge quickly to the reference solution with increased

refinement, particularly evident for cubic NURBS surfaces, which are utilized in the numerical

examples and applications in the following sections. Nevertheless, incorporating methods to

alleviate potential membrane locking in isogeometric Kirchhoff–Love shells into our open-source

framework will be an appealing research topic in the future. We refer readers who are interested

in techniques for removing membrane locking to [156, 64, 19, 27, 29, 65, 134, 145].

40

4.2 Non-matching shells update through FFD block

We use a cylindrical roof consisting of four non-matching shell patches that are shown in

the upper-left part of Figure 4.1 as an example to demonstrate the FFD-based shape optimization

approach. Note that this approach can be applied to shell structures with an arbitrary number of

patches.

Update
control
points of
the FFD
block

Immerse non-matching
shell in a FFD block

Obtain updated
non-matching shell

𝑆!

𝑆"

𝑆#

𝑆$

Figure 4.1. Workflow of FFD-based shape optimization for non-matching shell structures. A
cylindrical roof consisting of four non-matching NURBS patches is first immersed in a trivariate
B-spline block. We update the control points of the FFD block to deform the shape of the
non-matching cylindrical roof. Control nets of the NURBS surfaces are indicated with red color,
and black is used for the control net of the FFD block.

For the initial CAD geometry consisting of m Kirchhoff–Love shell patches, define a

set of NURBS surface functions {SA(ξξξ),SB(ξξξ), . . . ,SIm
(ξξξ)}, and the I-th shell patch SI(ξξξ) is

41

expressed as

SI(ξξξ) = NI(ξξξ)PI , (4.6)

where NI(ξξξ) are the spline basis functions of degree psh in V I. We omit degree psh in the

notation for clarity. PI are the NURBS control points for surface function SI.

Using the extraction concept [148], NURBS surface function SI(ξξξ) can be represented

with Lagrange polynomials as well,

SI(ξξξ) = NI,FE(ξξξ)PI,FE , (4.7)

where NI,FE(ξξξ) are basis functions in the finite element function space V I,FE
s with nodal inter-

polatory property, and PI,FE are Lagrange control points, or nodal values of SI. Plugging nodal

coordinate ξξξ
I,FE of V I,FE

s into (4.7), coordinate of the NURBS surface SI is represented with

nodal values in the discrete setting,

SI(ξξξ
I,FE

) = NI,FE(ξξξ
I,FE

)PI,FE = PI,FE . (4.8)

Based on (4.1), Lagrange control points can be obtained through the extraction matrix and

NURBS control points. We have the following relation,

SI(ξξξ
I,FE

) = PI,FE = MIPI . (4.9)

The first step of Figure 4.1 illustrates the initial configuration of a collection of intersecting

non-matching shell patches S, where red control nets are displayed. To enforce connectivity

of the intersections during optimization, we immerse S in a trivariate B-spline block, which

is refered to as an FFD block, and use control points of the FFD block as design variables. A

schematic demonstration is shown in the second step of Figure 4.1. The FFD B-spline block is

42

defined as

V(θθθ) = NFFD(θθθ)PFFD , (4.10)

where θθθ is the parametric coordinate of the FFD block, NFFD(θθθ) are B-spline solid basis

functions of degree pFFD with knots vector, and PFFD are B-spline block control points.

To simplify formulation and implementation, we use an identity mapping for the FFD

block B-spline block, so that the parametric coordinate coincides with the physical coordinate,

V(θθθ) = NFFD(θθθ)PFFD = θθθ . (4.11)

Substituting (4.9) into (4.11), NURBS surfaces of the non-matching shells can be expressed

using the FFD block basis functions and control points,

V
(
SI(ξξξ)

)
= NFFD

(
SI(ξξξ)

)
PFFD = SI(ξξξ) . (4.12)

In the continuous context of (4.12), shell patches will not separate in the final configuration as

long as they are interconnected in the initial geometry. As the shape update of the FFD block is

continuous, there is no relative movement between patches within the FFD block. In the discrete

space, we can relate the NURBS control points of the shell patches to the control points of the

FFD block,

NFFD

(
SI(ξξξ

I,FE
)
)

PFFD = NFFD(PI,FE)PFFD = MIPI . (4.13)

The control points of the NURBS surface PI of shell patches can be updated through the control

points of the FFD block PFFD. Let NFFD(P̊I,FE) := AI
FFD, where P̊I,FE denotes Lagrange control

43

points of spline patch I in the baseline configuration. Then PI can be computed as

PI =
((

(MI)TMI)−1
(MI)TAI

FFD

)
PFFD . (4.14)

It is noted that we need to solve the system using Moore–Penrose pseudo inverse due to the

non-square nature of the extraction matrix MI, which has dimensions of nI,FE × nI. For the

extraction matrix, we have nI,FE > nI, which means that we are solving an overdetermined

system. Therefore, PI is considered as a least square fit in (4.14) rather than an exact solution.

The shape update strategy using FFD block is illustrated in the third step in Figure 4.1, and the

resulting shell patches with control net are depicted in the fourth step. A comparison between the

initial non-matching cylindrical roof and updated NURBS surfaces is shown in Figure 4.2, where

the surface–surface intersections keep overlapping within tolerance in the updated configuration.

(a) (b)

Figure 4.2. (a) Initial configuration of the cylindrical roof geometry consisting of four non-
matching NURBS patches. (b) Updated NURBS surfaces using FFD block.

The procedures to update control points of non-matching shells with m patches are

summarized as follows:

1. In the preprocessing step, generate sparse matrices of evaluation of FFD block B-spline
basis functions at shells’ Lagrange control points in the initial configuration

{
AI

FFD
}

and
Lagrange extraction matrices

{
MI} , for I ∈ {A,B, . . . , Im}.

44

2. At optimization iteration step iopt, obtain updated control points of the FFD block (PFFD)
iopt

.

Compute updated Lagrange control points
(
PI,FE)iopt

for all shell patches,

AI
FFD (PFFD)

iopt
=
(
PI,FE)iopt

. (4.15)

3. Solve NURBS control points
(
PI)iopt

at step iopt through Moore–Penrose pseudo inverse,

MI (PI)iopt

=
(
PI,FE)iopt

. (4.16)

4. Perform IGA with updated shell geometry, evaluate objective function and derivatives if
needed, then proceed with optimization iteration.

Though the control points of the shell patches are computed in the least square fit sense,

the updated geometry can still retain the intersection with sufficient discretization. A sliced view

of the intersection, in accompaniment with NURBS and Lagrange control points, between the

right two spline patches SC and SD in the first step of Figure 4.1 is shown in Figure 4.3, where

we use coarser discretizations to make the comparison clearer. In the updated configuration, the

two cubic intersecting edges are still overlapping even with only 5 and 6 NURBS control points.

Since there is no relative movement between intersecting spline patches within the FFD

block, which can be achieved with adequate control points in the discrete context, parametric

coordinates of surface–surface intersections remain unchanged during shape updates. Therefore,

transfer matrices introduced in Section 3.3 can be reused to interpolate data from spline patches

to quadrature meshes when integrating penalty energies in the optimization iteration. These

matrices only need to be generated once at the preprocessing stage.

4.2.1 Sensitivities for shape optimization

By utilizing the capabilities of direct analysis for non-matching isogeometric shells and

incorporating FFD-based shape updates, we are able to conduct shape optimization for the shell

structures in a seamless manner. The problem that optimizes the shape of non-matching shells

45

0 1 2 3 4 5
x

8.5

9.0

9.5

10.0
z

Initial configuration

NURBS curve of SC

NURBS control points of SC

Lagrange control points of SC

NURBS curve of SD

NURBS control points of SD

Lagrange control points of SD

0 1 2 3 4 5
x

10.0

10.5

11.0

11.5

z

Updated configuration

Figure 4.3. Sliced view of the intersecting edges between shell patches SC and SD of the
cylindrical roof. The two edges remain overlapping in the updated configuration.

can be formulated as follows,

minimize f (PFFD)

subject to gig (PFFD)≤ 0 , for ig ∈ {1,2, . . . ,ng}

hih (PFFD) = 0 , for ih ∈ {1,2, . . . ,nh}

PFFDl ≤ PFFD ≤ PFFDu ,

(4.17)

where control points of the FFD block PFFD are design variables, f is the objective function, gig

are inequality constraints, and hih are equality constraints. PFFDl and PFFDu are lower and upper

limits for the design variables.

To perform gradient-based design optimization, we formulate total derivatives of the

objective function with respect to design variables as

dPFFD f =
(
∂P f +∂d f dPd

)
dPFFDP , (4.18)

46

where PT =

[
PA PB . . . PIm

]
is the full vector of NURBS control points, and similarly,

dT =

[
dA dB . . . dIm

]
is the full vector of shell displacements in IGA DoFs.

Partial derivatives ∂P f and ∂d f in (4.18) can be computed and depend on the objective

function combined with extraction matrices,

∂P f = MT
∂PFE f and ∂d f = MT

∂dFE f , (4.19)

where PFET
=

[
PA,FE PB,FE . . . PIm,FE

]
, dFET

=

[
dA,FE dB,FE . . . dIm,FE

]
.

M = diag(MA,MB, . . . ,MIm
) is a diagonal block matrix for global extraction. Calculation of

partial derivatives in (4.19) is automated using FEniCS. Formulation for total derivative dPFFDP

is introduced in (4.14). As for total derivative dPd, we have the implicit relation between P and

d,

r = R(P,d) = ∂dW(P,d) = 0 , (4.20)

where W is the total energy of the non-matching shells defined in (3.12). Once an updated P

is obtained, the shell displacements need to be solved using (3.12) until the residual vector r

reaches a tolerance. Thus, r is supposed to remain as 0 despite the change of P, and we have the

following derivative

dPr = ∂PR+∂dR dPd = 0 , (4.21)

and the total derivative dPd in (4.18) is given by

dPd =−(∂dR)−1
∂PR . (4.22)

Partial derivative ∂dR is equivalent to ∂d(∂dW) and is the stiffness matrix defined in (3.22).

47

Analogously, we use a pair of shell patches to illustrate the formulation of partial derivative ∂PR,

∂PR =


∂PA(∂dAW) ∂PB(∂dAW)

∂PA(∂dBW) ∂PB(∂dBW)

 . (4.23)

Partial derivatives in (4.23) have identical expressions to (3.22).

Extend partial derivatives in (4.23) to shell structures with an arbitrary number of patches,

and substitute dPd in (4.18) with (4.22), we can obtain the total derivative of the shape optimiza-

tion

dPFFD f =
(

∂P f −∂d f (∂dR)−1
∂PR

)
dPFFDP . (4.24)

4.2.2 Sensitivities for thickness optimization

The idea of FFD-based shape update can be applied to shell thickness optimization,

where the shell thickness is treated as an extra field of the NURBS control points. We can use

(4.14) to build the relation of the thickness between shell patches and FFD block,

tI =
((

(MI
s)

TMI
s
)−1

(MI
s)

TAI
FFDs

)
tFFD , (4.25)

where tI is the thickness for shell SI in IGA DoFs, and tFFD is the corresponding thickness field

of the FFD block. Subscript s in MI
s and AI

FFDs denotes matrices for scalar fields. Note that tFFD

is not the actual thickness of the B-spline solid geometry, but an extra set of the control points on

the FFD block to update the thickness of the non-matching shells. Accordingly, the identical

shape update strategy is applicable to thickness update. FFD-based thickness optimization also

offers the benefit that shell thickness remains continuous on the surface–surface intersections.

Replacing control points of the FFD block in (4.17) with tFFD, one can have the problem

description of thickness optimization. Since both Kirchhoff–Love shell total work W A and

48

W B, and penalty energy W AB
pen involve shell thickness, the total derivative and associated partial

derivatives of the thickness optimization problem can be acquired by replacing PFFD, PFE, P with

tFFD, tFE and t in Eqs. (4.22)–(4.24), respectively. The total derivative of FFD-based thickness

optimization reads as

dtFFD f =
(

∂t f −∂d f (∂dR)−1
∂tR

)
dtFFDt . (4.26)

In some applications, one may choose to have a constant thickness for each shell patch.

This can be easily achieved within the current framework by relating the shell thickness in IGA

DoFs to one scalar value tI,const as

tI = cItI,const , (4.27)

where cI =

[
1 1 . . . 1

]T

is a unit column vector contains nI entries. The total derivative for

piecewise constant thickness optimization can be obtained by replacing dtFFDt in (4.26) with the

following derivative,

dtconstt = diag(cA,cB, . . . ,cIm
) . (4.28)

The FFD block is not needed in piecewise constant only thickness optimization.

These two approaches can be combined together to achieve a more realistic design,

where specific sections of the structure necessitate a continuous thickness distribution while

constant thickness is better suited for other patches. In the implementation, shell patches can

be separated into various groups. One group comprises the shell patches immersed within

an FFD block allowing for a continuous thickness distribution. On the other hand, the shell

patches not contained in an FFD block are assumed to have a constant thickness. Moreover,

shell patches originating from different FFD blocks would exhibit discontinuous thickness at

49

their intersections. Therefore, the combined thickness optimization approach provides more

flexibility.

4.3 Benchmark Problems

A series of benchmark problems are considered to verify the effectiveness of the opti-

mization method. Sections 4.3.1–4.3.3 illustrate that baseline non-matching shell structures with

arbitrary intersections are able to accurately converge to the analytical optimum. Section 4.3.4

studies the capability and flexibility of the framework for thickness optimization.

4.3.1 Arch shape optimization

An arch fixed at two ends and subjected to a constant downward load per unit horizontal

length is modeled by a Kirchhoff–Love shell theory. Detailed problem definitions can be found in

[107, Section 8]. To test the effectiveness of FFD-based shape optimization for the non-matching

shells approach, we model the arch using four NURBS patches with three intersections, where

the arch geometry in the baseline configuration is shown in Figure 4.4a. We immerse the arch

geometry in a trivariate B-spline block in the initial configuration, as is illustrated in Figure 4.4b.

The analytical optimal solution is given by a quadratic parabola, where the ratio between the

height of the arch and the horizontal distance of two fixed edges is 0.54779.

We use quadratic B-spline for the FFD block in all three directions, pFFD = 2. The arch

shell patches are described by cubic NURBS surfaces, psh = 3, with 1086 DoFs in total. This

benchmark problem minimizes the internal energy of the shell structure, with vertical coordinates

of the control points of the FFD block being the design variables. From the control net in Figure

4.4b, it can be observed that there are 54 design variables. Two constraints are applied to this

problem. The first constraint ensures that the lines in the FFD control net are parallel to the

axial direction of the arch, keeping the arch devoid of tilting or twisting during the optimization

process. The second constraint fixes the bottom layer of FFD control points so that the two edges

of the arch remain in the initial position. We use the SLSQP optimizer with a tolerance of 10−12

50

(a) (b)

Figure 4.4. (a) Baseline geometry of a non-matching arch consisting of four NRUBS patches,
three surface–surface intersections are indicated with red lines. (b) Initial configuration of the
arch immersed in an FFD block, where black lines and dots denote the control net. The analytical
optimal shape is plotted with a red curve.

to perform the optimization, snapshots of the optimization iteration are demonstrated in Figure

4.5.

Figure 4.5. Snapshots of non-matching arch shape optimization.

The arch converges to the analytical optimum shape after 40 iterations. The shape of

51

the FFD block in the final configuration is shown in Figure 4.5. As anticipated, the optimized

arch geometry is still contained in the FFD block. The height to base span ratio in this problem

is measured as 0.54748, exhibiting a relative error of 0.057% compared to the exact value.

Considering the coarse discretization of the arch geometry, the results are encouraging.

4.3.2 Tube shape optimization

A square tube in the baseline configuration is subjected to an internal constant pressure.

The optimal shape is given by a cylindrical tube [107, Section 7]. We use four cubic NURBS

surfaces to model one-quarter of the square tube, where the initial geometry is illustrated in

Figure 4.6a. The square tube geometry contains four non-matching intersections with 1035

DoFs in total, and symmetric boundary conditions are applied in the analysis. The geometry

is immersed in a cubic B-spline block to perform FFD-based shape optimization, as shown in

Figure 4.6b, where the cross-section of the optimal shape is indicated by the red curve. In this

example, the horizontal and vertical coordinates of the FFD control points are design variables,

totaling 200 design variables. Similar constraints are employed in this problem as those in the

arch shape optimization. Control points on the left and bottom layers are fixed, where the lines

in the FFD control net that are parallel to the tube axis maintain their orientations.

(a) (b)

Figure 4.6. (a) Baseline geometry of the square tube, a quarter of the tube is modeled using four
non-matching B-spline patches with four intersections. (b) Initial configuration of the FFD block
with control net. The optimal cross-section is depicted by a red circle.

52

The optimization problem converges successfully after 42 iterations using SLSQP op-

timizer with a tolerance of 10−12, and snapshots are depicted in Figure 4.7. As expected, the

initial square tube converges to the cylindrical tube.

Figure 4.7. Iteration history for tube shape optimization under follower pressure.

4.3.3 T-beam shape optimization

In this section, a T-beam is considered to test the method for shell structures with

intersections in the middle. We model a T-beam using two NURBS patches which are shown in

Figure 4.8a. In the baseline design, the vertical patch in the T-beam is located at the three-quarter

position, where the mismatched intersection is indicated with a red line.

In this benchmark problem, we aim to minimize the internal energy of the T-beam by

updating the horizontal coordinates of shell patches’ control points. Subsequently, the T-beam is

53

(a) (b)

Figure 4.8. (a) Baseline configuration of a T-beam whose vertical patch is at the three-quarter
position of the horizontal patch. (b) The T-beam is placed in an FFD B-spline block. The optimal
position of the vertical patch is depicted with red lines.

placed in a cubic FFD block, where the horizontal coordinates of the FFD block’s control points

serve as design variables. The rear end of the T-beam is fixed. Given a downward distributed

load, the optimal shape of the T-beam is expected to have a junction at the center of the horizontal

patch under a constant volume constraint. The optimal position of the vertical patch is depicted

in Figure 4.8b with red lines. The right and left layers of the FFD block’s control points are fixed

by employing equality constraints, and control points stay collinear in the axial direction. Using

a tolerance of 10−15, the SLSQP optimizer converges successfully after 16 iterations, and the

optimization process is shown in Figure 4.9.

In Figure 4.9, the T-beam converges to the optimal solution, indicating that the proposed

method is effective for non-matching shell structures with intersections. A more complicated

demonstration is presented in Section 6.3, where the geometry contains curved T-junctions.

54

Figure 4.9. Screenshots of T-beam shape optimization process.

4.3.4 Thickness optimization of a clamped plate

As stated in Section 4.2.2, the FFD-based optimization methodology can also be applied

to thickness optimization. In the following section, we first demonstrate a piecewise constant

thickness optimization for a clamped non-matching plate, in which the FFD block is not needed.

Subsequently, we proceed to perform the variable thickness optimization for the same geometry.

55

Piecewise constant thickness optimization

For the thickness optimization example, a unit square plate composed of six cubic non-

matching NURBS surfaces is considered. The geometry, which is shown in Figure 4.10a, exhibits

5 intersections with a total of 1449 DoFs. We apply a clamped boundary condition on the left

side and with a line force applied to the right side in the normal direction of the plate. All patches

of the plate have an initial thickness of 0.01 m. Using the strategy introduced in Section 4.2.2,

we perform piecewise constant thickness optimization for the clamped plate to minimize the

internal energy under the constant volume constraint. This problem only has 6 design variables.

In this and the following sections, the SNOPT optimizer is used for faster convergence. The

optimal thickness is plotted in Figure 4.10b.

(a) (b)

Figure 4.10. (a) A unit square plate consisting of six non-matching patches, intersections are
indicated with red lines. (b) Final plate thickness for piecewise constant thickness optimization.

The observed optimal piecewise constant thickness in Figure 4.10b shows material

redistributes toward the clamped side, which provides enhanced support to the plate. The internal

energy in the final configuration is 37.17% less than the baseline configuration.

56

Variable thickness optimization

We now perform variable thickness optimization for the non-matching plate. The plate is

placed in a cubic B-spline block, which is shown in Figure 4.11a. Besides the constant volume

constraint, we only optimize the plate thickness in one direction that is perpendicular to the

intersections.

(a)

(b)

Figure 4.11. (a) The non-matching plate is immersed in an FFD block. (b) Optimized thickness
distribution using the FFD-based approach.

With the FFD-based approach, the continuity of shell thickness is maintained at all

intersections. Figure 4.11b depicts the converged solution, where a smooth thickness distribution

is observed. The smooth thickness profile offers an improved design compared to the piecewise

constant thickness approach, resulting in a 40.20% reduction of the initial internal energy. A

comparison of optimization iteration of normalized internal energy between the two methods

is illustrated in Figure 4.12a. The FFD-based thickness optimization approach converges to a

smaller internal energy.

To validate the proposed method, we compare the continuous thickness profile to an

optimal thickness configuration of a cantilever beam [163]. The cantilever beam is modeled

using the Euler–Bernoulli beam theory, where a point load is applied to the free end. Since the

Kirchhoff–Love shell is an extension of the Euler–Bernoulli beam, both models are expected to

57

0 2 4 6 8 10
Major SNOPT iteration

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
N

or
m

al
iz

ed
 in

te
rn

al
 e

ne
rg

y
Piecewise constant
FFD-based variable

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 th
ic

kn
es

s

Euler Bernoulli beam
Patch-constant KL shell
Variable KL shell

(b)

Figure 4.12. (a) Optimization process of normalized internal energy for two approaches. (b)
Cross-sectional view of piecewise constant thickness and variable thickness, and comparison
with Euler-Bernoulli beam thickness optimization.

yield identical thickness distributions. The normalized thickness profiles of these two models,

along with the piecewise constant thickness profile, are plotted in Figure 4.12b. A good agreement

is observed between the variable thickness of the Kirchhoff–Love shell at the center line and the

Euler–Bernoulli beam. Meanwhile, the cross-sectional view of the piecewise constant thickness

shows a similar trend to the Euler–Bernoulli beam, albeit with discontinuities at the intersections.

We then investigate the effect of basis function order of continuity in the FFD block.

Using the same knots vectors as illustrated in Figure 4.11a, we increase the order of the B-spline

basis functions from linear (C0) to quartic (C3) and compare the amounts of reduced internal

energy relative to the baseline configuration. These data points are summarized in Table 4.1. The

results presented in Table 4.1 indicate that an FFD block with quadratic B-spline basis functions

can achieve a better optimal thickness distribution for the clamped plate. The internal energy

with quadratic FFD block only exhibits 0.27% of relative difference compared to the quartic FFD

block. Table 4.1 also suggests that elevating the order of continuity of the FFD block leads to

better designs with lower internal energy, particularly when transitioning from linear to quadratic

B-spline basis functions.

The plate example demonstrates that both piecewise constant and variable thickness

58

Table 4.1. Reduction of internal energy of the clamped plate for different degrees of the FFD
block.

pFFD 1 2 3 4

Internal energy
reduction (%) 39.76 40.11 40.20 40.22

optimization can be conducted in the proposed framework. One can select desired thickness

distribution, or a mixed approach of these two, demonstrated in Sections 6.2 and 6.3, based on

the physical conditions and problem requirements to obtain an optimal design.

Acknowledgements

A portion of this chapter has been published in “H. Zhao, D. Kamensky, J. T. Hwang,

and J. S. Chen. Automated shape and thickness optimization for non-matching isogeometric

shells using free-form deformation. Engineering with Computers, 1-24, 2024.” The dissertation

author is the primary investigator and author of this paper.

59

Chapter 5

Shape optimization with moving intersec-
tion

5.1 Shape optimization of non-matching shells with moving
intersections

Integrating IGA into shell shape optimization presents notable advantages. The direct

analysis based on CAD geometries in IGA naturally bridges the gap between the design model

and analysis model within the optimization loop. Compared to the classical FEM, IGA-based

shape optimization entirely bypasses the process of conforming FE mesh generation, thereby

significantly simplifying the workflow due to the absence of FE mesh sensitivity. This section

presents the formulations for IGA-based shape optimization and discrete analytical derivatives

[107, 84], followed by an in-depth discussion of multi-patch shell structures with moving

intersections.

5.1.1 Shape optimization of isogeometric Kirchhoff–Love shell

A general shape optimization problem for an isogeometric shell patch can be formulated

as
minimize

P
f (P)

subject to g(P)≤ 0

h(P) = 0 ,

(5.1)

60

where design variable P are the control points of the shell geometry, f is the objective function,

g and h are the vector-valued inequality and equality constraints, respectively. We adopt internal

energy as the objective function to illustrate the optimization scheme. The internal energy of the

Kirchhoff–Love shell is a function of both the control points of geometry P and displacements d,

expressed as f =W int
s (P,d(P)). In this study, a gradient-based optimization algorithm is used

due to its benefits in efficiency and suitability to large-scale problems. The total derivative of a

single patch shell shape optimization is given by the chain rule

dP f = ∂P f +(∂d f)T dPd , (5.2)

where the partial derivatives ∂P f and ∂d f can be readily calculated with isogeometric discretiza-

tion in (3.13). The total derivative dPd can be determined by the physical constraint of the

Kirchhoff–Love shell theory Rs(P,d) = 0 for all input P, which implies

dPRs = ∂PRs +∂dRs dPd = 0 , (5.3)

dPd =−(∂dRs)
−1

∂PRs =−K−1
s ∂PRs , (5.4)

where ∂PRs represents the partial derivative of the shell residual force vector with respect to

geometry control points, and (∂BA)i j = ∂B jAi. In the direct method, dPd can be solved with

Ks dPd =−∂PRs . (5.5)

However, the cost of solving (5.5) scales linearly with the number of design variables. The

adjoint method is employed to circumvent the increasing expenses of solving the linear systems

in (5.5) with a large number of design variables. Substituting (5.4) into (5.6), the total derivative

61

states as

dP f = ∂P f − (∂d f)TK−1
s ∂PRs = ∂P f +(dRs f)T

∂PRs , (5.6)

where dRs f can be solved with the following equation

KT
s dRs f =−∂d f . (5.7)

The number of linear solves in (5.7) equals the number of model outputs and remains independent

of the number of design variables. In practical shape optimization scenarios, the number of

design variables typically far exceeds the number of outputs. Therefore, the adjoint method

is more advantageous for addressing large-scale optimization problems. By solving the total

derivative in (5.7) and substituting it into (5.6), the shell geometry with minimum internal energy

is obtained when the algorithm satisfies the optimality condition.

5.1.2 Shape optimization of multi-patch isogeometric Kirchhoff–Love
shells

Here, we extend the optimization problem (5.1) to encompass multi-patch shell structures,

using a two-patch configuration illustrated in Figure 3.2 to demonstrate the optimization approach.

For clarity, we continue to use P and d to represent the control points for the geometry and

displacements of the non-matching shell. Specifically, we define PT =

[
PAT PBT

]
and dT =[

dAT dBT
]

. In addition to the change in geometry control points, multi-patch shell structures

involve the relative movement between shell patches during shape optimization. To account for

this movement, we introduce an additional set of state variables denoted as ξ̃ξξ
T
=

[
ξ̃ξξ

AT
ξ̃ξξ

BT
]

as shown in Figure 3.2, representing the parametric coordinates of the patch intersections, into

the shape optimization process.

Section 3.3 indicates that, besides the boundary and load conditions, the displacement

62

field of non-matching shell structures depends not only on the shell geometry but also on the

parametric location of patch intersections. This dependence is encapsulated by the shell coupling

residual vector R(P, ξ̃ξξ ,u) = 0 introduced in (3.22). The total derivative of shape optimization

for non-matching shells dP f remains the same as given in (5.2). However, the total derivative

dPd is obtained by taking the total derivative of the non-matching residual R,

dPR = ∂PR+∂
ξ̃ξξ

R dPξ̃ξξ +∂dR dPd = 0 , (5.8)

dPd =−(∂dR)−1(∂PR+∂
ξ̃ξξ

R dPξ̃ξξ) , (5.9)

where ∂dR is the stiffness matrix of the non-matching shell, ∂dR = K. Similar to the single patch

shell, the partial derivative ∂PR can be derived from the residual vector of the non-matching

shell and has an identical form to K,

∂PR =

∂PARA
s +∂PARA

pen ∂PBRA
pen

∂PARB
pen ∂PBRB

s +∂PBRB
pen

 , (5.10)

where the blocks related to penalty terms, e.g., ∂PBRA
pen, can be derived from (3.23),

∂PBRA
pen = (NB(ξ̃ξξ

B
))T

∂P̃BRA
pen +(N,B

ξξξ
(ξ̃ξξ

B
))T

∂P̃B
ξξξ

RA
pen . (5.11)

In contrast to the single patch shell, the non-matching shells require additional derivatives, as

indicated in (5.9), for shape optimization. The partial derivative ∂
ξ̃ξξ

R in (5.9) is crucial for

differentiating the movement of the intersection during the shape update of shells. This derivative

can be obtained from (3.23) since only the penalty terms involve the parametric coordinates of

63

the patch intersection. The derivative is expressed as

∂
ξ̃ξξ

R =

∂
ξ̃ξξ

ARA
pen ∂

ξ̃ξξ
BRA

pen

∂
ξ̃ξξ

ARB
pen ∂

ξ̃ξξ
BRB

pen

 , (5.12)

where the detailed derivations of sub-blocks is illustrated in 5.1.4 using the chain rule. Upon

examination of (3.23), it is apparent that the residual vector of the penalty energy RA
pen involves

the evaluation of the NURBS basis functions and their first derivatives at parametric coordinates

of the patch intersection. Note that (5.12) necessitates the second-order derivatives for both

shell patches, a condition naturally satisfied by the NURBS functions. Hence, the higher-order

continuity in NURBS basis functions not only facilitates direct discretization of the Kirchhoff–

Love shell model but also provides a straightforward solution for the relative shell movement in

shape optimization problems. This ensures that the optimization process can accurately compute

the sensitivities of intersection movements in multi-patch shell structures.

5.1.3 Implicit relation between shell control points and intersections’
parametric coordinates

Another derivative that needs to be computed in (5.9) is the total derivative of parametric

coordinates of intersections with respect to shell control points, dPξ̃ξξ . This derivative accounts

for the sensitivity of the intersection location ξ̃ξξ with respect to the shape changes in shell patches.

To obtain the analytical derivatives, we establish a relation between ξ̃ξξ and P through a system of

implicit equations. These equations are formulated into a residual vector RL (P, ξ̃ξξ), which reads

RL (P, ξ̃ξξ) =



NA(ξ̃ξξ
A
i)PA −NB(ξ̃ξξ

B
i)PB = 0

LA
j

2 −LA
j−1

2
= 0

ξ̃
A\B
k −1\0 = 0

ξ̃
A\B
l −1\0 = 0


for i ∈ {1,2, . . . ,m}

j ∈ {2,3, . . . ,m−1}
, (5.13)

64

where LA
j is the element length of the quadrature mesh Ω̃ in physical space defined using the

Euclidean distance between two adjacent geometric control points of the quadrature mesh

LA
j = ∥NA(ξ̃ξξ

A
j+1)P

A −NA(ξ̃ξξ
A
j)P

A∥2 . (5.14)

The first line of (5.13) signifies that the parametric coordinates ξ̃ξξ
A and ξ̃ξξ

B for node i of Ω̃

coincide in physical space. This condition ensures the recovery of the same physical intersection

curve from the parametric space on sides A and B. The second line of (5.13) imposes constraints

on the quadrature mesh, requiring equally spaced geometric control points and a uniform physical

mesh size. This equation rules out the presence of very small elements in the quadrature mesh.

The first two lines of (5.13) consist of 4m−2 equations, while there are 4m unknowns in ξ̃ξξ .

For an arbitrary intersection between two shell patches subjected to elastic deformation,

two discrete points on the interaction parametric coordinates ξ̃ξξ
A or ξ̃ξξ

B are located at the edges

of the shell surfaces as illustrated in Figure 3.2. The last two items in (5.13) impose such two

additional constraints on interaction kinematics where the two edge coordinates have values of

either 1 or 0, depending on their parametric location and are denoted using 1\0. The parametric

coordinate indices k and l take values of 1,2,2m− 1, or 2m. These two conditions force the

intersection edge points to move along their respective edges during the shape optimization

process. Ultimately, the four conditions presented in (5.13) guarantee a unique set of intersection

parametric coordinates for a given pair of shell surfaces. Newton’s iteration is utilized to solve

(5.13) as the analytical partial derivative ∂
ξ̃ξξ

RL can be formulated.

With the differentiable residual vector RL , we can obtain the total derivative dPξ̃ξξ using

the following expression

dPRL = ∂PRL +∂
ξ̃ξξ

RL dPξ̃ξξ = 0 , (5.15)

dPξ̃ξξ =−(∂
ξ̃ξξ

RL)−1
∂PRL , (5.16)

65

where the partial derivatives ∂
ξ̃ξξ

RL and ∂PRL can be readily obtained from (5.13). The deriva-

tion for these two partial derivatives is demonstrated in 5.1.5.

Substituting (5.10), (5.12) and (5.16) into (5.9), the total derivative of displacements with

respect to the geometric control points of the non-matching structures can be obtained. Finally,

the total derivative of the non-matching shell shape optimization problem can be computed by

substituting (5.9) into (5.2) to yield

dP f = ∂P f − (∂d f)TK−1
[
∂PR−∂

ξ̃ξξ
R (∂

ξ̃ξξ
RL)−1

∂PRL

]
. (5.17)

The (∂d f)TK−1 term can be effectively computed using the adjoint method discussed in Sec-

tion 5.1.1. Depending on the shell discretization and number of points on the intersection

quadrature mesh, both the direct method and adjoint method can be considered for calculating

∂
ξ̃ξξ

R (∂
ξ̃ξξ

RL)−1∂PRL .

By computing the total derivative dP f in (5.17), the multi-patch shell structural geometry

can be updated using optimization algorithms. A schematic demonstration of the shape update

during optimization iterations is depicted in Figure 5.1.

5.1.4 Partial derivatives of the non-matching residual

The block matrices in (5.12) are obtained through the application of the chain rule and

taking derivatives for the NURBS basis functions. The formulation of the first diagonal block is

detailed as follows,

∂
ξ̃ξξ

ARA
pen = (∂

ξ̃ξξ
ANA(ξ̃ξξ

A
))T(2,3,1) R̃A

pen +(NA(ξ̃ξξ
A
))T

∂
ξ̃ξξ

AR̃A
pen

+(∂
ξ̃ξξ

ANA,ξξξ (ξ̃ξξ
A
))T(2,3,1) R̃Aξξξ

pen +(NA,ξξξ (ξ̃ξξ
A
))T

∂
ξ̃ξξ

AR̃Aξξξ
pen ,

(5.18)

where R̃A
pen = ∂d̃AW AB

pen and R̃Aξξξ
pen = ∂d̃A

ξξξ

W AB
pen are residual vectors of the penalty energy on the

quadrature mesh Ω̃ at location ξ̃ξξ
A. ∂

ξ̃ξξ
ANA(ξ̃ξξ

A
) and ∂

ξ̃ξξ
ANA,ξξξ (ξ̃ξξ

A
) are 3D arrays involve the first

66

𝑥! 𝑥"

𝑥#

𝑥! 𝑥"

𝑥#

𝜉"

𝜉!

𝜉"

𝜉!

Iteration: 𝑖

Iteration: 𝑖 + 1

Ω% at 𝝃'!"

Ω% at 𝝃'#"

Ω% at 𝝃'!"$%

Ω% at 𝝃'#"$%

Figure 5.1. Illustration of shape updates and changes in the relative location for two shell patches
during shape optimization. The parametric coordinates of the patch intersection are updated
from iteration i to i+1 accordingly.

order and second order derivatives of the NURBS basis functions, where the transpose T(2,3,1)

indicate switching the axes of the 3D array from (1,2,3) to (2,3,1). Partial derivative ∂
ξ̃ξξ

AR̃A
pen

in (5.18) is formulated as

∂
ξ̃ξξ

AR̃A
pen = ∂d̃AR̃A

pen ∂
ξ̃ξξ

Ad̃A +∂d̃A
ξξξ

R̃A
pen ∂

ξ̃ξξ
Ad̃A

ξξξ

+∂P̃AR̃A
pen ∂

ξ̃ξξ
AP̃A +∂P̃A

ξξξ

R̃A
pen ∂

ξ̃ξξ
AP̃A

ξξξ
,

(5.19)

where the first component in each term, e.g., ∂d̃AR̃A
pen, can be derived from the penalty energy

(3.9). For the second components, such as ∂
ξ̃ξξ

Ad̃A, it is computed via the interpolation matrix,

∂
ξ̃ξξ

Ad̃A = ∂
ξ̃ξξ

A(NA(ξ̃ξξ
A
)dA) = (∂

ξ̃ξξ
ANA(ξ̃ξξ

A
))T(1,3,2)dA . (5.20)

67

Likewise, the other component, ∂
ξ̃ξξ

Ad̃A
ξξξ

, involves the first derivative of the shell displacement is

calculated as

∂
ξ̃ξξ

Ad̃A
ξξξ
= (∂

ξ̃ξξ
ANA,ξξξ (ξ̃ξξ

A
))T(1,3,2)dA . (5.21)

Replacing dA with PA in (5.20) and (5.21), we can obtain ∂
ξ̃ξξ

AP̃A and ∂
ξ̃ξξ

AP̃A
ξξξ

, and therefore,

∂
ξ̃ξξ

AR̃A
pen. The same derivation can be applied to obtain ∂

ξ̃ξξ
AR̃Aξξξ

pen. Substituting ∂
ξ̃ξξ

ARA
pen and

∂
ξ̃ξξ

AR̃Aξξξ
pen into (5.18), we can get the first diagonal block matrix of the partial derivative ∂

ξ̃ξξ
R.

The off-diagonal block has a similar formulation to the diagonal block,

∂
ξ̃ξξ

BRA
pen = (NA(ξ̃ξξ

A
))T

∂
ξ̃ξξ

BR̃A
pen +(NA,ξξξ (ξ̃ξξ

A
))T

∂
ξ̃ξξ

BR̃Aξξξ
pen . (5.22)

With the diagonal and off-diagonal blocks, we can obtain the partial derivative in (5.12).

In (5.18) and (5.21), it becomes evident that the second-order derivative of the NURBS

basis functions for the shell patch is included. Consequently, the C1 continuity is required if the

evaluation point is located at the element boundary. This requirement is inherently fulfilled by

the NURBS basis functions, thereby highlighting the advantages of IGA in the application of

design optimization.

5.1.5 Partial derivatives of the implicit intersection representation

To compute the analytical total derivative of the non-matching shell optimization problem,

partial derivatives of the implicit intersection representation (5.13) with respect to P and ξ̃ξξ are

required. The partial derivative of the implicit residual vector with respect to intersections’

parametric coordinates, ∂
ξ̃ξξ

RL , states as

∂
ξ̃ξξ

RL =



EA EB

FA 0

vr

vs


, (5.23)

68

where

EA
ik =


[

NA,ξ1
(ξ̃ξξ

A
i)PA NA,ξ2

(ξ̃ξξ
A
i)PA

]
, if i = k

0 , otherwise

and

EB
ik =


−
[

NB,ξ1
(ξ̃ξξ

B
i)PB NB,ξ2

(ξ̃ξξ
B
i)PB

]
, if i = k

0 , otherwise

,

(5.24)

for i= {1,2, . . . ,m} and k = {1,2, . . . ,m}. Matrices EA and EB have sizes of (m×sd)×(m× pd).

Each entry, EA
ik or EB

ik, is a block matrix with a size of sd × pd. And

FA
jk =



2
(

NA(ξ̃ξξ
A
j)PA −NA(ξ̃ξξ

A
j−1)PA

)T
[

NA,ξ1
(ξ̃ξξ

A
j−1)PA NA,ξ2

(ξ̃ξξ
A
j−1)PA

]
, if k = j−1

−2
(

NA(ξ̃ξξ
A
j+1)PA −NA(ξ̃ξξ

A
j−1)PA

)T
[

NA,ξ1
(ξ̃ξξ

A
j)PA NA,ξ2

(ξ̃ξξ
A
j)PA

]
, if k = j

2
(

NA(ξ̃ξξ
A
j+1)PA −NA(ξ̃ξξ

A
j)PA

)T
[

NA,ξ1
(ξ̃ξξ

A
j+1)PA NA,ξ2

(ξ̃ξξ
A
j+1)PA

]
, if k = j+1

0 , otherwise

,

(5.25)

for j ∈ {2,3, . . . ,m−1} and k ∈ {1,2, . . . ,m}. FA has dimensions of (m−2)× (m× pd), with

each entry FA
jk being of size of 1× pd. Additionally, vr is a row vector consisting of zero values

except for the r-th entry, which is set to 1. And vs possesses these same properties.

The partial derivative of the residual vector with respect to shell patches’ control points

∂PRL is expressed as

∂PRL =



NA(ξ̃ξξ
A
i) −NB(ξ̃ξξ

B
i)

GA
j 0

0

0


, (5.26)

for i ∈ {1,2, . . . ,m} and j ∈ {2,3, . . . ,m− 1}. And GA
j is a row vector and has the following

69

definition

GA
j = 2PAT

[(
NA(ξ̃ξξ

A
j+1)−NA(ξ̃ξξ

A
j)
)T(

NA(ξ̃ξξ
A
j+1)−NA(ξ̃ξξ

A
j)
)

−
(

NA(ξ̃ξξ
A
j)−NA(ξ̃ξξ

A
j−1)

)T(
NA(ξ̃ξξ

A
j)−NA(ξ̃ξξ

A
j−1)

)]
.

(5.27)

Consequently, we can obtain the total derivative of the intersections’ parametric co-

ordinates with respect to shell patches’ control points by substituting (5.23) and (5.26) into

(5.16).

5.2 Shape optimization implementation details

The following sections illustrate the implementation details of non-matching shell shape

optimization. We adopt the multilevel design concept and present the treatment of various types

of intersections. Furthermore, we introduce the dependencies of the open-source Python library

used in this paper.

5.2.1 Multilevel design for IGA-based optimization

In this paper, we apply the multilevel design concept [128, 129, 107] to create a flexible

design space. The optimizer modifies only the shape of shell structures with coarse discretizations,

referred to as the design model, by adjusting the coordinates of their control points. Meanwhile,

a refined geometry, named the analysis model, is used for accurate analysis of the structural

response after shape modifications. Specifically, for CAD geometries defined using NURBS basis

functions, order elevation (p-refinement), knot refinement (h-refinement), and the combination

of these two methods (k-refinement) can be employed to produce finer models while preserving

the original geometry. This capability in IGA is particularly beneficial for shape optimization

problems as it allows the dimension of the design space to be chosen independently from the

dimension of the analysis model.

Figure 5.2 presents an example of the multilevel design approach for a single patch shell.

70

A quadratic surface with coarse discretization defines the design model. Firstly, the order of the

B-spline basis functions is increased to cubic through order elevation. Then the surface is refined

by inserting a series of knots in both parametric directions to create the fine analysis model.

The design model, with significantly fewer degrees of freedom (DoFs) than the analysis model,

enhances convergence for optimization problems. Design engineers have the flexibility to define

the dimension of the design space by selecting the initial knot vector. Additionally, the continuity

of the basis functions in the analysis model can be increased through k-refinement, which is

advantageous for problems with higher-order governing equations. Linear operations can achieve

k-refinement by creating associated matrices. Commonly used algorithms for implementing

these refinement strategies are detailed in the NURBS book [138, Chapter 5].

𝑥! 𝑥"

𝑥#

𝜉"

𝜉!

Design model Analysis model
Order elevation Knot refinement

Figure 5.2. Multilevel design approach for shape optimization problems. The coarse design
model is employed to update the shape of the geometry, while the refined analysis model is
used for structural analysis. Both the design model and the analysis model represent the same
geometry.

The multilevel design approach can be readily extended to shape optimization with

71

non-matching shell structures, where the differentiation for the movement of patch intersections

during the optimization process is discussed in Section 5.1.2.

5.2.2 Intersection types in shape optimization

Without considering extreme cases such as singular points and singular curves, there are

typically three types of intersections between two tensor-product NURBS patches, as shown in

Figure 5.3. The first type, named interior–interior intersection, is depicted in Figure 5.3a. For

the interior–interior intersections, we assume that two shell patches can move independently

of each other without any other constraints imposed. The second type, termed as interior–edge

intersection and illustrated in Figure 5.3b, occurs when the edge of one shell patch intersects the

interior of the other shell patch, forming a T-junction structure. During the optimization process,

the intersection is allowed to move while maintaining the T-junction. Therefore, an additional

constraint is necessary to fulfill this requirement. For the third intersection type, as shown in

Figure 5.3c, the edges from two separate patches join together and no relative movement between

the two patches is allowed. In this intersection topology, the optimization framework enforces

the conditions that the relative location of the intersection remains fixed and the two shell patches

are always connected at their edges. While these intersection topologies do not represent all

possible geometries, they are effective within our targeted applications, particularly in the context

of aircraft wing design.

For the interior–edge type of intersections, a linear constraint is applied to the paramet-

ric coordinates of the intersection to retain the T-junction. Figure 5.4 depicts the associated

parametric configuration and the intersection’s quadrature mesh of Figure 5.3b. To preserve

the T-junction, the quadrature mesh related to the vertical patch needs to stay on the top edge.

Assuming the parametric domain of the vertical patch is a unit square and the lower-left corner

is at (0,0), the constraint is applied as ξ̃ B
i2 = 1 for i ∈ {1,2, . . . ,m}. In the example shown in

Figure 5.4, the intersecting edge of the vertical patch is only defined by three DoFs, leading to

an over-constrained system since m > 3. Therefore, we select three points, highlighted in red,

72

(a) Intersection type: interior–
interior

(b) Intersection type: interior–
edge

(c) Intersection type: edge–edge

Figure 5.3. Types of shell patch intersection in shape optimization problems.

in the quadrature mesh to enforce the T-junction constraint. The support of each NURBS basis

function at the intersecting edge needs to contain at least one selected point to uniquely define the

edge. It is noted that the edge alignment of the vertical and horizontal patches is imposed only at

the selected points to avoid an over-constrained condition. Given the potential for high-order

polynomial intersections between two shell patches, the determined curve is considered as an

approximated intersecting edge within the design space.

𝜉!

𝜉"
Horizontal patch Vertical patch

𝝃"!

𝝃""

Figure 5.4. Parametric configuration of two shell patches with an interior–edge intersection.

In cases where shell patches form edge-edge intersections, the coordinates of the quadra-

ture mesh are assumed to remain unchanged throughout the optimization process. If the op-

73

timization problem incorporates the shape of these shell patches, we employ the FFD-based

method as proposed in [180, Section 4] to ensure the connectivity between shell patches. The

shell patches with edge–edge intersections are embedded within a trivariate B-spline block

where the shape of shells is updated through the change of the 3D B-spline block. Meanwhile,

parametric coordinates of intersections between shell patches in different B-spline blocks are

allowed to move. This strategy is employed in the tube optimization benchmark problem in

Section 5.3.2. Conversely, if the shell patches with edge–edge intersections are not considered in

the optimization problem, their control points can be fixed without any updates.

5.2.3 Optimization scheme

With the aforementioned implementation details and code dependencies, the workflow

of shape optimization for non-matching shells is outlined in Figure 5.5. The optimization

workflow entirely bypasses the FE mesh generation for the CAD geometry. Shape modifications

are directly applied to the coarse design model, and the structural response of the updated

geometry is evaluated using the refined analysis model. As such, the dimension of the design

space can be significantly reduced. As discussed in Section 5.2.1, the geometry preservation

properties of NURBS surface refinement methods ensure that no geometric errors are introduced

from the design model to the analysis model, which is difficult to achieve in traditional FEM.

Consequently, this optimization approach guarantees both accurate geometry representation and

analysis results.

5.2.4 Software elements for open-source implementation

The shape optimization Python library is developed leveraging a suite of open-source

code packages. It employs the Python interface of OpenCASCADE, PythonOCC [137], to import

the CAD geometry in IGES or STEP formats into the optimization process. Meanwhile, the

surface–surface intersection approximation functionality in PythonOCC is utilized to determine

the parametric coordinates of intersections, which serve as the initial guess for (5.13). For

74

CAD geometry of design model

CAD geometry of analysis model

Solve for parametric coordinates of
patch intersections

Structural analysis of non-matching
isogeometric shells

Evaluate objective function

Converged?

Optimal CAD
geometry

No

Yes

Sensitivity analysis and update design
model

Figure 5.5. Workflow of the IGA-based shape optimization for non-matching shell structures
with moving intersections.

automated structural analysis of CAD geometries consisting of non-matching isogeometric

Kirchhoff–Love shells, the FEniCS [122]-based library PENGoLINS [181] is employed. The

Lagrange polynomial basis functions in the finite element code of FEniCS are changed to NURBS

basis functions through the extraction technique [23, 150, 148, 54]. The Lagrange extraction is

implemented in tIGAr [98], while the low-level assembly subroutines in FEniCS are reused in

the analysis framework.

FEniCS makes use of advanced code generation and computer algebra to automate analyt-

ical Gateaux derivative computation, allowing for large-scale gradient-based optimization. Partial

derivatives in (5.17) are encapsulated into individual components, and they are modularized

through OpenMDAO [63] to manage the adjoint method of total derivative calculation. For

solving the optimization problem, the SLSQP optimizer [113] is used for simple benchmark

75

examples. The SNOPT optimizer [60], renowned for its efficiency in nonlinear problems where

gradient evaluations are computationally intensively, is employed for complicated problems. The

sparse sequential quadratic programming (SQP) algorithm is used in the SNOPT optimizer. The

source code of the shape optimization framework is publicly available on the GitHub repository

GOLDFISH [162], where demonstrations presented in Sections 5.3 and 6.4 can be reproduced.

5.3 Benchmark problems

In this section, we present results based on a set of shape optimization problems to

validate the effectiveness of the proposed optimization scheme. The multilevel design approach

is employed in the T-beam example, while the FFD-based method, which maintains edge–edge

intersections, is tested in the tube problem.

5.3.1 T-beam under distributed load

Two types of T-beam geometry are demonstrated to verify the accuracy of the shape

optimization approach. The T-beam geometry in Section 5.3.1 has a flat top surface, while the

top surface in Section 5.3.1 is curved to test the proposed approach’s ability to preserve the

T-junction in curved structure in the optimization process. In both demonstrations, the T-beam is

subjected to a downward distributed pressure and is fixed at the rear end.

Flat T-beam

For the first benchmark problem, we consider a T-beam geometry composed of two

patches, a top surface and a vertical surface. In the optimization process, both surfaces remain

flat, with dimensions of 2 m in width and 10 m in length for each patch. The thickness of both

shell patches is set as 0.1 m. In the initial design, the top surface ranges from -1 m to 1 m in

the horizontal direction, while the top edge of the vertical patch is located at 0.5 m horizontal

location. The isogeometrically discretized1 analysis model using cubic B-spline basis functions

1Due to technical limitations within FEniCS, the interpolation matrix described in (3.17) can only be constructed
with triangular meshes in the current implementation. While all numerical examples are discretized using triangular

76

is shown in Figure 5.6a, where the interior–edge intersection is indicated with a green line.

Material properties, Young’s modulus E = 107 Pa and Poisson’s ratio ν = 0, are used in the

analysis, and the uniformly distributed load has a magnitude of P = 1 Pa.

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Vertical patch location

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 W
in

t

(b)

Figure 5.6. (a) The isogeometrically discretized T-beam geometry with a flat top surface in the
initial configuration. The movable intersection is highlighted with a green line. (b) The T-beam’s
internal energy depends on the location of the vertical surface. The minimal internal energy
occurs when the vertical surface is located at the center of the top surface.

In this benchmark problem, we aim to minimize the internal energy of the T-beam by

adjusting the position of the vertical patch. Thus, only one design variable is considered in

this problem. The relation between the internal energy of the T-beam and the location of the

vertical patch is illustrated in Figure 5.6b. The lowest normalized internal energy, with a value of

0.18719, corresponds to the vertical patch positioned at the center of the top patch. Since the

movement of the vertical patch is restricted to the horizontal direction, the requirement for the

maintenance of the T-junction is automatically satisfied, and the volume of the T-beam remains

constant. The only required constraints in this problem are the limits for the coordinate of the

vertical patch, which ranges from -1 m to 1 m. The SLSQP optimizer is adopted for this problem

with a tolerance set as 10−15. Due to the simplicity of this benchmark example, the optimizer

meshes, the solutions are still approximated using NURBS basis functions.

77

converges to the optimal location rapidly and terminates successfully with 4 iterations. The

optimized T-beam geometry are demonstrated in Figure 5.7. The vertical patch of the optimized

geometry has a horizontal coordinate of 1.323×10−9, closely matching the theoretical optimal

solution of 0 with a negligible difference. The normalized internal energy of the converged

solution has a value of 0.18721, which shows good agreement with the expected value.

Figure 5.7. Optimized geometry of the T-beam with a flat top surface. The optimizer with a
tolerance of 10−15 terminates after 4 iterations.

Curved T-beam

For this purpose, a T-beam CAD geometry with a curved top surface is generated, and

the associated analysis model discretized with cubic B-spline basis functions is shown in Figure

5.8. The top surface ranges horizontally from -1 m to 1 m and vertically from 0 m to 0.3 m.

The vertical surface is located at 0.5 m horizontal location in the initial configuration, where

the intersection is marked by a green line. In this benchmark problem, the dimensions of the

design space are increased. In the design model, we employ a cubic B-spline surface with a knot

vector of [0,0,0,0,1,1,1,1] on both parametric directions to define the horizontal position of

78

the vertical patch, alongside a linear B-spline curve with a knot vector [0,0,1,1] for its vertical

location. This problem involves 16 horizontal design variables and 1 design variable for the

vertical location. The same material parameters and objective functions as in Section 5.3.1 are

used. A constraint ensuring that the top edge of the vertical surface remains attached to the

top surface during the optimization is introduced by fixing the parametric coordinate of the

quadrature mesh with respect to the vertical patch to 1.0 in the ξ2 direction. Additionally, a

volume constraint is imposed on the vertical surface to ensure a constant volume.

Figure 5.8. Initial configuration of a T-beam geometry with a curved top surface, where the
green line indicates the initial location of the intersection.

We employ the SNOPT optimizer with a tolerance of 10−6. It takes 49 iterations for

the optimizer to converge to the specified tolerance. A series of representative optimization

snapshots of this benchmark problem is shown in Figure 5.9, which demonstrates that the

top edge of the vertical surface adheres to the top surface due to the implementation of the

T-junction preservation constraint. Despite the increased dimension of the design space allowing

for potential bending of the vertical patch, it eventually converges to a flat surface in the optimal

configuration to minimize internal energy. The limits of the horizontal control points in the

79

optimized design are −4.079× 10−5 and 3.651× 10−5, which correspond to the flat vertical

surface at the center of the top surface with sufficiently small errors. The flat shape in the

optimized design indicates that the vertical surface’s volume remains unchanged. Meanwhile, the

vertical coordinate of the control point on the top edge in the optimal design of 0.3 confirms that

the top edge of the vertical surface precisely lies in the middle of the top surface, maintaining the

T-junction connection.

Figure 5.9. Snapshots of the shape optimization history of the T-beam featuring a curved top
surface. The SNOPT optimizer requires 49 iterations to converge to the tolerance of 10−6.

To demonstrate the effectiveness of the proposed shape optimization approach for multi-

patch shell structures that incorporate a moving intersection, we test it against two T-beam

benchmark problems. Both benchmarks converge to the optimal shapes with sufficiently small

errors. During the optimization process, relative movement between the surface patches is

achieved using analytical derivatives calculated from the adjoint method, as discussed in Section

5.1.2. Additionally, the T-junction is accurately preserved through a linear constraint applied to

the parametric coordinates of the intersection’s quadrature mesh.

80

5.3.2 Tube with follower pressure

In this section, we investigate the shape optimization of a tube subjected to an outward-

facing follower unit pressure on its inner surface. We model a quarter of the tube geometry using

four separately parametrized surfaces, with the initial quarter tube geometry depicted in Figure

5.10a. Symmetric boundary conditions are applied to represent the full tube. The initial tube

geometry features five intersections in total, two edge–edge intersections, highlighted with red

lines, and three interior–interior intersections, marked with green lines. As discussed in Section

5.2.2, we assume that the edge–edge intersections remain unchanged due to lack of relative

movement, and their intersection type does not alter throughout the optimization process. On the

other hand, interior–interior intersections can be moved during the shape optimization, allowing

for the search of optimal intersection locations. Consequently, the upper two shell patches can

move relative to the lower two patches, and the relative locations within each pair are maintained.

In this benchmark problem, we employ the FFD-based shape modification strategy,

incorporating the Lagrange extraction technique [148], as introduced in [180] for automated

preservation of edge–edge intersections in the upper and lower shell patch pairs. The setup of the

B-spline blocks in the initial configuration are demonstrated in Figure 5.10b, where the four shell

patches are distinguished by different colors. The initial quarter tube geometry ranges from 0 m

to 1 m in both vertical and horizontal directions, and from 0 m to 2 m in the axial direction. Each

shell patch pair is embedded in a trivariate B-spline block, with shape updates of shell patches

achieved by adjusting the control points of the B-spline blocks. Due to the continuous shape

modification inside the B-spline block, the edge–edge intersections are maintained. Moreover,

relative movement is allowed between the distinct FFD B-spline blocks assigned to the upper

and lower pairs.

In the structural analysis, we use a Young’s modulus of 109 Pa and Poisson’s ratio of 0

for the material properties of shell patches, each with a thickness of 0.01 m. Control points of

each FFD block are aligned in the axial direction to ensure the tube remains straight, leading to

81

(a) (b)

Figure 5.10. (a) A quarter of the initial tube geometry consists of four non-matching cubic
B-spline patches. The three interior–interior intersections are indicated with green lines, and
two red lines mark the edge–edge intersections. (b) Initial configuration of the tube geometry
and FFD blocks. Each set of surface patches with edge–edge intersections is embedded in
one 3D B-spline FFD block to preserve the edge–edge intersection, while the interior–interior
intersections between different FFD blocks are allowed to move during the shape optimization
process.

the assignment of the control points in the first layer of the FFD blocks along the axial direction

as design variables. In sum, there are 50 design variables in total, 25 for each FFD block.

Meanwhile, the left edge of the upper FFD block and the lower edge of the lower FFD block are

fixed to ensure constant positioning of the symmetric edges in the tube geometry. We employ

the SNOPT optimizer with a tolerance of 10−2, requiring 142 iterations to achieve convergence.

Figure 5.11 displays a sequence of snapshots for the cross-sectional view of the tube geometry

during the optimization process. The optimization snapshots demonstrate a gradual transition

of the initial tube toward the expected circular tube. Notably, the upper pair of shell patches

move freely relative to the lower pair during the optimization iterations. As the optimization

progresses, the intersections between these shell pairs shift from interior positions in the initial

configuration to the edges in the final configuration, eventually achieving the optimal design.

The shape of the optimized geometry is displayed in Figure 5.12a, where the red curve

82

Iteration: 2 Iteration: 4 Iteration: 6

Iteration: 40 Iteration: 80 Iteration: 142

Figure 5.11. Representative snapshots of the shape optimization history for the cross-sectional
view of tube geometry with interior–interior intersections. The interior–interior intersections
converge to edge–edge intersections in the optimized design to minimize the internal energy of
the tube.

indicates the cross-section of an exact circular tube. The circular shape represents the theoretical

optimal shape that minimizes internal energy under the given follower pressure load conditions.

A comparison of the cross-sectional view of the tube in initial and optimized configurations is

shown in Figure 5.12b. In the optimized configuration, the cross-section of the tube geometry

aligns closely with a perfect quarter circular arc, demonstrating the accuracy of the optimization

approach. This tube benchmark problem highlights the capability of the optimization approach

for handling intersections of the interior–interior type. This approach allows the associated inter-

secting shell patches to move independently, subject to a constraint guaranteeing the existence of

the intersection during the shape optimization process.

Acknowledgements

A portion of this chapter has been published in “H. Zhao, J. T. Hwang, and J. S. Chen.

Shape optimization of non-matching isogeometric shells with moving intersections. Computer

83

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Patch 1 initial
Patch 3 initial
Patch 1 optimized
Patch 3 optimized
Exact quarter circle

(b)

Figure 5.12. (a) Optimized geometry of the tube, the red curve represents an exact circle
for comparison. (b) Cross-sectional view of the tube geometry in the initial and optimized
configurations.

Methods in Applied Mechanics and Engineering, 431:117322, 2024.” The dissertation author is

the primary investigator and author of this paper.

84

Chapter 6

Application to aircraft wings

6.1 Integration of design and analysis for aerospace struc-
tures

Having verified the non-matching IGA formulation and its implementation in the open-

source framework, we now turn to our target application, namely, the analysis of aerospace

structures. We first discuss the source of our upstream geometry in Section 6.1.1, then apply

the framework to it in Section 6.1.2, thereby demonstrating a seamless design-through-analysis

workflow that entirely bypasses the problematic mesh-generation stage.

6.1.1 Design of eVTOL wing geometry

The conceptual aircraft design tool OpenVSP [61, 62, 52, 73] is the initial source of the

aircraft skin geometry. It allows users to conveniently specify the geometry of major aircraft

constituents, e.g., wings, fuselages, and pods, by adjusting corresponding design parameters. For

instance, one can select span and chord sizes, airfoil type, location, and rotation to customize

wing geometry. The VSP Hangar [160] is a public database of reference geometries provided in

OpenVSP’s native format, vsp3. To illustrate our design-through-analysis pipeline, we start with

the eCRM-002, a common reference model (CRM) of an electric aircraft. A screenshot of the

eCRM-002 geometry in OpenVSP is displayed in Figure 6.1a, alongside snapshots of the user

interfaces for selecting geometry (Figure 6.1b) and adjusting design parameters for the wing

85

(Figure 6.1c).

(a) (b) (c)

Figure 6.1. (a) eCRM-002 CAD model of format vsp3 in the main window of OpenVSP. (b)
Geometry browser of OpenVSP for eCRM-002. (c) Aircraft wing design menu in OpenVSP.

While OpenVSP provides extensive features for designing the overall layout and external

skin geometry of aircraft, it does not provide an interface for design of the internal structures

typically used to stiffen airframes. In this work we use an auxiliary geometry tool to generate

spline patches corresponding to the internal wing ribs and spars, to obtain a structural model

sufficient for stress analysis at the conceptual design phase. This auxiliary tool provides control

over the number and location of internal stiffeners, in terms of common engineering parameters

(e.g., chordwise position of spars and spanwise position of ribs). It is part of a more compre-

hensive eVTOL geometric design framework, which remains under development, and will be

described in detail by a forthcoming paper.

To perform an demonstrative stress analysis of the eCRM-002 wing, we first use Open-

VSP to isolate NURBS patches corresponding to skin of one wing. We then use our auxiliary

tool to introduce 3 spars and 12 ribs, modeled geometrically as NURBS patches. Given in-

86

dustrial CAD models, it is necessary to check the continuity of the NURBS surfaces before

running the analysis, to ensure that all patches are sufficiently smooth to apply the rotation-free

Kirchhoff–Love shell formulation. For example the wing model exported by OpenVSP contains

excess repeated knots, leading to C0 continuity of basis functions (despite smooth geometry); it

therefore needs to be reconstructed using the method mentioned in Section 7.1.1 to obtain an

analysis-suitable geometry. However, this is a straightforward procedure to apply automatically

to each patch, and does not entail significant effort by an analyst. With the resulting analysis-

suitable model, we can then compute non-matching intersections among the wing shell patches,

as discussed in Section 7.1.1. The complete wing geometry includes 21 NURBS patches, with

87 non-matching intersections detected among them. The final analysis model of the wing,

consisting of shell patches with maximal continuity and a collection of intersection curves, is

rendered using Open Cascade in Figure 6.2.

(a) (b)

Figure 6.2. (a) eVTOL wing geometry, comprising 21 NURBS patches in total, with internal
stiffeners. Upper surfaces are set translucent for visualization. (b) Computed non-matching
intersections of eVTOL wing; 87 intersection curves are displayed.

6.1.2 Analysis of an eVTOL wing

In this section, we apply PENGoLINS to perform stress analysis of the analysis-suitable

geometric model resulting from the design and preprocessing described in Section 6.1.1. Spline

patches from this geometry are enriched via knot insertion for analysis, as shown in Figure 6.3.

The root of the wing is clamped in this analysis, and a distributed volumetric upward

87

Figure 6.3. Exploded view of the eVTOL wing geometry of the eCRM-002 model, consisting of
21 NURBS shell patches with 87 intersections. The total number of displacement DoFs is 5524.
Lower and upper surfaces are displaced vertically, to show the internal stiffeners.

load is applied to all shell patches, as a rough approximation of the cruising condition where one

wing carries half weight of the aircraft. Aluminum is widely used in aircraft manufacturing, so

we choose a Young’s modulus of 68 GPa and a Poisson’s ratio of 0.35.1 The length of the wing

in the spanwise direction is about 4.8 m. Its width is about 1.1 m in the chordwise direction at the

root. The shell thickness is 3 mm for all patches. Assuming the take-off weight for eCRM-002 is

3000 kg, the magnitude of distributed load can be obtained by dividing through by the volume of

wing (i.e., midsurface areas of patches, scaled by shell thickness). For this example, the load

magnitude is determined to be 40254 N/m3. Figure 6.4 demonstrates the stress analysis result

for the geometry in Figure 6.3 with total DoFs of 5524. Smooth displacements are observed

on all shell patches and the maximum von Mises stress (9.6 MPa) is located near the root, as

expected.

To verify that results are converged, we perform a mesh-sensitivity study on the vertical

1We recognize that fiber-reinforced composite materials are a more likely choice for eVTOL aircraft, but choose
an isotropic material for simplicity. The details of material modeling within each patch are largely orthogonal to
the main topic of this paper, as implementing new constitutive models would be an expansion of ShNAPr, not
PENGoLINS.

88

Figure 6.4. Distribution of von Mises stresses of the eVTOL wing. Wing displacements are
scaled by a factor of 100, and the upper surfaces are translucent for visualization.

displacement at the wingtip on the trailing edge. This QoI is computed at several levels of

refinement, and the results are plotted in Figure 6.5. A clear convergence of the measured

quantity is shown in this figure, where the maximum vertical displacement on the trailing edge

converges to 0.010723 m. It is worth noting that even the coarsest discretization, which simply

captures the geometry, gives a value within ∼ 1.5% of the converged value. This discretization

error is negligible compared to the modeling error that is typically inherent to the conceptual

design phase.

As an outside point of comparison, we also compute a solution using classical finite

element analysis of the Reissner–Mindlin model, which is the most common approach for

industrial shell analysis. In particular we use a FEniCS implementation of the Reissner–Mindlin

shell element introduced by [26] (i.e., triangles with quadratic Lagrange displacements and linear

Crouzeix–Raviart rotations), similar to the didactic code example provided by [22]. The vertical

displacement of the wingtip trailing edge in a converged finite element analysis with 1,262,709

89

50 100 150 200 250 300 350
DoFs

0.01054

0.01058

0.01062

0.01066

0.01070

0.01074

Ve
rt

ic
al

 d
is

pl
ac

em
en

t a
t t

ip
 o

f t
ra

ili
ng

 e
dg

e

Figure 6.5. Convergence of the vertical displacement at the wingtip of the trailing edge.

DoFs is 0.010804 m.2 We do not expect the difference between Kirchhoff–Love and Reissner–

Mindlin discretizations to converge to exactly zero, because the exact solutions differ. However,

the relative difference of 0.76% is well within standards of accuracy for conceptual aerospace

design and comparable to the difference between converged deflections of the Scordelis–Lo

roof using Kirchhoff–Love and Reissner–Mindlin models (viz. 0.3007 and 0.3024 [16, 125],

respectively). The displacement solutions from PENGoLINS and classical finite element analysis

are compared in Figure 6.6, and are indistinguishable for practical purposes. An important

conclusion to draw from this comparison is that the Kirchhoff–Love kinematic assumptions of

zero transverse shear strain and zero change in dihedral angle at creases are appropriate to the

target application of aerospace structural analysis, exhibiting no meaningful loss in fidelity when

compared to the prevailing industry standard of Reissner–Mindlin shell modeling.

2We do not claim that such a large number of DoFs is strictly necessary for accurate results with the formulation
of [26], but improving per-DoF accuracy would require significant work to optimize mesh quality, which is a
separate research effort beyond the scope of the present contribution (and precisely what PENGoLINS is intended
to circumvent).

90

(a) (b)

Figure 6.6. (a) Displacement solution for an eVTOL wing using PENGoLINS. (b) Displacement
solution using the Reissner–Mindlin shell element of [26].

6.2 PEGASUS wing thickness optimization

For the PEGASUS wing problem, we first verify the accuracy of the structural analysis

using PENGoLINS for a shell structure with a large number of patches and intersections. Then

two types of thickness design optimizations are performed in the following section.

6.2.1 Structural analysis of the PEGASUS wing

The PEGASUS wing CAD model is created using a customized geometry engine, an

exploded view of the wing with IGA discretization is shown in Figure 6.7. The CAD model

consists of 90 NURBS patches, two outer skins (one lower skin and one upper skin) and two

spars (one front spar and one rear spar) connecting two adjacent ribs. The NURBS surfaces

in the PEGASUS wing are represented using cubic basis functions with maximal continuity,

resulting in 19572 DoFs in total. Additionally, 280 patch intersections are formed in the wing

structure.

The PEGASUS wing is made of material with Young’s modulus 69 GPa and Poisson’s

ratio 0.35, and the wing span is 12.22 m. At the wing root, the chord is 1.52 m and the airfoil

thickness is 0.37 m. A uniform initial thickness is 5 mm for all patches. Considering an aircraft

take-off weight of 9000 kg, a distributed upward pressure with a magnitude of 132.5 N/m2 is

determined by dividing half of the take-off weight by the surface area of the wing. Clamped

91

Figure 6.7. CAD geometry of the PEGASUS wing which is composed of 90 NURBS patches
with 280 intersections, totaling 19572 DoFs.

boundary conditions are imposed at the wing root. Importing the PEGASUS wing geometry in

IGES format to PENGoLINS, we perform structural analysis directly without finite element mesh

generation. Given an analysis-suitable CAD file, the only required geometry preprocessing is to

approximate surface–surface intersections, which is a much easier effort than finite element mesh

generation and is automated in PENGoLINS using the functionality provided by pythonOCC.

Figure 6.8a shows all the intersections presented in the PEGASUS wing, while the displacements

computed by PENGoLINS are visualized in Figure 6.8c. Figure 6.8e shows the distribution of

von Mises stress on top surfaces (ξ3 = h/2) of the PEGASUS wing.

To validate the proposed non-matching coupling method for complex shell structures,

we conduct a much refined FE analysis (utilizing quadratic triangular elements with 118644

DoFs) for the PEGASUS wing using COMSOL [1]. Figure 6.8b displays an extensively refined

finite element mesh for the COMSOL FE analysis. Displacements solved in COMSOL and

corresponding von Mises stress are depicted in Figures 6.8d and 6.8f, respectively. Figures

6.8c and 6.8d indicate that the displacements obtained from PENGoLINS closely match the

results from COMSOL. The maximum displacement magnitude in PENGoLINS is 0.06662 m,

which has a relative difference of 0.15% compared to the corresponding value of 0.06672 m

92

(a) Illustration of surface–surface intersections in
the PEGASUS wing geometry.

(b) Finite element mesh of PEGASUS wing gener-
ated in COMSOL.

(c) Visualization of displacement magnitude solved
by PENGoLINS in baseline design.

(d) Analysis result obtained from COMSOL using
Reissner–Mindlin shell theory.

(e) von Mises stress on top surfaces of PEGASUS
wing computed by PENGoLINS.

(f) Distribution of von Mises stress obtained from
COMSOL.

Figure 6.8. Structural analysis of the PEGASUS wing using PENGoLINS, and the resulting
displacement magnitude and von Mises stress are compared with the corresponding outputs
obtained from COMSOL.

in COMSOL. This aligns well with the findings of a numerical experiment presented in [181,

Section 5.3]. The von Mises stress distributions between PENGoLINS and COMSOL also

exhibit good agreement as shown in Figures 6.8e and 6.8f, where zoom-in views are included for

the observation of von Mises stress at patch intersections. Note that while Reissner–Mindlin shell

93

theory was employed in COMSOL, the mixed interpolation of tensorial components (MITC) [8]

technique implemented in COMSOL has been carefully validated and is reliable for comparison

with our solution based on Kirchhoff–Love shell theory in the limit of thin shells. The simulation

results for the PEGASUS wing indicate that PENGoLINS provides good accuracy for complex

shell structures, which is crucial for the subsequent design optimization.

6.2.2 Thickness optimization of the PEGASUS wing

Similar to the thickness optimization of the clamped plate discussed in Section 4.3.4,

we apply the same methodology to the PEGASUS wing for piecewise constant thickness

optimization. The same boundary conditions are employed throughout the optimization. In

the piecewise constant thickness optimization case, a total of 90 design variables are included

with lower and upper bounds of 1 mm and 100 mm, respectively. The initial thickness for all

patches is taken as 5 mm. A constant volume constraint is employed in the optimization. The

resulting shell thickness with minimum internal energy is depicted in Figure 6.9. The shell patch

with the maximum thickness is observed at the wing root in the outer skins, while the thickness

decreases consistently along the span direction for both the outer skins and spars, following a

pattern similar to that of the clamped plate. The thicknesses of the internal ribs and the wingtip

are close to the lower bound since the bending moments are mainly carried by the lower and

upper skins given the distributed upward load. Therefore, the majority of material is redistributed

towards the clamped root of the outer skins. The optimized design in Figure 6.9 gives an internal

energy 38.17% less than that of the baseline configuration.

To achieve an improved design, we consider variable thickness in the outer skins and

spars of the PEGASUS wing, while keeping the internal ribs with piecewise constant thickness.

The configuration of the FFD blocks for variable thickness optimization is illustrated in Figure

6.10a. Four FFD blocks with quadratic bases are created to allow for variation in thickness

within a single spline patch while ensuring continuity at patch intersections, with a total of 402

design variables used for this problem. By minimizing the internal energy again, the optimal

94

Figure 6.9. Optimization result of the PEGASUS wing with piecewise constant thickness.

thickness distribution is obtained as shown in Figure 6.10b. Both applications in this section

use the SNOPT optimizer with a tolerance of 10−4. In the optimized design, the outer skins of

the PEGASUS wing at the clamped edge still have the largest thickness, where the thickness

distribution is smooth at the surface–surface intersections within each FFD block. The decreasing

thickness trend in outer skins and spars remains consistent with the optimal piecewise constant

thickness case. Comparing the combined optimization strategy with the piecewise constant

method, the maximum thickness in the former is higher while maintaining the same volume.

Additionally, the internal energy is reduced by 44.71% compared to the baseline design. These

observations indicate that the combined thickness optimization method demonstrates a more

efficient utilization of material than the piecewise constant method.

6.3 Simultaneous optimization for eVTOL wing

With the continuous advancements in aviation battery technology [119], eVTOL aircraft

have emerged as a promising solution for cost-effective urban mobility [139]. In this section, we

use a more advanced eVTOL wing to demonstrate the capabilities of the FFD-based optimization

approach, where both the thickness and shape control points are considered as design variables

95

(a)

(b)

Figure 6.10. (a) Configuration of the combined thickness optimization. Each group of outer
skins and spars is placed in one FFD block, and the remaining internal ribs have a piecewise
constant thickness. (b) Optimal thickness distribution of PEGASUS wing.

simultaneously. By incorporating both thickness and shape coordinates in the design of shell

structures, we can utilize the material more efficiently than considering thickness optimization

only. The CAD geometry of the eVTOL wing, material parameters, and the corresponding

structural analysis can be found in [181, Section 5]. For the optimization problem, we implement

the same clamped boundary conditions and distributed upward pressure as those in the previous

96

application. The magnitude of pressure is set to 120 N/m2, approximated by dividing the take-off

weight by the surface area of the eVTOL wing. The baseline configuration of the eVTOL wing,

which is composed of 27 cubic NURBS patches with 87 intersections, is illustrated in Figure

6.11. We note that we perform the shape optimization for the eVTOL wing without including an

aerodynamic model (which would be needed for a well-posed wing design problem) purely to

provide a demonstration of the FFD-based method for complex aerospace structures.

(a) (b)

Figure 6.11. (a) FFD blocks for eVTOL wing thickness optimization, where the lower and upper
skins have a variable thickness. Wingtips and internal ribs and spars have a piecewise constant
thickness. (b) FFD block for shape optimization.

To achieve a meaningful design for the eVTOL wing, we use two quadratic B-spline

FFD blocks for thickness optimization. This configuration allows for varying thicknesses in the

lower and upper skins of the eVTOL, while using piecewise constant thicknesses for the internal

stiffeners and wingtips. The arrangement of the thickness FFD blocks is illustrated in Figure

6.11a. Furthermore, a cubic B-spline FFD block is created for shape optimization, as depicted in

Figure 6.11b. Only the vertical coordinates of control points for the shape FFD block, denoted as

PFFD3, are updated. In total, there are 642 design variables involved in this optimization process,

and a constant volume constraint is applied as well. Regarding the thickness design variables,

the lower and upper limits are selected as 1 mm and 50 mm, respectively. All shell components

have initial thicknesses of 3 mm.

One challenge encountered during shape optimization of complex shell structures, such

97

as eVTOL wings, is the potential occurrence of oscillatory or highly distorted geometries in the

updated designs. These distorted shapes can lead to poor element quality, resulting in spurious

energy and affecting the accuracy of the analysis. To mitigate oscillation or radical change of

shell components, an additional term is introduced in the objective function to regularize the

gradient of the shape. The objective is formulated as

f obj =
m

∑
I=1

(
W I

int +λ
E(t̊I)3

12h̊I
A(1−ν2)

∫
S I

∥∇PI
3 −∇P̊I

3∥2 dS

)
, (6.1)

where I is the index of shell patches, λ is a dimensionless regularization coefficient, hI
A is the

element area of shell patch I in the physical space, PI
3 is the vertical component of the shape

variable for shell patch I, and S I is the midsurface of shell patch I. ˚(·) denotes quantities in the

baseline configuration. The regularization term in (6.1) serves as an additional artificial bending

energy associated with the curvature of the eVTOL wing. Therefore, the shape oscillation can

be eliminated by adjusting the regularization coefficient λ . The SNOPT optimizer is employed

with a tolerance of 10−3. Figure 6.12 demonstrates the optimized eVTOL wing designs achieved

with varying λ values, providing insights into the influence of regularization on the final shape

and thickness distribution. It can be seen that the patch intersections of the optimized shapes in

Figure 6.12 are still connected using the FFD-based approach. The reductions of internal energy

for different λ are listed in Table 6.1.

Table 6.1. Reduction of internal energy of the eVTOL wing after simultaneous optimization
with varying regularization coefficients.

λ 1 0.1 10−2 10−3 10−4 10−5

Internal energy
reduction (%) 49.07 51.58 66.45 83.23 92.82 95.09

For this eVTOL wing optimization problem, different regularization coefficients yield

distinct outcomes. A regularization coefficient of 1 and 0.1 provide optimal designs dominated

by thickness update, resembling the patterns observed in the combined thickness optimization of

98

𝜆 = 1 𝜆 = 0.1

𝜆 = 10!" 𝜆 = 10!#

𝜆 = 10!$ 𝜆 = 10!%

Figure 6.12. Optimized solutions of the eVTOL wing with varying regularization coefficient.

the PEGASUS wing, refer to Figure 6.10b. The optimized shapes in these two cases are similar

to the baseline configuration since the artificial bending energies are the major contributor to the

objective function due to the large regularization coefficients. Even slight variations in the shape

variables result in substantial increases in the objective function. Conversely, small regularization

coefficients, i.e., 10−4 and 10−5, lead to considerable changes in the shape of the eVTOL wing

and reduction of internal energy, amounting to 92.82% and 95.09%, respectively. However,

these cases exhibit noticeable oscillations in the wingtip area, which can lead to ill-conditioned

systems. On the other hand, employing regularization coefficients with values of 10−2 and 10−3

yields balanced solutions, where both the thickness redistribution and shape updates contribute to

99

the optimal design. The material moves towards the clamped area, accompanied by a widening

of the cross-section to provide increased wing support. An exploded view of the optimal design

with λ = 10−3 is shown in Figure 6.13. This optimal design achieves an internal energy reduction

of 83.23% compared to the baseline configuration.

Figure 6.13. Exploded view of optimal design of eVTOL wing with regularization coefficient
λ = 10−3, which results in 83.23% reduction of internal energy compared to the baseline design.

6.4 Shape optimization of wing internal structures

The proposed optimization scheme holds promise for enhancing the design of novel

aerospace structures, where thin-walled structures are prevalent. We apply this shell shape

optimization method with moving intersections to change the internal structures layout of an

eVTOL aircraft wing, aiming to reduce the internal energy of the wing. The CAD geometry of

the wing is depicted in Figure 6.14, demonstrating the initial design created using the open-source

software OpenVSP. The wing geometry consists of 11 B-spline patches including 2 outer skins, 1

wing tip, 2 spars, and 6 ribs, where 32 intersections are detected in the wing geometry. Among the

intersections, 4 of them are categorized as edge–edge intersections between outer surfaces or the

100

wing tip, thus staying fixed throughout the optimization process and are marked with red curves

in Figure 6.14. The remaining intersections are either interior–interior, formed between ribs

and spars, or interior–edge intersections, formed between outer surfaces and internal structures,

and therefore can be moved during the optimization process. These movable intersections are

distinguished by green curves.

𝑥!

𝑥"

𝑥#

Leading edge

Trailing edge
Ribs (6 in total)

Spars (2 in total)

Chordwise
direction

Spanwise
direction

Figure 6.14. The CAD geometry of an eVTOL aircraft wing comprises 11 spline patches with
32 intersections. There are 28 movable intersections highlighted by green curves and 4 fixed
intersections are indicated by red curves.

The baseline design of the wing geometry, isogeometrically discretized using cubic

B-spline basis functions with a total of 2274 DoFs, is displayed in Figure 6.15, presenting

the non-conforming discretizations between outer surfaces and internal structures. The wing

geometry serves as the analysis model throughout the optimization process. A clamped boundary

condition is applied at the wing root, while the lower outer surface is subjected to an upward

distributed pressure of 500 N/m2, simulating the cruise condition of the wing. For structural

analysis, an isotropic elastic material model is employed for simplicity, with material properties

corresponding to aluminum: Young’s modulus E = 6.8×109 Pa and Poisson’s ratio ν = 0.35.

The wingspan is approximately 4.8 m and the chord is 1.2 m. All shell patches have a thickness

of 3 mm. The displacement field of the initial wing geometry is demonstrated in Figure 6.15.

101

Figure 6.15. The initial eVTOL wing geometry discretization with B-spline basis functions,
followed by the displacement result using the penalty-based non-matching coupling method for
isogeometric Kirchhoff–Love shells. The displacement field has a unit of m and is scaled by a
factor of 20 for visualization.

In this application problem, we first optimize the shape of the internal spars and ribs of

the wing while keeping the outer surfaces unchanged to minimize the internal energy of the wing.

For the first design scenario, we consider a rigid body approach, allowing only movement of

the spars along the x1 direction and the ribs along the x2 direction. Thus, each spar and rib can

only translate in a single direction, resulting in one associated design variable for the rigid body

movement, totaling 8 design variables. However, due to the movement of the internal structures,

the edges of these shell patches may deviate from the outer skins, requiring additional constraints

to maintain the T-junctions. To achieve this, we utilize the constraints discussed in Section 5.2.2.

Specifically, we employ a cubic spline curve with one knot span [0,0,0,0,1,1,1,1] for each

intersecting edge of the internal structures to preserve the T-junctions in the x3 direction. Thus,

each edge constraint requires 4 design variables. With 16 T-junctions in the wing geometry, this

yields 64 design variables in the x3 direction to the optimization problem, resulting in a total of

72 design variables for the rigid body shape optimization of the internal structures.

Furthermore, we introduce additional constraints to ensure that the spars remain within

the envelope of the outer surfaces in the x1 direction. This can be achieved by setting lower

and upper bounds to the associated design variables. The front and rear edges of the ribs are

102

maintained within 80% and 15% locations from the trailing edge to the leading edge in the

chordwise direction. Meanwhile, a minimum distance of 0.4 m between the two spars at the

wing root and a minimum distance of 0.5 m between adjacent ribs are imposed.

With the problem setup described above, we proceed to perform rigid body shape

optimization for the internal spars and ribs. In this design scenario, we utilize the SNOPT

optimizer with tolerances of 10−3 for optimality and 10−4 for feasibility. Convergence is

achieved after 22 iterations, and the optimal design and associated displacement magnitude are

illustrated in Figure 6.16a. In the optimized configuration, the two spars translate toward the

center of the wing, reaching the minimum distance limit, while the ribs almost stay unchanged.

The optimal design enhances the bending rigidity of the wing by moving the spars towards

the center; a reasonable adjustment since the wing displacement is dominated by bending

deformation given the geometry, loading and boundary conditions. On the other hand, the ribs,

which are aligned parallel to the chordwise direction and are only allowed rigid body movement,

exhibit negligible impact on reducing the bending deformation compared to the spars. The

internal energy of the optimized wing geometry in Figure 6.16a is 94.98% of the baseline design

in Figure 6.15.

In the second design scenario, we enable the change of the 6 ribs for not only translation

but also rotation in the x1–x2 plane, while maintaining the planar geometry. The front and rear

edges of the ribs still stay along the lines of 80% and 15% of the distance from the trailing edge

to the leading edge, respectively. Thus, the x1 coordinates of the ribs are dependent on their

x2 coordinates. This adjustment increases the number of design variables in the x2 direction

to 2 for each rib, resulting in a total of 78 design variables. To prevent excessive rotation and

elongation of the ribs, an additional set of constraints is introduced to ensure that the volume

of each rib remains below 1.5 times the initial volume. The minimum distance between the

two spars is set as 0.1 m. The same SNOPT optimizer and convergence criteria are employed

for this optimization problem. The geometry and displacement associated with the optimized

configuration after 46 iterations are demonstrated in Figure 6.16b, where ribs increasingly tilt

103

from the wing root to the wingtip, adding additional bending rigidity to the wing, particularly

in regions where the two spars are in closer proximity. The internal energy of the optimized

geometry is 94.84% of the initial geometry, slightly lower than the first design scenario as we

expected.

(a)

(b)

Figure 6.16. (a) The optimized geometry with rigid body translation for spars and ribs and
associated displacements. (b) The optimized geometry with rigid body translation for spars and
planar ribs and corresponding displacements. The displacement field is scaled by a factor of 20.

Considering that spars have more influence on the wing’s bending deformation, we

consider rotatable planar surfaces to model the spars in addition to the second design subjected

to the same geometric and volume constraints. This enables all the internal structural members

to translate and rotate in the third design scenario. Compared to the second case, one more

design variable is introduced for each spar. Similar to the rib volume constraint, the volume

104

of each spar is restricted to less than 1.5 times the initial volume. All other design conditions

and optimization parameters remain unchanged. Convergence is achieved after 32 iterations,

yielding an optimized geometry illustrated in Figure 6.17a, where the corresponding contour plot

of displacement is also included. Notably, the two spars move towards the center at the wing

root and gradually split at the wingtip, while the ribs exhibit decreasing rotation from root to tip,

in contrast to the second design case. Further, the results show a relation between the tilt degree

of the ribs and the distance between the two spars; the closer the spars, the greater the rib tilt

degrees. The internal energy of the third design is calculated to be 93.08% of the initial geometry,

representing a distinct improvement compared to the second design case in Figure 6.16b.

To further improve the third design, we introduce an additional design variable to each

spar in the x1 direction so that the spars are described by quadratic B-splines. The B-splines

feature a knot span of [0,0,0,1,1,1] in the x1–x2 plane, allowing for out-of-plane curvature in

addition to translation and rotation. This change increases the total number of design variables to

82. The optimizer converges in 25 iterations and yields an optimized geometry depicted in Figure

6.17b, which follows a similar pattern to the third design case but incorporates curved spars.

The internal energy of the optimized design is 93.04% of the baseline design, slightly smaller

than the third case. Considering other internal components in the wing and manufacturability,

the third optimization scenario emerges as a more practical design, exhibiting a 6.92% internal

energy reduction compared to the baseline design. However, depending on the design conditions,

the fourth design provides a nontraditional internal structure that may prove beneficial for other

types of stiffened thin-wall structures.

The application to the eVTOL wing demonstrates the effectiveness of the proposed

approach in shape optimization of complex shell structures involving large movement of surface

intersections. Wing spars and ribs are reorganized based on design criteria to minimize the

internal energy of the wing. As the dimension of the design space increases, the objective function

converges to a smaller value as expected. In the optimized configuration, the edges of the internal

structures align well with the outer surfaces, effectively retaining the T-junctions. Throughout

105

(a)

(b)

Figure 6.17. (a) The optimized geometry with planar spars and ribs and contour plot of the
displacements. (b) The optimized geometry with quadratic spars and planar ribs and resulting
displacements. The displacement field is scaled by a factor of 20.

the optimization process, all shell patches maintain analysis-suitable NRUBS surfaces without

significant distortion in the discretization despite the large movement of intersections. The

eVTOL wing structural components are entirely represented by B-spline surfaces during the

whole optimization process, ensuring precise shape updates in analysis and shape optimization

under a streamlined workflow.

Finally, in addition to optimizing only the internal structures, considering shape opti-

mization for both internal structures and outer skins simultaneously can achieve significant

improvements for the eVTOL wing but yield a more challenging optimization problem. The

internal structures must maintain the T-junctions along with the changing outer surfaces while

106

searching for the optimal position. In this design scenario, we consider rigid body translation for

the internal ribs and spars. The design models of the lower and upper outer skins are described

using surfaces with a linear B-spline in the spanwise direction and a cubic B-spline in the chord-

wise direction, with knot vectors [0,0,1,1] and [0,0,0,0,1,1,1,1], respectively. To simplify the

problem, we fix the shape of the edges of each outer skin except for the edge at the wing root

and only change the vertical coordinates of the outer surfaces’ control points. This choice of

design model introduces 8 new design variables for each outer skin surface. The upper bound of

2.9 m and lower bound of 3.3 m are set for the control points of the outer surfaces. The same

boundary and loading conditions are applied to the eVTOL wing. The optimized geometry and

associated displacement contour are depicted in Figure 6.18, where the internal energy of the

wing is reduced by 64.54%. The wing root expands in the vertical direction, and the spars move

towards the center simultaneously to enhance the bending rigidity of the wing. Meanwhile, the

longer edges of the ribs and spars still maintain the T-junctions with the lower and upper surfaces

despite their shape updates. Due to the use of a simple distributed load, the control points of

the outer surfaces reach the specified limits to maximize the support of the wing, as expected.

Aerodynamic solvers and appropriate aero-structural coupling methods are required in future

work to obtain a more realistic design.

Ackonwledgements

A portion of this chapter has been published in “H. Zhao, X. Liu, A. H. Fletcher, R.

Xiang, J. T. Hwang, and D. Kamensky. An open-source framework for coupling non-matching

isogeometric shells with application to aerospace structures Computers & Mathematics with

Applications, 111:109–123, 2022.” The dissertation author is the primary investigator and author

of this paper.

A portion of this chapter has been published in “H. Zhao, D. Kamensky, J. T. Hwang,

and J. S. Chen. Automated shape and thickness optimization for non-matching isogeometric

107

Figure 6.18. The displacement field of the optimized geometry incorporating updates of outer
skins and rigid body translation of spars ribs and resulting displacements. The displacement field
is scaled by a factor of 20.

shells using free-form deformation. Engineering with Computers, 1-24, 2024.” The dissertation

author is the primary investigator and author of this paper.

A portion of this chapter has been published in “H. Zhao, J. T. Hwang, and J. S. Chen.

Shape optimization of non-matching isogeometric shells with moving intersections. Computer

Methods in Applied Mechanics and Engineering, 431:117322, 2024.” The dissertation author is

the primary investigator and author of this paper.

108

Chapter 7

Open-source implementation

7.1 Analysis framework for non-matching shells

This section introduces the design and workflow of PENGoLINS, an open-source Python

library that interacts with FEniCS [122] and tIGAr [98] to perform IGA for non-matching

Kirchhoff–Love shells. FEniCS is a collection of software elements for automating finite

element analysis. It includes the Python-based Unified Form Language (UFL) [3] for specifying

variational forms, which can be automatically compiled [112] into low-level numerical routines

for use with the C++ finite element library DOLFIN [123].

The library tIGAr extends FEniCS to IGA, using the concept of extraction [23, 150, 148]

to represent IGA in terms of traditional finite element operations. In particular, tIGAr represents a

piecewise polynomial spline space V through an extraction matrix M. Each column of M defines

a basis function from V by providing its coefficients in a linear combination of finite element

basis functions from the Lagrange finite element space V FE. Thus, linear and bilinear forms

specified in UFL can be assembled using FEniCS’s automated workflow to obtain the vector

FFE and matrix KFE, giving coordinate representations of these forms in V FE. The extraction

operator M is then used to obtain F = MTFFE and K = MTKFEM, to produce a linear system

which can be solved for IGA degrees of freedom (DoFs). A more detailed technical explanation

is given in [98].

Our starting point for tIGAr-based Kirchhoff–Love shell analysis is the existing open-

109

source library ShNAPr [161], which was originally developed for [97]. ShNAPr provides

UFL definitions of Kirchhoff–Love kinematics and St. Venant–Kirchhoff and incompressible

hyperelastic constitutive models. It also implements versatile contact mechanics using the

nonlocal regularization introduced in [101]. However, ShNAPr does not include any mechanisms

for enforcing displacement or rotational continuity between non-matching parts of a shell

structure. PENGoLINS implements coupling at intersections between non-matching parts, while

leveraging ShNAPr’s UFL shell formulations to define the internal energy contributions of each

part.

7.1.1 Design of PENGoLINS

The code of PENGoLINS can be grouped into three general types of functionality:

preprocessing, shell coupling, and IGA. The purpose of the preprocessing module is to import

CAD geometry into the analysis framework and approximate the intersection curves’ coordinates

in the parametric domain. Once the preprocessing stage is finished, we can proceed with

computation of non-matching contributions to the PDE residual and perform IGA through

extraction.

Preprocessing

The initial input to the preprocessing module is a CAD model in STEP or IGES format,

consisting of a collection of untrimmed B-spline or NURBS patches. This is the geometry

representation used by multiple tools for aircraft design, including the OpenVSP platform

used here and GeoMACH [89], a geometry modeler for unconventional aircraft configurations.

We use pythonOCC [137], a Python interface of Open Cascade with 3D modeling and CAD

functionality, to locate the non-matching intersection curves between surfaces. Given two

surfaces, our process for detecting intersection curves is broken into two steps, implemented

within the class BSplineSurfacesIntersections (in PENGoLINS.occ preprocessing):

1. First, we check for intersection curves occurring at boundaries of one or both surfaces,

110

using the curve–surface intersection algorithm in the pythonOCC class GeomAPI_IntCS.

2. If no curve–surface intersections are found in the first step, we then use the general surface–

surface intersection algorithm in GeomAPI_IntSS to search for intersection curves that are

interior to both patches.

The reason for using this two-step procedure is that the surface–surface intersection algorithm is

not robust at patch boundaries, due to slight geometric imperfections in non-watertight models.

This two-step procedure will fail to detect interior surface–surface intersections of patches

which also have boundary–surface intersections. While mathematically possible, such cases are

uncommon in models of aerospace structures, and we find the above procedure robust in practice.

Remark. We follow the convention from pythonOCC that the class which computes surface–

surface intersections only takes two surfaces. If more than two surfaces are joined together

at a single intersection, we treat it as multiple intersections, and the number of intersections

equals n = m(m−1)/2, where m is the number of surfaces joined together. By looping over

all the shell patches and checking their intersections, we mark the surfaces’ indices that have

intersections and store them in a list, named mapping_list, for use in the computation of coupling

contributions, as discussed further in Section 7.1.2.

To perform integrals over an intersection curve between two patches, we select a discrete

set of quadrature points along the curve. These quadrature points are spaced evenly in the

intersection curve’s parameter space. This is a low-order quadrature rule, but the quadrature

error incurred by it is not significant compared to the low-order consistency error inherent

in the penalty formulation. We find that results are insensitive to the density of quadrature

points, so long as the spacing is smaller than the overall element size on the coupled patches.

This is consistent with findings from literature on the finite cell method [147], where boundary

integrals are frequently discretized irrespective of the background mesh but not found to limit

convergence rates until deep into the asymptotic regime. See, e.g., [99, Section A.2.2] and [146,

111

Figures 5 and 6], where effectively high-order convergence is obtained with similar low-order

boundary quadrature, or [86, 172], where quadrature defined on an unfitted parameterization of

an immersed domain boundary is found to produce accurate results in turbulent flow analysis.

To use these quadrature points within FEniCS’s automated form assembly, they must

be connected into a topologically-1D mesh, which we refer to as a “quadrature mesh”. The

parametric coordinates of quadrature mesh quadrature points in each of two intersecting spline

patches can be obtained conveniently via closest-point projection, using the Open Cascade

class GeomAPI_ProjectPointOnSurf. The usage and methods of BSplineSurfacesIntersections

are listed as follows:

• __init__(surf1, surf2, tol): Creates a surface–surface intersection instance. surf1 and

surf2 are instances of Geom_Surface in pythonOCC, and the tolerance tol controls the

precision of the intersection curves.

• num_intersections: Returns the number of intersections between surf1 and surf2.

• intersections: A list containing all computed intersection curves in the format of

pythonOCC Geom_Curve if num_intersections is greater than zero. Otherwise, an empty

list will be returned.

• get_coordinates(num_pts): Returns a list of arrays which are the physical coordinates of

the intersection curves with number of points num_pts.

• get_parametric_coordinates(num_pts): Returns a list that contains the intersection curves’

parametric coordinates with respect to surf1 and surf2.

Other than intersection computation, the functionality in the preprocessing module

PENGoLINS.occ preprocessing also includes geometry manipulation to optimize the model

for analysis. It is common for spline patches exported directly from CAD software to include

excess repeated knots, even where the geometry is smooth. This leads to C0 continuity of

112

basis functions, which violates the Kirchhoff–Love shell formulation’s requirement of at least

C1 continuity. Industrial CAD geometries may also have excessive numbers of unique knots

concentrated in regions without significant geometric complexity, as a byproduct of the design

process (which is typically not concerned with analysis suitability). This excessive refinement

leads to unnecessary degrees of freedom and can deteriorate the conditioning of algebraic

systems of equations assembled during analysis. The function reparametrize_BSpline_surface

fits analysis-suitable spline patches to the original raw CAD geometry, given a user-defined

tolerance for approximation. This function uses the routine GeomAPI_PointsToBSplineSurface

from pythonOCC to generate a new B-spline surface via a least-squares fit of points sampled from

the original surface. We can then pass the resulting surface into the class NURBSControlMesh4OCC

(in PENGoLINS.NURBS4OCC) to represent its control mesh, which is supported by tIGAr.

We wrap the aforementioned preprocessing functionality in a class OCCPreprocessing,

which is instantiated from a user-provided CAD geometry and performs the following methods

as needed:

• reparametrize_BSpline_surfaces(): Approximates given surfaces with desired continuity

and puts the resulting surfaces in the list self.BSpline_surfs_repara.

• refine_BSpline_surfaces(): Refines B-spline surfaces through knot insertion and order

elevation, then stores them in the list self.BSpline_surfs_refine.

• compute_intersections() : Computes intersections between all surfaces and generates

physical and parametric coordinates of quadrature points on these intersections.

Assembling the penalty terms for one intersection curve

We now walk through the process of assembling penalty terms on the intersection curve

L between two patches, SA and SB, as illustrated by Figure 7.1, in both physical space and

spline parameter space. As discussed in Section 7.1.1, the preprocessing stage of the analysis

creates a quadrature mesh of L connecting a series of quadrature points, and determines the

113

location of these quadrature points in the parameter spaces of SA and SB. We can then use

the PETScDMCollection functionality in DOLFIN to create an interpolation matrix that transfers

functions from finite element spaces on different spline patches to quadrature points on the

quadrature mesh.

Remark. Because integrals over surface–surface intersection curves are handled using the

standard FEniCS machinery for form assembly, the computer algebra functionality of UFL is

available to take repeated Gateaux derivatives of the penalty energy (3.9), using the derivative

function. Thus, only the energy (3.9) is directly specified in UFL; its associated virtual work and

linearization are derived automatically.

Physical space Parametric space

B-spline patch 𝑆!

B-spline patch 𝑆"

Mortar mesh at the
parametric location
of the non-matching
intersection for 𝑆!	

Non-matching
intersection ℒ

Mortar mesh at the
parametric location
of the non-matching
intersection for 𝑆"

Figure 7.1. Schematic configuration of spline patches and quadrature mesh used for penalty
quadrature. Patches are tesselated into triangles for technical reasons.

Remark. Since the αr term of (3.9) involves the first derivatives of functions from the spline

patches, we must also interpolate these derivatives at quadrature points of the quadrature mesh.

This involves a modified version of PETScDMCollection, which is included within PENGoLINS.

114

Remark. The PETScDMCollection functionality in DOLFIN currently only supports simplicial

meshes. Thus, Bézier elements in the spline patches are each split into two triangles to perform

extraction.

For the scenario depicted in Figure 7.1, with two patches and one intersection curve,

the procedure to compute non-matching coupling contributions can be summarized into the

following steps:

1. Create function spaces V A,FE and V B,FE with DoFs for the finite element (FE) representa-

tion of IGA spline spaces on patches SA and SB.

2. Construct a quadrature mesh, Ω̃, whose vertices fall on the curve L and act as quadrature

points to approximate
∫
L . Further, define a function space V M with DoFs at these

quadrature points.

3. Use the GeomAPI_ProjectPointOnSurf class from Open Cascade to project vertices of Ω̃

onto SA and SB, and obtain parametric locations Ω̃M,A and Ω̃M,B of the vertices in the two

patches.

4. Move Ω̃ to configuration Ω̃M,A and use PETScDMCollection (modified as discussed in

Remark 7.1.1) to generate an interpolation matrix AA from V A,FE to V M. Then move Ω̃

to Ω̃M,B and likewise generate AB.1

5. Transfer geometrical mappings, displacements, and their parametric partial derivatives

from each patch to quadrature points of the quadrature mesh. This is accomplished via

left-multiplication of vectors of DoFs from V A,FE and V B,FE by interpolation matrices

AA and AB.

6. Use FEniCS to specify the penalty energy (3.9) in UFL and compile kernels for assembling

its Gateaux derivatives (obtained automatically via the UFL derivative function) over
1As mentioned in Remark 7.1.1, we interpolate not just functions but their derivatives. The space V M should

therefore be considered a mixed space, with fields representing functions and their parametric partial derivatives,
but we leave this out of the discussion for notational simplicity.

115

Ω̃. Then assemble the vectors FA,M and FB,M, corresponding to the V M coordinate

representations of the parts of the form −δW AB
pen that are linear in test functions from

patches A and B. Likewise, assemble the matrices KAA,M, KAB,M, KBA,M and KBB,M,

corresponding to the Jacobians of FA,M and FB,M with respect to the DoFs in V M used to

interpolate displacements on each patch.

7. Lastly, transfer FA,M and FB,M and KAA,M, KAB,M, KBA,M and KBB,M to vectors and

matrices corresponding to DoFs of V A,FE and V B,FE. This is accomplished via matrix-

vector and matrix-matrix products, using the interpolation matrices and their transposes,

e.g., FA,FE = (AA)TFA,M, KAB,FE = (AA)TKAB,MAB, etc.

The physical interpretation of the vectors and matrices, and the process of assembling a complete

system of equations for the IGA spline DoFs will be clarified in Section 7.1.2.

7.1.2 Assembling the full system

This section describes the assembly of the full system of algebraic equations for a

collection of intersecting patches. Consider a CAD model consisting of m isogeometric Kirchhoff–

Love shells {S1,S2, . . . ,SM} that have n non-matching intersections {L 1,L 2, . . . ,L n} in the 3D

physical space. A mapping list {(i11, i12),(i21, i22), . . . ,(in1, in2)}, computed from preprocessing

stage, contains n pairs of elements where each pair indicates the indices of two coupled shell

patches, thus for any element ilα in mapping list, ilα ∈ {1, . . . ,m}. For simplicity, we order the

two indices in any pair such that il1 < il2.

The variational problem of finding a stationary point to the combined elastic energies of

the shell patches, external potentials, and penalty energies of the form (3.9) for each intersection

can be written as follows: Find displacements of m shells u1,u2, . . . ,uM ∈ V 1,V 2, . . . ,V M such

116

that for all v1,v2, . . . ,vM ∈ V 1,V 2, . . . ,V M,

δW = δW 1
s (u

1,v1)+δW 2
s (u

2,v2)+ . . .+δW m
s (um,vm)

+δW i11i12

pen (ui11
,ui12

,vi11
,vi12

)+δW i21i22

pen (ui21
,ui22

,vi21
,vi22

)

+ . . .+δW in1in2

pen (uin1
,uin2

,vin1
,vin2

) = 0 , (7.1)

where δW is the total virtual work of the non-matching system, δW i
s is the combined internal

and external virtual work of shell patch i, and V i is the space of displacements on patch i.

We use di to refer to the vector of DoFs of the space V i. Then the variational problem

(7.1) gives rise to the following system of nonlinear algebraic equations:

∂d1W = 0 , (7.2)

∂d2W = 0 , (7.3)

. . . ,

∂dmW = 0 . (7.4)

These equations are typically solved with Newton’s method, or a related scheme. For linear

problems, a single iteration of Newton’s method can be used, starting from an initial guess of

zero displacement. The linearized system of equations to solve in a single Newton step is



∂d1(∂d1W) ∂d2(∂d1W) . . . ∂dm(∂d1W)

∂d1(∂d2W) ∂d2(∂d2W) . . . ∂dm(∂d2W)

...
...

∂d1(∂dmW) ∂d2(∂dmW) . . . ∂dm(∂dmW)





∆d1

∆d2

...

∆dm


=



−∂d1W

−∂d2W

...

−∂dmW


, (7.5)

where the left hand side (LHS) of (7.5) is an m×m block matrix and the right hand side (RHS)

117

is a block vector with m entries. For the i-th block of the RHS vector,

∂diW = ∂diW i
s +∂diW i j1

pen +∂diW i j2
pen + . . .+∂diW i jn

pen , (7.6)

where the superscripts of virtual work of penalty j1, j2, . . . , jn are indices of n shell patches that

have intersections with the i-th shell patch, and i < j1 < j2 < .. . < jn ≤ m. For the j-th partial

derivative of (7.6), which is the entry (i, j) of LHS of (7.5)

∂d j(∂diW)=



∂di(∂diW i
s)+∂di(∂diW i j1

pen)+∂di(∂diW i j2
pen)+ . . .+∂di(∂diW i jn

pen) , j = i

∂d j(∂diW i j
pen) , j ∈ { j1, j2, . . . , jn}

0 , otherwise

.

(7.7)

Substituting (7.6) and (7.7) into equation (7.5), we can assemble all sub-matrices/vectors over

Lagrange finite element function spaces on each patch using FEniCS’s automated workflow, to

obtain the system



K11,FE K12,FE . . . K1m,FE

K21,FE K22,FE . . . K2m,FE

...
...

Km1,FE Km2,FE . . . Kmm,FE





∆d1,FE

∆d2,FE

...

∆dm,FE


=



F1,FE

F2,FE

...

Fm,FE


. (7.8)

To obtain a system in terms of the IGA spline DoFs, we use the extraction matrix Mi for each

118

patch, in a generalization of the single-spline case summarized in Section 7.1:



K11 K12 . . . K1m

K21 K22 . . . K2m

...
...

Km1 Km2 . . . Kmm





∆d1

∆d2

...

∆dm


=



F1

F2

...

Fm


, (7.9)

where

Ki j =
(
Mi)T Ki j,FEM j , Fi =

(
Mi)T Fi,FE (7.10)

(without summation on the repeated indices i and j), and {∆di} are vectors of unknown control

point displacement increments for each spline patch.

The analysis procedures for non-matching isogeometric shells are wrapped into a class

NonMatchingCoupling in the module PENGoLINS.nonmatching coupling. The major methods of

this class are:

• __init__(splines, E, nu, h_th): Creates a non-matching problem instance, where the

argument splines is a list containing m tIGAr ExtractedSpline objects. Material and

geometric parameters E, nu, h_th are Young’s modulus, Poisson’s ratio and shell thickness,

respectively. Each of them can be an instance of DOLFIN Constant if all shell patches

share the same properties, or a list of Constant objects if shell patches possess different

material properties.

• create_mortar_meshes(mortar_nels, mortar_coords): Generates n quadrature meshes in

the parametric domain, using user-defined numbers of elements mortar_nels and, option-

ally, initial mesh coordinates mortar_coords.

• mortar_meshes_setup(mapping_list, mortar_parametric_coords, penalty_coefficient):

Creates the interpolation matrices discussed in Section 7.1.1, based on the list of mappings

119

mapping_list and the quadrature mesh vertex parametric coordinates given in

mortar_parametric_coords. The argument penalty_coefficient is the dimensionless penalty

parameter, whose default value is 103.

• set_residuals(residuals): Sets the residuals that correspond to the derivative of shell

patches’ virtual work. The argument residuals is a list of UFL Form objects, and can be

obtained directly through ShNAPr. This method automatically computes the Gateaux

derivatives of the provided residuals, which are then assembled to obtain blocks of the

LHS matrix in (7.8). The block LHS matrix is represented using the MatNest abstraction

from the PETSc [6, 5, 7] linear algebra backend to DOLFIN, where blocks are stored in

memory as independent sparse matrix data structures.

• solve_linear_nonmatching_problem(): Assembles the LHS and RHS of the linear non-

matching system (7.9) and solves it using either a direct or iterative solver.

7.2 Optimization framework for non-matching shells

Section 7.2.1 outlines the design of GOLDFISH and its software dependencies, which

facilitate open-source implementation. A discussion of the key OpenMDAO components for

shape optimization of isogeometric shell structures is presented in Section 7.2.2.

7.2.1 Software dependencies and workflow

The design of GOLDFISH leverages the code generation capabilities in FEniCS to

automate the computation of symbolic Gateaux derivatives for gradient-based optimization,

while OpenMDAO is used to ensure modularity and flexibility across various design conditions

and disciplines. The Python library is built on a suite of open-source software dependencies,

streamlining the entire design-analysis-optimization workflow.

The structural analysis is performed using PENGoLINS [181], a Python library designed

for complex shell structures modeled by isogeometric Kirchhoff–Love theory. In PNGoLINS,

120

CAD geometries of shell structures are discretized isogeometrically and are directly available

for analysis without FE mesh generation. Shell CAD geometries consisting of a collection

of non-conforming NURBS surfaces are coupled using a penalty formulation [77], where a

penalty energy, as discussed in (3.9), is integrated to preserve displacement continuity and

angular compatibility along the intersection between shell patches. In the coupling procedure,

a geometrically 2D, topologically 1D quadrature mesh is generated in the parametric space

between two intersecting shell patches to serve as the integration domain for the penalty energy.

This quadrature mesh is first positioned at the parametric location of the intersection with respect

to the first shell patch to interpolate the displacement and covariant basis vectors. It then performs

a similar operation with respect to the second shell patch. With the interpolated displacements

and rotational quantities, the penalty energy and associated derivatives can be computed using

FEniCS, enabling us to solve the coupled system of the complex shell structure. A schematic

visualization of the coupling procedure is shown in Figure 3.2.

PENGoLINS makes use of the Python interface of OpenCASCADE [137] as the geometry

engine so that CAD geometries can be imported to extract knot vectors and control points directly

and use them for IGA. Another key feature inherited from OpenCASCADE is the ability to

approximate NURBS patch intersections. This functionality is used to compute the parametric

locations ξ̃ξξ of surface intersections, which define the integration domains for the penalty energy

in (3.9). Meanwhile, the computed parametric coordinates serve as the initial guess when

solving the implicit equation between NURBS surface control points and intersection parametric

coordinates in (5.13). The IGA capabilities in PENGoLINS are powered by tIGAr, a Python

library developed based on FEniCS that leverages the existing FE assembly routines. tIGAr

constructs NURBS basis functions from Lagrange polynomials using the extraction technique

[23, 148], with the Galerkin approximation process fully automated using FEniCS.

The numerical optimization is conducted using OpenMDAO [63], which computes the

total derivative of optimization problems using direct or adjoint methods, depending on the

problem specifications. In shape optimization problems, the number of design variables is typi-

121

cally much larger than the number of model outputs, such as objective functions and constraints.

OpenMDAO automatically organizes the partial derivatives provided by components into total

derivatives using the adjoint method, significantly improving the efficiency of derivative compu-

tation. The modular design of OpenMDAO also facilitates and standardizes the implementation

of individual components for the optimization problem. Each partial derivative in (4.24) and

(5.17) can be implemented as a standard OpenMDAO component, which is connected automati-

cally during the optimization process. This modular design greatly enhances the flexibility and

applicability of the code framework, allowing it to be adapted to more customized problems.

A series of essential components for shell shape optimization are discussed in Section 7.2.2.

The optimization problem can be solved using the open-source optimizer SLSQP [113] or the

commercial optimizer SNOPT [60]. A schematic code structure of GOLDFISH is illustrated in

Figure 7.2.

Figure 7.2 illustrates the streamlined workflow of GOLDFISH, where users only need to

provide the NURBS-based CAD geometry of the shell structure and define the optimization prob-

lem by specifying objective functions and constraints within OpenMDAO. The code framework

then automatically performs the structural analysis and shape optimization on the NURBS-based

geometry without FE mesh generation. A Lagrange extraction matrix is generated for each shell

patch to express the IGA spline bases by the Lagrange polynomial bases used in FEniCS. Both

types of basis functions are associated with the 2D parametric meshes of the spline patches,

as shown in Figure 3.2. These 2D parametric meshes are defined by the knot vectors and are

generated automatically in FEniCS. The final output is also a NURBS-based geometry with

updated control points that define the optimal shell shape. Throughout the optimization loop,

shape updates and structural analysis are all performed directly on the CAD geometry. This

integration considerably simplifies the shape optimization process.

122

GOLDFISH
Shape optimization for complex isogeometric Kirchhoff–Love shells

OpenCASCADE
Geometry engine for importing CAD models

and approximating patch intersections

PENGoLINS
Structural analysis for isogeometric shells with

multiple NURBS patches using penalty coupling

OpenMDAO
Design optimization

framework with modular
components

SLSQP/SNOPT
Optimizer

tIGAr
FEniCS-based IGA implementation using

extraction technique

FEniCS
Symbolic Gateaux derivative

computation and code generation

Analysis results and
partial derivatives

Shape updates

NURBS-based shell geometry
and problem definition

NURBS-based shell geometry
with optimal shape

Figure 7.2. The design of Python library GOLDFISH and its software dependencies. PEN-
GoLINS is used for structural analysis and OpenMDAO is employed for numerical optimization.
Analytical partial derivatives are computed in individual components in GOLDFISH. Both input
and output for the software are NURBS-based shell geometry.

7.2.2 Optimization components of shell shape optimization

This section reviews the essential building blocks for an IGA-based shape optimization

problem. For the shape optimization problem described in (5.1) with the associated total deriva-

tive (5.6), the design variables are the coordinates of control points P of the NURBS surface

defining the shell geometry. A standard InputsComp is created to provide the independent design

variables to the following core components.

123

• DispComp: An implicit OpenMDAO component that takes control points P of the shell

surface as input and returns the corresponding displacement d by solving the isogeometric

Kirchhoff–Love shell problem RS(P,d) = 0, where RS is defined in (3.16). Meanwhile,

this component computes partial derivatives ∂PRS and ∂dRS.

• ObjectiveComp: An explicit OpenMDAO component calculates the objective function f

for the optimization problem, which typically depends on the shape of the shell and its

displacements f (P,d). Additionally, this component provides partial derivatives ∂P f and

∂d f .

With the partial derivatives computed by the two core components, the total derivative (5.6) is

constructed automatically in OpenMDAO to guide shape updates until the optimal solution is

reached.

7.2.3 Components for FFD-based shape optimization

As discussed in Section 4.2, the FFD-based approach is applied to real-world CAD

geometries consisting of multiple non-conforming NURBS patches to maintain the intersections.

In this approach, control points of the trivariate B-spline block PFFD serve as the design variables.

Additional components are implemented for this approach to automate the optimization process,

as outlined below.

• CPFFD2SurfComp: An explicit component computes the corresponding Lagrange nodal

points PFE for the given control points of the FFD block PFFD. It also provides the deriva-

tive dPFFDPFE by evaluating the basis functions of the FFD block at the Lagrange nodal

124

points of the shell surfaces in their initial configuration.

• CPFE2IGAComp: An implicit component solves for the NURBS control points of the

shell patches P given the input Lagrange nodal points PFE, using the residual equation

MP−PFE = 0. The matrix M is the global extraction operator for the entire shell structure.

This implicit component is employed to bypass the large matrix inversion as shown in

(4.9). Since the degrees of freedom (DoFs) of P are fewer than PFE, M is a nonsquare

matrix. The resulting P is interpreted as a least-squares fit to PFE.

• DispComp: An implicit component solves for the displacement d of the multi-patch shell

structure given the input shell NURBS control points P. Unlike the shape optimization

of single patch shell structure, the residual becomes R(P,d) = 0 as discussed in (3.22),

which includes a penalty energy to couple the intersecting shell patches. This component

also returns the partial derivatives of the non-matching residual ∂PR and ∂dR.

By connecting with the previously mentioned InputsComp and ObjectiveComp, we can perform

shape optimization for the complex shell structures while preserving the non-matching patch

intersection throughout the optimization process. Figure 7.3 illustrates the component structure

of the FFD-based shape optimization. This code structure is verified in the non-matching arch

shape optimization example in Section 7.3.1.

An illustrative implementation example is provided in the following code snippets,

demonstrating the use of GOLDFISH within the Python environment. First, we import the

OpenMDAO and GOLDFISH libraries.

import openmdao.api as om

from GOLDFISH.nonmatching_opt_om import *

125

InputsComp
Output:𝐏!!"

CPFFD2SurfComp
Input:𝐏!!"; Output:𝐏#
Derivative: d𝐏!!"𝐏#

CPFE2IGAComp
Input:𝐏𝐋; Output:𝐏
Derivative: d𝐏#𝐏

DispComp
Input:𝐏; Output:𝐮

Derivative: 𝜕𝐏𝐑, 𝜕𝐮𝐑

ObjectiveComp
Input:𝐏, 𝐮; Output:𝑓
Derivative: 𝜕𝐏𝑓, 𝜕𝐮𝑓

Figure 7.3. Component structure for shell shape optimization using the FFD-based approach.

Next, a class ShapeOptGroupFFD inherited from the OpenMDAO group is created for the FFD-

based shape optimization problem, and the relevant parameters are initialized. The input of

the class is an instance of the non-matching problem NonMatchingOptFFD, which takes the CAD

geometry, analysis definitions, and optimization conditions. These problem definitions are

demonstrated in Section 7.3.1.

class ShapeOptGroupFFD(om.Group):

def initialize(self):

self.options.declare(’nonmatching_opt_ffd ’)

Define optimization related parameters

def init_parameters(self):

self.nmopt_ffd = self.options[’nonmatching_opt_ffd ’]

self.opt_field = self.nmopt_ffd.opt_field

self.init_cpffd_design = self.nmopt_ffd .\

shopt_init_cpffd_design

self.input_cp_shapes = [cpffd.size for cpffd

in self.init_cpffd_design]

A list of OpenMDAO components is then added to the group. The following code snippet shows

126

the input component which takes the control points of the FFD block as the design variables.

The CPFFD2SurfComp and CPFE2IGAComp components connect control points of the FFD block to

the NURBS control points of shell patches using the formulation discussed in Section 4.2.

def setup(self):

Add inputs comp

inputs_comp = om.IndepVarComp ()

for i, field in enumerate(self.opt_field):

inputs_comp.add_output(

VARNAME_CP_FFD_DESIGN+str(field),

shape=self.input_cpffd_shapes[i],

val=self.init_cpffd_design[i])

self.add_subsystem(’inputs_comp ’, inputs_comp ,

promotes =[’*’])

Add FFD comp

self.ffd2surf_comp = CPFFD2SurfComp(

nonmatching_opt_ffd=self.nmopt_ffd)

self.ffd2surf_comp.init_parameters ()

self.add_subsystem(’CPFFD2Surf_comp ’,

self.ffd2surf_comp , promotes =[’*’])

Add CPFE2IGA comp

self.cpfe2iga_comp = CPFE2IGAComp(

nonmatching_opt=self.nmopt_ffd)

self.cpfe2iga_comp.init_parameters ()

self.add_subsystem(’CPFE2IGA_comp ’,

self.cpfe2iga_comp , promotes =[’*’])

Furthermore, the DispStatesComp component performs the IGA on the updated CAD geometry

and returns the structural response along with partial derivatives. In this example, we use the

internal energy as the objective function, so the IntEnergyComp component is added to the group.

Add displacement comp

self.disp_states_comp = DispStatesComp(

127

nonmatching_opt=self.nmopt_ffd)

self.disp_states_comp.init_parameters ()

self.add_subsystem(’disp_comp ’,

self.disp_states_comp , promotes =[’*’])

Add internal energy comp (obj function)

self.int_energy_comp = IntEnergyComp(

nonmatching_opt=self.nmopt_ffd)

self.int_energy_comp.init_parameters ()

self.add_subsystem(’int_energy_comp ’,

self.int_energy_comp , promotes =[’*’])

Finally, we can specify the design variables and objective functions within the group to complete

the setup of the optimization problem. Additionally, equality and inequality constraints can be

specified in the group through the self.add_constraint method.

Add design variable and objective

for i, field in enumerate(self.opt_field):

self.add_design_var(

VARNAME_CP_FFD_DESIGN+str(field),

lower=DESVAR_L[i], upper=DESVAR_U[i])

self.add_objective(VARNAME_INT_ENERGY)

7.2.4 Components for moving intersections

When the optimal shell structures require significant repositioning of intersections com-

pared to the baseline design, we employ the moving intersection approach proposed in [179].

This approach allows relative movement of shell patches, ensuring that shell elements maintain

good quality in the optimized geometry. In this method, we implement the multilevel design

approach [128, 129] to distinguish the design model and analysis model. As such, we can select

the dimension of the design space independently from the analysis model, which typically has

more DoFs for accurate analysis. By selecting a design model with much fewer DoFs than the

analysis model, we can expedite the convergence of the optimizer while preserving the same

128

geometry as the analysis model without introducing geometric errors. The multilevel design

is achieved through order elevation and knot refinement of the NURBS surfaces in the design

model. As a result, the design variables in this scenario are the control points of the design model.

The essential components for shell shape optimization with moving intersections, combined with

multilevel design, are listed below.

• OrderElevationComp: An explicit OpenMDAO component takes the control points of the

coarse design model as input and returns corresponding control points after order elevation,

following the relation NDV(ξξξ)PDV = NOE(ξξξ)POE, where NOE(ξξξ) represents higher-order

NURBS basis functions than NDV(ξξξ) but with the same unique knots.

• KnotRefinementComp: An explicit component computes control points of the analysis

model P from the given input POE using knot refinement for NURBS surfaces. This is

achieved using similar formulation NOE(ξξξ)POE = N(ξξξ)P, where N(ξξξ) has the same order

as NOE(ξξξ) but with refined interior knots.

• CPIGA2XiComp: An implicit component takes control points of the analysis model P as

inputs and solves the residual equation RL defined in (5.13) to determine the parametric

coordinates of the movable intersections ξ̃ξξ . Partial derivatives ∂PRL and ∂
ξ̃ξξ

RL are

computed in this component.

• DispMintComp: An implicit component similar to the DispComp in Section 5.1 that solves

structural displacement d using the penalty-based coupling formulation for isogeometric

shells. In addition to control points of the shell patches P, this component also takes the

parametric coordinates of the moving intersections ξ̃ξξ as an input to formulate the residual

129

R(P, ξ̃ξξ ,d). This component also computes the partial derivatives ∂PR, ∂
ξ̃ξξ

R and ∂dR.

The total derivative in (5.17), along with a multilevel design method, can be obtained by

connecting the partial derivatives provided by the components mentioned above. The connections

between individual components are outlined in Figure 7.4. A numerical example verifies this

code structure is demonstrated in Section 7.3.2.

InputsComp
Output:𝐏!"

OrderEleComp
Input:𝐏!"; Output:𝐏#$
Derivative: d𝐏!"𝐏#$

KnotRefComp
Input:𝐏#$; Output:𝐏
Derivative: d𝐏#$𝐏

CPIGA2XiComp
Input:𝐏; Output:𝝃$

Derivative: 𝜕𝐏𝐑ℒ, 𝜕𝝃(𝐑ℒ 	

DispMintComp
Input:𝐏,𝝃$; Output:𝐮

Derivative: 𝜕𝐏𝐑, 𝜕𝝃(𝐑, 𝜕𝐮𝐑

ObjectiveComp
Input:𝐏, 𝐮; Output:𝑓
Derivative: 𝜕𝐏𝑓, 𝜕𝐮𝑓

Figure 7.4. Component structure for shape optimization with moving intersections and the
multilevel design method.

Code snippets are demonstrated to create the OpenMDAO group for the shape opti-

mization of a complex shell structure with moving intersections. The class ShapeOptGroupMint

requires two arguments. The first is an instance of CPSurfDesign2Analysis which provides the

data and derivatives for the multilevel design of CAD geometry to reduce the dimension of the

design space. The second argument is an instance of the non-matching problem NonMatchingOpt,

which is the parent class of NonMatchingOptFFD without the FFD-related functions. Section 7.3.2

presents a numerical example using this group.

130

class ShapeOptGroupMint(om.Group):

def initialize(self):

self.options.declare(’cpdesign2analysis ’)

self.options.declare(’nonmatching_opt ’)

def init_parameters(self):

self.des2ana = self.options[’cpdesign2analysis ’]

self.nm_opt = self.options[’nonmatching_opt ’]

self.opt_field = self.nm_opt.opt_field

self.init_cp_design = self.des2ana.init_cp_design

self.input_cp_shapes = [len(cp) for cp

in self.init_cp_design]

Next, we add the input component which takes control points of the coarse CAD geometry as

the design variables. The order elevation and the knot refinement components are included to

perform the k-refinement for the multilevel design, producing the fine analysis model.

def setup(self):

Add inputs comp

inputs_comp = om.IndepVarComp ()

for i, field in enumerate(self.opt_field):

inputs_comp.add_output(

VARNAME_CP_SURF_COARSE+str(field),

shape=self.input_cp_shapes[i],

val=self.init_cp_design[i])

self.add_subsystem(’input_comp ’, inputs_comp ,

promotes =[’*’])

Add order elevation comp

self.cp_order_ele_comp = CPSurfOrderElevationComp(

cpdesign2analysis=self.des2ana)

self.cp_order_ele_comp.init_parameters ()

self.add_subsystem(’CP_order_ele_comp ’,

self.cp_order_ele_comp , promotes =[’*’])

Add knot refinement comp

131

self.cp_knot_refine_comp = CPSurfKnotRefinementComp(

cpdesign2analysis=self.des2ana)

self.cp_knot_refine_comp.init_parameters ()

self.add_subsystem(’CP_knot_refine_comp ’,

self.cp_knot_refine_comp , promotes =[’*’])

Subsequently, the CPIGA2XiComp component is added to calculate the parametric coordinates of

the intersections for a given set of surface control points by solving the implicit equation (5.13)

and computing the partial derivatives. The displacement component for moving intersections

DispMintComp is then added to evaluate the structural responses for updated surface control points

and intersection locations. Similarly, the internal energy component is used to define the objective

function.

Add CPIGA2Xi comp

self.cpiga2xi_comp = CPIGA2XiComp(

nonmatching_opt=self.nm_opt)

self.cpiga2xi_comp.init_parameters ()

self.add_subsystem(’CPIGA2xi_comp ’,

self.cpiga2xi_comp , promotes =[’*’])

Add displacement comp with moving int

self.disp_states_comp = DispMintStatesComp(

nonmatching_opt=self.nm_opt)

self.disp_states_comp.init_parameters ()

self.add_subsystem(’disp_comp ’,

self.disp_states_comp , promotes =[’*’])

Add internal energy comp (objective function)

self.int_energy_comp = IntEnergyComp(

nonmatching_opt=self.nm_opt)

self.int_energy_comp.init_parameters ()

self.add_subsystem(’int_energy_comp ’,

self.int_energy_comp , promotes =[’*’])

Lastly, we assign the coarse control points of the shell patches as design variables and designate

132

the internal energy as the objective function to complete the problem setup.

for i, field in enumerate(self.opt_field):

self.add_design_var(

VARNAME_CP_SURF_COARSE+str(field),

lower=DESVAR_L[i], upper=DESVAR_U[i])

self.add_objective(VARNAME_INT_ENERGY)

The preprocessing and setup of the non-matching problems, as well as the usage of the OpenM-

DAO groups mentioned above, are discussed in detail in Section 7.3.

7.3 Numerical examples with code implementation

In this section, we present the implementation of benchmark problems to demonstrate the

use of GOLDFISH and validate it with reference solutions. Then we showcase the application of

GOLDFISH to the design optimization of aircraft wings.

7.3.1 Non-matching arch shape optimization

We use the arch shape optimization problem to verify the accuracy of the FFD-based

shape update scheme in GOLDFISH. The benchmark problem was first proposed in [107, Section

8], where an arch geometry is subjected to a distributed downward load and fixed at both edges.

The optimal shape of the arch with minimum internal energy is a quadratic parabola with an

analytical height-to-length ratio so that the external load is entirely supported by membrane

forces [107, Section 8]. To examine the capability of the FFD-based approach to preserve non-

conforming surface intersections during shape updates, we create an arch geometry consisting of

four non-conforming NURBS patches, as shown in Figure 7.5a. The arch geometry has a width

of 3 m, a length of 10 m, and a shell thickness of 0.01 m. Young’s modulus of 1000 GPa and

Poisson’s ratio of 0.0 are used for material properties. A 3D B-spline FFD block is generated

to enclose the initial arch geometry, with the isogeometric discretization of both the FFD block

and the arch geometry demonstrated in Figure 7.5b. The following listings provide essential

133

implementation details for the FFD-based shape optimization using GOLDFISH.

𝑦

𝑥

𝑧

(a)
(b)

Figure 7.5. (a) The initial design of an arch geometry consisting of four non-matching NURBS
patches. (b) The initial arch geometry is embedded in a 3D B-spline block for FFD-based shape
optimization.

We first define the material properties, coupling coefficient, and other basic parameters.

Considering the three physical directions correspond to [0,1,2] in implementation since Python

is a zero-based indexing language, we select control points in the z direction for optimization

and define opt_field as [2].

E = Constant (1.0 e12) # Young ’s modulus , Pa

nu = Constant (0.) # Poisson ’s ratio

h_th = Constant (0.01) # Shell thickness , m

pressure = Constant (1.) # Pressure magnitude , Pa

penalty_coefficient = 1.0e3 # Penalty coefficient

opt_field = [2] # Optimize z-coordinates only

ffd_block_nel = [4,1,1] # Nel of FFD block

p_ffd = 2 # Degree of the B-spline block

To perform the FFD-based shape optimization for the non-matching shells, we import the initial

CAD geometry of the arch in IGES or STEP format into the running process using the Python

interface of OpenCASCADE.

topo_shapes = read_igs_file("init_arch_geom.igs",

134

as_compound=False)

Surface type conversion

occ_surf_list = [topoface2surface(face , BSpline=True)

for face in topo_shapes]

num_surfs = len(occ_surf_list)

We then create a geometry preprocessor instance to find all patch intersections and compute their

parametric coordinates.

preproc = OCCPreprocessing(occ_surf_list)

preproc.compute_intersections(mortar_refine =2)

Next, we generate a list of tIGAr spline instances to build the extraction matrices. These

matrices are utilized in the FFD-based shape update and IGA. The implementation of function

OCCBSpline2tIGArSpline, which is standard to create a tIGAr spline instance from a given spline

surface containing the knot vectors and control points, can be found in the GOLDFISH repository.

Fixed boundary conditions are applied to the first and last shell patches and are implemented in

this function. We omit these details here to focus on the setup of FFD-based shape optimization.

splines = []

for i in range(num_surfs):

splines += [OCCBSpline2tIGArSpline(

preproc.BSpline_surfs[i])]

The next step is to create the non-matching coupling instance for the list of tIGAr spline instances

using NonMatchingOptFFD. This allows us to perform automated IGA and set up the FFD-based

shape optimization problem.

nmopt_ffd = NonMatchingOptFFD(splines , E, h_th , nu)

nmopt_ffd.create_mortar_meshes(preproc.mortar_nels)

Optimize z-coords for all shell patches

nmopt_ffd.set_shopt_surf_inds_FFD(opt_field , [0,1,2,3])

Quadrature meshes setup for penalty energy

nmopt_ffd.mortar_meshes_setup(preproc.mapping_list ,

135

preproc.intersections_para_coords ,

penalty_coefficient)

A 3D B-spline block is created by specifying the number of elements, degrees, and limits of the

control points in the three directions using function create_3D_block.

Create the 3D B-spline FFD block

cp_lims = nonmatching_opt_ffd.cpsurf_des_lims

for field in opt_field:

cp_range = cp_lims[field][1]- cp_lims[field][0]

cp_lims[field][1] = cp_lims[field][1]+0.2* cp_range

FFD_block = create_3D_block(ffd_block_nel , p_ffd , cp_lims)

By providing the knot vectors and control points of the FFD block to the non-matching coupling

instance and arranging the related constraints on the FFD block control points, we can com-

plete the setup of the FFD block for shape optimization. The method set_shopt_align_CPFFD

eliminates redundant design variables by aligning control points in the width direction. The

set_shopt_pin_CPFFD method fixes control points on the lower edges of the FFD block, while

set_shopt_regu_CPFFD ensures control points stay within the range of their adjacent neighbors,

preventing unrealistic shapes.

Set FFD block to the shell optimization problem

nmopt_ffd.set_shopt_FFD(FFD_block.knots , FFD_block.control)

Set CP alignment in the width direction

nmopt_ffd.set_shopt_align_CPFFD(align_dir =[[1]])

Set constraints to fix two lower edges of the block

nmopt_ffd.set_shopt_pin_CPFFD(pin_dir0 =[2], pin_side0 =[[0]] ,

pin_dir1 =[1], pin_side1 =[[0]])

Set constraints to prevent self -penetration

nmopt_ffd.set_shopt_regu_CPFFD ()

A list of the PDE residual forms based on the Kirchhoff–Love shell theory with St. Venant

Kirchhoff material model is generated for all shell patches. These residual forms are expressed

136

as FEniCS Unified Form Language (UFL) [3] Form objects, which allows for for automatic

computation of symbolic derivatives. By inputting the residual forms into nmopt_ffd, the stiffness

matrix K and residual vector R of the non-matching shell structure are assembled in PENGoLINS

subroutines.

source_terms = []

residuals = []

for i in range(num_surfs):

X = nmopt_ffd.splines[i].F # Shell geometry

Calculate curvilinear basis vectors

A0 ,A1 ,A2 ,_,_,_ = surfaceGeometry(nmopt_ffd.splines[i], X)

v_vec = as_vector ([Constant (0.), Constant (0.),

Constant (1.)])

Constant downward distributed pressure

force = as_vector ([Constant (0.), Constant (0.),

-pressure*inner(v_vec , A2)])

source_terms += [inner(force , nmopt_ffd.splines[i]\

.rationalize(nmopt_ffd.spline_test_funcs[i]))\

*nmopt_ffd.splines[i].dx]

residuals += [SVK_residual(nmopt_ffd.splines[i],

nmopt_ffd.spline_funcs[i],

nmopt_ffd.spline_test_funcs[i],

E, nu , h_th , source_terms[i])]

nmopt_ffd.set_residuals(residuals)

Subsequently, we can construct the FFD-based shape optimization model using the compo-

nent structure and implementation discussed in Section 4.2, and then create the OpenMDAO

optimization problem.

Create the FFD -based shape optimization model

model = ShapeOptGroupFFD(nonmatching_opt_ffd=nmopt_ffd)

model.init_parameters ()

prob = om.Problem(model=model)

137

Finally, the SLSQP optimizer with a tolerance of 10−12 is selected for this problem, and the

objective function is minimized using method run_driver().

prob.driver = om.ScipyOptimizeDriver ()

prob.driver.options[’optimizer ’] = ’SLSQP’

prob.driver.options[’tol’] = 1e-12

prob.driver.options[’maxiter ’] = 1000

Set up and run the optimization problem

prob.setup ()

prob.run_driver ()

The optimized arch geometry after 40 iterations is shown in Figure 7.6a. A comparison

of the sliced view of the optimized arch with the analytical optimal shape is presented in Figure

7.6b, where the optimized geometry closely aligns with the reference solution from [107]. The

height-to-length ratio of the optimized solution is 5.4748, which shows a negligible difference

from the analytical value of 5.4779.

(a)

0 2 4 6 8 10
x

0

1

2

3

4

5

z patch 1
patch 2
patch 3
patch 4
reference

(b)

Figure 7.6. (a) The optimized design of the arch geometry. (b) The cross-sectional view of the
optimized arch compared with the analytical optimum.

7.3.2 T-beam shape optimization with moving intersections

In this section, we use a T-beam geometry to demonstrate the use of GOLDFISH for

shape optimization of multi-patch shell structures with moving intersections. The initial T-beam

138

geometry is described by two B-spline surfaces. The top patch is a parabolic curved surface

with dimensions of 2 m in width, 5 m in length, and spans from 0 m to 0.3 m in height. The

vertical patch is a flat surface with dimensions of 2 m × 5 m and is positioned at one quarter

of the top patch in the horizontal direction in the baseline design. The CAD geometry of the

T-beam, shown in Figure 7.7a, is subjected to a distributed pressure in the downward vertical

direction and is fixed at one end.

𝑥

𝑦

𝑧

(a) (b)

Figure 7.7. (a) The baseline design of the T-beam geometry consists of two B-spline patches.
The top patch is a curved surface. (b) Isogeometric discretization of the initial T-beam geometry.
The red and green control points represent DoFs in the analysis model, and the black control
points represent DoFs in the design model for shape optimization.

The optimal design with minimum internal energy is obtained when the vertical patch

is positioned at the center of the top patch, maintaining a constant volume. In this example,

we optimize the shape of the vertical patch while keeping the geometry of the top patch fixed.

Meanwhile, the intersection between the two patches is allowed to move during the optimization

process. Both shell patches have a thickness of 0.1 m, with material properties of Young’s

modulus E = 107 Pa and Possion’s ratio ν = 0. The discretization of the coarse design model for

the vertical patch is indicated by black lines in Figure 7.7b, while the red and green points denote

the discretization of the fine analysis model. The problem setup and GOLDFISH implementation

are illustrated in the following code snippets.

139

The problem parameters definitions and CAD geometry import are similar to the previous

example and will not be repeated. For the shape optimization, an instance of the geometry

processor OCCPreprocessing and an instance of the non-matching problem NonMatchingOpt are

created. We specify the fields of the control points for optimization as x and z coordinates,

corresponding to opt_field as [0,2]. Further, we specify the surface indices to be optimized

in each field. For the vertical patch with an index of 1, the shape optimization surface indices

are [[1], [1]]. We proceed to create and set up the quadrature meshes using mortar_meshes_setup,

similar to the previous example. The key difference is that the argument transfer_mat_deriv,

which defaults to 1, is set to 2 in this case since the partial derivative of the non-matching residual

with respect to intersection parametric coordinates requires second-order derivations of the spline

basis functions.

opt_field = [0,2]

shopt_surf_inds = [[1], [1]]

nmopt.set_shopt_surf_inds(opt_field , shopt_surf_inds)

nmopt.set_geom_preprocessor(preproc)

nmopt.create_mortar_meshes(preproc.mortar_nels)

nmopt.mortar_meshes_setup(preproc.mapping_list ,

preproc.intersections_para_coords ,

penalty_coefficient , transfer_mat_deriv =2)

We use the check_intersections_type method to check the types of intersections. An intersection

is treated as differentiable if it is not located at the edges of both intersecting spline patches. Next,

the method create_diff_intersections is used to generate associated data for the differentiable

intersections. The argument num_edge_pts is a list of integers, where each item specifies the

number of points in the quadrature mesh used to enforce the T-junction. For this T-beam example,

there is only one T-junction, and since the vertical patch is set to remain straight in the axial

direction during optimization, a single point is sufficient to ensure the T-junction.

preproc.check_intersections_type ()

preproc.get_diff_intersections ()

140

nmopt.create_diff_intersections(num_edge_pts =[1])

We then use the geometry preprocessor to initialize an instance of CPSurfDesign2Analysis to

establish the multilevel design framework between the design model and the analysis model.

des2ana = CPSurfDesign2Analysis(preproc , opt_field ,

shopt_surf_inds)

We assume the imported CAD geometry represents the analysis model in the workflow. Therefore,

we need to define the space for the design model. We first specify the order and knots of the

design model. In this example, the horizontal location of the vertical patch is described by a

cubic B-spline in the ξ1 direction and a linear B-spline in the ξ2 direction, while the vertical

location is described by linear B-splines in both directions. All spline curves in the design model

have a single knot span. The orders and knot vectors for the design model are defined as follows.

init_p_list = [[[3,1]] , [[1 ,1]]]

init_knots_list = [[[[0 , 0, 0, 0, 1, 1, 1, 1],

[0, 0, 1, 1]]],

[[[0, 0, 1, 1],

[0, 0, 1, 1]]]]

The orders and knot vectors for the model after order elevation are given by the following

variables.

p_list_ele = [[[3, 3]], [[3, 3]]]

knots_list_ele = [[[[0, 0, 0, 0, 1, 1, 1, 1],

[0, 0, 0, 0, 1, 1, 1, 1]]],

[[[0, 0, 0, 0, 1, 1, 1, 1],

[0, 0, 0, 0, 1, 1, 1, 1]]]]

Next, we pass the multilevel design information to the instance des2ana. To keep the vertical

patch straight in the axial direction, the horizontal and vertical coordinates are aligned along the

axial direction using the set_cp_align method.

des2ana.set_init_knots_by_field(init_p_list ,

141

init_knots_list)

des2ana.set_order_elevation_by_field(p_list_ele ,

knots_list_ele)

des2ana.set_knot_refinement ()

des2ana.set_cp_align(field=0, align_dir_list =[1])

des2ana.set_cp_align(field=2, align_dir_list =[1])

Furthermore, we can create the shape optimization model with moving intersections by passing

the nmopt and des2ana instances to the ShapeOptGroupMint class and create the optimization

problem.

model = ShapeOptGroupMint(cpdesign2analysis=des2ana ,

nonmatching_opt=nmopt)

model.init_parameters ()

prob = om.Problem(model=model)

Then the optimizer is configured using prob.driver.options. The optimization problem is set

up with prob.setup() and solved by prob.run_driver(). Using the SLSQP optimizer with a

tolerance of 10−9, the optimized geometry after 22 iterations is shown in Figure 7.8a. A cross-

sectional view of the T-beam is illustrated in Figure 7.8b, indicating that the vertical patch moves

to the center of the top patch, thereby minimizing the internal energy of the T-beam for the given

load and boundary conditions with sufficiently small errors. The optimized configuration in

Figure 7.8 also demonstrates that the T-junction between the top and vertical patches is well

preserved.

7.3.3 Tube under internal pressure

A tube under internal pressure is considered in this section. The initial design of the

tube is shown in Figure 7.9a. To validate the GOLDFISH framework, we model a quarter of

the initial tube using four non-matching B-spline patches, with three differentiable intersections

between the upper and lower pair of patches. Each pair of shell patches is embedded in one FFD

block to maintain their edge intersection, while the intersections between the two FFD blocks

142

(a) 1.0 0.5 0.0 0.5 1.0
x

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

z

patch 1
patch 2
reference

(b)

Figure 7.8. (a) The optimized T-beam geometry with a curved top patch. (b) Cross-sectional
view of the optimized T-beam, the vertical patch is moved to the center of the top patch and
maintains the T-junction.

are allowed to move during the optimization process. This setup enables the analytical optimal

solution, which is a cylindrical tube. The configuration of the FFD blocks and their associated

discretizations are illustrated in Figure 7.9b. The optimization of this tube combines both the

FFD-based approach and the moving intersections method.

The following code snippets illustrate the setup of the tube optimization problem using

GOLDFISH. As in previous examples, we begin by creating instances of OCCPreprocessing and

NonmatchingOptFFD for the imported CAD geometry. For both FFD blocks, we optimize the verti-

cal and horizontal coordinates of their control points. Since the axial direction of the tube is the z

direction, the optimization field is set as [0,1] for both FFD blocks. Shell patches with indices 0

and 1 are embedded in the first FFD block, while the remaining two patches are embedded in

the second FFD block. Thus, the opt_surf_inds is defined as [[0,1], [2,3]]. This information is

passed to the non-matching problem using the method set_shopt_surf_inds_multiFFD.

opt_field = [[0 ,1] ,[0 ,1]]

opt_surf_inds = [[0,1], [2 ,3]]

143

𝑧

𝑥

𝑦

(a) (b)

Figure 7.9. (a) The baseline design of a tube geometry, with a quarter of the tube modeled by
four non-matching B-spline patches. (b) Two FFD blocks are employed, one for each pair of
B-spline surfaces with an edge intersection. Relative movement is allowed between the two FFD
blocks.

nm_opt.set_shopt_surf_inds_multiFFD(opt_field , opt_surf_inds)

nm_opt.set_geom_preprocessor(preproc)

We then create two lists containing the knot vectors shopt_ffd_knots_list and control points

shopt_ffd_knots_list for the trivariate B-spline solids used to define the FFD blocks, as demon-

strated in Figure 7.9b. The definitions of these lists are omitted for clarity. The method

set_shopt_multiFFD is used to obtain the data of the FFD blocks.

nm_opt.set_shopt_multiFFD(shopt_ffd_knots_list ,

shopt_ffd_control_list)

Next, the control points of both FFD blocks are aligned in the axial direction using the method

set_shopt_align_CP_multiFFD. The control points on the faces of the FFD blocks that lie on

the symmetric planes are fixed using set_shopt_pin_CP_multiFFD. Additionally, the method

set_shopt_regu_CP_multiFFD is employed to prevent self-penetration of the FFD blocks.

nm_opt.set_shopt_align_CP_multiFFD(ffd_ind=0,

align_dir =[[2] ,[2]])

144

nm_opt.set_shopt_align_CP_multiFFD(ffd_ind=1,

align_dir =[[2] ,[2]])

nm_opt.set_shopt_pin_CP_multiFFD(ffd_ind=0, pin_dir0 =[0,0],

pin_side0 =[[0] ,[0]])

nm_opt.set_shopt_pin_CP_multiFFD(ffd_ind=1, pin_dir0 =[1,1],

pin_side0 =[[0] ,[0]])

nm_opt.set_shopt_regu_CP_multiFFD ()

The remainder of the optimization setup is identical to the previous examples, which involves

creating quadrature meshes for the intersections and defining PDE residuals for the Kirchhoff–

Love shells. The OpenMDAO optimization problem is then created using om.Problem. The

SNOPT optimizer is employed for this problem with a tolerance of 10−2. The converged tube

geometry after 142 iterations is shown in Figure 7.10a. A cross-sectional view of a quarter of the

tube is displayed in Figure 7.10b and compared with an exact quarter circle for validation. The

surface intersections between the two pairs of shell patches move to the edges of the patches,

forming a cylindrical tube to achieve the optimal shape. This demonstrates that both the FFD-

based and moving intersections approaches can work simultaneously in shape optimization for

non-matching shell structures.

Acknowledgements

A portion of this chapter has been published in “H. Zhao, X. Liu, A. H. Fletcher, R.

Xiang, J. T. Hwang, and D. Kamensky. An open-source framework for coupling non-matching

isogeometric shells with application to aerospace structures Computers & Mathematics with

Applications, 111:109–123, 2022.” The dissertation author is the primary investigator and author

of this paper.

A portion of this chapter is currently being prepared for submission for publication in

“H. Zhao, J. T. Hwang, and J. S. Chen. Open-source shape optimization for isogeometric shells

using FEniCS and OpenMDAO”. The dissertation author was the primary investigator of this

145

(a)
0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

patch 2
patch 4
reference

(b)

Figure 7.10. (a) The resulting geometry of the tube with minimum internal energy. Surface
intersections between the spline patches transit to edge intersections in the optimized design. (b)
Comparison of the optimized geometry with an exact cylindrical tube in the cross-sectional view.

material.

146

Chapter 8

Conclusions and future work

8.1 Conclusions

In this dissertation, a new structural analysis algorithm is developed to perform IGA

on shell structures with non-matching parameterizations. Geometrically 2D, topologically 1D

quadrature meshes are generated in the parametric space to represent patch intersections and

serve as the integration domain of the penalty energy for imposition of interaction kinematic

compatibility. The implementation leverages robust computational geometry operations from the

OpenCASCADE geometry kernel and modern code generation capabilities from the FEniCS

Project. The use of code generation is especially useful both for future extensions of the analysis

framework and for applications in design optimization.

In the context of design optimization, the use of FEniCS’s code generation provides

efficient and automatic access to derivatives of the Kirchhoff–Love shell discrete systems with

respect to state and design variables, as needed by efficient minimization algorithms [50]. Novel

shape optimization approaches are proposed for shell structures composed of multiple untrimmed

B-spline or NURBS patches. The FFD-based shape and thickness optimization approach is

developed for shell structures composed of separately parametrized NURBS surfaces. The

integration of this method with the Lagrange extraction technique enables IGA with existing

FE toolkits and provides a connection between the FFD block and non-matching shell patches.

By employing the FFD block approach, the updated shell geometry and thickness compatibility

147

are properly maintained at patch intersections throughout the optimization process. This feature

prevents undesired shape discontinuities in shell structural optimization. The automation of

analytical derivative computations is achieved through code generation in FEniCS, enabling

gradient-based multidisciplinary design optimization. This automation streamlines the opti-

mization process and allows for efficient exploration of design spaces. The unified NURBS

representation shared by both the design geometry and analysis model enhances accuracy per

DoF in the analysis and precise design updates. Moreover, the proposed framework circumvents

FE mesh generation and streamlines design-analysis-optimization workflow for complex shell

structures. Consequently, the automated workflow accelerates the conceptual design of novel

eVTOL aircraft with minimal manual effort. A suite of benchmark problems is adopted to verify

the effectiveness of the FFD-based optimization approach proposed in this dissertation. Both

the shape optimization and thickness optimization results agree well with analytical solutions

or other established references. Furthermore, we have applied the framework to two different

aircraft wings. This demonstration highlights the potential of the proposed method in exploring

complex design spaces and obtaining superior designs for innovative aircraft structures.

The moving intersection shape optimization approach allows relative movement between

shell patches without compromising mesh quality during shape updates, thereby enabling

moving intersections. To achieve the moving intersections during design optimization, partial

derivatives of the penalty energy with respect to surface intersections’ parametric locations are

formulated, along with an implicit relation between shell patches’ control points and surface

intersections’ parametric locations. Standard benchmark problems are employed to validate

this shape optimization approach, demonstrating that the optimized solutions closely match the

reference solutions. Furthermore, we apply the proposed approach to adjust the layout of the

internal spars and ribs of an eVTOL aircraft wing, resulting in nontraditional wing designs aimed

at minimizing the internal energy of the wing.

Integrating IGA into shell shape optimization presents notable advantages. The direct

analysis based on CAD geometries in IGA naturally bridges the gap between the design model

148

and analysis model within the optimization loop without geometric errors. The coarse design

model is employed to update the shape of the geometry, while the fine analysis model is used

for structural analysis. Shape modifications are directly applied to the coarse design model,

and the structural response of the updated geometry is evaluated using the refined analysis

model. As such, the dimension of the design space can be significantly reduced. This shape

optimization workflow for non-matching shells is significantly simplified and accelerates the

conceptual design of complex shell structures. The optimal designs provide valuable insights for

the development of innovative shell structures.

Open-source Python libraries are developed for direct structural analysis and design

optimization of complex shell structures. The structural analysis employs an isogeometric

Kirchhoff–Love shell model coupled with a penalty formulation for patch intersections, and

control points of shell patches are modified to update the shell shape. In this approach, FE

mesh generation is no longer required in the optimization loop. This framework is developed

based on FEniCS, leveraging its automatic differentiation and code generation capabilities to

compute discrete analytical derivatives, thereby enabling gradient-based design optimization.

The code framework accepts B-spline or NURBS-based CAD geometries as input and returns

the optimized geometry, streamlining the workflow from geometry design through structural

analysis to shape optimization. The modular design of the optimization framework inherited from

OpenMDAO is presented along with the essential components for FFD-based shape optimization

and the moving intersections approaches. A suite of benchmark problems, accompanied by code

implementations, is provided to examine the effectiveness of the framework.

8.2 Future work

The recommendations for future work are summarized as follows.

• Development of more physical design optimization coupling with other solvers, such as

aerodynamics [165, 164, 143], electric motors [151], and noise control [59]. This presents

149

opportunities for future work on integrating various disciplines to enhance the framework

for more practical shell structure designs.

• Development of coupling methods for different types of isogeometric structures, including

shell–beam coupling and shell–solid coupling, for applications to aerospace structure

design, such as spar caps and stringers.

• Development of analysis and optimization frameworks coupling with reproducing kernel

particle method (RKPM) to leverage adaptive refinements, thereby predicting the stress

concentrations accurately during analysis and optimization iterations.

• Development of shape optimization methods for handling moving intersections with

changing topology, including allowing intersections to cross patch boundaries and the

ability to add or remove intersections during the shape optimization process.

• Development of functionality to incorporate additional types of splines in IGA, including

trimmed NURBS surfaces and T-spline surfaces, to better accommodate more complex

CAD geometries.

• Investigation of reduced-order modeling (ROM) methods for complex isogeometric shells

with patch coupling to enhance computational efficiency.

Acknowledgements

A portion of this chapter has been published in “H. Zhao, X. Liu, A. H. Fletcher, R.

Xiang, J. T. Hwang, and D. Kamensky. An open-source framework for coupling non-matching

isogeometric shells with application to aerospace structures Computers & Mathematics with

Applications, 111:109–123, 2022.” The dissertation author is the primary investigator and author

of this paper.

A portion of this chapter has been published in “H. Zhao, D. Kamensky, J. T. Hwang,

and J. S. Chen. Automated shape and thickness optimization for non-matching isogeometric

150

shells using free-form deformation. Engineering with Computers, 1-24, 2024.” The dissertation

author is the primary investigator and author of this paper.

A portion of this chapter has been published in “H. Zhao, J. T. Hwang, and J. S. Chen.

Shape optimization of non-matching isogeometric shells with moving intersections. Computer

Methods in Applied Mechanics and Engineering, 431:117322, 2024.” The dissertation author is

the primary investigator and author of this paper.

A portion of this chapter is currently being prepared for submission for publication in

“H. Zhao, J. T. Hwang, and J. S. Chen. Open-source shape optimization for isogeometric shells

using FEniCS and OpenMDAO”. The dissertation author was the primary investigator of this

material.

151

Bibliography

[1] COMSOL Multiphysics Reference Manual, version 5.6. COMSOL, Inc.

[2] E. J. Adler, B. J. Brelje, and J. R. R. A. Martins. Thermal management system optimization
for a parallel hybrid aircraft considering mission fuel burn. Aerospace, 9(5), April 2022.

[3] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. Unified form lan-
guage: A domain-specific language for weak formulations of partial differential equations.
ACM Trans. Math. Softw., 40(2):9:1–9:37, March 2014.

[4] H. Azegami, S. Fukumoto, and T. Aoyama. Shape optimization of continua using NURBS
as basis functions. Structural and Multidisciplinary Optimization, 47:247–258, 2013.

[5] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F.
Smith, S. Zampini, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 -
Revision 3.6, Argonne National Laboratory, 2015.

[6] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F.
Smith, S. Zampini, and H. Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc, 2015.

[7] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of
parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and
H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202.
Birkhäuser Press, 1997.

[8] K.-J. Bathe and E. N. Dvorkin. A formulation of general shell elements—the use of mixed
interpolation of tensorial components. International journal for numerical methods in
engineering, 22(3):697–722, 1986.

[9] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A.
Scott, and T. W. Sederberg. Isogeometric analysis using T-splines. Computer methods in
applied mechanics and engineering, 199(5-8):229–263, 2010.

[10] Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger. 3D simulation
of wind turbine rotors at full scale. part II: Fluid–structure interaction modeling with
composite blades. International Journal for Numerical Methods in Fluids, 65(1-3):236–
253, 2011.

152

http://www.mcs.anl.gov/petsc

[11] Y. Bazilevs, D. Kamensky, G. Moutsanidis, and S. Shende. Residual-based shock capturing
in solids. Computer Methods in Applied Mechanics and Engineering, 358:112638, 2020.

[12] Y. Bazilevs, K. Takizawa, T. E. Tezduyar, M.-C. Hsu, Y. Otoguro, H. Mochizuki, and
M. C. H. Wu. Wind turbine and turbomachinery computational analysis with the ale and
space-time variational multiscale methods and isogeometric discretization. Journal of
Advanced Engineering and Computation, 4(1):1–32, 2020.

[13] T. Belytschko and M. Hillman. Meshfree and particle methods: fundamentals and
applications. John Wiley & Sons, 2023.

[14] T. Belytschko, W. K. Liu, B. Moran, and K. Elkhodary. Nonlinear finite elements for
continua and structures. John wiley & sons, 2014.

[15] T. Belytschko, Y. Y. Lu, and L. Gu. Element-free Galerkin methods. International journal
for numerical methods in engineering, 37(2):229–256, 1994.

[16] T. Belytschko, H. Stolarski, W. K. Liu, N. Carpenter, and J. S.-J. Ong. Stress projection
for membrane and shear locking in shell finite elements. Computer Methods in Applied
Mechanics and Engineering, 51:221–258, 1985.

[17] M. P. Bendsoe and O. Sigmund. Topology optimization: theory, methods, and applications.
Springer Science & Business Media, 2013.

[18] J. Benzaken, J. A. Evans, S. F. McCormick, and R. Tamstorf. Nitsche’s method for linear
Kirchhoff–Love shells: Formulation, error analysis, and verification. Computer Methods
in Applied Mechanics and Engineering, 374:113544, 2021.

[19] S. Bieber, B. Oesterle, E. Ramm, and M. Bischoff. A variational method to avoid
locking—independent of the discretization scheme. International Journal for Numerical
Methods in Engineering, 114(8):801–827, 2018.

[20] K.-U. Bletzinger and E. Ramm. Form finding of shells by structural optimization. Engi-
neering with computers, 9:27–35, 1993.

[21] K.-U. Bletzinger, R. Wüchner, F. Daoud, and N. Camprubı́. Computational methods for
form finding and optimization of shells and membranes. Computer methods in applied
mechanics and engineering, 194(30-33):3438–3452, 2005.

[22] J. Bleyer. Numerical Tours of Computational Mechanics with FEniCS, 2018.

[23] M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes. Isogeometric finite element
data structures based on Bézier extraction of NURBS. International Journal for Numerical
Methods in Engineering, 87:15–47, 2011.

[24] R. Bouclier and T. Hirschler. IGA: Non-conforming coupling and shape optimization of
complex multipatch structures. John Wiley & Sons, 2022.

153

[25] E. Brivadis, A. Buffa, B. Wohlmuth, and L. Wunderlich. Isogeometric mortar meth-
ods. Computer Methods in Applied Mechanics and Engineering, 284:292–319, 2015.
Isogeometric Analysis Special Issue.

[26] E. M. B. Campello, P. M. Pimenta, and P. Wriggers. A triangular finite shell element
based on a fully nonlinear shell formulation. Computational Mechanics, 31(6):505–518,
Aug 2003.

[27] H. Casquero and M. Golestanian. Removing membrane locking in quadratic NURBS-
based discretizations of linear plane Kirchhoff rods: CAS elements. Computer Methods
in Applied Mechanics and Engineering, 399:115354, 2022.

[28] H. Casquero, L. Liu, Y. Zhang, A. Reali, J. Kiendl, and H. Gomez. Arbitrary-degree
T-splines for isogeometric analysis of fully nonlinear Kirchhoff–Love shells. Computer-
Aided Design, 82:140–153, 2017. Isogeometric Design and Analysis.

[29] H. Casquero and K. D. Mathews. Overcoming membrane locking in quadratic NURBS-
based discretizations of linear Kirchhoff–Love shells: CAS elements. Computer Methods
in Applied Mechanics and Engineering, 417:116523, 2023.

[30] H. Casquero, X. Wei, D. Toshniwal, A. Li, T. J. R. Hughes, J. Kiendl, and Y. J. Zhang.
Seamless integration of design and Kirchhoff–Love shell analysis using analysis-suitable
unstructured T-splines. Computer Methods in Applied Mechanics and Engineering,
360:112765, 2020.

[31] M. Chasapi, P. Antolin, and A. Buffa. Fast parametric analysis of trimmed multi-patch
isogeometric Kirchhoff-Love shells using a local reduced basis method. Engineering with
Computers, pages 1–28, 2024.

[32] J.-S. Chen, M. Hillman, and S.-W. Chi. Meshfree methods: progress made after 20 years.
Journal of Engineering Mechanics, 143(4):04017001, 2017.

[33] J.-S. Chen, M. Hillman, and M. Rüter. An arbitrary order variationally consistent inte-
gration for Galerkin meshfree methods. International Journal for Numerical Methods in
Engineering, 95(5):387–418, 2013.

[34] J.-S. Chen and N. H. Kim. Meshfree method and application to shape optimization. In
Optimization of Structural and Mechanical Systems, pages 389–414. World Scientific,
2007.

[35] J.-S. Chen, C. Pan, C. Roque, and H.-P. Wang. A lagrangian reproducing kernel particle
method for metal forming analysis. Computational mechanics, 22:289–307, 1998.

[36] J.-S. Chen, C. Pan, and C.-T. Wu. Large deformation analysis of rubber based on a
reproducing kernel particle method. Computational Mechanics, 19(3):211–227, 1997.

154

[37] J.-S. Chen, C. Pan, C.-T. Wu, and W. K. Liu. Reproducing kernel particle methods
for large deformation analysis of non-linear structures. Computer methods in applied
mechanics and engineering, 139(1-4):195–227, 1996.

[38] J.-S. Chen, C.-T. Wu, S. Yoon, and Y. You. A stabilized conforming nodal integration for
Galerkin mesh-free methods. International journal for numerical methods in engineering,
50(2):435–466, 2001.

[39] J.-S. Chen, S. Yoon, and C.-T. Wu. Non-linear version of stabilized conforming nodal
integration for Galerkin mesh-free methods. International Journal for Numerical Methods
in Engineering, 53(12):2587–2615, 2002.

[40] Y. Chen, S. Jun, J.-S. Chen, T. Belytschko, C. Pan, and R. A. Uras. Overview and
applications of the reproducing kernel particle methods. Archives of Computational
Methods in Engineering, 3:3–80, 1996.

[41] S. Cho and S.-H. Ha. Isogeometric shape design optimization: exact geometry and
enhanced sensitivity. Structural and Multidisciplinary Optimization, 38:53–70, 2009.

[42] H. Chung, J. T. Hwang, J. S. Gray, and H. A. Kim. Topology optimization in OpenMDAO.
Structural and multidisciplinary optimization, 59:1385–1400, 2019.

[43] L. Coradello, J. Kiendl, and A. Buffa. Coupling of non-conforming trimmed isogeometric
Kirchhoff–Love shells via a projected super-penalty approach, 2021.

[44] L. Coradello, G. Loli, and A. Buffa. A projected super-penalty method for the C1-coupling
of multi-patch isogeometric Kirchhoff plates. Computational Mechanics, 67(4):1133–
1153, Apr 2021.

[45] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration
of CAD and FEA. Wiley, Chichester, 2009.

[46] Y. Ding. Shape optimization of structures: a literature survey. Computers & Structures,
24(6):985–1004, 1986.

[47] T. X. Duong, F. Roohbakhshan, and R. A. Sauer. A new rotation-free isogeometric
thin shell formulation and a corresponding continuity constraint for patch boundaries.
Computer Methods in Applied Mechanics and Engineering, 316:43–83, 2017. Special
Issue on Isogeometric Analysis: Progress and Challenges.

[48] H. A. Eschenauer and N. Olhoff. Topology optimization of continuum structures: a review.
Appl. Mech. Rev., 54(4):331–390, 2001.

[49] J. A. Evans, Y. Bazilevs, I. Babuška, and T. J. R. Hughes. n-widths, sup–infs, and
optimality ratios for the k-version of the isogeometric finite element method. Computer
Methods in Applied Mechanics and Engineering, 198(21):1726–1741, 2009. Advances in
Simulation-Based Engineering Sciences – Honoring J. Tinsley Oden.

155

[50] P. E. Farrell, D. A. Ham, S. W. Funke, and M. E. Rognes. Automated derivation of
the adjoint of high-level transient finite element programs. SIAM Journal on Scientific
Computing, 35(4):C369–C393, 2013.

[51] M. Farshad. Design and analysis of shell structures, volume 16. Springer Science &
Business Media, Switzerland, 2013.

[52] W. Fredericks, K. Antcliff, G. Costa, N. Deshpande, M. Moore, E. San Miguel, and
A. Snyder. Aircraft conceptual design using vehicle sketch pad. In 48th AIAA Aerospace
Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.

[53] J. E. Fromm, N. Wunsch, K. Maute, J. A. Evans, and J.-S. Chen. Interpolation-based
immersogeometric analysis methods for multi-material and multi-physics problems. Com-
putational Mechanics, pages 1–25, 2024.

[54] J. E. Fromm, N. Wunsch, R. Xiang, H. Zhao, K. Maute, J. A. Evans, and D. Kamen-
sky. Interpolation-based immersed finite element and isogeometric analysis. Computer
Methods in Applied Mechanics and Engineering, 405:115890, 2023.

[55] V. Gandarillas, A. J. Joshy, M. Z. Sperry, A. K. Ivanov, and J. T. Hwang. A graph-
based methodology for constructing computational models that automates adjoint-based
sensitivity analysis. Structural and Multidisciplinary Optimization, 67(5):76, 2024.

[56] R. Ghaffari, T. X. Duong, and R. A. Sauer. A new shell formulation for graphene structures
based on existing ab-initio data. International Journal of Solids and Structures, 135:37–60,
2018.

[57] R. Ghaffari and R. A. Sauer. A new efficient hyperelastic finite element model for graphene
and its application to carbon nanotubes and nanocones. Finite Elements in Analysis and
Design, 146:42–61, 2018.

[58] C. Giannelli, B. Jüttler, and H. Speleers. THB-splines: The truncated basis for hierarchical
splines. Computer Aided Geometric Design, 29(7):485–498, 2012.

[59] H. Gill, S. Lee, M. L. Ruh, and J. T. Hwang. Applicability of low-fidelity tonal and
broadband noise models on small-scaled rotors. In AIAA SciTech 2023 Forum, page 1547,
2023.

[60] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM review, 47(1):99–131, 2005.

[61] J. Gloudemans, P. Davis, and P. Gelhausen. A rapid geometry modeler for conceptual
aircraft. In 34th Aerospace Sciences Meeting and Exhibit, 1996.

[62] J. Gloudemans and R. McDonald. Improved geometry modeling for high fidelity paramet-
ric design. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum
and Aerospace Exposition, 2010.

156

[63] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A. Naylor. OpenM-
DAO: An open-source framework for multidisciplinary design, analysis, and optimization.
Structural and Multidisciplinary Optimization, 59:1075–1104, 2019.

[64] L. Greco, M. Cuomo, and L. Contrafatto. A reconstructed local B formulation for
isogeometric Kirchhoff–Love shells. Computer Methods in Applied Mechanics and
Engineering, 332:462–487, 2018.

[65] L. Greco, M. Cuomo, L. Contrafatto, and S. Gazzo. An efficient blended mixed B-spline
formulation for removing membrane locking in plane curved Kirchhoff rods. Computer
Methods in Applied Mechanics and Engineering, 324:476–511, 2017.

[66] I. Grindeanu, N. H. Kim, K. K. Choi, and J.-S. Chen. CAD-based shape optimization
using a meshfree method. Concurrent Engineering, 10(1):55–66, 2002.

[67] G. Guarino, P. Antolin, A. Milazzo, and A. Buffa. An interior penalty coupling strategy for
isogeometric non-conformal Kirchhoff–Love shell patches. Engineering With Computers,
pages 1–27, 2024.

[68] Y. Guo, J. Heller, T. J. R. Hughes, M. Ruess, and D. Schillinger. Variationally consistent
isogeometric analysis of trimmed thin shells at finite deformations, based on the STEP
exchange format. Computer Methods in Applied Mechanics and Engineering, 336:39–79,
2018.

[69] Y. Guo and M. Ruess. Nitsche’s method for a coupling of isogeometric thin shells and
blended shell structures. Computer Methods in Applied Mechanics and Engineering,
284:881–905, 2015.

[70] Y. Guo, Z. Zou, and M. Ruess. Isogeometric multi-patch analyses for mixed thin shells
in the framework of non-linear elasticity. Computer Methods in Applied Mechanics and
Engineering, 380:113771, 2021.

[71] H. Gómez, V. M. Calo, Y. Bazilevs, and T. J. R. Hughes. Isogeometric analysis of
the Cahn–Hilliard phase-field model. Computer Methods in Applied Mechanics and
Engineering, 197(49):4333–4352, 2008.

[72] S.-H. Ha, K. K. Choi, and S. Cho. Numerical method for shape optimization using
T-spline based isogeometric method. Structural and Multidisciplinary Optimization,
42:417–428, 2010.

[73] A. Hahn. Vehicle sketch pad: A parametric geometry modeler for conceptual aircraft
design. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum
and Aerospace Exposition, 2010.

[74] P. Hao, Y. Wang, L. Jin, S. Ma, and B. Wang. An isogeometric design-analysis-
optimization workflow of stiffened thin-walled structures via multilevel NURBS-based
free-form deformations (MNFFD). Computer Methods in Applied Mechanics and Engi-
neering, 408:115936, 2023.

157

[75] P. Hao, X. Yuan, C. Liu, B. Wang, H. Liu, G. Li, and F. Niu. An integrated framework of
exact modeling, isogeometric analysis and optimization for variable-stiffness composite
panels. Computer Methods in Applied Mechanics and Engineering, 339:205–238, 2018.

[76] M. F. Hardwick, R. L. Clay, P. T. Boggs, E. J. Walsh, A. R. Larzelere, and A. Altshuler.
DART system analysis. Technical Report SAND2005-4647, Sandia National Laboratories,
2005.

[77] A. J. Herrema, E. L. Johnson, D. Proserpio, M. C. H. Wu, J. Kiendl, and M.-C. Hsu. Penalty
coupling of non-matching isogeometric Kirchhoff–Love shell patches with application to
composite wind turbine blades. Computer Methods in Applied Mechanics and Engineering,
346:810–840, 2019.

[78] A. J. Herrema, J. Kiendl, and M.-C. Hsu. A framework for isogeometric-analysis-based
optimization of wind turbine blade structures. Wind Energy, 22(2):153–170, 2019.

[79] A. J. Herrema, N. M. Wiese, C. N. Darling, B. Ganapathysubramanian, A. Krishnamurthy,
and M.-C. Hsu. A framework for parametric design optimization using isogeometric
analysis. Computer Methods in Applied Mechanics and Engineering, 316:944–965, 2017.

[80] M. Hillman and J.-S. Chen. An accelerated, convergent, and stable nodal integration in
Galerkin meshfree methods for linear and nonlinear mechanics. International Journal for
Numerical Methods in Engineering, 107(7):603–630, 2016.

[81] T. Hirschler. Isogeometric modeling for the optimal design of aerostructures. PhD thesis,
Université de Lyon, 2019.

[82] T. Hirschler, R. Bouclier, D. Dureisseix, A. Duval, T. Elguedj, and J. Morlier. A dual do-
main decomposition algorithm for the analysis of non-conforming isogeometric Kirchhoff–
Love shells. Computer Methods in Applied Mechanics and Engineering, 357:112578,
2019.

[83] T. Hirschler, R. Bouclier, A. Duval, T. Elguedj, and J. Morlier. The embedded isoge-
ometric Kirchhoff–Love shell: From design to shape optimization of non-conforming
stiffened multipatch structures. Computer Methods in Applied Mechanics and Engineering,
349:774–797, 2019.

[84] T. Hirschler, R. Bouclier, A. Duval, T. Elguedj, and J. Morlier. A new lighting on
analytical discrete sensitivities in the context of isogeometric shape optimization. Archives
of Computational Methods in Engineering, 28(4):2371–2408, 2021.

[85] T. Horger, A. Reali, B. Wohlmuth, and L. Wunderlich. A hybrid isogeometric approach on
multi-patches with applications to Kirchhoff plates and eigenvalue problems. Computer
Methods in Applied Mechanics and Engineering, 348:396–408, 2019.

[86] M.-C. Hsu, C. Wang, F. Xu, A. J. Herrema, and A. Krishnamurthy. Direct immersogeo-
metric fluid flow analysis using B-rep CAD models. Computer Aided Geometric Design,
43:143–158, 2016. Geometric Modeling and Processing 2016.

158

[87] T. J. R. Hughes. The finite element method: linear static and dynamic finite element
analysis. Courier Corporation, 2012.

[88] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied
Mechanics and Engineering, 194:4135–4195, 2005.

[89] J. T. Hwang and J. R. R. A. Martins. GeoMACH: Geometry-centric MDAO of aircraft
configurations with high fidelity. In 12th AIAA Aviation Technology, Integration, and
Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 2012.

[90] M. H. Imam. Three-dimensional shape optimization. International Journal for Numerical
Methods in Engineering, 18(5):661–673, 1982.

[91] J. P. Jasa, B. J. Brelje, J. S. Gray, C. A. Mader, and J. R. R. A. Martins. Large-scale
path-dependent optimization of supersonic aircraft. Aerospace, 7(10):152, 2020.

[92] J. P. Jasa, J. T. Hwang, and J. R. R. A. Martins. Open-source coupled aerostructural
optimization using Python. Structural and Multidisciplinary Optimization, 57(4):1815–
1827, April 2018.

[93] C. M. Jauregui, S. L. Schnulo, J. S. Gray, and H. A. Kim. Level set topology optimization
in OpenMDAO. In AIAA SciTech 2023 Forum, 2023.

[94] E. L. Johnson and M.-C. Hsu. Isogeometric analysis of ice accretion on wind turbine
blades. Computational Mechanics, 66(2):311–322, Aug 2020.

[95] E. L. Johnson, D. W. Laurence, F. Xu, C. E. Crisp, A. Mir, H. M. Burkhart, C.-H. Lee, and
M.-C. Hsu. Parameterization, geometric modeling, and isogeometric analysis of tricuspid
valves. Computer Methods in Applied Mechanics and Engineering, 384:113960, 2021.

[96] I. Kaljević and S. Saigal. An improved element free Galerkin formulation. International
Journal for numerical methods in engineering, 40(16):2953–2974, 1997.

[97] D. Kamensky. Open-source immersogeometric analysis of fluid–structure interaction
using FEniCS and tIGAr. Computers & Mathematics with Applications, 81:634–648, 2021.
Development and Application of Open-source Software for Problems with Numerical
PDEs.

[98] D. Kamensky and Y. Bazilevs. tIGAr: Automating isogeometric analysis with FEniCS.
Computer Methods in Applied Mechanics and Engineering, 344:477–498, 2019.

[99] D. Kamensky, J. A. Evans, M.-C. Hsu, and Y. Bazilevs. Projection-based stabilization
of interface Lagrange multipliers in immersogeometric fluid–thin structure interaction
analysis, with application to heart valve modeling. Computers & Mathematics with
Applications, 74(9):2068–2088, 2017. Advances in Mathematics of Finite Elements,
honoring 90th birthday of Ivo Babuška.

159

[100] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S.
Sacks, and T. J. R. Hughes. An immersogeometric variational framework for fluid–
structure interaction: Application to bioprosthetic heart valves. Computer Methods in
Applied Mechanics and Engineering, 284:1005–1053, 2015.

[101] D. Kamensky, F. Xu, C.-H. Lee, J. Yan, Y. Bazilevs, and M.-C. Hsu. A contact formulation
based on a volumetric potential: Application to isogeometric simulations of atrioventric-
ular valves. Computer Methods in Applied Mechanics and Engineering, 330:522–546,
2018.

[102] G. J. Kennedy and J. E. Hicken. Improved constraint-aggregation methods. Computer
Methods in Applied Mechanics and Engineering, 289:332–354, 2015.

[103] J. Kiendl. Isogeometric Analysis and Shape Optimal Design of Shell Structures. PhD
thesis, Lehrstuhl für Statik, Technische Universität München, 2011.

[104] J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, and K.-U. Bletzinger. The bending strip
method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple
patches. Computer Methods in Applied Mechanics and Engineering, 199:2403–2416,
2010.

[105] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with
Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering,
198(49-52):3902–3914, 2009.

[106] J. Kiendl, M.-C. Hsu, M. C. H. Wu, and A. Reali. Isogeometric Kirchhoff–Love shell
formulations for general hyperelastic materials. Computer Methods in Applied Mechanics
and Engineering, 291(0):280–303, 2015.

[107] J. Kiendl, R. Schmidt, R. Wüchner, and K.-U. Bletzinger. Isogeometric shape optimization
of shells using semi-analytical sensitivity analysis and sensitivity weighting. Computer
Methods in Applied Mechanics and Engineering, 274:148–167, 2014.

[108] N. H. Kim, K. K. Choi, and J.-S. Chen. Shape design sensitivity analysis and optimization
of elasto-plasticity with frictional contact. AIAA journal, 38(9):1742–1753, 2000.

[109] N. H. Kim, K. K. Choi, and J.-S. Chen. Die shape design optimization of sheet metal
stamping process using meshfree method. International Journal for Numerical Methods
in Engineering, 51(12):1385–1405, 2001.

[110] N. H. Kim, K. K. Choi, and J.-S. Chen. Structural optimization of finite deformation
elastoplasticity using continuum-based shape design sensitivity formulation. Computers
& Structures, 79(20-21):1959–1976, 2001.

[111] N. H. Kim, K. K. Choi, J.-S. Chen, and Y. H. Park. Meshless shape design sensitivity
analysis and optimization for contact problem with friction. Computational Mechanics,
25:157–168, 2000.

160

[112] R. C. Kirby and A. Logg. A compiler for variational forms. ACM Trans. Math. Softw.,
32(3):417–444, September 2006.

[113] D. Kraft. A software package for sequential quadratic programming. Forschungsbericht-
Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1988.

[114] P. Krysl and T. Belytschko. Analysis of thin plates by the element-free Galerkin method.
Computational Mechanics, 17(1):26–35, 1995.

[115] P. Krysl and T. Belytschko. Analysis of thin shells by the element-free Galerkin method.
International Journal of Solids and Structures, 33(20-22):3057–3080, 1996.

[116] L. Leonetti, F. S. Liguori, D. Magisano, J. Kiendl, A. Reali, and G. Garcea. A robust
penalty coupling of non-matching isogeometric Kirchhoff–Love shell patches in large
deformations. Computer Methods in Applied Mechanics and Engineering, 371:113289,
2020.

[117] K. Li and X. Qian. Isogeometric analysis and shape optimization via boundary integral.
Computer-Aided Design, 43(11):1427–1437, 2011.

[118] J.-T. Lin, C. Girerd, J. Yan, J. T. Hwang, and T. K. Morimoto. A generalized framework
for concentric tube robot design using gradient-based optimization. IEEE Transactions on
Robotics, 38(6):3774–3791, 2022.

[119] W. Liu, Z. Deng, J. Li, and X. Hu. Investigating the electrothermal behavior of evtol
batteries in urban air mobility applications. In 2022 IEEE 25th International Conference
on Intelligent Transportation Systems (ITSC), pages 40–45, 2022.

[120] W. K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko. Reproducing kernel particle methods
for structural dynamics. International Journal for Numerical Methods in Engineering,
38(10):1655–1679, 1995.

[121] W. K. Liu, S. Jun, and Y. F. Zhang. Reproducing kernel particle methods. International
journal for numerical methods in fluids, 20(8-9):1081–1106, 1995.

[122] A. Logg, K.-A. Mardal, and G. Wells. Automated solution of differential equations by
the finite element method: The FEniCS book, volume 84. Springer Science & Business
Media, 2012.

[123] A. Logg and G. N. Wells. DOLFIN: Automated finite element computing. ACM Trans.
Math. Softw., 37(2):20:1–20:28, April 2010.

[124] Y. Y. Lu, T. Belytschko, and L. Gu. A new implementation of the element free Galerkin
method. Computer methods in applied mechanics and engineering, 113(3-4):397–414,
1994.

[125] R. H. Macneal and R. L. Harder. A proposed standard set of problems to test finite element
accuracy. Finite Elements in Analysis and Design, 1(1):3–20, 1985.

161

[126] D. Magisano, A. Corrado, L. Leonetti, J. Kiendl, and G. Garcea. Large deformation
Kirchhoff–Love shell hierarchically enriched with warping: Isogeometric formulation and
modeling of alternating stiff/soft layups. Computer Methods in Applied Mechanics and
Engineering, 418:116556, 2024.

[127] S. Morganti, F. Auricchio, D. J. Benson, F. I. Gambarin, S. Hartmann, T. J. R. Hughes,
and A. Reali. Patient-specific isogeometric structural analysis of aortic valve closure.
Computer Methods in Applied Mechanics and Engineering, 284:508–520, 2015.

[128] A. P. Nagy, M. M. Abdalla, and Z. Gürdal. Isogeometric sizing and shape optimisation
of beam structures. Computer Methods in Applied Mechanics and Engineering, 199(17-
20):1216–1230, 2010.

[129] A. P. Nagy, S. T. IJsselmuiden, and M. M. Abdalla. Isogeometric design of anisotropic
shells: optimal form and material distribution. Computer Methods in Applied Mechanics
and Engineering, 264:145–162, 2013.

[130] G. E. Neighbor, H. Zhao, M. Saraeian, M.-C. Hsu, and D. Kamensky. Leveraging
code generation for transparent immersogeometric fluid–structure interaction analysis on
deforming domains. Engineering with Computers, 39(2):1019–1040, 2023.

[131] A. Neofytou, T.-H. Huang, S. Kambampati, R. Picelli, J.-S. Chen, and H. A. Kim. Level
set topology optimization with nodally integrated reproducing kernel particle method.
Computer Methods in Applied Mechanics and Engineering, 385:114016, 2021.

[132] A. Neofytou, R. Picelli, J.-S. Chen, and H. A. Kim. Level set topology optimization
for design dependent pressure loads: a comparison between FEM and RKPM. In AIAA
Aviation 2019 Forum.

[133] A. Neofytou, R. Picelli, T.-H. Huang, J.-S. Chen, and H. A. Kim. Level set topology
optimization for design-dependent pressure loads using the reproducing kernel particle
method. Structural and Multidisciplinary Optimization, 61:1805–1820, 2020.

[134] T.-H. Nguyen, R. R. Hiemstra, and D. Schillinger. Leveraging spectral analysis to
elucidate membrane locking and unlocking in isogeometric finite element formulations
of the curved Euler–Bernoulli beam. Computer Methods in Applied Mechanics and
Engineering, 388:114240, 2022.

[135] N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K.-U. Bletzinger, Y. Bazilevs,
and T. Rabczuk. Rotation free isogeometric thin shell analysis using PHT-splines. Com-
puter Methods in Applied Mechanics and Engineering, 200(47):3410–3424, 2011.

[136] N. Nguyen-Thanh, K. Zhou, X. Zhuang, P. Areias, H. Nguyen-Xuan, Y. Bazilevs, and
T. Rabczuk. Isogeometric analysis of large-deformation thin shells using RHT-splines
for multiple-patch coupling. Computer Methods in Applied Mechanics and Engineering,
316:1157–1178, 2017.

162

[137] T. Paviot and J. Feringa. Pythonocc. Technical report, 3D CAD/CAE/PLM development
framework for the Python programming language, 2018.

[138] L. Piegl and W. Tiller. The NURBS book. Springer Science & Business Media, 2012.

[139] N. Polaczyk, E. Trombino, P. Wei, and M. Mitici. A review of current technology
and research in urban on-demand air mobility applications. In Vertical Flight Society
Autonomous VTOL Technical Meeting and Electric VTOL Symposium, 2019.

[140] D. Proserpio and J. Kiendl. Penalty coupling of trimmed isogeometric Kirchhoff–Love
shell patches. Journal of Mechanics, 38:156–165, 2022.

[141] M. A. Puso, J.-S. Chen, E. Zywicz, and W. Elmer. Meshfree and finite element nodal inte-
gration methods. International Journal for Numerical Methods in Engineering, 74(3):416–
446, 2008.

[142] X. Qian. Full analytical sensitivities in NURBS based isogeometric shape optimization.
Computer Methods in Applied Mechanics and Engineering, 199(29-32):2059–2071, 2010.

[143] M. L. Ruh, A. Fletcher, D.Sarojini, M. Sperry, J. Yan, L. Scotzniovsky, S. P. van Schie,
M. Warner, N. C. Orndorff, R. Xiang, A. J. Joshy, H. Zhao, J. Krokowski, H. Gill, S. Lee,
Z. Cheng, Z. Cao, C. Mi, C. Silva, L. Wolfe, J.-S. Chen, and J. T. Hwang. Large-scale
multidisciplinary design optimization of a NASA air taxi concept using a comprehensive
physics-based system model. In AIAA SciTech 2024 Forum, page 0771, 2024.

[144] D. Sarojini, M. L. Ruh, J. Yan, L. Scotzniovsky, N. C. Orndorff, R. Xiang, H. Zhao,
J. Krokowski, M. Warner, S. P. van Schie, A. Cronk, A. T. Guibert, J. T. Chambers,
L. Wolfe, R. Doring, R. Despins, C. Joseph, R. Anderson, A. Ning, H. Gill, S. Lee,
Z. Cheng, Z. Cao, C. Mi, Y. S. Meng, C. Silva, J.-S. Chen, A. A. Kim, and J. T. Hwang.
Review of computational models for large-scale MDAO of urban air mobility concepts.
In AIAA SciTech 2024 Forum, page 0377, 2024.

[145] R. A. Sauer, Z. Zou, and T. J. R. Hughes. A simple and efficient hybrid discretization
approach to alleviate membrane locking in isogeometric thin shells. arXiv preprint
arXiv:2312.16944, 2023.

[146] D. Schillinger, I. Harari, M.-C. Hsu, D. Kamensky, S. K. F. Stoter, Y. Yu, and Y. Zhao.
The non-symmetric Nitsche method for the parameter-free imposition of weak boundary
and coupling conditions in immersed finite elements. Computer Methods in Applied
Mechanics and Engineering, 309:625–652, 2016.

[147] D. Schillinger and M. Ruess. The Finite Cell Method: A review in the context of
higher-order structural analysis of CAD and image-based geometric models. Archives of
Computational Methods in Engineering, 22(3):391–455, 2015.

[148] D. Schillinger, P. K. Ruthala, and L. H. Nguyen. Lagrange extraction and projection for
NURBS basis functions: A direct link between isogeometric and standard nodal finite

163

element formulations. International Journal for Numerical Methods in Engineering,
108(6):515–534, 2016.

[149] R. Schmidt, J. Kiendl, K.-U. Bletzinger, and R. Wüchner. Realization of an integrated
structural design process: analysis-suitable geometric modelling and isogeometric analysis.
Computing and Visualization in Science, 13(7):315–330, Oct 2010.

[150] M. A. Scott, M. J. Borden, C. V. Verhoosel, T. W. Sederberg, and T. J. R. Hughes. Isogeo-
metric finite element data structures based on Bézier extraction of T-splines. International
Journal for Numerical Methods in Engineering, 88:126–156, 2011.

[151] L. Scotzniovsky, R. Xiang, Z. Cheng, G. Rodriguez, D. Kamensky, C. Mi, and J. T. Hwang.
Geometric design of electric motors using adjoint-based shape optimization. Optimization
and Engineering, pages 1–38, 2024.

[152] T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric models.
SIGGRAPH Comput. Graph., 20(4):151–160, 1986.

[153] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-NURCCs. ACM
transactions on graphics (TOG), 22(3):477–484, 2003.

[154] F. Shirazian, R. Ghaffari, M. Hu, and R. A. Sauer. Hyperelastic material modeling of
graphene based on density functional calculations. PAMM, 18(1):e201800419, 2018.

[155] J. Stegmann and E. Lund. Discrete material optimization of general composite shell
structures. International Journal for Numerical Methods in Engineering, 62(14):2009–
2027, 2005.

[156] H. Stolarski and T. Belytschko. Membrane locking and reduced integration for curved
elements. Journal of Applied Mechanics, 49(1):172, 1982.

[157] K.Y. Sze, X.H. Liu, and S.H. Lo. Popular benchmark problems for geometric nonlinear
analysis of shells. Finite Elements in Analysis and Design, 40(11):1551–1569, 2004.

[158] M.F.P. ten Eikelder, Y. Bazilevs, and I. Akkerman. A theoretical framework for discon-
tinuity capturing: Joining variational multiscale analysis and variation entropy theory.
Computer Methods in Applied Mechanics and Engineering, page 112664, 2019.

[159] D. C. Thomas, L. Engvall, S. K. Schmidt, K. Tew, and M. A. Scott. U-splines: Splines
over unstructured meshes. Computer Methods in Applied Mechanics and Engineering,
401:115515, 2022.

[160] http://hangar.openvsp.org/. VSP hangar.

[161] https://github.com/david-kamensky/ShNAPr. ShNAPr source code.

[162] https://github.com/hanzhao2020/GOLDFISH. GOLDFISH source code.

164

http://hangar.openvsp.org/
https://github.com/david-kamensky/ShNAPr
https://github.com/hanzhao2020/GOLDFISH

[163] https://openmdao.org/newdocs/versions/latest/examples/beam optimization example.
html. Optimizing the thickness distribution of a cantilever beam using the adjoint method.

[164] S. P. van Schie, M. Warner, A. Fletcher, and J. T. Hwang. Enforcing work conservation in
modular aeroelastic coupling for multidisciplinary design optimization. In AIAA SciTech
2024 Forum, page 2411, 2024.

[165] S. P. van Schie, H. Zhao, J. Yan, R. Xiang, J. T. Hwang, and D. Kamensky. Solver-
independent aeroelastic coupling for large-scale multidisciplinary design optimization. In
AIAA SciTech 2023 Forum, page 0727, 2023.

[166] W. A. Wall, M. A. Frenzel, and C. Cyron. Isogeometric structural shape optimization.
Computer Methods in Applied Mechanics and Engineering, 197(33-40):2976–2988, 2008.

[167] D. Wang and J.-S. Chen. Locking-free stabilized conforming nodal integration for
meshfree Mindlin–Reissner plate formulation. Computer Methods in Applied Mechanics
and Engineering, 193(12-14):1065–1083, 2004.

[168] Y. Wang, Y. Yu, and Y. Lin. Isogeometric analysis with embedded stiffened shells for
the hull structural mechanical analysis. Journal of Marine Science and Technology,
27(1):786–805, 2022.

[169] R. Xiang, S. P. C. van Schie, L. Scotzniovsky, J. Yan, D. Kamensky, and J. T. Hwang.
Automating adjoint sensitivity analysis for multidisciplinary models involving partial
differential equations. Structural and Multidisciplinary Optimization, 67:1–31, 2024.

[170] F. Xu, E. L. Johnson, C. Wang, A. Jafari, C.-H. Yang, M. S. Sacks, A. Krishnamurthy,
and M.-C. Hsu. Computational investigation of left ventricular hemodynamics following
bioprosthetic aortic and mitral valve replacement. Mechanics Research Communications,
112:103604, 2021. Special issue honoring G.I. Taylor Medalist Prof. Arif Masud.

[171] F. Xu, S. Morganti, R. Zakerzadeh, D. Kamensky, F. Auricchio, A. Reali, T. J. R. Hughes,
M. S. Sacks, and M.-C. Hsu. A framework for designing patient-specific bioprosthetic
heart valves using immersogeometric fluid–structure interaction analysis. International
Journal for Numerical Methods in Biomedical Engineering, 34(4):e2938, 2018.

[172] F. Xu, D. Schillinger, D. Kamensky, V. Varduhn, C. Wang, and M.-C. Hsu. The tetrahedral
finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex
geometries. Computers & Fluids, 141:135–154, 2016. Advances in Fluid-Structure
Interaction.

[173] J. Yan, N. Li, T. Luo, M. T. Tolley, and J. T. Hwang. Optimal control and design of an
underactuated ball-pitching robotic arm using large-scale multidisciplinary optimization.
In AIAA Aviation 2019 Forum, 2019.

[174] J. Yan, R. Xiang, D. Kamensky, M. T. Tolley, and J. T. Hwang. Topology optimization
with automated derivative computation for multidisciplinary design problems. Structural
and Multidisciplinary Optimization, 65(5):151, 2022.

165

https://openmdao.org/newdocs/versions/latest/examples/beam_optimization_example.html
https://openmdao.org/newdocs/versions/latest/examples/beam_optimization_example.html

[175] H. Yang, B. E. Abali, D. Timofeev, and W. H. Müller. Determination of metamate-
rial parameters by means of a homogenization approach based on asymptotic analysis.
Continuum mechanics and thermodynamics, 32:1251–1270, 2020.

[176] Y. Yu, Y. Wang, and Y. Lin. Isogeometric analysis with non-conforming multi-patches for
the hull structural mechanical analysis. Thin-Walled Structures, 187:110757, 2023.

[177] W. Zhang, T. Bui-Thanh, and M. S. Sacks. A machine learning approach for soft tissue
remodeling. In Proceedings of FEniCS’19, 2019.

[178] H. Zhao, J. T. Hwang, and J.-S. Chen. Open-source shape optimization for isogeometric
shells using FEniCS and OpenMDAO. arXiv preprint arXiv:2410.02225, 2024.

[179] H. Zhao, J. T. Hwang, and J.-S. Chen. Shape optimization of non-matching isogeo-
metric shells with moving intersections. Computer Methods in Applied Mechanics and
Engineering, 431:117322, 2024.

[180] H. Zhao, D. Kamensky, J. T. Hwang, and J.-S. Chen. Automated shape and thickness opti-
mization for non-matching isogeometric shells using free-form deformation. Engineering
with Computers, pages 1–24, 2024.

[181] H. Zhao, X. Liu, A. H. Fletcher, R. Xiang, J. T. Hwang, and D. Kamensky. An open-source
framework for coupling non-matching isogeometric shells with application to aerospace
structures. Computers & Mathematics with Applications, 111:109–123, 2022.

166

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation
	Integration of design and analysis for complex shell structures
	Design optimization of complex shell structures

	Objectives
	Outline

	Literature Review
	Isogeometric analysis
	Structural analysis of shell structures
	Coupling methods for isogeometric shells
	Design optimization for shell structures
	Open-source shape optimization of isogeometric shells

	Non-matching coupling of isogeometric shells
	Kirchhoff–Love shell theory
	Penalty-based non-matching shell coupling
	Numerical procedures for shell coupling
	Benchmark problems
	Scordelis-Lo roof
	Torsion of a T-beam
	Nonlinear analysis of a slit annular plate
	Shell structures with curved intersections

	Shape optimization using FFD
	Automate IGA with Lagrange extraction
	Non‐matching shells update through FFD block
	Sensitivities for shape optimization
	Sensitivities for thickness optimization

	Benchmark Problems
	Arch shape optimization
	Tube shape optimization
	T-beam shape optimization
	Thickness optimization of a clamped plate

	Shape optimization with moving intersection
	Shape optimization of non-matching shells with moving intersections
	Shape optimization of isogeometric Kirchhoff–Love shell
	Shape optimization of multi-patch isogeometric Kirchhoff–Love shells
	Implicit relation between shell control points and intersections' parametric coordinates
	Partial derivatives of the non-matching residual
	Partial derivatives of the implicit intersection representation

	Shape optimization implementation details
	Multilevel design for IGA-based optimization
	Intersection types in shape optimization
	Optimization scheme
	Software elements for open-source implementation

	Benchmark problems
	T-beam under distributed load
	Tube with follower pressure

	Application to aircraft wings
	Integration of design and analysis for aerospace structures
	Design of eVTOL wing geometry
	Analysis of an eVTOL wing

	PEGASUS wing thickness optimization
	Structural analysis of the PEGASUS wing
	Thickness optimization of the PEGASUS wing

	Simultaneous optimization for eVTOL wing
	Shape optimization of wing internal structures

	Open-source implementation
	Analysis framework for non-matching shells
	Design of PENGoLINS
	Assembling the full system

	Optimization framework for non-matching shells
	Software dependencies and workflow
	Optimization components of shell shape optimization
	Components for FFD-based shape optimization
	Components for moving intersections

	Numerical examples with code implementation
	Non-matching arch shape optimization
	T-beam shape optimization with moving intersections
	Tube under internal pressure

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

