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ABSTRACT OF THE DISSERTATION 

 

How to Apply Directed Acyclic Graphs  
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Doctor of Philosophy in Epidemiology 
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Professor Roch A.K. Nianogo, Co-Chair 

Professor Onyebuchi A. Arah, Co-Chair 

 

Applied epidemiologists are required to not only address causal aims but descriptive and 

predictive aims as well. There is a lack of guidance on how to approach aims that are not 

obviously causal with the causal tools and methods that epidemiologists are often trained in. 

Directed Acyclic Graphs (DAGs) are used in epidemiology and clinical research to clarify 

assumptions and illustrate causal questions to inform study design and statistical analysis. 

However, there is little guidance on the use of DAGs outside of causal inference. This 

dissertation aims to address this gap by walking through the use of DAGs while navigating and 

adapting previously developed frameworks. In chapter 1, we provide the background and general 

approach of the dissertation. In chapters 2-4, we adapt an existing framework to provide 
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guidance on the use of DAGs to address descriptive, predictive, and causal aims, respectively. 

We demonstrate the application of DAGs by working through an example aim using data from 

the National Health and Nutrition Examination Survey I (NHANES-I) Epidemiologic Follow-up 

Study (NHEFS) as used in Causal Inference: What If. Lastly, chapter 5 provides a brief 

discussion of the similarities and differences in addressing these types of aims. We found that the 

importance of the target population is prevalent in any type of study. Similarly, selection bias, 

information bias, and missing data issues can arise in any study whereas confounding may not be 

as much of a concern in descriptive and some predictive studies. DAGs are useful to 

communicate and address these uncertainties. 
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1.1 Introduction 

Directed Acyclic Graphs (DAGs) are used in epidemiology and clinical research to clarify 

assumptions and illustrate causal questions to inform study design and statistical analysis.1–4 

DAGs are generally considered to be causal diagrams. Causal diagrams are visual tools used to 

depict these types of relationships. DAGs provide a method to visualize and check dependencies 

among variables for model specification.2 As such, they are instrumental in assessing whether 

certain conditions for identifiability have been met. Additionally, DAGs allow researchers to 

investigate different scenarios through the manipulation of variables. Thus, simulating 

counterfactuals and interventions becomes possible to explore.2 DAGs are adaptable and flexible 

due to their non-parametric nature. Their mathematical foundations have been previously 

described.1,5,6 However, the use of DAGs in applied research remains low.7,8 A recent study 

found that around 40% of respondents did not use DAGs, and the most common reason given 

was that they did not know how to use them.7 Accessibility to relevant training resources may be 

a barrier to more widespread use.7  

1.1.1 Basics of DAGs 

Although the basics of DAG use and construction have been described elsewhere,1–5,9,10 it is 

important to reiterate these basics to understand their application in non-causal and causal 

studies. Figure 1.1 and Table 1.1 provide examples and definitions of key concepts related to 

DAGs. Graphs are made up of nodes and arcs where the nodes represent variables, whereas the 

arcs represent the relationship between variables. Figures 1.1a and 1.1b are directed graphs 

because the arcs contained in the graph are all single-headed arrows. When the arrow from X to 

A is turned around as in Figure 1.1b, the graph is no longer acyclic since there is a feedback 
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loop from X→A→C→X. Only Figures 1.1a and 1.1c are acyclic because they do not contain 

any feedback loops. Therefore, Figures 1.1a and 1.1c are both DAGs. It is important to note that 

the strongest assumption you can make in a DAG is the lack of an arc between two nodes since it 

is essentially the only way to indicate magnitude in a basic DAG, given that it represents no 

direct association between the two nodes.  

To assess identifiability and/or bias in DAGs, we look at the paths that are presented in 

the DAG from the exposure of interest to the outcome of interest. Paths are a list of nodes and 

arcs that are all unique, regardless of the direction of the arrows. By tracing out the paths on a 

DAG, we can identify nodes as mediators, colliders, confounders, or instrumental variables. For 

instance, in Figure 1.1a, X←A→C←B→Y is a path. It is a closed path since it has a collider, C, 

on the path. A collider is a node that has two arrows pointing into it. Thus, information stops 

transmitting from X to Y at C in this path. However, X→M→Y is an open path as well as a 

directed path since the arrows are all pointing in the same direction from X to Y. On this path, X 

is an ancestor of Y and a parent of M since X and M are adjacent. In contrast, M is a child of X 

while Y is a descendant of X. In this case, M is a mediator since it is a node on a directed path.  

If we are interested in the total effect of X on Y, we would not want to adjust for this mediator 

because it would remove some of the effect of interest given that it is on a causal path (i.e., a 

directed path). However, X←C→B→Y is a biasing path since the path is open and not directed. 

It can also be called a confounding path since it begins with the exposure of interest, X, and ends 

with an arrow going into the outcome of interest, Y. As such, both B and C are considered 

confounders of the effect of X on Y. To ensure conditional exchangeability of the exposed and 

unexposed, it would be important to control for these confounders to assess the total effect of X 

on Y. Thus, we would want to consider adjusting for either B, C, or both to assess the total effect 
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of X on Y. However, because C is a collider on path X←A→C←B→Y and a confounder on 

path X←C→Y, we cannot close one path without opening the other unless we also adjust for 

either A or B. Another confounding path is X←A→C→Y however, this path is also a back-door 

path since it is a path from X to Y and begins with a parent of X, A. Thus, according to this 

DAG, A, B, and C are sufficient to control for confounding. However, controlling for either only 

A and C or only B and C is minimally sufficient since either of these subsets of the sufficient set 

is enough to control for confounding. If C were an unmeasured variable as it is in Figure 1.1c, 

there would be no sufficient set for adjustment when using traditional methods to assess the 

direct effect of X on Y. However, if instead, we evaluate the effect of Z on Y, X then becomes a 

collider on the path from Z→X←(C)→Y. The only open path in Figure 1.1c is Z→X→Y. As 

such, we would call Z an instrumental variable because: 1) Z only affects Y through X; 2) Z is 

associated with X; and 3) Z is independent of confounders A, C, and B. Thus, in this scenario, 

we can use Z as an instrumental variable to assess the effect of X on Y.5,11   

1.1.2 Justification 

As previously mentioned, several resources have been published that provide the basics of 

DAGs.1–5,9,10 Furthermore, Ferguson et al have provided guidelines on the synthesis of evidence 

and the construction of DAGs to provide a systematic method of the development of DAGs for 

causal inference.12 Although DAGs have become an increasingly popular method for causal 

inference, the use of DAGs in applied research remains low.7 Specifically, the use and reporting 

of DAGs vary in applied health research.8 Even when DAGs are reported in these studies, most 

fail to report how adjustment sets were derived for estimates that are provided, including those 

for the primary analysis of interest.8 Confusion or disagreement on the rules and assumptions of 
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DAGs may have contributed to their limited uptake as a systematic method to construct 

models.7,8 DAGs are often taught from a causal perspective; therefore, applying them in non-

causal or non-traditional settings may seem daunting. For example, knowledge of presenting 

some of the concepts unique to descriptive and predictive aims in a DAG is lacking and therefore 

may have prevented their use in these types of studies.  Thus, a lack of access to relevant training 

resources may present a barrier to the more widespread use of DAGs.7 A DAG may not be the 

most appropriate diagram at every stage of model specification; however, it can be a useful 

visual tool to communicate assumptions, check identifiability criteria, and discern sources of 

potential bias. This dissertation aims to develop and demonstrate guidance on the fuller use of 

DAGs for descriptive, predictive, and causal inference aims, which are commonly used in 

applied epidemiologic research.  

1.2 Overall and Specific Aims 

DAGs are used in epidemiology and clinical research as a tool to clarify assumptions and 

illustrate causal questions to inform study design and statistical analysis. They are especially 

useful in assessing whether certain conditions for identifiability have been met. DAGs are 

adaptable and flexible due to their non-parametric nature. Despite their well-established 

mathematical foundation, DAGs remain underused in applied research, often serving as token 

conceptual devices or flags when used.7 Confusion or poor knowledge of the rules and 

assumptions of DAGs may have contributed to the limited or superficial uptake of DAGs in 

empirical work. Training resources present a barrier to the more widespread use of DAGs even 

in causal studies.7 As such, low knowledge may have prevented their use in some settings such 

as studies with descriptive or predictive aims. To address this gap, this dissertation aims to 
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develop and demonstrate guidance on using DAGs more fully from the beginning to the end of 

causal, predictive, and descriptive studies in applied epidemiology.  

 

Aim 1:  

To formalize and demonstrate the use of augmented directed acyclic graphs (DAG) for the 

design, analysis, and interpretation of descriptive aims in epidemiology, with application to the 

National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study (NHEFS). 

Aim 2:  

To formalize and demonstrate the use of augmented DAGs the design, analysis, and 

interpretation of predictive model, applied to the National Health and Nutrition Examination 

Survey I Epidemiologic Follow-up Study (NHEFS). 

Aim 3:  

To formalize and demonstrate the use of augmented directed acyclic graphs (DAG) for the 

design, analysis, and interpretation of causal inference aims in epidemiology, with application to 

the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study 

(NHEFS).  

1.3 Methods: Approach & Data 

1.3.1 General Approach 

We intend to carry out the aims of this dissertation in two main steps. The first step is to map 

each step of the study type to the use of DAGs and in what way, with or without augmentation. 

DAGs can be used to track background knowledge and the evolution of the data-generating 

process, including changes induced by conducting the study. The steps for each type of study 
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that we will be basing our process on can be seen in Table 1.2. The steps for descriptive studies 

were adapted from a framework for reporting in descriptive studies by Lesko et al.13 Those for 

predictive studies were inspired by the steps for the development of predictive models published 

by Steyerberg and Vergouwe.14,15 Those for causal studies outlined in Table 1.2 were adapted 

from the causal roadmap developed by Petersen and van der Laan.16 The second step is to 

demonstrate the evolution of DAGs throughout the research stages through empirical 

applications using existing data.  

1.3.2 Data for application and demonstration 

To illustrate the evolution of DAGs during the data-generating process, we intend to the 

following dataset for empirical application: 

1.3.2.1 The National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study 

(NHEFS) 

The National Health and Nutrition Examination Survey I (NHANES-I) Epidemiologic Follow-up 

Study (NHEFS) was a joint effort between the National Center for Health Statistics and the 

National Institute on Aging in collaboration with other agencies as a follow-up to investigate the 

relationships between clinical, nutritional, and behavioral factors that were previously assessed 

in NHANES I.17 Specifically, the NHEFS study was intended to measure subsequent morbidity, 

mortality, hospital utilization, and changes in certain risk factors, functional limitation, and 

institutionalization. It is a national longitudinal study with a cohort that includes persons 25-74 

who completed a medical examination for NHANES I in 1971-1975 (n=14,407).17 To date, four 

follow-up studies were conducted in 1982-1984, 1986, 1987, and 1992. The first wave was 

conducted over two years (1982-1984) where personal interviews with subjects or their proxies 
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were conducted; pulse rate, weight, and blood pressure of surviving participants were measured; 

hospital and/or nursing home records of overnight stays were collected; and death certificates of 

the decedents were also collected.17 Follow-up continued in 1986, 1987, and 1992 where similar 

study design and data collection procedures were implemented. A 30-minute computer-assisted 

telephone interview was conducted instead of a personal interview. Additionally, no physical 

measurements were taken. The 1986 NHEFS was conducted among respondents to the previous 

NHEFS who were 55-74 years of age at baseline and not already known to be deceased 

(n=3,980).17 In contrast, the 1987 and 1992 NHEFS follow-ups were conducted among the entire 

NHEFS cohort who were not deceased (n = 11,750 and 11,195, respectively).17 Participants were 

successfully traced at some point through the 1992 follow-up at a rate of 96 percent.17 We used 

the version of the dataset used in Causal Inference: What If where the data is restricted to 

individuals with known sex, age, race, weight, height, education, alcohol use, intensity of 

smoking at baseline and follow-up and those who answered the medical history questionnaire at 

baseline (n=1,629).4,18 

1.4 Differentiating causal, predictive, and descriptive aims 

As we can see in Table 1.2, the first step of any study regardless of its aim is to define the 

research question. It is at this point that we can determine whether the question of interest is truly 

causal, predictive, or descriptive in nature. Pearl’s ladder of causation describes three rungs for 

causation: 1) association – seeing or observing the relationship based on the data that currently 

exists; 2) intervention – doing or intervening on something to observe the effect on the outcome 

of interest; and 3) counterfactual – imagining what could happen if an intervention had or had 

not taken place.19 Figure 1.2 provides a visual representation of the general relationship and 
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scope of causal, predictive, and descriptive aims with respect to each other. This figure shows 

that all studies have some descriptive component to them. Whether a study aims to be purely 

descriptive, both predictive and causal studies aim to describe something. In predictive studies, 

the aim is to describe future or potential outcomes based on data that is currently available. In 

causal studies, the aim is to describe the relationship between exposure and an outcome. The 

differences in these aims can be more clearly seen in the scope of the aim. Purely descriptive 

aims are broader and tend to establish that a connection exists. Predictive aims tend to be 

narrower in scope as predictors are used to increase the connection between two variables such 

that the outcome of interest can be more accurately predicted. In Pearl’s ladder of causation, 

diagnostic predictive and descriptive aims remain on the first rung of causation.19 However, 

prognostic predictive aims depend on the treatment strategy used to predict a future outcome and 

can cross into the second or even third rung of causation.20 Causal aims, however, are much 

more path-specific and dependent on the effect of interest and require conditions of 

identifiability to be met for causal inference. Whether the question calls for investigating the 

total, direct, or indirect effect requires an appropriate selection of deconfounders to isolate that 

pathway of interest. As such, they can land on any rung of the ladder of causation.  

Figure 1.3 demonstrates a potential way to determine how to differentiate causal, 

predictive, and descriptive aims. Understanding how predictive and causal aims differ is 

necessary for methodological considerations and interpretation of the results in order to prevent 

conflation.21 Conflation can occur when a study with a predictive aim is interpreted causally or 

variables selected are based on the causal structure and the presence of confounders, or 

conversely, a study with a causal/etiologic aim selects variables on their ability to predict the 

outcome.21 This is not to say that there are no instances in which the lines between causal and 
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predictive aims are blurred. In fact, counterfactual prediction is such an instance where the aim is 

to predict a counterfactual event and as such, requires causal inference.21,22 Similarly, some 

treatment strategies within the prognostic framework may also require the consideration of the 

causal structure when the treatment strategy itself cannot be seen in the observational data and 

are therefore hypothetical.20,21 

As such, it is important to understand a causal effect and how it differs from an 

association. In Pearl’s ladder of causation, the difference can be described as seeing versus 

doing.19 We see an association but we need to do something to observe an effect. Taken one step 

further would require us to imagine how something could have been. This alternate outcome is 

considered hypothetical or counterfactual since it cannot be presently observed given the current 

data.19,20,22 When an action results in a particular outcome, the action taken is referred to as a 

cause, and the outcome that results from this cause is the effect.4 Specifically, this outcome can 

be referred to as a causal effect. In mathematical terms, if there is a binary exposure X, the effect 

of X on Y would be considered a causal effect if the outcome Y when x=1 did not equal Y when 

x=0. If two actions are related, but there is not enough information to establish their relationship, 

the relationship is considered associational. In general, associational relationships lack a 

specified direction or can be bidirectional. In contrast, causal effects tend to have a specific order 

from action to outcome.  

1.5 Descriptive Aims 

Descriptive epidemiology is generally non-causal in nature. The importance of these types of 

studies is understated in most introductory epidemiology courses.23 They provide information on 

the trends and distribution of health, disease, and potential exposures in the population. 
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Specifically, they are typically used to describe patterns of exposure status or disease occurrence 

according to certain characteristics such as time, geographic location, age, race/ethnicity, and 

socio-economic status. They are particularly useful when little is known about the epidemiology 

of a disease.24 As such, they tend to be a part of the initial discovery of information about the 

relationship between two variables. These studies can either stand on their own or be a first step 

to larger studies.24 Since descriptive epidemiology can help identify patterns, it can serve several 

purposes: to aid with hypothesis generation; to guide the targeting of public health interventions; 

to assess health disparities; and to detect emerging health threats.25 Disease surveillance is a 

common application of descriptive epidemiology.25 Identifying the variation in certain 

characteristics of the population can help pinpoint sources of exposure. A historic example of 

descriptive epidemiology that is often referenced in introductory epidemiology courses is the 

investigation conducted by John Snow during the 1854 cholera outbreak in London, England. 

More recently, the application of descriptive epidemiology was frequently used during the 

beginning of the COVID-19 pandemic to understand the spread of disease and the frequency of 

disease occurrence among the most vulnerable populations over time.  

1.5.1 Descriptive or causal? 

Descriptive studies are often viewed as hypothesis-generating mechanisms for causal analyses 

however, this is not their sole purpose. As a result, the line between descriptive and causal 

studies can often be confusing. This may be because of the focus on causal epidemiology in 

public health programs rather than formally introducing students to what descriptive 

epidemiology entails.23 While descriptive studies are intended to characterize variations in 

disease occurrence concerning person, place, and time of the population, analytic studies or 
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studies of causation are intended to test causal hypotheses.24,25 As such, a descriptive question 

aims to quantify and characterize the variation of a health feature of the population.13,25 Given 

their non-causal nature, descriptive studies tend to describe associational relationships rather than 

causal effects.26 In a sense, descriptive epidemiology deals more with discovery through 

correlation whereas causal epidemiology deals with testing a hypothesis. As with causal 

epidemiology, whether a study is intended to be descriptive or not depends on the research 

question that is meant to be answered.13,23,27 The questions that they answer are typically with 

regards to defining the person, place, and time of the population in which disease occurs.25 

Similarly, they can also identify potential exposures in a population.  

1.5.2 Bias in descriptive studies  

Descriptive studies, like causal studies, are subject to confounding, selection bias, and 

measurement error.13,23,28 Stratification, restriction, and adjustment may still be required in 

descriptive studies to reduce bias.23 However, unlike causal studies where controlling for 

confounding is essentially mandatory, it may not be necessary to control for confounding in 

descriptive studies unless the question calls for it.13,23,27 In fact, adjusting for confounding in 

descriptive studies can be harmful and result in over-adjustment.13,23,27 However, mitigating 

selection bias and measurement error is necessary to ensure the results are valid.13,23 Similarly, as 

with all epidemiologic studies, missing data issues can arise, and understanding the nature of 

missingness is important to properly address it.13,28 It is also important to assess the plausibility 

of the assumptions made based on the type of missingness.29 Thus, DAGs can be a useful tool to 

identify potential confounding variables, types of missingness, and bias. 
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1.6 Predictive Aims 

The availability of big data has brought a larger focus on predictive studies, especially among 

health scientists. Predictive epidemiology is generally viewed as non-causal; however, causal 

inference can be a special case of prediction.14,20,22,30 Predictive studies use data to predict 

potential outcomes (future or counterfactual) or observe the likelihood of the presence of the 

outcome based on current conditions. Thus, prediction models can be used to predict individual 

risk or identify strong predictors for the outcome.14,15 In public health, predictive epidemiology 

can be used for both diagnostic and prognostic purposes.14,30 In diagnostic settings, researchers 

use an individual’s characteristics and/or symptoms to determine whether or not they currently 

have a specific disease. In prognostic settings, researchers aim to determine an individual’s 

future outcome. Additionally, it is not uncommon for public health researchers to wish to know 

how a treatment or intervention may have affected (counterfactual prediction) or could affect 

(prognostic prediction) a patient’s or population’s potential outcome. These types of studies can 

involve causal inference which may blur the lines between causal and predictive studies; 

however, there are differences in approach and considerations that need to be made. 

1.6.1 Predictive or Causal? 

Causal inference and prediction modeling are typically viewed as separate branches in 

epidemiology. However, as with other study designs, the type of prediction model is dependent 

on the question being asked. In most cases, researchers use prediction models to predict the 

outcome of a disease based on the available data. However, in public health, researchers and 

policy-makers often like to know what the potential outcome could be had an intervention or 

policy taken place in a specific population. These questions are counterfactual in nature and 
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require assumptions to be made about the relationships of predictors. Additionally, if the 

question is aimed at predicting a future outcome, it is in the interest of the reader to maximize the 

d-connectedness of the exposure and the outcome. Currently, in epidemiology, prediction is used 

to predict the exposure as with propensity score methods or to predict the outcome with G-

computation. Both of these methods have been accepted within the causal inference framework. 

However, clinical predictive studies include analytic methods such as machine learning and 

simulation. To maximize the d-connectedness of the exposure and outcome, it is important to 

know the underlying mechanisms and relationships with respect to the exposure and outcome. 

Additionally, minimizing the number of predictors in the model may be of interest to improve 

the interpretability of the model.  

1.6.2 Transportability and Predictor Selection in Predictive Studies 

Although predictive studies are not generally subject to confounding bias,30 they can be subject 

to the issue of transportability.31,32 In epidemiology, we say that an estimate is transportable if 

we can extrapolate estimates derived from one population to another target population.30,33,34 In 

diagnostic predictive studies, the transportability of the estimate to various populations is of great 

concern to validly predict the risk of the outcome from one population to the next. As such, the 

transportability of an estimate can be influenced by the predictors that are selected for inclusion 

in the model.32 Methods for transporting a model/estimate to a different target population exist 

and can require causal assumptions to be met.33–35 DAGs may be a useful tool to select predictors 

that can increase the transportability of the model to other populations.32  
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1.7 Causal Aims 

Aims that require causal inference are a primary concern in epidemiology.4,30 Whether it is 

identifying the etiology of a disease or establishing the effectiveness of a treatment/intervention, 

epidemiologists rely on causation to improve public health. Relying solely on non-causal 

evidence to diagnose and treat public health disparities is highly impractical and as such, 

causation is often the basis of epidemiology in schools of public health. It is from this 

perspective that DAGs are introduced to epidemiology students. As a result, DAGs are rarely 

used outside of the causal framework, and their use in applied epidemiology is limited.7 

Nonetheless, even within the causal framework, DAGs have been underused regardless of their 

flexibility and ability to evolve and be augmented. For causal aims, identification of the causal 

effect is the highest priority and DAGs can be used to clarify the steps needed for identification. 

1.7.1 Conditions of Identifiability  

As mentioned previously, DAGs are a good tool to assess whether certain identifiability 

conditions have been met. There are seven conditions of identifiability for causal inference  

(Table 1.3).4,36–38 The first states that all variables are well-defined. In other words, all variables 

are properly named and measured. For example, a time-dependent variable should be properly 

labeled to identify when it was collected or measured. The next condition states that there is 

exchangeability of the risk of the outcome among the exposed and unexposed had the unexposed 

been exposed counter to fact. Thus, conditional exchangeability states that the outcome risk of 

the exposed (or treated) can be replaced by the potential outcome risk of the unexposed if, 

counter to fact, they had been exposed, conditional on certain covariates (i.e., (de-)confounders). 

Conditional exchangeability is often a more reasonable condition in observational studies, 
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whereas exchangeability can be attained in large randomized trials.4,30 Another condition that is 

useful for causal inference is positivity. Stated simply, positivity states that exposure values (i.e., 

exposed and unexposed) must be possible for all groups of the confounders under study, such 

that exposure is not deterministically assigned within levels of the confounding set.4,30 The fourth 

condition, consistency, states that if a person is observed to be exposed, their outcome would be 

no different had they been assigned to be exposed. In other words, the outcome of a treated 

individual would be no different had the researcher intervened to assign said treatment to that 

individual.4,30 The fifth states that there is no interference such that an individual’s risk of the 

potential outcome is not affected by another individual’s outcome (or even exposure). As such, 

their outcomes are independent. If interference is possible, it is essential to use models that 

account for it. The sixth condition states that there are no other sources of bias. Specifically, 

there is no selection bias, measurement error, or fraud. Lastly, the seventh states that there is no 

model misspecification. In other words, the statistical model must sufficiently account for 

existing sources of bias and should not introduce new sources.  

1.7.2 Measures of interest 

There are typically three types of causal estimands of interest: 1) the average treatment effect in 

the total population (ATE); 2) the average treatment effect among the treated (ATT); and 3) the 

average treatment effect among the untreated (ATU).39,40 The ATE aims to measure the effect of 

treatment on the outcome in the total population. The ATT measures the effect of treatment 

among those who were actually exposed to the treatment while the ATU measures that among 

those who were actually unexposed. As previously mentioned, public health researchers are often 

interested in evaluating the effect of policy and interventions on health outcomes. To assess these 
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questions, these researchers are interested in the causal effect of the intervention of interest 

among the treated, in other words, either the ATE or the ATT. Other estimands of interest 

include intent-to-treat analysis (ITT) and the local average treatment effect (LATE).39,40 These 

estimands are typically used in instrumental variable analysis. The ITT measures the effect of an 

instrumental variable on the outcome whereas the LATE measures the effect of the treatment on 

the outcome among the subgroup in which the instrumental variable affects the treatment.39,40  

1.8 Application Background 

To demonstrate the differences and use of DAGs in descriptive, predictive, and causal studies, 

we will address the research questions surrounding smoking cessation and weight gain in Box 

1.1. Smoking is extremely harmful and can affect nearly every organ in the body.41,42 Each day 

around 1,600 youths try smoking a cigarette for the first time.41 Moreover, smoking kills nearly 

one in five Americans annually.42 Thus, quitting smoking has great benefits and can reduce a 

person’s risk for serious smoking-related disease.43 In fact, many adults would like to quit 

smoking and for the first time in the United States, there are more former smokers than current 

smokers as of 2022.43 However, a potential barrier to smoking cessation is the potential for 

weight gain.44 This can occur because of the way that nicotine affects the body.44 For example, 

nicotine reduces food cravings and speeds up the metabolism. As a result, often a withdrawal 

symptom is increased food cravings not only because of replacement of cigarette cravings with 

potentially unhealthy foods, but also because of an improvement in food enjoyment.44,45 When 

accompanied with a decrease in the metabolic rate, the risk for weight gain is increased. For 

demonstration purposes, we examine the relationship between smoking cessation and weight 

gain from descriptive, predictive, and causal angles using the NHEFS data. 
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1.9 Dissertation structure 

This dissertation is structured into five chapters. In the first chapter (general introduction) we 

gave an overview of the current gaps in the use of DAGs, an introduction to DAGs, 

differentiated causal, predictive, and descriptive aims, and the overall aims of this dissertation. 

Additionally, we introduced the general approach and methods that will be used to address this 

gap in the following chapters. The second chapter will describe and demonstrate how DAGs can 

also be useful to address descriptive aims. The third chapter will take a similar approach, using 

DAGs when developing a predictive model to address predictive aims. The fourth chapter will 

break down how to use DAGs when applying the causal roadmap to answer causal questions. 

Lastly, the fifth chapter will provide a brief discussion of our findings. 
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1.10 Appendix 

Table 1.1: Key terms, definitions, and examples for directed acyclic graphs (DAGs) 

Terms Definitions Example 

nodes variables in a graph 
X, the exposure of interest, is a node 

on the graph 

edges/arcs 

connectors (typically arrows) that are 

used to depict the relationship between 

two nodes 

A is connected to C by an edge 

depicted as an arrow going from A to 

C 

ancestor 
a variable X is an ancestor of Y if it 

affects Y either directly or indirectly 

A is an ancestor of M  

(A→X→M) 

parent 
a variable X is an ancestor of Y if it 

affects Y directly 

X is a parent of M  

(X→M) 

descendant 
a variable Y is a descendant of X if it is 

affected by X either directly or indirectly 

M is a descendant of A 

(A→X→M) 

child 
a variable Y is a descendant of X if it is 

affected by X directly 

M is a child of M  

(X→M) 

directed 
all arcs in the graph are depicted by 

single-headed arrows 

Figures 1A, 1B, and 1C are directed 

graphs 

acyclic no feedback loops 

Figures 1A and 1C are acyclic whereas 

Figure 1B is not acyclic because it 

contains a feedback loop  

(X→A→C→X) 

path 

a sequence of nodes and edges from one 

node to another with no repeated nodes 

or edges, regardless of the direction of 

the arrows 

X←A→C←B→Y is a path from X to 

Y in Figure 1A 

causal/directed 

path 

all arrows along the path are head-to-tail 

(i.e., all flow in the same direction) 
X→M→Y is a causal path 

collider 
nodes that have two arrows pointing into 

them when tracing out a path 

C is a collider on the path 

X←A→C←B→Y in Figure 1A 

unblocked/open 

path 
a path without colliders X←C→Y is an open path 

blocked/closed 

path 
a path that has a collider on it X→A→C←B→Y is a closed path 

sufficient 
a set of variables S where the effect of X 

on Y is unbiased given S 

S1={A,B,C} is a sufficient set for 

adjustment to estimate the total effect 

minimally 

sufficient 

a sufficient set of variables S where no 

proper subset of S is sufficient to identify 

the effect of X on Y 

S2={A,C} and S3={B,C} are 

minimally sufficient sets for 

adjustment to estimate the total effect 

of X on Y in Figure 1A 

biasing path 
an open path that is not directed from X 

to Y 

X←C←B→Y is a biasing path of the 

effect of X on Y 
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Terms Definitions Example 

confounding 

path 

an open path that is not directed from X 

to Y which ends with an arrow into Y 

X←C→Y is a biasing path of the 

effect of X on Y 

confounder 
nodes that are common causes of X and 

Y or intercept a confounding path 

C is a confounder on the path 

X←C→Y 

back-door path 
a path that connects exposure and 

outcome that begins with a parent of X 

X←A→C→Y is a back-door path in 

Figure 1A 

back-door 

criterion 

Identifies a set of variables S that are 

sufficient to block all back-door paths 

once conditioned on 

C is sufficient to block the backdoor 

paths X←C→Y, X←A→C→Y and 

X←C←B→Y and A is sufficient to 

block the backdoor path 

X←A→[C]←B→Y 

mediator nodes that intercept causal paths 
M is a mediator of X and Y on the 

path X→M→Y 

d-separation 

two variables are independent of one 

another (no open paths between two 

nodes) 

A is d-separated from B 

instrumental 

variable 

nodes that are ancestors of the exposure, 

only affect the outcome through the 

exposure and share no common causes 

with the outcome 

Z is an instrumental variable 
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Figure 1.1: a) Example of basic DAG; b) example of a directed graph that contains a feedback loop; and c) example of instrumental 

variable DAG 
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Table 1.2: Comparing the steps of causal vs. predictive vs. descriptive studies 

Descriptive Predictive Causal 

0) Define the research 

question 

0) Define the research 

question 

0) Define the research 

question 

1) Specify knowledge 

about the system 

1) Specify knowledge 

about the system 

1) Specify knowledge 

about the system 

2) Link the data to the 

system 

2) Link the observed 

data to the system 

2) Specify the observed 

data 

3) Specification of the 

target measure of 

occurrence & the role of 

covariates 

3) Specification of the 

target quantity, model 

specification, and 

model estimation 

3) Specification of the 

target causal quantity & 

assess identifiability 

4) Estimation 

4) Model performance 

& validation (Bias 

analysis) 

4) Commit to a 

statistical model and 

estimand 

5) Sensitivity/Bias 

analysis 

5) Interpretation of 

results 
5) Estimation 

 6) Interpretation   
6) Sensitivity/Bias 

analysis 

  7) Interpretation 
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Figure 1.2: Illustration of the a) relationship and b) scope of descriptive, predictive, and causal aims 
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Figure 1.3: Process map to determine the nature of the research question 
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Table 1.3: Conditions for effect identifiability 

Condition Definition 

Well-defined variables Every variable is properly named and measured 

Conditional exchangeability 
The potential outcome of Y had X been set to x is 

independent of X given a set of confounders Z 

Positivity 

For every non-zero probability of a set of 

confounders, Z, and exposure, X, there is a greater 

than zero probability of X given Z (i.e., all values of 

the exposure, X, must be possible for all Z under 

study) 

Consistency 
For those X = x, the potential outcome of Y had X 

= x is their observed Y 

Interference 

No spill-over effects or network ties between units. 

An individual's outcome is not dependent on 

another individual's outcome or exposure. 

Otherwise, if present, interference is appropriately 

accounted for. 

No other sources of bias 
No selection bias, dependent measurement error, or 

misrepresentation of the data 

No model misspecification 
The statistical model used sufficiently accounts for 

existing biases and no new biases are introduced 
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Box 1.1: Research questions for the application of descriptive, predictive, and causal aims 

Descriptive - Who is gaining weight?  

Predictive – What are the strongest 

predictors of weight gain? 

Causal - What is the total average causal 

effect of smoking cessation on weight gain? 
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Chapter 2 DAGging out descriptive aims 
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2.1 Abstract 

In epidemiology, researchers often conduct studies with descriptive aims to characterize patterns 

of disease, health, or even exposure to health risks in the population. Descriptive aims are 

especially helpful because they give context to person, place, and time of an event or disease of 

interest, allowing researchers to generate new hypotheses, assess health disparities, identify 

potential areas for targeted intervention, and describe the burden of disease or exposures to 

assess health needs. Here, we adapt previously introduced frameworks for reporting on 

descriptive aims13 and the causal road map16 to provide guidance on the use of directed acyclic 

graphs (DAGs) in the context of conducting descriptive studies. We then demonstrate one 

application of this adapted framework in an example analysis of weight gain in the National 

Health and Nutrition Examination Survey I (NHANES-I) Epidemiologic Follow-up Study 

(NHEFS). This chapter is intended to provide guidance on the incorporation of the use of DAGs 

in descriptive studies to assess and appropriately address sources of selection bias, 

misclassification bias, and missing data to support future research. 
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2.2 Introduction 

In epidemiology, researchers often aim to describe patterns of disease, health, or even exposure 

to health risks in the population. Thus, the aim of the study is not necessarily causation but to 

establish correlation. In particular, studies with descriptive aims describe or document the 

distribution of disease or potential exposures in the population in terms of person, place, and 

time.9,13,23–25,28 Box 2.1 describes the person, place, and time of an event and the potential 

questions that may be of interest. Understanding the pattern of occurrence of disease in the 

population is a primary interest in public health research. Therefore, questions about whom the 

disease is affecting, where it is occurring, and how frequently the disease occurs are common. 

Addressing these questions serve several critical purposes in epidemiologic research (Box 2.2).25 

First, descriptive aims are commonly used to generate new hypotheses for analytic studies. These 

aims can help identify potential areas for more in-depth research. It is important to note that this 

is not the only potential purpose for descriptive aims. Second, descriptive aims can identify and 

assess health disparities in the population. Doing so can highlight potential exposures or systemic 

vulnerabilities that may have health consequences. This leads to the third purpose of descriptive 

aims which is to identify potential areas for targeted intervention. If one segment of the 

population is experiencing higher rates of disease, it is more cost-effective and urgent to 

concentrate public health efforts there. Lastly, descriptive aims have been used to detect 

emerging public health threats. An example of this last purpose is public health surveillance. 

Descriptive aims are commonly addressed because they serve a critical role in public health 

research. 

 Despite their importance and common application in public health research, 

epidemiologic studies with descriptive aims are rarely taught beyond introductory epidemiology 
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classes.23 Additionally, tools that are acquired in school, such as directed acyclic graphs (DAGs), 

are taught from a causal perspective. As a result, there is little guidance on how to apply DAGs 

to descriptive aims.7 Here, we demonstrate the use of DAGs to address descriptive aims and 

expand on the descriptive framework provided by Lesko et al. We do this by reviewing, 

reasoning about, and annotating where and how DAGs could be useful in conducting a study 

with descriptive aims by adapting Lesko et al.’s descriptive framework and the causal roadmap 

by Petersen and van der Laan.13,16 We illustrate these with application to data taken from Causal 

Inference: What If and addressing the question of who is gaining weight in the analytic sample 

used in the book.4 

2.3 Applying DAGs to the descriptive framework 

2.3.1 Overview of the descriptive framework 

Lesko et al. developed a checklist for reporting on descriptive aims (Table 2.1).13 Although this 

checklist is comprehensive for reporting, questions on how to utilize DAGs to inform study 

design, analysis, and interpretation for a descriptive aim remain.7 We develop steps to conduct a 

descriptive study in alignment with this checklist and incorporate how DAGs can be used to 

address these items (Table 2.2). The steps we follow include: 0) specifying the research 

question; 1) specify knowledge about the system; 2) linking the data to the system under study; 

3) specifying the measure of occurrence and the role of covariates; 4) conducting a 

sensitivity/bias analysis; 5) estimation; and 6) interpretation. In this paper, we apply DAGs to a 

descriptive aim and demonstrate their use with application. 
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2.3.2 Step 0: Specify the research question 

A preliminary step of all studies is to specify the research question and studies with descriptive 

aims are no different. The importance of having a well-defined research question cannot be 

overstated.27 A descriptive research question aims to strictly see what is happening in a 

population.19,22,23,30 There are four main characteristics of a well-defined research question for 

descriptive aims (Box 2.3).13,23 The first is defining the target population.13,23 This is especially 

important for descriptive aims.13,23,27 The research question should address who the target 

population is. A well-defined target population should describe who, where, and when the study 

is aiming to make inferences about. Platt argues that defining the target population may be an 

unnecessary step in some descriptive aims where the inference is about the sample itself.28 This 

may be true, however, it may be beneficial to be transparent about this aim from the start to 

prevent others from overgeneralizing any results in the future. Second, the research question 

defines the outcome, event, or characteristic of interest. Along with this, the third characteristic 

of the research question is specifying the measure of occurrence of interest. Generally, 

descriptive research questions will aim to quantify the prevalence, incidence, or frequency of a 

certain outcome in the population.13,23 This will be made clear in the research question itself. 

Lastly, there may be other variables that need to be specified as potential covariates. These 

variables will either be stratified on or standardized over depending on whether they are 

variables that further characterize the outcome or detract from the ability to quantify the 

outcome.13,23 

2.3.2.1 Step 0: Application 

To demonstrate the application of this framework with DAGs, we will look at who is gaining 

weight and assess crude mean and risk differences in weight gain on smoking cessation status. 
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This example is a descriptive aim to expand on an example presented by Hernán and Robins in 

Chapter 12 of Causal Inference: What If.4 Specifically, we would like to know the proportion of 

individuals who gained a significant amount of weight from 1971 to 1982 overall, as well as 

among the crude mean or risk difference of weight gain among those who quit smoking 

compared to those who did not. The time period for this study is 1971 to 1982. The target 

population, in this case, is our analytic sample which consists of cigarette smokers ages 25-74 

years who remain in the analytic sample after exclusion criteria is applied. Our outcome of 

interest is weight gain at the end of the study period. The aim is to describe who gained weight 

and quantify the differences between those who quit smoking and those who did not. We would 

also like to observe any differences in the frequency of weight gain for demographic categories 

and certain lifestyle characteristics (i.e., daily activity level, recreational activity level, and 

smoking intensity). Similarly, we would like to observe any demographic and characteristic 

differences between those who had clinically significant weight gain and those who did not.  

2.3.3 Step 1: Specify knowledge about the system 

For descriptive aims, it may not be the case that knowledge of the system exists. However, it 

may still be useful to illustrate exactly what we aim to assess and its limitations. For example, if 

we wish to characterize an outcome Y, we may not know the direction of the effect of the 

characteristic on Y or vice versa unless we have longitudinal data. However, with a descriptive 

aim, this may not be necessary. We may only be interested in quantifying the presence of the 

outcome during a certain time period. So why use DAGs? Why even have this step? Simply, 

descriptive aims can serve as more than a hypothesis-generating mechanism. They are 

population-specific and as such, the same descriptive question in a different population is still 

valuable information for discovery. For instance, they can also be used to allocate resources to 
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populations in need. Additionally, it may be beneficial to outline what is already known to better 

identify critical information for data collection. If data has already been collected, they may 

provide a basis for narrowing the field of study. Thus, DAGs may be helpful to justify such 

choices since they are valuable tools for communication, even when the aim is non-causal. 

DAGs can communicate the assumptions and hypotheses of the researcher and as such are 

valuable tools for transparency of why variables were collected/assessed with the outcome. 

2.3.3.1 Step 1: Application 

Figure 2.1 shows potential DAGs for the relationships between baseline covariates and the 

outcome(s) of interest. In our example, our primary outcome of interest is weight gain at the end 

of the study period (wg). After a review of the literature, we constructed a DAG to illustrate the 

relationship between the variables of interest and the outcome (Figure 2.1a) as well as a 

simplified DAG where we assume that the relationships between baseline covariates are not of 

interest (Figure 2.1b). For the remainder of the study, we will work with the DAG in Figure 

2.1b for simplicity. In this DAG, Z0 refers to the baseline covariates age, education, sex, race, 

recreational physical activity, daily life physical activity, smoking intensity, years of smoking, 

and weight at baseline. The mediators (M1) are recreational physical activity, daily life physical 

activity, and diet between baseline and follow-up as a result of smoking cessation. Lastly, the 

main covariate of interest is smoking cessation status (qsmk) between baseline and follow-up. 

Though smoking cessation status is technically time-varying, we will ignore this as Hernán and 

Robins do in Chapter 12 of What If.4 Our primary interest is to quantify the distribution of 

demographic and behavioral characteristics with respect to weight gain. 
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2.3.4 Step 2: Link the data to the system 

In this step, we aim to assess the internal validity and potential external validity of the analysis 

given the data. When addressing a descriptive aim, there is generally less concern about 

confounding.23 However, selection bias and measurement error may still be a concern. People 

may be differentially selected for the study such that the data reflects only part of the story. 

Additionally, the quality of the classification of the outcome needs to be investigated to ensure 

that misclassification bias is mitigated. Similarly, missing data is a potential concern in any study 

and can result in a type of selection bias. By identifying potential differences between the target 

population and the study population as well as the sources of error that may occur in the data, we 

can better decide how to address these discrepancies to get a better estimate.13  

2.3.4.1 Step 2: Application  

The data used in our example is the National Health and Nutrition Examination Survey I 

(NHANES-I) Epidemiologic Follow-up Study (NHEFS) as used by Hernán and Robins.4,18 

NHANES-I was conducted in 1971-1975 the NHEFS was conducted in 1982-1984. The DAGs 

in Figure 2.2 illustrate how the DAG evolves based on the sampling procedures and analytic 

decisions as well as the availability of data. For the DAGs in Figure 2.2, the mediators (M1) have 

been greyed out since we do not have information on their diet or physical activity level post-

smoking cessation our dataset. The sampling procedures for NHANES-I and NHEFS have been 

previously documented in greater detail elsewhere.46,47 Complex sampling methods were utilized 

to properly reflect the target population. As a result, some groups were oversampled to ensure 

sufficient representation in the survey.46,47 To address this, the National Center for Health 

Statistics (NCHS) at the Centers for Disease Control and Prevention (CDC) generated sampling 

and cluster weights to be used with the data. Both NHANES-I and NHEFS are complex survey 
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data and as such, the sampling design should be taken into account.48 When dealing with 

complex survey data, it is highly recommended to use these weights to improve generalizability, 

especially when addressing a descriptive aim.46,47,49 DAGs can help determine whether using 

these weights will introduce bias or aid in inference.48 Figure 2.2a demonstrates the potential 

bias being addressed by the weights to correct for oversampling, non-response, and post-

stratification adjustment based on certain baseline characteristics. Due to the multistage nature of 

the NHANES sampling procedures, additional adjustment is needed to account for clustering and 

stratification.46,47,49 As such, cluster and primary sampling unit (PSU) information is also given 

and should be used with the sampling weights to make inference on the survey’s target 

population.46,47,49 Figure 2.2b is a post-intervention DAG that demonstrates how using these 

weights together can reduce the potential bias that was introduced during the sampling 

procedure. By using these weights, the arrow from baseline covariates to the selection node 

(S=1) is removed to reflect the target population. If our target population was civilian 

noninstitutionalized 25–74-year-olds who smoke in the contiguous United States between 1971 

and 1982 as the survey was designed, we would use these weights to more closely approximate 

the target population. In the current analysis, our target population is the analytic sample itself so 

we will not apply these weights.  

 The outcome of interest is weight gain at the end of the study period. Weight was 

measured in kilograms (kg) at baseline in the NHANES-I 1971 survey, as well as during follow-

up in the NHEFS survey. Weight gain was measured by subtracting the baseline weight from the 

follow-up weight. As such, the change in weight variable was continuous. Percent change in 

weight was also assessed by dividing the change in weight by the baseline weight. In accordance 

with other studies that assessed weight gain, if the percent change in weight was greater than or 
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equal to 7%, the weight gain was considered to be clinically significant.50–52 For this example, 

we assess mean and standard deviations of weight at baseline, weight at follow-up, weight 

change, and percent weight change. We also assess frequencies of clinically significant weight 

gain.  

Our primary covariate of interest is smoking cessation status. Smoking cessation was 

measured as those reporting having quit smoking between baseline and follow-up. Additionally, 

we are also interested in the distribution of other baseline characteristics of the entire sample as 

well as those who quit smoking and those who did not. Given our interest in smoking cessation 

and in accordance with the analysis done by Hernán and Robins, analysis was restricted to 

smokers whose smoking status was known at both baseline and follow-up.4 In addition, the study 

population was further restricted to those having a known weight measurement, sex, age, race, 

height, education, alcohol use, and smoking intensity at baseline and follow-up.4 However, by 

doing so, we are censoring on an event that occurred after treatment was initiated.4,13,53–55 If the 

probability of lost-to-follow-up or death before the 1982 follow-up was associated with baseline 

covariates, smoking cessation, or potential weight gain, then selection bias could still be an issue 

even though the aim is descriptive because we may have induced an association between 

selection and the outcome.4,13,23,53–55 The DAG in Figure 2.2c illustrates the potential selection 

bias introduced by censoring on missing data. By essentially conditioning on who participated in 

the 1982 follow-up survey, we may have introduced bias because we are conditioning on a 

potential collider. It may be beneficial to further explore this possibility in a bias analysis. It is 

also worth noting, that any action we take to mitigate these biases will ultimately affect how we 

interpret any results we get.13 Lastly, we do not discuss it in this study but we could also have 

experienced measurement error due to the survey nature of the data. Although other studies 
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should carefully consider and evaluate the presence of measurement error in any study, we will 

assume that any measurement error is minimal to retain simplicity. All analyses were preformed 

using SAS software version 9.4.56 

2.3.5 Step 3: Specifying the measure of occurrence and role of covariates 

For descriptive aims, there is a wide range of measures of occurrence to choose from. Often a 

researcher may only be interested in the distribution or mean of the outcome in a given 

population. These can be useful in assessing prevalence, incidence, or cumulative incidence in 

the population of interest. The nature of the data also plays a role in the selection of a measure of 

occurrence. For instance, whether the outcome is continuous or categorical plays a role in the 

selection of a measure of occurrence. If an outcome is continuous, we may choose to calculate 

the mean and compare it across different subsections of the population while categorical 

outcomes are more conducive to frequency distributions. Additionally, cross-sectional studies 

may be limited to assessing prevalence while longitudinal studies may be able to assess 

incidence rates and risk. While causal aims can struggle to assess of prevalence due to questions 

in temporality and the potential for reverse causation, descriptive aims are more conducive to 

assessing such measures because they are often designed to inform public health planning for 

services and interventions.13 Although incidence and risk can also be assessed in descriptive 

studies, they are still subject to potential competing risks. Lastly, rates could also be of interest 

and are particularly useful when addressing descriptive aims as they do not necessarily require 

individual-level data and can be used to describe incidence over time.13  

 Specifying the measure of occurrence can lead to questions about how to deal with 

potential covariates. The inclusion of covariates is generally seen as adjusting on that variable to 

remove confounding. However, as previously mentioned, in descriptive studies confounding is 



38 

 

less of an issue since causation is not the goal.13,23 When answering descriptive questions, we 

aim to describe what we currently see in the population. We may be tempted to remove nuisance 

variables by adjusting on them to more clearly see the association between a covariate we are 

interested in and the outcome. However, this could lead to overadjustment and misinterpretation 

of the results as having a causal interpretation.13,23 Additionally, instead of clarifying the 

association we are interested in, we may end up diluting it. Instead, we may consider stratifying 

or standardizing over a covariate to further investigate the association. Nevertheless, we should 

employ caution when deciding to adjust for any covariates with a descriptive aim to ensure that 

results are clear and interpreted correctly. Evaluating the DAG created in step 2 can help 

decipher the limitations of the data to assess a measure of interest. If we are forced to make 

analytic decisions due to the availability of the data, a DAG will show what avenue can and 

cannot be explored given the current data. It may also indicate which variables could be 

influenced by noise or preventing inference to the target population. In this case, standardization 

or stratification may be appropriate to clarify whether the association is due to its relationship 

with another variable or not.13 However, any such covariates that are used in stratification or 

standardization should be clearly defined to aid interpretation.13 Ultimately, however, the choice 

of measure of occurrence and the role of the covariates will be determined by the research 

question.13,23,27 

2.3.5.1 Step 3: Application 

In our example, we are primarily interested in the distribution of those who gained weight. 

Therefore, we are interested in proportions and means to assess the characteristics of those who 

gain weight compared to those who do not. In particular, we are interested in the proportion of 

individuals who gained weight after smoking cessation. We also are interested in the crude risk 
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difference and mean difference of weight gain between those who quit smoking and those who 

did not. To assess the crude risk difference, we use a linear risk model to regress significant 

weight gain on smoking cessation status. Similarly, to assess the crude mean difference, we use a 

linear mean model to regress weight gain in kilograms on smoking cessation status. Figure 2.2c 

tells us that smoking cessation status may be influenced by baseline covariates however, they 

also influence weight gain, and stratifying or standardizing on these baseline covariates may 

result in overadjustment since we aim to describe who is gaining weight overall. Our primary 

issue based on this DAG is potential selection bias since we were forced to censor on missing 

data in the outcome. We will need to evaluate this potential selection bias in a sensitivity 

analysis. 

2.3.6 Step 4: Estimation 

In this step we estimate our measure of occurrence based on what we have learned from the 

previous steps. Any actions taken during the analysis should be documented in the DAG if 

appropriate. For instance, if adjusting or stratifying on a covariate, it should be indicated as such 

in the DAG to guide interpretation later on.  

2.3.6.1 Step 4: Application 

In our example we are assessing simple frequencies and means. We are also regressing weight 

gain on smoking cessation status to assess the crude risk and mean difference; however, we are 

not adjusting on any other variables. Thus, we do not need to make any changes to our current 

DAG (Figure 2.2c). 
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2.3.7 Step 5: Sensitivity/Bias analysis 

Here, we use what we learned in the previous steps to assess sources of potential bias. As 

previously mentioned, confounding may be of less concern than addressing descriptive 

questions. However, descriptive aims are not immune to issues of missing data, selection bias, 

and measurement error.13,23 To assess the degree of bias, we should conduct sensitivity/bias 

analyses to quantify them.4,23,53,55,57 For instance, if selection is not independent of the outcome 

of interest or measurement of the outcome or any of the stratifying covariates has not been 

validated to have high sensitivity and specificity, we may wish to conduct quantitative bias 

analysis to assess these potential sources of bias. Similarly, missing data on the outcome or 

stratifying covariates can result in bias being introduced due to selection. External data may be 

required if the current data is not sufficient to account for the biases at play. Exploring these 

potential sources of bias can lend further credibility and transparency for the interpretation of our 

results.4,23,53,55,57  

2.3.7.1 Step 5: Application 

In our study, we can see that we may have induced selection bias by censoring on missing data 

through the association of censoring and the covariates (Figure 2.2c). As a result, the outcome is 

potentially not independent of selection into the study and we may need to correct for it 

depending on our target population. In our case, since our target population is the analytic 

sample itself, this would not need to be corrected. However, if we wished to generalize beyond 

the analytic sample to the general population then the selection bias we have induced would 

require correction for proper inference. In which case, to remove this selection bias, we would 

have to use inverse probability of censoring weighting (IPCW) to remove the bias.55,58,54,59 To 
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assess the potential presence of selection bias, we evaluate the distribution of smoking cessation 

status, sex, and weight at baseline in the censored and uncensored study population.  

2.3.8 Step 6: Interpretation 

In this step, we use the knowledge we gained from steps 0-5 to inform our analysis and 

interpretations. Covariates and outcome(s) of interest have been defined and potential sources of 

bias have been identified. We can use this information to inform which measure of occurrence 

can be estimated as well as whether we can infer anything on our target population. If selection 

bias or measurement error are a concern, methods traditionally used in causal studies to quantify 

and adjust for these biases can be used to address it.23,30,53–55,58,60–62 The information provided to 

us in the DAGs generated will inform the interpretation of results and the limitations for 

inference.  

2.3.8.1 Step 6: Application 

After restricting analysis to those with complete data on covariates, the study population 

consisted of 1,629 smokers. An additional 63 were censored due to missing data on the outcome 

and were not included in analysis of weight gain. Table 2.3 presents the unweighted frequencies 

and means for the study population. Due to the fact that we do not adjust for selection bias at this 

point, we are limited to making inferences on the analytic sample. Here, we interpret the results 

with respect to the analytic sample. The majority of the study population did not experience 

significant weight gain (n=1,201; 63.67%). Those who quit smoking comprised 26.27% of the 

study population (n=428). The mean age of the analytic sample was 43.9 years (95% CI = [43.3, 

44.5]), while the mean weight gain was 2.6 kilograms (95% CIs: [2.2, 3.0]). When we stratified 

on significant weight gain (i.e., an increase in weight at follow-up of 7% of the baseline weight), 
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those who experienced significant weight gain were majority female (n=312; 54.83%), younger 

(mean=40.9; 95% CI = [40.0, 41.8]), very active on a daily basis at baseline (n=273; 47.98%), 

and had a lower mean weight at baseline (67.4 kg; 95% CI = [66.3, 68.6]). Additionally, the 

mean years of smoking were lower among those that had significant weight gain than those that 

did not have significant weight gain (22.3 years versus 25.9 years, respectively). When assessing 

smoking cessation status, a higher proportion of those who had significant weight gain had quit 

smoking compared to those who did not have significant weight gain (30.76% versus 22.87%, 

respectively).  

Table 2.4 displays the results of the linear risk and mean regression to assess the crude 

association of smoking cessation on weight gain. Those in the study population who quit 

smoking had a lower risk of significant weight gain than those who did not quit smoking. 

However, those who quit smoking experienced an average weight gain that was 2.54 kg higher 

than those who did not quit smoking.  

To assess the presence of selection bias induced by censoring on those who had 

unmeasured weight at follow-up, we first checked the distribution of smoking cessation status, 

sex, and baseline weight among smokers in the censored versus uncensored study population 

(Table 2.5). There are differences in the distribution of smoking cessation status and sex 

between the uncensored and censored population. When we look at weight at baseline, it appears 

that on average the censored population is heavier than the uncensored population however, the 

overlap of the confidence intervals indicates that the means may not be that different. 

Nonetheless, there is potential for selection bias to be an issue and should be accounted for if the 

target population is not the analytic sample itself. 
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2.4 Conclusion 

Descriptive aims play a key role in epidemiology for hypothesis-generation, identifying health 

disparities, and targeting interventions by characterizing what we see in the population of 

interest. Due to the fact that descriptive aims heavily rely on clear definition of the target 

population, the outcome, and the role of covariates, it is especially important to understand how 

data collection, measurement, and analysis affect our ability make inference as we would when 

addressing causal aims. We have walked through the steps and considerations on how to address 

descriptive aims and how to use DAGs to direct the analysis and interpretations. The limitations 

of DAGs are well-known as DAGs rely heavily on the assumption of faithfulness and may not be 

able to fully illustrate parametric concepts such as effect modification.2,63 However, DAGs are 

still flexible tools that can be augmented and evolve to reflect these concepts. Therefore, DAGs 

remain useful tools to deal with missing data, assess sources of potential bias, identify critical 

variables for analysis and/or data collection, communicate assumptions, and guide interpretation 

even when the aim is descriptive. 
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2.5 Appendix 

Box 2.1: Description of person, place, and time 

Person - Who is affected? What defining characteristics do they have in 

common? Who is not affected? How many are affected? 

Place - What areas have higher disease frequency? What is unique about those 

areas? 

Time - How often does exposure/disease occur? How does exposure/disease 

frequency change over time? What else could be associated with those 

changes? 
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Box 2.2: Four purposes of descriptive aims driven by the person, place, and time 

1) Generate new hypotheses for analytic studies 

2) Identify and assess health disparities 

3) Identify potential areas for etiologic studies and subsequent targeted 

intervention 

4) Describe disease or exposure burden and assess health needs  
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Table 2.1: Checklist items developed by Lesko et al.13 for reporting of descriptive epidemiologic 

studies 

Section Recommendation Use of DAGs 

Title and Abstract 

1.  Explicitly state the study goal is description 

in the title or the abstract. 

No, not required. A basic DAG 

consisting of the outcome and a 

primary covariate (if applicable) of 

interest can be drawn but is not 

necessary. 

2. Summarize the target population and provide 

an informative and balanced summary of 

estimated disease occurrence in the abstract. 

No, not required. A basic DAG 

consisting of the outcome and a 

primary covariate (if applicable) of 

interest can be drawn but is not 

necessary. 

Background./rationale 

3. State the motivation for the study including, 

where relevant, the action that might be 

informed by the results. 

Yes, display available background 

knowledge. Encode relationships 

between variables in the DAG. 

Objectives 

4. State the descriptive estimand, explicitly 

including: 

a) the target population 

b) the health state to be summarized 

c) the measure of occurrence 

d) any stratification variables, if applicable 

Yes, use the DAG to identify 

stratification variables, define 

exposure/outcome variable, and 

assess the appropriateness of the 

measure of occurrence 

Study design 

5. Study design: 

a) State whether the study is cross-sectional or 

longitudinal 

b) Restate the measure of occurrence being 

targeted.  

c) If the study is longitudinal, specify the time 

origin and follow-up period for the measure of 

occurrence; if the study is cross-sectional, 

specify the time-anchor at which the health 

state is summarized for individuals 

Yes, use the DAG to display time-

points and assess the 

appropriateness of the measure of 

occurrence 

Setting 
6. Describe any relevant features of the place 

and time in which data were collected 

Yes, display background knowledge. 

Encode relationships between 

variables in the DAG. 

Participants 

7. Participants: 

a) Describe the target population thoroughly in 

terms of person, place, and time 

b) Describe sampling into the study population 

(whether sampling was explicit or implicit, e.g., 

by inclusion in an administrative database); this 

includes eligibility criteria. 

c) Describe any restrictions on the analytic 

sample 

Yes, display background knowledge 

and include inclusion/exclusion 

criteria for the study population. 

Assess the presence of selection 

bias. 
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Section Recommendation Use of DAGs 

Outcome(s) 

8. Outcome(s): 

a) State when and how the outcome is measured 

b) Include estimates or discussion of sensitivity 

and specificity of the study outcome definition 

relative to the gold standard 

c) List secondary outcomes or competing events 

of interest 

Yes, use the DAG to display sources 

of missing data and measurement 

error/information bias. Identify 

competing events. 

Covariates 

9. Specify any stratification or adjustment 

variables -- clearly define how variables were 

collected or constructed 

Yes, use the DAG to identify any 

stratification or adjustment variables 

Data 

sources/measurement 

10. Clearly delineate any inclusion/exclusion 

criteria for membership in the data source, 

including the original purpose for which the 

data were collected, if not for the study at hand 

Yes, display inclusion/exclusion 

criteria for the study population. 

Assess the presence of selection 

bias. 

Bias 

11. Describe any assumptions or methods used 

to extrapolate data from the analytic sample to 

the study population, and from the target 

population 

Yes, use the DAG to display 

assumptions and assess the presence 

of selection bias, information bias, 

and/or missing data issues. 

Statistical methods 

12. Statistical methods: 

a) Describe the primary statistical methods used 

to estimate the measure of disease occurrence 

being targeted; discuss assumptions of that 

method in light of data limitations (e.g., 

assumption of independent censoring for people 

lost to follow-up) 

b) If any adjustment/standardization will be 

done, state the goal of such adjustment 

Yes, display inclusion/exclusion 

criteria for the study population. Use 

the DAG to identify any 

stratification or adjustment 

variables. Augment the DAG to 

include consequences of analytic 

decisions 

Participants 
13. Report numbers of individuals at each study 

stage 

Yes, display inclusion/exclusion 

criteria for the study population. 

Descriptive data 

14. Descriptive data: 

a) Report on the characteristics of the analytic 

sample in a "table 1" 

b) Indicate the number of participants with 

missing data for each variable used in the 

analysis 

c) If any weighting or imputation is done to 

reconstruct the study sample or target 

populations, include columns for those 

populations 

Yes, augment the DAG to include 

any analytic decisions that were 

made for interpretation later 

Outcome data 

15. Outcome data: 

a) Present an overall (unstratified estimate of 

the measure of occurrence of interest 

b) Report "crude" (raw data in the analytic 

sample) and (if applicable) "corrected" (after 

any weighting or imputation) 

Yes, augment the DAG to include 

any analytic decisions that were 

made for interpretation later 
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Section Recommendation Use of DAGs 

Other analyses 
16. Present pre-specified stratum-specific or 

adjusted/standardized results 

Yes, augment the DAG to include 

any analytic decisions that were 

made for interpretation later 

Key results 
17. Summarize key results with reference to the 

study objective 

Yes, use the DAG to guide the 

interpretation based on whether the 

target population can be inferred on. 

Limitations 

18. Summarize potential sources of selection 

bias and/or measurement error and any attempts 

to mitigate these biases; Discuss both direction 

and magnitude of any potential bias; Integrating 

quantitative bias analysis in the study is 

encouraged 

Yes, use the DAG to guide the 

interpretation based on whether the 

target population can be inferred on. 

Interpretation 

19. Interpretation: 

a) Avoid causal interpretation of descriptive 

results; Avoid over-interpreting stratum-

specific difference in measures of occurrence 

b) Describe how results of this study might 

inform or improve public health or clinical 

practice 

Yes, use the DAG to guide the 

interpretation based on whether the 

target population can be inferred on. 
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Table 2.2: Outline of steps for addressing a descriptive aim and the use of Directed Acyclic 

Graphs (DAGs) 

Step Description 
Lesko et al. 

Checklist Item(s)13 
Use of DAGs 

0. Define the 

research 

question 

Define the research 

question. Define the 

target population. 

Define the rationale for 

the aim (i.e. what is the 

objective of the aim?).  

Specify the measure of 

occurrence.  

Define the outcome(s). 

Specify the time period. 

1-4, 7a 

Not necessarily applicable - this 

step is preparation for DAG 

creation and scope of study. A 

basic DAG consisting of the 

outcome and a primary covariate 

(if applicable) of interest can be 

drawn but is not necessary. 

1. Specify 

knowledge 

about the system 

Describe available 

background knowledge 

with respect to the 

question under study 

2, 3, 4, 6, 7a 

Display background knowledge. 

Encode relationships between 

variables in the DAG. 

2. Link the data 

to the system 

Identify which 

variables have been 

measured. Describe 

selection/inclusion 

criteria. Link the 

observable data to the 

system. Define the 

sample/study 

population. Evaluate 

sensitivity and 

specificity of the 

exposure/outcome 

measurement. 

5a, 5c, 7b, 7c, 8-11 

Identify sources of selection bias 

and/or measurement error. Assess 

issues with missing data. Augment 

the DAG to specify what data is 

observable vs unobservable and 

where error may exist. If data is 

still needed to be collected, use the 

DAG created in the previous step 

to select most high yielding 

variables and include limitations of 

the data collection procedures. 

3. Specification 

of the target 

measure of 

occurrence & 

the role of 

covariates 

Identify the measure of 

occurrence of interest. 

Specify the role of 

covariates. 

5b, 9, 12 

Use the DAG to identify covariates 

that could determine the 

distribution of the outcome. Assess 

whether the data is compatible with 

the measure of occurrence. 

4. Estimate 

Estimate the measure of 

occurrence in the 

analytic sample. 

13-16 

Augment the DAG to incorporate 

and analytic decisions made for 

inference later 

5. 

Sensitivity/Bias 

analysis 

Test sensitivity of the 

measure of occurrence 

due to assumptions 

made or potential bias 

11, 14c, 15b, 18 

Guide the sensitivity or bias 

analysis using a DAG to assess 

sources of selection bias or 

measurement error/information 

bias 
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Step Description 
Lesko et al. 

Checklist Item(s)13 
Use of DAGs 

6. Interpretation 

Assess what 

assumptions are 

required to infer from 

the analytic sample to 

the study population 

and the target 

population. Interpret the 

estimate in light of the 

prior steps. 

17-19 

Use the DAG to guide the 

interpretation based on whether the 

target population can be inferred 

on. Clarify the assumptions used to 

apply the data from the analytic 

sample to the study population and 

target population 
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Box 2.3: Four characteristics of a well-defined research question for descriptive aims 

1) Target population - a population that is grounded in time and 

specifies the person and place of interest 

2) Exposure or Outcome(s) - a defined event, disease, health state, or 

characteristic of interest 

3) Measure of occurrence - a target measure of interest that aims to 

quantify or summarize the distribution of the outcome in the target 

population 

4) Potential covariates - any variables that may need to be stratified or 

standardized on to mimic the distribution of the target population 
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Figure 2.1: Potential directed acyclic graphs (DAGs) for the relationships between baseline covariates and the outcome(s) of interest. 

a) This DAG shows the relationships between all potential covariates and weight gain (wg). Baseline covariates include: education 

(edu), sex (sex), age (age), race (race), recreational physical activity (parec), physical activity in daily life (padl), smoking intensity 

(smkint), years of smoking (smkyrs), weight at baseline (wt0), and alcohol frequency (alc). The main covariate of interest is smoking 

cessation status (qsmk). The potential mediators are post-smoking cessation recreational physical activity (parec1), post-smoking 

cessation physical activity in daily life (padl1), and post-smoking cessation diet (diet1). b) This DAG also shows the relationships 

between baseline covariates (Z0), smoking cessation, the post-smoking cessation mediators (M1), and weight gain. However, this DAG 

also assumes we do not care about the relationships between the baseline covariates. 
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Figure 2.2: Potential directed acyclic graphs (DAGs) for the relationships between covariates and the outcome(s) of interest in the 

context of the data. a) This DAG shows the relationships between the baseline covariates (Z0), smoking cessation (qsmk), the 

unmeasured post-smoking cessation mediators (M1), and weight gain (wg). Baseline covariates include: education, sex, age, race, 

recreational physical activity, physical activity in daily life, smoking intensity, years of smoking, weight at baseline, and alcohol 

frequency. This DAG also includes a selection node (S=1) to represent the sampling procedures.  b) This is an intervention DAG to 

depict how sampling weights affect the DAG in a) and improves inference to the target population. c) This DAG is similar to a) but 

depicts selection bias induced by censoring on measured weight in the 1982 follow-up. The dotted line represents the potential 

association between smoking cessation and censoring. 
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Table 2.3: Frequency and means of characteristics for those with significant weight gain and. 

those without significant weight gain, NHEFS 1982-1984 

Characteristic 

Total sample 

population 

(N=1,629) 

Significant weight 

gain 

(N=569) 

Not significant weight 

gain 

(N=997) 

 n (%) n (%) n (%) 

Significant weight gain      

Yes (≥7%) 569 (36.33%) 569 (100.00%) -- 

No (<7%) 997 (63.67%) -- 997 (100.00%) 

Quit smoking      

Yes 428 (26.27%) 175 (30.76%) 228 (22.87%) 

No 1,201 (73.73%) 394 (69.24%) 769 (77.13%) 

Sex      

Male 799 (49.05%) 257 (45.17%) 505 (50.65%) 

Female 830 (50.95%) 312 (54.83%) 492 (49.35%) 

Race      

White 1,414 (86.80%) 497 (87.35%) 863 (86.56%) 

Black or other 215 (13.2%) 72 (12.65%) 134 (13.44%) 

Education      

8th Grade or less 311 (19.09%) 81 (14.24%) 210 (21.06%) 

High School Dropout 351 (21.55%) 135 (23.73%) 205 (20.56%) 

High School 659 (40.45%) 240 (42.18%) 397 (39.82%) 

College Dropout 126 (7.73%) 52 (9.14%) 69 (6.92%) 

College or more 182 (11.17%) 61 (10.72%) 116 (11.63%) 

Exercise at baseline      

Much exercise 317 (19.46%) 115 (20.21%) 185 (18.56%) 

Moderate exercise 677 (41.56%) 241 (42.36%) 420 (42.13%) 

Little or no exercise 635 (38.98%) 213 (37.43%) 392 (39.32%) 

Daily activity at baseline      

Very active 729 (44.75%) 273 (47.98%) 429 (43.03%) 

Moderately active 738 (45.30%) 237 (41.65%) 478 (47.94%) 

Inactive 162 (9.94%) 59 (10.37%) 90 (9.03) 

Alcohol frequency at baseline      

Almost every day 336 (20.69%) 111 (19.61%) 214 (21.51%) 

2-3 times/week 231 (14.22%) 75 (13.25%) 144 (14.47%) 

1-4 times/month 506 (31.16%) 189 (33.39%) 305 (30.65%) 

< 12 times/year 344 (21.18%) 134 (23.67%) 194 (19.50%) 

No alcohol last year 207 (12.75%) 57 (10.07%) 138 (13.87%) 
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Characteristic 

Total sample 

population 

(N=1,629) 

Significant weight 

gain 

(N=569) 

Not significant weight 

gain 

(N=997) 

  Mean (95% CI) Mean (95% CI) Mean (95% CI) 

Age (years) 43.9 (43.3, 44.5) 40.9 (40.0, 41.8) 45.2 (44.5, 46.0) 

Weight at baseline (kg) 71.1 (70.3, 71.8) 67.4 (66.3, 68.6) 72.8 (71.8, 73.8) 

Weight at follow-up (kg) 73.5 (72.7, 74.3) 77.4 (76.0, 78.7) 71.2 (70.3, 72.2) 

Change in weight (kg) 2.6 (2.2, 3.0) 10.0 (9.5, 10.4) -1.5 (-1.9, -1.2) 

Percent change in weight (%) 4.2 (3.7, 4.8) 15.0 (14.3, 15.7) -1.9 (-2.4, -1.5) 

Smoking intensity at baseline 

(cigarettes/day) 
20.6 (20.0, 21.1) 20.3 (19.3, 21.2) 20.7 (19.9, 21.4) 

Change in smoking intensity 

(cigarettes/day) 
-4.7 (-5.4, -4.1) -5.5 (-6.7, -4.4) -4.1 (-5.0, -3.3) 

Years of smoking 24.9 (24.3, 25.5) 22.3 (21.4, 23.2) 25.9 (25.1, 26.7) 
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Table 2.4: Weighted and unweighted crude risk and mean differences of weight gain on 

smoking cession status, NHEFS 1982-1984. 

  

Significant weight gain  

(linear risk model) 

Change in weight  

(linear mean model) 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

Quit smoking 
-0.10 

(-0.15, -0.04) 

2.54 

(1.66, 3.42) 
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Table 2.5: Checking for selection bias by assessing frequency of smoking cessation status in 

censored versus uncensored population, NHEFS 1982-1984. 

Characteristics 
Uncensored Population 

(C=0) 

Censored Population 

(C=1) 

Quit Smoking: n (%)    

Yes 403 (25.73%) 25 (39.68%) 

No 1,163 (74.27%) 38 (60.32%) 

Sex: n (%)    

Male 762 (48.66%) 37 (58.73%) 

Female 804 (51.34%) 26 (41.27%) 

Weight at baseline (kg): Mean (95% CI) 70.83 (70.07, 71.59) 76.55 (70.67, 82.43) 

TOTAL: n (%) 1,566 (100.00%) 63 (100.00%) 
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Chapter 3 DAGging out predictive aims 
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3.1 Abstract 

Prediction is often used in clinical and public health settings to predict disease diagnosis, 

prognosis, or potential outcomes. Prediction is largely viewed as separate from causal inference 

and indeed some forms of prediction require more understanding of the causal structure than 

others. Thus, the use of directed acyclic graphs (DAGs) in the development of these types of 

models is rare. Here, we adapt previous frameworks for the development of predictive models to 

provide guidance on the use of DAGs in the development of predictive models. We also 

demonstrate one application of this adapted framework that uses prediction to rank the variable 

importance for the prediction of weight gain in the National Health and Nutrition Examination 

Survey I (NHANES-I) Epidemiologic Follow-up Study (NHEFS). This chapter is intended to 

provide guidance on the use of DAGs in predictive studies to optimize variable selection, address 

sources of bias and missing data, as well as communicate key characteristics that may facilitate 

the transportability of the model to other populations. 
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3.2 Introduction 

In the age of the internet, the amount of data on individuals has grown exponentially. As 

computers are able to share information more rapidly and efficiently, data on nearly every aspect 

of a person’s life is collected. Researchers have aspired to use this data to predict and describe 

behavior and outcomes for a variety of reasons such as movie recommendations, currently 

trending topics, economic markets, and business performance. Health researchers and 

epidemiologists may also use big data for prediction purposes.22,30 There are generally two forms 

prediction can take in epidemiology. The first is counterfactual prediction which requires causal 

inference as it aims to predict a potential outcome based on some intervention.22,64 

Counterfactual prediction aims to answer the “what if we had done” questions that researchers 

may have to assess the outcome of an intervention had it taken place.22,64 In Pearl’s ladder of 

causation, these questions fall on the third rung of counterfactuals as they require us to imagine 

what may have occurred had some intervention taken place counter to fact.19 The second form of 

prediction in epidemiology falls under the umbrella of clinical prediction modeling. Questions 

under this umbrella often aim to predict events.14,30 These questions are either diagnostic or 

prognostic in nature. Where a diagnostic question aims to predict whether an individual is likely 

to have a certain disease/condition based on current characteristics, a prognostic question aims to 

predict whether an individual is likely to acquire a certain disease/condition in the future based 

on current characteristics.14,30 Prognostic predictive models generally aim to prevent the disease. 

Prognostic models may still require some form of causal inference as various treatment options 

are considered.20 Diagnostic predictive models generally remain on the first rung of the ladder of 

causation since we are predicting the outcome of interest based on what we see while prognostic 

predictive models can move into the second rung since we are predicting the outcome based on 
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what is done now and counterfactual prediction is solidly on the third rung since it requires us to 

re-imagine the past.19  

As described in Chapter 1, clinical predictive models generally aim to increase the d-

connectedness between the treatment/exposure of interest. Thus, understanding and establishing 

the relationships between the outcome and any potential predictors can be useful in order to 

minimize the number of predictors in the model to ease interpretability and increase the 

transportability of the model. Piccininni et al. has previously described the usefulness of directed 

acyclic graphs (DAGs) for the development of diagnostic predictive models. They demonstrate 

the efficiency of the use of the Markov blanket to select predictors for the model to improve 

calibration, increase transportability, and ease interpretation through simulation. Here, we 

demonstrate how to incorporate the use of DAGs throughout the development of a predictive 

model using and expanding on the steps for development outlined by Steyerberg and Vergouwe 

with application to empirical data taken from Causal Inference: What If.4,14,15,18 

3.3 Developing a clinical predictive model using DAGs 

3.3.1 Overview of the steps for predictive model development 

To provide a logical framework to improve the quality of clinical predictive models, Steyerberg 

and Vergouwe outlined seven steps for the development of such models (Table 3.1).14,15 These 

steps include: 1) specifying the research question; 2) defining the coding of predictors; 3) model 

specification; 4) model estimation; 5) model performance; 6) model validation; and 7) model 

presentation.14,15 We adapt these steps to incorporate the use of DAGs in predictive model 

development. Table 3.2 provides an overview of how these steps fit into our proposed 
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framework and includes additional steps that may be useful to increase transparency and 

reporting accuracy using DAGs.  

3.3.2 Step 0: Specify the research question 

As with any study, the most important step to start with is to identify the research question. Part 

of doing so, as previously mentioned, is to establish whether the question has a predictive aim. If 

so, it is important to identify whether the aim is prognostic or diagnostic. Is the interest in 

predicting the future outcome based on a certain course of action given current conditions 

(prognostic) or is it in predicting the likelihood of disease state given current conditions 

(diagnostic)? Similarly, does the question have clinical relevance? Answering these questions 

requires the researcher to define the target population, specify the intended use of the model, and 

clearly define the outcome (including the endpoint). Additionally, if the question is prognostic, 

defining the treatment of interest may be required to identify an appropriate approach to properly 

support treatment decisions.20  

3.3.2.1 Step 0: Application 

To demonstrate the application of the use of DAGs in creating a prediction model, we will aim to 

identify the greatest predictors of weight gain in the study population. Often in public health, we 

wish to identify points of potential intervention or means of diagnosis. To do so we need to 

understand what contributes to the outcome. Doing so may also influence future data collection 

efforts and points of study. In our example, our target population are smokers in the study 

population. Our outcome is weight gain at follow-up which is approximately 11 years after 

baseline. The main aim is to rank which predictors are important to predict future weight gain.   
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3.3.3 Step 1: Specify knowledge about the system 

Often in predictive studies, there is limited knowledge available. Additionally, the causal 

structure defining the relationship between the predictors and the outcome may not traditionally 

be of huge concern. However, when strong knowledge of the structure of the system is available, 

it is beneficial to present the a priori assumptions that may influence predictor selection in a 

DAG. An initial DAG based on the available knowledge should be generated based on a review 

of the literature and expert input to display background knowledge. The DAG should provide 

insight on what is already known about the predictors, if there are any interactions or sources of 

heterogeneity we might be concerned with. Guidance on the identification and incorporation of 

potential sources of heterogeneity in a DAG has be described elsewhere.65–67 Often the goal of 

prediction is the development of a model that is generalizable and transportable to other 

populations. Thus, it is important to know what predictors could be of value beyond what is 

available in the data. If intuitive assumptions are made in addition to the assumptions that are 

knowledge-based, they should be clearly depicted in the DAG as distinct from those that are 

knowledge-based. Alternatively, a purely knowledge-based DAG should be created in addition 

to the DAG that includes intuitive assumptions. Different predictive models require different 

levels of causal structure to properly address the question.20,22 For instance, in some prognostic 

models and counterfactual prediction models, a causal structure is necessary to answer the 

research question whereas in diagnostic models, correlation is all that is desired but a causal 

structure could optimize model specification and improve validity.20,22,32 

3.3.3.1 Step 1: Application 

The DAG depicted in Figure 3.1 shows the potential relationships between the baseline 

predictors and the outcome of interest. The DAG shows us that the predictors in the graph are 
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more likely to be associated with the outcome of interest, especially those with a direct 

connection to the outcome or colliders. Since our aim is to establish which predictors have high 

importance so that we may potentially explore intervention on these predictors to prevent future 

weight gain, we would also like to ensure that temporality holds. The DAG helps us isolate 

which predictors should be considered when developing our model. In our DAG, we can already 

see that smoking cessation (qsmk), education (edu), age, smoking intensity (cigarette/day) at 

baseline (smkint), and weight in kilograms (kg) at baseline (wt0) will be critical to our model as 

they lie on more paths than other nodes in the DAG. Similarly, post-smoking cessation 

recreational and daily life physical activity as well as diet post-smoking cessation are also 

valuable since they have the most direct connection to weight gain in kg at follow-up temporally.  

3.3.4 Step 2: Link the data to the system 

Before we can jump into specifying our model for prediction, we first need to understand the 

data we are working with. Part of understanding the data includes knowing the underlying study 

design, defining the inclusion/exclusion criteria used to select observations, and identifying 

which potential predictors have been measured. By defining the inclusion/exclusion criteria, we 

can clarify the sample/study population. We can do an exploratory analysis to assess whether we 

have missing data issues and better understand and prepare the data for analysis by assessing the 

coding of the variables. Specifically, when assessing the coding of predictors, there are various 

ways in which continuous and categorical variables can be coded. We may determine that some 

variables require recoding for more meaningful interpretation or collapsed due to infrequency in 

some categories.14,15 Additionally, some variables may require transformation or to account for 

heterogeneity. If this is the case, it is important to include these terms in the DAG for 

interpretation later. For missing data, we can assess the nature of missingness to determine what 
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method is best suited for treating that missing data. Simple imputation is often used in packages 

to fix missing data issues in standard statistical packages but may still result in a biased estimate 

and reduce external validity of the estimate if the causal structure of the missingness is not 

considered.68,69 Proper documentation of missing data can also aid other researchers to assess the 

validity of the model in the future for use in other population. To properly document the nature 

of the missing data, we would assess missingness patterns and depict the causal structure of the 

missing data.69–71 To depict the causal structure of missingness in DAGs, previously published 

guidance is available.29,72,73 Additionally, depending on the assumptions required to address the 

research question, confounding or confounding by indication can be an issue that should be 

assessed.9,20 Selection bias and measurement error are of concern with prediction especially 

when missing data is an issue. DAGs will be useful to detect the potential presence of these 

biases so that they can be properly addressed. 

3.3.4.1 Step 2: Application 

For our example, we used the National Health and Nutrition Examination Survey I (NHANES-I) 

Epidemiologic Follow-up Study (NHEFS) as provided by Hernán and Robins.4,17,18,46,47 The data 

provided is restricted to answered the medical history questionnaire at baseline, and those with 

known age, sex, race, weight, height, education, alcohol use smoking intensity at baseline and 

follow-up. Baseline surveys were conducted in 1971 to 1975 and follow-up survey were 

administered to surviving baseline participants or their relatives in 1982 through 1984.17 The 

sampling procedures for the survey have been described in detail elsewhere.46,47 The original 

data includes sampling weights and cluster weights to account for oversampling and may need to 

be used if we are trying to make inference on the survey’s target population. For our purposes, 

we will not be using these weights since our target population is not that of the survey but strictly 
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limited to those in the analytic sample for simplicity. Serious consideration should be given 

about whether to use the weights or not depending on the study’s target population. 

The data were restricted to 1,629 smokers and when exploring the data, we were forced 

to remove an additional 63 smokers due to missing data in follow-up weight. The DAG in 

Figure 3.2 links the data to our DAG in step one. The censoring of missing data in the outcome 

likely and restriction to the complete data in baseline predictors may limit our ability to 

generalize and transport our results to other populations. Additionally, post-cessation predictors 

are unmeasured and cannot be included in our analysis. As a result, smoking cessation status is 

now more critical as a predictor according to our DAG to predict weight gain at follow-up. Risk 

factors for weight gain at follow-up also include baseline predictors: alcohol frequency, weight, 

smoking intensity, years of smoking, recreational physical activity, daily life physical activity, 

age, sex, race, and education. For simplicity, we assume no measurement error in the data. 

However, given the nature of survey data with respect to questions on health behavior. This  

assumption may not be realistic and should be explored thoroughly in any prediction study. 

Lastly, since we are interested in identifying important predictors, we less concerned about 

confounding.  

We ran an exploratory analysis of the data to assess potential issues with coding and 

check predictor balance (Table 3.3). We assessed the distribution of characteristics in the study 

population to check for balance and missing values. There were no missing data found in our 

predictor set. We randomly split the data into a training set and a test set where the training set 

contained 70% of the data and the test set contained the remaining 30%. Categorical variables 

were converted into dummy variables and all predictors were normalized to have values between 
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0 and 1 in both data sets. All analyses were performed using R Statistical Software (v4.3.0; R 

Core Team 2023) and the caret package was used to prepare and model the data.74,75 

3.3.5 Step 3: Specification of the target quantity, model specification, and model estimation 

Here, we respecify whether predictors or predicted individual risk is of interest. We also select 

predictors to be included in the model taking into consideration what assumptions need to be met 

for the type of model we selected. Often in prediction models, we would like to optimize the 

number of predictors included in the model to improve performance and increase 

interpretability.32 Additionally, overfitting can reduce generalizability of the model. To do so, 

stepwise selection and shrinkage methods are often used to select predictors for inclusion in the 

model and mitigate overfitting.14,15 However, the over-reliance of predictor selection methods 

should be avoided in favor of consideration of prior knowledge.15 In the case of diagnostic 

prediction or questions that aim to identify and quantify important predictors, the Markov 

Blanket can be used to optimize variable selection.32 Briefly, the Markov Blanket includes all 

parents of the outcome node, all of its children, and parents of its children. 

In the case of counterfactual and prognostic prediction models, assessment of the conditions of 

identifiability may be required to ensure appropriate predictions. Other assumptions include 

identifying sources of heterogeneity if regression models will be used. To soften the 

additivity/heterogeneity assumption, we can include an interaction term in the model if we know 

the source of heterogeneity.14,15 We again refer to the DAGs created in steps 1 and 2 to assess 

sources of heterogeneity so that interaction terms can be included in the model.65–67 
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3.3.5.1 Step 3: Application 

With prediction models, the aim for predictor selection is to enhance the connection between the 

predictors and the outcome. Referring back to the DAGs we created in steps 1 and 2, we expect 

that smoking cessation and weight at baseline will have high connectivity with the outcome in 

our data since parents of weight gain at follow-up and technically colliders in the graph. 

Additionally, education, age, sex, race, smoking years, and alcohol frequency are also parents of 

the outcome so they should also have some connectivity in our data. Including recreational and 

daily life physical activity at baseline may be critical as they are parents of unmeasured post-

smoking cessation predictors that are in turn parents of the outcome. In fact, we expect smoking 

cessation to have high connectivity to the outcome as well since it is the child of several other 

baseline predictors and a parent of the outcome. The only thing our DAG does not tell us is the 

magnitude of the connections.  

Machine learning and predictive models have built-in mechanisms that are used to 

evaluate large data and identify the most important predictors.76 For the purposes of 

demonstration, we will use a conditional inference random forest model to rank the importance 

of predictors. Random forests are non-parametric models. They are often used to assess variable 

importance because they are more robust than decision trees and more flexible than traditional 

regression models. Conditional inference random forests are generally better than regular random 

forests for variable importance since random forests tend to be biased towards predictors with 

more categories.77 Shrinkage methods were not used. Instead, we increase the tune length to 10 

to tell the algorithm to try 10 values for the number of variables that are randomly sampled as 

candidates at each split (mtry). The accuracy of our model is limited in part due to the nature of 

the data and the choice to use a random forest model. Part of the issue is that our outcome is 
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continuous and to decide the direction at each spilt, the continuous outcome is categorized and 

can lose information. We will check the accuracy of our model in the next step.    

3.3.6 Step 4: Model performance & validation 

Model performance and model validation concern the overall fit of the model, as well as its 

internal and external validity. To assess model performance, several measures are traditionally 

used to compare model fit across different types of models.14,15 Prediction accuracy is also 

considered here by comparing predicted values to observed values. This includes assessing 

calibration, discrimination, and clinical usefulness.14,15 To improve internal validity, cross-

validation and bootstrap resampling should be attempted. If selection bias, measurement 

error/misclassification bias, or confounding are an issue, consider quantitative bias methods to 

assess the magnitude of the bias using regression methods.9,53,54,57,60,78 The generalizability and 

transportability of a predictive model is a stronger test.14,15 The DAG created in step 2 should be 

considered to assess the limitations of the data to make inference on the target population. 

Understanding the underlying causal structure can help assess transportability. If we are 

attempting to transport the model to a different target population, a DAG relevant to the new 

population should be created and compared to assess whether transportability is possible.33 If a 

critical predictor is not possible in the new population, transportability may not be possible. 

However, if the differences between the original target population and the new target population 

can be quantified, then transportability may be possible through data fusion or through the use of 

prediction error modifiers.33–35 Use of these methods require identifiability conditions to be 

met.33 Specifically, the positivity condition and the independence of the outcome and the target 

population given a set of covariates.33–35 The use of DAGs to assess and address the issue of 

transportability have been previously discussed in detail.33 In cases where the predictor is an 
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effect of the outcome, transportability will suffer unless the predictor and outcome share at least 

one common cause.32 Predictor selection with consideration to the underlying causal structure 

may improve the transportability of the model to other populations.32  

3.3.6.1 Step 4: Application 

We performed repeated 5-fold cross validation with 5 repetitions to train and tune the model 

using the training data. The root mean square error (RMSE) was compared across model 

iterations to select the best model (Figure 3.3a) and a calibration plot was generated to compare 

the predicted values of weight gain to the observed values by applying the final model to the test 

data (Figure 3.3b). Although our model may be internally valid, when we assess the DAG in 

Figure 3.2, we recognize that our model in only valid for the study population due to censoring. 

If we were to use the results of the random forest to implement a regression model, we would 

need to consider correcting the potential selection bias using quantitative bias analysis methods. 

This could involve the use of external data or further exploration into the nature of the 

missingness in the outcome. Additionally, when we compare the RMSE for the training data to 

the RMSE for the testing data. The RMSE for the final model which randomly samples 10 

variables as candidates at each split is 7.12 in the training set and 8.21 in the testing set. The 

mean predicted weight gain is 2.6 in the training set and 2.5 in the testing set. The calibration 

plot reveals that the predicted values for the testing data are in pretty close agreement with the 

observed values.  

3.3.7 Step 5: Interpretation of results 

Here, we present the results of our efforts in steps 0-4. Models should be presented in a manner 

that is appropriate to the target audience.15 This may include the model formula, charts, 
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dashboards, or applications.15  Additionally, the target population should be reiterated and 

inferential uncertainties and limitations should be clearly communicated to mitigate 

misinterpretations in the future. 

3.3.7.1 Step 5: Application 

Figure 3.4 displays the results of the variable importance analysis from the cross-validated 

conditional inference random forest. The top 5 variables of importance were, age, weight at 

baseline, quitting smoking, not quitting smoking, and number of years smoking. Overall, age 

contributed the most value for prediction of weight gain. The importance of smoking cessation 

status may require more causal exploration.  Due to censoring of missing data in the outcome, we 

may have induced selection bias and thus, these results may not be generalizable beyond the 

analytic sample. Our DAG is consistent with these results.  

3.4 Conclusion 

Prediction aims are often used in clinical epidemiology for diagnosis, prognosis, and 

intervention. Even in pure prediction settings where associational relationships are the goal, 

causal considerations may still be required to improve the generalizability and transportability of 

the model. Depending on the predictive aim, they are not immune to concerns with selection 

bias, measurement error/misclassification bias, confounding, and missing data. DAGs provide a 

framework to assess these causal considerations and may also provide a means to optimize 

variable selection when dealing with big data.20,32 We provide an example of how to incorporate 

DAGs in model development. Further theoretical development of the use of DAGs to address 

specific types of predictive aims (particularly prognostic aims) is warranted. 
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3.5 Appendix 

Table 3.1: Steyerberg and Vergouwe's seven steps for development of clinical prediction models 

and the use of directed acyclic graphs (DAGs) 

Step Considerations Use of DAGs 

1. Problem definition and 

data inspection 

Is the aim to provide insight on 

predictors or predict risk? 

Consider selection, predictor 

definitions, completeness, and 

endpoint definition 

Yes, define nodes and display 

background knowledge. 

Encode relationships between 

variables in the DAG. Use a 

DAG to display the selection 

criteria and the relationship 

between the sample and target 

population. Display 

inclusion/exclusion criteria. 

Display potential sources of 

measurement error/information 

bias and missing data. 

2. Coding of predictors 

Are the predictors continuous or 

categorical? Should categorical 

variables be collapsed? Are 

transformations needed? 

Yes, augment to DAG to 

include any 

transformations/interactions 

that need to be included in the 

model to prevent violation of 

model assumptions. 

3. Model specification 
What are the main effects? Do the 

assumptions hold? 

Yes, use the DAG to optimize 

predictor selection. 

4. Model estimation 

Are statistical shrinkage methods 

required to limit overfitting the 

model? 

Yes, use the DAG to optimize 

predictor selection and 

potentially inform shrinkage 

methods, if appropriate. 

5. Model performance 

Were calibration, discrimination, 

and/or clinical usefulness methods 

used? 

Yes, use the DAG to address 

sources of measurement 

error/information bias that can 

affect sensitivity and 

specificity. 

6. Model validation Is the model internally valid? 
Yes, use the DAG to assess 

sources of bias. 

7. Model presentation 
Is the model presented in a format 

appropriate for the audience? 

Yes, use the DAG to guide the 

interpretation. 
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Table 3.2: Outline of predictive modeling steps and the use of Directed Acyclic Graphs (DAGs) 

Step Description Use of DAGs 

0. Define the research 

question 

Define the research question. Define the target 

population. 

Define potential nodes. DAGs 

can depict the data-generating 

process for the study. 

1. Specify knowledge 

about the system* 

Describe background knowledge with respect to 

the question under study 

Display background 

knowledge. Encode 

relationships between variables 

in the DAG. 

2. Link the observed data 

to the system* 

Link the observable data to the DAG. Identify 

which predictors have been measured. Describe 

selection/inclusion criteria. Define the 

sample/study population. Do an initial inspection 

of the data. Define coding of predictors. 

Use a DAG to display the 

selection criteria and the 

relationship between the sample 

and target population. Identify 

measured and unmeasured 

predictors. Explore potential 

sources of missing data, 

confounding, selection bias, 

and measurement error to 

identify what is needed for the 

model to be valid. 

3. Specification of the 

target quantity, model 

specification, and model 

estimation 

Specify whether predictors or predicted individual 

risk is of interest. Select predictors to be included 

in the model without overfitting. If overfitting is a 

concern, assess whether shrinkage methods should 

be considered. 

Use the DAG to select 

appropriate predictors. 

Determine which variables 

should be fixed/forced when 

going through variable 

selection processes. The DAG 

can also inform potential 

sources of heterogeneity If the 

aim is prognostic or 

counterfactual prediction use 

appropriate variable selection 

methods for identification if 

necessary. If the aim is 

diagnostic or predictor strength, 

then use the Markov Blanket to 

optimize predictor selection. 

4. Model performance & 

validation (Bias analysis) 

Assess appropriateness of selected predictors 

through the use of calibration, discrimination, and 

clinical usefulness methods. Assess internal and 

external validity of the model 

Use the DAG to evaluate 

external validity. Assess 

whether issues arise where the 

validity of the model may not 

be applicable in other 

populations (transportability). 

Use the DAG to guide 

quantitative bias analysis to test 

if selection bias, measurement 

error, or unmeasured 

confounding are an issue. 

5. Interpretation of results 

Interpret the results of the model taking into 

account: the target population, transformations, 

uncertainties, exclusion/inclusion criteria, and 

validity 

Use the DAG to guide the 

interpretation based on whether 

the target population can be 

inferred on. 

*Not explicitly included in the original modeling steps outlined by Steyerberg and Vergouwe15 
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Figure 3.1: This DAG shows the relationships between smoking cessation (qsmk), potential confounders, potential mediators, and 

weight gain (wg). Baseline confounders include: education (edu), sex (sex), age (age), race (race), recreational physical activity 

(parec), physical activity in daily life (padl), smoking intensity (smkint), years of smoking (smkyrs), weight at baseline (wt0), and alcohol 

frequency (alc). The potential mediators are post-smoking cessation recreational physical activity (parec1), post-smoking cessation 

physical activity in daily life (padl1), and post-smoking cessation diet (diet1). 
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Figure 3.2: This DAG shows the relationships between potential predictors, and weight gain (wg) in relationship to the data. 

Predictors include: education (edu), sex (sex), age (age), race (race), recreational physical activity (parec), physical activity in daily life 

(padl), smoking intensity (smkint), years of smoking (smkyrs), weight at baseline (wt0), height at baseline (ht0), alcohol frequency (alc), 

smoking cessation (qsmk), post-smoking cessation recreational physical activity (parec1 ), post-smoking cessation physical activity in 

daily life (padl1), and post-smoking cessation diet (diet1). A censoring node (C=0) is included to account for censoring on missing data 

in the outcome. 
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Table 3.3:  Frequency and means of characteristics of the study population, NHEFS 1982-1984. 

Characteristic 

Total sample 

population 

(N=1,566) 

n (%) 

Quit smoking   

1: Yes 403 (25.7%) 

0: No 1,163 (74.3%) 

Sex   

0: Male 762 (48.7%) 

1: Female 804 (51.3%) 

Race   

0: White 1,360 (86.8%) 

1: Black or other 206 (13.2%) 

Education at baseline   

1: 8th Grade or less 291 (18.6%) 

2: High School Dropout 340 (21.7%) 

3: High School 637 (40.7%) 

4: College Dropout 121 (7.7%) 

5: College or more 177 (11.30%) 

Exercise at baseline   

0: Much exercise 300 (19.2%) 

1: Moderate exercise 661 (42.2%) 

2: Little or no exercise 605 (38.6%) 

Daily activity at baseline   

0: Very active 702 (44.8%) 

1: Moderately active 715 (45.7%) 

2: Inactive 149 (9.5%) 

Alcohol frequency at baseline   

0: Almost every day 325 (20.8%) 

1: 2-3 times/week 219 (14.0%) 

2: 1-4 times/month 494 (31.5%) 

3: < 12 times/year 328 (20.9%) 

4: No alcohol last year 195 (12.5%) 

5: Unknown 5 (0.3%) 

  Mean (95% CI) 

Age (years) 43.7 (43.5, 43.9) 

Change in weight (kg) 2.6 (2.5, 2.8) 

Weight at baseline (kg) 70.8 (70.6, 71.1) 

Smoking intensity at baseline 

(cigarettes/day) 
20.5 (20.3, 20.7) 

Years of smoking 24.6 (24.4, 24.8) 
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Figure 3.3: Plots for model specification, performance, and validation. a) Plot of the root mean squared error (RMSE) after repeated 

5-fold cross-validation with 5 repetitions and tuned to 10 variations of mtry (i.e. the number of randomly selected predictors) for the 

training data b) The calibration plot comparing predicted weight gain to observed weight gain in the testing data. 
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Figure 3.4: Variable importance plot from a conditional inference random forest to predict weight gain among smokers, NHEFS 

1982-1984. 
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Chapter 4 DAGging out causal aims 
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4.1 Abstract 

Causal inference is a cornerstone of epidemiologic research. Identifying and quantifying the 

mechanisms by which disease occurs is a primary goal in public health for prevention. Students 

are often taught epidemiology from a causal perspective and directed acyclic graphs (DAGs) are 

used to clarify assumptions and illustrate causal questions to inform study design and statistical 

analysis. Although DAGs have become an increasingly popular method for causal inference, the 

use of DAGs in applied research remains low. Here, we aim to provide guidance on the use of 

directed acyclic graphs (DAGs) while navigating the causal roadmap. We apply this adapted 

framework to assess the average causal effect of smoking cessation on weight gain in the 

National Health and Nutrition Examination Survey I (NHANES-I) Epidemiologic Follow-up 

Study (NHEFS). We discuss how the DAG can evolve and be augmented in response to the data 

and analytic decisions. We also demonstrate the importance of using the DAG to identify and 

address sources of confounding, selection bias, information bias, and missing data to prevent bias 

and communicate uncertainties. 
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4.2 Introduction 

4.2.1 Directed Acyclic Graphs (DAGs) and Causal Inference 

Directed Acyclic Graphs (DAGs) are used in epidemiology and clinical research to clarify 

assumptions and illustrate causal questions to inform study design and statistical analysis.1–4 

DAGs are generally considered to be causal diagrams. Causal diagrams are visual tools used to 

depict these types of relationships. DAGs provide a method to visualize and check dependencies 

among variables for model specification.2 As such, they are instrumental in assessing whether 

certain conditions for identifiability have been met. Additionally, DAGs allow researchers to 

investigate different scenarios through the manipulation of variables. Thus, simulating 

counterfactuals and interventions becomes possible to explore.2 DAGs are adaptable and flexible 

due to their non-parametric nature. Their mathematical foundations have been previously 

described.1,5,6 Several resources have been published that provide the basics of DAGs.1–5,9,10 

Furthermore, Ferguson et al have provided guidelines on the synthesis of evidence and the 

construction of DAGs to provide a systematic method of the development of DAGs for causal 

inference.12  

Although DAGs have become an increasingly popular method for causal inference, the 

use of DAGs in applied research remains low.7 A recent study found that around 40% of 

respondents did not use DAGs, and the most common reason given was that they did not know 

how to use them.7 Accessibility to relevant training resources may be a barrier to more 

widespread use.7 Specifically, the use and reporting of DAGs vary in applied health research.8 

Even when DAGs are reported in these studies, most fail to report how adjustment sets were 

derived for estimates that are provided, including those for the primary analysis of interest.8 

Confusion or disagreement on the rules and assumptions of DAGs may have contributed to their 
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limited uptake as a systematic method to construct models.7,8 Additionally, when researchers use 

DAGs, it is in the limited context of presenting knowledge and assumptions and selecting 

deconfounders. However, DAGs can evolve and be augmented to present the data-generating 

process. The causal roadmap developed by Petersen and van der Laan provides researchers with 

a framework to address causal questions.16 This study aims to describe how DAGs can be used at 

each stage of the causal roadmap as well as to demonstrate the use of DAGs and the causal 

roadmap through the application to data taken from Causal Inference: What If.4 

4.3 Navigating the causal roadmap with DAGs 

4.3.1 Overview of the causal roadmap 

The causal roadmap that Petersen and van der Laan developed includes seven steps to address 

causal questions.16 These steps were further explored with application by Balzer et al. to provide 

guidance on the use of the causal roadmap.79 Here, we explore the use of DAGs while navigating 

the causal roadmap with an application that was originally used in Causal Inference: What if.4 

The causal roadmap steps and the potential use of DAGs at each step have been outlined in 

Table 4.1. Some steps were combined for simplicity however, the considerations remain the 

same as if they were separated. We also included a step that is specific to conducting 

sensitivity/bias analysis to ensure that the sensitivity of the estimate to potential biases or 

assumption violations is fully explored. In the following sections, we will describe in detail how 

DAGs can be augmented and evolve to be useful at each step of this causal roadmap. 
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4.3.2 Step 0: Specify the research question 

Before embarking on this journey, we need to define the research question of interest. Once the 

research question has been defined, we can determine whether the question is causal in nature. 

Part of the process of defining the research question includes specifying what the target 

population is. It is important to understand what population we would like to make inferences 

about. Later, this will help identify the measure of effect of interest, whether we are interested in 

making inferences on the total population, the treated population, or the untreated population. 

Additionally, we will need to define the outcome and exposure/treatment of interest. This step is 

a preparation step that helps us to begin to build our DAG. 

4.3.2.1 Step 0: Application 

For the purposes of demonstration, we will explore the causal relationship between smoking 

cessation and weight gain as was done in Causal Inference: What if.4 Smoking is known to cause 

harm to nearly every organ in the body and as such, those who quit smoking experience better 

health outcomes than those who do not.41,42 However, a potential barrier to smoking cessation is 

concern over subsequent weight gain.43–45 Thus, we may wish to know the average total effect of 

smoking cessation on weight gain to potentially alleviate these concerns. As such, the aim of our 

study is to quantify the total average causal effect of smoking cessation on weight gain. Our 

target population is the analytic sample which consists of smokers with complete data on 

covariates from the civilian adult population of Americans ages 25-74 years selected in 1971-

1975 and followed-up in 1982-1984. 
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4.3.3 Step 1: Specify knowledge about the system 

When addressing a causal aim, there is generally some information available on the relationships 

between variables. A literature review should be conducted to establish what prior knowledge 

exists about the outcome and exposure of interest as well as any potential covariates. This 

information can then be synthesized and displayed using a DAG to visualize the relationships 

between variables. By specifying prior knowledge, we can evaluate what relationships need to be 

accounted for to remove bias and ensure identifiability. If data has not been collected yet, 

specifying the DAG may aid in data collection and inform study design. A protocol developed by 

Ferguson et al to standardize the development of DAGs and encode this background knowledge 

provides a step-by-step process to map, translate, and integrate the information into a DAG.12  

4.3.3.1 Step 1: Application 

Figure 4.1 depicts a DAG that illustrates the potential causal relationships between smoking 

cessation status, potential confounders, potential mediators, and weight gain. In our example, our 

outcome of interest is weight gain at follow-up (wg). Our exposure/treatment of interest is 

smoking cessation between baseline and follow-up (qsmk). Technically, this treatment is time-

varying since smoking cessation can take place at any point between baseline and follow-up as it 

is strictly voluntary and should be treated as such.4 However, in our example, we will ignore the 

time-varying aspect of the treatment in favor of simplicity as was done in Chapter 12 of Causal 

Inference: What if.4 Baseline covariates such as education (edu), sex (sex), age (age), race (race), 

recreational physical activity (parec), physical activity in daily life (padl), years of smoking 

(smkyrs), smoking intensity (smkint), weight in kilograms (kg) (wt0), and alcohol frequency (alc) 

were evaluated as potential confounders of the relationship between smoking cessation status and 

weight gain at follow-up. We also acknowledge that indirect causal paths between smoking 
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cessation and weight gain exist where it can be mediated by post-treatment recreational and daily 

life physical activity (parec1 and padl1, respectively) as well as post-treatment diet (diet1). 

4.3.4 Step 2: Link the observed data to the DAG 

In the second step of the causal roadmap, we would need to link the observable data to the DAG. 

By doing so, any potential threats to internal validity can then be assessed.80 These potential 

threats include (but are not limited to): 1) ambiguous temporality; 2) sources of measurement 

error; 3) selection; and 4) missing data. If the temporality of variables cannot be established, 

reverse causation may be of concern as it cannot be ruled out. The directionality of the arrows in 

DAGs is intended to establish a temporal precedent to identify this potential issue.80 Similarly 

variables that occur in concurrence with the exposure and can also be viewed as an ancestor of 

the outcome may also be a threat to validity. As such, we should identify which variables (if any) 

are unmeasured and potentially introduce proxy variables that are being used to indirectly assess 

these unmeasured variables in their place if necessary. Including potential sources of 

measurement error in the DAG may also be necessary to assess whether misclassification bias 

may be an issue. Joint effects may also contribute to measurement error and should be 

considered when assessing potential bias and the use of proxies.80 Such joint effects can induce 

collider bias and should be carefully considered.80 Additionally, we should also identify the 

relationship between the target and study populations. To do so, we will need to describe the 

criteria for inclusion or exclusion in the study population. These criteria can be displayed in the 

DAG through the inclusion of a selection variable. Similarly, it may be important to include if 

and how study participants were lost to follow-up. Visualizing the study population in a DAG 

can help further illuminate potential sources of selection bias and/or transportability.4,34,53,58 

Lastly, if missing data is an issue, nodes can be included that describe patterns in missing data to 
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assess their level of randomness so that an appropriate method for adjusting for the missing data 

can be identified.29,72,73,81    

4.3.4.1 Step 2: Application 

In our example, we use the National Health and Nutrition Examination Survey I (NHANES-I) 

Epidemiologic Follow-up Study (NHEFS) as used by Hernán and Robins.4,17,18 NHANES-I was 

conducted in 1971-1975 and the NHEFS was conducted in 1982-1984 as a follow-up. 

Participants in NHEFS included persons 25-74 years of age who completed the medical 

examination at baseline for NHANES-I (n = 14,407).17 The sampling procedure for NHANES-I 

is described in detail elsewhere.46,47,82 Certain groups of individuals were oversampled to ensure 

representativeness in the survey and thus, sampling weights as well as cluster and strata 

information are provided with the data to account for this oversampling. If our target population 

was the general non-institutionalized smoking population of the contiguous United States, we 

may need to use these weights in order to make inference on the target population. Similarly, as 

shown in the DAG in Figure 4.2, our analytic sample is a result of restricting on individuals with 

known weight, sex, age, race, height, smoking intensity, and alcohol use at baseline and 

censoring those with missing weight measurement at follow-up (n = 1,566).4 In this DAG, a 

censoring node (C=0) has been added to reflect this censoring. Additionally, although smoking 

cessation status was not directly censored on, it may still be associated with the probability of 

being censored. As pointed out by Hernán and Robins, the censoring of those with missing 

weight measurement at follow-up may have induced selection bias by conditioning on a post-

treatment event (i.e., participation in the 1982 follow-up). Thus, if smoking cessation is 

associated with the probability for censoring, then selection bias may be induced because 

smoking cessation is actually a time-varying treatment.4 This censoring would result in selection 
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bias if our target population went beyond the analytic sample itself. Thus, we would need to 

account for this selection bias as well in order to make inferences beyond the analytic 

sample.48,53,54,59  However, in our example, our target population is the analytic sample itself. To 

reflect this in Figure 4.2, weight gain is in terms of the uncensored (wgC=0).  

 The outcome, exposure, and covariate definitions for our example are consistent with 

those from Chapter 12 of Causal Inference: What If.4  Our outcome of interest is weight gain at 

follow-up which is a continuous variable that reflects the weight in kg at follow-up minus the 

weight in kg at baseline. An individual was considered to have quit smoking between baseline 

and follow-up if they reported having quit smoking at follow-up, else they were considered to 

have not quit smoking (1: Yes; 0: No). Age (years), years of smoking, smoking intensity 

(cigarettes/day), and height in centimeters were also continuous variables and measured at 

baseline. Sex (male vs female), race (White vs Black or other), education (1: 8th grade or less; 2: 

high school dropout; 3: high school; 4: college dropout; 5: college or more), recreational physical 

activity (0: much exercise; 1: moderate exercise; 2: little or no exercise), daily life physical 

activity (0: very active; 1: moderately active; 2: inactive), and alcohol frequency (0: almost every 

day; 1: 2-3 times/week; 2: 1-4 times/month; 3: < 12 times/year; 4: no alcohol in the last year; 5: 

unknown) were all categorical and also measured at baseline.  

4.3.5 Step 3: Specify the target causal quantity and assess identifiability 

As described in Box 4.1, we must ensure that all variables are well-defined to properly assess 

identifiability. This is especially true in the case of the intervention of interest. It is important that 

we fully define the intervention of interest and its counterfactual quantity to properly measure the 

causal effect. Intervening on a variable changes the system it is operating in by fixing its value.5 

Therefore, it can be useful to visualize how the system is affected after the intervention has taken 
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place in a post-intervention DAG. Specifically, the post-intervention DAG is derived from the 

pre-intervention DAG and are intended to show the consequences of our actions. For instance, if 

we intervene on treatment then the arrows going into the treatment are removed. As a result, the 

post-intervention DAG helps illuminate whether the intervention is complete on its own or 

whether other conditions are necessary to measure the causal effect and meet the conditional 

exchangeability condition. Other considerations for the causal effect of interest include whether 

the question calls for the direct, indirect, or total effect.83,84 Reflecting on whether selection bias 

or transportability was an issue in step 2, we can assess whether the chosen measure of effect can 

be estimated and inferences of the target population can be made or identify if another measure 

of effect may be more appropriate. Similarly, it is important to know if the effect of interest is a 

joint effect or requires accounting for effect modification.65 Several studies have proposed how 

to use DAGs to depict interaction and effect modification through augmentation. 66,67,85–89 

Understanding which effect is of interest will dictate what is required for identifiability.83,84,90–93  

We also need to evaluate whether the observed data and the intervention are sufficient to 

answer the question of interest. Again, we refer to Box 4.1 to assess whether the conditions for 

identifiability have been met or whether further adjustments are needed. Unlike intervening on a 

variable, however, adjustment does not alter the system. Instead, when a researcher adjusts or 

conditions on a variable, we are only narrowing the focus to a certain subset of cases.5 Looking 

at the post-intervention graph, we can use an appropriate identification framework to select 

variables to be included in the model for adjustment. Such identification frameworks include 

Pearl’s backdoor criterion or the front-door criterion should unmeasured confounding be an issue 

and an intermediate variable is available.5 Methods for selection of deconfounders have been 

previously proposed elsewhere.5,94,95 It may be the case that several minimally sufficient sets are 
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available to control for confounding by using different criteria. In which case, to choose the best 

set, we would need to consider which set is less prone to measurement error or missing data. If 

competing causal structures are an issue, minimally sufficient sets from all causal structures 

should be considered. Furthermore, additional considerations may need to be addressed to assess 

the effect of interest. 

4.3.5.1 Step 3: Application 

Our target causal effect is the average causal effect of smoking cessation on weight gain. 

Specifically, we are interested in quantifying the average total effect of smoking cessation 

between baseline and follow-up on weight gain at follow-up. We will use the backdoor criterion 

to identify confounders and assess identifiability. Resources such as DAGitty and Causal Fusion 

are useful tools to assess identifiability based on the queried DAG.96–98 To assess whether the 

conditional exchangeability assumption holds, we check the DAG in Figure 4.2 (i.e., the pre-

intervention DAG) to assess whether there are any confounders. The DAG indicates that there is 

a single minimally sufficient set for control of confounding. This set includes the baseline 

confounders education, sex, age, race, recreational physical activity, physical activity in daily 

life, years of smoking, smoking intensity and weight. This set of confounders is consistent with 

those used in Chapter 12 of Causal Inference: What if.4 This is clarified in the post-intervention 

DAG (Figure 4.3) when we intervene on smoking cessation status. We can further assess this by 

evaluating the distribution of these potential confounders by smoking cessation status (Table 

4.2) where we do notice a difference in distribution of baseline confounders by smoking 

cessation status. However, we can also see that there is still potential selection bias that was 

induced by censoring on missing data. If smoking cessation is associated with censoring, 
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selection bias could be an issue. This would preclude identifiability of the average causal effect 

of smoking cessation on weight gain. Sensitivity/bias analysis will be necessary to quantify the  

magnitude of this bias. Another source of potential bias is measurement error which in this 

example we assume does not exist for simplicity however, potential sources of measurement 

error or misclassification bias should be evaluated further in any causal study to ensure that 

identifiability holds. Hernán and Robins also discuss the empirical violation of the positivity 

assumption since some strata exist that have a probability of smoking cessation equal to zero.4 

This is not surprising since the risk of a violation of the positivity assumption is higher with 

higher dimensional data.79 In this example, interference is not an issue since the weight gain of 

one individual does not affect the weight gain of another.  

4.3.6 Step 4: Commit to a statistical model and estimand 

Once we have assessed what would be required for identifiability of the causal quantity, it is time 

to commit to a statistical model and estimand. At this point, we should have enough information 

to decide whether the effect of interest is identifiable. It may be the case that identifiability of the 

estimand is not possible. One option is to declare the unidentifiability of the estimate and move 

on. Another option is to select a different estimand that is similar but requires additional 

assumptions. Petersen and van der Laan differentiate between convenience-based assumptions 

and knowledge-based assumptions to select an appropriate statistical model and estimand.16,79 

Unfortunately, it is not uncommon for measured variables to be insufficient to control for 

confounding and instead should be assessed through quantitative bias analysis.53,54,57,60,99 

Assumptions that arose from a literature review or expert input are generally categorized as 

knowledge-based assumptions and tend to lie closer to the truth; however, often to improve 

identifiability, additional assumptions are made that may not be based on real knowledge and are 
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thus categorized as convenience-based assumptions.  It is important to differentiate between 

these assumptions to select an appropriate model and estimand. When selecting variables for 

models for causal inference, the primary concern is to ensure conditional exchangeability.4 Thus, 

a DAG depicting only knowledge-based assumptions and another DAG that includes 

convenience-based assumptions should be compared. Statistical models should be selected based 

solely on knowledge-based assumptions to ensure that it contains the truth.16,79 However, it may 

be the case that using convenience-based assumptions are unavoidable. Thus, we should 

minimize the number of convenience-based assumptions used to select an estimand, if possible.  

4.3.6.1 Step 4: Application 

In the previous step, we noticed that there are a few assumptions violated that may preclude 

identifiability. Namely, the violation of the positivity assumption. According to Hernán and 

Robins, the violation of the positivity assumption in this case was a random violation.4 Random 

violations of the positivity assumption occur when the sample is finite such that when we stratify 

on several confounders, we are bound to find zero cells even when the probability of treatment is 

not actually zero.4 Additionally, we identified several potential confounders that need to be 

adjusted for in order to ensure conditional exchangeability. To remove the influence of these 

confounders on smoking cessation status, we will use stabilized inverse probability of treatment 

weights (IPTW). By doing so, we will be able to smooth over the random violation of the 

positivity assumption by modeling the probability of treatment in strata with random zeroes 

using the data from the individuals in other strata.4 This is further clarified in Figure 4.3 which 

indicates that by applying the IPTWs, we remove the arrows going into smoking-cessation 

status. The weight we construct will have the following form: 
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𝐼𝑃𝑇𝑊𝑞𝑠𝑚𝑘=1 =
Pr(𝑞𝑠𝑚𝑘 = 1)

Pr(𝑞𝑠𝑚𝑘 = 1|𝑍0)
 

and 

𝐼𝑃𝑇𝑊𝑞𝑠𝑚𝑘=0 =
1 − Pr(𝑞𝑠𝑚𝑘 = 1)

1 − Pr(𝑞𝑠𝑚𝑘 = 1|𝑍0)
 

where we let Z0 represent the minimally sufficient set of baseline confounders age, sex, race, 

education, recreational physical activity, daily life physical activity, smoking intensity, years of 

smoking, and weight. We assume a parabolic relationship between continuous confounders and 

the smoking cessation status (a dichotomous variable). Thus, quadratic terms for continuous 

variables (i.e. age, weight at baseline, smoking intensity, and years of smoking) were included in 

the model of treatment. We use bootstrapping methods to calculate 95% confidence intervals. 

Fortunately, since we are assessing the total effect of smoking cessation on weight gain, we do 

not require the measurement of the mediators to ensure identifiability. However, if we were 

interested in the direct effect of smoking cessation on weight gain, we would require additional 

data. Our knowledge-based assumptions are sufficient for conditional exchangeability to hold. 

Selection bias may still be an issue depending on our target population. Again, we may wish to 

explore the degree of selection bias with a sensitivity/bias analysis. All analyses were conducted 

using SAS® version 9.4 statistical software and the seed for bootstrapping methods was 1234567. 

4.3.7 Step 5: Estimation 

We now can estimate our causal effect of interest. We take what we learned in steps 0-4 to 

estimate our causal effect. Additionally, any analytic decisions made during this step should be 

documented in the DAG to guide interpretation later on. If interaction terms were needed or 

transformations were required, we may wish to include these in the DAG to assess how using 
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them will affect our inference. This is especially true if the transformation is used as a proxy for 

the variable. 

4.3.7.1 Step 5: Application 

In our example, we assumed a parabolic relationship between continuous baseline covariates and 

smoking cessation status; however, the squared terms were not used as a proxy for the 

continuous variable. Thus, our pre- and post-intervention DAGs still hold (Figures 4.2 & 4.3).  

4.3.8 Step 6: Sensitivity/bias analysis 

It is an unfortunate fact that any type of research contains some level of uncertainty. Often when 

conducting causal studies, we would like to assume that all error is random. However, to do so 

would be unrealistic as systematic error does exist and can heavily bias our estimate. In fact, an 

untested biased estimate in public health can have severe consequences when it is mistaken for 

the truth as it has the potential to influence policy and/or clinical decisions. Thus, bias analysis is 

a necessary step to ensure that sources of potential bias have been acknowledged and/or 

addressed.9,53,57,60,61,100–102 Transparency of the uncertainties involved in the estimation of the 

measure of effect is essential to advance knowledge for public health research and practice.100 To 

guide our sensitivity analysis, we use the DAGs we created in the previous step. If competing 

causal diagrams have been proposed, we would need to assess the magnitude of bias in each 

causal system. In some cases, proper sensitivity analyses would require external data to quantify 

the magnitude of the bias since the data could be insufficient to account for unmeasured 

covariates or the assumptions themselves are untestable.60,79,99,102 Any potential lingering biases 

or uncertainties that limit our ability to address our research question should be quantitatively 

explored. Whether we are concerned about unmeasured confounders, selection bias, 
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measurement error, or violations of the conditions of identifiability, sensitivity analysis will 

enhance transparency of the limitations of the estimate so that future research can aim to avoid 

these pitfalls.  

4.3.8.1 Step 6: Application 

To assess the potential selection bias induced by censoring on missing weight measurement at 

follow-up, we will test the sensitivity of the estimate attained by using the IPTW weights alone 

in comparison to an estimate of the mean difference attained by a model where we use these 

same IPTW weight as well as inverse probability of censoring weights (IPCW). The stabilized 

IPCW weights we use will have the following form: 

𝐼𝑃𝐶𝑊 =
Pr(𝐶 = 0|𝑞𝑠𝑚𝑘)

Pr(𝐶 = 0| 𝑞𝑠𝑚𝑘, 𝑍0)
 

where the full weight will combine the IPTW and IPCW to emulate random censoring with 

respect to the baseline confounders in Z0. To combine the weights, we multiply the IPTW by the 

IPCW (𝐼𝑃𝑇𝐶𝑊 = 𝐼𝑃𝑇𝑊 ∗ 𝐼𝑃𝐶𝑊). Figure 4.4 is a simplified post-intervention DAG showing 

that by using these IPTCWs we are able to remove the arrow from Z0 to censoring. Essentially, 

by doing so, we are assessing the mean weight gain if everyone had quit smoking and nobody 

had been censored, a joint effect.4  

4.3.9 Step 7: Interpretation 

Here, we take what we learned from steps 0-6 to guide the interpretation of our results. At this 

point, we should have enough information to communicate any lingering uncertainties that 

remain. We also assess our ability to make inferences on the target population. The statistical 

interpretation of our estimand may not change, however, the causal interpretation can vary 
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depending on the limitations of the data and the degree of bias. Thus, the results and implications 

from any sensitivity/bias analysis conducted should be clearly communicated to prevent misuse 

of the estimate in future research. 

4.3.9.1 Step 7: Application 

The total number of participants included in the analytic sample was 1,629 after initial restriction 

to complete baseline covariate measurements and 1,566 after another 63 were censored due to 

missing weight measurement at follow-up. Due to the potential selection bias and oversampling 

during survey design, we refrain from extending the inference of our results beyond the analytic 

sample. Initial descriptive analysis of the analytic sample to assess conditional exchangeability 

showed that those who quit smoking varied slightly from those who did not quit smoking 

especially in terms of baseline covariates sex, age, education, weight, smoking intensity, and 

years of smoking (Table 4.2). The estimated stabilized IPTWs ranged from 0.33 to 4.21 and had 

a mean of 1.00. Additionally, the estimated stabilized IPCWs ranged from 0.94 to 1.72 and had a 

mean of 1.00. When we estimated the combined IPTW*IPCW, the weights ranged from 0.35 to 

4.09 with a mean of 1.00. Using the stabilized IPTWs to adjust the model for baseline 

confounders age, sex, race, education, smoking intensity, years of smoking, recreational physical 

activity, physical activity in daily life, and baseline weight, we estimated that on average, those 

who quit smoking gained 3.52 kg more than those who did not quit smoking at follow-up 

(Bootstrap 95% CI: [2.45,4.49]) (Table 4.3). Similarly, when we used the combined 

IPTW*IPCW, we estimated that on average, quitting smoking increased weight by 3.50 kg 

(Bootstrap 95% CI: [2.43, 4.44]). Our estimates are consistent with those estimated by Hernán 

and Robins.4 The similarity between these two estimates can indicate that selection bias is either 

minimal or could not be removed. 
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4.4 Conclusion 

Causal aims are of chief concern in epidemiology to investigate and explain the mechanisms by 

which disease occurs. DAGs are traditionally used in causal studies to inform analysis and data 

collection, communicate assumptions, assess identifiability, detect the presence of bias, and 

guide interpretation. In our paper, we reiterate the value of DAGs to address causal aims while 

navigating the causal roadmap by demonstrating their use at each step. The use of DAGs 

throughout the process can help clarify assumptions and guide interpretation to communicate 

uncertainties that could not be resolved. Though our example is simple, we demonstrate some of 

the considerations that should be made when navigating the causal roadmap. However, DAGs 

heavily rely on the assumption of faithfulness and are therefore limited in their usefulness if 

faithfulness cannot be assumed. Nevertheless, DAGs are flexible tools that can be augmented 

and evolve. When addressing a causal aim, DAGs will evolve to better assess changes to the 

causal structure as a result of data collection procedures, lost-to-follow up, missing data, data 

fusion, and analytic decisions. 
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4.5 Appendix 

Table 4.1: Outline of steps of the causal roadmap and the use of Directed Acyclic Graphs 

(DAGs) 

Step Description Use of DAGs 

0. Define the research question 
Define the research question. 

Define the target population. 

Not necessarily applicable - this 

step is preparation for DAG 

creation and scope of study. A 

basic DAG consisting of the 

outcome and a primary 

covariate (if applicable) of 

interest can be drawn but is not 

necessary. 

1. Specify knowledge about 

the system 

Describe background knowledge 

with respect to the question under 

study 

Display background 

knowledge. Encode 

relationships between variables 

in the DAG. 

2. Link the observed data to 

the DAG 

Identify which variables have been 

measured. Describe 

selection/inclusion criteria. Link 

the observable data to the causal 

model. Define the sample/study 

population. 

Identify sources of 

confounding, selection bias, 

and/or measurement error. 

Assess issues with missing 

data. Augment the DAG to 

specify what data is observable 

vs unobservable 

3. Specification of the target 

causal quantity & assess 

identifiability 

Define the intervention/exposure 

variables and the type of 

intervention. Identify the measure 

of effect of interest. Specify the 

model. Assess identifiability 

conditions and whether additional 

assumptions are needed for 

identification. Specify an 

identification framework. 

Use pre- and post-intervention 

DAG to define the intervention 

and its potential effects. Use the 

specified identification 

framework to select variables 

for the model. Assess whether 

conditions for identifiability 

have been met. 

4. Commit to a statistical 

model and estimand 

Identify the causal effect of 

interest and the corresponding 

estimand. Assess whether 

knowledge is sufficient to identify 

the causal effect using the 

specified statistical model. 

Augment the DAG to include 

post-intervention and backdoor 

path identification methods. 

Address additional concerns 

that may arise due to the 

statistical model of choice. 
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Step Description Use of DAGs 

5. Estimation Estimate the causal effect. 

Augment the DAG to include 

any analytic decisions made to 

guide the interpretation later 

6. Sensitivity/Bias analysis* 

Test sensitivity of the causal effect 

due to assumptions made or 

potential bias 

Guide the sensitivity or bias 

analysis using a DAG to 

identify sources of uncontrolled 

confounding, selection bias, or 

measurement error/information 

bias 

7. Interpretation 

Interpret the results appropriately 

accounting for any biases or 

assumption violations that may 

still exist preventing effect 

identification or inference on the 

target population 

Guide the interpretation of the 

selected estimate based on what 

was done during the analysis 

and whether the target 

population can be assessed. 

*Not included in the original roadmap proposed by Petersen and van der Laan16 
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Figure 4.1: This DAG shows the relationships between smoking cessation (qsmk), potential confounders, potential mediators, and 

weight gain (wg). Baseline confounders include: education (edu), sex (sex), age (age), race (race), recreational physical activity 

(parec), physical activity in daily life (padl), smoking intensity (smkint), years of smoking (smkyrs), weight at baseline (wt0), and alcohol 

frequency (alc). The potential mediators are post-smoking cessation recreational physical activity (parec1), post-smoking cessation 

physical activity in daily life (padl1), and post-smoking cessation diet (diet1). 
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Figure 4.2: This DAG shows the relationships between smoking cessation (qsmk), potential confounders, potential mediators, and 

weight gain (wg) in the context of the data. Baseline confounders include: education (edu), sex (sex), age (age), race (race), 

recreational physical activity (parec), physical activity in daily life (padl), smoking intensity (smkint), years of smoking (smkyrs), weight 

at baseline (wt0), and alcohol frequency (alc). The potential unmeasured mediators are post-smoking cessation recreational physical 

activity (parec1), post-smoking cessation physical activity in daily life (padl1), and post-smoking cessation diet (diet1). A censoring node 

(C=0) is included to illustrate the censoring process undertaken when censoring on missing data in baseline and follow-up weight, 

height (ht0), alcohol frequency, smoking intensity, age, sex, race, and education. 
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Box 4.1: Conditions of identifiability 

 

 

1. Well-defined variables - Every variable is properly named and measured 

2. Conditional exchangeability - The potential outcome of Y had X been set to x is 

independent of X given a set of confounders S 

3. Positivity - For every non-zero probability of a set of confounders, S, and 

exposure, X, there is a greater than zero probability of X given S (i.e. all values of 

the exposure, X, must be possible for everyone under study) 

4. Consistency - For those X=x, the potential outcome of Y had X=x is their 

observed Y 

5. Interference - No spill-over effects or ties between units. An individual's outcome 

is not dependent on another individual's outcome or an appropriate model is used to 

account for interference 

6. No other sources of bias - No selection bias, dependent measurement error, or 

misrepresentation of the data 

7. No model misspecification - The statistical model used sufficiently accounts for 

existing biases and no new biases are introduced 
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Figure 4.3: A post-intervention DAG that shows the relationships between smoking cessation (qsmk), potential confounders, potential 

mediators, and weight gain (wg) in the context of the data after intervening on smoking cessation. Baseline confounders include: 

education (edu), sex (sex), age (age), race (race), recreational physical activity (parec), physical activity in daily life (padl), smoking 

intensity (smkint), years of smoking (smkyrs), weight at baseline (wt0), and alcohol frequency (alc). The potential unmeasured mediators 

are post-smoking cessation recreational physical activity (parec1), post-smoking cessation physical activity in daily life (padl1), and 

post-smoking cessation diet (diet1). A censoring node (C=0) is included to illustrate the censoring process undertaken when censoring 

on missing data in the outcome. Arrows into the censoring node indicate differential lost to follow-up by baseline confounders and 

possible association with smoking cessation status 
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Table 4.2: Frequency and means of baseline characteristics for those with significant weight 

gain and. those without significant weight gain, NHEFS 1982-1984. 

Characteristic 

Quit smoking 

(N=428) 

Did not quit 

smoking 

(N=1,201)  

n (%) n (%)  

Sex      

Male 237 (55.37%) 562 (46.79%)  

Female 191 (44.63%) 639 (53.21%)  

Race      

White 390 (91.12%) 1,024 (85.26%)  

Black or other 38 (8.88%) 177 (14.74%)  

Education      

8th Grade or less 93 (21.73%) 218 (18.15%)  

High School Dropout 78 (18.22%) 273 (22.73%)  

High School 164 (38.32%) 495 (41.22%)  

College Dropout 30 (7.01%) 96 (7.99%)  

College or more 63 (14.72%) 119 (9.91%)  

Exercise      

Much exercise 70 (16.36%) 247 (20.57%)  

Moderate exercise 181 (42.29%) 496 (41.30%)  

Little or no exercise 177 (41.36%) 458 (38.13%)  

Daily activity      

Very active 182 (42.52%) 547 (45.55%)  

Moderately active 198 (46.26%) 540 (44.96%)  

Inactive 48 (11.21%) 114 (9.49%)  

Alcohol frequency      

Almost every day 89 (20.84%) 247 (20.63%)  

2-3 times/week 52 (12.18%) 179 (14.95%)  

1-4 times/month 141 (33.02%) 365 (30.49%)  

< 12 times/year 84 (19.67%) 260 (21.72%)  

No alcohol last year 61 (14.29%) 146 (12.20%)  

  Mean (95% CI) Mean (95% CI)  

Age (years) 46.7 (45.5, 47.9) 42.9 (42.3, 43.6)  

Weight (kg) 72.6 (71.1, 74.2) 70.5 (69.6, 71.4)  

Smoking intensity at 

baseline (cigarettes/day) 
18.8 (17.6, 20.0) 21.2 (20.5, 21.8)  

Years of smoking 26.6 (25.4, 27.8) 24.3 (23.6, 24.9)  
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Figure 4.4: Simplified post-intervention directed acyclic graph (DAG) to depict the effect of using inverse probability of treatment 

weights with inverse probability of censoring weights to remove confounding and selection bias where Z0 is the set of baseline 

confounders education, age, sex, race, recreational physical activity, daily life physical activity, years of smoking, smoking intensity, 

and weight at baseline. The outcome of interest is weight gain at follow-up among the uncensored. The joint exposure is smoking 

cessation status (qsmk) and the selection node (C=0) is included to depict censoring due to missing data in the outcome that is removed 

with inverse probability weighting. M1 is the unmeasured set of post-smoking cessation mediators. 
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Table 4.3: Inverse-probability weighting for treatment and censoring adjusted estimates of the 

causal mean differences of weight gain on smoking cession status, NHEFS 1982-1984 

  

Model 1 

(IPTW only) 

Model 2 

(IPTW * IPCW) 

Estimate (Bootstrap 95% CI) Estimate (Bootstrap 95% CI) 

Quit smoking 3.52 (2.45, 4.49) 3.50 (2.43, 4.44) 

*Abbreviations: IPTW = inverse probability treatment weighting; IPCW = inverse probability 

censoring weighting 

Model 1 - IPTW-adjusted only for baseline confounders age, sex, race, education, smoking 

intensity, years of smoking, recreational physical activity, daily life physical activity, and 

weight 

Model 2 - IPTW and IPCW-adjusted for baseline confounders age, sex, race, education, 

smoking intensity, years of smoking, recreational physical activity, daily life physical activity, 

weight, and smoking cessation to remove potential selection bias induced by censoring 
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Chapter 5 Discussion & References 
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5.1 Discussion 

This dissertation aimed to guide the use of DAGs in settings relevant to applied health 

researchers. DAGs are considered to be causal diagrams and as such, they are taught from a 

causal perspective. However, even among epidemiologists, the consistent use of DAGs in 

applied health research remains low.7,8 This may in part be due to a lack of clear guidance on the 

application of DAGs in non-causal settings such as studies with descriptive or predictive aims. 

All of these types of studies are commonly used in applied epidemiology but the understanding 

of how to apply DAGs in these types of settings may be low.  

 We provided steps and guidance on the use of DAGs in descriptive, predictive, and 

causal studies. To do so, we used one dataset from Causal Inference: What If to demonstrate the 

similarities and differences in the approach to answering these questions.4,18 Though our 

examples were simplified we were able to focus on the relationship between smoking cessation 

and weight gain in the population to highlight the differences in approach and considerations for 

the three types of aims (Table 5.1). We showed that the estimates themselves are different and 

should not be conflated. We also found that for all three types of aims, the definition of the target 

population is critically important for inference. It can affect whether selection bias is an issue in 

any setting and should be corrected so the inference can be made on the target population. All 

studies have a descriptive component. Predictive aims can range from simply quantifying 

correlations to requiring causal assumptions to address the aim in full. Causal studies require that 

the conditions for identifiability be met. Using a DAG to depict existing knowledge can optimize 

data collection and variable selection. They clarify assumptions and can be augmented to provide 

valuable context that can aid in the identification of bias and the nature of missing data. They can 

also help guide inference from the estimate and communicate assumptions of the causal structure 
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that may aid future research in assessing the transportability of the model/estimate to other target 

populations.  

The applications we used to demonstrate the use of DAGs in descriptive, predictive, and 

causal aims were simple examples and did not touch on some potential issues that may arise such 

as identifying and correcting information bias, treating missing data, transporting the model to a 

new target population, effect modification and interaction, and approaching predictive models 

the various types of prognostic prediction questions with DAGs. The aim of this dissertation was 

to provide some guidance on the incorporation of DAGs to address some common aims in 

epidemiology and public health. 

Applied epidemiologists can use DAGs to guide study design and analysis, optimize 

variable selection, and clarify assumptions. Krieger and Davey Smith have pointed out that being 

tied to a DAG can limit the scope of the study and may result in a failure to address true causes. 

However, in response, Pearl has pointed out that this in fact may be considered a strength of a 

DAG, to limit the scope of the study to the question of interest and later evolve to include new 

information and potential factors as they arise. In fact, a DAG can also illustrate the true 

relationship of the variables on the outcome. For example, race is a social construct that is often 

used in epidemiology to assess racial health disparities as a proxy for structural inequities. A 

DAG can better clarify the operationalization of race as a construct to better assess the true 

relationships between the societal mechanisms that make up race and the outcome.103,104 

There remain limitations in how DAGs can be used or interpreted. DAGs are inherently 

limited to the assumptions that are presented in the DAG. Krieger and Davey Smith have pointed 

out that being tied to a DAG can limit the scope of the study and may result in a failure to 

address true causes.105 However, in response, Pearl has pointed out that this in fact may be 
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considered a strength of a DAG, to limit the scope of the study to the question of interest and 

later evolve to include new information and potential factors as they arise.106 Similarly, they are 

limited to the question being asked when constructing the DAG and cannot completely account 

for potential confounders when evaluating the effects between other covariates in the graph with 

respect to the outcome. Attempting to extend a model that was constructed with or without a 

DAG beyond the exposure and outcome of interest can result in the Table 2 fallacy.107 However, 

DAGs remain flexible tools that can be augmented and evolve to include necessary information 

over time. 
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5.2 Appendix 

Table 5.1: Summary of application of descriptive, predictive, and causal aims 

  Descriptive Predictive Causal 

Research 

Question 

Who is gaining weight? 

What is the crude difference 

in weight gain by smoking 

cessation status? 

What are the strongest 

predictors of weight 

gain at follow-up 

What is the average causal 

effect of smoking cessation 

on weight gain? 

Outcome 
Observed weight gain at 

follow-up 

Predicted weight gain 

at follow-up 
Weight gain at follow-up 

Model 

Simple linear regression of 

weight gain on smoking 

cessation status 

Conditional inference 

random forest 

Linear risk model with 

combined inverse 

probability of treatment 

weights and inverse 

probability of censoring 

weighting. 

Target estimate 
Crude mean and risk 

differences 

Rank of important 

predictors of weight 

gain 

Causal risk difference 

Potential issues 
Selection bias, information 

bias, missing data 

Selection bias, 

information bias, 

missing data 

Confounding, selection bias, 

information bias, missing 

data 
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