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supercomputers.  In order to better address the challenges presented by emerging 

exascale architectures, the decision has been made to rewrite NWChem.  Design of the 

resulting package, NWChemEx, has been driven by exascale computing; however, 

significant additional design considerations have arisen from the team's involvement 

with the Molecular Sciences Software Institute (MolSSI).  MolSSI is a National Science 

Foundation initiative focused on establishing coding and data standards for the 

computational chemistry community. As a result, NWChemEx is built upon a general 

computational chemistry framework called the Simulation Development Environment 

(SDE) that is designed with a focus on extensibility and interoperability.  The present 

manuscript describes the modular approach of the SDE and how it has been used to 

implement the self-consistent field algorithm within NWChemEx. 

Computational chemistry is a field aimed at modeling chemical phenomena in order to 

rationalize as well as predict experimental outcomes.  The models within the field vary greatly in 
their computational and technical complexity. On the low-cost end one tends to find models 
suitable only for qualitative results; however, they are capable of modeling millions of atoms.  
At the other extreme lies the field of electronic structure theory (EST), which consists of 
methods capable of quantitatively replicating experimental measurements, but only for systems 
comprised of tens of atoms.  An active area of research in EST focuses on endeavors to extend 
the range of systems for which quantitative models are possible.  Research in this direction 
typically focuses on parallelization and/or developing new approximations for existing theories.  

Unfortunately, the code state of many of the current computational chemistry packages poses 
one of the largest barriers to such endeavors. 

Most existing codes in EST originated as in-house codes for a single research group.  Typically, 
these codes focused on one specific area of research and were developed with little to no formal 
software design practices (such as properly designed abstractions, data encapsulation, and 
standardization).  Owing to the bootstrap nature of EST methods, as well as the evolving 
interests of the research groups, the scope of each of these packages grew and inevitably the 
packages’ features began to overlap. Despite this overlap, most package developers have avoided 

leveraging existing  implementations, instead choosing to reimplement the needed common 
functionality themselves.  Historically this has been for a variety of reasons, although time 
constraints are arguably the leading factors.  Making the situation worse, most EST package 
development relies solely on grant funding.  The result is a perpetual cycle where established 
funding precedent means that in order for a developer’s grant application to be competitive, 
novel methodologies must be implemented quickly and cheaply to maximize the production of 
scientific results.  Thus developers often accumulate technical debt just to “get something 
working.” This leaves little to no funding, or time, for repaying the already accumulated 
technical debt.  Today the typical computational chemistry package has: millions of lines of 

poorly-structured, monolithic code, often with little to no reuse of the capabilities available in 
other packages or even within itself, and little to no developer documentation.  This makes 
onboarding new developers, implementing novel methodologies, and porting existing 
methodologies to new computer architectures increasingly difficult. To make the situation worse, 
a typical package is not able to take full (or any) advantage of modern massively parallel 
platforms characterized by great emphasis on data parallelism and vectorization, deep memory 
hierarchies, and heterogeneous and/or configurable hardware. 

 

NWCHEM [1] has  arguably been the de facto leader in high-performance computing (HPC) 
within the field of EST.  Motivated largely by the challenges imposed by exascale computing we 
have decided to rewrite NWCHEM from the ground up. While the original NWCHEM did and 
does have an active software design process, the requirements of exascale computing and the 
current architectural diversity (many-core processors, graphical processing units, multilevel 
memory hierarchies, etc.) along with the additional requirements of advanced methods have 
outstripped the original design.  The resulting new package, NWCHEMEX, is being designed 
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foremost for performance on the upcoming exascale machines, but also for extensibility, 
workflow integration, and interoperability.  Key to this effort is the SIMULATION DEVELOPMENT 

ENVIRONMENT (SDE), which provides a framework for writing an EST package in terms of 
callbacks to decoupled modules.  As will be shown, this in turn leads to an ecosystem in which it 
is straightforward to introduce a new methodology, create an architecture-specific algorithm, or 

just call another package in a way that minimizes the amount of additional technical debt.  It is 
our overarching goal that the SDE will foster a software community where researchers develop 
many SDE “apps”, each for a specific task and architecture.  Users of SDE based packages can 
then go to “app stores” and choose from among the myriad of available apps in order to 
customize their package.  

BACKGROUND 

The SDE can be thought of as a successor to the common component architecture (CCA), and 
the associated CCA Forum [2]. The goal of the CCA was to bring component-based software 
engineering practices to the scientific HPC communities. Within the CCA, software is assembled 

in terms of independent software units (called components).  Each component had to maintain a 
specific interface and was in charge of a specific task. Coding language interoperability was 
achieved via the scientific interface definition language (SIDL) and the BABEL tool [3].  The 
result was that the components could be assembled together into a larger application in a “plug 
and play” manner thereby promoting reusable, maintainable scientific software.  The CCA also 
helped handle the architectural heterogeneity of supercomputers by allowing components 
optimized for different architectures to be swapped in and out.    

Within the CCA chemistry community, efforts were focused on: enabling  the molecular 

geometry to be optimized from multiple quantum chemistry packages [4], combining multiple 
theoretical methods to improve multi-level parallelism [5] and resource utilization [6].  In 
addition to these high-level efforts, there was also progress in standardizing interfaces to lower-
level functions, like integral calculations, which are an essential piece of most quantum 
chemistry codes [7]. Ultimately the CCA infrastructure was too heavy-weight for most 
developers, requiring multiple levels of software to work together in a cumbersome manner with 
linking the software components together taking more development time than developing the 
components themselves. Although the CCA Forum was retired around 2010, the work done on 

standards and interfaces has continued to benefit the quantum chemistry community to this day. 

Standardization efforts within the scientific computing community have recently been 
reinvigorated by the Molecular Sciences Software Institute (MolSSI), which is a  National 
Science Foundation funded institute.  In addition to establishing standards, the MolSSI is 
working with the community to ensure that these standards are adopted. While still early in the 
life of the project, a draft schema [8] has been developed for EST output data and NWCHEMEX 

will support this schema in order to capitalize on connections with other projects. Other elements 
of the MolSSI that are relevant to this work are the training of computational molecular sciences 
software developers in modern techniques for software engineering and the organization of 

leadership and community-lead workshops to engage the community in software and standards 
development. 

With the growing popularity of languages designed around object-oriented  (OO) paradigms,  
like C++ and Python, developers in EST are gradually moving away from the procedural 
paradigms of the legacy codes; consequently a number of EST packages embracing OO 
paradigms have sprung up.  Unlike legacy codes, and with two notable exceptions [9, 10], 
generally these OO codes are unconcerned with performance beyond a single node, rather they 
see themselves as platforms for rapid development of new theories.  For the most part the ease of 

prototyping new methods comes from the fact that, compared to legacy codes, these packages 
tend to better embrace good software practices.  For example there has been a shift away from 
using domain-specific languages for package input, towards using established languages like 
Python [11, 12, 13, 14] or JSON [9, 10, 15] (JavaScript Object Notation) both of which integrate 
easily into typical workflows.  Encapsulation also plays a key role in the design at both the 
algorithm level, by using classes, as well as at the package level via libraries.  This in turn makes 
it easier to modify the code without side effects.  Somewhat more recently many of these OO 
codes [9, 12, 13, 16] have placed an emphasis on being able to easily extend the package by 

standardizing APIs and providing plugin mechanisms.  Combined with MolSSI’s standardization 
efforts, this paves the way for interoperability among packages. 
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At a high-level the biggest innovation the SDE provides is automatic checkpointing of the 
calculation.  EST calculations are notorious for the amount of compute time they require.  Few 
EST packages (legacy or OO) have more than a rudimentary (if any) ability to save a 
calculation’s state.  As architectures become more complex, hardware failures are going to 
become more common.  Furthermore, in order to truly integrate into a dynamic workflow it 

becomes essential to be able to refactor the workflow without needing extensive recomputation.  
The SDE also improves upon extensibility efforts pioneered by other OO EST packages.  In 
particular the SDE provides a plugin system that facilitates dynamic modifications to nearly the 
entirety of the call graph.  By comparison, most other plugin systems [9,13] only allow users to 
add plugins relatively high on the call graph.  This inhibits the amount of customization a user 
can do without actually modifying the package’s source code. 

SDE DESIGN 

The goal of this section is to introduce and demonstrate the key aspects of the SDE by working 
through an implementation of the self-consistent field (SCF) method in NWCHEMEX.  The SCF 

method serves as the first order approximation in EST.  Almost all other methods in EST add 
improvements to a reference wavefunction that is computed with an SCF calculation.  At a very 
high level, the SCF method can be viewed as a technique to compute the best initial guess for a 
molecular system’s electron density, P.  P is found by minimizing the energy of the system with 
respect to P.  Since the energy depends on P, this process must be done iteratively.  The SCF 
procedure is summarized in Algorithm 1, where the inputs to the procedure are an initial guess at 
the electron density, P0, and a core matrix h that does not change during the SCF procedure. 
Without going into too many details, an important part of the method is building F, the “Fock 

matrix”, which can be done in multiple ways.  We point this out because, from the perspective of 
the end-user, building the Fock matrix is encapsulated inside the SCF procedure.  Thus 
throughout the following we show how the end-user can influence the formation of F without 
modifying the SDE or NWCHEMEX source code. 

function SCF(P0, h) 

 Eold 0 

 while Not converged do 

  Form F(P0) 

  Use F to form P 

  ESCF = Tr[P (h + F) ] 

  Check convergence 

  P0  P 

  Eold  ESCF 

 end while 

 return ESCF 

end function 

Algorithm 1. High-level overview of the SCF procedure 
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Input Layer 

 
Listing 1.  Input to NWChemEx for specifying an SCF calculation.  Left example uses C++, right 
uses Python. 

Listing 1 shows an example NWCHEMEX input for running an SCF computation on the hydrogen  
molecule. For comparison purposes we show both the C++ and PYTHON versions.  Lines 1 to 3 
of the C++ example in Listing 1 illustrates a central tenet of NWCHEMEX, modularity. Three of 
the main components of the software stack-the SDE, LIBCHEMIST, and SCF-are implemented as 
independent, modular components, and are only brought together here at the highest level (these 
components are automatically imported when you import NWCHEMEX in PYTHON). We have 
chosen to write these components in C++ because of the support for and efficiency of C++ on 
current HPC systems.  The C++ base also leads to a higher level of API stability (C++ places 
more restrictions on an API than PYTHON does, and so needing to convert a PYTHON API to C++ 

could break existing implementations).  Nevertheless, the PYTHON bindings provide a convenient 
input layer and enable others to extend NWCHEMEX from PYTHON if they so choose. 

After importing the necessary components, both examples create the molecular system.  Keeping 
with typical OO practices, NWCHEMEX utilizes software abstractions for common EST 
concepts.  The APIs and implementations for these abstractions  form LIBCHEMIST. In contrast to 
most of the other OO EST packages, chemistry abstractions in NWCHEMEX are  implemented on 
top of the framework and are not part of it.  This decreases the coupling between the SDE and 
NWCHEMEX and facilitates the use of the SDE and  LIBCHEMIST by other packages.   

On lines 13 and 14 of Listing 1, the C++ code continues by declaring and filling an instance of 

the ModuleManager class.  These lines begin to introduce the SDE, and the  module concept.  

Within the context of the SDE, every major aspect of an algorithm is encapsulated within entities 
termed modules.  Modules are analogous to components in the context of the CCA and plugins 
in MPQC [9], PySCF [12], and Psi4 [13].  Unlike MPQC’s and Psi4’s plugins, modules are 

much more fine-grained and permeate the entire call graph.  Each module performs a specific 
task, e.g., computing an energy, calculating an initial density, or building F. The task a module 

performs is codified by a class called its “property type.”  For example the Energy class is the 

property type for modules that compute energies. We have attempted to put minimal restrictions 

on each property type, only requiring that it derives from SDE::ModuleBase and that it 

defines a function run, which is the entry point into the module.  From a design standpoint this 

is similar to how PYSCF’S  plugins work, except that SDE modules also have the added benefit 
of type safety.   

The ModuleManager is the software abstraction of the SDE framework.  Loading a module 

into the ModuleManager means associating a module key with a callback function (an opaque 

function provided as input to another function) for creating the module.  The module key is a 

unique string label (here “SCF” is used as the module key) that is associated with a particular 
instance of a module.  The module key provides a mechanism for referring to a particular 
instance of a module.  Generally speaking each module contains  a set of module keys for the 

“submodules” it will call.  The resulting call graph is known to the ModuleManager and in 
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turn the ModuleManager is capable of manipulating the graph.  Thus one can interject a 

particular module into the call graph simply by providing the ModuleManager with the 

module key for the parent module and the module key for the new submodule. This should be 
contrasted with  PySCF, which provides similar capabilities, but requires the plugin to be 
forwarded through the entire call graph.  The decision to take a callback allows the SDE to 
remain agnostic to the details of the module’s creation and facilitates dynamically loading 
modules (see line 18 of the PYTHON example in Listing 1).  The callback itself is stored in a type-
erased manner so that the SDE remains decoupled from not only the exact type of the module, 

but also from the module’s property type.  Admittedly, this design results in needing to register 

every possible module with the ModuleManager.  While there is no way around this explicit 

registration, users are typically insulated from it by convenience functions; Line 11 of the 
PYTHON example in Listing 1 shows the typical use of such a function.     

Like plugins in MPQC and Psi4, modules within the SDE have state.  In particular we associate 

a set of parameters, submodules, and metadata with each module instance.  Allowing modules to 
have state greatly facilitates manipulating deeply nested modules. For example, assume module 
A calls module B, which calls module C.  If we want to change the parameters of module C with 

the SDE we simply ask the ModuleManager for C and modify the parameters of the resulting 

instance.  For stateless plugins, like those In PySCF, however, the parameters for module C need 

to be forwarded through modules A and B in order for C to be able to use them.  In the input 
examples in Listing 1, lines 17-20 of the C++ example and lines 15-18 of the PYTHON example 
show how to change the parameters.   Lines 19 and 20 of the C++ example and line 18 of the 
PYTHON showcase another way by which it is possible to change the submodule, i.e.,  by 
providing a new callback.  After swapping the submodule both examples are configured and the 
last statement calls the SCF module to obtains the energy of the hydrogen molecule..   

Module Design 

 

Listing 2.  Definition of the SCF module.  Left example uses C++, right uses Python. 

Moving deeper into the details of the SCF example, Listing 2 shows how the Energy property 

type, and the SCF module, which is derived from it,, can be defined in NWChemEx. If a user 

wanted to extend the SDE with a new property type or module it is done via an analogous 

pattern. The code begins in lines 6-11 of the C++ example by defining the Energy property 

type, which is the central property type for an SCF calculation.  The Energy property type only 

takes two inputs: the molecular system (described by the LibChemist::Molecule class) 

and the derivative order (i.e., the default, 0, simply computes the energy, a value of 1 would 
return the gradient with respect to displacements of the nuclear framework, etc.).  One might 
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have expected to see more than two inputs, since the SCF method requires input, such as the h 
matrix shown in Algorithm 1. However, the design philosophy for the SDE is to make the API 
applicable to as many algorithms as possible.  To do this we have distilled the set of possible 
input parameters down to those common to most property type implementations.  Any additional 
input required by a module is obtained by calling a submodule.  The careful design of the API 

for each property type is a consequence of C++ being a statically typed language.  For the 
various EST packages with APIs defined in Python, less consideration is required because of 
Python uses  duck typing.  While duck typing has the benefit of flexibility,  that flexibility means 
that at runtime the modules are responsible for checking whether the input parameters are 
acceptable or not.  Even something as simple as passing the arguments in the wrong order is not 
detected until runtime for Python-based APIs.  In EST this could mean losing hours of work if 
the EST package does not use checkpointing or save progress in some manner. On the other 
hand, in C++-based APIs, which are used in the SDE, the result would be a compile time error, 
which avoids the runtime error described above.  

The remainder of the C++ example and the entirety of the Python example in Listing 2 show 

how one implements a module.  In both cases the new module, SCF, derives from the Energy 

property type.  Since all modules of property type Energy share a common base they can be 

used interchangeably.  For example, if one writes a geometry optimizer in terms of the Energy 

property type, that optimizer would immediately be usable with all modules derived from 

Energy.  While this is a simple OO idea, many EST packages have features that are unavailable 

for certain methods simply because the developer was unaware they needed to modify the 
package in additional places to enable that functionality.  Property types help mitigate such 
situations because there are no special modifications required once the module is written. 

In Listing 2, after the Energy property type definition, the SCF module  is defined beginning at 

line 13 in the C++ example and line 3 in the Python example.  In the default constructor for the 
class, the first line (and the lines ellided by the subsequent comment) declares the submodule 
callback points and the default submodule to use at that point.  Next, the code examples declare 
the parameters associated with the algorithm.  Within the SDE, parameters are algorithmic 
details, such as scale factors and thresholds.  To our knowledge, this is unique to the SDE as all 
other EST packages use parameters to switch between algorithms.  While this may seem like a 
trivial distinction, it makes extending the code easier.  For example, assume that during the SCF 
there are two different ways to build the Fock matrix, such as by using core memory and using 
disk.  Other EST packages then define a parameter, which is then utilized by a control structure,  

to switch between Fock build algorithms.  In most cases, if another Fock build is added, another 
parameter is needed, and the control structure needs altered.  Consequently, the API of the SCF 
becomes coupled to the choices for the Fock builder. Depending on how the dispatch is handled, 
the resulting code may obscure the control flow and inhibit parallelization.. Within the SDE, 
however, this coupling is avoided by simply switching the submodule that the SCF uses.  The 
constructor declaration ends with the specification of metadata associated with the module.  The 
metadata are items such as the version of the module, a description of what it does, and citations 
associated with it.  Although not present in the SDE at the moment, one of our goals is to 

automate the generation of documentation for the module.  This would be done by inspecting the 
module to obtain the parameters associated with it (and their default values) as well as the 
available callback points (and the default modules used).   The other purpose of the metadata is 
to allow the caller of a module to figure out exactly what module they are calling.   

The remainder of the code example in Listing 2 implements the run function of the SCF module.  

Lines 29 to 35 in the C++ example and lines 17 to 22 of the Python example obtain the 

remainder of the input, not provided by the Energy property type, but required for the SCF.  In 

the iterative portion of the SCF procedure (line 39 in the C++ example and 27 in the Python 
example in Listing 2, and line 3 of Algorithm 1), submodules are invoked to calculate needed 
quantities. On line 40 in the C++ example and line 28 in the Python example we compute the 

Fock matrix by calling a module of property type FockBuilder.  Note that there is no control 

logic to select which module to call; the SDE will automatically make sure that the module 

resolves to the choice made in Listing 1 (the DFF implementation in C++ and the myF 

implementation in Python). 
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Listing 3.  Illustrating DIIS, using nested modules.  Left example uses C++, right uses Python. 

Readers familiar with the SCF procedure know that a production level SCF requires many 
additional considerations aside from those shown in Algorithm 1.  For example it is common to 
use numerical techniques to accelerate the convergence of the SCF process.  The most popular, 

direct inversion of the iterative subspace (DIIS)), uses the generated F matrix and extrapolates it 
towards convergence based on the errors of the previous iterations.  Typically such a step would 
be coded explicitly between lines 40 and 41 of the C++ example in Listing 2.  However, because 
of the module design in the SDE, we can add DIIS to our SCF without modifying Listing 2.  To 

do this we nest FockBuilder instances. Listing 3 shows an implementation of DIIS, using 

nested modules, omitting the details of the actual DIIS algorithm for clarity.  In Listing 3, on line 

12 of the C++ implementation and line 5 of the Python implementation, the DIIS module calls 

another FockBuilder to get the F matrix, computes the error in that F matrix, and uses the 

error to produce a better guess, which it then returns.  To the SCF module the use of DIIS is 

opaque.  In fact by nesting many FockBuilder modules it is possible to create an arbitrarily 

complicated FockBuilder; for example, one could implement a FockBuilder so that one 

submodule is used when the error is above a certain threshold, and a different submodule is used 
for smaller errors.   

As the DIIS example shows, writing a nested module is straightforward and users can do it from 
the input.  This allows users to have fine-grained control over printing (for example write a 

FockBuilder that prints the F matrix and then returns it), introduce ad hoc algorithms that 

lack generality (e.g., on iteration 4 follow root 3), or to implement a completely new algorithm.  
Nesting modules is also useful for exploiting parallelism.  For example one can maintain a single 

process, multiple data (SPMD) model by having an outer FockBuilder, parallelize over calls 

to a series of smaller FockBuilder calls.  Eventually it is our goal to have modules that 

automate the selection of the algorithm given the characteristics of the computer system.  
Nesting modules achieves this by allowing the top-level module to contain the automation logic 
necessary to select the appropriate module to call, in an opaque manner. 

 

SDE Layer 

The reader may have noticed that in the Input Layer section, we did not invoke the SCF module 

directly, rather we used the run_as function (see Listing 1).  Similarly, while writing the SCF 

example module we did not directly call the run member of the submodule, instead we used the 

run_submodule_as function (see Listing 2). Algorithm 2 shows the internals of the 

run_as function. (The run_submodule_as function is a thin wrapper around run_as, so 

the behavior is the same as the run_as function.) 
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function run_as(args...)           

                if not_ready() 

                    throw “Not ready”     

                end if 

 lock() 

                hv  memoize(args…) 

                if hv not in cache                 

                    value  run(args…) 

                    cache[hv] = value 

                end if 

                return cache.at(hv)              

end function 

Algorithm 2. High-level overview of the run_as function 

It is evident that the run_as function is not simply a thin wrapper around the call to run.  Rather, 

run_as gives control to the SDE to enable automation of a number of common tasks.  At the 

moment the SDE is capable of automating error checking, as well as saving/loading of the 
calculation’s state.  Efforts to automate performance optimizations (e.g. accelerator offload, 
parallelization, and intelligent algorithm selection) are ongoing. 

Nearly every EST package has some sort of option/parameter system.  Inevitably, some of the 
option values must be subject to constraints. For example specifying a negative number of 
iterations is meaningless.  Consequently, in most EST packages the first several lines of code in 
a routine are dedicated to error checking the options.  The SDE automates error checking of 
options by allowing the module developer to provide callback functions for checking an option’s 
value (although the use of such callbacks is not shown in Listing 2 for simplicity).  Ensuring that 

these callbacks pass for each option is one of two things the not_ready function does.  The 

other purpose of the not_ready function is to ensure that each required submodule callback 

is set and ready, i.e., not_ready is called recursively on each submodule as well.  If the 

module or any of the submodules are not ready, then the call throws. 

Once the SDE verifies that the module is ready to be run it locks the module and all submodules.  
A locked module can no longer have its options or submodules modified (the lock occurs after 
the check to provide the user a chance to rectify any of the errors preventing the module from 
being run).  In designing for HPC environments one has to be mindful of data races.  Locking is 

one safe guard for this.  Locking  is also essential for the next step of the run_as function, 

memoization.  In computer science, memoization is a technique where the result of an expensive 
call is stored and the next time that call is performed, the cached value is simply returned. The 
cached values are uniquely indexed by the input parameters provided during the function 
execution.  By locking the state of the module, we guarantee that the output of the module is 
solely determined by the input (assuming the module is deterministic). 

Within Algorithm 2, the actual memoization occurs by first obtaining a hash representing the 
state of the module and the arguments.  Next, we check to see if the hash is present in the cache 

(the cache is essentially a hash table).  If the value is present we simply return it.  If the value is 
not in the cache we call the module, add the value to the cache, and then return the cached value.  
Given that all of the important results computed in an EST program are the result of calling a 
module, the cache will contain all of the important results obtained so far.  Hence, storage of the 
cache suffices as a record of the calculation.  Furthermore, if the same calculation is run again, 
with the cache from the previous run, the entire calculation will be memoized.  This provides a 
straightforward mechanism to checkpoint the calculation by periodically backing the cache up.  
As an added bonus, this mechanism is handled automatically by the SDE so that module 

developers do not have to manually implement restart logic. 

Memoization is also important for avoiding global states.  Global states, including files, are 
undesirable from a parallel perspective as they make control flow hard to reason about.  In many 
legacy codes global states are used to get around  the rigidity of the APIs. The SDE’s reliance on  
property types poses the same problem.  For example, in the SCF method the Fock matrix is a 
linear combination of three matrices: h, J, and K.  The FockBuilder property type takes an 
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instance of h, but does not take J or K.  It turns out that the most computationally expensive step 
of the SCF is building J and K.  Hence, once we have built J and K we do not want to rebuild 

them unless absolutely necessary. This is where the rigidity of the FockBuilder property type 

is prohibitive.  Since instances of FockBuilder do not return J and K, without memoization 

and without global states,  J and K would need to be recomputed..  With memoization,  however, 
we can obtain J and K with minimal overhead, simply by recalling the submodule that built  J 

and K within the FockBuilder.  

SUMMARY AND OUTLOOK 

The SDE provides a mechanism for interoperability and flexibility in package composition.  The 
various components of the SDE allow for multiple modules and submodules that can provide 
new methodological approaches to calculating similar properties as well as allowing for 
optimization of performance based on hardware and software architectures.  The transparency to 
both users and developers of the Parameters and Cache classes provides a spectrum of ways to 
interact with the modules ranging from beginner, where all of the defaults are set, to expert, 
where many of the options can be changed and used in unique manners to quickly build and 

prototype new functionality. While the SDE is flexible, the APIs for each property type are not, 
once they have been defined.  However, this is a strength when coupled with community driven 
standards development such as those of the MolSSI.  Future development efforts will focus on 
expanding the property types, modules and submodules that are available through the 
framework.  Particular areas of interest include APIs for the calculation of atomic integrals, 
localized orbitals and higher level correlated methods with sparse representations.   
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