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An Ultra High Gain Converter for Driving HASEL Actuator
Used in Soft Mobile Robots
Tirthasarathi Lodh * and Hanh-Phuc Le *

Electrical and Computer Engineering Department, University of California San Diego, La Jolla, CA 92093, USA
* Correspondence: tlodh@ucsd.edu (T.L.); hanhphuc@ucsd.edu (H.-P.L.)

Abstract: Soft robots have the potential to fundamentally change interactions between robots and the
surrounding environment, and between robots and animals, and robots and humans in ways that
today’s hard robots are incapable of doing. However, to realize this potential, soft robot actuators require
extremely high voltage supplies of more than 4 kV. The electronics that can satisfy this need currently are
either too large and bulky or unable to achieve the high power efficiency required for mobile systems.
To meet this challenge, this paper conceptualizes, analyzes, designs, and validates a hardware prototype
of an ultra-high gain (UHG) converter that can support extremely large conversion ratios up to ∼1000×
to provide up to 5 kV output voltage from an input voltage of ∼5–10 V. This converter is demonstrated
to be able to drive HASEL (Hydraulically Amplified Self-Healing Electrostatic) actuators, a promising
candidate to realize future soft mobile robotic fishes, from an input voltage range of a 1-cell battery
pack. The circuit topology employs a unique hybrid combination of a high-gain switched magnetic
element (HGSME) and a diode and capacitor-based voltage multiplier rectifier (DCVMR) to enable
compact magnetic elements, efficient soft-charging in all flying capacitors, and adjustable output voltage
capability with simple duty-cycle modulation. Achieving an efficiency of 78.2% at 15 W output power,
while providing 3.85 kV output from 8.5 V input, the proposed UGH converter proves to be a promising
candidate for future untethered soft robots.

Keywords: hybrid converter; extremely large conversion ratio; high voltage breakdown; soft-
charging; switched-capacitor; voltage multiplier; dickson

1. Introduction

Human life and productivity have seen revolutionary changes in recent decades,
to which robots have contributed fundamentally. The integration of robots in everyday
activities has also increased at an unprecedented rate with the next generation easily
surpassing the previous generations in capabilities, market penetration, and customer
satisfaction. One such example is robotic prosthetics, the market size of which is estimated
to double from $790.8 million in 2016 to $1.76 billion by 2025, i.e., CAGR (Compound
Annual Growth Rate) of 9.2% [1]. The approximate number of conventional robots, typically
made of solid and hard materials, is estimated to be around 1.6 million or more in global
operation. Hard robots find wide applications in factories for automobiles and electrical
products. However, there remain a lot of tasks that have to be performed by human
workers, particularly those requiring complex conformal interactions with animals, or
humans. Accomplishing these tasks requires a new generation of robots [2] that are
constructed with soft, versatile, lightweight, and compact materials. Hence, a lot of recent
efforts, from both academic research and industry, have been poured into realizing soft
robots for a wide range of applications, for example, soft robotic hands for soft grip [3–7]
and sensing [8,9] or soft robots that mimic animal anatomy and operation [10–13] to better
study their structure and movements in a rough environment or underwater [14–16].
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1.1. HASEL Actuator Construction and Fabrication

The key component of a soft robot is the soft actuator, one widely used type of which
is called Dielectric Elastomer Actuators (DEAs) [17,18]. These actuators can produce high
forces, have high power per weight ratios (W/kg), produce large strains (>1000%) [14–16],
possess high energy density (>3 MJ/m3) [19], exhibit self-sensing [20], and achieve fast
actuation rates (10 ms to 1 s) [21]. The HASEL (Hydraulically Amplified Self-Healing
Electrostatic) actuator [16], illustrated in Figure 1, is a special type of DEA. There are three
basic components listed in Table 1 used to fabricate HASEL actuators.

(a) No electric field (b) With electric field

Figure 1. Structure and operation of HASEL [16].

Table 1. Materials used in HASEL Actuators.

Location Material

Electrodes Conductive, and safe carbon-based substance

Pouch Flexible, soft, and thin thermoplastic polymer film

Liquid dielectric Transformer oil, vegetable oil

First, flexible electrodes are patterned on the soft deformable pouch’s exterior. A
conductive, and safe carbon-based substance that is used to create ultra-thin layers of
elastic electrical conductors is the main component of the electrodes. The electrode material
is deposited in exact topologies, utilizing a variety of commercial techniques used in the
booming field of flexible electronics. Since a HASEL actuator’s functionality is determined
by its electrode geometry, the capacity to design precisely defined electrode patterns is
essential for actuator customization.

Second, a flexible, soft, and thin thermoplastic polymer film, which is extensively
found in the high-performance capacitor industry, is used to prepare the elastomeric shell.
Electric linear actuators made of these materials have the potential to have extremely long
cycle lifetimes.

Third, a liquid dielectric makes the self-healing core. Transformer oils are a common
type of liquid dielectric, although simple cooking vegetable oils can also be used. To achieve
a particular actuator response, the liquid dielectric utilized in HASEL actuators can have a
wide range of different characteristics. For instance, the fluid’s viscosity can be adjusted to
quicken actuator response times or add passive vibration damping.

It has been shown that one can tailor the performance of these materials to meet
the specific needs of different applications. Hence, the materials used in the construction
of HASEL actuators are not only low-cost and environmentally friendly, but they are
also versatile.

As shown in Figure 1, to operate the HASEL actuator, a voltage is applied between
the two electrodes. A large voltage (>4 kV) and, thus, its electric field pull the two parallel
electrodes closer together and, thus, push the fluid in between them out to expand the
height of the pouches from to to t, as shown in Figure 1b. When multiple actuators are
stacked on top of each other, higher strain for the same load is achieved. When a higher
voltage is applied to the actuator, a higher load can be lifted.
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1.2. Stringent Power Supply Requirement for the Soft Robots

While exhibiting many advantageous physical and mechanical characteristics, a key
challenge in adopting these soft robots made up of HASEL actuators lies in the electronics
to support them, because they require an extremely high electric field to change their shape
to create actions [22–27]. Since the electromechanical force of dielectric elastomer material
is quadratically related to the input voltage, a high supply voltage is required for stronger
force and larger payload. Besides this, to enable a fast and frequent response from a soft
robot, and to support larger systems with larger payloads, high supply power is also a
critical requirement [14,16]. The combination of high supply voltages (≥4 kV), relatively
high power (≥5 W), and output modulation poses a critical challenge in designing an
efficient, modular, and miniaturized power converter for the actuators, especially when its
input voltage is as low as a Li-ion battery voltage of ∼10 V. The input battery compatibility
enables next-generation soft robots to be completely untethered [28] and mobile. High
efficiency and small size allow soft robots to have longer operation times. A modular
design, therefore, is needed to support system scaling up to higher power for heavier
payloads and faster operations. These were the key goals of this work.

1.3. Literature Review

There has been a lot of effort in research and industry to design DC–DC converters for
extreme conversion ratios and output voltages. They can be broadly classified into four cat-
egories: (1) switched-capacitor converters, (2) switched-inductor converters, (3) converters
using a transformer, and (4) converters using a coupled inductor. As described in more
detail below, each of these categories has its own limitations, such that modifications and
synchronous combinations of multiple types of these converters are required to satisfy the
required ultra-high gain (UHG) of up to ∼1000× with high efficiency and in a modular
compact size.

Switched capacitor converters [29,30] can be compact and can provide a high output
voltage. The popular SC converter topologies are series–parallel, Fibonacci, doubler, ladder,
hybrid, and Dickson. The key drawback of the SC converter is that its voltage gain depends
on the number of components. To achieve a large voltage gain, they require a very large
number of components. Hence, switched capacitor converters alone can not be used for
ultra-high gain. To achieve a very high gain, the SC converters need to be preceded by
another circuitry providing a high gain.

Conventional inductive converters, such as boost, buck–boost, Cuk, sepic, and zeta-
derived topologies [31], use only inductors with charging duty cycle modulation to generate
voltage conversion. Even though theoretically, it is possible to obtain an extremely high
voltage gain from these converters, their practical, efficient voltage gain is only limited to
2–3 times, due to the parasitic components present in the circuits. These types of converters
find wide application in mobile applications, regular consumer electronics, and low-voltage
DC microgrids with renewable energy sources like photovoltaic (PV) solar cells, fuel cells,
and storage sources, like batteries and ultracapacitors. In another effort to increase voltage
gain, the converter reported in [32] generated a positive as well as a negative output and
took the final output between these two outputs. This approach achieved approximately
double the output voltage compared to the previous family of converters, but not enough
for an extremely high voltage gain of >1000×. It is quite evident that the duty cycle
modulation alone with an inductor is not sufficient for ultra-high voltage gain.

To increase the voltage gain, a different family of converters has been reported
on in [32–37], which combines a boost or buck–boost type of topology with diode and
capacitor-based voltage multiplier rectifiers (DCVMR). Even though the DCVMR stage
provides additional voltage gain, its ideal gain increases linearly with the number of lev-
els (equivalent to the number of diodes). That means it still requires many levels and,
hence, many components to achieve high voltage gain, leading to design complexity and
adverse cost trade-offs. Furthermore, for some of the DCVMR configurations, there is an
optimum gain point, beyond which the voltage gain has diminishing returns, even if the
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number of levels is increased, because of the significant cumulative voltage drop of the
flying capacitors.

Another common approach to achieving large voltage gain is to use a transformer, as
in forward, push–pull, half-bridge, or full-bridge converters. Reasonable step-up voltage
gain can be achieved by increasing the turn ratio of the transformers. However, the duty
cycle has to be less than 50 percent to allow transformer core resetting in the forward
converter and avoid the shoot-through problem in push–pull, half-bridge, and full-bridge
converters. Hence, the duty cycle brings the voltage gain down by a factor of 2 or more. As
a result, a very high value of the transformer turn ratio is the only way to achieve a high
voltage gain that leads to undesirably large transformer sizes. Inductors can be placed at
the converter input to make configurations like current fed push–pull, half-bridge, and
full-bridge structures [38]. This arrangement provides a boost-type conversion ratio. Hence,
for the same overall voltage gain, the turn ratio requirement can be reduced by 4× or more
compared with a simple transformer strategy. However, in order to achieve the required
voltage gain of ∼1000×, the transformer needs to support 240× gain, which is also its turn
ratio, making it unacceptably large, and also inefficient, in operation.

As an alternative to providing high voltage gains from the inductive side, coupled
inductors have been used with high turn ratios for high voltage gain as reported in [39–57].
These designs tackle the leakage inductance, associated with the coupled inductors, by
means of a passive clamp using a diode and capacitor or an active clamp circuitry [47,52].
Although several techniques, including output stacking, are used in this family of convert-
ers, their voltage gain is still limited to 10×. Even though the voltage gain can be increased
by increasing the coupled inductor turn’s ratio, to achieve a voltage gain of the order
∼1000×, the coupled inductor size needs to be excessively large and it is very inefficient.

To achieve the goal of driving soft robotic HASEL actuators, and to address the draw-
backs of the available systems, this work proposes a UHG converter that synchronously
combines and optimizes multiple stages and their gains. The rest of the paper is organized
in the following manner. Section 2 describes the proposed UHG converter and its operating
states. Section 3 talks about the hardware prototype and experimental results, followed by
the conclusion of the work in Section 4.

2. Proposed UHG Converter and Its Operating States

The block diagram of the power system to drive the HASEL actuator is shown in
Figure 2. The proposed ultra-high gain (UHG) converter with two parts is shown in
Figure 3. The detailed schematic diagram of the converter is shown in Figure 3. The first
part at the input consists of an interleaved boost converter [58] and a transformer that
forms the high-gain switched magnetic element (HGSME) part, while a Dickson-based [59]
circuit, that forms the diode and capacitor-based voltage multiplier rectifier (DCVMR), is
the second part of the converter. In essence, to efficiently provide an extremely large voltage
gain, the UHG converter architecture combines multiple smaller voltage gain stages that
are synchronously operated. With the DCVMR part providing a significant gain (6×–10×),
the HGSME part has a smaller voltage stress and gain requirement, allowing size reduction
for magnetic elements.

Figure 2. Block diagram of the power system to drive the HASEL actuator.
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Figure 3. Circuit diagram of the proposed UHG converter.

2.1. Operation and Steady-State Analysis of HGSME

The operating states of the proposed UHG converter, shown in Figure 4, can be
explained with the timing diagram presented in Figure 5. The gate to source voltage of
switch Sa2’s (Sb2) is denoted by vgs (Sa2) (vgs (Sb2)). The drain to source voltage of switch
Sa2’s (Sb2) is denoted by vds (Sa2) (vds (Sb2)). The gate to source voltage of switch Sa1’s
(Sb1) is denoted by vgs (Sa1) (vgs (Sb1)). The drain to source voltage of switch Sa1’s (Sb1) is
denoted by vds (Sa1) (vds (Sb1)). The two boost converters of the HGSME are operated in
two 180-degree-interleaved phases, A and B. Let us assume a duty cycle larger than 0.5
for switches Sa2 and Sb2. The switches Sa1 and Sb1 operate complementary to the switches
Sa2 and Sb2 respectively. When the switch Sa2 (Sb2) is on, voltage across the switch Sa1
(Sb1) is vCl , current through the inductor La (Lb) rises linearly. When the switch Sa1 (Sb1)
is on, voltage across the switch Sa2(Sb2) is vCl , current through the inductor La (Lb) falls
linearly. Hence, the switch voltage is pulse waveforms. The waveforms of the A phase
boost converter are 180-degree phase shifted from the corresponding waveforms of the B
phase boost converter. The low-voltage primary side of a transformer is connected between
the two switching nodes of the two boost converters. Hence, the low-voltage winding
(LVW) of the transformer observes the difference between the two switching node voltages
vds(Sa2) and vds(Sb2), which is a quasi-square wave voltage of peak magnitude vCl . The
voltage across the secondary winding is a scaled-up version (by a factor of the turn’s ratio of
the transformer W1) of the quasi-square wave which serves as the input to the DCVMR part.

Using small ripple approximation, assuming continuous–conduction mode (CCM)
operation, and applying the Volt-second balance for the inductors La or Lb, we can calculate
the voltage at capacitor Cl in a boost operation as:

Vbat × D + (Vbat −VCl )× (1− D) = 0 (1)

=⇒ VCl =
Vbat

1− D
(2)

where D is the duty cycle of the inductor energizing switches Sa2 and Sb2.
The function of the transformer is to amplify the low voltage quasi-square wave at the

level of VCl at its LVW by a factor of W1 = Wh
Wl

(turn ratio of the transformer). Hence, the
peak voltage of the quasi-square wave at the HVW of the transformer is:

VWh =
W1Vbat
1− D

(3)

The wave shape of the quasi-square wave at the HVW of the transformer vab can be
obtained by amplifying the difference of the waveforms of the drain to the source voltage
of the switches Sb2 and Sa2:

vab = W1{vds(Sa2)− vds(Sb2)} (4)
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(a) State 1

(b) State 3

(c) States 2 and 4

Figure 4. Operating states of the proposed UHG converter.

It was observed, from the waveforms of the gate pulses, as seen in Figure 5, that
four operating states were in the proposed UHG converter, illustrated in the same Figure.
The equivalent circuits depicting the current flow paths corresponding to the different
operating states are shown in Figure 4. Equivalent circuits of states 1, 3, and 2 (or 4) are
shown in Figure 4a–c, respectively. Those branches of the circuit, which did not carry
any current for a particular operating state, were hidden in its equivalent circuit. If the
diode was not hidden in a particular branch of an equivalent circuit, it meant that the
current flow direction of that branch was from the anode to the cathode side of the diode,
because the diode only conducted in the forward-biased condition. During state 1 (3),
shown in Figure 4a (Figure 4b), Sa2 (Sb2) stayed off, Sa1 (Sb1) stayed on, Sb2 (Sa2) stayed
on, Sb1 (Sa1) stayed on, inductor La (Lb) was discharged, while Lb (La) charged, the current
entered through the dotted (non-dotted) terminal of LVW, current left through the dotted
(non-dotted) terminal of HVW. In other words, the current left HGSME through the node
va (vb) and entered HGSME through the node vb (va). During the identical States 2 and
4 in between States 1 and 3, both switches Sa2 and Sb2 stayed on, both La and Lb became
charged, zero voltage, as well as zero current, were observed both at the LVW and HVW of
the transformer.
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Figure 5. Timing diagram of the proposed UHG converter.

2.2. Operation and Steady-State Analysis of DCVMR

The high voltage quasi-square wave of peak magnitude W1vCl at the high-voltage
winding (HVW) of the transformer was rectified and stepped up simultaneously through
the 8PDDCVMR. The 8PDDCVMR consisted of 7 flying capacitors (C1, C2, . . . , C7) and
8 diodes (D1, D2, . . . , D8). Co was the output capacitor. A linear voltage multiplication from
each stage in the 8-level positive output Dickson DCVMR (8PDDCVMR) [60,61]. During
State 1 (3), the current entered 8PDDCVMR through the node va (vb) flowed through the
odd (even) indexed diodes, charged the even (odd) indexed capacitors, discharged the
odd (even) indexed capacitors of the 8PDDCVMR, and left 8PDDCVMR through the node
vb (va). During the identical States 2 and 4 in between States 1 and 3, all diodes of the
8PDDCVMR, D1-D8, stayed off, all flying capacitors of the 8PDDCVMR, C1-C7, stayed idle.
The output capacitor Co discharged and supplied the load current.

With a small ripple approximation, we could get the average capacitor voltages.
Applying KVL to all the mesh/loops starting at the node va and ending at the node vb, we
obtained the following expressions (∀n ≤ 4):

When current enters through node va of DCVMR Figure 4a,

VC1 = VWh (5)

VC2n−1 −VC2n−2 = VWh (6)

When current enters through node vb of DCVMR Figure 4b,

VC2n−2 −VC2n−4 = VWh (7)
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It can be observed that the difference between two consecutive capacitor voltages was
constant. Hence, they formed an arithmetic progression with the first term as well as the
common difference of VWh . Hence, the average voltage of the jth (∀j ≤ 7) capacitor was:

VCj = jVWh = jW1
Vbat

1− D
(8)

The voltage difference between the node Nj, which was the common node between
the diode Dj and capacitor Cj, and the ground was denoted by vsu f f ix. Hence, (∀n ≤ 4),
the waveforms of the node voltages of the 8PDDCVMR to the ground could be obtained by
the following addition:

v2n−1 = vCl + vab + vC2n−1 (9)

v2n = vCl + vC2n (10)

As the result from Equations (2), (8) and (10), the average voltage of the output
capacitor Co was:

VCo =
Vbat

1− D
+ 8W1

Vbat
1− D

= (1 + 8W1)
Vbat

1− D
(11)

Hence, the ideal voltage gain of the converter in CCM was 1+8W1
1−D . It can be observed

that the voltage gain of the proposed UHG converter was the multiplication of multiple
voltage gain stages in a series, including the boost stage, transformer stage, and the DCVMR
stage stacked on top of the boost output. As a result, the transformer only needed to
contribute a small fraction of the total voltage gain and needed to handle only a fraction of
the total output voltage, which allowed a significant reduction of the transformer size.

3. Hardware Prototype and Experimental Results
3.1. Design of Hardware Prototype

A prototype of the proposed UHG converter was implemented on a printed circuit
board (PCB), shown in Figure 6, using the components listed in Table 2. In this demonstra-
tion, the 8PDDCVMR used 7 flying capacitors forming an ideal voltage gain of 8× with
8PDDCVMR. Since they were on the low-voltage side and relatively easy to implement,
nMOS transistors, denoted Sa1 and Sb1, were the high-side switches. Half-bridge gate
driver ICs were used to drive the switch pair Sa2 and Sa1 (Sb2 and Sb1).

Table 2. Components.

Part Name Part Number Rating Unit Weight (g)

Half-bridge gate driver UCC27201DR 120 V, 3 A 0.7

Low-side gate driver IX4427NTR 34 V, 1.5 A 0.54

Decoupling capacitor C0805C105K3RAC7210 25 V, 1 uF 0.006

Bootstrap capacitor C0805C104K3RACTU 25 V, 0.1 uF 0.006

Cl C2012X5R1V226M125AC 35 V, 22 uF 0.006

Sa1, Sa2, Sb1, Sb2 SIRA20DP-T1-RE3 25 V, 63 A 0.51

La, Lb PA4344.333ANLT 33 uH 10

W1 43119 (Pacific Tx. Corp.) Ratio 1:30 25

D1, D2, . . . , D8 GP02-40-E3/73 5 kV, 0.25 A 0.34

C1, C2, . . . , C8 HV2225Y332nXMATHV 3.3 nF, 5 kV 1.26
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(a) Front side of the PCB containing HGSME (b) Back side of the PCB containing HGSME

(c) Front side of the PCB containing DCVMR (d) Back side of the PCB containing DCVMR

Figure 6. The UHG converter hardware prototype.

Challenges to the practical implementation of the UHG converter are the following:
the selection of small-size components, both active and passive, to satisfy extremely high
voltage blocking without degradation of electrical parameters. For example, it is hard to
find capacitors in small package sizes, such as surface-mount devices (SMDs), that can
support extremely high voltage ratings and, at the same time, hold high capacitance values.
To make it even more challenging, their capacitance value drops drastically with an increase
in the applied voltage across them, leading to a decrease in power transfer and efficiency.
On the other hand, the footprint of the input inductors becomes large if they need to
support a large peak current and, at the same time, have a small ESR. A high magnetizing
inductance is desired for the transformer, to keep the current ripple limited to a low value
and to facilitate using inductors with a low peak current rating for the same average current.
Low current ripple helps in keeping the conduction loss low. The duty cycle of the converter
should not be too high (≥0.85). Otherwise, the efficiency of the interleaved boost-based
HGSME part drops drastically because of excessive conduction loss of the input inductors.
To meet these constraints in the HGSME part, while still providing a high overall voltage
gain, the transformer still needs to support a relatively high voltage gain of 30×. It is
challenging to find a compact transformer that has such a high turns ratio (hence, a small
number of turns on the low voltage side) while having a high magnetizing inductance.
Therefore, a custom transformer was designed, optimized, and manufactured, employing
W1 = 1:30 turns-ratio and EE core that factored in these trade-offs and specifications.

3.2. Compact PCB Design for Extremely High Voltage

A key part of this design was to support the extremely high output voltage while
minimizing the total PCB area and implementation volume. For this goal, it was very
important to eliminate any possibility of any high voltage breakdown and electric arcs that
could damage the system. To do this, one needs to do the following: (1) reduce the electric
field intensity, and (2) strengthen the dielectric medium between high-voltage nodes in
the circuits. Several related methods and best practices to enhance long-term reliability,
important for the design, are highlighted below.
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3.2.1. Reduction of Electric Field Intensity
Geometry of PCB Pads and Solder Joints

The shape of the pads, instead of being rectangular, was rounded off with the highest
possible curvature. This resulted in a more uniform distribution of the electrical field
lines [62,63], and significantly reduced the localized electrical field intensity, and associated
electrical breakdown probability. Joint soldering was done wherever possible with the
highest possible radius to reduce the arcing and power loss due to corona [64–66]. In
this design, a symmetric structure was employed for the component placements from the
outputs of the coupled inductors, Va, and Vb, to the output Vo such that there was a gradual
voltage rise from one node of the board to other adjacent nodes and no vicinity between
any high and low voltage nodes.

Physical Distance between Nodes

Enough distance had to be kept between different voltage nodes on the high-voltage
part. The distance between two nodes can be calculated in two ways: (1) through the
medium of air, which is termed clearance, and (2) along the surface of the PCB material,
which is termed creepage [67–70]. Due to the accumulation of dirt, dust, absorption of
moisture, solder flux residue, and numerous other reasons, there was a much higher
probability of high voltage breakdown along the PCB surface, compared with air clearance.
Hence, the recommended creepage distance was at least 2–3 times the clearance. The
boards, which were designed with high clearance and creepage distance, could operate at
much higher voltage without any electrical arcing with the cost of large board size. On the
other hand, arcing was observed at a lesser voltage in the boards which were made more
compact. The design shown in this paper experienced several iterations to closely follow
these design methodologies to avoid arcing in this extremely high-voltage design while
maintaining a small design size.

3.2.2. Strengthening the Dielectric Medium

To make the design compact, there were large voltage differences between the nodes in
the same layer (intra-layer) as well as different layers (inter-layer). Hence, both inter-layer
and intra-layer dielectric breakdowns required serious consideration.

Inter-Layer Dielectric

PCB material, FR4, which has a dielectric strength of 20 MV/m, is very popular
and inexpensive. Hence, DCIH converter prototypes have been implemented using FR4.
However, it can suffer from degradation of dielectric strength with aging, weak sidewall
structure, low soldering temperature, and incapability of restoring the dielectric strength
after arcing. For a more compact design and reliable long-term performance, a better, but
more expensive option is high-voltage polyimide film (HVPF) which has a much higher
breakdown strength of 3000 V/mil and a much stronger sidewall structure compared to
conventional FR4. Moreover, PCB thickness can be significantly reduced with HVPF [71].
Between these two options, one can choose other materials, such as Bismaleimide–Triazine
resin (BT–Epoxy), ISOLA POLYIMIDE, etc. to achieve a compromise between performance
and cost.

Intra-Layer Dielectric

A solder mask is used for protecting copper track and isolation in low voltage imple-
mentation. However, there is also a probability of it trapping air bubbles or other forms of
impurities that could cause surface leakage and partial discharge to accelerate the electri-
cal breakdown process, impairing the board insulation capability between high-voltage
nodes. In this design, the solder mask was removed in high-voltage areas of the board and
high-voltage nodes were kept in a single layer to avoid this problem. To further improve
insulation performance, one could use multiple coatings of Acrylic resin [71]. Additional
measures, such as using gold instead of copper to reduce metal degassing, conformal
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coating, and potting [72], could also be used to further improve the board’s performance
and safety [73].

3.3. Discussion on Experimental Results

The UHG converter hardware prototype on a printed circuit board (PCB) is shown
in Figure 6, including Figure 6a,b showing the front and back side of HGSME, while
Figure 6c,d shows the front and back side of 8PDDCVMR implementation. Figure 7 shows
the experimental waveforms of the proper functioning of the HGSME part of the proposed
UHG converter at the steady state. It can be observed that the waveforms of the two boost
converters were 180-degree phase-shifted, as expected.

(a) vgs of MOSFETs Sa2 and Sb2 (b) vds of MOSFETs Sa2 and Sb2 (c) Inductor currents

Figure 7. Experimental waveforms during steady state operation of HGSME.

Figure 8 shows the experimental waveforms of the proper functioning of the 8PDD-
CVMR part of the proposed UHG converter at the steady state generating an output voltage
of 5 kV. In Figure 8 the even and odd node voltages of the 8PDDCVMR corresponded
to Equations (9) and (10), respectively. Voltage swings at the odd switching nodes were
observed to be the peak of the quasi-square voltage at the HVW of the transformer which
was given in Equation (3). Additionally, in Figure 8b, the flying capacitor voltages were
at the right voltage levels, as predicted in Equation (8). vo in Figure 7 shows an output
voltage of 5 kV from 5.6 V input, which was correct, according to Equation (11).

(a) Node voltages of 8PDDCVMR (b) Capacitor voltages of 8PDDCVMR

Figure 8. Experimental waveforms during steady state operation of 8PDDCVMR.

Figure 9 shows the Experimental setup of the UHG converter with the HASEL actuator
and discharge resistance. Figure 10 demonstrates the experimental waveforms of the
proposed UHG converter prototype operating well when actuating (periodically energizing
and de-energizing) a capacitive load equivalent to the HASEL actuators at mechanical
frequencies of 1 Hz and 2 Hz. These experimental waveforms demonstrated the proposed
UHG converter’s correct operation. Figure 11 shows the Power vs efficiency of the proposed
UHG converter at duty cycle 0.5 under the open loop. Keeping the load resistance fixed,



Biomimetics 2023, 8, 53 12 of 16

the input voltage is ramped to generate different points in the plot. Table 3 shows the
comparison of the proposed UHG converter with similar commercial products.

Figure 9. Experimental setup of UHG converter with HASEL with HASEL actuator [16].

(a) Fast rise fast fall at 2 Hz (b) Fast rise fast fall at 1 Hz (c) Slow rise slow fall at 1 Hz

Figure 10. Experimental waveforms of the actuation of capacitive load by the proposed UHG
converter.

Figure 11. Power vs efficiency of the proposed UHG converter.

Table 3. Comparison with Commercially Available Products.

Features [74] [75] [76] [77] [78] This *

Power (W) 30 1.25 5 0.5 1 15

Weight (g) 520 9.5 45 4.25 8.49 ≤100

Power Density (W/g) 0.06 0.13 0.11 0.12 0.12 ≥0.15

Output Regulation/Adjustability Yes No No No No Yes
* Commercial packaging of the proposed UHG converter is not done yet. Hence, the sum of all component weights
and volumes is listed for the proposed UHG converter.
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4. Conclusions

In this paper, a novel UHG is presented with its topology, operation, and experi-
mental results. Response: Thanks to the efficient synchronous operation between two
boost converter-based circuits and a Dickson star-based DCVMR circuit, the proposed
converter achieved multiple challenging requirements of extremely large conversion ratio,
size constraint, efficiency, and regulation simultaneously, which validated its superiority
over the available converter products for soft robotic applications. A converter prototype
board was implemented, achieving 5 kV from a ∼10 V input.
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