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Estimating fiber orientation distribution from diffusion MRI with 
spherical needlets

Hao Yan1, Owen Carmichael2, Debashis Paul1, Jie Peng1,*, and for the Alzheimer’s Disease 
Neuroimaging Initiative†

1Department of Statistics, University of California, Davis One Shields Ave., Davis, CA 95616

2Pennington Biomedical Research Center, Louisiana State University 6400 Perkins Road, Baton 
Rouge, LA 70808

Abstract

We present a novel method for estimation of the fiber orientation distribution (FOD) function 

based on diffusion-weighted magnetic resonance imaging (D-MRI) data. We formulate the 

problem of FOD estimation as a regression problem through spherical deconvolution and a sparse 

representation of the FOD by a spherical needlets basis that forms a multi-resolution tight frame 

for spherical functions. This sparse representation allows us to estimate the FOD by ℓ1-penalized 

regression under a non-negativity constraint on the estimated FOD. The resulting convex 

optimization problem is solved by an alternating direction method of multipliers (ADMM) 

algorithm. The proposed method leads to a reconstruction of the FOD that is accurate, has low 

variability and preserves sharp features. Through extensive experiments, we demonstrate the 

effectiveness and favorable performance of the proposed method compared to three existing 

methods. Specifically, we demonstrate that the proposed method is able to successfully resolve 

fiber crossings at small angles and automatically identify isotropic diffusion. We also apply the 

proposed method to real 3T D-MRI data sets of healthy individuals. The results show realistic 

depictions of crossing fibers that are more accurate, less noisy, and lead to superior tractography 

results compared to competing methods.
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1 Introduction

Diffusion-weighted MRI (D-MRI) (Le Bihan et al. 2001, Mori 2007) has become a widely 

used, noninvasive tool for clinical and experimental neuroscience due to its capability of 

characterizing tissue microstructure in vivo by measuring the diffusion displacement of 

water molecules. Specifically, high angular resolution diffusion imaging (HARDI) enables 

extraction of accurate and detailed information about fiber tract directions through 

measurements made along a large number of gradient directions (Tuch et al. 2002). Such 

information is then used in fiber reconstruction algorithms (tractography) to facilitate better 

mapping of neuronal connections.

HARDI techniques may be categorized according to their sampling schemes in the space of 

possible b-values and diffusion gradient directions (i.e., the q space) (Assemlal et al. 2011, 

Descoteaux et al. 2011, Jones et al. 2013, Parker et al. 2013, Tournier et al. 2011, Yeh et al. 

2010). Single q-shell techniques sample gradient directions with a single b-value, whereas 

multiple q-shell techniques sample gradient directions with multiple b-values (Jensen et al. 

2005, Lu et al. 2006, Weeden et al. 2005, 2008, Wu & Alexander 2007, Wu et al. 2008, Liu 

et al. 2004, Descoteaux et al. 2011, Assemlal et al. 2009, Cheng et al. 2010). Models for 

single q-shell diffusion data include the fiber orientation distribution (FOD or fFOD) 

(Tournier et al. 2004, 2007, Jian & Vemuri 2007, Yeh & Tseng 2013a), diffusion orientation 

distribution function (ODF or dODF) (Tuch 2004, Descoteuax et al. 2007, 2009, Aganj et al. 

2010), diffusion orientation transform (DOT) (Oz¨arslan et al. 2006) and fiber ball imaging 

(Jensen et al. 2016).

Different q-space sampling schemes and data representations are optimal for different 

analytical goals. For example, multiple q-shell techniques enable explicit modeling of 

separate cellular contributors to the D-MRI signal. In this paper, we focus on one particular 

representation for single q-shell data: the FOD. The FOD is designed to describe the local 

spatial arrangement of axonal fiber bundles in such a way that sharply-defined geometric 
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features are preserved (Jensen et al. 2016). This property makes the FOD an attractive 

representation if the downstream analytic goal is fiber reconstruction.

One commonly used approach to FOD estimation is based on spherical deconvolution 

(Tournier et al. 2004, 2007), which assumes that the observed D-MRI data consists of a 

convolution of the underlying FOD and a spherical convolution kernel. A parsimonious 

representation of the FOD in a suitable basis is the key to a successful deconvolution 

method, since there is greater noise amplification when the effective number of basis 

coefficients is larger (Kerkyacharian et al. 2007, Johnstone & Paul 2014).

Several popular FOD estimators rely on spherical harmonics (SH) representations of the D-

MRI data (Tournier et al. 2004, 2007). However, when the function being represented has 

localized sharp peaks, as the FODs of well-defined fiber tracts do, the SH basis does not 

provide an efficient representation due to the global support of its basis functions.

In Yeh & Tseng (2013a), FODs are represented in a mono-resolution basis consisting of a 

large class of putative dODF functions and an ℓ1 penalty is used to induce a sparse 

representation. In Daducci et al. (2014), an ad-hoc dictionary of functions is used to 

represent FODs under ℓ1 and ℓ0 penalization schemes. While these methods aim to give 

sparse solutions, their choice of basis functions may not lead to sparse representation of the 

FOD.

Another approach to modeling D-MRI data uses a multiresolution basis on the sphere, 

namely ridgelets, to filter the noisy DWI signal and extract information about local fiber 

orientations (Michailovich et al. 2010, 2011, Rathi et al. 2011). Rathi et al. (2011) applied an 

ℓ1 penalty to the coefficients in the ridgelet representation, Michailovich et al. (2010) used 

orthogonal matching pursuit, and Michailovich et al. (2011) combined an ℓ1 penalty with a 

total variation penalty to utilize spatial information for ODF estimation. In contrast, our 

objective here is to estimate the FOD, rather than DWI signal reconstruction or ODF 

estimation.

Another class of methods for FOD estimation is based on the discrete mixture model, also 

referred to as the multi-tensor model. A prominent approach in this framework (Landman et 

al. 2012) is to use an ℓ1 penalty with a non-negativity constraint on the mixture fractions. For 

such methods, the number of mixture components needs to be reasonably small to ensure 

identifiability of the parameters (Scherrer & Warfield 2010, Wong et al. 2016) and low 

variability of the estimator.

In this paper, we propose a novel FOD estimator based on a multiresolution basis called 

needlets (Narcowich et al. 2006a, Marinucci & Peccati 2011), which are smooth functions 

localized in both space and frequency. Consequently they yield sparse and stable 

representations for a spiky but otherwise regular functions such as FODs (Narcowich et al. 

2006b,a). The tightness of the needlet frame, which translates into low mutual correlation 

and a parsimonious representation, is particularly beneficial for estimation accuracy when 

solving a deconvolution problem based on noisy data (Kerkyacharian et al. 2007, Johnstone 

& Paul 2014).
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Unlike a monoresolution basis such as that used by Yeh & Tseng (2013a), multiresolution 

frames such as needlets are better suited to parsimonious approximation of inhomogeneous, 

spiky functions due to their localization and tight frame properties. These are the key 

reasons why orthogonal wavelets or wavelet type tight frames have played such an important 

role in signal denoising and adaptive estimation in deconvolution problems (Mallat 1999). 

The term “multiresolution basis” is used to mean a collection of functions that is complete in 

the L2 sense; Moreover, the basis elements are indexed through a “location-scale index” 

whose value controls the degree of spatial and frequency localization (Mallat 1999, 

Marinucci & Peccati 2011).

Needlets also provide an accurate approximation of finite mixtures of distinct directions 

since these are well approximated by smooth inhomogeneous functions. Therefore, a needlet 

representation can be used to obtain good estimates for a broad class of FODs including the 

finite mixtures. Moreover, although the discrete mixture model is a convenient mathematical 

abstraction of fiber populations within a voxel, the actual local geometry of neuronal fiber 

bundles is often more complex. There can be significant variability in local orientations 

among the fibers within an individual fiber bundle passing through a voxel. Under such 

circumstances, the representation of the FOD as a continuous distribution with a few sharp 

peaks would provide a more realistic depiction of the geometry.

We ensure sparsity of the needlet representation by imposing an ℓ1 penalty on the needlet 

coefficients of the FOD. The ℓ1 penalty results in accurate estimates that preserve sharp 

peaks even when the number of gradient directions and signal-to-noise ratio are both 

moderate. In addition, since the FODs are probability densities, we impose a nonnegativity 

constraint on the estimated FODs. This allows us to take advantage of the needlets 

representation, even though the needlets are not nonnegative functions themselves.

To eliminate subjectivity in the estimation procedure and to ensure a good statistical 

performance of the estimator, we propose a data-driven scheme for selecting the ℓ1 penalty 

parameter that balances between bias and variance in the FOD estimation. This is in contrast 

to the ad-hoc choices of the regularization parameters made by many methods in the 

literature. Finally, we implement an efficient estimation algorithm based on a fast 

computation of the spherical needlets transform and the Alternating Direction Method of 
Multipliers algorithm (Boyd et al. 2011). Our experiments demonstrate that these 

methodological and computational innovations lead to improved estimation accuracy and 

better detection of fiber directions.

We conduct synthetic data experiments to demonstrate the effectiveness of the proposed 

estimator and to compare it with three existing methods based on the SH representation 

(Tournier et al. 2004, 2007) and the discrete mixture model (Wong et al. 2016), respectively. 

We specifically consider small crossing angles since this is a challenging yet very important 

problem in resolving crossing fibers, and we focus on high b-value and/or high signal-to-

noise ratio for such cases as this is the direction the field is moving (Setsompop et al. 2013, 

Van Essen et al. 2013). The proposed estimator shows favorable performance compared to 

the competing methods. For example, it is able to recover the FOD even when the fiber 

crossing angle is as small as 30°, and automatically identify isotropic diffusions.
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Finally, we conduct experiments using real 3T D-MRI data sets of healthy individuals. We 

corroborate the results against the FSL Jülich Histological Atlas (Jenkinson et al. 2012, 

Smith et al. 2004) and apply deterministic tractography (Wong et al. 2016) to the estimated 

FODs. Tractography results based on the FODs estimated by the proposed method tend to 

agree better with the known geometric configuration of fiber tracts, compared to FODs 

based on other estimators. These results demonstrate that the more accurate description of 

local fiber organization afforded by the proposed FOD estimator results in superior 

tractography performance.

The rest of the paper is organized as follows. We describe the proposed method and 

experiments based on both synthetic data and real D-MRI data in Section 2. We report the 

experimental results in Section 3. We draw conclusions and discuss future directions in 

Section 4. Much of the technical detail and additional experimental results are reported in 

the Supplementary Material.

2 Material and Methods

2.1 Needlets representation of spherical functions

We give a brief introduction to needlets and some of their relevant properties. More details 

are available in Marinucci & Peccati (2011) and Narcowich et al. (2006b,a).

Needlets are constructed by complex-valued SH functions {Φlm : m = −l, …, l}l=0,1,2,…, 

which form an orthonormal basis for L2(𝕊2), the space of square integrable functions defined 

on the unit sphere 𝕊2. The indices l and m, referred to as level index and phase index, 

respectively, together determine the wavy pattern of the function Φlm.

The needlets construction is based on two key ideas (Marinucci & Peccati 2011): (a) 

discretization of 𝕊2 : If ℋl denotes the space spanned by {Φlm : m = −l, …, l}, and 

𝒦 j: = ⊕l = 0
j ℋl, then for every j ∈ ℕ, there exists a finite subset χ j = ζ

∼
jk k = 1

N j ⊂ 𝕊2

(quadrature points) and positive weights λ
∼

jk k = 1

N j
 (quadrature weights) such that, for any 

f ∈ 𝒦 j,

∫
𝕊2 f (x)dω(x) = ∑

k = 1

N j
λ∼ jk f (ζ∼ jk), (1)

where dω(x) denotes the surface element of 𝕊2 at x; and (b) Littlewood-Paley 

decomposition: This is through a function b defined on ℝ+ satisfying: (i) b(·) > 0 on (B−1, B) 

for some B > 1, and equal to zero on the complement set (B−1, B)c; (ii) ∑ j = 0
∞ b2(y/B j) = 1

for all y ∈ ℝ+; and (iii) b(·) ∈ CM(ℝ+). (B = 2 is used in our construction).

With the above, a class of needlets {ψjk; j ≥ 0; 1 ≤ k ≤ pj} is defined as follows: for x ∈ 𝕊2,
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ψ jk(x) = λ jk ∑
l = B j − 1

B j + 1

b l
B j ∑

m = − l

l
Φlm(ζ jk)Φlm(x)

= λ jk ∑
l = B j − 1

B j + 1

b l
B j

2l + 1
4π Pl(〈ζ jk, x〉),

(2)

where p j = Nr j
, ζ jk = ζ

∼
r jk

 and λ jk = λ∼r jk
, with rj = 2⌊Bj+1⌋. The index j ∈ ℕ encodes scale/

frequency and k ∈ {1, …, pj} encodes location (determined by ζjk) and Pl is the l-th 

Legendre polynomial. Also note that, the needlets are real valued spherical functions.

It can be shown that needlets thus constructed are localized in both space and scale, with 

exponentially increasing concentration around the quadrature point as the scale index j 
increases. The quadrature formula (1) is an important factor behind the spatial concentration 

of needlets and the consequent advantages in terms of function approximation.

The collection of needlets together with Φ00 (i.e., the constant function on the sphere) form a 

tight frame (referred to as the needlets frame), i.e., for f ∈ L2(𝕊2), 

∫𝕊2( f (x))2dω(x) = 〈 f , Φ00〉 2 + ∑ j = 0
∞ ∑k = 1

p j 〈 f , ψ jk〉
L2

2
, where

β jk = 〈 f , ψ jk〉
L2 = ∫

𝕊2 f (x)ψ jk(x)dω(x) (3)

is called the needlet coefficient of f corresponding to index pair (j, k). The tight frame 

property, together with the localization in space and scale, imply that needlets can be used to 

perform multiresolution analysis of functions in L2(𝕊2).

Moreover, by (2), the needlet coefficients of f have the linear representation in terms of SH 

coefficients:

β jk = 〈 f , ψ jk〉
L2 = λ jk ∑

l = B j − 1

B j + 1

b l
B j ∑

m = − l

l
〈 f , Φlm〉

L2Φlm(ζ jk) . (4)

(4) provides a very useful computational tool since fast computational algorithms are 

available for the SH transform (Driscoll & Healy 1994, Fan 2015).

In order to obtain the quadrature points and weights, we make use of the HEALPix 

construction due to Górski et al. (2005) that partitions 𝕊2 into N j, pix = 12N j, side
2 = 12 × (2 j)2
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spherical triangles of equal area, where Nj, side is a power of two determining the resolution. 

Then, quadrature points are chosen as the centroid of the triangles, while the weights are all 

equal to 4π/Nj, pix.

Since we assume FODs to be symmetric, we construct symmetrized needlets which can be 

easily derived from the original needlets. Henceforth (with slight abuse of notations), {Φlm} 

denote the real symmetric SH functions where l = 0, 2, 4, ⋯ (Atkinson & Han 2012, 

Descoteuax et al. 2007) and {ψjk} denote the symmetrized needlets functions. See Section 

S.1 in the Supplementary Material for details.

2.2 Regression model for D-MRI measurements

In this section, we first describe the spherical deconvolution model that relates FOD, 

denoted by F(·), with the diffusion signal function, denoted by S(·). We view the observed 

diffusion weighted measurements y = yi i = 1
n  corresponding to n gradient directions as 

noise corrupted samples from the diffusion signal function S(·) evaluated at the respective 

gradient directions. After representing the FOD in the SH basis, we can then model the 

observed measurements by a linear regression model where the needlet coefficients of the 

FOD are the regression coefficients.

Following, Tournier et al. (2004), Tournier et al. (2007), Sakaie & Lowe (2007) and Lenglet 

et al. (2009), it is assumed that the diffusion signal function S(·) is a spherical convolution of 

the FOD F :𝕊2 ℝ+, a symmetric spherical distribution; with an azimuthal symmetric 

kernel R : L1([−1, 1]) → ℝ. The kernel R, referred to as the response function, represents 

the local diffusion characteristics of water molecules along neuronal fibers, which are 

assumed to be the same across different fiber bundles and voxels. In the following, we 

assume that the response function R(·), and hence its SH coefficients, are known. In practice, 

we may assume that R(·) belongs to a parametric family of nonnegative functions on [−1, 1] 

(e.g., specified by a tensor model) and then estimate the parameters based on voxels with a 

single dominant fiber bundle, typically characterized by high fractional anisotropy (FA) 

values. Experimental results show that our method is robust to the specification of the 

response function (See Supplementary Material Section S.3.9 for more details).

Denote S = R * F to mean the spherical convolution of F with the axially symmetric kernel 

R, which is defined as

S(x) = ∫
𝕊2R(xTy)F(y)dω(y), x ∈ 𝕊2 . (5)

The SH coefficients of the diffusion signal function S(·) follow:

slm: = 〈S, Φl, m〉 = 4π
2l + 1rl f lm, l = 0, 2, ⋯, m = − l, ⋯, 0, ⋯l . (6)
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where rl := 〈R, Φl,0〉, and flm := 〈F, Φl, m〉, are the rotational harmonics and spherical 

harmonics coefficients of the response function and FOD, respectively. Moreover, by the 

orthonormality of the SH basis, we can express the diffusion signal function as:

S(x) = ∑
l

∑
m = − l

l
slmΦl, m(x) = ∑

l

4π
2l + 1rl ∑

m = − l

l
f lmΦl, m(x) .

In the following, we assume that both S(·) and F(·) can be well approximated in a finite order 

real symmetric SH basis {Φl, m : −l ≤ m ≤ l}l=0,2,☆, lmax consisting of L = (lmax + 1)(lmax 

+ 2)/2 basis functions. The observed DWI measurements thus can be modeled as:

y = ΦRf + ε, (7)

where R is an L × L diagonal matrix with diagonal elements 4π /(2l + 1)rl (in blocks of 

length 2l + 1); f = (flm) is the L × 1 vector of SH coefficients of the FOD F ; Φ is the n × L 
matrix with the i-th row being {Φl, m(θi, ϕi)}, where θi and ϕi are elevation angle and 

azimuthal angle, respectively, of the i-th gradient direction. The i-th coordinate of 

y = yi i = 1
n  corresponds to the observed diffusion measurement along the i-th gradient 

direction; and ε = εi i = 1
n  is an n × 1 vector representing observational noise and possible 

approximation error.

2.3 ℓ1-penalized estimation of FOD under needlets representation

If we assume that the FOD F (·) is either a constant function on the sphere (when the 

diffusion is isotropic) or a spherical function with a few sharp peaks (each corresponding to 

a distinct major fiber bundle), the localization and tight frame properties of the needlets 

would imply that the needlet coefficients of F (·) form a sparse vector (Narcowich et al. 

2006a), i.e., F (·) can be well approximated by a small fraction of needlet functions.

Consider a symmetrized needlets frame with the first 

N = 1 + ∑0 ≤ j ≤ jmax
N j, pix /2 = 2

2 jmax + 3
− 1 frame elements (corresponding to B = 2), 

where jmax ≥ 0 is the maximum level of needlets being used. jmax is set to be ⌈log2(lmax)⌉ so 

that SH functions up to level lmax can be linearly represented in the first N needlets. Denote 

the N × 1 needlet coefficients vector of F (·) by β. Then the SH coefficients f of F (·) can be 

expressed as f = Cβ, where C is an L × N matrix. This allows us to rewrite equation (7) as

y = ΦRCβ + ε . (8)

A key point here is that C can be easily computed (see Section S.1 in the Supplementary 

Material for details), and so is the design matrix ΦRC. Furthermore, since the response 

function R is the same across voxels, the design matrix needs to be computed only once.
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The sparseness of the FOD needlet coefficients β motivates us to propose a penalized 

regression estimate:

β̂λ = arg min
β:Φ∼Cβ ≽ 0

y − ΦRCβ 2 + Pλ(β) (9)

where Pλ(β) denotes a sparsity-inducing penalty, with the tuning parameter λ ≥ 0 

controlling the degree of regularization, and Φ∼ is the matrix of SH basis functions (up to 

level lmax) evaluated on a pre-specified dense evaluation grid. The constraint Φ∼Cβ ≽ 0
ensures that the estimated F(·) evaluated on this grid, i.e., F : = Φ∼Cβ , is nonnegative. In the 

subsequent experiments, we use an equiangular grid (corresponding to the triangular 

tessellation of the unit sphere using an Icosahedron) with 2562 grid points.

Following Tibshirani (1996) and subsequent developments in the statistical literature, we 

propose to use an ℓ1 penalty Pλ(β) = λ∑ j, k β jk . The estimation problem is then a convex 

optimization problem with a non-negativity constraint. We develop a computationally 

efficient algorithm based on the Alternating Direction Method of Multipliers (ADMM) 
(Boyd et al. 2011, Sra et al. 2012) to solve (9). ADMM is a general-purpose algorithm for 

solving convex optimization problems with constraints. Finally, we rescale the estimated F(·) 

such that it integrates to one on the unit sphere. The details of the ADMM algorithm is given 

in Section S.2.1 of the Supplementary Material.

Since our goal here is to get a good estimate of FOD, particularly one that is useful for 

subsequent analyses such as tractography, thus slight overfitting is less detrimental than 

underfitting. Thus we propose a criterion which chooses the largest λ such that the penalty 

parameter values smaller than this value will lead to essentially the same residual sum of 

squares (RSS) (See Section S.2.2 in Supplementary Material for details). The commonly 

used model selection criteria such as BIC (Schwarz 1978) and AIC (Akaike 1974) require 

specification of the degrees of freedom for the model which is difficult when the design 

matrix is ill-conditioned and non-smooth penalties such as the ℓ1 norm are used. Experiments 

based on synthetic data show that the proposed strategy is able to strike a good balance 

between bias and variance in FOD estimation and leads to better results than BIC or AIC 

(results not reported).

After obtaining an estimated FOD, we may want to identify major fiber bundle 

orientation(s), which could be used for subsequent analyses such as deterministic 

tractography or for evaluation and comparison of methods. Ideally, this can be done through 

peak detection, i.e., locating the local maxima of the (estimated) FOD. However, since the 

estimated FOD may have spurious peaks due to noise, we need to eliminate peaks that are 

likely to be false. We propose a simple yet effective peak detection algorithm based on grid 

search, followed by a pruning step and a clustering step to filter out potential false peaks. 

Details are given in Section S.2.3 of the Supplementary Material. One may also consider 

more sophisticated peak detection algorithms including Ghosh et al. (2014), Michailovich et 

al. (2010), Alexander (2005).
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2.4 Synthetic Data Experiments

In this section, we describe experiments based on synthetic data to study the performance of 

the proposed estimator, referred to as SN-lasso, and to compare it with three competing 

estimators as described below.

2.4.1 Competing estimators—In addition to the proposed SN-lasso, we also consider 

three existing estimators:

i. (i) The SH-ridge estimator (Tournier et al. 2004) through a ridge type 

regression by minimizing:

y − ΦRf 2
2 + λ𝔼(F), 𝔼(F): = ∫Ω

(ΔbF)2dΩ = fTPf,

where ∆b is the spherical Laplacian operator and P is a diagonal matrix with 

entries l2(l + 1)2 in blocks of size 2l + 1 (l = 0, 2, ⋯, lmax). 𝔼(F), referred to as 

the Laplace-Beltrami penalty, is a measure of roughness of spherical functions. 

The SH-ridge estimator is solved explicitly by:

fLB = (RTΦTΦR + λP)−1RTΦTy, FLB = ∑
l, m

f l, m
LB Φl, m .

The penalty parameter λ can be chosen by the Bayesian Information Criterion 

(Schwarz 1978).

ii. The super-CSD estimator (Tournier et al. 2007). The idea is to suppress small 

values of the estimated FOD and consequently sharpen the peak(s) of the FOD 

estimator using an SH representation of order lmax
s . In our experiments, we apply 

super-CSD algorithm to the SH-ridge estimates and consider lmax
s = 8, 12, 16. 

We refer to the corresponding estimators as SCSD8, SCSD12, and SCSD16, 

respectively. For other parameters in the super-CSD algorithm, we follow the 

recommended values in Tournier et al. (2007). For more details, see Section S.

2.4 in Supplementary Material.

iii. The DiST method (Wong et al. 2016). DiST is based on the discrete mixture 

model and utilizes a novel parametrization to resolve the non-identifiability issue 

of such models. Particularly, DiST focuses on diffusion direction estimation and 

uses MLE and BIC for direction estimation and selection, respectively.

2.4.2 Experimental setting—We consider FOD estimation for a voxel with various 

scenarios of fiber populations. We use sep to denote the separation angle between a pair of 

crossing fiber bundles. Our experimental settings include K = 2 fiber bundles crossing at sep 
= 90°, 75°, 60°, 45°, 30°. We also consider K = 0 fiber bundle, i.e., isotropic diffusion; K = 1 

fiber bundle, i.e., no crossing fiber; and K = 3 fiber bundles with pairwise crossing at sep = 

90°, 75°, 60°.
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We simulate noiseless diffusion weighted signals according to the convolution model (5), 

where the true FOD F:

F(θ, ϕ) = ∑
k = 1

K
wkδθk, ϕk

(θ, ϕ), θ ∈ [0, π], ϕ ∈ [0, 2π),

with wk > 0, ∑k = 1
K wk = 1 being the volume fractions and θk (elevation angle) and ϕk 

(azimuthal angle) being the spherical coordinates of the orientation of the k-th fiber bundle, 

respectively. The response function is set as:

R(cos(θ)) = S0exp
−b(λ1sin2θ + λ3cos2θ)

, θ ∈ [0, π],

where throughout we fix S0 = 1, λ3 = 1 × 10−3mm2/s and set the ratio between λ3 and λ1 as 

ratio = 10. The volume fractions are set as w1 = w2 = 0.5 for the two-fiber case and w1 = w2 

= 0.3, w3 = 0.4 for the three-fiber case.

In terms of the D-MRI experimental parameters, we consider b-value at b = 1000s/mm2, 

3000s/mm2 and 5000s/mm2 (for small crossing angles only); and three angular resolutions, 

namely, n = 41, 81, 321 gradient directions on an equiangular grid. These settings aim to 

cover commonly used values in large-scale D-MRI experiments such as those in ADNI 

(relatively low b-value and angular resolution) and human connectome project (relatively 

high b-value and angular resolution).

The observed diffusion weighted measurements along the n gradient directions are generated 

by adding independent Rician noise (Gudbjartsson & Patz 1995, Hahn et al. 2006, Polzehl & 

Tabelow 2008) to the respective noiseless diffusion signals. The signal-to-noise ratio (SNR), 

defined as the ratio between the b0 image intensity S0 and the Rician noise level σ (Tournier 

et al. 2007), is set at SNR := S0/σ = 20 and 50 (for small crossing angles only). Note that b-
value=5000s/mm2 and SNR = 50 may be a rare setting for current D-MRI experiments. We 

included this scenario mainly as a reference point to demonstrate the potential of these 

methods, with the expectation that future technological advancements would make such an 

experimental setting more realistic (Setsompop et al. 2013).

2.4.3 Evaluation metrics—We report the statistical characteristics of the estimators 

(across 100 independent data sets) by depicting the mean estimated FOD in opaque color 

and the mean plus two standard deviations in translucent color. Since DiST only gives 

direction estimation, in these plots we only report results corresponding to SN-lasso, SH-

ridge and SCSD.

We also examine the performance of each estimator using various numerical metrics 

including:

(i) The success rate of the peak detection algorithm applied to the 100 estimated 

FODs, where ‘success’ means that the algorithm identifies the correct number of fiber 
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bundles. (ii) Among the successful estimators, the mean angular errors between the 

identified peaks and the true fiber directions, as well as bias in separation angle 

estimation (defined as the average of the estimated separation angle across the 

“successful replicates” minus the true separation angle) between pairs of fiber 

bundles. Throughout, “true FOD” refers to the true FOD projected on to an SH basis 

for ease of visualization and comparison.

2.5 Real D-MRI Data Experiments

Data used in the preparation of this article were obtained from the Alzheimers Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimers disease (AD).

We analyzed a D-MRI data set from a 58 year old female from the second phase of the 

ADNI project (ADNI-2). This participant was scanned at the Wein Center for Alzheimer’s 

Disease and Memory Disorders on a 3 Tesla MRI machine produced by General Electric. 

The scanning protocol was analogous across scanners, and was optimized prior to the study 

to provide harmonized data across scanners.

We used eddy-current-corrected diffusion images (Andersson & Sotiropoulos 2016) from 

ADNI database. The diffusion signals were measured on a 256 × 256 × 60 3D grid (voxel 

side-length: x− 1.37mm, y−1.37mm, z−2.7mm) along 41 distinct gradient directions under b 
= 1000s/mm2. There are also five b0 images based on which we extracted the brain using 

FSL (Jenkinson et al. 2012, Smith et al. 2004) BET module (Smith 2002) and estimated the 

b0 image intensity S0 and the Rician noise level σ. The signal-to-noise ratio S0/σ has a 

median 40 across voxels. We first fitted the single diffusion tensor model (Le Bihan 1995, 

Basser & Jones 2002, Mori 2007, Carmichael et al. 2013) to each voxel and calculated the 

fractional anisotropy (FA) value and mean diffusivity (MD). We then identified voxels with a 

single dominant fiber bundle characterized by F A > 0.8 and the ratio between the two minor 

eigenvalues of the tensor < 1.5. We used these voxels to estimate the response function R 
under a Gaussian diffusion model. The (estimated) response functions have the leading 

eigenvalue 1.5×10−3mm2/s and the ratio between the leading and the minor eigenvalue is 

6.5. See Section S.4 in the Supplementary Material for more details.

We then focused on a 16 × 16 × 6 region of interest (ROI) with x-slices 108-123, y-slices 

124-139, z-slices 37-42. This region included portions of the corpus callosum (CC), 

cingulum bundle (CB), superior occipitofrontal fasciculus (SOF) and corticospinal tract 

(CT) according to the FSL Jülich Histological Atlas (Eickhoff et al. 2005, 2006, 2007). In 

Figure 5, we first used the FSL FLIRT module (Jenkinson & Smith 2001, Jenkinson et al. 

2002) to register the tracts from Jülich Histological Atlas with the extracted brain b0 image, 

and then superimposed these tracts onto the extracted brain image using FLSeyes. The right 

portion of the ROI on z-slices 37 and 38 also encompassed the cerebrospinal fluid (CSF) 

region as indicated by Figure 5 (see also Figure S.14 of the Supplementary Material).
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In Figure 6(a), we also showed the fiber orientation colormap, FA map and MD map 

(zoomed into the ROI) at z-slice 40. The fiber orientation colormaps depict the orientation of 

the principal eigenvector under a single tensor model, where red indicates left-to-right 

direction, green indicates up-to-down direction (anterior-to-posterior in 3D brain) and blue 

indicates into-to-out-of-page direction (inferior-to-superior in 3D brain). Moreover, fiber 

orientation colormaps were modulated by the FA values such that voxels with small FA 

values were darker. The FA map and MD map were also calculated under the single tensor 

model, where darker colors correspond to smaller FA/MD values.

We first applied the FOD estimation methods to each voxel in this region and then extracted 

the peaks of the estimated FODs. We then applied the deterministic tracking algorithm 

developed in Wong et al. (2016) to the estimated FODs. We also analyzed a second data set 

from ADNI and a data set from the MGH Adult Diffusion Data of the Human Connectome 

Project (www.humanconnectome.org). We defer descriptions and results of these two 

experiments to Sections S.4.3 and S.4.4, respectively, of the Supplementary Material.

3 Results

3.1 Synthetic Data Experiments

In the main text, we only report graphical summaries of the results for cases with two-fiber 

(K = 2) crossing and n = 41 gradient directions. For detailed numerical summaries, see 

Tables S.3, S.4, S.5 in the Supplementary Material. We also defer results and discussions of 

other settings to Section S.3 of the Supplementary Material.

As can be seen from Figure 1, when the crossing angle is large-to-moderate (90°, 75°, 60°), 

even at relatively low b-value and SNR (b = 1000s/mm2, SNR = 20), SN-lasso leads to 

satisfactory reconstruction of FOD, particularly in terms of accurately identifying the peak 

directions. SCSD8 and SCSD12 also show various degrees of success in these cases, though 

their performances are not as good as that of SN-lasso ( SCSD16 estimates are very 

variable and thus omitted). Particularly, SN-lasso estimates have much more localized and 

sharper peaks. While crossing at a smaller angle (45°; Figure 2), none of these methods 

works well when b-value and SNR are both low (b = 1000s/mm2, SNR = 20). However, 

when either parameter is increased (b = 3000s/mm2 and/or SNR = 50), SN-lasso is able to 

accurately recover the sharp features of FOD. SCSD estimators are again much less localized 

( SCSD8 estimates are overly smoothed and thus omitted). For a small crossing angle (30°; 

Figure 3), SN-lasso works well when both b-value and SNR are high (b = 3000, 

5000s/mm2 and SNR = 50), while all other methods do a poor job in terms of detecting 

crossing fibers irrespective of b-value and SNR.

In Figure 4, we depict success rate, angular error in direction estimation (averaged over the 

two directions) and bias in separation angle estimation, respectively. Under 90°/75°/60°/45° 

crossing, DiST has overall the highest success rate (except for 45° crossing with b-value 
1000s/mm2 and SNR 20), followed by SN-lasso and SCSD12. In contrast, SCSD8, SCSD16 

and SH-ridge have considerably lower success rate. The advantage of DiST in picking the 

correct number of fiber directions lies in the fact that it utilizes the information that there are 

only finite discrete fiber bundles (which is the truth here). In contrast, the other methods do 
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not use such information. In terms of angular error (calculated on replicates where the 

correct number of fibers is identified), SCSD, SN-lasso and DiST perform similarly. On the 

other hand, SN-lasso has considerably smaller bias in separation angle estimation, leading 

to a more faithful reconstruction of crossing patten.

Under 30° crossing, SN-lasso has the best performance in all three aspects. More 

specifically, for all four combinations of b-value and SNR, SN-lasso successfully identifies 

two peaks for at least 70% of the replicates with an average angular error ranging from 2.7° 

~ 9°. In this case, DiST requires both large b-value and SNR to work well, otherwise it tends 

to under-select the number of fibers. This is because it is hard to distinguish two tensors with 

very close major axes. This is in contrast to the high angular resolution of the SN-lasso 

estimator rendered by the localization properties of needlets.

We also considered a setting where the true FOD is not a mixture of Dirac functions, instead 

it is a continuous spherical density with two dominant peaks. This setting corresponds to the 

scenario where there are two major fiber bundles; However, within each bundle the fiber 

directions are not completely homogeneous. In this case, SN-lasso performs much better 

than DiST (Table S.6). Moreover, by comparing the results in Table S.6 and Table S.5 (first 

block), it can be seen that SN-lasso performs only slightly worse in this more challenging 

setting, whereas DiST performs much worse.

These results demonstrate that SN-lasso leads to good FOD estimation and direction 

identification even when the crossing angle is as small as 30° as long as the b-value and 

SNR are sufficiently large. It also has overall the best performance among the competing 

methods with regard to these aspects cross a large range of settings. As large b-value and 

SNR are being advocated with the advancement of MRI technologies (Setsompop et al. 

2013, Van Essen et al. 2013), SN-lasso holds promise in resolving even subtle fiber 

crossing patterns. In contrast, the other methods have difficulty in resolving small crossing 

angles. Specifically, DiST tends to under-select the fiber directions in such a case. As for the 

SH representation based methods, SH-ridge leads to overly smoothed estimates and 

consequent loss of directionality information, while SCSD estimators either tend to have 

large variability ( SCSD12, SCSD16) or overly smoothed estimates ( SCSD8). Consistent with 

the observations in Tournier et al. (2007), SCSD8 works better for large-to-moderate crossing 

angles and SCSD12, SCSD16 work better for small crossing angles. However, without prior 

knowledge of the crossing angle, in practice it would be hard to choose which SCSD 

estimator to use. In contrast, SN-lasso is able to automatically adjust for different crossing 

angles through the specification of the penalty parameter λ which is determined in a data 

driven way.

3.2 Real D-MRI Data Experiments

3.2.1 FOD estimation—In this subsection, we examine FOD estimation by SN-lasso, 

SH-ridge and SCSD on the ROI described in Section 2.5 ( DiST only gives direction 

estimation, so we only discuss its tractography results in the next subsection). Moreover, we 

focus on the ROI at z-slice 40 as this subregion included several crossing fiber tracts as 

shown below.

Yan et al. Page 14

Med Image Anal. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The FOD estimates on z-slice 40 are shown in Figure 6(b), where the FA map is drawn on 

the background and the size of the estimated FOD is modulated by mean diffusivity (MD; 

The larger the MD is, the smaller is the size of the depicted FOD estimate) for ease of 

visualization of the crossing pattern. It can be seen that, in the single fiber subregions, the 

SN-lasso estimates have sharp peaks consistent with the directions suggested by the fiber 

orientation colormaps. SCSD8 and SCSD12 are also able to preserve directionality pattern in 

such regions. However, in the crossing fiber regions, SCSD estimators tend to be very noisy, 

while SH-ridge leads to overly smoothed estimates causing loss of directionality 

information. In contrast, SN-lasso is able to correctly resolve crossing patterns as 

evidenced by the following observations.

From Figure 6(a) FA and MD maps, the middle part of the ROI (highlighted by the white 

box) have both small FA and MD values. This is likely due to crossing fibers rather than 

being CSF since one defining feature of CSF is large MD values caused by faster water 

diffusion (Alexander et al. 2007). This is confirmed by the SN-lasso estimates shown at 

higher magnification in Figure 7, lower right panel, which showed the presence of three 

fibers in this subregion. On the other hand, the SCSD estimates on this subregion are noisy 

and show no clear pattern (Figure 7, upper right and lower left panels).

In the following, we use a standard white matter atlas to argue that it is highly plausible that 

there are crossing fibers at this anatomical location for this subject. In Figure 5, we used the 

FSL Jüelich Histological Atlas to superimpose the following fiber tracts: corpus callosum 

(CC), cingulum bundle (CB), superior occipitofrontal fasciculus (SOF), and corticospinal 

tract (CT). The ROI is shown as a box superimposed over these slices. The anatomical 

directions of travel of these four tracts are left to right (i.e., from the left to right side of the 

figure), anterior to posterior (from top to bottom of the figure), anterior to posterior, and 

inferior to superior (from inside the page to outside of the page), respectively.

In the upper right hand corner of the ROI at slice 40 (Figure 5), we see the cingulum bundle, 

which travels along the direction from the top to the bottom of the figure. Similarly, top-to-

bottom directionality is present in the corresponding FOD estimates (Figure 6(b), lower right 

panel). In the lower right hand corner of the ROI at slice 40, we see a combination of the 

cingulum bundle which travels along the direction from the top to the bottom of the figure, 

and the corpus callosum, which travels along the direction from the left to the right of the 

figure. Similarly, the corresponding FOD estimates show a combination of top-to-bottom 

and left-to-right directionality. The corpus callosum covers a backward C shaped region and 

runs from left to right. Similarly, the corresponding backward C shaped region in Figure 

6(b), lower right panel, shows left-to-right directionality. The left hand edge of the ROI 

shows the corticospinal tract, with its into-the-page, out-of-the page direction of travel. 

Similarly, the left hand edge of Figure 6(b), lower right panel, shows FOD estimates with 

this same directionality.

The center of the ROI at slice 40 (subregion shown at higher magnification in Figure 7) can 

be plausibly hypothesized to be the location where the corticospinal tract, superior 

occipitofrontal fasciculus, and corpus callosum intersect. According to the atlas (Figure 5), 

the corticospinal tract begins to the left of the ROI in slice 39, and is shown progressing 
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toward the center of the ROI by slice 41. Similarly, the corpus callosum is shown to the right 

of the central region in slice 39 but has progressed toward the left, to the center of the ROI, 

by slice 41. The superior occipitofrontal fasciculus is clearly shown just to the left of center 

of the ROI in slice 39, is faintly visible in slice 40, and is gone in slice 41. These are also 

corroborated by SN-lasso estimates on slices 39 and 41 (Figure 8). Each of these 

observations suggests that the three tracts were indeed on a course to intersect with each 

other in the center of the ROI at slice 40. Correspondingly, SN-lasso estimates for that 

region on slice 40 (Figures 6(b) and 7, lower right panels) show contributions from all 3 

cardinal directions: left to right (corpus callosum), top to bottom (superior occipitofrontal 

fasciculus), and in-to-out (corticospinal tract).

The middle to right portion of the ROI at slice 38 in Figure 5 is the CSF region according to 

the b0 image on the background (see also Figure S.14). The MD map (Figure 9(a), right 

panel) also indicates that this region is likely to be CSF by large MD values. This is 

corroborated by the fact that the SN-lasso estimates of FODs for many voxels in this 

subregion are isotropic, represented by green balls in Figure 9(b), lower right panel. In 

contrast, the other three estimators do not automatically identify isotropic voxels in this 

subregion and instead give noisy estimates with spurious peaks.

3.2.2 Tractography results—The reconstructed fiber trajectories are shown in Figures 10 

and S.16 from two different perspectives. The major observations are as follows. All four 

tracts in the atlas (Figure 5) are clearly present in the tracking results based on the SN-

lasso estimates: the blue trajectories correspond to CT, the red trajectories correspond to 

CC, the bigger bundle of green trajectories corresponds to CB and the smaller bundle of 

green trajectories corresponds to SOF. Moreover, among the five estimators, tracking based 

on the SN-lasso estimates showed the most coherent and least noisy trajectories. For 

example, the red trajectories (part of CC) form a more tightly grouped cluster of curves and 

they are more parallel to each other. The sizes of CC and SOF in the SN-lasso fiber traces 

are more consistent with the atlas than the fiber traces based on the other FOD estimators.

The most prominent difference between SN-lasso based results and those based on the 

other estimators is that, in the lower right part of the region shown in Figure 10, SN-lasso 

based tracking showed no trajectories while tracking based on the other FOD estimators did 

show trajectories, including some combination of CC and SOF. This region corresponds to 

the right portion of the ROI shown on z-slices 37 and 38 of Figures 5 and S.14; based on 

these figures, the region does not contain white matter at all, but rather cerebrospinal fluid 

(CSF). Therefore, since it shows no fiber trajectories through this region, SN-lasso based 

tracking is more consistent with the atlas than tracking based on the other FOD estimators. 

Finally, tracking based on the SH estimates has the least coherent and the most noisy 

patterns.

4 Discussion

In this paper, we present a novel method for FOD estimation that is accurate, has low 

variability, preserves sharp features, and is computationally efficient. The effectiveness of 

the proposed method derives from utilization of a multiresolution spherical frame called 
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needlets that admits stable and parsimonious representation of FODs. Estimation accuracy is 

gained by imposing a sparsity constraint on the needlet coefficients, together with a 

nonnegativity constraint on the estimated FOD. The proposed method mitigates difficulties 

faced by SH-ridge (Tournier et al. 2004) and SuperCSD (Tournier et al. 2007), two well-

known FOD estimators based on the SH representation. Specifically, due to the global nature 

of the SH basis, SH-ridge tends to over-smooth the peaks, resulting in the loss of 

directionality information. In addition, SuperCSD tends to amplify spurious peaks in 

estimated FODs due to high variability. The proposed SN-lasso estimator also outperforms 

DiST (Wong et al. 2016), a method based on the discrete mixture model, which tends to 

under-estimate the number of fibers when the crossing angle is small.

The localization properties of needlets are one of its major advantages over SH basis or 

tensor based methods, as the true FODs are expected to have localized peaks. Particularly, 

SN-lasso is able to achieve good angular resolution due to the localization properties of the 

needlets. A potential disadvantage of needlets is that unlike SH basis they do not form an 

orthonormal basis. Thus certain mathematical and computational conveniences are lost. 

Nevertheless, many properties are still retained as needlets form a tight frame. In terms of 

computation, the current implementation of SN-lasso is able to fit 100,000 voxels in a few 

hours on a server with 256 RMA and 72 cores. The codes will be disseminated through git 

repository.

Experimental results on synthetic data suggest that the proposed method leads to better FOD 

estimation than the competing methods, particularly in terms of identification of major fiber 

directions. These results are consistent with the well-established statistical notion that a 

nonlinear shrinkage strategy allied with sparse representation is more efficient for signal 

recovery than a linear shrinkage strategy (Johnstone 2015, Tsybakov 2009). Moreover, the 

use of ℓ1 penalized regression by SN-lasso enables an effective bias-variance trade off.

The proposed method is able to successfully reconstruct an FOD when the fiber crossing 

angle is as small as 30° provided that the b-value and SNR are sufficiently large (e.g., b = 

3000, 5000s/mm2, SNR = 50). Resolving small crossing angles at relatively low b-values 
has been reported to be a challenging setting. For example, in Yeh & Tseng (2013b), under b 
= 1500s/mm2, SNR = 20, n = 55, the best performing method has around 20° angular 

deviation at 45° crossing angle. On the other hand, with the fast advancement of D-MRI 

technologies, we are expecting larger b-values and SNR (Setsompop et al. 2013, Van Essen 

et al. 2013). The use of larger b-values for reconstruction of diffusion characteristics has also 

been previously advocated in the literature (Jensen et al. 2016, Jones et al. 2013, Roine et al. 

2015) in anticipation of future technological advances. Therefore, the proposed method is 

promising in terms of resolving subtle fiber crossing patterns in settings that will become 

increasingly relevant over time. Moreover, it is able to effectively identify isotropic diffusion 

with a high degree of accuracy.

In experiments on real 3T D-MRI data sets, the proposed method leads to more realistic 

descriptions of crossing fibers and better tractography results than competing methods at a 

relatively small number of gradient directions, indicating the practical value of our method 

for analyzing D-MRI data from current studies.

Yan et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our use of multiresolution spherical wavelets bears some similarity to the dODF-sharpening 

strategy of Kezele et al. (2010) where a spherical wavelets transform due to Starck et al. 

(2006) is employed. However, the method of Kezele et al. (2010) is not directly applicable 

here since we aim to estimate the FOD (or fiber ODF) rather than dODF. Moreover, the 

spherical wavelets constructed by Starck et al. (2006) do not possess the spherical function 

representation characteristics and tight frame properties of needlets. Finally, while our 

needlets representation enables us to impose sparsity constraints, Kezele et al. (2010) uses 

the spherical wavelets transform only as a band-pass filter. Among alternative choices of 

spherical wavelets, the lifting scheme based wavelets constructed by Schröder & Sweldens 

(1995) provide excellent spatial localization and ease of computation. However, since these 

wavelets are nonsmooth and consequently poorly localized in frequency, they are not 

optimal for FOD reconstruction since FODs have sharply localized features, which require 

frequency localization of the basis functions for a parsimonious representation.

There are a few limitations of the proposed method. First, the FOD is only a convenient 

mathematical abstraction of the complex geometry of neuronal fiber organization within a 

voxel. Therefore, the identification of FOD peaks with the orientations of the fiber bundles 

may not hold in a strict physical sense. Nevertheless, since we are treating the FOD as a 

continuous function on 𝕊2 as opposed to a discrete mixture of point masses, the 

reconstructed FOD is arguably a more realistic descriptor of the local geometry of the fiber 

bundles. Second, we assume antipodal symmetry of the FOD following existing literature on 

FOD estimation. Such FODs may not represent diverging (“fanning”) configurations of fiber 

bundles very well. However, by using the original (not symmetrized) needlets, it is possible 

to extend our method to deal with scenarios involving fanning, bending of fiber tracts, and so 

on. Third, when estimating the FOD at a voxel, currently we only use data from that voxel. 

Since fibers tend to be spatially contiguous, incorporation of data from neighboring voxels 

in FOD estimation may further improve estimation accuracy.

One avenue for future research is the extension of this method to multiple q-shell data. An 

emerging strength of such data is its ability to accommodate multiple cellular compartment 

models that separately quantify the contributions of free water, water bound within the 

myelin sheath, inter-axonal water, and other compartments to the D-MRI signal. As such, 

multiple q-shell data may be best modeled to allow for different FOD representations for 

different compartments, as in the NODDI scheme (Zhang et al. 2012), rather than a single 

spherical function as in our method. On the other hand, spherical needlets might provide 

accurate and robust representation of some of these signal components, possibly with 

specific coefficient penalties for specific components. Future experimentation should 

determine settings in which spherical needlets are useful for modeling components of the 

multiple q-shell D-MRI signal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Novel application of a multiresolution spherical basis, called needlets, to fiber 

orientation distribution (FOD) estimation from diffusion MRI (D-MRI) data.

• Spherical needlets have excellent localization of FOD peaks and a stable and 

parsimonious representation of FODs through spherical deconvolution.

• We gain estimation accuracy and achieve bias-variance trade-off by imposing 

a sparsity constraint on the needlet coefficients, together with a nonnegativity 

constraint on the estimated FOD.

• Extensive synthetic and real data experiments suggest superior accuracy and 

robustness over competing techniques, including the ability to resolve fibers 

that cross at angles as small as 30 degrees.
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Figure 1. Two fiber crossing at 90°, 75°, 60° with b = 1000s/mm2, SNR = 20
n = 41 gradient directions and ratio = 10. The lines indicate the true fiber directions, the 

opaque part in the plots corresponds to mean estimated FOD across 100 replicates, and the 

translucent part in the plots corresponds to mean plus two standard deviations of the 

estimated FOD.
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Figure 2. Two fiber crossing at 45° with b = 1000, 3000s/mm2, SNR = 20, 50
n = 41 gradient directions and ratio = 10. The lines indicate the true fiber directions; the 

opaque part corresponds to mean estimated FOD across 100 replicates; and the translucent 

part corresponds to mean plus two standard deviations of the estimated FOD.
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Figure 3. Two fiber crossing at 30° with b = 3000, 5000s/mm2, SNR = 20, 50
n = 41 gradient directions and ratio = 10. The lines indicate the true fiber directions; the 

opaque part corresponds to mean estimated FOD across 100 replicates; and the translucent 

part corresponds to mean plus two standard deviations of the estimated FOD.
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Figure 4. Two fiber crossing: Angular error, bias and success rate
n = 41 gradient directions and ratio = 10. Blue – SH-ridge; Purple – SCSD8; Green – 

SCSD12; Black – SCSD16; Red – SN-lasso; Cyan – DiST
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Figure 5. ADNI application: White matter tracts from the Jülich Histological Atlas provided by 
FSL, superimposed on z-slices 37 - 42 of the b0 image provided by FSL
Red – Corpus Callosum (CC); Green – Cingulum Bundle (CB); Yellow – Superior 

Occipitofrontal Fasciculus (SOF); Blue – Corticospinal Tract (CT). The ROI is indicated by 

the white box.
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Figure 6. ADNI application
FOD estimates on z-slice 40. (a) From left to right: Fiber orientation colormap of z-slice 40 

where the ROI is indicated by the white box; Colormap, FA map and MD map of the ROI. 

(b) FOD estimates.
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Figure 7. ADNI application
FOD estimates on a 5 × 5 subregion on z-slice 40. This subregion is highlighted by the white 

boxes on Figure 6.
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Figure 8. ADNI application
SN-lasso FOD estimates on the ROI at z-slices 39 and 41.
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Figure 9. ADNI application
FOD estimates on z-slice 38. (a) From left to right: Fiber orientation colormap of z-slice 38 

where the ROI is indicated by the white box; Colormap, FA map and MD map of the ROI. 

(b) FOD estimates.

Yan et al. Page 33

Med Image Anal. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. ADNI application
Tractography on the ROI – Perspective I. CC – Corpus Callosum; CB – Cingulum Bundle; 

SOF – Superior Occipitofrontal Fasciculus; CT – Corticospinal Tract
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