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Exploring Gang Effects By Output Node Similarity In Neural Networks

Paul Rodriguez (prodrigu @mgsci.ucsd.edu)
Department of Cognitive Science, 0515; 9500 Gilman Drive
La Jolla, CA. 92093-0515

Introduction

If a network is trained to minimize mean squared error then
it will also learn to maximize the posterior probability of the
output given the input (Kuan, et al,, 1994). In other words,
a network learns to maximize expectations. However, some
interesting and relevant psychological modeling are more
often concerned with the nature of generalizations across
classes of input. In the case of Simple Recurrent Networks
(SRNs) these learning effects can occur in temporal context
of the feedback connections. For example, Elman (1989)
showed how a SRN can learn a simple grammar in a pre-
diction task and the network will learn to produce expecta-
tions for all items in a class, even though not all combina-
tions were seen in training. In this work I take a geometric
viewpoint toward understanding how a feedforward net-
works have a “gang” effect due to class similarity in output,
and a SRN can have “gang” effects in context. The prob-
lem is related to several connectionists models in language
that have shown that a network can have generalizations for
unseen input. (e.g. Hare, 1990). I will look at generaliza-
tions for unseen combinations of bigrams (input-to-output
mapping) and trigrams (context and input-to-output map-
ping), and extend the findings of Bartell, et al.(1993).

Class Effects

If input vectors for a network are encoded with 1-of-n en-
coding then there is no structure in the input space. In such
a case all generalizations that a network learns is based on
similarity in the output vectors or similarity in context. In
order to draw out the detail of this generalization, it is useful
to compare the network to the actual expectations produced
by a simple counting procedure. The counting program
merely counts for each input the number of times it is
trained to produce each output. This gives a forward prob-
ability vector of P(outputlinput), which can be interpreted as
a vector in output space.

Furthermore, the program keeps track of the backward
probability for each output node, which is the number of
time an input is trained to produce that output. This gives a
backward probability vector of P(input | output), which is
the class conditional probability of the output. The geo-
metric interpretation is that the backward probability is re-
lated to the decision planes for that output node.

If a network is trained with simple grammars it can learn
to produce expectations for unseen input combinations. The
actual bigram probability for unseen combinations is
P(outputlinput)=0. However, by using the geometric inter-
pretations one can account for class effect by comparing the

backward probability across all output nodes. Output nodes
with similar backward probability vectors will share similar
output decision planes. The closer the vectors or the more
output nodes in a class, the higher and longer a class effect.
For example, assume a grammar task that uses sequence
of verbs and nouns, but during training some verbs are not
trained on all possible nouns that can follow. A class effect
can be surmised by producing output vectors from counting
program and performing a hierarchical clustering. The
cluster can be compared to a cluster of output weight vec-
tors. The bigram counting produces output vectors that
cluster similarly, but do not give an absolute indication of
network performance. However, they give a nice way to
formalize the class effect as depending on the distance of
the following:
P(input=verb(i) | output= noun(j) ) ~
P(input=verb(k) | output=noun(/)),
where i,j,k,l index the verb and noun examples that are seen
in training, but index combination i,/ are the unseen exam-
ples, and there is a class effect on output node for noun(l).
An SRN will also produce class effects in which the
network produces expectations for a verb-noun sequence
that has not been seen in training. One can extend the
above to include forward probabilities in context as follows:
P(output =noun(i) linput= verb(j) noun (k)) ~
P(output=noun(/)| input= verb(m) noun(n))
where the unseen examples are indexed by i,m,n. The geo-
metric interpretation is that similar contexts results in simi-
lar hidden unit activations. In conclusion, a SRN does
more than learn to maximize expectations and adding a
geometric interpretation to probabilitics help explain the
relevant properties in psychological modeling.
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