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which had a serious purpose at the end, and the thing was to get to that end,  

success or whatever it is, maybe heaven after you’re dead.  But we missed the point the whole way along.  
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ABSTRACT OF THE DISSERTATION 

Investigations Supporting the Development of a Downhole Energy Harvesting System 

by 

Eric John Kjolsing 

Doctor of Philosophy in Structural Engineering 

University of California, San Diego, 2016 

Professor Michael Todd, Chair 

Hydrocarbon well operators deploy downhole reservoir monitoring equipment in order 

to optimize the rate at which hydrocarbons are extracted.  Alternative power sources are sought 

that could be deployed in these harsh environments to replace or supplement standard power 

sources currently in use.   To this end, four investigations were performed to support the design 

of such a device.  In the first investigation base assumptions used in the preliminary design of an 

electromagnetic energy harvester were shown to be in doubt, implying that the expected power 

output would not meet initial projections.  In the second investigation a parametric study was 

performed to understand how high uncertainty variables affect the natural frequency and 

damping ratio of a producing hydrocarbon well.  In the third investigation a structural housing 



xxxii 

was designed to satisfy American Petroleum Institute load cases.  Using finite element models 

and standard tube/casing geometries, design pressures were iterated until a permissible housing 

design was achieved.  This preliminary design provided estimates of the radial width and volume 

in which energy harvesting and storage elements may be situated.  In the last investigation two 

software programs were developed to estimate the energy that might be harvested from user 

specified harvester configurations. The programs are dependent on user input production tube 

accelerations; this permits well operators to use well-specific vibrational data as inputs to 

generate well-specific energy output estimates.  Results indicate that a downhole energy 

harvesting tool is structurally feasible under reasonable operating conditions but 

conclusions regarding power output may only be made if actual downhole accelerations are 

known. 
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Chapter 1  

Introduction 

The field of energy harvesting is expansive.  Due to the numerous harvesting strategies, 

transducer designs (which range from the micro to the macro scale), circuitry design, power 

storage systems, and a variety of applications, the field of energy harvesting has seen 

significant interest from both researchers and practicing engineers.  The underlying objective of 

energy harvesting systems is to replace or supplement standard power sources, such as batteries 

or generators, from wasted or unused sources.  Fundamentally, this is done by converting non-

electric energy into useful electrical energy [1].  The type of non-electrical energy that is 

converted is dependent on both the operating environment (i.e. what type of non-electrical 

energy is available to harvest?) and the efficiency of the selected harvesting system (i.e. how 

much of the available non-electrical energy can a harvesting system actually convert?).  As 

such, the energy harvesting system must be selected based on the environment in, and the 

structure on which, the harvesting system will be deployed.  Typical deployments might 

involve bridges [2]-[4], marine infrastructure [5]-[6], rail and train [7]-[9], unmanned aerial 

vehicles [10]-[13], or helicopters [14]-[16].  Of particular interest is the use of energy 
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harvesting systems to power devices where (1) there is insufficient access to standard power 

sources, (2) where there is a practical limitation to providing power (e.g. the size, cost, or 

service life of the power source; the cost and feasibility to replace a standard power source; 

etc.), or (3) there is an abundance of “wasted” power.   

1.1. Energy Sources and Transduction Mechanisms 

Non-electrical energy sources are converted into electrical energy by means of a 

transducer specifically designed or selected for the given application.  For example, common 

energy sources such as solar and vibrational energy may be converted to electrical energy by 

means of photovoltaic cells and piezoelectric elements, respectively.  The appropriate method 

of transduction is dependent on the available energy sources in a given environment.  To select 

a proper harvesting system, the designer must be aware of what type of energy sources can be 

harvested and the corresponding transduction mechanism(s) available.  The literature provides 

several review articles and reports discussing various transduction mechanisms as they relate 

to: structural health monitoring [17], remote sensors [18], microelectronics [19]-[20], embedded 

systems [21], autonomous systems [22]-[25], and portable electronics [26]-[27]. 

Comprehensive discussions are provided in the well-recognized texts Energy Harvesting 

Technologies [28] and Advances in Energy Harvesting Methods [29]. 

The following sections identify common non-electrical energy sources and briefly 

discuss the mechanism(s) that may be utilized to convert them to electrical energy.  

Mechanism-specific references are provided in each section.  Considerations for selecting a 

transduction mechanism are briefly discussed. 
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1.1.1. Kinetic Energy 

The following sections identify common non-electrical energy sources and briefly 

discuss the mechanism(s) that may be utilized to convert them to electrical energy.  

Mechanism-specific references are provided in each section.  Considerations for selecting a 

transduction mechanism are briefly discussed. 

1.1.1.1. Mechanical Vibration 

Transduction mechanisms based on mechanical vibration typically utilize piezoelectric, 

electromagnetic, electrostatic, or magnetostrictive elements [30]-[31].   

Piezoelectric transducers rely on the direct piezoelectric effect, found in certain 

crystalline materials, which converts mechanical strain into electrical energy [32]. Typical 

configurations include stacked piezoelectric elements which harvest axial strain energy directly 

or cantilever piezoelectric elements which harvest axial strain energy indirectly through flexural 

bending.  Cantilever piezoelectrics can be oriented with one or two piezoceramic layers (i.e. a 

unimorph or bimorph configuration) and are often directly attached to the vibrating host 

structure [28].  Significant investigation into piezoelectric transducers has been performed with 

notable reviews by Sodano et al. (2004) [33], Priya (2007) [34], and Anton and Sodano (2007) 

[35].  A seminal text by Erturk and Inman (2011) [36] provides additional background. 

Electromagnetic transducers are based on Farady’s law of electromagnetic induction 

whereby voltage is generated in a conductor (e.g. coil) by varying the magnetic field around the 

conductor [21]; the mechanical vibration of the supporting structure displaces either the magnet 

or coil, resulting in the variation to the magnetic field.  Popular architectures include a 

cylindrical magnet oscillating within a coil (either linear or rotational motion) or a planar 

magnet oscillating adjacent to a coil without immersion [1].  Arnold (2007) [37] provides a 

review of microscale magnetic power generation while Beeby et al. (2007) [38] compares micro 
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and macro scale generators.  The text by Spreemann and Manoli (2012) [1] provides an in-

depth investigation into the transduction mechanism. 

Electrostatic energy harvesting is based on the changing capacitance of vibration-

dependent capacitors [21].  In this mechanism, a charged capacitor carries equal and opposite 

charges on two plates.  By maintaining the charge on the capacitor while moving the capacitor 

plates apart, the voltage will increase [19].  Although the development of electrostatic energy 

harvesters has not progressed to the same degree as piezoelectric or electromagnetic 

transducers, design concepts have been introduced [39].  In addition, tools to facilitate the 

analysis, design, and fabrication of harvesters have been developed [40]; prototypes have been 

designed and tested [41]-[43]. 

Magnetostrictive transducers utilize the Villari effect to generate a magnetic field when 

strained [30].  When paired with a conductor (e.g. coil), the time varying magnetic field will 

generate a voltage based on Faraday’s law [44].  An in-depth study of magnetostriction effects 

is given by Lee (1955) [45]; the importance of nonlinear behavior is emphasized by others [46]-

[47].  While stand-alone harvesters have been designed and tested [48]-[49], composites pairing 

magnetostrictive and piezoelectric elements are not uncommon [50]-[51]. 

1.1.1.2. Flowing Medium 

The kinetic energy of wind or fluid can be harvested through wind or tidal turbines, 

wave energy converters, hydroelectric dams, or harvesting transducers directly immersed in the 

fluid flow. 

Wind or tidal turbines, wave energy converters, and hydroelectric dams are typically 

engineered at the mega-scale.  In each case, the flowing medium drives a generator resulting in 

the conversion of the kinetic energy of the flowing medium into electrical energy: wind or tidal 

flow drives a rotor, causing a torque on the rotors shaft, driving an electric generator; waves 
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induce motion in buoys which directly or indirectly drive electric generators; flowing or falling 

water from a dam reservoir drive turbines which generate electricity.  Current reviews are 

available on the more modern technologies (wind energy [52]-[55], tidal turbines [56]-[58], and 

ocean wave energy converters [59]-[64]). Turbines and harvesters for each technology are 

either commercially available or in development by firms including: Vestas and Gamesa 

(wind); Atlantis Resources, Magallanes Renovables, and Tocardo (tidal); Laminaria, Seatricity, 

and Wello Oy (wave); General Electric and Gilkes (hydroelectric). 

Smaller-scale transducer designs place the energy harvesting element directly in the 

path of the flowing fluid [29].  Realizations often include placing flexible piezoelectric 

elements, paired with a bluff body, in the fluid flow so that the resulting turbulent flow induces 

strain in the piezoelectric [65]-[68].  A similar concept utilizing electromagnetic induction has 

recently been developed [69]. 

1.1.2. Thermal Energy 

Thermoelectric energy generators (TEGs) rely on the Seebeck effect to convert a 

temperature difference between two dissimilar metals into electrical energy [17].  When a 

thermal gradient is applied to a TEG, a negative charge builds on the “cold” end of the 

harvester creating a voltage while the heat flow drives the electric current [28].  The produced 

electric current is proportional to the applied temperature gradient [19].  TEGs are a mature 

technology and require no moving parts [22].  Rowe (1999) [70] and Riffat and Ma (2003) [71] 

provide assessments of the technology while Sootsman et al. (2009) [72] provides a more 

current review.  Applications include geothermal harvesting [73], harvesting heat from 

automobile exhaust [74], and powering medical equipment using human warmth [75]; 

experimental investigations are also widely available [76]-[78]. 
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1.1.3. Electromagnetic Radiation 

Electromagnetic radiation refers to both solar energy and radio frequency (RF) 

radiation [19].  Solar energy can be harvested through the use of photovoltaic cells, 

photosynthesis in plants, and thermal harvesting [26].  

Photovoltaic (PV) cells are typically made with semiconductor material (primarily 

silicon) [19] and rely on the photovoltaic effect to harvest solar energy.  As light energy hits the 

PV cell the semiconducting material absorbs photons and releases electrons [22].  The material 

junction between two different semiconducting materials within the solar cell drives the free 

electrons, resulting in an electric current [52].  Solar cells function well in direct sunlight but 

see a significant reduction in power on overcast days [24].  Being a mature technology [17] 

there is significant literature covering the development, optimization, and deployment of 

photovoltaic cells.  Review articles are widely available [79]-[82], as are introductory texts 

[52], [83]-[84].  Specific applications include use in homes, solar powered cars, unmanned 

aerial vehicles [85], space [86], and wireless embedded systems [87]. 

RF energy harvesting describes the conversion of electromagnetic radiation into DC 

power.  The harvested energy can originate from directed or non-dedicated sources.  The intent 

of a directed source is to generate and transmit power through electromagnetic waves in a 

narrow frequency band to a specific receiver which then converts the transmitted power into 

electric power [88].  Alternatively, RF energy harvesting strategies can utilize ambient RF 

energy sources whereby harvesters scavenge ambient RF energy from the environment [89]-

[91].  Environmental RF energy sources may cover a wide frequency band [92] and include 

radio and television broadcast antennas, base stations for mobile telephone service, and wireless 

local area networks [19].  The harvester uses a rectifying antenna to receive and convert the RF 
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energy into DC power [17].  One current application thrust is in structural health monitoring 

where RF energy harvesting is being used to power sensor networks [93]-[97]. 

1.1.4. Other Mechanisms and Novel Applications 

Other transduction mechanisms are also being researched.  Ouellette and Todd (2014) 

[5] investigated a corrosion based energy harvester that took advantage of the electrochemical 

reactions that occur during the corrosion of a cement-seawater battery.  Lal and Li (2005) [98] 

investigated a radioisotope-powered piezoelectric generator.  Other researchers have attempted 

to develop an artificial photosynthetic fuel production system, mimicking the natural process of 

photosynthesis found in plants [99]-[100].   

Hybrid energy harvesters that combine multiple transduction mechanisms or energy 

sources have also been developed.  Combinations include piezoelectrics and electromagnetic 

induction [101]-[102]; mechanical and solar energy [103]-[104]; and thermal, mechanical, and 

solar energy [105]. 

Recently, novel applications in the field of biology have been explored. Starner (1996) 

[106] explored harnessing human energy in the form of breath, blood pressure, and body heat.  

Karami and Inman (2012) [107] designed piezoelectric energy harvesters to power pacemakers.  

Several researchers have harvested energy from implanted biofuel cells operating within living 

animals [108]-[110]. Others have developed skin-worn tattoo-based electrochemical devices 

[111]. 

1.1.5. Considerations for Selection 

Multiple transduction mechanisms may be feasibly deployed in certain operating 

environments.  For instance, an unmanned aerial vehicle is capable of harvesting both solar 

energy with photovoltaic cells and mechanical energy with piezoelectrics.  In these instances, a 



8 

 

 

 

common comparison metric is the power density which provides a power estimate per unit 

volume of energy harvester.  Typical power densities for commonly utilized energy sources are 

provided in Table 1.  Note that depending on the amplitude and frequency of excitation, the 

power density for vibration based harvesters may be significantly less or greater than the stated 

value. 

 

Table 1. Power Densities for Common Energy Sources [24]-[25], [28] 

 Power Density (𝜇𝑊 𝑐𝑚3⁄ ) 

Solar 
15000 – direct sun 

150 – cloudy day 

Mechanical Vibrations 300 

Thermal Gradients 15 @ 10℃ 

Ambient Radio Frequency 3 

Beyond power density, other factors that need to be considered when selecting an 

energy harvesting system include: the cost of the system; physical restrictions of the size, 

shape, or weight of the harvester; the required maintenance of and accessibility to the harvester; 

and the harvesters’ ability to survive the structural, moisture, and temperature loading that may 

be imposed by the operating environment. 

1.2. Project Overview 

In the current application, an energy harvester is envisioned to power commercially-

available monitoring systems in a producing hydrocarbon well.  These monitoring systems (e.g. 

pressure and temperature gauges) are typically located near the hydrocarbon reservoir, are used 

to optimize hydrocarbon extraction, and are powered by either battery systems or with a power 

cable (which runs from the ground surface to the monitoring equipment).  These conventional 

power sources are less than optimal as batteries have a finite life span and power cables cause 

congestion in the well annulus.  Ceasing hydrocarbon production to replace or repair these 

power sources is costly, and as such, alternative power sources are sought.  
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1.2.1. A Brief Introduction to Hydrocarbon Wells 

Like most engineered designs, hydrocarbon wells are individually designed based on 

economic, geographic, and production limitations.  One general configuration is shown in 

Figure 1 with one possible installation sequence described below. 

 

 
Figure 1. Typical Well Configuration [112] 

The well installation begins by removing soil through a drilling process during which 

the well is filled with a fluid to prevent the surrounding soil from collapsing the well.  

Periodically, lengths of steel tubing, known as casing, are installed and grouted in place to 

provide a permanent structure to prevent the well’s collapse.  After the final length of casing 

(i.e. the production casing) is installed the well extends into, if not beyond, the hydrocarbon 

reservoir layer.  A small explosive device is lowered into the well to an elevation bounded by 
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the hydrocarbon reservoir and detonated.  This causes perforations through the production 

casing and grout, allowing the hydrocarbons within the hydrocarbon reservoir to flow into the 

annulus.  Prior to detonation, the annulus fluid density is modified so that the pressure from the 

hydrocarbon reservoir (post-detonation) is balanced by the static fluid pressure of the annulus 

fluid; in this way flow of the hydrocarbons is controlled.  A small diameter piping system, 

known as the production string, is lowered through the annulus fluid to the hydrocarbon 

reservoir layer.  A mechanical device, known as a packer, is set in place and provides a 

boundary between the annulus and hydrocarbon fluids.  The hydrocarbons are then extracted 

from the reservoir layer, through the production string, by controlling the wellhead at the 

ground surface.  Adjacent to the packer are in-line components such as pressure and 

temperature gauges. 

The geometries, material, and other requirements for the production string and 

production casing are specified by American Petroleum Institute (API) standards [113]-[114].  

The lengths of piping making up these strings can be assembled using a variety of connections 

including integral connections or standard couplings utilizing a variety of thread types.    

The reservoir fluid is a mixture of oil, gas, water, and soil particles and is produced 

using primary, secondary, or tertiary recovery techniques.  Primary recovery uses the reservoirs 

natural energy for production and includes natural drive mechanisms or artificial lift.  

Secondary recovery relies on external energy to produce hydrocarbons.  This energy can be 

supplied by injecting gas or fluids into the hydrocarbon reservoir using adjacent (non-

producing) wells.  Lastly, tertiary recovery relies on altering the reservoir fluid properties to 

improve the flow.  This may be accomplished by thermal or chemical injection into the 

hydrocarbon reservoir. 
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1.2.2. Related Downhole Energy Harvesting Patents 

Numerous patents exist covering various downhole energy harvesting strategies: 

harvesting elements may include magnetic induction [115], magnetostrictive [116], or 

piezoelectric elements [117]; the harvesting system may be external to the flow [118], require 

modification of the flow [119], or be placed within the flow [120]; the systems may utilize 

membranes [121], vibrating sleeves [122], or rely on modulated fluid flow to help in power 

generation [123].  One Schlumberger patent attempts to cover a broad range of downhole 

energy harvesting strategies and configurations [124].  One realization of the Schlumberger 

patent calls for a bluff body to be included within the conveyed fluid flow to enhance the 

downhole vibration energy.  This mechanical energy can then be harvested using piezoelectric, 

magnetic induction, or other harvesting strategy.   

1.2.3. Existing Hydrocarbon-Specific Systems 

While there are many patents covering this design space, few downhole energy 

harvesting systems have been developed.  In most cases, the specific details are unavailable and 

are protected as intellectual property intended for commercialization.   

 TEG Power Strap.  Developed by Marlow Industries, the TEG power strap is an energy 

harvesting system for use in the industrial, chemical, oil, and gas sectors.  Capable of 

being fitted to any diameter pipe, the strap uses the thermal gradient existing between 

the pipe wall and ambient temperature.  Its intended use is on above ground piping.  

The system consists of an aluminum strap, bismuth telluride (𝐵𝑖2𝑇𝑒3) modules and heat 

sinks [125]. 

 iMEC Enabled Vibration Harvester.  Capable of being deployed on drilling or 

completion equipment, the harvester converts drillstring vibration or hydrocarbon flow 
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into electric power. The device, developed by Oscilla Power, is based on the Villari 

effect: changes in material strain are converted to changes in the materials magnetic 

field [126]-[127]. 

 NETL/Tubel Generator and Communications Unit.  Developed in 2005 by Tubel 

Technologies and funded through the U.S. Department of Energy, this unit utilizes 

piezoelectric wafers to generate electricity from the flow of hydrocarbons through a 

production tube.  The energy harvesting system is paired with an acoustic telemetry 

system to transmit the downhole pressure and temperature data to the surface.  It is 

intended for intelligent completions of natural gas wells [128]-[129]. 

1.2.4. Considered Transduction Mechanisms 

Several transduction mechanisms are infeasible based on the operating environment: 

wind/tidal turbines, wave energy converters, hydroelectric dams, and electromagnetic radiation 

are inapplicable.  Three general strategies remain: harvesting thermal gradients, mechanical 

vibrations, and the kinetic energy of the flow via an immersed harvester. 

A thermal energy harvesting strategy would rely on the thermal gradient that exists 

between the hydrocarbon reservoir fluid and the annulus fluid/casing.  However, since the 

energy harvesting system would be placed next to the well monitoring equipment (which the 

harvester is to power), and the well monitoring equipment is typically located near the 

hydrocarbon reservoir, the change in temperature is expected to be small.  As an example, 

consider an energy harvester located 0.3𝑘𝑚 (1000𝑓𝑡) above the hydrocarbon reservoir.  Based 

on an average geothermal gradient of 30℃/𝑘𝑚 of depth, the temperature differential between 

the reservoir fluid and the ambient environment would be 9℃, implying a power density on the 
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order of 13.5 𝜇𝑊 𝑐𝑚3⁄ .  This is much smaller than the potential power density offered by 

vibration based harvesters (see Table 1). 

The use of an immersed harvester is questionable strictly from a durability point of 

view.  The reservoir fluid is a mixture of oil, gas, water, and soil particles.  As the conveyed 

fluid interacts with the immersed harvester soil particles could damage a flexible piezoelectric 

harvester which, over time, would become inoperable. 

 Within the realm of mechanical vibration harvesters, electrostatic and magnetostrictive 

transducers are not widely available while piezoelectric and electromagnetic harvesters are 

commercially available from a variety of manufacturers.  Should an energy harvesting system 

be fabricated at any scale, this would have an economic impact on its widespread use. 

Based on the above, the envisioned energy harvesting system is based on a 

piezoelectric or electromagnetic transducer harvesting the mechanical vibrations of the 

production string. 

1.2.5. The Modified Well Configuration 

For this project, the typical well configuration from Figure 1 is modified to include a 

vibration-based energy harvesting system.  The envisioned system is to be located adjacent to 

the in-line components it will power.  The energy harvesting system will be stored in a 

structural housing situated in the annulus and will be fixed to the production tube (i.e. the 

vibrating production tube will drive the energy harvesting elements).  The modified well 

configuration is shown in Figure 2.  It is assumed that a mechanical amplifier may be employed 

to increase the vibration amplitude of the production string.  This amplifier may take the form 

of a bluff body generating harmonic pressure oscillations (see Figure 3) or may simply be 

thought of as a yet-to-be-designed amplifier (see Figure 4).  Bracing elements have been 
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included to prevent amplified production tube vibrations from damaging adjacent lengths of 

tubing or equipment. 

 

 
Figure 2. Modified Well Configuration [112] 

 

 

 
Figure 3. Bluff Body Configuration 
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Figure 4. Generic Mechanical Amplifier Configuration 

1.2.6. Project Scope and Research Contributions 

The initial intent of this project, which originated at Los Alamos National Laboratory 

(LANL), was to design and fabricate a vibration energy harvesting system that could be used to 

replace or supplement conventional power sources.  An energy harvesting system, in 

combination with commercially available acoustic telemetry systems, may reduce or eliminate 

the need for running conductor cable within the annulus from surface to reservoir.  By 

including a bluff body in the conveyed fluid flow, it was believed that the ensuing harmonic 

pressure oscillations would result in periodic motion of the production tube, permitting the 

economical deployment of an energy harvesting system.  Unfortunately, a numerical 

investigation showed that the production tube’s displacement response assumed in preliminary 

calculations would not be achievable, implying that the expected power output would not meet 

initial projections.  After failing to obtain intellectual support from industry practitioners, the 

project was forced to change directions: rather than develop and fabricate a specific energy 
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harvesting unit, various investigations were performed to support the future design of downhole 

energy harvesting systems.   

This dissertation is divided into four main parts.  In Chapter 2, an analytical model is 

developed which shows the displacement response assumed in preliminary calculations may not 

be achievable.  The model is solved using Green’s functions with the applied forcing found 

from separate finite element computational fluid dynamics models.  In Chapter 3, parametric 

studies are performed to characterize the dynamic behavior of the production tube.  The spectral 

element method is used to determine how the natural frequency and damping ratio of the 

production tube change as high-uncertainty inputs are varied.  In Chapter 4, a preliminary 

structural housing is designed in which the yet-to-be-designed energy harvesting system will be 

placed.  The preliminary housing design geometrically constrains the size of the energy 

harvesting system.  Lastly, in Chapter 5, two MATLAB programs are introduced which provide 

power estimates for a user-defined well configuration and acceleration time-histories.  Based on 

the programs outputs, well owners can make informed decisions as to the economic viability of 

developing and fabricating a vibration-based energy harvesting system for a specific well.  

These investigations lay an intellectual groundwork that facilitates the future design of a 

downhole energy harvesting system.   

The primary theoretical contributions of this dissertation can be found in Chapter 3 and 

the latter half of Chapter 5.  The parametric study found in Chapter 3 describes the dynamic 

behavior of a braced production string and identifies how certain variables affect the natural 

frequency and damping ratio of the system. The latter half of Chapter 5 (that corresponding to 

the second MATLAB program) includes demonstration cases that illustrate how cyclic damage 

and temperature changes might effect the power output and displacement response of a 

vibrating piezoelectric elemenet.   
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Chapter 2  

Preliminary Analytical Model 

2.1. Background 

Initial proof of concept calculations made by Los Alamos engineers, based on an 

electromagnetic transducer design, assumed a ±5𝑚𝑚 harmonic displacement response of the 

production tube with frequencies generally less than 25𝐻𝑧 .  The initial calculations are 

provided in Appendix A.  The harmonic response would be driven by pressure oscillations 

within the conveyed fluid, stemming from the inclusion of a bluff body within the production 

tube (i.e. a Kármán vortex street).  The basis for the assumed displacement response is unknown 

and, as such, needs to be validated or disproved.  To this end, a simple beam model is used to 

calculate the displacement response of the modeled system.  The annulus fluid is accounted for 

through a hydrodynamic forcing function.  The pressure oscillations are found from a separate 

computational fluid dynamics model and, through integration, are represented as a harmonic 

point load at the midspan of the beam.  The effects of the conveyed fluid velocity are assumed 

negligible (i.e. the conveyed fluid velocity is taken to be zero).  While there is an apparent 

contradiction (including the pressure oscillations stemming from the conveyed fluid while 
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assuming the conveyed fluid has zero velocity), the model is accurate for conveyed fluid 

velocities much lower than the divergent velocity of the system. 

2.2. The Equation of Motion 

The following derivation of the governing equation of motion follows the work of Rao 

(2007) [130].  Consider the thin beam element shown in Figure 5 with differential element 

length 𝛿𝑠.  Forces on the beam include moment (𝑀), shear (𝑄), viscous damping (𝑐 𝜕𝑤/𝜕𝑡 𝛿𝑠), 

an externally applied driving force (𝑓𝑑𝛿𝑠 ), and a hydrodynamic force (𝑓ℎ𝑦𝑑𝑟𝑜𝛿𝑠 ) which

accounts for the effects of an external fluid surrounding the pipe.  Note that gravity has been 

neglected. 

Figure 5. Transverse Vibration of Euler-Bernoulli Beam Element 

Applying moment equilibrium leads to 
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1

2
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where rotary inertia has been neglected.  Assuming that 𝑠 ≈ 𝑥 under small transverse vibration 

and simplifying leads to  
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𝑄 = −
𝜕𝑀

𝜕𝑠
= −

𝜕𝑀

𝜕𝑥
= −𝐸𝐼

𝜕3𝑤

𝜕𝑥3 , (2) 

where the Young’s modulus and inertia are treated as constant over the length of interest.  

Applying horizontal equilibrium leads to 

− [(𝑄𝑐𝑜𝑠𝜃) −
1

2

𝜕

𝜕𝑠
(𝑄𝑐𝑜𝑠𝜃)𝛿𝑠] + [(𝑄𝑐𝑜𝑠𝜃) +

1

2

𝜕

𝜕𝑠
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𝜕𝑤

𝜕𝑡
𝛿𝑠 + 𝑓𝑑𝛿𝑠 +

𝑓ℎ𝑦𝑑𝑟𝑜𝛿𝑠 = (𝑚 + 𝑀𝑖)
𝜕2𝑤

𝜕𝑡2 𝛿𝑠, 
(3) 

where for a small angle approximation 

𝑐𝑜𝑠𝜃 ≈ 1, (4) 

leading to 

𝜕𝑄

𝜕𝑥
𝛿𝑠 − 𝑐

𝜕𝑤

𝜕𝑡
𝛿𝑠 + 𝑓𝑑𝛿𝑠 + 𝑓ℎ𝑦𝑑𝑟𝑜𝛿𝑠 = (𝑚 + 𝑀𝑖)

𝜕2𝑤

𝜕𝑡2 𝛿𝑠, (5) 

where again, 𝑠 ≈ 𝑥.  Dividing by the differential element length and incorporating Eq. (2), the 

equation of motion is written as 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + 𝑐
𝜕𝑤

𝜕𝑡
+ (𝑚 + 𝑀𝑖)

𝜕2𝑤

𝜕𝑡2 = 𝑓𝑑 + 𝑓ℎ𝑦𝑑𝑟𝑜. (6) 

The result can be spatially normalized as 𝑥 = 𝑥 𝐿⁄ .  For simplicity, the following equations 

continue to use 𝑥 with the understanding that the equations have been spatially normalized by 

the beam length, i.e. 𝑥 ∈ [0,1] instead of 𝑥 ∈ [0, 𝐿]. 

2.3. Hydrodynamic Forcing Function 

A hydrodynamic forcing function is needed to represent the effects of the viscous 

annulus fluid.  The following derivation of the hydrodynamic forcing follows the work of 

Wambsagnss et al. (1974) [131].  The hydrodynamic function was originally introduced by 

Stokes [132] and later investigated by others [133]-[135].  Its effects have been extensively 

discussed and validated with experimentation [136] and finite element modeling for small 

amplitude vibrations [137].  It has been used by a number of researchers investigating: fixed-
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free beams [138]-[139], fixed-pinned beams [140], and fixed-fixed beams [141].  Recently, the 

hydrodynamic function has been extensively used in investigations relating to the atomic force 

microscope and microcantilevers [142]-[146]. The assumptions used in the derivation of the 

hydrodynamic forcing are summarized in Table 2. 

 

Table 2. Assumptions Used in the Derivation of the Hydrodynamic Forcing 

Assumptions Notes 

1 
The beam is vibrating in a viscous fluid enclosed by 

a rigid, concentric cylindrical shell. 

This assumes that the production casing acts as a rigid, 

concentric cylindrical shell. 

2 
The beam is cylindrical with a uniform cross 

section over its entire length. 

This assumes that there is no change in mass/stiffness at 

the harvester, storage element, or tubing coupling.   

3 

The fluid boundary conditions are zero velocity at 

the outer shell and that the fluid velocity matches 

the beam velocity on the beam surface. 

 

4 
The length of the beam greatly exceeds its nominal 

diameter. 

This assumes the fluid flow is limited to two dimensions. 

5 The beam is an isotropic linearly elastic solid.  

6 

The amplitude of vibration of the beam is far 

smaller than any length scale in the beam geometry. 

This assumption will allow for the nonlinear convective 

inertial terms in the fluid equations of motion to be 

neglected. 

7 
The annulus fluid is assumed homogeneous, 

Newtonian, and incompressible. 

This allows for simplification of the fluid equations of 

motion. 

Consider a cylindrical beam with radius 𝑑  vibrating in a viscous fluid, located 

concentrically to a rigid casing with radius 𝐷 (see Figure 6). 

 

 
Figure 6. Configuration of Interest 
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Assuming small amplitude vibrations and incompressibility, the fluid equations of motion are 

 

 

𝛁 ∙ 𝑽 = 0, 

 

𝜌 (
𝜕𝑽

𝜕𝑡
) = −𝛁p + 𝜂∇2𝑽, 

(7) 

where the first equation is the continuity equation and the second equation is the Navier-Stokes 

equation.  As the derivation for the fluid equations are available in most fluids text (e.g. 

Munson et al. (2006) [147]), they are not reproduced here.  Assume the length of the beam is 

much greater than the beams radius (i.e. 𝐿/𝑑 is large) such that the fluid motion is restricted to 

a plane orthogonal to the axis of the beam (i.e. two dimensional flow).  Expanding Eq. (7) in 

cylindrical notation leads to [147] 
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(8) 

The relevant shear stresses can be written as [147] 
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(9) 

The  velocity of the oscillating cylindrical beam can be written as 𝑈0𝑒
𝑖𝜔𝑡 .  At the 

surface of the beam (i.e. at 𝑟 = 𝑑), the annulus fluid velocity must match the beam velocity 

while at the face of the encapsulating shell (i.e. at 𝑟 = 𝐷) the velocity is zero.  That is, 

 

 

v𝑟|𝑟=𝑑 = 𝑈0𝑒
𝑖𝜔𝑡cos 𝜃, 

 

v𝑟|𝑟=𝐷 = 0, 

 

v𝜃|𝑟=𝑑 = −𝑈0𝑒
𝑖𝜔𝑡sin 𝜃, 

 

v𝜃|𝑟=𝐷 = 0, 

(10) 
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where the coordinate system is shown in Figure 7. 

 

 
Figure 7. Two Dimensional Cross Section of Beam System 

A scalar stream function can be introduced as 
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(11) 

Note that Wambsganss et al. (1975) [131] used the given sign convention while Stokes (1851) 

[132] and Rosenhead (1963) [133] used a slightly different form (that is, the negative signs 

were switched).  Using Eq. (11), the first Navier-Stokes equation given in Eq. (8) is rewritten as 
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Applying the chain rule leads to 

 

 
−

𝜌

𝑟

𝜕2𝜓

𝜕𝜃𝜕𝑡
= −

𝜕p

𝜕𝑟
+ 𝜂 [−

2

𝑟3

𝜕𝜓

𝜕𝜃
+

2

𝑟2

𝜕2𝜓

𝜕𝑟𝜕𝜃
−

1

𝑟

𝜕3𝜓

𝜕𝑟2𝜕𝜃
+

1

𝑟3

𝜕𝜓

𝜕𝜃
−

1

𝑟2

𝜕2𝜓

𝜕𝑟𝜕𝜃
+

1

𝑟3

𝜕𝜓

𝜕𝜃
−

1

𝑟3

𝜕3𝜓

𝜕𝜃3 −

2

𝑟2

𝜕2𝜓

𝜕𝑟𝜕𝜃
], 

(13) 

where after reduction 

 

 −
𝜌

𝑟

𝜕2𝜓

𝜕𝜃𝜕𝑡
= −

𝜕p

𝜕𝑟
+ 𝜂 [−

1

𝑟2

𝜕2𝜓

𝜕𝑟𝜕𝜃
−

1

𝑟

𝜕3𝜓

𝜕𝑟2𝜕𝜃
−

1

𝑟3

𝜕3𝜓

𝜕𝜃3]. (14) 

Similarly, the second Navier-Stokes equation given in Eq. (8) is rewritten as 

 

 −𝑟𝜌
𝜕2𝜓

𝜕𝑟𝜕𝑡
=

𝜕p

𝜕𝜃
− 𝜂 [𝑟

𝜕3𝜓

𝜕𝑟3 +
𝜕2𝜓

𝜕𝑟2 −
1

𝑟

𝜕𝜓

𝜕𝑟
+

1

𝑟

𝜕3𝜓

𝜕𝑟𝜕𝜃2 −
2

𝑟2

𝜕2𝜓

𝜕𝜃2]. (15) 
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The pressure term can be eliminated by differentiating and equating Eq. (14) and Eq. 

(15).  Differentiating Eq. (14) by 𝜃 results in 

 

 −
𝜌

𝑟

𝜕3𝜓

𝜕𝜃2𝜕𝑡
= −

𝜕p

𝜕𝑟𝜕𝜃
+ 𝜂 [−

1

𝑟2

𝜕3𝜓

𝜕𝑟𝜕𝜃2 −
1

𝑟

𝜕4𝜓

𝜕𝑟2𝜕𝜃2 −
1

𝑟3

𝜕4𝜓

𝜕𝜃4], (16) 

while differentiating Eq. (15) by 𝑟 results in 

 

 −𝜌
𝜕

𝜕𝑟
(𝑟

𝜕2𝜓

𝜕𝑟𝜕𝑡
) =

𝜕p

𝜕𝑟𝜕𝜃
− 𝜂 [

𝜕

𝜕𝑟
(𝑟

𝜕3𝜓

𝜕𝑟3) +
𝜕3𝜓

𝜕𝑟3 −
𝜕

𝜕𝑟
(

1

𝑟

𝜕𝜓

𝜕𝑟
) +

𝜕

𝜕𝑟
(

1

𝑟

𝜕3𝜓

𝜕𝑟𝜕𝜃2) − 2
𝜕

𝜕𝑟
(

1

𝑟2

𝜕2𝜓

𝜕𝜃2)]. (17) 

Eq. (17) can be expanded with the chain rule and simplified to 

 

 
−𝜌

𝜕2𝜓

𝜕𝑟𝜕𝑡
− 𝜌𝑟

𝜕3𝜓

𝜕𝑟2𝜕𝑡
=

𝜕p

𝜕𝑟𝜕𝜃
− 𝜂 [𝑟

𝜕4𝜓

𝜕𝑟4 + 2
𝜕3𝜓

𝜕𝑟3 −
1

𝑟

𝜕2𝜓

𝜕𝑟2 +
1

𝑟2

𝜕𝜓

𝜕𝑟
−

3

𝑟2

𝜕3𝜓

𝜕𝑟𝜕𝜃2 +
1

𝑟

𝜕4𝜓

𝜕𝑟2𝜕𝜃2 +

4

𝑟3

𝜕2𝜓

𝜕𝜃2]. 
(18) 

Setting Eq. (16) equal to Eq. (18) through 𝜕p/(𝜕𝑟𝜕𝜃) and rearranging terms leads to 

 

 
𝑟𝜌

𝜕

𝜕𝑡
[

1

𝑟2

𝜕2𝜓

𝜕𝜃2 +
1

𝑟

𝜕𝜓

𝜕𝑟
+

𝜕2𝜓

𝜕𝑟2 ] + 𝜂 [
2

𝑟2

𝜕3𝜓

𝜕𝑟𝜕𝜃2 −
2

𝑟

𝜕4𝜓

𝜕𝑟2𝜕𝜃2 −
1

𝑟3

𝜕4𝜓

𝜕𝜃4 −
4

𝑟3

𝜕2𝜓

𝜕𝜃2 − 𝑟
𝜕4𝜓

𝜕𝑟4 − 2
𝜕3𝜓

𝜕𝑟3 +

1

𝑟

𝜕2𝜓

𝜕𝑟2 −
1

𝑟2

𝜕𝜓

𝜕𝑟
] = 0. 

(19) 

Note that the first bracketed term is the Laplace operator applied to the stream function 𝜓, i.e., 

the first term can be rewritten as 

 

 𝑟𝜌
𝜕

𝜕𝑡
[

1

𝑟2

𝜕2𝜓

𝜕𝜃2 +
1

𝑟

𝜕𝜓

𝜕𝑟
+

𝜕2𝜓

𝜕𝑟2 ] = 𝑟𝜌
𝜕

𝜕𝑡
∇2𝜓. (20) 

The second bracketed term is more involved. First consider the expansion of ∇4𝜓 

 

 ∇4𝜓 = (
1

𝑟2

𝜕2

𝜕𝜃2 +
1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑟2) (
1

𝑟2

𝜕2𝜓

𝜕𝜃2 +
1

𝑟

𝜕𝜓

𝜕𝑟
+

𝜕2𝜓

𝜕𝑟2), (21) 

which, when expanded gives 

 

 
∇4𝜓 = {

1

𝑟4

𝜕4𝜓

𝜕𝜃4 +
1

𝑟3

𝜕3𝜓

𝜕𝑟𝜕𝜃2 +
1

𝑟2

𝜕4𝜓

𝜕𝑟2𝜕𝜃2} + {
1

𝑟

𝜕

𝜕𝑟
(

1

𝑟2

𝜕2𝜓

𝜕𝜃2) +
1

𝑟

𝜕

𝜕𝑟
(

1

𝑟

𝜕𝜓

𝜕𝑟
) +

1

𝑟

𝜕3𝜓

𝜕𝑟3} +

{
𝜕2

𝜕𝑟2 (
1

𝑟2

𝜕2𝜓

𝜕𝜃2) +
𝜕2

𝜕𝑟2 (
1

𝑟

𝜕𝜓

𝜕𝑟
) +

𝜕4𝜓

𝜕𝑟4}. 
(22) 

Using the chain rule and combining terms results in 

 

 ∇4𝜓 =
1

𝑟4

𝜕4𝜓

𝜕𝜃4 +
4

𝑟4

𝜕2𝜓

𝜕𝜃2 −
2

𝑟3

𝜕3𝜓

𝜕𝑟𝜕𝜃2 +
2

𝑟2

𝜕4𝜓

𝜕𝑟2𝜕𝜃2 +
𝜕4𝜓

𝜕𝑟4 +
2

𝑟

𝜕3𝜓

𝜕𝑟3 −
1

𝑟2

𝜕2𝜓

𝜕𝑟2 +
1

𝑟3

𝜕𝜓

𝜕𝑟
. (23) 

Multiplying both sides by 𝑟 leads to  

 

 𝑟∇4𝜓 =
1

𝑟3

𝜕4𝜓

𝜕𝜃4 +
4

𝑟3

𝜕2𝜓

𝜕𝜃2 −
2

𝑟2

𝜕3𝜓

𝜕𝑟𝜕𝜃2 +
2

𝑟

𝜕4𝜓

𝜕𝑟2𝜕𝜃2 + 𝑟
𝜕4𝜓

𝜕𝑟4 + 2
𝜕3𝜓

𝜕𝑟3 −
1

𝑟

𝜕2𝜓

𝜕𝑟2 +
1

𝑟2

𝜕𝜓

𝜕𝑟
. (24) 
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Plugging Eq. (20) and (24) into Eq. (19) leads to 

 

 𝑟𝜌
𝜕

𝜕𝑡
∇2𝜓 − 𝜂[𝑟∇4𝜓] = 0. (25) 

Or more simply 

 

 ∇4𝜓 −
1

𝜈

𝜕

𝜕𝑡
∇2𝜓 = (∇2 −

1

𝜈

𝜕

𝜕𝑡
)∇2𝜓 = 0, (26) 

where the kinematic viscosity term, 𝜈 = 𝜂/𝜌, has been introduced.  The general solution of Eq. 

(26) is [131] 

 

 𝜓 = 𝜓1 + 𝜓2, (27) 

Where 𝜓1 and 𝜓2 satisfy 

 

 

∇2𝜓1 = (
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2)𝜓1 = 0, 

 

(∇2 −
1

𝜈

𝜕

𝜕𝑡
)𝜓2 = (

𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2 −
1

𝜈

𝜕

𝜕𝑡
)𝜓2 = 0. 

(28) 

Based on the boundary conditions (i.e. Eq. (10)), the general form of the solution is 

 

 

𝜓1 = 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃 ∗ 𝐹1(𝑟), 

 

𝜓2 = 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃 ∗ 𝐹2(𝑟). 

(29) 

The task then becomes solving for the coefficients 𝐹1(𝑟) and 𝐹2(𝑟).  Plugging Eq. (29) 

into the governing equations (i.e. Eq. (28)) results in  

 

 

𝜕2𝐹1(𝑟)

𝜕𝑟2 +
1

𝑟

𝜕𝐹1(𝑟)

𝜕𝑟
−

1

𝑟2 𝐹1(𝑟) = 0, 

 
𝜕2𝐹2(𝑟)

𝜕𝑟2 +
1

𝑟

𝜕𝐹2(𝑟)

𝜕𝑟
−

1

𝑟2 𝐹2(𝑟) −
𝑖𝜔

𝜐
𝐹2(𝑟) = 0. 

(30) 

Using MATLAB (or equivalent the solutions to Eq. (30) can be found in a straightforward 

manner as 

 

 

𝐹1(𝑟) =
𝐴

𝑟
+ 𝐵𝑟, 

 

𝐹2(𝑟) = 𝐶𝐼1(𝑘𝑟) + 𝐸𝐾1(𝑘𝑟), 

(31) 

where 𝑘 = √(𝑖𝜔/𝜈), 𝐼1 and 𝐾1 are modified Bessel functions, and 𝐴, 𝐵, 𝐶, 𝐸 are coefficients to 

be determined.  Combining Eq. (31), Eq. (29), and Eq. (27) results in 
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 𝜓 = 𝜓1 + 𝜓2 = (
𝐴

𝑟
+ 𝐵𝑟 + 𝐶𝐼1(𝑘𝑟) + 𝐸𝐾1(𝑘𝑟)) 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃. (32) 

Plugging Eq. (32) into Eq. (11) yields 

 

 

v𝑟 = −
1

𝑟

𝜕𝜓

𝜕𝜃
= (−

𝐴

𝑟2 − 𝐵 −
1

𝑟
𝐶𝐼1(𝑘𝑟) −

1

𝑟
𝐸𝐾1(𝑘𝑟)) 𝑒𝑖𝜔𝑡𝑐𝑜𝑠𝜃, 

 

v𝜃 =
𝜕𝜓

𝜕𝑟
= (−

𝐴

𝑟2 + 𝐵 + 𝐶 {𝑘𝐼0(𝑘𝑟) −
1

𝑟
𝐼1(𝑘𝑟)} + 𝐸 {−𝑘𝐾0(𝑘𝑟) −

1

𝑟
𝐾1(𝑘𝑟)}) 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃. 

(33) 

Enforcing the boundary conditions of Eq. (10) on Eq. (33) leads to four equations with four 

unknowns 

 

 

−
𝐴

𝑑2 − 𝐵 −
1

𝑑
𝐶𝐼1(𝑘𝑑) −

1

𝑑
𝐸𝐾1(𝑘𝑑) = 𝑈0, 

 

−
𝐴

𝑑2 + 𝐵 + 𝐶 {𝑘𝐼0(𝑘𝑑) −
1

𝑑
𝐼1(𝑘𝑑)} + 𝐸 {−𝑘𝐾0(𝑘𝑑) −

1

𝑑
𝐾1(𝑘𝑑)} = −𝑈0, 

 

−
𝐴

𝐷2 − 𝐵 −
1

𝐷
𝐶𝐼1(𝑘𝐷) −

1

𝐷
𝐸𝐾1(𝑘𝐷) = 0, 

 

−
𝐴

𝐷2 + 𝐵 + 𝐶 {𝑘𝐼0(𝑘𝐷) −
1

𝐷
𝐼1(𝑘𝐷)} + 𝐸 {−𝑘𝐾0(𝑘𝐷) −

1

𝐷
𝐾1(𝑘𝐷)} = 0. 

(34) 

Solving this system of equations with MATLABs matrix solver results in 

 

 

𝐴 =
𝐴𝑛𝑢𝑚

𝐷𝑒𝑛
  , 𝐵 =

𝐵𝑛𝑢𝑚

𝐷𝑒𝑛
 , 𝐶 =

𝐶𝑛𝑢𝑚

𝐷𝑒𝑛
, 𝐸 =

𝐸𝑛𝑢𝑚

𝐷𝑒𝑛
, 

 

𝐴𝑛𝑢𝑚 = −𝐷𝑈0𝑑[2𝐼1(𝑑𝑘){2𝐾1(𝐷𝑘) + (𝐷𝑘)𝐾0(𝐷𝑘)} − 2𝐼1(𝐷𝑘){2𝐾1(𝑑𝑘) +
(𝑑𝑘)𝐾0(𝑑𝑘)} − (𝑑𝑘)𝐼0(𝑑𝑘){2𝐾1(𝐷𝑘) + (𝐷𝑘)𝐾0(𝐷𝑘)} + (𝐷𝑘)𝐼0(𝐷𝑘){2𝐾1(𝑑𝑘) +

(𝑑𝑘)𝐾0(𝑑𝑘)}], 
 

𝐵𝑛𝑢𝑚 = 𝑈0𝑘[𝐼0(𝐷𝑘){(2𝑑)𝐾1(𝑑𝑘) − (2𝐷)𝐾1(𝐷𝑘) + (𝑑2𝑘)𝐾0(𝑑𝑘)} +
(2𝑑)𝐾0(𝐷𝑘)𝐼1(𝑑𝑘) − (2𝐷)𝐼1(𝐷𝑘)𝐾0(𝐷𝑘) − (𝑑2𝑘)𝐾0(𝐷𝑘)𝐼0(𝑑𝑘)], 

 

𝐶𝑛𝑢𝑚 = 2𝑈0[(2𝐷)𝐾1(𝑘𝐷) − (2𝑑)𝐾1(𝑘𝑑) + (𝐷2𝑘)𝐾0(𝑘𝐷) − (𝑑2𝑘)𝐾0(𝑘𝑑)], 
 

𝐸𝑛𝑢𝑚 = −2𝑈0[(2𝐷)𝐼1(𝑘𝐷) − (2𝑑)𝐼1(𝑘𝑑) + (𝑑2𝑘)𝐼0(𝑘𝑑) − (𝐷2𝑘)𝐼0(𝑘𝐷)], 
 

𝐷𝑒𝑛 = 𝐼0(𝑘𝐷){(2𝐷𝑘)𝐾1(𝑘𝐷) − (2𝑑𝑘)𝐾1(𝑘𝑑) + (𝑘2)(𝐷2 − 𝑑2)𝐾0(𝑘𝑑)} −
𝐼0(𝑘𝑑){(2𝐷𝑘)𝐾1(𝑘𝐷) − (2𝑑𝑘)𝐾1(𝑘𝑑) + (𝑘2)(𝐷2 − 𝑑2)𝐾0(𝑘𝐷)} +

(2𝐷𝑘)𝐼1(𝑘𝐷){𝐾0(𝑘𝐷) − 𝐾0(𝑘𝑑)} − (2𝑑𝑘)𝐼1(𝑘𝑑){𝐾0(𝑘𝐷) − 𝐾0(𝑘𝑑)}. 
 

(35) 

With the coefficients 𝐴, 𝐵, 𝐶, 𝐸 defined by Eq. (35), the velocity terms given in Eq. (33) 

are fully defined.  The velocity terms (and their derivatives) can be calculated as 
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v𝜃 = (−
𝐴

𝑟2 + 𝐵 + 𝐶 {𝑘𝐼0(𝑘𝑟) −
1

𝑟
𝐼1(𝑘𝑟)} + 𝐸 {−𝑘𝐾0(𝑘𝑟) −

1

𝑟
𝐾1(𝑘𝑟)}) 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃, 

 
𝜕v𝜃

𝜕𝑡
= 𝑖𝜔 (−

𝐴

𝑟2 + 𝐵 + 𝐶 {𝑘𝐼0(𝑘𝑟) −
1

𝑟
𝐼1(𝑘𝑟)} + 𝐸 {−𝑘𝐾0(𝑘𝑟) −

1

𝑟
𝐾1(𝑘𝑟)}) 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃, 

 
𝜕v𝜃

𝜕𝑟
= (

2𝐴

𝑟3 + 𝐶 {(𝑘2 +
2

𝑟2) 𝐼1(𝑘𝑟) −
𝑘

𝑟
𝐼0(𝑘𝑟)} + 𝐸 {(𝑘2 +

2

𝑟2)𝐾1(𝑘𝑟) +
𝑘

𝑟
𝐾0(𝑘𝑟)}) 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃, 

 
𝜕2v𝜃

𝜕𝑟2 = (
−6𝐴

𝑟4 + 𝐶 {(
3𝑘

𝑟2 + 𝑘3) 𝐼0(𝑘𝑟) − (
2𝑘2

𝑟
+

6

𝑟3) 𝐼1(𝑘𝑟)} + 𝐸 {− (
3𝑘

𝑟2 + 𝑘3)𝐾0(𝑘𝑟) −

(
2𝑘2

𝑟
+

6

𝑟3)𝐾1(𝑘𝑟)}) 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃, 

 
𝜕2v𝜃

𝜕𝜃2 = −(−
𝐴

𝑟2 + 𝐵 + 𝐶 {𝑘𝐼0(𝑘𝑟) −
1

𝑟
𝐼1(𝑘𝑟)} + 𝐸 {−𝑘𝐾0(𝑘𝑟) −

1

𝑟
𝐾1(𝑘𝑟)}) 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃, 

 
𝜕v𝑟

𝜕𝜃
= − (−

𝐴

𝑟2 − 𝐵 −
1

𝑟
𝐶𝐼1(𝑘𝑟) −

1

𝑟
𝐸𝐾1(𝑘𝑟)) 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃. 

(36) 

To determine the fluid pressure, the second Navier-Stokes equation of Eq. (8) is rearranged as 

 

 𝜕p = (−𝜌𝑟
𝜕v𝜃

𝜕𝑡
+ 𝜂𝑟 [

𝜕2v𝜃

𝜕𝑟2 +
1

𝑟

𝜕v𝜃

𝜕𝑟
−

v𝜃

𝑟2 +
1

𝑟2

𝜕2v𝜃

𝜕𝜃2 +
2

𝑟2

𝜕v𝑟

𝜕𝜃
]) 𝜕𝜃. (37) 

Using Eq. (36), Eq. (37) can be rewritten as 

 

 

𝜕p = [(𝜌𝑖𝜔) (
𝐴

𝑟
+ 𝐵𝑟)

+ (𝜌𝑖𝜔 − 𝑘2𝜂){(−𝑟𝑘)(𝐶𝐼0(𝑘𝑟) − 𝐸𝐾0(𝑘𝑟)) + 𝐶𝐼1(𝑘𝑟)

+ 𝐸𝐾1(𝑘𝑟)}] 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃𝜕𝜃 

(38) 

which can be integrated over 𝜃, resulting in 

 

 

 

p = p0 − [(𝜌𝑖𝜔) (
𝐴

𝑟
+ 𝐵𝑟) + (𝜌𝑖𝜔 − 𝑘2𝜂){(−𝑟𝑘)(𝐶𝐼0(𝑘𝑟) − 𝐸𝐾0(𝑘𝑟)) + 𝐶𝐼1(𝑘𝑟) +

𝐸𝐾1(𝑘𝑟)}] 𝑒𝑖𝜔𝑡𝑐𝑜𝑠𝜃. 
(39) 

With the pressure defined, the shear stresses from Eq. (9) can be calculated.  Noting the 

derivatives defined by Eq. (36) and 

 

 
𝜕v𝑟

𝜕𝑟
= (

2𝐴

𝑟3 + 𝐶 {
2

𝑟2 𝐼1(𝑘𝑟) −
𝑘

𝑟
𝐼0(𝑘𝑟)} + 𝐸 {

2

𝑟2 𝐾1(𝑘𝑟) +
𝑘

𝑟
𝐾0(𝑘𝑟)}) 𝑒𝑖𝜔𝑡𝑐𝑜𝑠𝜃, (40) 

the resulting stress equations are 

 

 

𝜎𝑟𝑟 = −p0 + [𝐴 {
𝜌𝑖𝜔

𝑟
+

4η

𝑟3} + 𝐵{−𝜌𝑖𝜔𝑟} + 𝐶 {(−𝜌𝑖𝜔𝑘𝑟 + 𝑘3𝑟𝜂 −
2𝜂𝑘

𝑟
) 𝐼0(𝑘𝑟) +

(𝜌𝑖𝜔 − 𝑘2𝜂 +
4𝜂

𝑟2) 𝐼1(𝑘𝑟)} + 𝐸 {(𝜌𝑖𝜔𝑘𝑟 − 𝑘3𝑟𝜂 +
2𝜂𝑘

𝑟
)𝐾0(𝑘𝑟) + (𝜌𝑖𝜔 − 𝑘2𝜂 +

4𝜂

𝑟2)𝐾1(𝑘𝑟)}] 𝑒𝑖𝜔𝑡𝑐𝑜𝑠𝜃, 

 

𝜎𝜃𝜃 = −p0 + [𝐴 {
𝜌𝑖𝜔

𝑟
+

2𝜂

𝑟3} + 𝐵 {𝜌𝑖𝜔𝑟 +
2𝜂

𝑟
} + 𝐶 {(−𝜌𝑖𝜔𝑘𝑟 + 𝑘3𝑟𝜂)𝐼0(𝑘𝑟) +

(41) 



27 

 

 

 

(𝜌𝑖𝜔 − 𝑘2𝜂 +
2𝜂

𝑟2) 𝐼1(𝑘𝑟)} + 𝐸 {(𝜌𝑖𝜔𝑘𝑟 − 𝑘3𝑟𝜂)𝐾0(𝑘𝑟) + (𝜌𝑖𝜔 − 𝑘2𝜂 +
2𝜂

𝑟2)𝐾1(𝑘𝑟)}] 𝑒𝑖𝜔𝑡𝑐𝑜𝑠𝜃, 

 

𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 𝜂 [𝐴 {
4

𝑟3} + 𝐶 {(
−2𝑘

𝑟
) 𝐼0(𝑘𝑟) + (𝑘2 +

4

𝑟2) 𝐼1(𝑘𝑟)} + 𝐸 {(
2𝑘

𝑟
)𝐾0(𝑘𝑟) +

(𝑘2 +
4

𝑟2)𝐾1(𝑘𝑟)}] 𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃. 

The resulting hydrodynamic force can be found by integrating the fluid pressure at the 

beam boundary (i.e. 𝑟 = 𝑑) as [131] 

 

 𝑓ℎ𝑦𝑑𝑟𝑜 = 𝑑 ∫ (𝜎𝑟𝑟|𝑟=𝑑𝑐𝑜𝑠𝜃 − 𝜏𝑟𝜃|𝑟=𝑑𝑠𝑖𝑛𝜃)𝑑𝜃
2𝜋

0

 (42) 

Note that the integration of Eq. (42) is over 𝜃 while the bracketed stress terms of Eq. (41) are 

not a function of 𝜃.  To simplify the mathematics, rewrite Eq. (41) as 

 

 
𝜎𝑟𝑟 = −p0 + [𝐶𝑂𝐸𝐹𝜎𝑟𝑟]𝑒

𝑖𝜔𝑡𝑐𝑜𝑠𝜃, 

 

𝜏𝑟𝜃 = [𝐶𝑂𝐸𝐹𝜏𝑟𝜃]𝑒𝑖𝜔𝑡𝑠𝑖𝑛𝜃. 

(43) 

where 

 

 

𝐶𝑂𝐸𝐹𝜎𝑟𝑟 = [𝐴 {
𝜌𝑖𝜔

𝑟
+

4η

𝑟3} + 𝐵{−𝜌𝑖𝜔𝑟} + 𝐶 {(−𝜌𝑖𝜔𝑘𝑟 + 𝑘3𝑟𝜂 −
2𝜂𝑘

𝑟
) 𝐼0(𝑘𝑟) +

(𝜌𝑖𝜔 − 𝑘2𝜂 +
4𝜂

𝑟2) 𝐼1(𝑘𝑟)} + 𝐸 {(𝜌𝑖𝜔𝑘𝑟 − 𝑘3𝑟𝜂 +
2𝜂𝑘

𝑟
)𝐾0(𝑘𝑟) + (𝜌𝑖𝜔 − 𝑘2𝜂 +

4𝜂

𝑟2)𝐾1(𝑘𝑟)}], 

 

𝐶𝑂𝐸𝐹𝜏𝑟𝜃 = 𝜂 [𝐴 {
4

𝑟3} + 𝐶 {(
−2𝑘

𝑟
) 𝐼0(𝑘𝑟) + (𝑘2 +

4

𝑟2) 𝐼1(𝑘𝑟)} + 𝐸 {(
2𝑘

𝑟
)𝐾0(𝑘𝑟) +

(𝑘2 +
4

𝑟2)𝐾1(𝑘𝑟)}]. 

(44) 

Incorporating Eq. (43) into Eq. (42) leads to 

 

 
𝑓ℎ𝑦𝑑𝑟𝑜 = −𝑑p0 ∫ 𝑐𝑜𝑠𝜃𝑑𝜃

2𝜋

0
+ 𝑑[𝐶𝑂𝐸𝐹𝜎𝑟𝑟|𝑟=𝑑]𝑒𝑖𝜔𝑡 ∫ 𝑐𝑜𝑠2𝜃𝑑𝜃

2𝜋

0
−

𝑑[𝐶𝑂𝐸𝐹𝜏𝑟𝜃|𝑟=𝑑]𝑒𝑖𝜔𝑡 ∫ 𝑠𝑖𝑛2𝜃𝑑𝜃
2𝜋

0
. 

(45) 

Noting the first integral equates to zero and the latter two to 𝜋, 

 

 𝑓ℎ𝑦𝑑𝑟𝑜 = 𝑑𝜋[𝐶𝑂𝐸𝐹𝜎𝑟𝑟|𝑟=𝑑 − 𝐶𝑂𝐸𝐹𝜏𝑟𝜃|𝑟=𝑑]𝑒𝑖𝜔𝑡. (46) 

Including the coefficients from Eq. (44) results in 

 

 
𝑓ℎ𝑦𝑑𝑟𝑜 = 𝑑𝜋𝑒𝑖𝜔𝑡 [𝐴 {

𝜌𝑖𝜔

𝑑
} + 𝐵{−𝜌𝑖𝜔𝑑} + 𝐶{(−𝜌𝑖𝜔𝑘𝑑 + 𝑘3𝑑𝜂)𝐼0(𝑘𝑑) + (𝜌𝑖𝜔 −

2𝑘2𝜂)𝐼1(𝑘𝑑)} + 𝐸{(𝜌𝑖𝜔𝑘𝑑 − 𝑘3𝑑𝜂)𝐾0(𝑘𝑑) + (𝜌𝑖𝜔 − 2𝑘2𝜂)𝐾1(𝑘𝑑)}]. 
(47) 
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Including the terms from Eq. (35) leads to the final result 

 

 

𝑓ℎ𝑦𝑑𝑟𝑜 = −𝑖𝜌𝜋𝑑2𝜔Γ𝑈0𝑒
𝑖𝜔𝑡, 

 

Γ =
Γ𝑛𝑢𝑚

Γ𝑑𝑒𝑛
− 1 = Γ𝑟 − 𝑖Γ𝑖, 

 

Γ𝑛𝑢𝑚 = 2𝛼2[𝐼0(𝛼)𝐾0(𝛽) − 𝐼0(𝛽)𝐾0(𝛼)] − 4𝛼[𝐼1(𝛼)𝐾0(𝛽) + 𝐼0(𝛽)𝐾1(𝛼)] +
4𝛼𝛾[𝐼0(𝛼)𝐾1(𝛽) + 𝐼1(𝛽)𝐾0(𝛼)] − 8𝛾[𝐼1(𝛼)𝐾1(𝛽) − 𝐼1(𝛽)𝐾1(𝛼)], 

 

Γ𝑑𝑒𝑛 = 𝛼2(1 − 𝛾2)[𝐼0(𝛼)𝐾0(𝛽) − 𝐼0(𝛽)𝐾0(𝛼)] + 2𝛼𝛾[𝐼0(𝛼)𝐾1(𝛽) − 𝐼1(𝛽)𝐾0(𝛽) +
𝐼1(𝛽)𝐾0(𝛼) − 𝐼0(𝛽)𝐾1(𝛽)] + 2𝛼𝛾2[𝐼0(𝛽)𝐾1(𝛼) − 𝐼0(𝛼)𝐾1(𝛼) + 𝐼1(𝛼)𝐾0(𝛽) −

𝐼1(𝛼)𝐾0(𝛼)], 
 

𝑘 = √
𝑖𝜔

𝜈
;     𝛼 = 𝑘𝑑;      𝛽 = 𝑘𝐷;     𝛾 =

𝑑

𝐷
. 

(48) 

For the special case of an infinite viscous fluid the hydrodynamic function simplifies to  

 

 Γ = 1 +
4𝐾1(𝛼)

𝛼𝐾0(𝛼)
, (49) 

where after noting the Bessel function property  

 

 
𝜕𝐾𝜈(𝑧)

𝜕𝑧
= −𝐾𝜈−1(𝑧) −

𝜈

𝑧
𝐾𝜈(𝑧), (50) 

Eq. (49) can be written as 

 

 Γ = 1 +
4𝐾1(𝛼)

𝛼𝐾0(𝛼)
= 1 −

4𝐾1(√𝑖𝜔𝑑2

𝜈
)

𝐾1(√𝑖𝜔𝑑2

𝜈
)+√𝑖𝜔𝑑2

𝜈
𝐾1

′(√𝑖𝜔𝑑2

𝜈
)

,  (51) 

which matches the result of Rosenhead (1963) [133].  The physical meaning of the various 

terms found in the hydrodynamic force are as follows [133] 

 𝜌𝜋𝑑2 represents the mass of fluid (per unit length) displaced by the cylinder. 

 Γ𝑟 contributes an effective mass to the system. 

 Γ𝑖 contributes a viscous drag to the system.  

To obtain the hydrodynamic function in the Fourier domain, the hydrodynamic loading 

of Eq.(48) is rewritten as 

 



29 

 

 

 

 𝑓ℎ𝑦𝑑𝑟𝑜 = −𝑖2𝜌𝜋𝑑2𝜔2Γ [
𝑈0

𝑖𝜔
𝑒𝑖𝜔𝑡], (52) 

where the bracketed term is recognized as the beam displacement, 𝑤(𝑥, 𝑡) .  Applying the 

Fourier transform to Eq. (52) leads to 

 

 𝐹̂ℎ(𝑥, 𝜔) = ∫ 𝑓ℎ𝑦𝑑𝑟𝑜𝑒
−𝑖𝜔𝑡𝑑𝑡

∞

−∞
= ∫ [𝜌𝜋𝑑2𝜔2Γ𝑤(𝑥, 𝑡)]𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞
, (53) 

The non-time dependent terms can be removed from under the integral 

 

 𝐹̂ℎ(𝑥, 𝜔) = 𝜌𝜋𝑑2𝜔2Γ∫ 𝑤(𝑥, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
, (54) 

where the integrated term, by definition, is 𝑊̂(𝑥, 𝜔).  The final form of the hydrodynamic force 

in the frequency domain is 

 

 𝐹̂ℎ(𝑥, 𝜔) = 𝜌𝜋𝑑2𝜔2Γ𝑊̂(𝑥, 𝜔). (55) 

It is important to recognize the limits of applicability of Eq. (48).  The fluid equations, 

representing the behavior of the viscous annulus fluid, were linearized by assuming small 

vibration amplitudes, permitting the form of Eq. (48) presented.  For large beam motions or 

divergent behavior, the assumptions made in the derivation of the hydrodynamic forcing are 

violated and Eq. (48) is no longer valid.  For instance, large deflections may cause the annulus 

fluid to separate from the pipe’s outer surface thereby changing the flow regime and violating 

the derivation assumptions. 

2.4. Solution Methodology 

Since the equation of motion (i.e. Eq. (6)) is frequency dependent through the 

hydrodynamic forcing (i.e. Eq. (48)), a Green’s function approach is used to determine the 

beams displacement time history.  The equation of motion is converted into the frequency 

domain by utilizing Fourier transforms.  The definition of the transform and the transform of 

the spatial derivative are 
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∫ 𝑤(𝑥, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
= 𝑊̂(𝑥,𝜔), 

 

∫
𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4 𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
=

𝜕4

𝜕𝑥4 (∫ 𝑤(𝑥, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
) =

𝜕4

𝜕𝑥4 𝑊̂(𝑥, 𝜔). 

(56) 

To calculate the temporal derivatives, use integration by parts where 

 

 ∫ 𝑣′(𝑥) 𝑢(𝑥)𝑑𝑥 = 𝑣(𝑥)𝑢(𝑥) − ∫ 𝑣(𝑥)𝑢′(𝑥) 𝑑𝑥, (57) 

with ′ indicating a derivative.  The temporal derivatives are then 

 

 

∫
𝜕𝑤(𝑥,𝑡)

𝜕𝑡
𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞
= 𝑤𝑒−𝑖𝜔𝑡|

−∞

∞
− ∫ 𝑤(−𝑖𝜔𝑒−𝑖𝜔𝑡)

∞

−∞
𝑑𝑡 = 𝑖𝜔 ∫ 𝑤𝑒−𝑖𝜔𝑡∞

−∞
𝑑𝑡 =

𝑖𝜔𝑊̂(𝑥, 𝜔), 

 

∫
𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2 𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
= (𝑖𝜔)2𝑊̂ = −𝜔2𝑊̂(𝑥, 𝜔). 

(58) 

Thus, the spatially normalized equation of motion in the frequency domain is written as 

 

 
𝐸𝐼

𝐿4

𝜕4𝑊̂(𝑥,𝜔)

𝜕𝑥4 + 𝑖𝑐𝜔𝑊̂(𝑥, 𝜔) − (𝑚 + 𝑀𝑖)𝜔
2𝑊̂(𝑥, 𝜔) = 𝐹̂𝑑(𝑥,𝜔) + 𝐹̂ℎ(𝑥, 𝜔). (59) 

By incorporating Eq. (55) and rearranging terms,  

 

 
𝐸𝐼

𝐿4

𝜕4𝑊̂(𝑥,𝜔)

𝜕𝑥4 − [(𝑚 + 𝑀𝑖)𝜔
2 − 𝑖𝑐𝜔 + 𝜌𝜋𝑑2𝜔2Γ]𝑊̂(𝑥, 𝜔) = 𝐹̂𝑑(𝑥, 𝜔). (60) 

Note that Eq. (60) is an ordinary differential equation in non-dimensional 𝑥.  Due to the 

inclusion of bracing elements in the motivating configuration, the beam is assumed fixed at 

both ends.  The normalized boundary conditions can then be written as  

 

 

[𝑤(𝑥, 𝑡) =
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
]
𝑥=0

= 0, 

 

[𝑤(𝑥, 𝑡) =
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
]
𝑥=1

= 0, 

(61) 

or in the frequency domain as 

 

 

[𝑊̂(𝑥, 𝜔) =
𝜕𝑊̂(𝑥,𝜔)

𝜕𝑥
]
𝑥=0

= 0, 

 

[𝑊̂(𝑥, 𝜔) =
𝜕𝑊̂(𝑥,𝜔)

𝜕𝑥
]
𝑥=1

= 0. 

(62) 

For convenience, Eq. (60) can be written using two new terms as 
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𝜕4𝑊̂(𝑥|𝜔)

𝜕𝑥4 − 𝐵4𝑊̂(𝑥|𝜔) = 𝑠̂(𝑥|𝜔), 

 

𝐵4 =
𝐿4

𝐸𝐼
[𝜇𝜔2 − 𝑖𝑐𝜔 + 𝜌𝜋𝑑2𝜔2Γ], 

 

𝑠̂(𝑥|𝜔) =
𝐿4

𝐸𝐼
𝐹̂𝑑(𝑥|𝜔). 

(63) 

The new governing equation (i.e. Eq. (63)) can be solved using Green’s functions.  The 

relevant equation can be written as 

 

 
𝜕4𝐺(𝑥, 𝑠|𝜔)

𝜕𝑥4
− 𝐵4𝐺(𝑥, 𝑠|𝜔) = 𝛿(𝑥 − 𝑠) (64) 

where 𝑠 is a normalized spatial dimension.  The boundary conditions are similar to Eq. (62) and 

can be written as 

 

 

[𝐺(𝑥, 𝑠|𝜔) =
𝜕𝐺(𝑥,𝑠|𝜔)

𝜕𝑥
]
𝑥=0

= 0, 

 

[𝐺(𝑥, 𝑠|𝜔) =
𝜕𝐺(𝑥,𝑠|𝜔)

𝜕𝑥
]
𝑥=1

= 0. 

(65) 

For 𝑥 ≠ 𝑠 Eq. (64) becomes 

 

 
𝜕4𝐺(𝑥,𝑠|𝜔)

𝜕𝑥4 − 𝐵4𝐺(𝑥, 𝑠|𝜔) = 0. (66) 

When 𝑥 < 𝑠, Eq. (66) is solved with the first set of boundary conditions in Eq. (65) (i.e. at 𝑥 =

0) while when 𝑥 > 𝑠, Eq. (66) is solved with the second set of boundary conditions.  This 

results in two equations with four remaining unknowns 

 

 

𝐺𝑥<𝑠 = 𝐶11𝑒
𝐵𝑥 + 𝐶12𝑒

−𝐵𝑥 − 𝑒−𝐵𝑥𝑖 [𝐶11 (
1

2
+

𝑖

2
) + 𝐶12 (

1

2
−

𝑖

2
)] − 𝑒𝐵𝑥𝑖 [𝐶11 (

1

2
−

𝑖

2
) +

𝐶12 (
1

2
+

𝑖

2
)], 

 

𝐺𝑥>𝑠 = 𝐶13𝑒
𝐵𝑥 + 𝐶14𝑒

−𝐵𝑥 − 𝑒𝐵(𝑥𝑖−𝑖−1) [𝐶14 (
1

2
+

𝑖

2
) + 𝐶13𝑒

2𝐵 (
1

2
−

𝑖

2
)] −

𝑒−𝐵(𝑥𝑖−𝑖+1) [𝐶14 (
1

2
−

𝑖

2
) + 𝐶13𝑒

2𝐵 (
1

2
+

𝑖

2
)]. 

(67) 

The four unknowns (𝐶11 to 𝐶14) can be solved using the four continuity equations occurring at 

𝑥 = 𝑠 
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[𝐺𝑥>𝑠 − 𝐺𝑥<𝑠 = 0]𝑥=𝑠, 

 

[
𝜕(𝐺𝑥>𝑠)

𝜕𝑥
−

𝜕(𝐺𝑥<𝑠)

𝜕𝑥
= 0]

𝑥=𝑠
, 

 

[
𝜕2(𝐺𝑥>𝑠)

𝜕𝑥2 −
𝜕2(𝐺𝑥<𝑠)

𝜕𝑥2 = 0]
𝑥=𝑠

, 

 

[
𝜕3(𝐺𝑥>𝑠)

𝜕𝑥3 −
𝜕3(𝐺𝑥<𝑠)

𝜕𝑥3 = 1]
𝑥=𝑠

. 

(68) 

After setting 𝑥 = 𝑠 in Eq. (67), the four continuity equations and four unknowns can be placed 

into matrix form and solved via MATLAB as  

 

 

𝐶𝑖 =
𝐶𝑖𝑛𝑢𝑚

𝐶𝐷𝐸𝑁
, 

 

𝐶𝐷𝐸𝑁 = 4𝐵3[𝑒𝐵(𝑠+2𝑠𝑖+2) + 𝑒𝐵(−2𝑖+𝑠+2𝑠𝑖) − 4𝑒𝐵(−𝑖+𝑠+2𝑠𝑖+1) + 𝑒𝐵(−2𝑖+𝑠+2𝑠𝑖+2) +

𝑒𝐵𝑠(2𝑖+1)], 
 

𝐶11𝑛𝑢𝑚
= −[(1 + 𝑖){𝑒𝐵(−2𝑖+𝑠+3𝑠𝑖) − 𝑒𝐵(−𝑖+𝑠+3𝑠𝑖+1)} + (𝑖){𝑒2𝐵𝑠(𝑖+1) − 𝑒2𝐵(−𝑖+𝑠+𝑠𝑖)} +

(1 − 𝑖){𝑒𝐵𝑠(𝑖+1) − 𝑒𝐵(−𝑖+𝑠+𝑠𝑖+1)} + {𝑒2𝐵(𝑠𝑖+1) − 2𝑒𝐵(−𝑖+2𝑠𝑖+1) + 𝑒2𝐵(−𝑖+𝑠𝑖+1)}], 
 

𝐶12𝑛𝑢𝑚
= (1 + 𝑖){𝑒𝐵(𝑠+𝑠𝑖+2) − 𝑒𝐵(−𝑖+𝑠+𝑠𝑖+1)} + (𝑖){𝑒2𝐵(−𝑖+𝑠𝑖+1) − 𝑒2𝐵(𝑠𝑖+1)} +

(1 − 𝑖){𝑒𝐵(−2𝑖+𝑠+3𝑠𝑖+2) − 𝑒𝐵(−𝑖+𝑠+3𝑖𝑠+1)} + {𝑒2𝐵(−𝑖+𝑠+𝑠𝑖) − 2𝑒𝐵(−𝑖+2𝑠+2𝑠𝑖+1) +

𝑒2𝐵𝑠(𝑖+1)}, 
 

𝐶13𝑛𝑢𝑚
= (1 + 𝑖){𝑒𝐵(−𝑖+𝑠+3𝑠𝑖+1) − 𝑒𝐵(−2𝑖+𝑠+3𝑠𝑖)} + (𝑖){𝑒2𝐵(−𝑖+𝑠+𝑠𝑖) − 𝑒2𝐵𝑠(𝑖+1)} +

(1 − 𝑖){𝑒𝐵(−𝑖+𝑠+𝑠𝑖+1) − 𝑒𝐵𝑠(𝑖+1)} + {𝑒2𝐵𝑖(𝑠−1) − 2𝑒𝐵(−𝑖+2𝑠𝑖+1) + 𝑒2𝐵𝑠𝑖}, 
 

𝐶14𝑛𝑢𝑚
= −[(1 + 𝑖){𝑒𝐵(−𝑖+𝑠+𝑠𝑖+1) − 𝑒𝐵(𝑠+𝑠𝑖+2)} + (𝑖){𝑒2𝐵(𝑠𝑖+1) − 𝑒2𝐵(−𝑖+𝑠𝑖+1)} +

(1 − 𝑖){𝑒𝐵(−𝑖+𝑠+3𝑠𝑖+1) − 𝑒𝐵(−2𝑖+𝑠+3𝑠𝑖+2)} + {𝑒2𝐵(𝑠+𝑠𝑖+1) − 2𝑒𝐵(−𝑖+2𝑠+2𝑠𝑖+1) +

𝑒2𝐵(−𝑖+𝑠+𝑠𝑖+1)}]. 

(69) 

Plugging Eq. (69) into Eq. (67) results in the desired Green’s functions.  For the sake of 

space, the combined equation is not shown here.  The combined Green’s function can be 

written as 

 

 𝐺(𝑥, 𝑠|𝜔) = 𝐺𝑥<𝑠𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑠 − 𝑥) + 𝐺𝑥>𝑠𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑥 − 𝑠). (70) 

The solution to the governing equation (i.e. Eq. (63)) is found by integrating over the domain as  

 

 𝑊̂(𝑥, 𝜔) = ∫ 𝐺(𝑥, 𝑠|𝜔)
1

0
𝑠̂(𝑠|𝜔)𝑑𝑠. (71) 

To determine the displacement response in the time domain, the inverse Fourier transform is 

taken 
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 𝑤(𝑥, 𝑡) =
1

2𝜋
∫ 𝑊̂(𝑥, 𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞
. (72) 

In actual practice, the continuous Fourier response 𝑊̂(𝑥, 𝜔) is sampled and then discretely 

transformed into the time domain.  This drastically reduces the computation time but requires a 

small amount of damping in the system (either viscous damping or damping generated by the 

hydrodynamic forcing) so that peaks in the frequency domain can be properly sampled.  The 

sampling rate (𝜔𝑠) can be set to avoid aliasing, and balanced to minimize computational effort 

with time domain resolution.  The discrete list of sampled frequencies (𝑊̂𝑠𝑎𝑚𝑝𝑙𝑒𝑑[𝑎]) can then 

be transformed using a discrete (or fast) Fourier transform 

 

 𝑤[𝑏] =
Ωs

2𝜋𝑛
∑ 𝑊̂𝑠𝑎𝑚𝑝𝑙𝑒𝑑[𝑎]𝑒2𝜋(𝑏−1)(𝑎−1)/𝑛𝑛

𝑎=1 , (73) 

where 𝑤[𝑏] is the discrete displacement response at a specified location of interest, 𝑏 and 𝑎 are 

list positions, Ωs is the size of the frequency range included in sampling, n is the number of 

samples, and 𝑊̂𝑠𝑎𝑚𝑝𝑙𝑒𝑑[𝑎] is a list of sampled values of the frequency response reordered so 

that the zero frequency term appears in position 1  of the list.  The discrete displacement 

response can be plotted on the time axis using the time step 𝑇 = 2𝜋/Ωs.  The Mathematica 

script implementing these calculations can be found in Appendix B. 

2.5. Script Validation 

Two cases are used to validate the Mathematica script. 

2.5.1. Pseudo-Static Point Loading of a Fixed-Fixed Beam in a Vacuum 

The displacement response of a fixed-fixed beam statically loaded at midspan with a 

point load is known to be 

 

 Δ𝑚𝑖𝑑𝑠𝑝𝑎𝑛 =
𝑃𝐿3

192𝐸𝐼
. (74) 
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Using the inputs provided in Table 3, the resulting midspan displacement is calculated as 

4.018𝑒 − 5𝑚. 

 

Table 3. Pseudo-Static Beam: Model Inputs 

Applied Force, 𝑃 100 𝑁 

Beam Length, 𝐿 6 𝑚 

Young’s Modulus, 𝐸 7𝑒9 𝑁 𝑚2⁄  

Beam Inertia, 𝐼 4𝑒 − 4 𝑚4 

Using the Green’s function model and Mathematica, a slowly varying harmonic load is 

placed at midspan.  The frequency of the applied load is significantly smaller than the first 

natural frequency of the system resulting in a pseudo-static loading.  A small amount of 

damping (1%) is included to allow the use of discrete Fourier transforms in determining the 

displacement time history.  The frequency values used in the inverse DFT operation are 𝜔𝑠 =

0.05𝑟𝑎𝑑/𝑠 and Ω𝑠 = ±1000𝑟𝑎𝑑/𝑠.  The displacement time history found from the Green’s 

function approach is shown in Figure 8.  The peak displacement is 4.006𝑒 − 5𝑚 (0.3% error).  

Note that when the load is removed after 10𝑠𝑒𝑐 , the beam is seen to freely vibrate until 

damping drives the displacement to zero. 

 

 
Figure 8. Pseudo-Static Beam: Displacement Time History 
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2.5.2. Triangular Loading of a Fixed-Fixed Beam Surrounded by an Unbounded Fluid 

A fixed-fixed beam is dynamically loaded with an eccentric triangular load as shown in 

Figure 9.  The model inputs are listed in Table 4. The frequency values used in the inverse DFT 

operation are 𝜔𝑠 = 0.05𝑟𝑎𝑑/𝑠 and Ω𝑠 = ±1000𝑟𝑎𝑑/𝑠. 

 

 
Figure 9. Loading Configuration 

 

Table 4. System Properties 

Young’s Modulus, 𝐸 2𝑒11 𝑁 𝑚2⁄  

Beam Density, 𝜌 7800 𝑘𝑔 𝑚3⁄  

Beam Poisson's Ratio 0.33 - 

Beam Outer Radius, 𝑑 0.06 𝑚 

Shell Radius, 𝐷 100000 𝑚 

Beam Length, 𝐿 12 𝑚 

Wall Thickness 0.007 𝑚 

Beam Area, 𝐴 2.485𝑒 − 3 𝑚2 

Beam Inertia, 𝐼 3.982𝑒 − 6 𝑚4 

Beam Mass, 𝑚 19.383 𝑘𝑔 𝑚⁄  

Fluid Kinematic Viscosity 1.00𝑒 − 06 𝑚2 𝑠⁄  

Fluid Density, 𝜌 2000 𝑘𝑔 𝑚3⁄  

Viscous Damping Ratio 2% - 

Forcing Frequency 54.02 𝑟𝑎𝑑 𝑠⁄  

The configuration is modeled using beam elements in ABAQUS as well as the Green’s function 

approach outlined above.  The steady-state midspan displacement response is plotted in Figure 

10; the results show excellent agreement. 
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Figure 10. Model Comparison 

2.6. Derivation of the Forcing Function 

To estimate the time-varying distributed force applied to the production tube stemming 

from the pressure oscillations trailing a bluff body, a computational fluid dynamics (CFD) 

model is generated.  The model is developed by the computational mechanics group within the 

structural engineering department.  In total, three models are generated with the inputs listed in 

Table 5.  Values for the fluid dynamic viscosity are taken as 0.2 𝑁𝑠/𝑚2 , 0.02 𝑁𝑠/𝑚2 , and 

0.002 𝑁𝑠/𝑚2. 

 

Table 5. CFD Model Inputs 

Conveyed Fluid Dynamic Viscosity Varies 𝑁𝑠 𝑚2⁄  

Conveyed Fluid Density 875 𝑘𝑔 𝑚3⁄  

Conveyed Fluid Velocity 1.5 𝑚 𝑠⁄  

Bluff Body Diameter 0.025 𝑚 

Production Tube Inner Radius 0.05 𝑚 

Length of Tube Considered 2 𝑚 

Bluff Body Position (Centerline) 0.3 𝑚 from inlet 

Inlet Fluid Velocity Profile Uniform - 

The only configuration to exhibit strong periodic behavior is the second model (with a fluid 

dynamic viscosity of 0.02 𝑁𝑠/𝑚2). A graphical display of the output vorticity is shown in 

Figure 11. 
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Figure 11. CFD Vorticity Colored by Velocity Magnitude for Various Viscosities 

The CFD pressure output from the second model is converted into a directional forcing 

at each finite element node.  The nodal forces for each cross section are added and then 

spatially averaged to produce a force per unit length along the beam (for each time step).  The 

result is 101  files (from time 6.0 − 7.0𝑠𝑒𝑐  so that transients are eliminated) that contain 

oriented forces as shown in Figure 12.  
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Figure 12. CFD Forcing Output 

Note that the X-direction is orthogonal to the longitudinal axis of both the bluff body and 

production tube, the Y-direction is parallel to the longitudinal axis of the bluff body, and the Z-

direction is parallel to the longitudinal axis of the production tube.  The green circle indicates 

the location of the bluff body.  The large force in the Z-direction between 0 − 0.3𝑚 is due to 

fluid pressure on the bluff body.   

Due to the relatively small length over which the pressure oscillations act, the spatial 

forcing is integrated over the length of tube considered to determine an equivalent point force.  
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Figure 13 plots these equivalent point forces for all time steps.  The maximum force is found to 

be 0.0964𝑁.  A Fourier transform of the windowed time history indicates a forcing frequency 

of 124.4 𝑟𝑎𝑑/𝑠.  For the sake of future modeling, the load is simplified to 0.1𝑁 at 124 𝑟𝑎𝑑/𝑠. 

 

 
Figure 13. Time History of Equivalent Point Force  

2.7. Results 

The Green’s function approach is used to model a baseline structural configuration with 

the intent of confirming or rejecting the assumptions used in the preliminary LANL calculations 

(i.e. that the achievable displacement magnitude is on the order of ±5𝑚𝑚).  The model inputs 

are listed in Table 6.  The potential effects of the connections, mass of the energy harvesting 

system, and shape of the structural housing (with respect to the hydrodynamic forcing) have 

been neglected for this preliminary analysis. 

 

 

 

 

 

6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7

-0.1

-0.05

0

0.05

0.1

0.15
Equivalent Point Force from CFD Model

Time,s

F
o
rc

e
,N



40 

 

 

 

 

Table 6. Model Inputs 

Young’s Modulus, 𝐸 2𝑒11 𝑁 𝑚2⁄  

Beam Density, 𝜌 7800 𝑘𝑔 𝑚3⁄  

Beam Inner Radius 0.05 𝑚 

Shell Radius, 𝐷 0.108 𝑚 

Beam Length, 𝐿 10 𝑚 

Wall Thickness 0.007 𝑚 

Beam Area, 𝐴 2.435𝑒 − 3 𝑚2 

Beam Inertia, 𝐼 3.382𝑒 − 6 𝑚4 

Beam Mass, 𝑚 18.354 𝑘𝑔 𝑚⁄  

Annulus Fluid Kinematic Viscosity 1.00𝑒 − 06 𝑚2 𝑠⁄  

Annulus Fluid Density, 𝜌 900 𝑘𝑔 𝑚3⁄  

Conveyed Fluid Density 875 𝑘𝑔 𝑚3⁄  

Conveyed Fluid Mass, 𝑀𝑖 6.872 𝑘𝑔 𝑚⁄  

Viscous Damping Ratio 1% - 

Forcing Frequency 124.0 𝑟𝑎𝑑 𝑠⁄  

Forcing Magnitude 0.1 𝑁 

DFT Sampling Frequency, 𝜔𝑠 0.05 𝑟𝑎𝑑 𝑠⁄  

DFT Sampling Range, Ω𝑠 ±1000 𝑟𝑎𝑑 𝑠⁄  

Boundary Conditions Fixed-Fixed - 

The steady-state displacement response is found to be negligibly small (on the order of 

10−5𝑚𝑚).  The forcing is increased fifty-fold to 5𝑁 with all other inputs unchanged.  The 

resulting displacement response is shown in Figure 14 where the steady-state displacement 

amplitude is found to be ±0.0112𝑚𝑚 .  This is two orders of magnitude less than the 

displacement response assumed in the preliminary LANL calculations. 

 

 
Figure 14. Displacement Response 
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The frequency response of the system is shown in Figure 15.  The first and third modal 

responses are visible at 28.6 𝑟𝑎𝑑/𝑠 and 154.9 𝑟𝑎𝑑/𝑠, respectively; the peak near 124 𝑟𝑎𝑑/𝑠 

corresponds to the forcing frequency. The second natural frequency is not visible as, at the 

beam’s midpoint, even modes do not contribute to the displacement response.  To increase the 

displacement response, the stiffness of the system (i.e. the beam length) is altered so that the 

forcing frequency coincides with one of the systems natural frequencies (i.e. resonance). The 

results are shown in Table 7 where the forcing magnitude is reset to 0.1𝑁, the value determined 

from the CFD model. 

  

 

 
Figure 15. Frequency Response 

 

Table 7. Steady State Displacement Magnitude for Various Cases 

Resonant 

Mode 

Beam Length 

(𝑚) 

Forcing Frequency 

(𝑟𝑎𝑑 𝑠⁄ ) 

Steady State 

Displacement (𝑚𝑚) 

1 4.81 124 ±0.0061 

3 11.18 124 ±0.0065 

5 17.57 124 ±0.0061 

7 23.96 124 ±0.0052 

In all four cases, the maximum resonant displacement is found to be nearly three orders 

of magnitude smaller than the displacement response assumed in the preliminary calculations.   

Since the numeric models failed to prove that the assumed displacement response was 

realizable, industry practitioners were contacted in hopes of obtaining additional insights.  
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Unfortunately, those practitioners who would comment on the results provided no additional 

insights regarding the specific realization modeled, the assumed flow behavior, etc. 

2.8. Moving Forward 

While the current investigation failed to validate the assumed displacement response, 

the development of an energy harvester for downhole use is still thought to be valid.  That is, 

mechanisms can be deployed to amplify ambient vibrations in the production tube and this 

mechanical energy can be harvested for future use in supporting low power electronic devices.  

The intellectual knowledge that can be contributed in the pursuit of such an energy harvesting 

system is:  

 Characterizing the dynamic behavior of the system.  Any acceleration driving an 

energy harvesting element will be colored by the natural frequency of the production 

tube and limited by the damping in the system.  Since the system is non-trivially 

complex (a conveyed fluid inside of a pipe surrounded by another fluid), it is useful to 

understand how various parameters of interest affect the natural frequency and damping 

in the system. 

 Develop a tool to estimate harvestable power.  If the acceleration time-histories driving 

the production tube are known or can be reasonably approximated, an estimate of 

power output for a given energy harvester configuration can be developed.  This 

preliminary estimate can be used by industry to decide whether an energy harvesting 

solution is viable for a specific hydrocarbon well of interest.  If so, additional resources 

can be allocated to advance the design and fabrication of an energy harvesting tool.
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Chapter 3  

Characterizing Dynamic Behavior Using a Refined Analytical 

Model 

3.1. Background 

A model is needed to investigate the effects of various parameters of interest.  An 

analytical model is specifically chosen so that a large input domain can be explored rapidly.  A 

new equation of motion which captures conveyed fluid effects is derived.  The equation of 

motion is then solved with the spectral element method as a Green’s function approach is 

overly cumbersome when applied to the new equation of motion.  The model is used to explore 

how changing various inputs effect the natural frequency and damping in the system. 

3.1.1. Literature Review 

Significant work has been done investigating the behavior of pipes conveying fluid 

[148]-[151], with special interest in cantilever pipes [152]-[153] due to their non-conservative 

nature.  More general boundary conditions have also been considered.  Kheiri et al. (2014) 

[154] investigated a fluid conveying pipe with flexible end restraints but did not account for a 
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confined external fluid.  Bao (2014) [155] studied submerged fluid conveying pipes on elastic 

supports but neglected damping in the investigation.   

Other work investigating the effects of nonlinear terms [156] and unsteady flow [157]- 

[160] in similar systems can also be found.  However, these research efforts do not account for 

the possibility of a medium external to the pipe, such as a surrounding fluid or viscoelastic 

foundation, which may affect the dynamics of the system.  When a viscoelastic foundation is 

included in the system model [161]-[163], some of the resulting behavior may be extrapolated 

to the configuration of interest; however, the problem formulation is fundamentally different 

with the clearest manifestation being the viscoelastic foundation model’s failure to account for 

changing inertial effects.  Such shortcomings become relevant as the dynamic behavior of 

beams vibrating in a viscous fluid is known to be altered due to both added mass and viscous 

effects [135], [140], [164].   

The problem has been approached using a shell formulation where the treatment of 

inviscid fluid [165], viscous fluid flow [166], and the determination of added mass and 

damping terms [167] can be found in the literature.  These formulations tend to be more 

complicated due to the use of the shell equation of motion which permits the inclusion of 

additional modes beyond those produced by a beam formulation.  Conveniently, for typical 

production tube geometries where the effective pipe length is much larger than the pipe radius, 

the dynamic behavior of the two formulations converge [168].  Thus, for the application of 

interest, a beam formulation is not only plausible but preferred as its use allows further 

simplification of the problem since the effects of viscous friction from the conveyed fluid 

vanish from the equation of motion in a beam formulation [169]. 
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3.2. The Equation of Motion 

The following derivation of the governing equation of motion follows the work of 

Païdoussis and Issid (1974) [170] which is explored in greater depth in Païdoussis (2014) [169].  

The assumptions used in the derivation are summarized in Table 8. 

 

Table 8. Assumptions Used in the Derivation of the Equation of Motion 
1 The length of the pipe greatly exceeds its nominal diameter. 

2 The pipe is an isotropic linearly elastic solid. 

3 The amplitude of vibration of the pipe is far smaller than any length scale in the pipe geometry. 

4 The flexural stiffness is constant over the length of the pipe. 

5 The Euler-Bernoulli approximation holds. 

6 The conveyed fluid is incompressible with uniform flow profile (i.e. plug flow). 

7 The pipe is thin walled. 

3.2.1. Flow Profile 

The conveyed fluid produced by an operating well may range from single-phase to a 

multiphase flow consisting of bubble, slug, transition, or mist flow.  Although multiphase fluid 

flow is common in oil wells, predicting its behavior is complicated due to complex heat and 

mass transfer through the system [171].  Since the novel contribution of this study is the effects 

the annulus fluid has on the system, the inclusion of multiphase flow in the analytical model is 

unnecessarily burdensome; the produced fluid, which is expected to be turbulent, is modeled as 

a plug flow with either average viscous or inviscid characteristics. 

3.2.2. Equilibrium 

Consider the slender pipe shown in Figure 16 where 𝑠  represents the curvilinear 

coordinate along the axis of the pipe and 𝑥, 𝑧 represent the Cartesian coordinate system.  The 

lateral displacement of the pipe is assumed to be much smaller than the pipes diameter (𝑤 ≪

2𝑑), which itself is much smaller than the pipes length (2𝑑 ≪ 𝐿).  The axial displacement of the 

pipe is assumed to be much smaller than the lateral displacement of the pipe (𝑢 ≪ 𝑤 ), 

permitting the assumption that 𝑠 ≈ 𝑥. 



46 

 

 

 

 
Figure 16. Coordinate System 

Consider a differential element of length 𝛿𝑠, shown in Figure 17.  Forces on the fluid 

element include: fluid pressure (𝐴𝑖𝑝 ), self-weight (𝑀𝑖𝑔𝛿𝑠 ), and both normal (𝐹𝛿𝑠 ) and 

tangential (𝑞𝑆𝛿𝑠) reaction forces between the fluid and pipe elements.  The forces on the pipe 

element include: moment (𝑀), shear (𝑄), tension (𝑇), self-weight (𝑚𝑔𝛿𝑠), both normal (𝐹𝛿𝑠) 

and tangential (𝑞𝑆𝛿𝑠) reaction forces between the fluid and pipe elements, viscous damping 

(𝑐 𝜕𝑤/𝜕𝑡 𝛿𝑠), and a hydrodynamic force (𝑓ℎ𝑦𝑑𝑟𝑜𝛿𝑠 ) which accounts for the effects of an 

external fluid surrounding the pipe. 
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Figure 17. Differential Element: Fluid (Left) and Pipe (Right) 

Applying vertical equilibrium to the fluid element results in  

 

 
𝐴𝑖 [(𝑝𝑐𝑜𝑠𝜃) −

1

2

𝜕

𝜕𝑠
(𝑝𝑐𝑜𝑠𝜃)𝛿𝑠] − 𝐴𝑖 [(𝑝𝑐𝑜𝑠𝜃) +

1

2

𝜕

𝜕𝑠
(𝑝𝑐𝑜𝑠𝜃)𝛿𝑠] − 𝑞𝑆𝛿𝑠(𝑐𝑜𝑠𝜃) +

𝑀𝑖𝑔𝛿𝑠 + 𝐹𝛿𝑠(𝑠𝑖𝑛𝜃) = 𝑀𝑖𝑎𝑓𝑥𝛿𝑠, 
(75) 

where for a small angle approximation one may take 

 

 𝑐𝑜𝑠𝜃 ≈ 1,     𝑠𝑖𝑛𝜃 ≈ 𝜃 =
Δ𝑤

Δ𝑥
=

𝜕𝑤

𝜕𝑥
. (76) 

Combining Eq. (75) and Eq. (76) leads to  

 

 𝐴𝑖 [𝑝 −
1

2

𝜕

𝜕𝑠
𝑝𝛿𝑠] − 𝐴𝑖 [𝑝 +

1

2

𝜕

𝜕𝑠
𝑝𝛿𝑠] − 𝑞𝑆𝛿𝑠 + 𝑀𝑖𝑔𝛿𝑠 + 𝐹𝛿𝑠

𝜕𝑤

𝜕𝑥
= 𝑀𝑖𝑎𝑓𝑥𝛿𝑠, (77) 

which, when incorporating the assumption that 𝑠 ≈ 𝑥, may be simplified to 

 

 −𝐴𝑖
𝜕𝑝

𝜕𝑥
− 𝑞𝑆 + 𝑀𝑖𝑔 + 𝐹

𝜕𝑤

𝜕𝑥
= 𝑀𝑖𝑎𝑓𝑥, (78) 

Applying horizontal equilibrium to the fluid element results in 

 

 
𝐴𝑖 [(𝑝𝑠𝑖𝑛𝜃) −

1

2

𝜕

𝜕𝑠
(𝑝𝑠𝑖𝑛𝜃)𝛿𝑠] − 𝐴𝑖 [(𝑝𝑠𝑖𝑛𝜃) +

1

2

𝜕

𝜕𝑠
(𝑝𝑠𝑖𝑛𝜃)𝛿𝑠] − 𝑞𝑆𝛿𝑠(𝑠𝑖𝑛𝜃) −

𝐹𝛿𝑠(𝑐𝑜𝑠𝜃) = 𝑀𝑖𝑎𝑓𝑧𝛿𝑠, 
(79) 

which may be similarly simplified to  

 

 −𝐴𝑖
𝜕

𝜕𝑥
(𝑝

𝜕𝑤

𝜕𝑥
) − 𝑞𝑆

𝜕𝑤

𝜕𝑥
− 𝐹 = 𝑀𝑖𝑎𝑓𝑧. (80) 

Applying moment equilibrium to the pipe element leads to 
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 (𝑀 +
1

2

𝜕𝑀

𝜕𝑠
𝛿𝑠) − (𝑀 −

1

2

𝜕𝑀

𝜕𝑠
𝛿𝑠) − (𝑄 −

1

2

𝜕𝑄

𝜕𝑠
𝛿𝑠) (

1

2
𝛿𝑠) − (𝑄 +

1

2

𝜕𝑄

𝜕𝑠
𝛿𝑠) (

1

2
𝛿𝑠) = 0, (81) 

where rotary inertia has been neglected.  Simplification leads to   

 

 𝑄 =
𝜕𝑀

𝜕𝑠
=

𝜕𝑀

𝜕𝑥
= 𝐸𝐼

𝜕3𝑤

𝜕𝑥3 . (82) 

Applying vertical equilibrium results in 

 

 

− [(𝑇𝑐𝑜𝑠𝜃) −
1

2

𝜕

𝜕𝑠
(𝑇𝑐𝑜𝑠𝜃)𝛿𝑠] − [(𝑄𝑠𝑖𝑛𝜃) −

1

2

𝜕

𝜕𝑠
(𝑄𝑠𝑖𝑛𝜃)𝛿𝑠] + [(𝑇𝑐𝑜𝑠𝜃) +

1

2

𝜕

𝜕𝑠
(𝑇𝑐𝑜𝑠𝜃)𝛿𝑠] + [(𝑄𝑠𝑖𝑛𝜃) +

1

2

𝜕

𝜕𝑠
(𝑄𝑠𝑖𝑛𝜃)𝛿𝑠] + 𝑚𝑔𝛿𝑠 + 𝑞𝑆𝛿𝑠(𝑐𝑜𝑠𝜃) − 𝐹𝛿𝑠(𝑠𝑖𝑛𝜃) =

𝑚𝑎𝑝𝑥𝛿𝑠, 

(83) 

which can be simplified to  

 

 
𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑥
(𝑄

𝜕𝑤

𝜕𝑥
) + 𝑚𝑔 + 𝑞𝑆 − 𝐹

𝜕𝑤

𝜕𝑥
= 𝑚𝑎𝑝𝑥. (84) 

The shear and acceleration terms of Eq. (84) can be neglected as higher order terms leading to 

 

 
𝜕𝑇

𝜕𝑥
+ 𝑚𝑔 + 𝑞𝑆 − 𝐹

𝜕𝑤

𝜕𝑥
= 0. (85) 

Lastly, horizontal equilibrium can be applied  

 

 

− [(𝑇𝑠𝑖𝑛𝜃) −
1

2

𝜕

𝜕𝑠
(𝑇𝑠𝑖𝑛𝜃)𝛿𝑠] + [(𝑄𝑐𝑜𝑠𝜃) −

1

2

𝜕

𝜕𝑠
(𝑄𝑐𝑜𝑠𝜃)𝛿𝑠] + [(𝑇𝑠𝑖𝑛𝜃) +

1

2

𝜕

𝜕𝑠
(𝑇𝑠𝑖𝑛𝜃)𝛿𝑠] − [(𝑄𝑐𝑜𝑠𝜃) +

1

2

𝜕

𝜕𝑠
(𝑄𝑐𝑜𝑠𝜃)𝛿𝑠] + 𝑞𝑆𝛿𝑠(𝑠𝑖𝑛𝜃) + 𝐹𝛿𝑠(𝑐𝑜𝑠𝜃) − 𝑐

𝜕𝑤

𝜕𝑡
𝛿𝑠 +

𝑓ℎ𝑦𝑑𝑟𝑜𝛿𝑠 = 𝑚𝑎𝑝𝑧𝛿𝑠, 

(86) 

which can be simplified to 

 

 
𝜕

𝜕𝑥
(𝑇

𝜕𝑤

𝜕𝑥
) −

𝜕𝑄

𝜕𝑥
+ 𝑞𝑆

𝜕𝑤

𝜕𝑥
+ 𝐹 − 𝑐

𝜕𝑤

𝜕𝑡
+ 𝑓ℎ𝑦𝑑𝑟𝑜 = 𝑚𝑎𝑝𝑧. (87) 

In summary, Eq. (78), Eq. (80), Eq. (82), Eq. (85), and Eq. (87) represent the relevant 

equilibrium equations. 

3.2.3. Acceleration Terms 

While the pipe acceleration is easily written as 

 

 𝑎𝑝𝑧 =
𝜕2𝑤

𝜕𝑡2 , (88) 

the fluid acceleration terms require additional analysis.  A position vector for the pipe is defined 

as 
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 𝒓 = 𝑥𝒊̂ + 𝑧𝒌̂. (89) 

The velocity of the pipe can then be written as 

 

 𝑽𝑝 =
𝜕𝒓

𝜕𝑡
= 𝑥̇𝒊̂ + 𝑧̇𝒌̂, (90) 

where (    )̇  represents a derivative with respect to time. The velocity of the conveyed fluid 

element is then  

 

 𝑽𝑓 = 𝑽𝑝 + 𝑈𝝉 = (𝑥̇ + 𝑈
𝜕𝑥

𝜕𝑠
) 𝒊̂ + (𝑧̇ + 𝑈

𝜕𝑧

𝜕𝑠
) 𝒌̂ = (

𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑠
) 𝒓 =

𝐷𝒓

𝐷𝑡
, (91) 

where 𝝉  represents the unit vector tangential to the displaced pipe.  For 𝑧 = 𝑤 , 𝜕𝑥/𝜕𝑠 =

𝑐𝑜𝑠𝜃 ≈ 1, and 𝜕𝑥/𝜕𝑡 ≈ 0, Eq. (91) can be rewritten as 

 

 𝑽𝑓 = (𝑈)𝒊̂ + (
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑠
)𝑤𝒌̂. (92) 

Taking the derivative of the fluid velocity results in the fluid acceleration 

 

 𝒂𝒇 =
𝐷

𝐷𝑡
(𝑽𝑓) = (

𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑠
) [(𝑈)𝒊̂ + (

𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑠
)𝑤𝒌̂]. (93) 

Expanding Eq. (93) 

 

 𝒂𝒇 = [
𝑑𝑈

𝑑𝑡
+ 𝑈

𝑑𝑈

𝑑𝑠
] 𝒊̂ + [

𝜕2𝑤

𝜕𝑡2 + 𝑈
𝜕2𝑤

𝜕𝑠𝜕𝑡
+

𝑑𝑈

𝑑𝑡

𝜕𝑤

𝜕𝑠
+ 𝑈

𝜕2𝑤

𝜕𝑠𝜕𝑡
+ 𝑈

𝑑𝑈

𝑑𝑠

𝜕𝑤

𝜕𝑠
+ 𝑈2 𝜕2𝑤

𝜕𝑠2 ] 𝒌̂, (94) 

where for an incompressible fluid, 𝑑𝑈/𝑑𝑠 = 0, leading to 

 

 𝒂𝒇 =
𝑑𝑈

𝑑𝑡
𝒊̂ + [

𝜕2𝑤

𝜕𝑡2 + 2𝑈
𝜕2𝑤

𝜕𝑠𝜕𝑡
+

𝑑𝑈

𝑑𝑡

𝜕𝑤

𝜕𝑠
+ 𝑈2 𝜕2𝑤

𝜕𝑠2 ] 𝒌̂ =
𝑑𝑈

𝑑𝑡
𝒊̂ + [

𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑠
]
2

𝑤𝒌̂. (95) 

Recalling 𝑠 ≈ 𝑥, the fluid accelerations can be written as 

 

 𝑎𝑓𝑧 = [
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
]
2

𝑤 =
𝜕2𝑤

𝜕𝑡2 + 2𝑈
𝜕2𝑤

𝜕𝑥𝜕𝑡
+

𝑑𝑈

𝑑𝑡

𝜕𝑤

𝜕𝑥
+ 𝑈2 𝜕2𝑤

𝜕𝑥2 , (96) 

and 

 

 𝑎𝑓𝑥 =
𝑑𝑈

𝑑𝑡
. (97) 

In summary, Eq. (88), Eq. (96), and Eq. (97) represent the relevant acceleration terms. 

3.2.4. Assembling the Equation of Motion 

Combining Eq. (80) and Eq. (87) leads to 
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 −𝐴𝑖
𝜕

𝜕𝑥
(𝑝

𝜕𝑤

𝜕𝑥
) +

𝜕

𝜕𝑥
(𝑇

𝜕𝑤

𝜕𝑥
) −

𝜕𝑄

𝜕𝑥
− 𝑐

𝜕𝑤

𝜕𝑡
+ 𝑓ℎ𝑦𝑑𝑟𝑜 = 𝑀𝑖𝑎𝑓𝑧 + 𝑚𝑎𝑝𝑧. (98) 

Incorporating Eq. (82), Eq. (88), and Eq. (96) then results in 

 

 
−𝐴𝑖

𝜕

𝜕𝑥
(𝑝

𝜕𝑤

𝜕𝑥
) +

𝜕

𝜕𝑥
(𝑇

𝜕𝑤

𝜕𝑥
) −

𝜕

𝜕𝑥
(𝐸𝐼

𝜕3𝑤

𝜕𝑥3) − 𝑐
𝜕𝑤

𝜕𝑡
+ 𝑓ℎ𝑦𝑑𝑟𝑜 = 𝑀𝑖 [

𝜕2𝑤

𝜕𝑡2 + 2𝑈
𝜕2𝑤

𝜕𝑥𝜕𝑡
+

𝑑𝑈

𝑑𝑡

𝜕𝑤

𝜕𝑥
+

𝑈2 𝜕2𝑤

𝜕𝑥2 ] + 𝑚
𝜕2𝑤

𝜕𝑡2 . 
(99) 

Combining terms and requiring that the flexural stiffness be constant over the length of pipe 

leads to 

 

 
0 = −

𝜕

𝜕𝑥
[(𝑇 − 𝐴𝑖𝑝)

𝜕𝑤

𝜕𝑥
] + 𝐸𝐼

𝜕4𝑤

𝜕𝑥4 + 𝑐
𝜕𝑤

𝜕𝑡
− 𝑓ℎ𝑦𝑑𝑟𝑜 + 𝑀𝑖 [

𝜕2𝑤

𝜕𝑡2 + 2𝑈
𝜕2𝑤

𝜕𝑥𝜕𝑡
+

𝑑𝑈

𝑑𝑡

𝜕𝑤

𝜕𝑥
+

𝑈2 𝜕2𝑤

𝜕𝑥2 ] + 𝑚
𝜕2𝑤

𝜕𝑡2 . 
(100) 

Turning to the remaining equations of interest, Eq. (78) and Eq. (85) are combined as 

 

 −𝐴𝑖
𝜕𝑝

𝜕𝑥
+ (𝑀𝑖 + 𝑚)𝑔 +

𝜕𝑇

𝜕𝑥
= 𝑀𝑖𝑎𝑓𝑥. (101) 

Eq. (101) can be rewritten while simultaneously incorporating Eq. (97) 

 

 
𝜕

𝜕𝑥
(𝑇 − 𝐴𝑖𝑝) = 𝑀𝑖

𝑑𝑈

𝑑𝑡
− (𝑀𝑖 + 𝑚)𝑔, (102) 

Integrating Eq. (102) from 𝑥 to 𝐿 leads to  

 

 (𝑇 − 𝐴𝑖𝑝)|𝐿 − (𝑇 − 𝐴𝑖𝑝)|𝑥 = (𝑀𝑖
𝑑𝑈

𝑑𝑡
− (𝑀𝑖 + 𝑚)𝑔) (𝐿 − 𝑥), (103) 

At 𝑥 = 𝐿, there may be an applied external tension (𝑇) or mean pressure differential 

(𝑝) above the pressure required to overcome fluid friction.  If the pipe is unable to displace 

axially, the pressurization along the length of the pipe may induce an additional axial force due 

to Poisson’s effect.  Consider the longitudinal and hoop stresses that develop in a thin-walled 

pipe.  The hoop stress may be derived as (see Figure 18) 

 

 2𝑑′𝑝 = 2𝐹 = 2𝜎ℎ𝑤𝑡     →     𝜎ℎ =
𝑑′𝑝

𝑤𝑡
=

2𝐴𝑖𝑝

𝐴𝑝
, (104) 

while the resulting axial stress is  

 

 𝜎𝑎 =
𝑇′

𝐴𝑝
. (105) 

The total longitudinal strain is written as  
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 𝜀𝑙 =
1

𝐸
[𝜎𝑎 − 𝜐𝜎ℎ] =

1

𝐸𝐴𝑝
[𝑇′ − 𝜐2𝐴𝑖𝑝]. (106) 

 

 
Figure 18. Hoop Forces in a Thin-Walled Pipe 

If the pipe is not able to displace axially, ∫ 𝜀𝑙𝑑𝑥 = 0
𝐿

0
, leading to 

 

 𝑇′ = 𝜐2𝐴𝑖𝑝. (107) 

Eq. (103) can then be written as 

 

 𝑇 − 𝐴𝑖𝑝 = (𝑇 − 𝐴𝑖𝑝)|𝑥 = 𝑇 − 𝐴𝑖𝑝(1 − 2𝜈𝛿) + ((𝑀𝑖 + 𝑚)𝑔 − 𝑀𝑖
𝑑𝑈

𝑑𝑡
) (𝐿 − 𝑥), (108) 

where 𝛿 = 0 for unrestrained axial motion at 𝑥 = 𝐿 and 𝛿 = 1 if the axial motion is restrained 

at the boundaries.  To arrive at the final form of the equation of motion, recall Eq. (100) and 

expand terms 

 

 
0 = −(

𝜕

𝜕𝑥
(𝑇 − 𝐴𝑖𝑝))

𝜕𝑤

𝜕𝑥
− (𝑇 − 𝐴𝑖𝑝)

𝜕2𝑤

𝜕𝑥2 + 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + 𝑐
𝜕𝑤

𝜕𝑡
− 𝑓ℎ𝑦𝑑𝑟𝑜 + 𝑀𝑖

𝜕2𝑤

𝜕𝑡2 +

2𝑀𝑖𝑈
𝜕2𝑤

𝜕𝑥𝜕𝑡
+ 𝑀𝑖

𝑑𝑈

𝑑𝑡

𝜕𝑤

𝜕𝑥
+ 𝑀𝑖𝑈

2 𝜕2𝑤

𝜕𝑥2 + 𝑚
𝜕2𝑤

𝜕𝑡2 . 

(109) 

Noting that  

 

 
𝜕

𝜕𝑥
(𝑇 − 𝐴𝑖𝑝) = −((𝑀𝑖 + 𝑚)𝑔 − 𝑀𝑖

𝑑𝑈

𝑑𝑡
), (110) 

Eq. (108), Eq. (109), and Eq. (110) can be combined as 

 

 

0 = ((𝑀𝑖 + 𝑚)𝑔 − 𝑀𝑖
𝑑𝑈

𝑑𝑡
)

𝜕𝑤

𝜕𝑥
− (𝑇 − 𝐴𝑖𝑝(1 − 2𝜈𝛿) + ((𝑀𝑖 + 𝑚)𝑔 − 𝑀𝑖

𝑑𝑈

𝑑𝑡
) (𝐿 −

𝑥))
𝜕2𝑤

𝜕𝑥2 + 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + 𝑐
𝜕𝑤

𝜕𝑡
− 𝑓ℎ𝑦𝑑𝑟𝑜 + 𝑀𝑖

𝜕2𝑤

𝜕𝑡2 + 2𝑀𝑖𝑈
𝜕2𝑤

𝜕𝑥𝜕𝑡
+ 𝑀𝑖

𝑑𝑈

𝑑𝑡

𝜕𝑤

𝜕𝑥
+ 𝑀𝑖𝑈

2 𝜕2𝑤

𝜕𝑥2 +

𝑚
𝜕2𝑤

𝜕𝑡2 , 

(111) 

which can be simplified to 
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𝐸𝐼

𝜕4𝑤

𝜕𝑥4 + [𝑀𝑖𝑈
2 − 𝑇 + 𝐴𝑖𝑝(1 − 2𝜈𝛿) − ((𝑀𝑖 + 𝑚)𝑔 − 𝑀𝑖

𝑑𝑈

𝑑𝑡
) (𝐿 − 𝑥)]

𝜕2𝑤

𝜕𝑥2 +

2𝑀𝑖𝑈
𝜕2𝑤

𝜕𝑥𝜕𝑡
+ (𝑀𝑖 + 𝑚)𝑔

𝜕𝑤

𝜕𝑥
+ 𝑐

𝜕𝑤

𝜕𝑡
+ (𝑀𝑖 + 𝑚)

𝜕2𝑤

𝜕𝑡2 − 𝑓ℎ𝑦𝑑𝑟𝑜 = 0. 

(112) 

In shorthand notation, where (   )̇  and (   )′ represent temporal and spatial derivatives,  

 

 
𝐸𝐼𝑤′′′′ + {𝑀𝑖𝑈

2 − 𝑇̅ + 𝑝̅𝐴𝑖(1 − 2𝜈𝛿) − [(𝑀𝑖 + 𝑚)𝑔 − 𝑀𝑖𝑈̇](𝐿 − 𝑥)}𝑤′′ + 2𝑀𝑖𝑈𝑤̇′ +
(𝑀𝑖 + 𝑚)𝑔𝑤′ + 𝑐𝑤̇ + (𝑀𝑖 + 𝑚)𝑤̈ − 𝑓ℎ𝑦𝑑𝑟𝑜 = 0. 

(113) 

Starting with the first term, the forces represented are a flexural restoring force, centrifugal 

force, externally applied tension force, tension stemming from a fluid pressure differential, 

gravity induced tension, time-varying flow effects, Coriolis force, gravity, external viscous 

damping, inertia, and a hydrodynamic forcing function.   

3.3. Model Reduction 

Two techniques are utilized to simplify the problem: (a) the equation of motion (i.e. Eq. 

(112) and Eq. (48)) is nondimensionalized and (b) real-world physical constraints are used in an 

attempt to reduce the parameters of interest.   

3.3.1. Nondimensional Equation of Motion 

The equation of motion has been derived as 

 

 
𝐸𝐼

𝜕4𝑤

𝜕𝑥4 + [𝑀𝑖𝑈
2 − 𝑇 + 𝐴𝑖𝑝(1 − 2𝜈𝛿) − ((𝑀𝑖 + 𝑚)𝑔 − 𝑀𝑖

𝑑𝑈

𝑑𝑡
) (𝐿 − 𝑥)]

𝜕2𝑤

𝜕𝑥2 +

2𝑀𝑖𝑈
𝜕2𝑤

𝜕𝑥𝜕𝑡
+ (𝑀𝑖 + 𝑚)𝑔

𝜕𝑤

𝜕𝑥
+ 𝑐

𝜕𝑤

𝜕𝑡
+ (𝑀𝑖 + 𝑚)

𝜕2𝑤

𝜕𝑡2 + 𝑖𝜌𝑒𝜋𝑑2𝜔Γ𝑈0𝑒
𝑖𝜔𝑡 = 0. 

(114) 

using Eq. (112) and Eq. (48) where the annulus fluid density (𝜌) has been replaced with (𝜌𝑒) to 

distinguish between the external (annulus) and internal (conveyed) fluids.  Following the work 

of Païdoussis and Issid (1974) [170], define the following nondimensional terms 

 

 𝜉 =
𝑥

𝐿
;   𝜂 =

𝑤

𝐿
;   𝜏 = [

𝐸𝐼

𝑀𝑖+𝑚
]

1

2 𝑡

𝐿2;   Ω = [
𝑀𝑖+𝑚

𝐸𝐼
]

1

2
𝜔𝐿2 (115) 

where the last two terms represent nondimensional time and frequency.  Alternatively, 
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 𝑥 = 𝜉𝐿;   𝑤 = 𝜂𝐿;   𝑡 = 𝜏𝐿2 [
𝑀𝑖+𝑚

𝐸𝐼
]

1

2
;   ω =

Ω

𝐿2 [
𝐸𝐼

𝑀𝑖+𝑚
]

1

2
. (116) 

Since the equation of motion contains a number of derivatives, the dimensionless 

differential operators are needed.  The spatial operators include 

 

 

𝑑

𝑑𝑥
=

𝑑𝜉

𝑑𝑥

𝑑

𝑑𝜉
=

1

𝐿

𝑑

𝑑𝜉
, 

 
𝑑2

𝑑𝑥2 = (
𝑑

𝑑𝑥
)

2

= (
1

𝐿

𝑑

𝑑𝜉
)

2

=
1

𝐿2

𝑑2

𝑑𝜉2, 

 
𝑑3

𝑑𝑥3 =
1

𝐿3

𝑑3

𝑑𝜉3, 

 
𝑑4

𝑑𝑥4 =
1

𝐿4

𝑑4

𝑑𝜉4. 

(117) 

The temporal operators include 

 

 

𝑑

𝑑𝑡
=

𝑑𝜏

𝑑𝑡

𝑑

𝑑𝜏
= [

𝐸𝐼

𝑀𝑖+𝑚
]

1

2 1

𝐿2

𝑑

𝑑𝜏
, 

 

𝑑2

𝑑𝑡2 = (
𝑑

𝑑𝑡
)

2

= ([
𝐸𝐼

𝑀𝑖+𝑚
]

1

2 1

𝐿2

𝑑

𝑑𝜏
)

2

= (
𝐸𝐼

𝑀𝑖+𝑚
)

1

𝐿4

𝑑2

𝑑𝜏2. 

(118) 

And lastly, the spatial-temporal operator is 

 

 
𝜕2

𝜕𝑥𝜕𝑡
= (

𝜕

𝜕𝑥
) (

𝜕

𝜕𝑡
) = (

1

𝐿

𝜕

𝜕𝜉
) ([

𝐸𝐼

𝑀𝑖+𝑚
]

1

2 1

𝐿2

𝜕

𝜕𝜏
) = [

𝐸𝐼

𝑀𝑖+𝑚
]

1

2 1

𝐿3

𝜕2

𝜕𝜉𝜕𝜏
. (119) 

The individual terms from Eq. (114) can be rewritten using Eq. (116) through Eq. 

(119).  Flexural restoring force: 

 

 𝐸𝐼
𝑑4(𝑤)

𝑑𝑥4 = 𝐸𝐼
1

𝐿4

𝑑4(𝜂𝐿)

𝑑𝜉4 =
𝐸𝐼

𝐿3 (
𝑑4𝜂

𝑑𝜉4). (120) 

Centrifugal force: 

 

 𝑀𝑖𝑈
2 𝑑2(𝑤)

𝑑𝑥2 = 𝑀𝑖𝑈
2 1

𝐿2

𝑑2(𝜂𝐿)

𝑑𝜉2 =
𝑀𝑖𝑈

2

𝐿
(

𝑑2𝜂

𝑑𝜉2). (121) 

Externally applied tension force: 

 

 𝑇̅
𝑑2(𝑤)

𝑑𝑥2 = 𝑇̅
1

𝐿2

𝑑2(𝜂𝐿)

𝑑𝜉2 =
𝑇̅

𝐿
(

𝑑2𝜂

𝑑𝜉2). (122) 

Tension stemming from a fluid pressure differential: 
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 𝑝̅𝐴𝑖(1 − 2𝜈𝛿)
𝑑2(𝑤)

𝑑𝑥2 = 𝑝̅𝐴𝑖(1 − 2𝜈𝛿)
1

𝐿2

𝑑2(𝜂𝐿)

𝑑𝜉2 =
𝑝̅𝐴𝑖

𝐿
(1 − 2𝜈𝛿) (

𝑑2𝜂

𝑑𝜉2). (123) 

Gravity induced tension and time-varying flow effects: 

 

 

[(𝑀𝑖 + 𝑚)𝑔 − 𝑀𝑖
𝑑(𝑈)

𝑑𝑡
] (𝐿 − 𝑥)

𝑑2(𝑤)

𝑑𝑥2   

= [(𝑀𝑖 + 𝑚)𝑔 − 𝑀𝑖 [
𝐸𝐼

𝑀𝑖+𝑚
]

1

2 1

𝐿2

𝑑(𝑈)

𝑑𝜏
] (𝐿 − (𝜉𝐿))

1

𝐿2

𝑑2(𝜂𝐿)

𝑑𝜉2   

= [(𝑀𝑖 + 𝑚)𝑔 −
𝑀𝑖

𝐿2 [
𝐸𝐼

𝑀𝑖+𝑚
]

1

2 𝑑𝑈

𝑑𝜏
] (1 − 𝜉) (

𝑑2𝜂

𝑑𝜉2). 

(124) 

Coriolis force: 

 

 2𝑀𝑖𝑈
𝜕2(𝑤)

𝜕𝑥𝜕𝑡
= 2𝑀𝑖𝑈 [

𝐸𝐼

𝑀𝑖+𝑚
]

1

2 1

𝐿3

𝜕2(𝜂𝐿)

𝜕𝜉𝜕𝜏
=

2𝑀𝑖𝑈

𝐿2 [
𝐸𝐼

𝑀𝑖+𝑚
]

1

2
(

𝜕2𝜂

𝜕𝜉𝜕𝜏
). (125) 

Gravity: 

 

 (𝑀𝑖 + 𝑚)𝑔
𝑑(𝑤)

𝑑𝑥
= (𝑀𝑖 + 𝑚)𝑔

1

𝐿

𝑑(𝜂𝐿)

𝑑𝜉
= (𝑀𝑖 + 𝑚)𝑔 (

𝑑𝜂

𝑑𝜉
). (126) 

External viscous damping: 

 

 𝑐
𝑑(𝑤)

𝑑𝑡
= 𝑐 [

𝐸𝐼

𝑀𝑖+𝑚
]

1

2 1

𝐿2

𝑑(𝜂𝐿)

𝑑𝜏
=

𝑐

𝐿
[

𝐸𝐼

𝑀𝑖+𝑚
]

1

2
(

𝑑𝜂

𝑑𝜏
). (127) 

Inertia: 

 

 (𝑀𝑖 + 𝑚)
𝑑2(𝑤)

𝑑𝑡2 = (𝑀𝑖 + 𝑚) (
𝐸𝐼

𝑀𝑖+𝑚
)

1

𝐿4

𝑑2(𝜂𝐿)

𝑑𝜏2 =
𝐸𝐼

𝐿3 (
𝑑2𝜂

𝑑𝜏2). (128) 

Hydrodynamic forcing: 

 

 

𝑖𝜌𝑒𝜋𝑑2𝜔Γ𝑈0𝑒
𝑖𝜔𝑡  

= 𝑖𝜌𝑒𝜋𝑑2 (
Ω

𝐿2
[

𝐸𝐼

𝑀𝑖 + 𝑚
]

1

2

) Γ𝑈0𝑒
𝑖(

Ω

𝐿2[
𝐸𝐼

𝑀𝑖+𝑚
]

1
2
)(𝜏𝐿2[

𝑀𝑖+𝑚

𝐸𝐼
]

1
2
)

 

= 𝑖𝜌𝑒𝜋𝑑2 1

𝐿2 [
𝐸𝐼

𝑀𝑖+𝑚
]

1

2
ΩΓ𝑈0𝑒

𝑖Ω𝜏. 

(129) 

Using the previously defined shorthand notation, Eq. (114) is rewritten using Eq. (120) through 

Eq. (129) 

 

 

𝐸𝐼

𝐿3 𝜂′′′′ + {
𝑀𝑖𝑈

2

𝐿
−

𝑇̅

𝐿
+

𝑝̅𝐴𝑖

𝐿
(1 − 2𝜈𝛿) − [(𝑀𝑖 + 𝑚)𝑔 −

𝑀𝑖

𝐿2 [
𝐸𝐼

𝑀𝑖+𝑚
]

1

2
𝑈̇] (1 − 𝜉)} 𝜂′′ +

2𝑀𝑖𝑈

𝐿2 [
𝐸𝐼

𝑀𝑖+𝑚
]

1

2
𝜂̇′ + (𝑀𝑖 + 𝑚)𝑔𝜂′ +

𝑐

𝐿
[

𝐸𝐼

𝑀𝑖+𝑚
]

1

2
𝜂̇ +

𝐸𝐼

𝐿3 𝜂̈ + 𝑖𝜌𝑒𝜋𝑑2 1

𝐿2 [
𝐸𝐼

𝑀𝑖+𝑚
]

1

2
ΩΓ𝑈0𝑒

𝑖Ω𝜏 = 0. 

(130) 

Eq. (130) is then divided by 𝐸𝐼/𝐿3 leading to 
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𝜂′′′′ + {
𝐿3

𝐸𝐼

𝑀𝑖𝑈
2

𝐿
−

𝐿3

𝐸𝐼

𝑇̅

𝐿
+

𝐿3

𝐸𝐼

𝑝̅𝐴𝑖

𝐿
(1 − 2𝜈𝛿) − [

𝐿3

𝐸𝐼
(𝑀𝑖 + 𝑚)𝑔 −

𝐿3

𝐸𝐼

𝑀𝑖

𝐿2 [
𝐸𝐼

𝑀𝑖+𝑚
]

1

2
𝑈̇] (1 −

𝜉)} 𝜂′′ +
𝐿3

𝐸𝐼

2𝑀𝑖𝑈

𝐿2 [
𝐸𝐼

𝑀𝑖+𝑚
]

1

2
𝜂̇′ +

𝐿3

𝐸𝐼
(𝑀𝑖 + 𝑚)𝑔𝜂′ +

𝐿3

𝐸𝐼

𝑐

𝐿
[

𝐸𝐼

𝑀𝑖+𝑚
]

1

2
𝜂̇ + 𝜂̈ +

𝐿3

𝐸𝐼
𝑖𝜌𝑒𝜋𝑑2 1

𝐿2 [
𝐸𝐼

𝑀𝑖+𝑚
]

1

2
ΩΓ𝑈0𝑒

𝑖Ω𝜏 = 0. 

(131) 

Simplifying leads to  

 

 

𝜂′′′′ + {((
𝑀𝑖

𝐸𝐼
)

1

2
𝑈𝐿)

2

−
𝑇̅𝐿2

𝐸𝐼
+

𝑝̅𝐴𝑖𝐿
2

𝐸𝐼
(1 − 2𝜈𝛿) − [

(𝑀𝑖+𝑚)𝑔𝐿3

𝐸𝐼
− (

𝑀𝑖

𝑀𝑖+𝑚
)

1

2
(
𝑀𝑖

𝐸𝐼
)

1

2
𝐿𝑈̇] (1 − 𝜉)} 𝜂′′ +

2(
𝑀𝑖

𝑀𝑖+𝑚
)

1

2
(
𝑀𝑖

𝐸𝐼
)

1

2
𝐿𝑈𝜂̇′ +

(𝑀𝑖+𝑚)𝑔𝐿3

𝐸𝐼
𝜂′ +

𝑐𝐿2

[𝐸𝐼(𝑀𝑖+𝑚)]
1
2

𝜂̇ + 𝜂̈ + 𝜌𝑒𝑑
2𝐿 [

1

𝐸𝐼(𝑀𝑖+𝑚)
]

1

2
𝑈0𝑒

𝑖Ω𝜏(𝑖𝜋ΩΓ) = 0.  

(132) 

Or, using newly defined terms 

 

 
𝜂′′′′ + {𝑢2 − Λ + Π(1 − 2𝜈𝛿) − [𝛾 − 𝛽

1

2𝑢̇] (1 − 𝜉)} 𝜂′′ + 2𝛽
1

2𝑢𝜂̇′ + 𝛾𝜂′ + 𝜎𝜂̇ + 𝜂̈ +

Χ(𝑖𝜋ΩΓ) = 0, 
(133) 

where 

 

 

𝑢 = (
𝑀𝑖

𝐸𝐼
)

1

2
𝑈𝐿;   Λ =

𝑇̅𝐿2

𝐸𝐼
;   Π =

𝑝̅𝐴𝑖𝐿
2

𝐸𝐼
;   𝛾 =

(𝑀𝑖+𝑚)𝑔𝐿3

𝐸𝐼
; 

 

𝛽 =
𝑀𝑖

𝑀𝑖+𝑚
;   𝜎 =

𝑐𝐿2

[𝐸𝐼(𝑀𝑖+𝑚)]
1
2

;   Χ = 𝜌𝑒𝑑
2𝐿 [

1

𝐸𝐼(𝑀𝑖+𝑚)
]

1

2
𝑈0𝑒

𝑖Ω𝜏. 

(134) 

These results indicate that each term will contribute to the dynamic behavior of the system. 

3.3.2. Physical Constraints 

The bracketed coefficients in Eq. (133) are seen to introduce tension into the system. If 

the applied axial force (Λ) is taken to be an order of magnitude larger than the combined effects 

of the gravity induced tension (𝛾) and the time-varying flow effects (𝛽
1

2𝑢̇), the effect of these 

two forces may be neglected by using Λ as a bounded input when looking at axial force effects. 

Deconstructing 𝛾 − 𝛽
1

2𝑢̇, the dimensional variables of interest are 𝑀𝑖, 𝑚, 𝐿, 𝐸𝐼, and 𝑈̇.  

The conveyed fluid mass (𝑀𝑖) is a function of the pipes conveyed fluid area (𝐴𝑖) and conveyed 

fluid density.  All potential values for 𝐴𝑖 can be determined for all standard production tube 

geometries using the list of standard geometries provided in API 5CT [113].  The conveyed 
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fluid density is assumed to be bounded between 0𝑘𝑔/𝑚3  for a gaseous fluid and 1500 𝑘𝑔/𝑚3  

for a highly dense fluid.  The pipe mass can be calculated using the standard tubing geometries 

provided in API 5CT [113] and an assumed steel density ranging from 7500 𝑘𝑔/𝑚3  to 

82 00 𝑘𝑔/𝑚3 .  The length of the system is assumed to range between 5𝑚  and 30𝑚 , 

representing one to several lengths of production tubing [113].  The flexural stiffness is found 

using the pipes inertia (calculated using API 5CT [113] values) and an assumed Young’s 

modulus of 200𝐺𝑃𝑎.   

To estimate the maximum fluid acceleration, it is reasonable to assume the fluid will be 

produced using natural drive mechanisms, artificial lift mechanisms, and/or enhanced recovery 

methods.  Generally speaking, natural drive mechanisms and enhanced recovery methods rely 

on reservoir fluid pressures to drive hydrocarbons up to the surface.  The pressure at the 

reservoir layer may be due to natural mechanisms such as water drive or gravity drainage, or 

may be generated through reservoir enhancements such as waterflooding or gas injection.  

When utilizing these types of extraction methods, the conveyed fluid velocity slowly decays as 

the reservoir pressure dissipates due to fluid extraction.  In these instances, it is reasonable to 

assume the conveyed fluid velocity is relatively unchanging (i.e. 𝑑𝑈/𝑑𝑡 ≈ 0) over discrete time 

intervals.  If the hydrocarons are extracted using artificial lift mechanisms, there are two 

paradigms to consider: constant velocity pumping (e.g. electric submersible pumps, jet pumps, 

etc.) and cyclical pumping (e.g. beam or other reciprocating rod pumps).  While constant 

velocity pumping again leads to 𝑑𝑈/𝑑𝑡 ≈ 0  as a reasonable assumption, cyclical pumping 

requires additional investigation.  To estimate the peak acceleration of the conveyed fluid being 

produced by cyclical pumping, assume that the pump cycles at a known rate (strokes per 

minute; 𝑆𝑃𝑀) and with a known stroke length (𝑆𝐿).  If the pump rod displacement profile is 

assumed to be sinusoidal, with the conveyed fluid displacement profile assumed to match, then 
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the displacement can be written as (𝑆𝐿/2)𝑠𝑖𝑛(2𝜋 ∗ 𝑆𝑃𝑀 ∗ 1𝑚𝑖𝑛/60𝑠𝑒𝑐 ∗ 𝑡).  The peak fluid 

acceleration can then be written as (𝑆𝐿/2)  (2𝜋𝑆𝑃𝑀/60)2 . Using a practical relationship 

between 𝑆𝑃𝑀 and 𝑆𝐿 provided by Cholet (2008) [172], the peak acceleration is estimated to be 

−5 𝑚/𝑠2  (or 5 𝑚/𝑠2  upwards).  These inputs are summarized in Table 9. 

 

Table 9. Input Summary 

Variable Minimum Value Maximum Value 

Conveyed Fluid Area, 𝐴𝑖 (𝑚𝑚2) 279 7939 

Conveyed Fluid Density, 𝜌𝑖 (𝑘𝑔 𝑚3⁄ ) 0 1500 

Conveyed Fluid Mass, 𝑀𝑖 (𝑘𝑔 𝑚⁄ ) 0 11.91 

Pipe Cross Sectional Area, 𝐴𝑝 (𝑚𝑚2) 214 4941 

Pipe Density, 𝜌𝑝 (𝑘𝑔 𝑚3⁄ ) 7500 8200 

Pipe Mass, 𝑚 (𝑘𝑔 𝑚⁄ ) 1.61 40.52 

Supported Length, 𝐿 (𝑚) 5 30 

Flexural Stiffness, 𝐸𝐼 (𝑁𝑚2) 3.08𝑒3 1.23𝑒6 

Conveyed Fluid Acceleration, 𝑈̇ (𝑚 𝑠2⁄ ) −5 0 

Each permutation of these physically constrained, dimensioned variables can be used to 

determine a maximum value of 𝛾 − 𝛽
1

2𝑢̇ for each standard tubing geometry.  This maximum 

value of 𝛾 − 𝛽
1

2𝑢̇ can be equated to Λ, allowing the peak tension force to be found.  Based on 

the assumptions made above, the combined effects of the gravity induced tension and the time-

varying flow effects is to induce a linearly varying tension force with a maximum peak 

amplitude of 14.48𝑘𝑁.  Thus, to bound the effects of the gravity induced tension and the time-

varying flow, external axial forces ( 𝑇 ) greater than or equal to ±145𝑘𝑁  (one order of 

magnitude greater than 𝑇𝑝𝑒𝑎𝑘 in Table 10) will be considered when investigating axial force 

effects.  A summary table is shown in Table 10.   
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Table 10. Bounded Tension Force 

Tubing Outer 

Diameter (𝑚𝑚) 

Tubing Wall 

Thickness (𝑚𝑚) 

Flexural Stiffness, 

𝐸𝐼 (𝑁𝑚2) 𝛾 − 𝛽
1

2𝑢̇ 

𝑇̅𝑝𝑒𝑎𝑘 =

(
𝐸𝐼

𝐿2) [𝛾 − 𝛽
1

2𝑢̇] 

(𝑘𝑁) 
26.67 2.87 3.08𝐸 + 03 196.44 0.67 
26.67 3.91 3.73𝐸 + 03 193.27 0.80 
33.40 3.38 7.27𝐸 + 03 126.44 1.02 
33.40 4.55 8.79𝐸 + 03 123.35 1.21 
42.16 3.18 1.49𝐸 + 04 84.51 1.40 
42.16 3.56 1.62𝐸 + 04 82.20 1.48 
42.16 4.85 2.01𝐸 + 04 78.26 1.75 
48.26 3.18 2.30𝐸 + 04 67.22 1.72 
48.26 3.68 2.58𝐸 + 04 64.40 1.84 
48.26 5.08 3.26𝐸 + 04 60.39 2.19 
48.26 6.35 3.76𝐸 + 04 59.26 2.47 
48.26 7.62 4.16𝐸 + 04 59.31 2.74 
52.40 3.96 3.56𝐸 + 04 54.81 2.17 
52.40 5.72 4.64𝐸 + 04 51.03 2.63 
60.32 4.24 5.91𝐸 + 04 42.31 2.78 
60.32 4.83 6.53𝐸 + 04 40.83 2.96 
60.32 6.45 8.03𝐸 + 04 38.66 3.45 
60.32 7.49 8.85𝐸 + 04 38.11 3.75 
60.32 8.53 9.56𝐸 + 04 37.93 4.03 
73.02 5.51 1.34𝐸 + 05 28.38 4.23 
73.02 7.01 1.60𝐸 + 05 26.88 4.78 
73.02 7.82 1.73𝐸 + 05 26.44 5.07 
73.02 8.64 1.84𝐸 + 05 26.15 5.36 
73.02 9.96 2.01𝐸 + 05 25.94 5.80 
73.02 11.18 2.14𝐸 + 05 25.95 6.18 
88.90 5.49 2.51𝐸 + 05 20.46 5.71 
88.90 6.45 2.86𝐸 + 05 19.43 6.17 
88.90 7.34 3.15𝐸 + 05 18.78 6.58 
88.90 9.52 3.79𝐸 + 05 17.89 7.54 
88.90 10.92 4.15𝐸 + 05 17.63 8.12 
88.90 12.09 4.41𝐸 + 05 17.54 8.59 
88.90 13.46 4.68𝐸 + 05 17.53 9.12 
101.60 5.74 3.99𝐸 + 05 16.25 7.19 
101.60 6.65 4.49𝐸 + 05 15.41 7.69 
101.60 8.38 5.37𝐸 + 05 14.42 8.61 
101.60 10.54 6.33𝐸 + 05 13.79 9.70 
101.60 12.70 7.15𝐸 + 05 13.51 10.73 
101.60 15.49 8.02𝐸 + 05 13.45 11.98 
114.30 6.88 6.73𝐸 + 05 12.58 9.40 
114.30 8.56 8.00𝐸 + 05 11.72 10.42 
114.30 9.65 8.76𝐸 + 05 11.36 11.06 
114.30 10.92 9.58𝐸 + 05 11.07 11.79 
114.30 12.70 1.06𝐸 + 06 10.82 12.77 
114.30 14.22 1.14𝐸 + 06 10.70 13.58 
114.30 16.00 1.23𝐸 + 06 10.64 14.48 

    Critical values occurred when the conveyed fluid mass, pipe mass, and support lengths were maximized. 
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3.4. Solution Methodology 

Simplifying the equation of motion using the physical constraints just described, Eq. 

(113) can be rewritten as 

 

 
𝐸𝐼𝑤′′′′ + {𝑀𝑖𝑈

2 − 𝑇̅ + 𝑝̅𝐴𝑖(1 − 2𝜈𝛿)}𝑤′′ + 2𝑀𝑖𝑈𝑤̇′ + (𝑀𝑖 + 𝑚)𝑔𝑤′ + 𝑐𝑤̇ +
(𝑀𝑖 + 𝑚)𝑤̈ − 𝑓ℎ𝑦𝑑𝑟𝑜 = 0. 

(135) 

Since the equation of motion is frequency dependent through the hydrodynamic forcing (Eq. 

(48)), the spectral element method is used to solve for the desired outputs. Operating in the 

frequency domain, the spectral element method assembles element dynamic stiffness matrices 

into a global dynamic stiffness matrix using traditional finite element assembly techniques.  

Additional discussion of the spectral element method can be found in the works of Doyle 

(1989) [173], Lee (2009) [174], Lee et al. (2009) [175], and Lee and Oh (2003) [176].  The 

solution methodology, as applied to Eq. (135), is outlined in the next section. 

3.4.1. Spectral Element Method 

To implement the spectral element method, the governing equation of motion is 

transformed into the Fourier domain by taking the Fourier transform.  The definitions of the 

transform, along with the transform of the spatial derivatives are 

 

 

∫ 𝑤𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
= 𝑊̂(𝑥, 𝜔) = 𝑊̂, 

 

∫ 𝑤′𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
=

𝜕

𝜕𝑥
(∫ 𝑤(𝑥, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞
) = 𝑊̂′, 

 

∫ 𝑤′′𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
=

𝜕2

𝜕𝑥2 (∫ 𝑤(𝑥, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
) = 𝑊̂′′, 

 

∫ 𝑤′′′′𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
=

𝜕4

𝜕𝑥4 (∫ 𝑤(𝑥, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
) = 𝑊̂′′′′, 

(136) 

To the temporal derivatives are calculated using integration by parts  

 

 ∫ 𝑣′(𝑥) 𝑢(𝑥)𝑑𝑥 = 𝑣(𝑥)𝑢(𝑥) − ∫ 𝑣(𝑥)𝑢′(𝑥) 𝑑𝑥. (137) 

The temporal derivatives are  
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∫ 𝑤̇𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
= 𝑤𝑒−𝑖𝜔𝑡|

−∞

∞
− ∫ 𝑤(−𝑖𝜔𝑒−𝑖𝜔𝑡)

∞

−∞
𝑑𝑡 = 𝑖𝜔 ∫ 𝑤𝑒−𝑖𝜔𝑡∞

−∞
𝑑𝑡 = 𝑖𝜔𝑊̂, 

 

∫ 𝑤̈𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
= (𝑖𝜔)2𝑊̂ = −𝜔2𝑊̂. 

(138) 

The mixed-derivative is found as 

 

 ∫ 𝑤̇′𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
= 𝑖𝜔𝑊̂′. (139) 

Using Eq. (55), Eq. (136), Eq. (138), and Eq. (139), Eq. (135) can be rewritten as 

 

 
𝐸𝐼𝑊̂′′′′ + {𝑀𝑖𝑈

2 − 𝑇̅ + 𝑝̅𝐴𝑖(1 − 2𝜈𝛿)}𝑊̂′′ + {2𝑖𝜔𝑀𝑖𝑈 + (𝑀𝑖 + 𝑚)𝑔}𝑊̂′ +
{𝑖𝜔𝑐 − (𝑀𝑖 + 𝑚)𝜔2 − 𝜌𝑒𝜋𝑑2𝜔2Γ}𝑊̂ = 0. 

(140) 

Assume the general solution of Eq. (140) to be 

 

 𝑊̂ = 𝐶𝑒𝑖𝑘𝑥 (141) 

where 𝐶 is a constant and 𝑘 is the wavenumber.  Inserting Eq. (141) into Eq. (140) leads to the 

following dispersion relation 

 

 
𝐸𝐼𝑘4 − {𝑀𝑖𝑈

2 − 𝑇̅ + 𝑝̅𝐴𝑖(1 − 2𝜈𝛿)}𝑘2 + {2𝑖𝜔𝑀𝑖𝑈 + (𝑀𝑖 + 𝑚)𝑔}𝑖𝑘
+ {𝑖𝜔𝑐 − (𝑀𝑖 + 𝑚)𝜔2 − 𝜌𝑒𝜋𝑑2𝜔2Γ} = 0 

(142) 

which can be solved for the four wavenumbers (𝑘𝑟’s), each a function of 𝜔, allowing for Eq. 

(141) to be rewritten as 

 

 𝑊̂ = ∑ 𝐶𝑟𝑒
𝑖𝑘𝑟𝑥4

𝑟=1 = 𝒆𝑪, (143) 

where 

 

 
𝒆 = {𝑒𝑖𝑘1𝑥  𝑒𝑖𝑘2𝑥 𝑒𝑖𝑘3𝑥  𝑒𝑖𝑘4𝑥}, 

 

𝑪 = {𝐶1, 𝐶2, 𝐶3, 𝐶4}. 
(144) 

The nodal degrees of freedom and forces vectors for a single spectral element can be written as 

 

 

𝒅 = {𝑊1, Θ1,𝑊2, Θ2} = {𝑊̂(0), 𝑊̂′(0), 𝑊̂(𝐿𝑒), 𝑊̂′(𝐿𝑒)}, 
 

𝒇 = {𝑄1, 𝑀1, 𝑄2, 𝑀2} = {𝑄(0), −𝑀(0), −𝑄(𝐿𝑒),𝑀(𝐿𝑒)}, 

(145) 

with the nodal orientation as shown in Figure 19. 
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Figure 19. Spectral Element Convention [112] 

The nodal degrees of freedom vector can be rewritten in terms of the constants vector through 

Eq. (143)  

 

 𝒅 = {𝑊̂(0), 𝑊̂′(0), 𝑊̂(𝐿𝑒), 𝑊̂′(𝐿𝑒)} = {𝒆(0), 𝒆′(0), 𝒆(𝐿𝑒), 𝒆′(𝐿𝑒)}𝑪 = 𝑯𝑪, (146) 

where  

 

 𝑯 =

[
 
 
 

1 1 1 1
𝑖𝑘1 𝑖𝑘2 𝑖𝑘3 𝑖𝑘4

𝑒𝑖𝑘1𝐿𝑒
𝑒𝑖𝑘2𝐿𝑒

𝑒𝑖𝑘3𝐿𝑒
𝑒𝑖𝑘4𝐿𝑒

𝑖𝑘1𝑒
𝑖𝑘1𝐿𝑒

𝑖𝑘2𝑒
𝑖𝑘2𝐿𝑒

𝑖𝑘3𝑒
𝑖𝑘3𝐿𝑒

𝑖𝑘4𝑒
𝑖𝑘4𝐿𝑒

]
 
 
 

. (147) 

Using the force relations 

 

 

𝑄 = 𝐸𝐼𝑊̂′′′ − 𝑇̅𝑊̂′, 

 

𝑀 = 𝐸𝐼𝑊̂′′, 

(148) 

the nodal forces vector can be written as 

 

 𝒇 = {𝑄(0), −𝑀(0), −𝑄(𝐿𝑒),𝑀(𝐿𝑒)} = 𝑿𝑪, (149) 

where  

 

 𝑿 =

[
 
 
 

𝑔1 𝑔2 𝑔3 𝑔4

−ℎ1 −ℎ2 −ℎ3 −ℎ4

−𝑔1𝑒
𝑖𝑘1𝐿𝑒

−𝑔2𝑒
𝑖𝑘2𝐿𝑒

−𝑔3𝑒
𝑖𝑘3𝐿𝑒

−𝑔4𝑒
𝑖𝑘4𝐿𝑒

ℎ1𝑒
𝑖𝑘1𝐿𝑒

ℎ2𝑒
𝑖𝑘2𝐿𝑒

ℎ3𝑒
𝑖𝑘3𝐿𝑒

ℎ4𝑒
𝑖𝑘4𝐿𝑒

]
 
 
 

, (150) 

and  

 

 

𝑔𝑟 = −𝑖𝑘𝑟
3𝐸𝐼 − 𝑖𝑘𝑟𝑇̅, 

 

ℎ𝑟 = −𝑘𝑟
2𝐸𝐼. 

(151) 

The nodal degrees of freedom and forces vectors can be related through 𝑪 using Eq. (146) and 

Eq. (149)  
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 𝒇 = 𝑿𝑪 = 𝑿(𝑯−1𝒅) = 𝑺𝒅, (152) 

where 𝑺 is the spectral element matrix 

 

 𝑺 = 𝑿𝑯−1. (153) 

The individual spectral element matrices are assembled into a global dynamic stiffness 

matrix (𝑺𝒈) in a manner analogous to the finite element method.  For a three-element model, as 

shown in Figure 20, the following assembly can be utilized 

 

 𝑺𝒈 = 𝑨𝟏
𝑻𝑺𝟏𝑨𝟏 + 𝑨𝟐

𝑻𝑺𝟐𝑨𝟐 + 𝑨𝟑
𝑻𝑺𝟑𝑨𝟑, (154) 

where 

 

 

𝑨𝟏 = [

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

], 

 

𝑨𝟐 = [

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

], 

 

𝑨𝟑 = [

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

], 

(155) 

and 𝑺𝟏 , 𝑺𝟐 , and 𝑺𝟑  are the spectral element matrices for elements one, two, and three, 

respectively.  This assembly leads to the global dynamic stiffness matrix 

 

 𝑺𝒈 =

[
 
 
 
 
 
 
 
 
𝑆11

1 𝑆12
1 𝑆13

1 𝑆14
1 0 0 0 0

𝑆21
1 𝑆22

1 𝑆23
1 𝑆24

1 0 0 0 0

𝑆31
1 𝑆32

1 𝑆33
1 + 𝑆11

2 𝑆34
1 + 𝑆12

2 𝑆13
2 𝑆14

2 0 0

𝑆41
1 𝑆42

1 𝑆43
1 + 𝑆21

2 𝑆44
1 + 𝑆22

2 𝑆23
2 𝑆24

2 0 0

0 0 𝑆31
2 𝑆32

2 𝑆33
2 + 𝑆11

3 𝑆34
2 + 𝑆12

3 𝑆13
3 𝑆14

3

0 0 𝑆41
2 𝑆42

2 𝑆43
2 + 𝑆21

3 𝑆44
2 + 𝑆22

3 𝑆23
3 𝑆24

3

0 0 0 0 𝑆31
3 𝑆32

3 𝑆33
3 𝑆34

3

0 0 0 0 𝑆41
3 𝑆42

3 𝑆43
3 𝑆44

3 ]
 
 
 
 
 
 
 
 

. (156) 
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Figure 20. Three-Element Beam Model 

The relevant spectral equation is given as 

 

 𝒇𝒈 = 𝑺𝒈𝒅𝒈, (157) 

3.4.2. Incorporating Structural Boundary Conditions 

Structural boundary conditions can be incorporated by (1) deleting the rows and 

columns corresponding to fixed boundaries or (2) adding nodal springs directly into the global 

dynamic stiffness matrix.  The fluid boundary conditions are a function of the structural 

boundary conditions and are discussed in a later section. 

3.4.2.1. Matrix Reduction 

For each degree of freedom in which the displacement or rotation is prevented, the 

governing spectral equation (i.e. Eq. (157)) can be reduced by deleting the rows and columns 

corresponding to that specific degree of freedom.  The spectral equation can be expanded for 

the three-element model given in Figure 20 as  

 

 

[
 
 
 
 
 
 
 
𝑄1

𝑀1

𝑄2

𝑀2

𝑄3

𝑀3

𝑄4

𝑀4]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝑆11

1 𝑆12
1 𝑆13

1 𝑆14
1 0 0 0 0

𝑆21
1 𝑆22

1 𝑆23
1 𝑆24

1 0 0 0 0

𝑆31
1 𝑆32

1 𝑆33
1 + 𝑆11

2 𝑆34
1 + 𝑆12

2 𝑆13
2 𝑆14

2 0 0

𝑆41
1 𝑆42

1 𝑆43
1 + 𝑆21

2 𝑆44
1 + 𝑆22

2 𝑆23
2 𝑆24

2 0 0

0 0 𝑆31
2 𝑆32

2 𝑆33
2 + 𝑆11

3 𝑆34
2 + 𝑆12

3 𝑆13
3 𝑆14

3

0 0 𝑆41
2 𝑆42

2 𝑆43
2 + 𝑆21

3 𝑆44
2 + 𝑆22

3 𝑆23
3 𝑆24

3

0 0 0 0 𝑆31
3 𝑆32

3 𝑆33
3 𝑆34

3

0 0 0 0 𝑆41
3 𝑆42

3 𝑆43
3 𝑆44

3 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑊1

Θ1

𝑊2

Θ2

𝑊3

Θ3

𝑊4

Θ4 ]
 
 
 
 
 
 
 

. (158) 

If the displacements and rotations at nodes 1 and 4 are set to zero (i.e. fixed-fixed boundaries), 

Eq. (158) can be reduced to 
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 [

𝑄2

𝑀2

𝑄3

𝑀3

] =

[
 
 
 
 
𝑆33

1 + 𝑆11
2 𝑆34

1 + 𝑆12
2 𝑆13

2 𝑆14
2

𝑆43
1 + 𝑆21

2 𝑆44
1 + 𝑆22

2 𝑆23
2 𝑆24

2

𝑆31
2 𝑆32

2 𝑆33
2 + 𝑆11

3 𝑆34
2 + 𝑆12

3

𝑆41
2 𝑆42

2 𝑆43
2 + 𝑆21

3 𝑆44
2 + 𝑆22

3 ]
 
 
 
 

[

𝑊2

Θ2

𝑊3

Θ3

]. (159) 

3.4.2.2. Nodal Springs 

Alternatively, consider the case shown in Figure 21 where nodal springs have been 

added to node 1 and 4.  The springs, with stiffness 𝐾𝑡1, 𝐾𝑟1, 𝐾𝑡2, and 𝐾𝑟2, are attached at four 

new nodal points with degrees of freedom 𝑊5, Θ5, 𝑊6, and Θ6. 

 

 
Figure 21. Three-Element Beam Model with Nodal Springs 

Analyzing the translational springs shown in Figure 22, the resulting spring equations are 

 

 

[
𝑄1

𝑄5
] = [

𝐾𝑡1 −𝐾𝑡1

−𝐾𝑡1 𝐾𝑡1
] [

𝑊1

𝑊5
], 

 

[
𝑄4

𝑄6
] = [

𝐾𝑡2 −𝐾𝑡2

−𝐾𝑡2 𝐾𝑡2
] [

𝑊4

𝑊6
]. 

(160) 

Similarly, the rotational spring equations can be found as 

 

 

[
𝑀1

𝑀5
] = [

𝐾𝑟1 −𝐾𝑟1

−𝐾𝑟1 𝐾𝑟1
] [

Θ1

Θ5
], 

 

[
𝑀4

𝑀6
] = [

𝐾𝑟2 −𝐾𝑟2

−𝐾𝑟2 𝐾𝑟2
] [

Θ4

Θ6
]. 

(161) 

 

 
Figure 22. Free Body of Boundary Springs 

Expanding the general spectral equation (Eq. (157)) for the new configuration leads to  
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𝒇𝒈 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑄1

𝑀1

𝑄2

𝑀2

𝑄3

𝑀3

𝑄4

𝑀4

𝑄5

𝑀5

𝑄6

𝑀6]
 
 
 
 
 
 
 
 
 
 
 
 

,     𝒅𝒈 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑊1

Θ1

𝑊2

Θ2

𝑊3

Θ3

𝑊4

Θ4

𝑊5

Θ5

𝑊6

Θ6 ]
 
 
 
 
 
 
 
 
 
 
 
 

, 

 
𝑺𝒈 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑆11

1 + 𝐾𝑡1 𝑆12
1 𝑆13

1 𝑆14
1 0 0 0 0 −𝐾𝑡1 0 0 0

𝑆21
1 𝑆22

1 + 𝐾𝑟1 𝑆23
1 𝑆24

1 0 0 0 0 0 −𝐾𝑟1 0 0

𝑆31
1 𝑆32

1 𝑆33
1 + 𝑆11

2 𝑆34
1 + 𝑆12

2 𝑆13
2 𝑆14

2 0 0 0 0 0 0

𝑆41
1 𝑆42

1 𝑆43
1 + 𝑆21

2 𝑆44
1 + 𝑆22

2 𝑆23
2 𝑆24

2 0 0 0 0 0 0

0 0 𝑆31
2 𝑆32

2 𝑆33
2 + 𝑆11

3 𝑆34
2 + 𝑆12

3 𝑆13
3 𝑆14

3 0 0 0 0

0 0 𝑆41
2 𝑆42

2 𝑆43
2 + 𝑆21

3 𝑆44
2 + 𝑆22

3 𝑆23
3 𝑆24

3 0 0 0 0

0 0 0 0 𝑆31
3 𝑆32

3 𝑆33
3 + 𝐾𝑡2 𝑆34

3 0 0 −𝐾𝑡2 0

0 0 0 0 𝑆41
3 𝑆42

3 𝑆43
3 𝑆44

3 + 𝐾𝑟2 0 0 0 −𝐾𝑟2

−𝐾𝑡1 0 0 0 0 0 0 0 𝐾𝑡1 0 0 0
0 −𝐾𝑟1 0 0 0 0 0 0 0 𝐾𝑟1 0 0
0 0 0 0 0 0 −𝐾𝑡2 0 0 0 𝐾𝑡2 0
0 0 0 0 0 0 0 −𝐾𝑟2 0 0 0 𝐾𝑟2 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

, 

(162) 

where those terms that differ from those in Eq. (158) have been highlighted.  If nodes 5 and 6 

are fixed, matrix reduction can be used to reduce Eq. (162) to 

 

 

[
 
 
 
 
 
 
 
𝑄1

𝑀1

𝑄2

𝑀2

𝑄3

𝑀3

𝑄4

𝑀4]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝑆11

1 + 𝐾𝑡1 𝑆12
1 𝑆13

1 𝑆14
1 0 0 0 0

𝑆21
1 𝑆22

1 + 𝐾𝑟1 𝑆23
1 𝑆24

1 0 0 0 0

𝑆31
1 𝑆32

1 𝑆33
1 + 𝑆11

2 𝑆34
1 + 𝑆12

2 𝑆13
2 𝑆14

2 0 0

𝑆41
1 𝑆42

1 𝑆43
1 + 𝑆21

2 𝑆44
1 + 𝑆22

2 𝑆23
2 𝑆24

2 0 0

0 0 𝑆31
2 𝑆32

2 𝑆33
2 + 𝑆11

3 𝑆34
2 + 𝑆12

3 𝑆13
3 𝑆14

3

0 0 𝑆41
2 𝑆42

2 𝑆43
2 + 𝑆21

3 𝑆44
2 + 𝑆22

3 𝑆23
3 𝑆24

3

0 0 0 0 𝑆31
3 𝑆32

3 𝑆33
3 + 𝐾𝑡2 𝑆34

3

0 0 0 0 𝑆41
3 𝑆42

3 𝑆43
3 𝑆44

3 + 𝐾𝑟2]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑊1

Θ1

𝑊2

Θ2

𝑊3

Θ3

𝑊4

Θ4 ]
 
 
 
 
 
 
 

. (163) 

where the contribution from nodal springs at nodes one and four are apparent.  In the limit that 

the boundary springs are set infinitely rigid, the displacements and rotations at nodes 1 and 4 

become zero and, again using matrix reduction, Eq. (163) simplifies into the expected result of 

Eq. (159). 

3.4.3. System Response 

The natural frequencies of the system can be solved by setting the determinate of the 

global dynamic stiffness matrix (𝑺𝒈) to zero and solving for the frequency for each mode of 

interest 
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 𝑑𝑒𝑡𝑺𝒈(𝜔) = 0. (164) 

For a forced dynamic response, the displacement at the free nodes can be determined by: 

1. Transforming the nodal forces at the free nodes into the frequency domain and 

assemble 𝒇𝒈. 

2. Invert 𝑺𝒈 and solve for 𝒅𝒈 using Eq. (157). 

3. Disassemble the global response into the element response (i.e. 𝒅𝒈 → 𝒅). 

4. Calculate the 𝑪 vector using Eq. (146) and Eq.(147) . 

5. Calculate the frequency response 𝑊̂ using Eq. (143). 

6. Apply an inverse Fourier transform to determine the displacement response in the time 

domain. 

As was done in the Green’s function approach, the inverse Fourier transform is done 

discretely to reduce computation time.  The tradeoff, when compared to the continuous inverse 

transform, is the user must specify which frequencies to include from 𝑊̂  (i.e. Ω𝑠 ) and the 

frequency domain sampling rate (i.e. 𝜔𝑠 ) [177].  The Mathematica script implementing these 

calculations can be found in Appendix C. 

3.5. Script Validation 

Five cases are used to validate the Mathematica script.  

3.5.1. Deflection of a Fixed-Fixed Beam in a Confined, Slightly Viscous Fluid 

A solid beam in a confined, slightly viscous fluid is subject to a harmonic point load 

applied at midspan.  The modeled inputs are given in Table 11.  No other damping is included 

in the system.  The model is solved using both the spectral element model and the Green’s 
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function approach previously described. The superimposed results are shown in Figure 23 to 

overlap. 

 

Table 11. Beam in a Confined, Slightly Viscous Fluid: Input Parameters 

Young’s Modulus, 𝐸 1𝑒11 𝑁 𝑚2⁄  

Beam Density, 𝜌𝑝 7500 𝑘𝑔 𝑚3⁄  

Beam Outer Radius, 𝑑 0.02 𝑚 

Shell Inner Radius, 𝐷 0.06 𝑚 

Beam Length, 𝐿 1 𝑚 

Beam Area, 𝐴 1.257𝑒 − 3 𝑚2 

Beam Inertia, 𝐼 1.257𝑒 − 7 𝑚4 

Beam Mass, 𝑚 9.425 𝑘𝑔 𝑚⁄  

Fluid Kinematic Viscosity, 𝜈 1.12𝑒 − 06 𝑚2 𝑠⁄  

Fluid Density, 𝜌𝑒 999 𝑘𝑔 𝑚3⁄  

Coefficient of Gravity, 𝑔 9.81 𝑚 𝑠2⁄  

Load Magnitude 1000 𝑁 

Forcing Frequency 400.02 𝑟𝑎𝑑 𝑠⁄  

DFT Sampling Frequency, 𝜔𝑠 0.1 𝑟𝑎𝑑 𝑠⁄  

DFT Sampling Range, Ω𝑠 ±12500 𝑟𝑎𝑑 𝑠⁄  

Boundary Conditions Fixed-Fixed - 

 

 

 
Figure 23. Beam in a Confined, Slightly Viscous Fluid: Superimposed Displacement Responses 

3.5.2. Deflection of a Fixed-Fixed Beam in a Confined, Highly Viscous Fluid 

A solid beam in a confined, highly viscous fluid is subject to a harmonic point load 

applied at midspan.  The modeled inputs are given in Table 12.  No other damping is included 

in the system.  The model is solved using both the spectral element model and the Green’s 
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function approach previously described. As in the slightly viscous case, the displacement 

results overlap (see Figure 24). 

 

Table 12. Beam in a Confined, Highly Viscous Fluid: Input Parameters 

Young’s Modulus, 𝐸 2𝑒11 𝑁 𝑚2⁄  

Beam Density, 𝜌𝑝 8000 𝑘𝑔 𝑚3⁄  

Beam Outer Radius, 𝑑 0.06 𝑚 

Shell Inner Radius, 𝐷 0.07 𝑚 

Beam Length, 𝐿 10 𝑚 

Beam Area, 𝐴 1.131𝑒 − 2 𝑚2 

Beam Inertia, 𝐼 1.018𝑒 − 5 𝑚4 

Beam Mass, 𝑚 90.48 𝑘𝑔 𝑚⁄  

Fluid Kinematic Viscosity, 𝜈 2𝑒 − 04 𝑚2 𝑠⁄  

Fluid Density, 𝜌𝑒 1000 𝑘𝑔 𝑚3⁄  

Coefficient of Gravity, 𝑔 9.81 𝑚 𝑠2⁄  

Load Magnitude 1000 𝑁 

Forcing Frequency 50.02 𝑟𝑎𝑑 𝑠⁄  

DFT Sampling Frequency, 𝜔𝑠 0.05 𝑟𝑎𝑑 𝑠⁄  

DFT Sampling Range, Ω𝑠 ±600 𝑟𝑎𝑑 𝑠⁄  

Boundary Conditions Fixed-Fixed - 

 

 

 
Figure 24. Beam in a Confined, Highly Viscous Fluid: Superimposed Displacement Responses 

3.5.3. Natural Frequency of a Simply Supported Beam Under Axial Compression 

A simply supported beam is subject to a compression load within a vacuum.  The 

inputs are listed in Table 13.  The first three natural frequencies of the beam are calculated 

using the spectral element method and the analytical solution, given by Rao (2007) [130] as 

 

 𝜔𝑛 = 𝜋2 (
𝐸𝐼

𝑚𝐿4)

1

2
(𝑁4 +

𝑁2𝑃𝐿2

𝜋2𝐸𝐼
)

1

2
, (165) 



69 

 

 

 

where 𝑁 corresponds to the mode of interest.  The natural frequencies calculated from both 

methods are listed in Table 14 and are seen to match. 

 

Table 13. Beam Under Axial Compression: Input Parameters 

Young’s Modulus, 𝐸 2𝑒11 𝑁 𝑚2⁄  

Beam Density, 𝜌𝑝 7800 𝑘𝑔 𝑚3⁄  

Beam Outer Radius, 𝑑 0.06 𝑚 

Beam Length, 𝐿 12 𝑚 

Beam Area, 𝐴 1.131𝑒 − 2 𝑚2 

Beam Inertia, 𝐼 1.018𝑒 − 5 𝑚4 

Beam Mass, 𝑚 88.22 𝑘𝑔 𝑚⁄  

Coefficient of Gravity, 𝑔 9.81 𝑚 𝑠2⁄  

Applied Compression, 𝑃 5𝑒4 𝑁 

Boundary Conditions Pinned-Pinned - 

 

 

Table 14. Natural Frequencies 

Mode 
Unloaded Natural 

Frequency (𝑟𝑎𝑑/𝑠) 

Compressed Natural Frequency (𝑟𝑎𝑑/𝑠) 

Spectral Element Method Analytical Error 

1 10.41 8.34 8.34 0% 

2 41.65 39.74 39.74 0% 

3 93.71 91.82 91.82 0% 

3.5.4. Critical Fluid Velocity of a Pipe Conveying Fluid in a Vacuum 

The critical fluid velocity is defined as the fluid velocity (for a given mode) where the 

system loses stability by divergence.  A single length of pipe is modeled with three ideal 

boundary conditions: pinned-pinned, pinned-fixed, and fixed-fixed.  For each boundary 

condition, the critical fluid velocity of the first mode is calculated using the spectral element 

method and is then compared to the critical fluid velocity provided by Païdoussis (2014) [169].  

The input parameters used are listed in Table 15.  The critical fluid velocities for the three 

boundary conditions are listed in Table 16 and show excellent agreement.  Note that the 

normalized fluid velocity is given by Eq. (134) and is repeated here for convenience. 

 

 𝑢 = (
𝑀𝑖

𝐸𝐼
)

1

2
𝑈𝐿. (166) 
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Table 15. Critical Fluid Velocity of a Pipe Conveying Fluid: Input Parameters 

Young’s Modulus, 𝐸 1.5𝑒10 𝑁 𝑚2⁄  

Pipe Density, 𝜌𝑝 7000 𝑘𝑔 𝑚3⁄  

Conveyed Fluid Density, 𝜌𝑖 84.10 𝑘𝑔 𝑚3⁄  

Pipe Outer Radius, 𝑑 0.06 𝑚 

Pipe Wall Thickness, 𝑤𝑡  0.003 𝑚 

Pipe Length, 𝐿 20 𝑚 

Pipe Area, 𝐴𝑝 1.103𝑒 − 3 𝑚2 

Conveyed Fluid Area, 𝐴𝑖 1.021𝑒 − 2 𝑚2 

Pipe Inertia, 𝐼 1.888𝑒 − 6 𝑚4 

Pipe Mass, 𝑚 7.719 𝑘𝑔 𝑚⁄  

Conveyed Fluid Mass, 𝑀𝑖 0.858 𝑘𝑔 𝑚⁄  

Coefficient of Gravity, 𝑔 0 𝑚 𝑠2⁄  

Applied Compression, 𝑃 0 𝑁 

 

 

Table 16. A Comparison of Critical Fluid Velocities 

 Critical Fluid 

Velocity (𝑚/𝑠) 
Normalized Critical Fluid Velocity 

Boundary 

Condition 

Spectral Element 

Method 

Spectral Element 

Method 

Païdoussis 

(2014) [169] 
Error 

Pinned-Pinned 28.53 3.141 𝜋 −0.006% 

Pinned-Fixed 40.80 4.492 4.493 −0.001% 

Fixed-Fixed 57.07 6.284 2𝜋 0.011% 

3.5.5. Damping Ratio of a Vibrating Fixed-Fixed Beam in a Viscous Fluid 

A fixed-fixed beam is subject to a midspan harmonic point load (the system properties 

are given in Table 17).  The forcing frequency is significantly lower than the first natural 

frequency such that the applied load is pseudo-static.  After two-and-a-quarter cycles of loading 

the harmonic load is removed and the beam is allowed to freely vibrate.  The resulting 

displacement time history is shown in Figure 25. 
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Table 17. Vibration of a Damped Beam: Input Parameters 

Young’s Modulus, 𝐸 2𝑒11 𝑁 𝑚2⁄  

Beam Density, 𝜌 4000 𝑘𝑔 𝑚3⁄  

Beam Outer Radius, 𝑑 0.05 𝑚 

Shell Inner Radius, 𝐷 0.057 𝑚 

Beam Length, 𝐿 9 𝑚 

Beam Area, 𝐴 7.854 − 3 𝑚2 

Beam Inertia, 𝐼 4.909𝑒 − 6 𝑚4 

Beam Mass, 𝑚 31.416 𝑘𝑔 𝑚⁄  

Fluid Kinematic Viscosity, 𝜈 6𝑒 − 05 𝑚2 𝑠⁄  

Fluid Density, 𝜌𝑒 900 𝑘𝑔 𝑚3⁄  

Coefficient of Gravity, 𝑔 9.81 𝑚 𝑠2⁄  

Load Magnitude, 𝑃 1000 𝑁 

Forcing Frequency 1.02 𝑟𝑎𝑑 𝑠⁄  

DFT Sampling Frequency, 𝜔𝑠 0.05 𝑟𝑎𝑑 𝑠⁄  

DFT Sampling Range, Ω𝑠 ±200 𝑟𝑎𝑑 𝑠⁄  

Boundary Conditions Fixed-Fixed - 

 

 

 
Figure 25. Vibration of a Damped Beam: Displacement Time History 

The maximum analytical pseudo-static displacement is given by Eq. (74), reproduced 

here for convenience 
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 Δ𝑚𝑖𝑑𝑠𝑝𝑎𝑛 =
𝑃𝐿3

192𝐸𝐼
. (167) 

The maximum displacement given by the analytical equation shows excellent 

agreement with the results from the spectral element method (3.87𝑒 − 3𝑚 vs. 3.88𝑒 − 3𝑚; 

error = 0.3%).   

The free-vibration response can be used to determine the natural frequency and 

damping ratio of the system.  The free-vibration displacement is windowed and plotted in the 

Fourier domain (see Figure 26 where the first and third damped frequencies are visible; the 

second mode is not seen as the midpoint node is analyzed).  The first damped frequency is 

found to be 𝜔𝑑 = 27.15 𝑟𝑎𝑑 𝑠⁄ . 

  

 
Figure 26. FFT of Windowed Displacement Response 

Defining the logarithmic decrement to be the natural logarithm of the ratio between two 

successive displacement amplitudes  
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 𝐿𝐷 = 𝑙𝑛
𝑤1

𝑤2
, (168) 

the same free vibration response can be used to calculate the average logarithmic decrement: 

𝐿𝐷𝑎𝑣𝑔 = 1.137.  The logarithmic decrement can be used to find the damping ratio as 

 

 𝜁 =
𝐿𝐷

√4𝜋2+𝐿𝐷2
. (169) 

Using the average logarithmic decrement, the damping ratio is calculated as 𝜁 = 0.178.  With 

the damped frequency and the damping ratio known, the natural frequency and the imaginary 

component of the natural frequency can be calculated from  

 

 

𝜔𝑛 =
𝜔𝑑

√1−𝜁2
, 

 

𝜔𝑖 = 𝜁𝜔𝑛. 

(170) 

with the numeric results 𝜔𝑛 = 27.59 𝑟𝑎𝑑 𝑠⁄  and 𝜔𝑖 = 4.91 𝑟𝑎𝑑 𝑠⁄ .  Table 18 compares the 

above frequency results with the output using Eq. (164); excellent agreement is seen. 

 

Table 18. A Comparison of Outputs 

 Results From… 
Error 

 Displacement Response Eq. (164) 

𝜔𝑑 27.15 27.14 0.03% 

𝜔𝑖 4.91 4.92 0.20% 

𝜔𝑛 27.59 27.59 0% 

𝜁 0.178 0.178 0% 

3.6. Parametric Study 

As previously stated, it is assumed that the yet-to-be designed energy harvester will be 

included as part of the production string.  In this configuration, the vibrational response of the 

production string acts as a ground motion input driving the energy harvester.  These driving 

motions will be colored by the natural frequencies of the production string and limited by the 

damping in the system.  Thus, it is important to understand how various inputs affect the natural 

frequencies and damping in the system.  To this end, the analytical model developed using the 

spectral element method is used in a parametric study to characterize the dynamic behavior of 



74 

 

 

 

the production string.  The inputs for the investigated cases are tabulated in Appendix D [178].  

Only the first mode is investigated in each case as (1) the first mode often dominates the 

response of the system and (2) research indicates that three dimensional effects become non-

trivial for higher order modes when employing a hydrodynamic function [142], [145].  In the 

outputs that follow, the conveyed fluid velocity and first natural frequency are 

nondimensionalized as 

 

 𝑢 = (
𝑀𝑖

𝐸𝐼
)

1

2
𝑈𝐿,    𝛺 = (

𝑀𝑖+𝑚

𝐸𝐼
)

1

2
𝜔𝐿2. (171) 

3.6.1. Configuration 

The assumed system configuration is shown in Figure 27 where elastic springs have 

been used as the boundary restraints.  Changes in stiffness and mass due to the tubing 

connections are neglected for simplicity - while the analytical model can incorporate these 

connections, the simplified model is sufficient to illustrate the trends of interest.  Since the final 

configuration of the structural housing is unknown, the structural housing is not included in the 

model. 
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Figure 27. System Configuration 

3.6.2. Fluid Boundary Conditions 

The importance of the fluid boundary conditions have been illustrated by Kuiper et al. 

[179] and Païdoussis et al. [180], where it was shown that fluid boundary conditions may have 

a significant impact on the systems behavior.  For the current study, the conveyed fluid at the 

inlet and outlet is assumed to be in a flow direction tangential to the deformed pipe, which is 

restrained from transverse displacements at the boundaries (i.e. the momentum of the fluid is 

assumed not to change at the boundaries – the fluid is imagined to be flowing into adjacent 

lengths of equally-pressurized pipe with slope continuity at the boundaries).  While a larger 

multi-span model may provide a more realistic representation of the in-situ system, the added 

complexity distracts from the emphasis of the current findings, which are sufficiently conveyed 

with the simple model shown in Figure 27.   

3.6.3. Practical Calculation of the Natural Frequency and Damping Ratio 

By setting the determinant of the global dynamic stiffness matrix to zero 
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 𝑑𝑒𝑡𝑺𝒈(𝜔) = 0, (172) 

the natural frequencies of the system can be determined; the frequencies are real for undamped 

systems and contain both real and imaginary parts for systems with damping.  For undamped 

systems, the Mathematica root solver “FindRoot” is employed.  For damped systems, the 

argument is taken to be complex  

 

 𝑑𝑒𝑡𝑺𝒈(𝜔𝑑 + 𝑖𝜔𝑖) = 0, (173) 

and a brute force method is used where 𝜔𝑑 (the damped frequency) and 𝜔𝑖 (corresponding to 

the rate of decay in the amplitude of vibration) are iterated until Eq. (173) is approximately 

satisfied.   

For underdamped systems the relationship between 𝜔𝑑 , 𝜔𝑖 , 𝜔𝑛 , and 𝜁  is generally 

known to be  

 

 
𝜔𝑑 = √1 − 𝜁2𝜔𝑛, 

 

𝜔𝑖 = 𝜁𝜔𝑛. 

(174) 

Squaring and then adding both equations in Eq. (174) leads to 

 

 𝜔𝑛 = √𝜔𝑑
2 + 𝜔𝑖

2, (175) 

which then allows the damping ratio to be calculated as  

 

 𝜁 = √1 − (
𝜔𝑑

𝜔𝑛
)

2

=
𝜔𝑖

𝜔𝑛
. (176) 

Alternatively, for specific cases the damping ratio can be estimated via the 

hydrodynamic function.  For the cases used in the parametric study, where the translational 

displacement at the beam boundaries are restricted (i.e. 𝑤(0) = 𝑤(𝐿) = 0  or alternatively 

𝐾𝑡1 = 𝐾𝑡2 = ∞), the Coriolis force does no work [169], [181].  In such cases, and when the 

viscous damping term (𝑐) is taken to be zero, damping arises solely from the hydrodynamic 

function.  Once the natural frequency (𝜔𝑛) is calculated (i.e. Eq. (175)) the systems damping 

ratio can be found as [131] 
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 𝜁 =
𝑐𝑣

𝑐𝑐𝑟
, (177) 

where at the natural frequency 

 

 

𝑐𝑣 = −𝜌𝑒𝜋𝑑2𝜔𝑛Γ𝑖, 

 

𝑐𝑐𝑟 = 2(Γ𝑟𝜌𝑒𝜋𝑑2 + 𝑚 + 𝑀𝑖)𝜔𝑛, 

(178) 

leading to 

 

 𝜁 =
−𝜌𝑒𝜋𝑑2Γ𝑖

2(Γ𝑟𝜌𝑒𝜋𝑑2+𝑚+𝑀𝑖)
, (179) 

where 𝜔𝑛 is taken as the hydrodynamic function’s argument. 

Lastly, consider the scenario in which the argument of Eq. (173) is taken to be wholly 

real.  The equality of Eq. (173) cannot be satisfied as only trivial values of the argument can 

drive both the real and imaginary output to zero, that is 

 

 𝑑𝑒𝑡𝑺𝒈(𝜔𝑟𝑒𝑎𝑙) = 𝐴 + 𝑖𝐵 ≠ 0, (180) 

where 𝐴 and 𝐵 are some constants.   However, a wholly real frequency can be found that drives 

the real part of the determinant (i.e. 𝐴) to zero 

 

 Re[𝑑𝑒𝑡𝑺𝒈(𝜔𝑟𝑒𝑎𝑙)] = 0. (181) 

If 𝜔𝑟𝑒𝑎𝑙 is taken to be an approximation of the natural frequency (𝜔𝑛.𝑎), Eq. (179) can 

be used to find an approximation for the damping ratio (again assuming that damping arises 

solely from the hydrodynamic function). 

To compare these various methods, three damped cases (i, ii, iii) are investigated.  The 

inputs for each case are shown in Appendix E.  For each case, the conveyed fluid velocity is 

incrementally increased up to the bifurcation velocity (i.e. 𝜁 = 1); the frequencies and damping 

ratios are recorded at each step.  The results are plotted in Figure 28 through Figure 30. 

Figure 28 plots the natural frequencies (based on 𝜔𝑛 found from Eq. (175) and 𝜔𝑛.𝑎 

found from Eq. (181)) versus the conveyed fluid velocity.  Figure 29 plots three estimates of the 

damping ratio versus conveyed fluid velocity: (a) Eq. (176) utilizing 𝜔𝑛, (b) Eq. (179) utilizing 
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𝜔𝑛, and (c) Eq. (179) utilizing 𝜔𝑛.𝑎.  Figure 30 plots discrete frequency-damping ratio pairs: (a) 

Eq. (176) utilizing 𝜔𝑛 , (b) Eq. (179) utilizing 𝜔𝑛 , and (c) Eq. (179) utilizing 𝜔𝑛.𝑎 .  For 

reference, also included in Figure 30 are continuous lines generated by plotting Eq. (179) for 

arbitrary frequency values.   

As the various methods are in general agreement, the third method (i.e. (c) Eq. (179) 

utilizing 𝜔𝑛.𝑎) will be used in the parametric study.  This method is selected as it requires the 

least computational effort as only one frequency variable needs to be solved.  

 

 
Figure 28. Fluid Velocity vs. Natural Frequency 
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Figure 29. Fluid Velocity vs. Damping Ratio 

(a) Eq. (176) utilizing 𝜔𝑛, (b) Eq. (179) utilizing 𝜔𝑛, and (c) Eq. (179) utilizing 𝜔𝑛.𝑎 

 

 
Figure 30. Natural Frequency vs. Damping Ratio 

(a) Eq. (176) utilizing 𝜔𝑛, (b) Eq. (179) utilizing 𝜔𝑛, and (c) Eq. (179) utilizing 𝜔𝑛.𝑎 
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3.6.4. Conveyed Fluid Velocity 

Using the inputs from cases 1 and 2 (see Appendix D), the natural frequencies of a 

fixed-fixed and a pinned-pinned system (vibrating in a vacuum) are calculated as the conveyed 

fluid velocity is incrementally increased.  The results are presented in Figure 31 and represent 

the baseline cases. 

 

 
Figure 31. Conveyed Fluid Velocity: Flow Velocity vs. Natural Frequency [178] 

The natural frequency is seen to decrease as the fluid velocity increases.  This is due to 

an increasing compression in the system stemming from the centrifugal force generated by the 

conveyed fluid.  Upon revisiting Eq. (135), specifically the second and third terms, the applied 

axial force is seen to be proportional to the conveyed fluid velocity squared (𝑇̅~𝑀𝑖𝑈
2): as the 

fluid velocity increases, the compression in the system increases.  As the compression in the 

system approaches the Euler buckling load, the natural frequency approachs zero until, finally, 

divergence instability is reached at the critical fluid velocity (𝑢𝑐𝑟 ).  For both cases, the 

nondimensional natural frequencies for zero fluid flow (22.37, 9.87) and critical flow velocity 

(−2𝜋, −𝜋) match published data [130], [169].   
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3.6.5. Axial Force 

Cases 3 through 6 include external axial loads applied to the baseline systems (150𝑘𝑁 

tension and 250𝑘𝑁 compression) to investigate the effects of axial force.  The systems first 

natural frequencies are plotted as a function of conveyed fluid velocity for cases 1 through 6 in 

Figure 32. 

 

 
Figure 32. Axial Force Effects: Fixed-Fixed (Left) and Pinned-Pinned (Right) Boundaries [178] 

The frequency offset at zero fluid flow is analogous to a beam under an applied tension 

or compression: the natural frequency of the beam will shift according to the applied axial load.  

For instance, consider the effect of the applied compression in case 4.  Per Bolotin (1974) 

[182], the applied compressive force reduces the real part of the natural frequency as 

 

 Ω𝑐 = Ω𝑛√1 + 𝑇̅ 𝑃𝐸𝑢𝑙𝑒𝑟⁄ , (182) 

where 𝑃𝐸𝑢𝑙𝑒𝑟 is the Euler buckling load of the pipe and Ω𝑛for the unloaded case (i.e. case 1) 

was previously found to be 22.37.  For the given inputs, the Euler buckling load can be 

calculated as 1123.9𝑘𝑁, leading to a predicted natural frequency of Ω𝑐 = 19.73 which agrees 

well with the spectral element result of 19.80 (error = 0.3%).   
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The shift in the critical fluid velocity can also be calculated a priori.  At the onset of the 

divergence instability, the applied compression in the system is limited to 𝑃𝐸𝑢𝑙𝑒𝑟.  The critical 

fluid velocity can then be calculated from 

 

 𝑀𝑖𝑈𝑐𝑟
2 = 𝑃𝐸𝑢𝑙𝑒𝑟 + 𝑇̅, (183) 

where for case 4 inputs the analytical calculation results in 𝑈𝑐𝑟−𝑐𝑎𝑠𝑒 4 = −351.6𝑚/𝑠, or in 

non-dimensional form 𝑢𝑐𝑟−𝑐𝑎𝑠𝑒 4 = −5.54.  These results (and the results from the three other 

axially loaded cases) agree well with the results produced by the spectral element model shown 

in Figure 32.  

3.6.6. Annulus Fluid Density 

The annulus fluid density manifests itself in the equation of motion as a multiplier of—

but does not play a direct role in defining—the hydrodynamic function.  It is, however, used to 

define the hydrodynamic force (see Eq. (48)).  The annulus density could then be thought of as 

a sort of scaling factor applied to the effects of the hydrodynamic function where for 𝜌𝑒 = 0 the 

hydrodynamic function plays no role while for 𝜌𝑒 ≠ 0 hydrodynamic effects will be included.   

The zero flow case (i.e. 𝑈 = 0) provides a useful realization in inviscid systems: the 

effects of the annulus fluid density can be directly observed through the added mass contributed 

by the hydrodynamic function.  For inviscid systems, the hydrodynamic function is wholly real.  

Regrouping this inviscid hydrodynamic term within the equation of motion (i.e. Eq. (140)) 

leads to 

 

 
𝐸𝐼𝑊̂′′′′ + {𝑀𝑖𝑈

2 − 𝑇̅ + 𝑝̅𝐴𝑖(1 − 2𝜈𝛿)}𝑊̂′′ + {2𝑖𝜔𝑀𝑖𝑈 + (𝑀𝑖 + 𝑚)𝑔}𝑊̂′ +
{𝑖𝜔𝑐 − (𝑀𝑖 + 𝑚 + 𝜌𝑒𝜋𝑑2Γ𝑟)𝜔

2}𝑊̂ = 0. 
(184) 

where the added mass term (i.e. 𝜌𝑒𝜋𝑑2Γ𝑟) becomes apparent.  For case 1, where 𝜌𝑒 = 0, the 

natural frequency of the system can be calculated as 𝛺𝑛 = 22.37 (𝜔𝑛 = 67.18 𝑟𝑎𝑑 𝑠⁄ ).  Note 

that the system mass includes both the conveyed fluid and pipe mass and can be written as 
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𝑀𝑖 + 𝑚 = 49.34𝑘𝑔 𝑚⁄  (i.e. there is no added mass).  The stiffness of case 1 (and in fact cases 

7 and 8) can then be calculated as 𝐾 = 𝜔𝑛
2(𝑀𝑖 + 𝑚) = 222700 𝑘𝑔 𝑚𝑠2⁄ .  By selecting various 

fluid densities and hydrodynamic functions, the shift in natural frequency due to the added mass 

(𝜌𝑒𝜋𝑑2𝛤𝑟) can be analytically calculated as 

 

 𝜔𝑛 = (
𝐾

𝑀𝑖+𝑚+𝜌𝑒𝜋𝑑2Γ𝑟
)

1

2
,   𝛺𝑛 = (

𝐾(𝑀𝑖+𝑚)

𝐸𝐼(𝑀𝑖+𝑚+𝜌𝑒𝜋𝑑2Γ𝑟)
)

1

2
𝐿2, (185) 

and compared with the spectral element output.  Table 19 shows excellent agreement between 

the simplified method presented here and the spectral element estimates of the natural 

frequencies.  

 

Table 19. The Role of Annulus Fluid Density [178] 

Case Γ𝑟 
𝜌𝑒  

(𝑘𝑔 𝑚3⁄ ) 

Added Mass, 

𝜌𝑒𝜋𝑑2Γ𝑟 (𝑘𝑔 𝑚⁄ ) 

Total Mass 
(𝑘𝑔 𝑚⁄ ) 

Natural Frequency, 𝛺𝑛 

Analytical** 
Spectral 

Element 
Error 

Fixed-Fixed Boundaries 

1* 1 0 0.00 49.34 22.37 22.37 0% 

7 1 2000 26.55 75.89 18.04 18.04 0% 

8 2 600 15.93 65.27 19.45 19.45 0% 

Pinned-Pinned Boundaries 

2* 1 0 0.00 49.34 9.87 9.87 0% 

9 3 1200 47.78 97.12 7.03 7.03 0% 

10 2 600 15.93 65.27 8.58 8.58 0% 

*Baseline case 

**𝐾𝑓𝑖𝑥𝑒𝑑−𝑓𝑖𝑥𝑒𝑑 = 222700𝑘𝑔 𝑚𝑠2⁄ ; 𝐾𝑝𝑖𝑛𝑛𝑒𝑑−𝑝𝑖𝑛𝑛𝑒𝑑 = 43300𝑘𝑔 𝑚𝑠2⁄  

3.6.7. Annulus Viscosity and Geometry 

The annulus kinematic fluid viscosity (𝜐) and annulus geometry (𝐷, 𝑑) act to shape the 

hydrodynamic function in a complicated way (recall Eq. (48)).  Rather than trying to 

understand the complex link between these three variables and the system response (i.e. natural 

frequency and damping ratio), it is easier to first examine the relationship between these 

variables and the hydrodynamic function and later observe how the hydrodynamic function 

affects the system response. 
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3.6.7.1. The Hydrodynamic Function 

The hydrodynamic functions for different combinations of viscosity and geometry (see  

Table 20) are plotted in Figure 33 where 𝜔  is taken as purely real (the plotted 

frequency is not normalized as the hydrodynamic function is not a function of 𝐸, 𝐼, 𝐿, etc.). 

Recall that the real part of the hydrodynamic function generates an added mass in the system 

while the imaginary part generates a viscous drag.  For the range of inputs considered, the real 

part of the hydrodynamic function is dominated by effects stemming from the annulus 

geometry (i.e. the 𝐷/𝑑 ratio) while changes in the annulus viscosity result in only a small 

offset.  In general: 

 𝑅𝑒[Γ] and |𝐼𝑚[Γ]| decrease with an increasing 𝐷/𝑑 ratio. 

 𝑅𝑒[Γ] and |𝐼𝑚[Γ]| increase with increasing viscosity, 𝜐. 

 

Table 20. Hydrodynamic Function Matrix [178] 

  𝐷/𝑑 

  1.1 1.3 

𝜐 (
𝑚2

𝑠
) 

5𝑒 − 5 H1 H2 

1𝑒 − 5 L1 L2 

𝑑 = 0.065𝑚   
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Figure 33. Hydrodynamic Functions: Real (Top) and Imaginary (Bottom) Parts [178] 

3.6.7.2. Inviscid Systems 

Taking 𝜐 = 0 results in an inviscid system and a purely real hydrodynamic function 

with the reduced form [131] 

 

 𝛤𝑖𝑛𝑣𝑖𝑠𝑐𝑖𝑑 =
1+(𝑑 𝐷⁄ )2

1−(𝑑 𝐷⁄ )2
 . (186) 

To illustrate the effect of added mass, cases 11 through 14 are investigated with the 

spectral element results plotted in Figure 34.  As was done in the previous section, the shifts in 

natural frequency for zero flow velocity can be predicted analytically and compared to the 

spectral element results.  This is done in Table 21 with the results exhibiting excellent 

agreement between the two methods. 
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In each case, the inclusion of added mass does not change the critical flow velocity as 

divergence is a static phenomenon and is not dependent on inertial effects.  This is illustrated in 

Figure 34 which shows the investigated cases converging to their respective critical flow 

velocities (−2𝜋 and – 𝜋, respectively).   

 

 
Figure 34. Inviscid Systems: Fixed-Fixed (Left) and Pinned-Pinned (Right) Boundaries [178] 

 

 

Table 21. Added Mass Effects with Zero Flow [178] 

Case Γ𝑟 
𝜌𝑒  

(𝑘𝑔 𝑚3⁄ ) 

Added Mass, 

𝜌𝑒𝜋𝑑2Γ𝑟 (𝑘𝑔 𝑚⁄ ) 
Total Mass 
(𝑘𝑔 𝑚⁄ ) 

Natural Frequency, Ω𝑛 

Analytical** 
Spectral 

Element 
Error 

Fixed-Fixed Boundaries 

1* 1 0 0.00 49.34 22.37 22.37 0% 

11 3.90 1050 54.33 103.67 15.44 15.44 0% 

12 9.62 1050 134.03 183.37 11.61 11.61 0% 

Pinned-Pinned Boundaries 

2* 1 0 0.00 49.34 9.87 9.87 0% 

13 3.90 1050 54.33 103.67 6.81 6.81 0% 

14 9.62 1050 134.03 183.37 5.12 5.12 0% 

*Baseline case 

**𝐾𝑓𝑖𝑥𝑒𝑑−𝑓𝑖𝑥𝑒𝑑 = 222700𝑘𝑔 𝑚𝑠2⁄ ; 𝐾𝑝𝑖𝑛𝑛𝑒𝑑−𝑝𝑖𝑛𝑛𝑒𝑑 = 43300𝑘𝑔 𝑚𝑠2⁄  

3.6.7.3. Viscous Systems 

Six viscous cases (cases 15  through 20 ) are analyzed to observe how the full 

hydrodynamic function effects the system (i.e. 𝜐 ≠ 0).  The resulting fluid velocity vs. damped 

frequency curves are shown in Figure 35; the benchmark cases are also included for reference.  
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The damping ratios, as a function of fluid velocity, are plotted in Figure 36 for each viscous 

case. 

 

 
Figure 35. Viscous Systems: Fixed-Fixed (Left) and Pinned-Pinned (Right) Boundaries 

 

 

 
Figure 36. Viscous Systems: Fixed-Fixed (Left) and Pinned-Pinned (Right) Boundaries 

Comparing Figure 35 and Figure 36, bifurcation is seen to occur in each viscous case 

when the damped frequency reaches zero.  Once bifurcation is reached, the system behaves in 

an overdamped manner (i.e. 𝜁 > 1 as shown in Figure 36).  The bifurcation velocity of each 

case differs due to the different levels of viscous drag in each case (as represented by the 

damping ratio in Figure 36).  If the conveyed fluid velocity is incrementally increased past the 
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bifurcation velocity, eventually the system will diverge (𝑅𝑒[Ω] = 𝐼𝑚[Ω] = 0); the system 

becomes unstable once divergence is reached.   

Unlike the inviscid systems, the vertical shift in the real part of the natural frequency is 

now attributable to both added mass (stemming from 𝑅𝑒[Γ]) and viscous drag (stemming from 

𝐼𝑚[Γ]).  This difference can be illustrated by comparing cases 15 and 16.  The added mass 

functions for these two cases are shown in Figure 37.  The added mass in case 15 is seen to be 

larger than the added mass for case 16 which, if no other hydrodynamic effect existed, would 

have resulted in Ω𝑑−𝑐𝑎𝑠𝑒 15 < Ω𝑑−𝑐𝑎𝑠𝑒 16. However, since the viscous drag associated with case 

16 is much larger than that of case 15 (see Figure 36), the combined effect of the viscous 

annulus fluid is Ω𝑑−𝑐𝑎𝑠𝑒 15 > Ω𝑑−𝑐𝑎𝑠𝑒 16, as seen in Figure 35. 

 

 
Figure 37. Added Mass 

Lastly, compare the damping ratios of cases 15 and 18 for zero fluid flow: 𝜁𝑐𝑎𝑠𝑒 15 =

0.065 < 𝜁𝑐𝑎𝑠𝑒 18 = 0.108.  Noting that the only difference in inputs between these two cases is 

the stiffness of the rotational boundary springs (case 15 models a fixed-fixed system while case 
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18  models a pinned-pinned system) the damping in each system is seen to be boundary 

condition dependent, or more specifically, frequency-dependent. 

3.6.8. Frequency-Dependent Damping 

In this section, after illustrating the damping ratios frequency-dependence through the 

hydrodynamic function, the conveyed fluid velocity is used as a parametric variable to 

demonstrate how changing a system’s stiffness (and therefore its natural frequency) impacts the 

damping ratio.  An illustrative example is included. 

3.6.8.1. The Role of the Hydrodynamic Function 

The damping ratios dependence on frequency is shown in Figure 38, where Eq. (179) 

and the relevant inputs from Appendix D have been used.  It is apparent that the damping ratio 

is frequency dependent through the hydrodynamic function with systems operating at a higher 

frequency (e.g. those with stiff rotational boundary springs) experiencing less damping.  Noting 

the relatively constant nature of Γ𝑟 over the range of interest shown (see Figure 39), the change 

in damping is primarily attributed to the change in Γ𝑖  where, as previously mentioned, Γ𝑖  is 

known to contribute viscous drag to the system. 

 

 
Figure 38. Damping Ratio per Eq. (179) 
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Figure 39. Hydrodynamic Functions: Real (Top) and Imaginary (Bottom) Parts 

3.6.8.2. Damping for Zero Fluid Flow 

Three different annulus fluid viscosities are investigated for the case of zero conveyed 

fluid velocity: low, moderate, and high viscosity fluids (cases 21, 22, and 23 respectively).  For 

each system, the two rotational boundary springs are incrementally increased while the natural 

frequencies and damping ratios calculated.  The results are three dimensional surfaces for each 

fluid viscosity relating the rotational boundary stiffness to the systems natural frequency and 

damping ratio.  The three-dimensional surfaces for case 22 are shown in Figure 40 and Figure 

41.  Note that the four limiting boundary conditions (Pinned-Pinned, Fixed-Pinned, Pinned-

Fixed, and Fixed-Fixed) are identified. 
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Figure 40. Rotational Spring Stiffness vs. Natural Frequency for Zero Fluid Velocity: Case 22 

 

 

 
Figure 41. Rotational Spring Stiffness vs. Damping Ratio for Zero Fluid Velocity: Case 22 

To better illustrate the behavior of the three cases, two dimensional plots are generated 

by taking three sections through each three dimensional surface. The results for all three 
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annulus fluid viscosities are presented in Figure 42 and Figure 43 where for the same fluid 

viscosity Figure 43 indicates stiffer systems result in lower damping ratios: 𝜁𝐹𝐹 < 𝜁𝐹𝑃 = 𝜁𝑃𝐹 <

𝜁𝑃𝑃.   

 

 
Figure 42. Rotational Spring Stiffness vs. Natural Frequency for Zero Fluid Velocity 

                   , 𝐾𝑟1 = 𝐾𝑟2 = 𝐾𝑟 ;                   , 𝐾𝑟1 = 0 (Pinned) & 𝐾𝑟2 = 𝐾𝑟; 

                   , 𝐾𝑟1 = 10000 (Fixed) & 𝐾𝑟2 = 𝐾𝑟  
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Figure 43. Rotational Spring Stiffness vs. Damping Ratio for Zero Fluid Velocity 

                   , 𝐾𝑟1 = 𝐾𝑟2 = 𝐾𝑟 ;                   , 𝐾𝑟1 = 0 (Pinned) & 𝐾𝑟2 = 𝐾𝑟; 

                   , 𝐾𝑟1 = 10000 (Fixed) & 𝐾𝑟2 = 𝐾𝑟  

3.6.8.3. Damping for Non-Zero Fluid Flow 

For non-zero fluid flow, the two-dimensional plots of Figure 42 and Figure 43 are 

expanded to include the conveyed fluid velocity as an additional variable.  This results in new 

three-dimensional surfaces where the natural frequency and damping ratio are functions of both 

the stiffness of the rotational boundary springs and the conveyed fluid velocity.  Figure 44 and 

Figure 45 plots two manifestations of these new surfaces for case 23.  In Figure 44, the natural 

frequency is seen to decrease as the conveyed fluid velocity is increased. This behavior is 

explained by the induced compression stemming from the centrifugal force: as the fluid 

velocity increases, the induced compression increases resulting in a decreasing natural 

frequency.  This decreasing natural frequency results in an increasing damping ratio due to the 

frequency-dependent nature of the hydrodynamic function (see Figure 38). This relationship is 

apparent in Figure 45 which shows the damping ratio increasing with increasing fluid velocity. 
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The damping ratio in Figure 45 is shown up to the systems bifurcation velocity after which the 

system no longer behaves in an underdamped manner (i.e. 𝜁 > 1 past the bifurcation velocity).   

Figure 44. Fluid Velocity vs. Rotational Spring Stiffness vs. Natural Frequency – Case 23 

(a) 𝐾𝑟1 = 𝐾𝑟2 = 𝐾𝑟;  (b) 𝐾𝑟1 = 𝐾𝑟 & 𝐾𝑟2 = 0 (Pinned)
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Figure 45. Fluid Velocity vs. Rotational Spring Stiffness vs. Damping Ratio – Case 23 

(a) 𝐾𝑟1 = 𝐾𝑟2 = 𝐾𝑟;  (b) 𝐾𝑟1 = 𝐾𝑟  & 𝐾𝑟2 = 0 (Pinned) 

Since both the natural frequency and damping ratio are a function of the rotational 

stiffness of the boundary springs, Figure 44 and Figure 45 can be combined to directly relate 

the natural frequency, damping ratio, and conveyed fluid velocity.  The resulting three-

dimensional surfaces are shown in Figure 46 (note that some of the contours are nearly 

indistinguishable from each other).  If the Figure 46 surfaces are collapsed onto the plane 

containing the natural frequency and damping ratio, the resulting two-dimensional projection is 

the same as that found in Figure 38. 
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Figure 46. Fluid Velocity vs. Natural Frequency vs. Damping Ratio – Case 23 

 (a) 𝐾𝑟1 = 𝐾𝑟2 = 𝐾𝑟;  (b) 𝐾𝑟1 = 𝐾𝑟  & 𝐾𝑟2 = 0 (Pinned) 

Figure 47 shows the limiting cases of Figure 46 projected onto the plane containing the fluid 

velocity and damping ratio (cases 21 and 22 are also displayed).  Several trends are noted: 

 For the same boundary conditions and conveyed fluid velocity, higher viscosity 

systems have higher damping ratios. 

 For the same annulus fluid viscosity and conveyed fluid velocity, systems with stiffer 

rotational boundary springs have lower damping ratios. 
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 For the same annulus fluid viscosity, the bifurcation velocity increases as the rotational 

boundary springs are stiffened. 

 For the same boundary conditions, the bifurcation velocity decreases with increasing 

annulus fluid viscosity. 

 As the fluid velocity increases, the rate at which the damping ratio changes increases. 

 

 
Figure 47. The Effect of Fluid Velocity on Damping for Three Limiting Cases 

This last trend is further illustrated in Figure 48 where the percentage change in the damping 

ratios for the limiting cases are plotted; the damping ratios at 𝑢 = 0 are taken as baseline 

values.  Two additional trends are noted: 

 For the same boundary conditions and conveyed fluid velocity, high-viscosity systems 

see a greater percentage change in damping ratio compared to their low viscosity 

counterparts. 



98 

 

 

 

 For the same annulus fluid viscosity and conveyed fluid velocity, systems with stiffer 

rotational boundary springs see a lower percentage change in damping ratio compared 

to systems with softer rotational springs. 

 

 
Figure 48. Change in Damping Ratio with Baseline at 𝑢 = 0 

3.6.8.4. An Illustrative Example 

These results are especially relevant when there is uncertainty in the characterization of 

a system.  Should the produced fluid velocity be greater than originally estimated or if the 

rotational stiffness of the boundary springs are initially over-predicted, Figure 47 has shown 

that the actual damping ratio will be higher than originally predicted.  Additionally, Figure 48 

has shown that such an error in estimating the damping ratio is exacerbated as the error in either 

the viscosity or fluid velocity increases.   
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As a numeric example assume a preliminary investigation of a system indicates a 

moderate viscosity annulus fluid (case 22 ), a normalized fluid velocity of one, rotational 

boundary springs with normalized stiffness of nine and other inputs as listed in Appendix D.  

The damping ratio for this system (case A) is calculated as 0.082 and is shown on the three 

dimensional domain of Figure 49.   

If the system is actually operated at a normalized fluid velocity of two (case B; 𝜁 =

0.086) or has a normalized rotational stiffness of one (case C; 𝜁 = 0.108), the resulting error in 

estimating the damping ratio would be 4% and 31%, respectively.  If the initial estimate of 

both the fluid velocity and spring stiffness’s were in error (case D; 𝜁 = 0.119), the error jumps 

to 45%.  The three dimensional surface of Figure 49 is compressed into a two dimensional plot 

in Figure 50 to more clearly illustrate the difference in the resulting damping ratios. 

 

 
Figure 49. Damping Estimates: Potential Errors Stemming from Conveyed Fluid Velocity and/or Spring 

Stiffness’s (3D) 
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Figure 50. Damping Estimates: Potential Errors Stemming from Conveyed Fluid Velocity and/or Spring 

Stiffness’s (2D) 

If the annulus fluid viscosity is initially underestimated (i.e. case 22 was assumed in 

design but case 24 better represented the in-situ conditions), additional errors ensue.  Figure 51 

and Figure 52 depict the damping ratios in the new systems (A’-D’) for an error in the annulus 

fluid viscosity (case A’; 𝜁 = 0.099); annulus fluid viscosity and conveyed fluid velocity (case 

B’; 𝜁 = 0.104); annulus fluid viscosity and rotational spring stiffness’s (case C’; 𝜁 = 0.134); 

and annulus fluid viscosity, conveyed fluid velocity, and rotational spring stiffness’s (case D’; 

𝜁 = 0.150).  The resulting errors (when compared to the baseline case A) are tabulated in Table 

22 and in most cases are shown to be non-trivial. 
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Figure 51. Potential Errors in Damping Estimates Stemming from Annulus Fluid Viscosity, Conveyed 

Fluid Velocity, and Spring Stiffness’s (3D) 

 

 

 
Figure 52. Potential Errors in Damping Estimates Stemming from Annulus Fluid Viscosity, Conveyed 

Fluid Velocity, and Spring Stiffness’s (2D) 
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Table 22. Numeric Example: Damping Ratios and Corresponding Errors 

Configuration Damping Ratio Error (%) 

A 0.082 - 

B 0.086 4% 
C 0.108 31% 
D 0.119 45% 
A' 0.099 21% 
B' 0.104 26% 
C' 0.134 63% 
D' 0.150 82% 

3.6.9. Summary 

To develop an optimal vibration based energy harvester for downhole deployment in a 

hydrocarbon well, it is important to accurately quantify the natural frequency and damping in 

the system since these parameters will affect the accelerations driving the energy harvesting 

system. To this end a parametric study was undertaken to investigate how changes in axial 

force, annulus geometry, annulus fluid properties, conveyed fluid velocity, and rotational 

boundary stiffness affect the dynamic behavior of a producing hydrocarbon well.  The 

following results were found:  

 Axial force acts to stiffen (tension) or soften (compression) a system.   

 The annulus fluid density acts to scale the effect of the hydrodynamic function, in turn 

defining the hydrodynamic force.   

 The effects of the hydrodynamic function are driven by the annulus fluid viscosity and 

annulus geometry.   

 The real part of the hydrodynamic function contributes additional mass to the system, 

which causes a shift in the systems natural frequency but not in the velocity at which 

bifurcation occurs.   
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 The imaginary part of the hydrodynamic function acts to both shift the natural 

frequency of the system and the velocity at which bifurcation occurs.  

 A shift in the bifurcation point is seen when the annulus fluid is viscous or externally 

applied axial forces are included in the system.   

 Increasing the conveyed fluid velocity increases the systems damping ratio.  

 Stiffer systems saw the damping ratio increase at a slower rate when compared to 

flexible systems as the conveyed fluid velocity was increased. 

These findings give insight into the dynamic behavior of a submerged pipe conveying 

fluid, like what might be found in a hydrocarbon producing well.  This study is a necessary step 

towards the development of a yet-to-be-designed energy harvester as the dynamics of the 

production string are expected to play a large role in the design of the energy harvester. 

A portion of Chapter 3 has been published in SPIE Smart Structures and Materials+ 

Nondestructive Evaluation and Health Monitoring, Eric Kjolsing and Michael Todd, 2016.  The 

title of this paper is “Gauging the Feasibility of a Downhole Energy Harvesting System 

Through a Proof-of-Concept Study”. The dissertation author was the primary investigator and 

author of this paper. 

Chapter 3 also includes content from four other publications, co-authored by Eric 

Kjolsing and Michael Todd.  In each case the dissertation author was the primary investigator 

and author: 

 “Shifts in the Fundamental Frequency of a Fluid Conveying Pipe Immersed in a 

Viscous Fluid for use in the Optimization of an Energy Harvesting System to be 

Deployed in a Producing Hydrocarbon Well”, Society of Petroleum Engineers Western 

Regional Meeting, 2015. 
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 “A Frequency Study of a Clamped-Clamped Pipe Immersed in a Viscous Fluid 

Conveying Internal Steady Flow for use in Energy Harvester Development as Applied 

to Hydrocarbon Production Wells”, SPIE Smart Structures and Materials+ 

Nondestructive Evaluation and Health Monitoring, 2015. 

 “Frequency Response of a Fixed-Fixed Pipe Immersed in Viscous Fluids, Conveying 

Internal Steady Flow”, Journal of Petroleum Science and Engineering, 2015. 

 “The Impact of Boundary Conditions and Fluid Velocity on Damping for a Fluid 

Conveying Pipe in a Viscous Fluid”, SPIE Smart Structures and Materials+ 

Nondestructive Evaluation and Health Monitoring, 2016. 

A portion of Chapter 3 has been submitted for publication in the Journal of Sound and 

Vibration, Eric Kjolsing and Michael Todd, 2016.  The title of this paper is “Damping of a 

Fluid-Conveying Pipe Surrounded by a Viscous Annulus Fluid”.  The dissertation author was 

the primary investigator and author of this paper. 
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Chapter 4  

Preliminary Structural Housing Design 

4.1. Overview 

Using reasonable assumptions for an in-situ well configuration, a preliminary structural 

housing is designed to determine the maximum radial width available to house an energy 

harvesting system.  This radial width dictates the maximum size of the energy harvesting 

elements and accompanying equipment (i.e. power storage elements, circuitry, etc.).  The 

housings structural design accounts for American Petroleum Institute (API) loading scenarios 

[114] and uses standard API tubing geometries [113].

The following sections introduce the two preliminary design configurations considered,

a demonstration case which walks through the design process, and the summarized results of 

the realizations investigated. 

4.2. Preliminary Configurations 

Two configurations are initially considered.  Configuration A, shown in Figure 53, 

modifies a standard production tube geometry by welding into the string two custom machined 
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seating elements and an outer coaxial pipe.  Configuration A requires that the outer coaxial pipe 

be split in two and then welded together around the production tube. 

 

 
Figure 53. Configuration A 

Configuration B, shown in Figure 54, mimics the structural design used by 

Schlumberger for their pressure and temperature gauges [183]-[184].  One possible 

construction sequence would have the production tube formed by protruding a thicker walled 

tube and then machining down to the required geometry.  Smaller tubes (which contain the 

energy harvesters) can be fixed within the resulting longitudinal groves. 

 

 
Figure 54. Configuration B 

Both configurations are sub-optimal from a commercial perspective as neither permit 

easy access to the energy harvester cavity (the void in which the energy harvesting system will 
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be placed).  However, the purpose of this proof-of-concept design is to determine the lower 

bound volumetric space available to house an energy harvesting system, not to provide a final 

production-ready design.  In reality, any preliminary design will be modified and improved 

upon by industry prior to deployment to increase functionality and ease of use (e.g. the 

inclusion of threaded rather than welded connections).   

4.3. Demonstration Case 

The design process presented in this section begins by selecting a design operating 

pressure and temperature.  Using a specific production tube outer diameter, the tubes wall 

thickness is selected so as to meet API load demands away from the structural housing (i.e. 

away from the modified length of tubing).  The axial capacity of the production tube, when 

simultaneously subjected to the design fluid pressures, is then calculated (i.e. accounting for 

triaxial stress).  At this point, the limits of the design loads on the unmodified production tube 

(both pressure loads and axial forces) have been quantified for the specific production tube 

geometry.   

A preliminary housing configuration (i.e. the modified tube geometry) is then 

introduced.  The housing is shown to provide sufficient capacity when loaded with the design 

loads by means of strength checks in-line with API requirements and Abaqus finite element 

models; in some cases, the targeted operating pressure or axial load carrying capacity is reduced 

to meet the allowable stress requirements.  After the first demonstration housing is shown to be 

sufficient, other design pressures are selected and the process repeated.  The various volumetric 

openings are tabulated.  Design calculations are summarized in Appendix F. 
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4.3.1. Designing the Unmodified Production Tube 

In industry, the production tube is selected by the well designer to optimize the 

production of hydrocarbons while simultaneously being structurally sufficient to withstand the 

load demands.  An optimum production tube geometry cannot be selected without knowing 

numerous details about the well (which is beyond the scope of this work).  Thus, an alternative 

selection method is required. 

From API Specification 5CT (2005) [113], it is noted that standard production tubes 

come in ten outer diameters (or sizes), ranging from 1.050𝑖𝑛 to 4.50𝑖𝑛.  Each of these sizes is 

available in a variety of wall thicknesses, end finishes, and steel grades.  Of the ten sizes, the 

3.50𝑖𝑛 diameter tubing offers the most commercially available options.  As such, the 3.50𝑖𝑛 

diameter tubing is assumed for the basis of the housing design.  The steel grade is selected to be 

𝐿80 (80𝑘𝑠𝑖 yield strength) as it is commonly used in many oil and gas fields [185].  The wall 

thickness is initially assumed to be 0.375𝑖𝑛 (although this is the design variable) as it is the 

median available wall thickness for a 3.50𝑖𝑛-𝐿80 production tube. 

4.3.1.1. Design Pressure/Temperature 

Based on the original capacity targeted by LANL, a design pressure of 10𝑘𝑠𝑖  and 

temperature of 210℉ is selected. These values approach the upper limit of “conventional” 

wells with higher values being termed High-Pressure/High-Temperature (HPHT) wells [186].   

In a global sense, the design temperature results in a thermal load whose effect will be 

to expand or contract the entire production string.  This temperature loading will result in an 

axial force (if movement is prevented) or no axial force (if slip is allowed; this is common).  

Since this thermal load can be converted into a theoretically equivalent axial load, the thermal 

load may be included in the applied axial load.   
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4.3.1.2. Bursting 

Bursting occurs when the internal tube pressure exceeds the external tube pressure, and 

the production tube wall begins to yield.  The bursting pressure can be written as [114]  

 

 𝑃𝐵 = 0.875 (
𝑌𝑝𝑤𝑡

𝑑
), (187) 

where 𝑃𝐵  is the burst pressure, 𝑌𝑝  is the minimum yield strength, 𝑤𝑡  is the nominal wall 

thickness, and 𝑑  is the nominal outer radius.  The 0.875  factor is included to reduce the 

effective wall thickness to account for a 12.5% manufacturing tolerance permitted by API 

Bulletin 5C2 [187].  For the geometry and steel grade selected, the minimum burst pressure is 

found to be 𝑃𝐵 = 15𝑘𝑠𝑖.  A factor of safety (termed the design factor) is required and is given 

by 

 

 𝐷𝐹 =
𝑃𝐵

𝑝𝑖
, (188) 

where 𝑝𝑖 is the internal pressure (assuming zero external pressure, 𝑝𝑜 = 0𝑘𝑠𝑖).  In practice the 

minimum design factor is selected by the designer; based on recommendations from the Society 

of Petroleum Engineers [188] a value of 1.25 is selected for this demonstration case.  The 

actual design factor is then calculated as 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 = 15𝑘𝑠𝑖 10𝑘𝑠𝑖⁄ = 1.50.  Thus, the selected 

geometry and strength exceeds the strength required ( 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 > 𝐷𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ) under the 

scenario of a pressurized production tube and an empty annulus (𝑝𝑖 = 10𝑘𝑠𝑖, 𝑝𝑜 = 0𝑘𝑠𝑖).  Note 

that the next smallest wall thickness for a 3.50𝑖𝑛 production tube is 0.289𝑖𝑛 and would result 

in an insufficient bursting strength capacity (𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 = 1.15).  A table summarizing the 

calculations can be found in Appendix F. 

4.3.1.3. Collapse 

Collapse occurs when the external tube pressure exceeds the internal tube pressure and 

the production tube begins to yield or loose load carrying capacity.  There are four equations, 
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each representing different collapse mechanisms, governing the pressure differential that results 

in collapse: yield strength, plastic, transition, and elastic collapse.  The equations used in 

determining the collapse limit can be found in API Bulletin 5C3 (2008) [114]. 

4.3.1.3.1. Yield Strength Collapse 

Yield strength collapse occurs when the external pressure is sufficiently large to 

overcome the yield strength of the pipe.  It can be written as 

 

 𝑃𝑌𝑝 = 2𝑌𝑝 [
(2𝑑 𝑤𝑡⁄ )−1

(2𝑑 𝑤𝑡⁄ )2
], (189) 

and only occurs when the 2𝑑 𝑤𝑡⁄  ratio is below a threshold specified in API Bulletin 5C3 

(2008) [114].  For grade 𝐿80 steel, this threshold is 13.38.  Since the actual 2𝑑 𝑤𝑡⁄  ratio is 

below this value (9.33 < 13.38), yield strength collapse is a possible failure mechanism.  For 

the values selected in this demonstration case, 𝑃𝑌𝑝 = 15.31𝑘𝑠𝑖 

4.3.1.3.2. Plastic Collapse 

Plastic collapse is based on empirical testing of 2488 test cases [187].  The pressure at 

which plastic collapse occurs can be written as  

 

 𝑃𝑝 = 𝑌𝑝 [
𝐴

(2𝑑 𝑤𝑡⁄ )
− 𝐵] − 𝐶, (190) 

where the coefficients 𝐴, 𝐵, and 𝐶  are specified by API Bulletin 5C3 (2008) [114] and are 

dependent on the grade of steel.  For grade 𝐿80 steel, these coefficients are 𝐴 = 3.071, 𝐵 =

0.0667, and 𝐶 = 1955.  For 𝐿80 steel, the range of 2𝑑 𝑤𝑡⁄  values for which plastic collapse 

occurs is 13.38 ≤ 2𝑑 𝑤𝑡⁄ ≤ 22.47.  Since the actual 2𝑑 𝑤𝑡⁄  ratio (9.33) does not fall within 

this range, plastic collapse will not occur for the selected geometry and steel grade. 
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4.3.1.3.3. Transition Collapse 

Transition collapse represents a transitional (numeric) fit between the plastic and elastic 

collapse mechanisms [187].  It can be calculated as 

 

 𝑃𝑇 = 𝑌𝑝 [
𝐹

(2𝑑 𝑤𝑡⁄ )
− 𝐺], (191) 

where the coefficients 𝐹  and 𝐺  are specified in in API Bulletin 5C3 (2008) [114] and are 

dependent on the grade of steel.  For grade 𝐿80 steel, these coefficients are 𝐹 = 1.998 and 𝐺 =

0.0434.  For 𝐿80 steel, the range of 2𝑑 𝑤𝑡⁄  values for which transition collapse occurs is 

22.47 ≤ 2𝑑 𝑤𝑡⁄ ≤ 31.02.  Since the actual 2𝑑 𝑤𝑡⁄  ratio (9.33) does not fall within this range, 

transition collapse will not occur. 

4.3.1.3.4. Elastic Collapse 

Applicable to thin-wall pipes, elastic collapse is based on theoretical elastic instability 

failure. The elastic collapse pressure can be calculated as 

 

 𝑃𝐸 =
46.95 x 106

(2𝑑 𝑤𝑡⁄ )[(2𝑑 𝑤𝑡⁄ )−1]2
, (192) 

For grade 𝐿80  steel, elastic collapse occurs when 2𝑑 𝑤𝑡⁄  exceeds 31.02 . Since the actual 

2𝑑 𝑤𝑡⁄  ratio (9.33) does not exceed this value, elastic collapse will not occur. 

4.3.1.3.5. Governing Collapse Case 

Among the four potential collapse cases, yield strength collapse is seen to govern due 

to the actual 2𝑑 𝑤𝑡⁄  ratio falling within the appropriate bounds.  Note that this result is in-line 

with the listed collapse resistance in Cholet (2008) [172].  Assuming a required collapse design 

factor of 1.1 [188], the actual collapse design factor is found to be sufficient from  

 

 𝐷𝐹 =
𝑃𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒

𝑝𝑜
, (193) 
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where 𝑝𝑜  is the external pressure (assuming the internal pressure is zero; 𝑝𝑖 = 0𝑘𝑠𝑖 , 𝑝𝑜 =

10𝑘𝑠𝑖) and 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 = 1.53.  A table summarizing the calculations can be found in Appendix 

F. 

4.3.1.4. Combined Stress 

API requires the combined effect of axial load and fluid pressure to be taken into 

account to ensure satisfactory production tube performance.  However, since there is no actual 

specific well currently being designed for this demonstration case, the design axial force is 

unknown.  Instead of using the design pressure and axial force demands to check that the 

resulting stress demands are below the permitted values, the known material capacity (i.e. 

80𝑘𝑠𝑖) and the design pressure forces (i.e. 10𝑘𝑠𝑖) are used to determine the maximum tension 

and compression forces that can be safely sustained by the system. 

Four scenarios are investigated: two pressure conditions (bursting and collapse) and 

two axial force conditions (compression and tension).  The typical design scenario is to ensure 

that the Von Mises stress demand that results from the triaxial loading is below the capacity of 

the system.  API 5C3 (2008) [114] includes a separate check for the collapse/tension scenario 

which. 

4.3.1.4.1. Collapse Pressure and Axial Tension 

When calculating the collapse resistance of a pipe under tension loading, API reduces 

the collapse capacity by modifying the allowable yield stress.  The yield strength of axial stress 

equivalent grade is given by as [114] 

 

 𝑌𝑝𝑎 = [√1 −
3

4
(

𝜎𝑧

𝑌𝑝
)

2

−
1

2

𝜎𝑧

𝑌𝑝
] 𝑌𝑃, (194) 
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where 𝜎𝑧 is the axial stress (tension is positive) and 𝑌𝑝𝑎  is the yield strength of axial stress 

equivalent grade. To use this equation, the designer inputs 𝜎𝑧 and 𝑌𝑃 to determine 𝑌𝑝𝑎.  The 

collapse resistance under axial stress is then calculated using formula factors with 𝑌𝑝𝑎  (i.e. 

calculating the 𝐴, 𝐵, 𝐶, 𝐹, 𝐺  coefficients used in the previous collapse calculations using 𝑌𝑝𝑎 

instead of 𝑌𝑝).  Based on a required design factor, the applied tension can be increased until the 

actual design factor equals (or is slightly larger than) the minimum required design factor.  For 

the current configuration, the maximum applied tension while still meeting the collapse 

requirements is found to be 124𝑘𝑖𝑝, as shown in Appendix F. 

4.3.1.4.2. Burst Pressure and Axial Tension 

The combined effect of burst pressure and tension stress is accounted for using a Von 

Mises (triaxial) stress check.  The Von Mises equation is written as 

 

 𝜎𝑉𝑀 =
1

√2
√(𝜎𝑡 − 𝜎𝑟)

2 + (𝜎𝑟 − 𝜎𝑧)
2 + (𝜎𝑧 − 𝜎𝑡)

2, (195) 

where 𝜎𝑉𝑀 is the Von Mises stress, 𝜎𝑡 is the tangential or hoop stress, 𝜎𝑟 is the radial stress, and 

𝜎𝑧 is the axial stress.  The stress components (Lame expressions) can be written as [189] 

 

 

𝜎𝑡 =
(𝑑−𝑤𝑡)

2𝑝𝑖−𝑑2𝑝𝑜

𝑑2−(𝑑−𝑤𝑡)
2 +

(𝑝𝑖−𝑝𝑜)(𝑑−𝑤𝑡)
2𝑑2

𝑟2(𝑑2−(𝑑−𝑤𝑡)
2)

, 

 

𝜎𝑟 =
(𝑑−𝑤𝑡)

2𝑝𝑖−𝑑2𝑝𝑜

𝑑2−(𝑑−𝑤𝑡)
2 −

(𝑝𝑖−𝑝𝑜)(𝑑−𝑤𝑡)
2𝑑2

𝑟2(𝑑2−(𝑑−𝑤𝑡)
2)

, 

(196) 

where 𝑟 is the radial distance (i.e. 𝑟 = 𝑑 when investigating the outer diameter and 𝑟 = 𝑑 − 𝑤𝑡 

when investigating the inner diameter of the production tube).  For the specific geometry in 

question, the applied tension can be increased to 225𝑘𝑖𝑝 before the combined burst and tension 

Von Mises stress exceeds the allowable capacity.  A table summarizing the calculations can be 

found in Appendix F. 
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4.3.1.4.3. Collapse Pressure and Axial Compression 

The same Von Mises stress check is used for the combined loading of collapse and 

compression.  The compression can be set to 305𝑘𝑖𝑝  (exceeding 𝐴𝑔𝑟𝑜𝑠𝑠𝑌𝑝 ) before the 

combined collapse and compression Von Mises stress exceeds the allowable capacity. A table 

summarizing the calculations can be found in Appendix F. 

4.3.1.4.4. Burst Pressure and Axial Compression 

The same Von Mises stress check is used for the combined loading of bursting and 

compression.  The compression can be set to 107𝑘𝑖𝑝  before the combined bursting and 

compression Von Mises stress exceeds the allowable capacity. A table summarizing the 

calculations can be found in Appendix F. 

4.3.2. Maximum Outer Diameter for the Structural Housing 

The structural housing projects beyond the outer diameter of the production tube in 

order to provide space in which to place an energy harvesting system.  The housings outer 

diameter is limited by the inner diameter of the casing.  The selection of the casing outer 

diameter and wall thickness, like the selection of the production tube, is done by the well 

designer who has a number of geometries available [113].  To size the outer diameter of the 

casing in the current demonstration case, without having to analyze the casing for unknown soil 

loads, a suggested casing geometry provided by Renpu (2011) [190] is used.  For a 3.50𝑖𝑛 

production tube, an appropriate casing outer diameter is listed as 7.0𝑖𝑛.  For this demonstration 

case, the casing wall thickness is selected as the median thickness for manufactured 7.0𝑖𝑛-𝐿80 

casing, which per API 5CT (2005) [113] is 0.453𝑖𝑛.   

To account for tolerances and wobble in the well, the housings outer diameter should 

be limited to the diameter of the drift mandrel (a device lowered through the casing prior to 
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insertion of the production tube to ensure sufficient space).  For casings with an outer diameter 

less than 9.625𝑖𝑛, API 5CT (2005) [113] indicates a standard drift mandrel diameter 0.125𝑖𝑛 

less than the inner diameter of the casing.  So, for a casing inner diameter of 6.094𝑖𝑛, an 

appropriate drift mandrel diameter is 5.969𝑖𝑛.  Thus, to ensure sufficient space, the structural 

housings outer diameter is limited to 5.969𝑖𝑛.   

4.3.3. Designing the Structural Housing – Configuration A 

The design of the structural housing is done using both code equations and finite 

element models.  The wall thickness of the outer coaxial pipe is sized using the API 

requirements previously presented.  This ensures that the outer coaxial pipe has sufficient 

capacity away from any boundary effects induced by the seating element (see Figure 53).  Since 

the seating element introduces boundary effects, the actual stress distribution near the seating 

element will differ from that assumed in the code equations.  Once the wall thickness of the 

outer coaxial pipe is selected, finite element (FE) models are used to validate the design near 

the seating element. 

4.3.3.1. Outer Diameter of Outer Coaxial Pipe 

Based on the maximum housing outer diameter of 5.969𝑖𝑛, a housing outer diameter of 

5.50𝑖𝑛 is selected; this outer diameter coincides with standard manufactured pipe geometry 

[113].  The three available wall thicknesses for this standard tubing diameter (grade 𝐿80) are 

0.304𝑖𝑛, 0.361𝑖𝑛, and 0.415𝑖𝑛.   

4.3.3.2. Sizing the Outer Coaxial Pipe Wall Thickness Using API Equations 

The wall thickness of the outer coaxial pipe is sized using the API requirements 

previously presented in Sections 4.3.1.3, 4.3.1.4.1, and 4.3.1.4.3. Bursting is not considered as 
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the pressure within the harvester cavity is never expected to be greater than the external 

(annulus) fluid pressure. 

4.3.3.2.1. Collapse 

The calculations to size the outer coaxial pipe wall thickness to withstand collapse 

loading are identical to those performed in Section 4.3.1.3.  Based on the calculations, the wall 

thickness is increased to 0.415𝑖𝑛 so as to maintain the minimum required design factor. A table 

summarizing the calculations can be found in Appendix F. 

4.3.3.2.2. Collapse Pressure and Axial Loads 

Under the combined loading scenario of collapse and axial force, two changes to the 

calculation set used in Section 4.3.1.4 are required.  First, the nominal area used in the 

calculation is increased to include the cross sectional area of both the production tube and the 

outer coaxial pipe (see Figure 55).  Since both elements are supporting axial load, the effective 

applied axial stress is reduced which will affect the Von Mises stress estimate.   

 

 
Figure 55. Nominal Area 

Second, the compression induced by the annulus fluid is added to the applied axial force to 

arrive at an “actual” axial force.  The need for this inclusion is apparent in Figure 56 where the 

protrusion of the outer coaxial pipe is seen to provide a projected area over which the annulus 

fluid induces compression. 
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Figure 56. Induced Compression Stemming from External Fluid Pressure 

The calculations show that the 0.415𝑖𝑛 wall thickness is capable of supporting both the 124𝑘𝑖𝑝 

tension and 305𝑘𝑖𝑝 applied compression loads previously found in the design of the production 

tube (see Section 4.3.1.4).  A table summarizing the calculations can be found in Appendix F. 

4.3.3.3. Designing the Seating Element with Abaqus Finite Element Models 

The seating element is designed using finite element models in Abaqus version 6.12.  

Following a mesh refinement study and an investigation into thermal effects, the seating 

element is analyzed to ensure sufficient strength when subjected to design loads.  Two different 

geometric configurations are used in the analysis with the sole difference being the length of the 

harvester cavity (as shown in Figure 57).  The 4𝑖𝑛  cavity length (“short span” model) 

represents the smallest housing that might be fabricated. The 22𝑖𝑛 cavity length (“long span” 

model) is sufficiently long that the Von Mises stress near the center of the harvester cavity 

converges to the results found from theoretical analysis of a uniform pipe (i.e. boundary effects 

become negligible).  The internal radial fillets are dimensioned as 𝑅𝑖 = 0.3ℎ and 𝑅𝑜 = 0.7ℎ, 

with ℎ being the radial cavity width. This internal fillet geometry was determined based on 

preliminary analysis of four different fillet geometries under various load cases.  Other 

preliminary calculations showed that an external radial fillet of 𝑅 = 3.0𝑖𝑛 produced reasonable 

results.  Various Abaqus renderings and outputs are shown in Figure 58. 
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Figure 57. Model Geometry 

 

 

 
Figure 58. Abaqus Model. From Left to Right: 3/4 Model Rendering, Refined Mesh, Stress Outputs [191] 
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4.3.3.3.1. Mesh Refinement Study 

A mesh refinement study is undertaken to ensure that the finite element mesh, which 

utilizes linear brick elements, is sufficiently refined in critical locations so as to accurately 

determine the Von Mises stresses under the design loads.  The “short span” configuration 

shown in Figure 57 is discretized with a course mesh and then subjected to applied loads 

including 10𝑘𝑠𝑖 design pressures and axial forces equivalent to ±100𝑘𝑖𝑝.  The resulting Von 

Mises stresses at six locations (see Figure 59) are recorded. The local mesh size at each location 

is then halved, the analysis re-run, and the new Von Mises stresses recorded.  This process is 

repeated until the Von Mises stresses began to plateau, indicating that further mesh refinement 

will not significantly increase the models accuracy.  The results of the mesh refinement study 

are shown in Figure 60 where the Von Mises stresses have been normalized by the course mesh 

model’s output.  The recommended local mesh sizes are shown in Table 23. 

 

 
Figure 59. Mesh Refinement Study: Inspected Locations 
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Figure 60. Mesh Refinement Study Results  
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Figure 60. Mesh Refinement Study Results (Continued) 
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Table 23. Suggested Mesh Sizes 

Location No. of Elements per 0.1875𝑖𝑛 Local Mesh Size (𝑖𝑛) 

1 32 0.0059 

2 256 0.0007 

3 32 0.0059 

4 32 0.0059 

5 32 0.0059 

6 32 0.0059 

4.3.3.3.2. Thermal Effects 

Thermal loading may result in: 

 Induced axially forces within the production string (globally). 

 Localized stresses within the structural housing. 

 Radial displacements within the housing that may (1) reduce the available volume for 

the energy harvester or (2) cause the structural housing to contact the casings inner 

wall. 

 A reduction in Young’s modulus which may increase unwanted displacements. 

 A reduction in yield strength necessitating lower design pressures or larger wall 

thicknesses. 

An engineer with Chevron was contacted to better understand typical boundary 

conditions and code requirements.  Based on this correspondence (A. Arrazola, personal 

communication, March 17, 2015), the following conclusions/design rationalizations were made: 

 Expansion devices are commonly employed at the packer and can presumably be 

incorporated in the bracing elements adjacent to the energy harvester.  This would 

allow the production tube to displace axially under thermal expansion and negate 

thermally induced axial loads. 
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 While the production tube/structural housing is free to expand axially, thermally 

induced internal forces may still develop in the seating element.  Abaqus models will 

be used to determine what, if any, forces develop locally. 

 Abaqus models will be used to quantify the radial displacement of the structural 

housing under various loading conditions.   

 Abaqus models will be used to quantify the effects of reducing the Young’s modulus 

due to temperature effects. 

 Unlike HPHT wells where a reduction in yield strength is required [192], in practice, 

the use of a reduced yield strength is not universally applied to conventional wells.  

Physical tests have found that for ambient temperatures near 200℉, steel may see the 

actual yield strength decrease by up to 5% [193]-[194].  However, in some design 

codes (e.g. the Eurocode 3 (1993) [195] and AISC Design Guide 19 (3002) [196]) the 

design yield strength is not reduced until temperatures exceed 212℉ or more.  For 

simplicity, no temperature-based reduction in yield strength is assumed in the current 

design. 

Eight cases are investigated to determine (1) what, if any, forces develop locally in the 

structural housing due to temperature loads, (2) the radial displacement of the structural 

housing under various loading conditions, and (3) the effects of reducing the Young’s modulus 

(due to temperature effects).  The reduction in Young’s modulus is assumed to be 10% , 

exceeding the reduction required by design codes [195]-[196] and similar to (or exceeding) the 

reduction seen in physical testing [193]-[194].  The coefficient of thermal expansion is taken to 

be 6.5𝑒 − 6(1 ℉⁄ ).  No axial load is applied to the housing.  The results from all eight cases are 

shown in Table 24 where the noted locations are the same as those shown in Figure 59. 
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Table 24. Thermal Modeling 

Case 
Δ𝑇 
(℉) 

𝐸 
(𝑘𝑠𝑖) 

𝑝𝑖 
(𝑘𝑠𝑖) 

𝑝𝑜 
(𝑘𝑠𝑖) 

Von Mises Stress (𝑘𝑠𝑖) Displaced 

Loc.1 Loc.2 Loc.3 Loc.4 

Radial 

Width 
(𝑖𝑛) 

Outer 

Diameter 
(𝑖𝑛) 

1 0 29𝑒3 10 10 10.00 64.14 64.49 48.97 0.578 NA 
2 0 26𝑒3 10 10 10.00 64.14 64.49 48.97 0.577 NA 
3 200 29𝑒3 10 10 10.00 64.14 64.49 48.97 0.578 NA 
4 200 26𝑒3 10 10 10.00 64.14 64.49 48.97 0.577 NA 
5 200 29𝑒3 0 0 NA NA NA NA NA 5.507 
6 200 26𝑒3 0 0 NA NA NA NA NA 5.507 
7 200 29𝑒3 10 0 NA NA NA NA NA 5.507 
8 200 26𝑒3 10 0 NA NA NA NA NA 5.507 

In cases one through four, the Von Mises stress is seen not to change, indicating that 

the tabulated stresses are due solely to the unchanging pressure loading and not from 

temperature loads.  The radial width (the distance between the outer diameter of the 3.50𝑖𝑛 

production tube and the inner diameter of the 5.50𝑖𝑛 outer coaxial pipe) sees a maximum 

reduction of less than 1.5% when loaded.  Cases five through eight indicate that the expansion 

due to thermal loading and internal fluid pressure is negligibly small.  Effectively, these results 

imply that temperature effects are negligible in the current study.   

4.3.3.3.3. Strength Cases 

Finite element models are used to confirm the structural sufficiency of the housing 

configuration near the seating element.  The eight load cases investigated are listed in Table 25.  

The reduced axial loads (which are less than those suggested in Section 4.3.1.4) are based on 

output from preliminary FE models. 

 

Table 25. Strength Load Cases 

Load Case 𝑝𝑖 (𝑘𝑠𝑖) 𝑝𝑜 (𝑘𝑠𝑖) Axial Load* (𝑘𝑖𝑝) Description 

1 10 0 −90 Burst + Compression 

2 10 0 115 Burst + Tension 

3 0 10 −90 Collapse + Compression 

4 0 10 115 Collapse + Tension 

5 10 10 −90 Combined Loading 

6 10 10 115 Combined Loading 

7 0 0 −90 Pure Compression 

8 0 0 115 Pure Tension 

*(+) = Tension    
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4.3.3.3.3.1. Von Mises Criteria 

The Von Mises stress criteria can be used to check each load case except for case 4 (see 

Table 25) in which API uses the procedure outlined in Section 4.3.1.4.1 and Eq. (194) to 

determine structural sufficiency.  The proper application of the API procedure becomes opaque 

when implementing FE models for the structural housing design.  Fortunately, it can be shown 

that Eq. (194) is equivalent to satisfying a Von Mises stress criteria.  Thus, when the structural 

housing collapse failure mechanism is expected to be yield strength collapse, a Von Mises 

stress check can be used directly.  Following the work of Lubinski (1975) [197], consider a 

manipulation of the Von Mises stress criteria, re-written as 

 

 𝜎𝑉𝑀 =
1

√2
√(𝜎𝑡 − 𝜎𝑟)

2 + (𝜎𝑟 − 𝜎𝑧)
2 + (𝜎𝑧 − 𝜎𝑡)

2, (197) 

where the stress components (Lame expressions) can be written as  

 

 𝜎𝑡 =
𝑎2𝑝𝑖−𝑏2𝑝𝑜

𝑏2−𝑎2 +
(𝑝𝑖−𝑝𝑜)𝑎2𝑏2

𝑟2(𝑏2−𝑎2)
= 𝐴 + 𝐵, 

 

𝜎𝑟 =
𝑎2𝑝𝑖−𝑏2𝑝𝑜

𝑏2−𝑎2 −
(𝑝𝑖−𝑝𝑜)𝑎2𝑏2

𝑟2(𝑏2−𝑎2)
= 𝐴 − 𝐵, 

(198) 

where 𝑎 = 𝑑 − 𝑤𝑡, 𝑏 = 𝑑, and 

 

 𝐴 =
𝑎2𝑝𝑖−𝑏2𝑝𝑜

𝑏2−𝑎2 , 

 

𝐵 =
(𝑝𝑖−𝑝𝑜)𝑎2𝑏2

𝑟2(𝑏2−𝑎2)
. 

(199) 

The axial stress can be written as  

 

 𝜎𝑧 = ∆𝜎𝑧 + 𝜎𝑁 = ∆𝜎𝑧 + 𝐴, (200) 

where ∆𝜎𝑧 represents the excess axial stress above its neutral value and 𝜎𝑁 = 𝐴 represents the 

neutral axial stress [197].  Eq. (197) can be re-written as 

 

 
𝜎𝑉𝑀 =

1

√2
√(𝐴 + 𝐵 − (𝐴 − 𝐵))

2
+ (𝐴 − 𝐵 − (∆𝜎𝑧 + 𝐴))

2
+ (∆𝜎𝑧 + 𝐴 − (𝐴 + 𝐵))

2
, (201) 

which reduces to 
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𝜎𝑉𝑀 = √3𝐵2 + ∆𝜎𝑧

2. (202) 

Expanding 3𝐵2 leads to 

 

 
3𝐵2 = [√3 (

𝑎

𝑟
)

2 (𝑝𝑖−𝑝𝑜)𝑏2

(𝑏2−𝑎2)
]
2

. (203) 

This can be simplified by defining a new term 

 

 
𝐹 = 2

𝑏2

𝑏2−𝑎2 =
1

2

(2𝑑
𝑤𝑡⁄ )

2

(2𝑑
𝑤𝑡⁄ −1)

. (204) 

This allows Eq. (203) to be written as 

 

 
3𝐵2 = [

√3

2
(

𝑎

𝑟
)

2
(𝑝𝑖 − 𝑝𝑜)𝐹]

2

, (205) 

and Eq. (202) as 

 

 

𝜎𝑉𝑀 = √[
√3

2
(

𝑎

𝑟
)

2
(𝑝𝑖 − 𝑝𝑜)𝐹]

2

+ ∆𝜎𝑧
2. (206) 

Since yielding will occur first at the inner boundary [197] the location of interest is 𝑟 =

𝑎.  Additionally, since the Von Mises stress is to be below the minimum yield stress of the pipe 

(𝑌𝑝), Eq. (206) can be re-written as 

 

 
√[

√3

2
(𝑝𝑖 − 𝑝𝑜)𝐹]

2

+ ∆𝜎𝑧
2 = 𝜎𝑉𝑀 ≤ 𝑌𝑝. (207) 

Including Eq. (199) and Eq. (200) in Eq. (207), while writing 𝑝𝑜 as (𝑝𝑜 − 𝑝𝑖) + 𝑝𝑖 leads to 

 

 
√[

√3

2
(𝑝𝑖 − 𝑝𝑜)𝐹]

2

+ [𝜎𝑧 − {
𝑎2𝑝𝑖−𝑏2[(−𝑝𝑖+𝑝𝑜)+𝑝𝑖]

𝑏2−𝑎2 }]
2

= 𝜎𝑉𝑀 ≤ 𝑌𝑝. (208) 

Expanding the second term leads to 

 

 
√[

√3

2
(𝑝𝑖 − 𝑝𝑜)𝐹]

2

+ [𝜎𝑧 −
𝑎2𝑝𝑖

𝑏2−𝑎2 −
𝑏2(𝑝𝑖−𝑝𝑜)

𝑏2−𝑎2 +
𝑏2𝑝𝑖

𝑏2−𝑎2]
2

= 𝜎𝑉𝑀 ≤ 𝑌𝑝. (209) 

Recalling Eq. (204) and noting 𝑎2/(𝑏2 − 𝑎2) = 0.5𝐹 − 1 leads to 

 

 √(𝑝𝑖 − 𝑝𝑜)
2𝐹2 + (𝑝𝑜 − 𝑝𝑖)𝐹(𝜎𝑧 + 𝑝𝑖) + (𝜎𝑧 + 𝑝𝑖)

2 = 𝜎𝑉𝑀 ≤ 𝑌𝑝. (210) 

A negative sign can be pulled out of the second term as 
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 √(𝑝𝑖 − 𝑝𝑜)
2𝐹2 − (𝑝𝑖 − 𝑝𝑜)𝐹(𝜎𝑧 + 𝑝𝑖) + (𝜎𝑧 + 𝑝𝑖)

2 = 𝜎𝑉𝑀 ≤ 𝑌𝑝. (211) 

For simplicity, let 𝑥 = (𝑝𝑖 − 𝑝𝑜)𝐹 and 𝑅 = (𝜎𝑧 + 𝑝𝑖).  Using these terms and setting the yield 

criterion to be 𝜎𝑉𝑀 = 𝑌𝑝, Eq. (211) can be written as  

 

 𝑥2 − 𝑥𝑅 + 𝑅2 = 𝑌𝑝
2, (212) 

which can be rewritten as 

 

 𝑥2 − 𝑥𝑅 +
1

4
𝑅2 = 𝑌𝑝

2 −
3

4
𝑅2, (213) 

and rearranged as 

 

 
(−𝑥 +

1

2
𝑅)

2

= 𝑌𝑝
2 −

3

4
𝑅2. (214) 

The 𝑥 term can be isolated as 

 

 
−𝑥 = √𝑌𝑝

2 −
3

4
𝑅2 −

1

2
𝑅, (215) 

and after dividing both sides by 𝑌𝑝, 

 

 

−
𝑥

𝑌𝑝
= √1 −

3

4
(

𝑅

𝑌𝑝
)

2

−
1

2

𝑅

𝑌𝑝
. (216) 

The values for 𝑥 and 𝑅 can be reinserted 

 

 

−
(𝑝𝑖−𝑝𝑜)𝐹

𝑌𝑝
= √1 −

3

4
(

𝜎𝑧+𝑝𝑖

𝑌𝑝
)

2

−
1

2

𝜎𝑧+𝑝𝑖

𝑌𝑝
. (217) 

For the collapse scenario take 𝑝𝑖 = 0, leading to 

 

 
𝑝𝑜𝐹

𝑌𝑝
= √1 −

3

4
(

𝜎𝑧

𝑌𝑝
)

2

−
1

2

𝜎𝑧

𝑌𝑝
. (218) 

Recall the API equation for yield strength collapse, given in Eq. (189) and repeated here for 

convenience (where Eq. (204) has also been utilized) 

 

 𝑃𝑌𝑝 = 2𝑌𝑝 [
(2𝑑 𝑤𝑡⁄ )−1

(2𝑑 𝑤𝑡⁄ )2
] =

𝑌𝑝

𝐹
. (219) 

Inserting Eq. (219) into Eq. (218) leads to 
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𝑝𝑜

𝑃𝑌𝑝
= √1 −

3

4
(

𝜎𝑧

𝑌𝑝
)

2

−
1

2

𝜎𝑧

𝑌𝑝
. (220) 

Note the similarity between Eq. (220) and the API code equation for the combined load state of 

collapse pressure and axial tension, given in Eq. (194), and re-written here for convenience  

 

 𝑌𝑝𝑎

𝑌𝑃
= √1 −

3

4
(

𝜎𝑧

𝑌𝑝
)

2

−
1

2

𝜎𝑧

𝑌𝑝
. (221) 

Thus, so long as the collapse mechanism is yield strength collapse, the intent of the API 

code appears to be a limitation of the Von Mises stress (𝜎𝑉𝑀) to a value below the yield point 

(𝑌𝑃).  Since the stress distribution of the seating element geometry is different than the ideal 

pipe case, it is reasonable to use FE analysis when the yield strength collapse case governs the 

individual pipe elements (i.e. the production tube and outer coaxial pipe) to determine the Von 

Mises stress directly.  The observed Von Mises stress can then be compared to the material 

yield stress and the actual design factor obtained. 

 

At this point it is relevant to note that each loading case of (1) collapse or (2) combined 

collapse and axial tension, for both the production tube and outer coaxial pipe in the 

demonstration case, were governed by the yield strength mechanism (see Appendix F).  As 

such, the use of a Von Mises stress check in conjunction with FE analysis is justified for the 

design of the seating element. 

4.3.3.3.3.2. Results 

The results of the study are shown in Table 26 and Table 27 for the “short span” model 

and Table 28 and Table 29 for the “long span” model. 
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Table 26. Strength Cases: FE Based Stress Results for Short Span 

Load 

Case 

𝑝𝑖 
(𝑘𝑠𝑖) 

𝑝𝑜 
(𝑘𝑠𝑖) 

Axial 

Load* 
(𝑘𝑖𝑝) 

Von Mises Stresses (𝑘𝑠𝑖) at Location Displaced 

Radial Width 
(𝑖𝑛) 

1 2 3 4 5 6 

1 10 0 −90 60.6 34.0 20.2 51.3 44.6 61.6 0.583 
2 10 0 115 47.5 34.0 10.5 46.1 38.1 48.9 0.583 
3 0 10 −90 45.0 65.6 62.6 19.3 29.8 45.8 0.579 
4 0 10 115 72.9 50.2 72.1 20.2 58.5 74.5 0.580 
5 10 10 −90 14.4 73.1 62.3 55.4 14.9 15.0 0.577 
6 10 10 115 41.2 67.1 71.8 47.9 43.1 43.1 0.578 
7 0 0 −90 24.4 14.9 11.9 11.4 25.5 25.5 0.577 
8 0 0 115 31.2 19.0 15.1 15.0 32.6 32.6 0.578 

*(+) = Tension         

 

Table 27. Strength Cases: FE Based Design Factors for Short Span 

Load 

Case 

Design Factor at Location 

1 2 3 4 5 6 

Req. Actual Req. Actual Req. Actual Req. Actual Req. Actual Req. Actual 

1 1.25 1.32 1.25 2.35 1.25 3.96 1.25 1.56 1.25 1.79 1.25 1.30 
2 1.25 1.69 1.25 2.35 1.25 7.59 1.25 1.74 1.25 2.10 1.25 1.63 
3 1.1 1.78 1.1 1.22 1.1 1.28 1.1 4.15 1.1 2.68 1.1 1.75 
4 1.1 1.10 1.1 1.59 1.1 1.11 1.1 3.96 1.1 1.37 1.1 1.07 
5 1.25 5.54 1.1 1.09 1.1 1.29 1.25 1.44 1.25 5.36 1.25 5.32 
6 1.25 1.94 1.1 1.19 1.1 1.11 1.25 1.67 1.25 1.86 1.25 1.86 
7 1.6 3.27 1.6 5.35 1.6 6.72 1.6 7.02 1.6 3.14 1.6 3.14 
8 1.6 2.56 1.6 4.21 1.6 5.32 1.6 5.33 1.6 2.46 1.6 2.46 

 

Table 28. Strength Cases: FE Based Stress Results for Long Span 

Load 

Case 

𝑝𝑖 
(𝑘𝑠𝑖) 

𝑝𝑜 
(𝑘𝑠𝑖) 

Axial 

Load* 
(𝑘𝑖𝑝) 

Von Mises Stresses (𝑘𝑠𝑖) at Location Displaced 

Radial Width 
(𝑖𝑛) 

1 2 3 4 5 6 

1 10 0 −90 60.7 30.8 21.5 49.8 44.5 61.7 0.583 
2 10 0 115 47.6 33.4 9.8 45.5 38.1 49.0 0.583 
3 0 10 −90 45.1 67.8 63.3 15.5 29.8 45.9 0.579 
4 0 10 115 73.0 50.5 69.2 22.2 58.7 74.5 0.575 
5 10 10 −90 14.4 76.8 63.2 51.7 14.7 15.1 0.578 
6 10 10 115 41.2 64.5 68.2 46.2 43.3 43.1 0.578 
7 0 0 −90 24.4 14.6 12.4 10.9 25.5 25.5 0.578 
8 0 0 115 31.2 18.7 15.8 14.4 32.6 32.6 0.578 

*(+) = Tension         

 

Table 29. Strength Cases: FE Based Design Factors for Long Span 

Load 

Case 

Design Factor at Location 

1 2 3 4 5 6 

Req. Actual Req. Actual Req. Actual Req. Actual Req. Actual Req. Actual 

1 1.25 1.32 1.25 2.60 1.25 3.72 1.25 1.61 1.25 1.80 1.25 1.30 

2 1.25 1.68 1.25 2.40 1.25 8.16 1.25 1.76 1.25 2.10 1.25 1.63 

3 1.1 1.77 1.1 1.18 1.1 1.26 1.1 5.16 1.1 2.68 1.1 1.74 

4 1.1 1.10 1.1 1.58 1.1 1.16 1.1 3.60 1.1 1.36 1.1 1.07 

5 1.25 5.54 1.1 1.04 1.1 1.27 1.25 1.55 1.25 5.43 1.25 5.30 

6 1.25 1.94 1.1 1.24 1.1 1.17 1.25 1.73 1.25 1.85 1.25 1.86 

7 1.6 3.27 1.6 5.46 1.6 6.45 1.6 7.34 1.6 3.14 1.6 3.14 

8 1.6 2.56 1.6 4.27 1.6 5.06 1.6 5.56 1.6 2.45 1.6 2.45 



130 

 

Note that for each span length, cases 4 and 5 violate the required design factor.  For 

load case 5 , the permitted axial compression has already been reduced to 90𝑘𝑖𝑝 as 90𝑘𝑖𝑝 

represents the minimum load the housing will need to be able to support should the housing be 

deployed above a packer (A. Arrazola, personal communication, March 17, 2015).  Although a 

refined analysis of the location 2 fillet may result in a satisfactory design factor, considering 

this is a preliminary design a more prudent route is to reduce the design pressure.  This reduced 

design pressure will have the secondary benefit of improving the design factors for load case 4.  

The critical load cases, accounting for the updated design pressures, are shown in Table 30 and 

Table 31. 

 

Table 30. Strength Cases: Updated FE Based Stress Results 

Load 

Case** 

𝑝𝑖 
(𝑘𝑠𝑖) 

𝑝𝑜 
(𝑘𝑠𝑖) 

Axial Load* 
(𝑘𝑖𝑝) 

Von Mises Stresses (𝑘𝑠𝑖) at Location 

1 2 3 4 5 6 
4, SS 0 9.3 115 69.5 46.5 67.5 19.8 56.4 71.1 
5, SS 9.3 9.3 −90 15.1 68.7 57.7 51.9 15.7 15.8 
4, LS 0 9.3 115 69.6 46.7 64.7 21.5 56.5 71.1 
5, LS 9.3 9.3 −90 15.1 72.2 58.7 48.4 15.5 15.9 

*(+) = Tension         
**SS = Short Span, LS = Long Span       

 

 

Table 31. Strength Cases: Updated FE Based Design Factors 

Load 

Case** 

Design Factor at Location 

1 2 3 4 5 6 

Req. Actual Req. Actual Req. Actual Req. Actual Req. Actual Req. Actual 

4, SS 1.1 1.15 1.1 1.72 1.1 1.19 1.1 4.04 1.1 1.42 1.1 1.13 

5, SS 1.25 5.28 1.1 1.16 1.1 1.39 1.25 1.54 1.25 5.11 1.25 5.07 

4, LS 1.1 1.15 1.1 1.71 1.1 1.24 1.1 3.73 1.1 1.42 1.1 1.12 

5, LS 1.25 5.28 1.1 1.11 1.1 1.36 1.25 1.65 1.25 5.17 1.25 5.03 

**SS = Short Span, LS = Long Span       

Since the design pressure has been lowered to 9.3𝑘𝑠𝑖, it is possible that a smaller wall 

thickness would have been selected by a well designer using the API equations (for the 

unmodified production tube away from the structural housing).  Another design cycle, using a 

9.3𝑘𝑠𝑖 design pressure, will show that reducing either the production tube or outer coaxial pipe 

wall thickness to the next lowest commercially available size (i.e. 0.375𝑖𝑛 → 0.289𝑖𝑛 for the 

production tube and 0.415𝑖𝑛 → 0.361𝑖𝑛 for the outer coaxial pipe) will result in a deficient 
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burst (production tube) or collapse (outer coaxial pipe) design factor.  This means that a well 

designer, intending to design an unmodified well for a 9.3𝑘𝑠𝑖 design pressure, would still have 

selected a 0.375𝑖𝑛 production tube wall thickness (instead of a 0.289𝑖𝑛 thickness) so as to 

meet bursting requirements.  This also means that the outer coaxial pipe still requires a 0.415𝑖𝑛 

wall thickness (and not a 0.361𝑖𝑛 thickness) so as to meet collapse requirements. 

Since the structural housing is capable of withstanding the minimum above-packer 

axial load of 90𝑘𝑖𝑝, the preliminary design is considered satisfactory.  A summary of the 

design is provided in Table 32. 

 

Table 32. Configuration A Above Packer Design Summary 

Production Tube Outer Diameter (𝑖𝑛) 3.50 
Production Tube Wall Thickness (𝑖𝑛) 0.375 

Casing Outer Diameter (𝑖𝑛) 7.00 
Casing Wall Thickness (𝑖𝑛) 0.453 

Outer Coaxial Pipe Outer Diameter (𝑖𝑛) 5.50 
Outer Coaxial Pipe Wall Thickness(𝑖𝑛) 0.415 

Steel Grade 𝐿80 

Yield Strength (𝑘𝑠𝑖) 80 

Design Pressure (𝑘𝑠𝑖) 9.3 
Maximum Tension (𝑘𝑖𝑝) 115 

Maximum Compression (𝑘𝑖𝑝) 90 
Unloaded Radial Width (𝑖𝑛) 0.585 
Loaded Radial Width (𝑖𝑛) 0.573 

Harvester Cavity Cross Sectional Area (𝑖𝑛2) 7.35 

4.3.4. Designing the Structural Housing – Configuration A with Reduced Axial Loads 

In the previous Section 4.3.3 the minimum axial load carrying capacity of the structural 

housing was set to 90𝑘𝑖𝑝 to permit the energy harvesting system to be deployed above an 

axially set packer.  Another possible deployment location would be below the packer.  At this 

location significantly less axial capacity is required which may permit an increase in the design 

pressure and/or increase in the radial width.   

To determine the required axial capacity of the system, assume the only demand at the 

housing elevation is the buoyant self-weight of the production string (including attached 
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equipment) and the end pressure generated by the reservoir fluid.  An estimate of the required 

compressive capacity of 50𝑘𝑖𝑝 is found by multiplying the production tube cross sectional area, 

by an assumed upperbound fluid pressure of 13𝑘𝑠𝑖 (this assumes the housing is near the bottom 

of the production string).  The required tensile capacity is estimated to be 15𝑘𝑖𝑝 which, when 

including 50% of the aforementioned fluid bearing pressure, represents the weight of over 

3000 linear feet of 3.50𝑖𝑛/0.375𝑖𝑛 tubing (this assumes the housing is some distance away 

from the bottom of the production string). 

4.3.4.1. Results 

An iterative design, following the design process outlined in Section 4.3.3, results in 

the final configuration shown in Table 33. 

 

Table 33. Configuration A Below Packer Design Summary 

Production Tube Outer Diameter (𝑖𝑛) 3.50 
Production Tube Wall Thickness (𝑖𝑛) 0.375 

Casing Outer Diameter (𝑖𝑛) 7.00 
Casing Wall Thickness (𝑖𝑛) 0.453 

Outer Coaxial Pipe Outer Diameter (𝑖𝑛) 5.50 
Outer Coaxial Pipe Wall Thickness (𝑖𝑛) 0.415 

Design Pressure (𝑘𝑠𝑖) 10.1 
Maximum Tension (𝑘𝑖𝑝) 15 

Maximum Compression (𝑘𝑖𝑝) 50 
Unloaded Radial Width (𝑖𝑛) 0.585 
Loaded Radial Width (𝑖𝑛) 0.573 

Harvester Cavity Cross Sectional Area (𝑖𝑛2) 7.35 

4.3.5. Designing the Structural Housing – Configuration B 

Since Configuration B does not include a cavity, the analysis is slightly simplified.  In 

the following sections, the designs for two elements are considered: 

 The longitudinal tube housing (LTH) accounting for both fixed-free and fixed-pinned 

boundaries. 

 The machined pipe that will house the LTHs. 
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The assumptions outlined in the previous sections will be maintained (see Table 34). In 

addition, based on Section 4.3.3.3.2, temperature effects are assumed to be negligible. 

 

Table 34. Geometric and Material Assumptions 

Production Tube Outer Diameter (𝑖𝑛) 3.50 
Production Tube Wall Thickness (𝑖𝑛) 0.375 

Casing Outer Diameter (𝑖𝑛) 7.00 
Casing Wall Thickness (𝑖𝑛) 0.453 
Casing Inner Diameter (𝑖𝑛) 6.094 

Housing Outer Diameter (𝑖𝑛) 5.50 
Steel Grade 𝐿80 

Yield Strength (𝑘𝑠𝑖) 80 

The design of the LTH will assume a 0.8𝑖𝑛 outer diameter allowing for (1) a 0.1𝑖𝑛 gap 

between the production tube and LTH and (2) sufficient clearance such that external bodies 

contacting the housing will not contact the LTH (see Figure 61). 

 

 
Figure 61. Partial Cross Section of Configuration B 

4.3.5.1. Fixed-Free and Fixed-Pinned Longitudinal Tube Housing 

The two proposed configurations are shown in Figure 62 and Figure 63.  The boundary 

conditions are selected such that any axial load carried by the production string will not load the 

LTHs.  The two configurations are similar with the exception that the tail of the fixed-pinned 

model reduces the effective length factor of the LTH, permitting a higher axial capacity.  The 

three strength cases investigated include:  
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 Compressive strength for flexural buckling per the American Institute of Steel 

Construction (AISC; 2007) [198]. 

 Collapse and Collapse + Compression per API 5C3 (2008) [114]. 

 Von Mises stress stemming from FE analysis. 

 

 
Figure 62. Fixed-Free LTH 
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Figure 63. Fixed-Pinned LTH 

4.3.5.1.1. AISC Criteria 

AISC specifies the compressive strength of a non-slender compression member based 

on the limit state of flexural buckling.  Consider the following sample calculation set (shown in 

Table 35) for a fixed-free LTH with an outer diameter (OD) of 0.8𝑖𝑛  and a 0.075𝑖𝑛  wall 

thickness.  Note that the Young’s modulus has been reduced due to the environments high 

operating temperature and that a capacity factor of 0.9 has been selected per AISC criteria.   
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Table 35. AISC LTH Sample Calculation 

Outer Diameter (𝑖𝑛) 0.8 

Wall Thickness (𝑖𝑛) 0.075 

Nominal Area (𝑖𝑛2) 0.17 

Length (𝑖𝑛) 10.8 

Young’s Modulus (𝑘𝑠𝑖) 27500 

Yield Strength (𝑘𝑠𝑖) 80 

Inertia (𝑖𝑛4) 0.0113 

Effective Length Factor, K [198] 2.1 

Radius of Gyration, r (𝑖𝑛) 0.26 

𝐾𝐿/𝑟 88.0 

Is the System Slender? No 

Elastic/Plastic Limit 87.3 

Elastic Critical Buckling Stress, 𝐹𝑒 (𝑘𝑠𝑖) [198] 35.04 

Flexural Buckling Stress, 𝐹𝑐𝑟 (𝑘𝑠𝑖) [198] 30.73 

Compressive Demand (𝑘𝑖𝑝) 4.67 

Capacity Factor [198] 0.9 

Factored Compressive Strength (𝑘𝑖𝑝) 4.72 

Demand ≤ Capacity Yes 

The calculation shows that a 10.8𝑖𝑛  long LTH is capable of withstanding the 

compressive demand (4.67𝑘𝑖𝑝) generated by the 9.3𝑘𝑠𝑖 design pressure on the ends (or caps) 

of the LTH (9.3𝑘𝑠𝑖 design pressure is used so Configurations A and B could be compared 

directly).  If the wall thickness of the LTH is increased, the length of the LTH can be increased.  

A wall thickness vs. length table is provided in Table 36 for both the fixed-free and fixed-

pinned boundary conditions; the effective length factor for the fixed-pinned case is taken as 

𝐾 = 0.8. 

 

Table 36. Wall Thickness vs. Length for Sufficient AISC Design (0.8𝑖𝑛 OD) 

Wall Thickness (𝑖𝑛) 0.050 0.075 0.100 0.125 0.150 0.175 
Fixed-Free Maximum Length (𝑖𝑛) 8.7 10.8 11.9 12.7 13.3 13.7 

Estimated Cavity Volume (𝑖𝑛3) 3.16 3.42 3.22 2.90 2.51 2.10 
Fixed-Pinned Maximum Length (𝑖𝑛) 23.0 28.5 31.3 33.4 34.9 35.9 

Estimated Cavity Volume (𝑖𝑛3) 8.66 9.29 8.71 7.82 6.75 5.63 

The volume listed is the cavity cross sectional area times the maximum length using the 

AISC code equations less 0.5𝑖𝑛 of length assumed occupied by the end caps of the LTH. In 

both boundary configurations the maximum available volume occurs with a 0.075𝑖𝑛  wall 

thickness.  For prudence, the process is repeated using a 1.0𝑖𝑛 outer diameter LTH with the 

results shown in Table 37; the optimum wall thickness is seen to be ~0.1𝑖𝑛. 
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Table 37. Wall Thickness vs. Length for Sufficient AISC Design (1.0𝑖𝑛 OD) 

Wall Thickness (𝑖𝑛) 0.050 0.075 0.100 0.125 0.150 0.175 
Fixed-Free Maximum Length (𝑖𝑛) 8.9 12.3 13.8 14.9 15.7 16.3 

Estimated Cavity Volume (𝑖𝑛3) 5.34 6.70 6.69 6.36 5.85 5.24 
Fixed-Pinned Maximum Length (𝑖𝑛) 23.5 32.2 36.4 39.2 41.3 42.9 

Estimated Cavity Volume (𝑖𝑛3) 14.63 17.99 18.05 17.10 15.70 14.07 

4.3.5.1.2. API Criteria 

The LTH is checked against collapse and collapse + compression per the previously 

discussed API criteria.  Although compression increases the collapse capacity, the annulus fluid 

pressure generates both loading simultaneously; collapse + compression is the more reasonable 

design case while collapse alone is the more conservative.  The axial load is calculated by 

multiplying the cap area by a 9.3𝑘𝑠𝑖 fluid design pressure.  The wall thicknesses at which a 1.1 

design factor is achieved, for 0.8𝑖𝑛 and 1.0𝑖𝑛 OD LTHs, are provided in Table 38. 

 

Table 38. API Collapse Calculations: Minimum Wall Thickness for 1.1 Design Factor 

 
Load Case 

Minimum Wall 

Thickness (𝑖𝑛) 

0.8𝑖𝑛 Outer Diameter 
Collapse 0.058 

Collapse + 4.67𝑘𝑖𝑝 Compression 0.048 

1.0𝑖𝑛 Outer Diameter 
Collapse 0.072 

Collapse + 7.30𝑘𝑖𝑝 Compression 0.059 

4.3.5.1.3. Abaqus Finite Element Modeling 

A finite element model of the 0.8𝑖𝑛 OD LTH with 0.075𝑖𝑛 wall thickness is generated.  

The connection details (i.e. bolted connection and tail) are not modeled as they do not contain a 

cavity and are simply triaxial loading of a volumetric block of steel.  The model is generated in 

order to (1) confirm that the design factor is satisfactory and (2) determine the required 

fillet/geometry of the cap.  The total length of the LTH is taken to be 10.4𝑖𝑛 and an applied 

pressure of 9.3𝑘𝑠𝑖 is used.  The cap thickness is set to 0.25𝑖𝑛.  The model output is shown in 

Figure 64.  Utilizing a 1/8𝑖𝑛  radial fillet, the maximum Von Mises stress is found to be 
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46.4𝑘𝑠𝑖, resulting in an acceptable design factor of 1.72.  Although the cap thickness could be 

optimized, it is not done here. 

 

 
Figure 64. FE Model of 0.8𝑖𝑛 Outer Diameter LTH: Stress Results 

4.3.5.2. Machined Pipe 

The production tube is modified so as to house the LTHs.  Since the production tube 

itself does not house a harvester cavity and a significant amount of material is being added to 

the production tube, the stress demand on the production tube is expected to decrease.  To 

confirm this, a FE model is generated.   A 10𝑘𝑠𝑖 design pressure is applied (> 9.3𝑘𝑠𝑖 required).  

The geometry of the model is shown in Figure 65 and Figure 66.  The cross section assumes 10 

radially spaced LTHs (see Figure 61).   
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Figure 65. Modified Production Tube: Fixed-Free Geometry 

 

 

    
Figure 66. Modified Production Tube: Fixed-Free Abaqus Model 

A course mesh is generated utilizing quadratic tetrahedral elements (element size 

~0.125in); see Figure 67.  The results for eight strength load cases are shown in Table 39.  
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Figure 67. FE Course Tetrahedral Mesh (Left) and Sample Von Mises Stress Output (Right) 

 

 

Table 39. Course Mesh Results 

Load 

Case 
𝑝𝑖 

(𝑘𝑠𝑖) 

𝑝𝑜 
(𝑘𝑠𝑖) 

Axial Load* 
(𝑘𝑖𝑝) 

Von Mises Stresses (𝑘𝑠𝑖)  

Production Tube - Loc. 1 Fillet - Loc. 5 Seat/Cavity 

1 10 0 225 63 78 47 
2 10 0 −107 63 50 54 
3 0 10 124 75 62 56 
4 0 10 −305 72 88 44 
5 10 10 225 71 91 30 
6 10 10 −107 19 24 7 
7 10 10 124 44 56 17 
8 10 10 −305 73 93 30 

*(+) = Tension      
Radial Fillet: 2𝑖𝑛    

Based on the results of Table 39 a refined mesh is generated: the element size is 

reduced to ~0.0625𝑖𝑛 (i.e. half of the course mesh size) and the mesh is further refined near 

the fillet (~0.0208in); the refined mesh is shown in Figure 68.  The refined mesh result for each 

load case is shown in Table 40.  Although stress concentrations are still apparent at the fillet 

(i.e. location 5), the geometry of both the fillet and ledge is not limited, meaning that the 

geometry in this area can be adjusted to reduce the stress concentration.   
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Figure 68. FE Refined Tetrahedral Mesh 

 

 

Table 40. Refined Mesh Results 

Load 

Case 

𝑝𝑖 
(𝑘𝑠𝑖) 

𝑝𝑜 
(𝑘𝑠𝑖) 

Axial Load* 
(𝑘𝑖𝑝) 

Von Mises Stresses (𝑘𝑠𝑖)  

Production Tube - Loc. 1 Fillet - Loc. 5 Seat/Cavity 
1 10 0 225 64 78 50 
2 10 0 −107 64 50 56 
3 0 10 124 75 66 60 
4 0 10 −305 72 90 51 
5 10 10 225 71 89 29 
6 10 10 −107 19 25 8 
7 10 10 124 44 56 18 

8 10 10 −305 73 91 30 

*(+) = Tension      
Radial Fillet: 2𝑖𝑛    

4.3.6. Comparing Configurations A and B 

The harvester cavity cross sectional area provided by Configuration A was shown in 

Table 32 and Table 33 to be 7.35𝑖𝑛2.  For Configuration B, the available cross sectional areas 

were found to be 0.332𝑖𝑛2and 0.567𝑖𝑛2 for 0.8𝑖𝑛  and 1.0𝑖𝑛  LTH outer diameters (for the 

optimal case of a 0.075𝑖𝑛 wall thickness; see Table 36 and Table 37).  This equates to a total 

cross sectional area of 3.32𝑖𝑛2 and 5.67𝑖𝑛2 for 10 LTHs or 3.98𝑖𝑛2and 6.80𝑖𝑛2 if 12 LTHs 

are used.  In the limiting cases, Configuration A provides between 8% and 121%  more cross 

sectional area than Configuration B and is not subject to the length restrictions imposed on 
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Configuration B LTHs.  From a practical standpoint, the wiring together of 12  individual 

LTHs, which will be operating in a hostile downhole environment, is unattractive; all of the 

components for Configuration A can be wired together in the same harvester cavity behind the 

outer coaxial pipe.  Since Configuration A provides (1) a larger cross sectional area in which to 

place an energy harvesting system and (2) a more robust design, the further design and 

investigation of Configuration B will not be pursued. 

4.4. Design Summary 

The Configuration A design process described in Section 4.3 was repeated for two 

additional steel grades: 𝐽55  (55𝑘𝑠𝑖  yield strength) and 𝑇95  (95𝑘𝑠𝑖  yield strength).  A full 

design using 𝐽55 steel was quickly abandoned as the design pressure was found to be less than 

5𝑘𝑠𝑖 (i.e. less than half of the LANL targeted design pressure; see Section 4.3.1.1). The results 

of the 𝐿80 and 𝑇95 cases are summarized in Table 41. 
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Table 41. Configuration A Design Summary 

Material Grade  Above Packer Below Packer 

𝐿80 

Production Tube Outer Diameter (𝑖𝑛) 3.50 3.50 
Production Tube Wall Thickness (𝑖𝑛) 0.375 0.375 

Casing Outer Diameter (𝑖𝑛) 7.00 7.00 
Casing Wall Thickness (𝑖𝑛) 0.453 0.453 

Outer Coaxial Pipe Outer Diameter (𝑖𝑛) 5.50 5.50 
Outer Coaxial Pipe Wall Thickness(𝑖𝑛) 0.415 0.415 

Design Pressure (𝑘𝑠𝑖) 9.3 10.1 
Maximum Tension (𝑘𝑖𝑝) 115 15 

Maximum Compression (𝑘𝑖𝑝) 90 50 
Unloaded Radial Width (𝑖𝑛) 0.585 0.585 
Loaded Radial Width (𝑖𝑛) 0.573 0.573 

Harvester Cavity Cross Sectional Area (𝑖𝑛2) 7.35 7.35 

𝑇95 

Production Tube Outer Diameter (𝑖𝑛) 3.50 3.50 
Production Tube Wall Thickness (𝑖𝑛) 0.375 0.375 

Casing Outer Diameter (𝑖𝑛) 7.00 7.00 
Casing Wall Thickness (𝑖𝑛) 0.540 0.540 

Outer Coaxial Pipe Outer Diameter (𝑖𝑛) 5.50 5.50 
Outer Coaxial Pipe Wall Thickness(𝑖𝑛) 0.500 0.500 

Design Pressure (𝑘𝑠𝑖) 12.6 13.2 
Maximum Tension (𝑘𝑖𝑝) 90 15 

Maximum Compression (𝑘𝑖𝑝) 90 55 
Unloaded Radial Width (𝑖𝑛) 0.500 0.500 
Loaded Radial Width (𝑖𝑛) 0.490 0.490 

Harvester Cavity Cross Sectional Area (𝑖𝑛2) 6.15 6.15 

In most cases the load carrying capacity of the housing was limited by stress 

concentrations at the internal fillets (i.e. location 2 in Figure 59).  While the fillet design could 

be optimized it is expected that the housing design, as a whole, will be improved during the 

next design iteration.  Based on a conversation with a consultant in the oil and gas industry (W. 

Phillips, personal communication, May 15, 2015), two alternative designs were conceptualized 

and are presented in Figure 69.  These design alternatives will likely alleviate the fillet stress 

concentrations found in Configuration A but introduce additional design complexity with the 

inclusion of threaded connections.  Since the results from Table 41 provide reasonable lower 

bound geometries, specifically, maximum radial widths available to house an energy harvesting 

system, the design alternatives are not investigated here. 
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Figure 69. Configuration A Design Alternatives 

A portion of Chapter 4 has been published in SPIE Smart Structures and Materials+ 

Nondestructive Evaluation and Health Monitoring, Eric Kjolsing and Michael Todd, 2016.  The 

title of this paper is “Gauging the Feasibility of a Downhole Energy Harvesting System 

Through a Proof-of-Concept Study”. The dissertation author was the primary investigator and 

author of this paper. 
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Chapter 5  

Estimating Harvestable Power 

5.1. Overview 

Two scripts (programs written in MATLAB) are developed to estimate harvestable 

power for user-defined energy harvester configurations.  The first script (FS) utlizes an 

uncoupled electromechanical model to analyze configurations with multiple energy harvesting 

elements. The second script (SS) utilizes coupled equations of motion to analyze a single 

energy harvesting element.  By using coupled equations the SS results in a more accurate power 

estimate than the FS, but is more computationally expensive to execute.  In addition, the inputs 

required to execute the SS are significant when compared to the FS, requiring the user to invest 

additional time in setting up the SS prior to execution.  In practical application, the FS is 

intended to be an inexpensive order of magnitude power estimate.  If the results from the FS 

look promising (i.e. the estimated power output is greater than the users required power output) 

than the user can invest resources in executing the SS.  However, if the FS power output is 

significantly less than what the user requires, than the user can save resources by not executing 

the SS.  If desired, the SS can be executed without executing the FS. 
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5.1.1. Transduction Mechanism 

Subject to the stated assumptions and considered geometries, the minimum radial width 

available in which to place an energy harvesting system was found in Chapter 4 to be 0.49𝑖𝑛 

(see Table 41).  While miniaturized energy harvesting elements can be custom designed and 

fabricated to fit within this space, it is more cost effective to use commercially available 

harvesters.   

From Section 1.2.4, the two transduction mechanisms under consideration are 

piezoelectric and electromagnetic transducers.  While pizeoelectric transducers are available 

from a variety of manufacturers (e.g. Mide Corporation, American Piezo Ceramics, PI Ceramic, 

Piezo Systems, Micromechatronics, etc.), electromagnetic transducers are not as commerically 

available.  In addition, those electromagnetic transducers that are commercially available were 

found with geometries exceeding the available radial width [199]; Chalasani and Conrad (2008) 

[21] noted that electromagnetic materials are bulky.  Based on the available radial width, it is

assumed that the deployed energy harvesting system will utilize cantilever piezoelectric 

elements driven by the vibration of the production tube. 

It is important to note that when selecting commercially available piezoelectric energy 

harvesters, the user must ensure that the operational bounds perscribed by the manufacturer are 

not exceeded. 

5.2. FS – Order of Magnitude Power Estimate 

To generate an initial power estimate, the piezoelectric transducer is modeled as a 

single degree of freedom (SDOF) oscillator in a lumped parameter model.  The power estimate 

is based on a viscous damping model where the maximum energy that might be extracted by 

the transducer is related to an “electric” viscous damping term included in the system.  That is, 
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the mechanical power dissipated by the “electric” viscous damping term is considered the 

maximum power that might be harvested by the transducer.  This type of model was introduced 

by Williams and Yates (1996) [200], and later used by Roundy et al. (2003) [201] and Trimble 

(2007) [202].  The model is widely used and is summarized by Kim et al. in Chapter 1 of Priya 

and Inman (2009) [28].   

There are several limitations to this type of model.  First, the model implicitly assumes 

that the majority of the power output stems from the transducers first mode of vibration as this 

is the only mode the SDOF oscillator can represent.  Second, the transducer beam mass and tip 

mass are treated as a lumped term which may yield inaccurate results if the tip mass is small 

relative to the beam mass [203].  Lastly, the system neglects the coupling of the electric and 

mechanical equations of motion which may lead to an inaccurate prediction of the optimum 

load resistance and fails to predict the variation of the resonant frequency with changing load 

resistance [28].  The limitations of the model must be weighed against the models benefits, 

namely, simplicity and computational efficiency.  Since the FS is used to explore a wide range 

of inputs quickly, and because the SS power estimate utilizes a more accurate model (i.e. 

coupled equations of motion), this simplified model is reasonable for its intended purpose. 

The script returns the suggested base natural frequencies (i.e. the natural freuqency of 

each energy harvester on day zero at room temperature) and expected power output of the user-

defined configuration. 

5.2.1. Derivation of Power Estimate 

Consider the SDOF oscillator shown in Figure 70 where 𝑚𝑒𝑞 represents the equivalent 

mass, 𝑐𝑒𝑞 = 𝑐𝑚 + 𝑐𝑒 represents the equivalent viscous damping (mechanical and electric), 𝑐𝑎 

represents the damping due to the surrounding fluid, and 𝑘𝑒𝑞 represents the equivalent stiffness 



148 

 

[203].  The oscillator is excited by a base motion, 𝑦(𝑡), resulting in an absolute displacement, 

𝑥(𝑡).   

 

 
Figure 70. SDOF Oscillator 

Force equilibrium leads to the familiar 

 

 𝑚𝑒𝑞𝑥̈(𝑡) + 𝑐𝑒𝑞(𝑥̇(𝑡) − 𝑦̇(𝑡)) + 𝑘𝑒𝑞(𝑥(𝑡) − 𝑦(𝑡)) + 𝑐𝑎𝑥̇(𝑡) = 0. (222) 

Defining the relative displacement as  

 

 𝑧(𝑡) = 𝑥(𝑡) − 𝑦(𝑡), (223) 

Eq. (222) can be rewritten as  

 

 𝑚𝑒𝑞 𝑧̈(𝑡) + (𝑐𝑒𝑞 + 𝑐𝑎)𝑧̇(𝑡) + 𝑘𝑒𝑞𝑧(𝑡) = −𝑚𝑒𝑞𝑦̈(𝑡) − 𝑐𝑎𝑦̇(𝑡). (224) 

Assuming zero initial conditions, taking the Laplace transform of Eq. (224) leads to  

 

 𝑍(𝑠)[𝑚𝑒𝑞𝑠
2 + (𝑐𝑒𝑞 + 𝑐𝑎)𝑠 + 𝑘𝑒𝑞] = −𝑌(𝑠)[𝑚𝑒𝑞𝑠

2 + 𝑐𝑎𝑠], (225) 

where 𝑍(𝑠) and 𝑌(𝑠) represent the Laplace transforms of 𝑧(𝑡) and 𝑦(𝑡), respectively.  The 

transfer function is written as  

 

 
𝐻(𝑠) =

𝑍(𝑠)

𝑌(𝑠)
= −

𝑚𝑒𝑞𝑠2+𝑐𝑎𝑠

𝑚𝑒𝑞𝑠2+(𝑐𝑒𝑞+𝑐𝑎)𝑠+𝑘𝑒𝑞
. (226) 

For the case of light air damping (i.e. small 𝑐𝑎) the transfer function can be reduced to 

 

 
𝐻(𝑠) =

𝑍(𝑠)

𝑌(𝑠)
= −

𝑚𝑒𝑞𝑠2

𝑚𝑒𝑞𝑠2+𝑐𝑒𝑞𝑠+𝑘𝑒𝑞
. (227) 
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To return to the frequency domain let 𝑠 = 𝑖𝜔,  

 

 
𝐻(𝜔) =

𝑚𝑒𝑞𝜔2

−𝑚𝑒𝑞𝜔2+𝑐𝑒𝑞𝑖𝜔+𝑘𝑒𝑞
. (228) 

Dividing the numerator and denominator by 𝑚𝑒𝑞  and taking 𝜔𝑛 = √(𝑘𝑒𝑞/𝑚𝑒𝑞)  and 𝜁𝑒𝑞 =

𝑐𝑒𝑞/(2𝑚𝑒𝑞𝜔𝑛) to be the natural frequency and equivalent viscous damping ratio, the transfer 

function can be written as 

 

 𝐻(𝜔) =
𝜔2

(𝜔𝑛
2−𝜔2)+2𝜁𝑒𝑞𝜔𝑛𝑖𝜔

. (229) 

The displacement response (in the frequency domain) can then be written as  

 

 𝑍(𝜔) = 𝐻(𝜔)𝑌(𝜔), (230) 

where 𝑌(𝜔) and 𝑍(𝜔) are the Fourier transforms of the base motion 𝑦(𝑡) and relative motion 

𝑧(𝑡), respectively.  The relative motion can be found in the time domain by taking an inverse 

Fourier transform of 𝑍(𝜔).   

Turning to the power estimate, the instantaneous power related to the equivalent 

damper is written as  

 

 𝑃𝑖𝑛𝑠𝑡(𝑡) = 𝐹𝑑𝑎𝑚𝑝𝑖𝑛𝑔(𝑡) ∗ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑡) = (𝑐𝑒𝑞𝑧̇(𝑡)) ∗ 𝑧̇(𝑡) = 𝑐𝑒𝑞(𝑧̇(𝑡))
2
. (231) 

The damping term can be split into its mechanical and electrical contributions, leading to the 

instantaneous power attributed to the electric damper as 

 

 𝑃𝑖𝑛𝑠𝑡,𝑒(𝑡) = 𝑐𝑒(𝑧̇(𝑡))
2
. (232) 

The average power extracted by the electric damper over some time period 𝑇 is then  

 

 𝑃𝑎𝑣𝑔,𝑒 =
1

𝑇
∫ 𝑃𝑖𝑛𝑠𝑡(𝑡)𝑑𝑡

𝑇

0
=

𝑐𝑒

𝑇
∫ (𝑧̇(𝑡))

2
𝑑𝑡

𝑇

0
. (233) 

The maximum relative displacement of the mass is simply found as  

 

 𝑧𝑚𝑎𝑥 = 𝑀𝑎𝑥[𝑧(𝑡)]. (234) 
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5.2.1.1. Single Term Approximation 

For arbitrary base motion, the power estimate of Eq. (233) is solved numerically.  To 

facilitate an analytical discussion, consider the nature of the transfer function, 𝐻(𝜔), re-written 

as  

 

 
𝐻(𝜔) =

𝜔2

(𝜔𝑛
2−𝜔2)+2𝜁𝑒𝑞𝜔𝑛𝑖𝜔

=
(

𝜔

𝜔𝑛
)
2

(1−(
𝜔

𝜔𝑛
)
2
)+2𝜁𝑒𝑞𝑖(

𝜔

𝜔𝑛
)
=

𝑟2

(1−𝑟2)+2𝜁𝑒𝑞𝑖𝑟
. (235) 

where 𝑟 = 𝜔/𝜔𝑛 represents a frequency ratio.  The magnitude of the transfer function is plotted 

in Figure 71 for various equivalent damping ratios (𝜁𝑒𝑞).  The transfer function is seen to act 

like a narrow band-pass filter where only vibrations around 𝑟 ≈ 1 significantly contribute to the 

displacement response.    

 

 
Figure 71. Transfer Function Magnitude 

If the support acceleration is written in terms of a Fourier series 

 

 𝑦̈(𝑡) = ∑ 𝐴𝑖cos(𝜔𝑖𝑡)
∞
𝑖=0 , (236) 

the band-pass property of the SDOF system can be used to reduce the support acceleration to a 

single driving sinusoid (𝑦̈𝑠(𝑡)) with (a) the driving frequency set to the natural frequency of the 

SDOF oscillator and (b) the magnitude of acceleration set to that corresponding to the natural 

frequency, i.e. 
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 𝑦̈(𝑡) = ∑ 𝐴𝑖cos(𝜔𝑖𝑡)
∞
𝑖=0   →   𝑦̈𝑠(𝑡) = 𝐴cos(𝜔𝑡)|𝐴=𝐴𝑛;𝜔=𝜔𝑛

. (237) 

Since the single term driving acceleration is sinusoidal, the resulting steady state motion of the 

SDOF oscillator will be a phase/amplitude shifted sinusoid at the same driving frequency, that 

is 

 

 𝑧𝑠(𝑡) = 𝐵cos(𝜔𝑡 − 𝜙)|𝜔=𝜔𝑛
 

 

𝑧̇𝑠(𝑡) = −𝐵𝜔sin(𝜔𝑡 − 𝜙)|𝜔=𝜔𝑛
 

 

𝑧̈𝑠(𝑡) = −𝐵𝜔2cos(𝜔𝑡 − 𝜙)|𝜔=𝜔𝑛
 

(238) 

Following the derivation by Rao (2004) [204] and taking 𝑐𝑎 to be small, combine Eq. (224), Eq. 

(237) and Eq. (238) 

 

 𝑚𝑒𝑞(−𝐵𝜔2cos(𝜔𝑡 − 𝜙)) + 𝑐𝑒𝑞(−𝐵𝜔sin(𝜔𝑡 − 𝜙)) + 𝑘𝑒𝑞(𝐵cos(𝜔𝑡 − 𝜙)) =

−𝑚𝑒𝑞(𝐴cos(𝜔𝑡)). 
(239) 

The terms can be grouped as 

 

 𝐵{[−𝑚𝑒𝑞𝜔
2 + 𝑘𝑒𝑞]cos(𝜔𝑡 − 𝜙) − [𝑐𝑒𝑞𝜔]sin(𝜔𝑡 − 𝜙)} = [−𝑚𝑒𝑞𝐴]cos(𝜔𝑡). (240) 

Noting the trigonometric relationships 

 

 cos(𝜔𝑡 − 𝜙) = cos(𝜔𝑡)cos(𝜙) + sin(𝜔𝑡)sin(𝜙), 

 

sin(𝜔𝑡 − 𝜙) = sin(𝜔𝑡)cos(𝜙) − cos(𝜔𝑡)sin(𝜙), 

(241) 

substitute Eq. (241) into Eq. (240) 

 

 𝐵{[−𝑚𝑒𝑞𝜔
2 + 𝑘𝑒𝑞](cos(𝜔𝑡)cos(𝜙) + sin(𝜔𝑡)sin(𝜙)) − [𝑐𝑒𝑞𝜔](sin(𝜔𝑡)cos(𝜙) −

cos(𝜔𝑡)sin(𝜙))} = [−𝑚𝑒𝑞𝐴]cos(𝜔𝑡). 
(242) 

The coefficients of cos(𝜔𝑡) and sin(𝜔𝑡) can be equated as 

 

 𝐵cos(𝜔𝑡){[−𝑚𝑒𝑞𝜔
2 + 𝑘𝑒𝑞]cos(𝜙) + [𝑐𝑒𝑞𝜔]sin(𝜙)} = [−𝑚𝑒𝑞𝐴]cos(𝜔𝑡), 

 

𝐵sin(𝜔𝑡){[−𝑚𝑒𝑞𝜔
2 + 𝑘𝑒𝑞]sin(𝜙) − [𝑐𝑒𝑞𝜔]cos(𝜙)} = 0. 

(243) 

The second equality in Eq. (243) 

 

 [−𝑚𝑒𝑞𝜔
2 + 𝑘𝑒𝑞]sin(𝜙) = [𝑐𝑒𝑞𝜔]cos(𝜙), (244) 

leads to 
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tan(𝜙) =

sin(𝜙)

cos(𝜙)
=

𝑐𝑒𝑞𝜔

−𝑚𝑒𝑞𝜔2+𝑘𝑒𝑞
  →   𝜙 = arctan (

𝑐𝑒𝑞𝜔

𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2). (245) 

Note the trigonometric relationships 

 

 cos(arctan(𝑎)) =
1

√1+𝑎2
, 

 

sin(arctan(𝑎)) =
𝑎

√1+𝑎2
. 

(246) 

Having solved for 𝜙 in Eq. (245), Eq. (246) can be written as 

 

 
cos(ϕ) =

1

√1+(
𝑐𝑒𝑞𝜔

𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)

2
=

𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2

[(𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)
2
+(𝑐𝑒𝑞𝜔)

2
]

1
2

, 

 

sin(ϕ) =

𝑐𝑒𝑞𝜔

𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2

√1+(
𝑐𝑒𝑞𝜔

𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)

2
=

𝑐𝑒𝑞𝜔

[(𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)
2
+(𝑐𝑒𝑞𝜔)

2
]

1
2

. 

(247) 

Eq. (247) and the first equality in Eq. (243) can be combined as 

 

 

𝐵 {
(𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)

2

[(𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)
2
+(𝑐𝑒𝑞𝜔)

2
]

1
2

+
(𝑐𝑒𝑞𝜔)

2

[(𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)
2
+(𝑐𝑒𝑞𝜔)

2
]

1
2

} = [−𝑚𝑒𝑞𝐴]. (248) 

Simplifying the left hand side 

 

 
𝐵 {[(𝑘𝑒𝑞 − 𝑚𝑒𝑞𝜔

2)
2
+ (𝑐𝑒𝑞𝜔)

2
]

1

2
} = [−𝑚𝑒𝑞𝐴], (249) 

leads to 

 

 𝐵 =
−𝑚𝑒𝑞𝐴

[(𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)
2
+(𝑐𝑒𝑞𝜔)

2
]

1
2

. 
(250) 

Having solved for the phase (Eq. (245)) and amplitude (Eq. (250)), the single-term SDOF 

response (Eq. (238)) is fully defined.   

The instantaneous power estimate (i.e. Eq. (231)) is written as  

 

 

𝑃𝑖𝑛𝑠𝑡(𝑡) = 𝑐𝑒𝑞(𝑧̇𝑠(𝑡))
2

= 𝑐𝑒𝑞 [
−𝑚𝑒𝑞𝐴

[(𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)
2
+(𝑐𝑒𝑞𝜔)

2
]

1
2

]

2

𝜔2sin2(𝜔𝑡 − 𝜙), (251) 

where 

 

 (𝑧̇𝑠(𝑡))
2

= 𝐵2𝜔2sin2(𝜔𝑡 − 𝜙), (252) 
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and Eq. (250) have been utilized.  The average power over some time period 𝑇 can be written 

as 

 

 
𝑃𝑎𝑣𝑔 =

1

𝑇
∫ 𝑃𝑖𝑛𝑠𝑡(𝑡)𝑑𝑡

𝑇

0
=

𝑐𝑒𝑞𝑚𝑒𝑞
2𝐴2𝜔2

(𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)
2
+(𝑐𝑒𝑞𝜔)

2 [
1

𝑇
∫ sin2(𝜔𝑡 − 𝜙)𝑑𝑡

𝑇

0
]. (253) 

Note that the bracketed term is simply the signal power of a single harmonic function and is 

equal to 1 2⁄ .  The average power can then be simplified to 

 

 
𝑃𝑎𝑣𝑔 =

𝑐𝑒𝑞𝑚𝑒𝑞
2𝜔2

(𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)
2
+(𝑐𝑒𝑞𝜔)

2 [
𝐴2

2
]. (254) 

Dividing the numerator and denominator by 𝑚𝑒𝑞
2 leads to 

 

 
𝑃𝑎𝑣𝑔 =

𝑐𝑒𝑞𝜔2

(
𝑘𝑒𝑞

𝑚𝑒𝑞
−𝜔2)

2

+(
𝑐𝑒𝑞𝜔

𝑚𝑒𝑞
)
2 [

𝐴2

2
]. (255) 

Eq. (255) can be rewritten using 𝜔𝑛 = √(𝑘𝑒𝑞/𝑚𝑒𝑞) and 𝑐𝑒𝑞 = 2𝑚𝑒𝑞𝜔𝑛𝜁𝑒𝑞 as 

 

 
𝑃𝑎𝑣𝑔 =

(2𝑚𝑒𝑞𝜔𝑛𝜁𝑒𝑞)𝜔2

(𝜔𝑛
2−𝜔2)

2
+(

(2𝑚𝑒𝑞𝜔𝑛𝜁𝑒𝑞)𝜔

𝑚𝑒𝑞
)

2 [
𝐴2

2
]. 

(256) 

Dividing the numerator and denominator by 1/𝜔𝑛
4 leads to 

 

 

𝑃𝑎𝑣𝑔 =
𝑚𝑒𝑞𝜁𝑒𝑞

𝜔2

𝜔𝑛
3

(1−(
𝜔

𝜔𝑛
)
2
)
2

+(2𝜁𝑒𝑞(
𝜔

𝜔𝑛
))

2 [𝐴2]. (257) 

Setting 𝜔 = 𝜔𝑛 and 𝐴 = 𝐴𝑛 (recall Eq. (237) and Eq. (238)) leads to  

 

 
𝑃𝑎𝑣𝑔 =

𝑚𝑒𝑞𝜁𝑒𝑞𝐴𝑛
2

4𝜔𝑛𝜁𝑒𝑞
2 . (258) 

Recall that the equivalent damper is composed of both a mechanical damper (which 

accounts for typical damping behavior) and an “electric” damper (which accounts for the 

energy extracted by the piezoelectric EH) 

 

 𝑐𝑒𝑞 = 𝑐𝑚 + 𝑐𝑒, 

 

𝜁𝑒𝑞 = 𝜁𝑚 + 𝜁𝑒 . 

(259) 

Rewrite Eq. (258) in terms of the two damping components 
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𝑃𝑎𝑣𝑔 =

𝑚𝑒𝑞(𝜁𝑚+𝜁𝑒)𝐴𝑛
2

4𝜔𝑛(𝜁𝑚+𝜁𝑒)2
=

𝑚𝑒𝑞𝜁𝑚𝐴𝑛
2

4𝜔𝑛(𝜁𝑚+𝜁𝑒)2
+

𝑚𝑒𝑞𝜁𝑒𝐴𝑛
2

4𝜔𝑛(𝜁𝑚+𝜁𝑒)2
= 𝑃𝑎𝑣𝑔,𝑚 + 𝑃𝑎𝑣𝑔,𝑒, (260) 

where the first and second terms represents the average power dissipated by the mechanical and 

“electric” damper, respectively.  The maximum power dissipated by the “electric” damper can 

be found from 

 

 𝑑𝑃𝑎𝑣𝑔,𝑒

𝑑𝜁𝑒
= 0, (261) 

leading to 

 

 𝑑

𝑑𝜁𝑒
[

𝑚𝑒𝑞𝜁𝑒𝐴𝑛
2

4𝜔𝑛(𝜁𝑚+𝜁𝑒)2
] =

𝑚𝑒𝑞𝐴𝑛
2

4𝜔𝑛
[

−2𝜁𝑒

(𝜁𝑚+𝜁𝑒)3
+

1

(𝜁𝑚+𝜁𝑒)2
] = 0. (262) 

From Eq. (262) the maximum power is seen to occur when 𝜁𝑚 = 𝜁𝑒.  Thus,  

 

 
𝑃𝑎𝑣𝑔,𝑒−𝑚𝑎𝑥 =

𝑚𝑒𝑞𝜁𝑒𝐴𝑛
2

4𝜔𝑛(𝜁𝑚+𝜁𝑒)2
|
𝜁𝑚=𝜁𝑒

=
𝑚𝑒𝑞𝐴𝑛

2

16𝜔𝑛𝜁𝑚
=

𝑚𝑒𝑞

8𝜁𝑚
[

𝐴𝑛
2

2𝜔𝑛
] =

𝑚𝑒𝑞

8𝜁𝑚
[
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝜔𝑛
]. (263) 

Turning to the displacement, recall that the relative displacement of the mass is given 

by Eq. (238), repeated here for convenience 

 

 𝑧𝑠(𝑡) = 𝐵cos(𝜔𝑡 − 𝜙)|𝜔=𝜔𝑛
. (264) 

The maximum relative displacement occurs when cos(𝜔𝑡 − 𝜙) = 1 , meaning that the 

maximum relative displacement is given by |𝐵| 

 

 

𝑧𝑠−𝑚𝑎𝑥 = |𝐵| =
|𝑚𝑒𝑞𝐴|

[(𝑘𝑒𝑞−𝑚𝑒𝑞𝜔2)
2
+(𝑐𝑒𝑞𝜔)

2
]

1
2

|

𝐴=𝐴𝑛;𝜔=𝜔𝑛

=
|𝐴𝑛|

2𝜁𝑒𝑞𝜔𝑛
2 . (265) 

Recall that for the maximum power output 𝜁𝑚 = 𝜁𝑒, thus 

 

 𝑧𝑠−𝑚𝑎𝑥|𝑃𝑎𝑣𝑔,𝑒−𝑚𝑎𝑥
=

|𝐴𝑛|

4𝜁𝑚𝜔𝑛
2 . (266) 

5.2.2. Practical Application 

The user begins by entering acceleration time histories (also termed acceleration 

profiles) of the production tube at the harvester location, which represent the ground motions 

driving the attached energy harvesting elements.  The acceleration time histories (𝑎𝑥, 𝑎𝑦, and 

𝑎𝑧) are entered for each global Cartesian coordinate (with the z-axis taken to be along the 
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longitudinal axis of the production string).  The acceleration time histories can be defined by 

actual downhole accelerometer data or can be artificially generated as needed.  Since the 

acceleration time histories are generally non-stationary over the life of the well (due to changes 

in production rate, hydrocarbon density, etc.), the acceleration profiles must be descretized by 

the user such that the profiles are locally stationary. 

The user then enters an expected operating schedule that depicts (1) the expected 

temperature profile over the life of the well and (2) the time period over which each 

acceleration profile is valid.  A sample schedule is shown in Figure 72 where three acceleration 

profiles are shown. 

 

 
Figure 72. Sample Operating Schedule 

For each acceleration profile, the global x- and y-axis acceleration time histories (𝑎𝑥 

and 𝑎𝑦 ) are transformed to provide normal and tangential acceleration time histories at all 

relevant spatial locations (i.e. from 𝜃 = 0°: 10°: 350°) as 
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 𝑎𝑛 = 𝑎𝑥 cos(𝜃) + 𝑎𝑦sin (𝜃) 

 

𝑎𝑡 = −𝑎𝑥 sin(𝜃) + 𝑎𝑦cos (𝜃) 

(267) 

This results in 36 time histories (𝑦̈(𝑡) in Eq. (224)) for each of the normal and tangential 

directions plus one time history for the z-direction (73 total time histories for each acceleration 

profile).  A visual depicting the relevant coordinate system is provided in Figure 73. 

 

 
Figure 73. Relevant Coordinate System 

Each of the 73 acceleration time histories are transformed into the frequency domain 

through a Fourier transform.  To determine the displacement response in the frequency domain 

(i.e. 𝑌(𝜔) of Eq. (230)) the Fourier transforms of the acceleration time histories are divided by 

(𝑖𝜔)2, that is from Eq. (58) 

 

 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚[𝑦̈(𝑡)] = (𝑖𝜔)2 𝑌(𝜔), (268) 

or 

 

 𝑌(𝜔) =
𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚[𝑦̈(𝑡)]

(𝑖𝜔)2
. (269) 

Note that for low frequencies (as 𝜔 goes to zero) the denominator dominates the expression 

leading to erroneous displacement results.  To correct for this, a rectangular window is used to 
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zero out Fourier coefficients for frequencies falling below a user specified truncation frequency.  

As an example, consider Figure 74 where the acceleration time history of interest is a simple 

sinusoid: 𝑦̈(𝑡) = (1𝑚 𝑠2⁄ ) sin(2𝜋(50𝐻𝑧)𝑡) ;  0𝑠 ≤ 𝑡 ≤ 7𝑠 .  When Eq. (269) is utilized the 

Fourier coefficients near the lower frequencies are seen to increase significantly.  To obtain the 

correct displacement time history (𝑦(𝑡)), Fourier coefficients falling below 35𝐻𝑧 are set to 

zero.  The resulting displacement time history is improved with the appropriate maximum 

displacement amplitude of (1𝑚 𝑠2⁄ ) (2𝜋(50𝐻𝑧))2⁄ = 1.01𝑒 − 5𝑚 approximately obtained. 

 

 
Figure 74. Correcting the Displacement Response in the Frequency Domain 
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The transfer function (Eq. (229)) is dependent on the equivalent damping ratio (𝜁𝑒𝑞) 

and natural frequency (𝜔𝑛) of the transducer.  The user can specify one mechanical damping 

ratio (𝜁𝑚) and several “electric” damping ratios (𝜁𝑒) which combine to form the equivalent 

damping ratio (𝜁𝑒𝑞 = 𝜁𝑚 + 𝜁𝑒).  Since the natural frequency will change over time (due to 

degradation) and with changing temperature (softening of the system stiffness), the time and 

temperature dependent effects need to be accounted for.  From Appendix G, changes to the 

Young’s modulus, inertia, or beam length due to time or temperature are seen to cause a shift in 

the natural frequency of the transducer (the mass is assumed unchanging); the percent change in 

frequency was shown to be 

 

 
%Δ𝜔𝑛 = [√

(%𝐸𝑖)(%𝐼𝑖)

(%𝐿𝑖)
3 − 1], (270) 

To account for these changes, the user is asked to define time and temperature 

dependent changes to the (1) Young’s modulus, (2) inertia, and (3) beam length with input 

tables.  Since this is a preliminary analysis the user may choose to use approximate values (as 

exact values may not yet be known) or assume any/all of the effects are negligible.  A sample 

user input is provided in Figure 75.  
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Figure 75. Time and Temperature Dependence: Sample Inputs 

The final remaining user inputs are: (1) the window of time the user wants to maximize 

the power output [𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙: 𝑇𝑓𝑖𝑛𝑎𝑙 ], (2) the range of base frequencies and the discretization 

interval the user wishes to consider (these are the frequencies of the individual piezoelectric 

elements at day zero/room temperature) [𝑓𝑛−𝑙𝑜𝑤𝑒𝑟: 𝑑𝑓𝑛: 𝑓𝑛−𝑢𝑝𝑝𝑒𝑟 ], and (3) the location and 

orientation of each piezoelectric element.  As an example of (3), a three element configuration 

designed to harvest tangential accelerations is shown in Figure 76 where the elements are 

spaced at 40°, 120°, and 350° from the global x-axis. 

 

 
Figure 76. Example Three Harvester Configuration 
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5.2.2.1. Calculation Looping 

The following analysis procedure describes the calculation sequence in the script.  The 

first looping sequence calculates (2𝜔𝑛,𝑐𝑢𝑟𝑟𝑒𝑛𝑡)/𝑇 ∗ ∫ (𝑧̇(𝑡))
2
𝑑𝑡

𝑇

0
 for all global angles, 

equivalent damping ratios, base frequencies of interest, and over the time domain of interest: 

 The current time is set to the initial time specified by the user over which the user is 

interested in maximizing the power output (𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙).  

 Based on the current time the expected operating temperature and representative 

acceleration profiles are determined (see Figure 72). 

 Based on the current time and operating temperature the percentage change in input 

parameters (Young’s modulus, inertia, and beam length) are interpolated (see Figure 

75). 

 Use Eq. (270) to modify the base frequency (to account for time and temperature 

effects) and determine the frequency at the current time (i.e. the current natural 

frequency). 

 Specify the equivalent damping ratio for the current realization. 

 Using the current natural frequency and equivalent damping ratio, sample the transfer 

function (𝐻(𝜔) , Eq. (229)) at the same frequency spacing as the current Fourier 

transform (𝑌(𝜔)) (corresponding to the representative acceleration profile at the current 

time step). 

 For each global angle (𝜃), calculate the relative displacement response in the frequency 

domain (𝑍(𝜔)) per Eq. (230). 
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 Calculate the inverse Fourier transform of 𝑍(𝜔)  to determine the displacement 

response in the time domain.  Record the maximum absolute value (i.e. Eq. (234)).   

 Calculate the relative velocity in the frequency domain as (𝑖𝜔)(𝑍(𝜔)). 

 Calculate the relative velocity in the time domain (𝑧̇(𝑡)) by taking an inverse Fourier 

transform of (𝑖𝜔)(𝑍(𝜔)). 

 Square (point-wise) the relative velocity (i.e. (𝑧̇(𝑡))2). 

 Use the trapezoidal rule to numerically integrate the relative velocity as 

(2𝜔𝑛,𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑇
∫ (𝑧̇(𝑡))

2
𝑑𝑡

𝑇

0
 (note Eq. (233)) where 𝑇 is the duration of the signal. 

 Repeat this looping through: (1) the time domain of interest [𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙: 𝑇𝑓𝑖𝑛𝑎𝑙], (2) the 

base frequencies of interest [𝑓𝑛−𝑙𝑜𝑤𝑒𝑟: 𝑓𝑛−𝑢𝑝𝑝𝑒𝑟 ], (3) the equivalent damping ratios 

considered, and (4) all global angles (𝜃 = 0°: 10°: 350°). 

The second looping sequence generates a power estimate for each harvesting element.  

The output from the first looping sequence is multiplied by the equivalent mass of each 

harvester (𝑚𝑒𝑞) and the considered electric damping ratios (𝜁𝑒,); the power estimates are made 

a function of 𝛼 = 0°: 10°: 350°, a global rotation angle illustrated in Figure 77. 

In the third looping sequence, the power from each harvester, for each realization of 𝛼 

and 𝜁𝑒, is summed to provide an estimate of the total power all harvesters generate for that time 

period and configuration. 

In the fourth looping sequence the power from each realization is integrated over the 

time domain of interest [𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑇𝑓𝑖𝑛𝑎𝑙] to provide a scalar value.  This scalar value is used as 

the optimization variable: for each global rotation angle 𝛼, the base frequencies and electric 

damping ratios that provide the largest scalar value is considered optimal as it maximizes the 
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total power over the entire time domain of interest (assuming the acceleration profiles are 

persistant). 

This calculation sequence is best demonstrated with an example, which also provides 

an opportunity to verify the script. 

 

 
Figure 77. Global Pipe Rotation 

5.2.3. Script Validation 

The MATLAB script implementing these calculations can be found in Appendix H. 

5.2.3.1. Inputs 

Consider the case of bi-directional sinusoids in the x- and y-directions.  The 

acceleration time histories for two acceleration profiles (APs) are written as 

 

 𝑎𝑥,𝐴𝑃1 = (1.5
𝑚

𝑠2) ∗ sin (2𝜋(14𝐻𝑧)𝑡),     𝑎𝑦,𝐴𝑃1 = (2.5
𝑚

𝑠2) ∗ sin (2𝜋(18𝐻𝑧)𝑡); 

 

𝑎𝑥,𝐴𝑃2 = (3.0
𝑚

𝑠2) ∗ sin (2𝜋(16𝐻𝑧)𝑡),     𝑎𝑦,𝐴𝑃2 = (2.0
𝑚

𝑠2) ∗ sin (2𝜋(20𝐻𝑧)𝑡). 

(271) 

The acceleration profiles are sampled at 0.002𝑠𝑒𝑐 and 0.004𝑠𝑒𝑐, and have durations of 7𝑠𝑒𝑐 

and 12𝑠𝑒𝑐, respectively.  The Young’s modulus is assumed to see a 10.4% reduction (%𝐸𝑖 =

89.6%) if the operating temperature exceeds 50℃.  The inertia and beam length are assumed 

independent of time and temperature (i.e. (%𝐼𝑖 = %𝐿𝑖 = 100%).  The operating schedule is 
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shown in Figure 78.  Three piezoelectric elements are located at 𝜃 = 0°, 40°, 90° (for 𝛼 = 0°) 

and are oriented to harvest normal accelerations (see Figure 73).  The equivalent mass of each 

of the three piezoelectrics is given in Table 42 and is based on  

 

 𝑚𝑒𝑞 =
33

140
𝑀𝑏 + 𝑀𝑡. (272) 

The system is investigated for 𝜁𝑚 = 3% and 𝜁𝑒 = 1%,3%, 5%, 7% and 9%.  The power output 

is to be optimized between year 1.5 and the start of year 3.0.  The base frequencies considered 

range between 13𝐻𝑧 and 22𝐻𝑧 in 0.5𝐻𝑧 increments. 

 

 
Figure 78. Expected Operating Schedule 

 

 

 
Figure 79. Temperature Dependent Young's Modulus 
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Transducer 
Beam Mass, 

𝑀𝑏 (𝑘𝑔) 

Tip Mass, 

𝑀𝑡 (𝑘𝑔) 

Equivalent Mass, 

𝑚𝑒𝑞  (𝑘𝑔) 

1, 𝜃 = 0° 0.04 0.15 0.1594 

2, 𝜃 = 40° 0.04 0.20 0.2094 

3, 𝜃 = 90° 0.04 0.20 0.2094 

Table 42. Equivalent Masses 

5.2.3.2. Representative Outputs 

The first 0.4𝑠𝑒𝑐 of the input acceleration time histories are shown in Figure 80.   

 

 
Figure 80. Acceleration Time Histories 

Analytically, the acceleration time history for AP2 at 𝜃 = 40° can be written using Eq. 

(267) as  

 

 𝑎𝑛 = (2.298
𝑚

𝑠2) sin(2𝜋(16𝐻𝑧)𝑡) + (1.286
𝑚

𝑠2) sin(2𝜋(20𝐻𝑧)𝑡). (273) 

The corresponding output from the script is shown in Figure 81. 
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Figure 81. Transformed Acceleration Profile 

Analytically, the displacement time history for AP1 in the x-direction can be found from the 

acceleration input 𝑎𝑥,𝐴𝑃1 as 

 

 
𝑑𝑥,𝐴𝑃1 =

−(1.5
𝑚

𝑠2
)

(2𝜋(14𝐻𝑧))2
∗ sin(2𝜋(14𝐻𝑧)𝑡) = −(1.94𝑒 − 4𝑚) sin(2𝜋(14𝐻𝑧)𝑡). (274) 

Within the script, the acceleration time histories are converted to displacement time histories 

using Eq. (269) and the inverse Fourier transform.  While in the frequency domain, the Fourier 

coefficients are truncated for frequencies less than 9𝐻𝑧.  A sample output for AP1 is shown in 

Figure 82; the displacement matches the analytical result from Eq. (274). 
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Figure 82. Driving Displacement Time History 

The final output from the script is a table of optimal frequencies, their resulting uni-

directional maximum displacements, and the optimal electric damping ratio for the three 

piezoelectric elements (subject to the models discretization resolution).  The output for the 

previously described inputs is shown in Table 43.  The first column (𝛼) represents the global 

rotation angle of the pipe from the x-axis (see Figure 77).  The second, fifth, and eighth 

columns (𝑓𝑛 ) are the suggested baseline natural frequencies (the natural frequency at day 

zero/room temperature) for each piezoelectric element that will maximize the total harvested 

power over the time domain of interest.  The third, sixth, and ninth columns (𝑑𝑚) are the 
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maximum uni-directional displacement of the piezoelectric element (i.e. Eq. (234)) over the 

time domain of interest.  The fourth, seventh, and tenth columns are the electrical damping ratio 

(𝜁𝑒) that maximizes the harvesters power output over the time domain of interest.  The last 

column is the electric power produced by all three piezoelectric elements integrated over the 

time domain of interest.  The script also generates a plot of time vs. power and time vs. 

displacement for user specified values of 𝛼, 𝑓𝑛1, 𝑓𝑛2, and 𝑓𝑛3.  Such a plot is provided in Figure 

83. 

 

Table 43. Suggested Frequencies 

𝛼 

(𝑑𝑒𝑔) 

𝑓𝑛1 

(𝐻𝑧) 

𝑑𝑚1 

(𝑚𝑚) 
𝜁𝑒1 

𝑓𝑛2 
(𝐻𝑧) 

𝑑𝑚2 

(𝑚𝑚) 
𝜁𝑒2 

𝑓𝑛3 
(𝐻𝑧) 

𝑑𝑚3 

(𝑚𝑚) 
𝜁𝑒3 

𝑃𝑡𝑜𝑡 

(𝑚𝑊 ∙ 𝑦𝑟) 
0 17.0 2.45 3% 17.0 1.62 5% 18.5 1.19 5% 56.2 
10 17.0 2.47 3% 17.5 1.14 7% 18.5 1.22 5% 54.7 
20 17.0 2.41 3% 18.5 1.19 5% 18.5 1.22 5% 54.0 
30 17.0 1.76 5% 18.5 1.22 5% 18.5 1.18 5% 52.9 
40 17.0 1.62 5% 18.5 1.22 5% 17.5 1.14 7% 51.6 
50 17.5 1.14 7% 18.5 1.19 5% 17.0 1.62 5% 52.1 
60 18.5 1.19 5% 18.5 1.22 5% 17.0 1.76 5% 54.2 
70 18.5 1.22 5% 18.5 1.22 5% 17.0 2.42 3% 55.9 
80 18.5 1.22 5% 18.5 1.18 5% 17.0 2.47 3% 56.2 
90 18.5 1.19 5% 17.5 1.14 7% 17.0 2.45 3% 55.6 
100 18.5 1.22 5% 17.0 1.62 5% 17.0 2.47 3% 55.7 
110 18.5 1.22 5% 17.0 1.76 5% 17.0 2.41 3% 55.3 
120 18.5 1.18 5% 17.0 2.42 3% 17.0 1.76 5% 54.0 
130 17.5 1.14 7% 17.0 2.47 3% 17.0 1.62 5% 52.7 
140 17.0 1.62 5% 17.0 2.45 3% 17.5 1.14 7% 52.8 
150 17.0 1.76 5% 17.0 2.47 3% 18.5 1.19 5% 54.9 
160 17.0 2.42 3% 17.0 2.41 3% 18.5 1.22 5% 56.6 
170 17.0 2.47 3% 17.0 1.76 5% 18.5 1.22 5% 57.0 
180 17.0 2.45 3% 17.0 1.62 5% 18.5 1.19 5% 56.2 
190 17.0 2.47 3% 17.5 1.14 7% 18.5 1.22 5% 54.7 
200 17.0 2.41 3% 18.5 1.19 5% 18.5 1.22 5% 54.0 
210 17.0 1.76 5% 18.5 1.22 5% 18.5 1.18 5% 52.9 
220 17.0 1.62 5% 18.5 1.22 5% 17.5 1.14 7% 51.6 
230 17.5 1.14 7% 18.5 1.19 5% 17.0 1.62 5% 52.1 
240 18.5 1.19 5% 18.5 1.22 5% 17.0 1.76 5% 54.2 
250 18.5 1.22 5% 18.5 1.22 5% 17.0 2.42 3% 55.9 
260 18.5 1.22 5% 18.5 1.18 5% 17.0 2.47 3% 56.2 
270 18.5 1.19 5% 17.5 1.14 7% 17.0 2.45 3% 55.6 
280 18.5 1.22 5% 17.0 1.62 5% 17.0 2.47 3% 55.7 
290 18.5 1.22 5% 17.0 1.76 5% 17.0 2.41 3% 55.3 
300 18.5 1.18 5% 17.0 2.42 3% 17.0 1.76 5% 54.0 
310 17.5 1.14 7% 17.0 2.47 3% 17.0 1.62 5% 52.7 
320 17.0 1.62 5% 17.0 2.45 3% 17.5 1.14 7% 52.8 
330 17.0 1.76 5% 17.0 2.47 3% 18.5 1.19 5% 54.9 
340 17.0 2.42 3% 17.0 2.41 3% 18.5 1.22 5% 56.6 
350 17.0 2.47 3% 17.0 1.76 5% 18.5 1.22 5% 57.0 
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Figure 83. Power Output for a Single Realization (𝛼 = 90° from Table 43).  

Piezo#1 = Blue; Piezo#2 = Green; Piezo#3 = Red. 

Consider the first piezoelectric element (PE1) at year 2.2 in Figure 83 with a suggested 

base natural frequency of 18.5𝐻𝑧 and electric damping ratio of 5% (𝜁𝑒𝑞 = 𝜁𝑚 + 𝜁𝑒 = 8%); the 

power output is estimated to be 15.80𝑚𝑊 and the maximum displacement is estimated to be 

1.19𝑚𝑚.  The script’s output can be verified using alternative analytical equations.  

The acceleration time history exciting PE1 in this configuration (𝛼 = 90°) is  

 

 𝑎𝑦,𝐴𝑃1 = (2.5
𝑚

𝑠2) sin(2𝜋(18𝐻𝑧)𝑡). (275) 

This corresponds to a base motion displacement of  

 

 
𝐷𝑦,𝐴𝑃1 = −

(2.5
𝑚

𝑠2
)

(2𝜋(18𝐻𝑧))
2 sin(2𝜋(18𝐻𝑧)𝑡) = (−1.954𝑒 − 4𝑚) sin(2𝜋(18𝐻𝑧)𝑡). (276) 

where the amplitude of the motion is 𝑑𝑦,𝐴𝑃1 = −1.954𝑒 − 4𝑚.  For a base natural frequency of 

18.5𝐻𝑧 the current natural frequency (at year 2.2) is adjusted by Eq. (270) as 

 

 
𝑓𝑛,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = √

(%𝐸𝑖)(%𝐼𝑖)

(%𝐿𝑖)
3 𝑓𝑛,𝑏𝑎𝑠𝑒 = √

(0.896)(1)

(1)3
18.5𝐻𝑧 = 17.51𝐻𝑧. (277) 

The ratio of driving frequency to natural frequency is termed the frequency ratio and is given by 

 

 𝑟 =
𝜔

𝜔𝑛,𝑐𝑢𝑟𝑟𝑒𝑛𝑡
=

2𝜋(18𝐻𝑧)

2𝜋(17.51𝐻𝑧)
= 1.028. (278) 
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Since the base motion is a simple harmonic function, analytical solutions are readily 

available for the total displacement response of the oscillator.  From Rao (1995) [204], the total 

displacement of the oscillator is given by 

 

 𝑥 = 𝑋sin(𝜔𝑡 − 𝜙) (279) 

where 

 

 
𝑋 = 𝑑𝑦,𝐴𝑃1 ∗ [

1+(2𝜁𝑒𝑞𝑟)
2

(1−𝑟2)2+(2𝜁𝑒𝑞𝑟)
2]

0.5

= −1.139𝑒 − 3𝑚, 

 

𝜙 = tan−1 [
2𝜁𝑒𝑞𝑟3

1+(4𝜁𝑒𝑞
2 −1)𝑟2] = 1.739𝑟𝑎𝑑. 

(280) 

The relative displacement of the oscillator was given by Eq. (223) and is repeated here for 

convenience 

 

 𝑧 = 𝑥 − 𝑦. (281) 

Combining Eq. (276), Eq. (279), Eq. (280), and Eq. (281) leads to the relative displacement 

response 

 

 𝑧 = 𝑥 − 𝐷𝑦,𝐴𝑃1 = 𝑋sin(𝜔𝑡 − 𝜙) − 𝑑𝑦,𝐴𝑃1sin (𝜔𝑡), (282) 

while the derivative leads to the relative velocity response 

 

 𝑧̇ = 𝑋𝜔cos(𝜔𝑡 − 𝜙) − 𝑑𝑦,𝐴𝑃1𝜔cos (𝜔𝑡). (283) 

The maximum displacement occurs when  

 

 𝑧̇ = 0 = 𝑋𝜔cos(𝜔𝑡 − 𝜙) − 𝑑𝑦,𝐴𝑃1𝜔cos (𝜔𝑡). (284) 

Rearranging results in 

 

 𝑑𝑦,𝐴𝑃1

𝑋
=

cos(𝜔𝑡−𝜙)

cos (𝜔𝑡)
=

cos(𝜔𝑡) cos(−𝜙)−sin(𝜔𝑡)sin (−𝜙)

cos (𝜔𝑡)
, (285) 

which leads to 

 

 𝜔𝑡 = tan−1 [(
1

−sin (−𝜙)
) (

𝑑𝑦,𝐴𝑃1

𝑋
− cos (−𝜙))]. (286) 

Combining Eq. (282) and Eq. (286) results in 

 

 |𝑧|𝑚𝑎𝑥 = 1.19𝑚𝑚. (287) 
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To develop a power estimate, the maximum relative velocity amplitude is needed.  This 

occurs when  

 

 𝑧̈ = 0 = −𝑋𝜔2sin(𝜔𝑡 − 𝜙) + 𝑑𝑦,𝐴𝑃1𝜔
2sin (𝜔𝑡). (288) 

Rearranging results in 

 

 𝑑𝑦,𝐴𝑃1

𝑋
=

sin(𝜔𝑡−𝜙)

sin (𝜔𝑡)
=

sin(𝜔𝑡) cos(−𝜙)+cos(𝜔𝑡)sin (−𝜙)

sin (𝜔𝑡)
, (289) 

which leads to 

 

 
𝜔𝑡 = tan−1 [

sin (−𝜙)
𝑑𝑦,𝐴𝑃1

𝑋
−cos (−𝜙)

]. (290) 

Combining Eq. (283) and Eq. (290) results in 

 

 |𝑧̇|𝑚𝑎𝑥 = 0.1343
𝑚

𝑠
. (291) 

Since the steady-state response of the oscillator will be harmonic, the power estimate (Eq. 

(233)) can be written as 

 

 𝑃𝑎𝑣𝑔,𝑒 = 𝑐𝑒(|𝑧̇|𝑚𝑎𝑥)
2 [

1

𝑇
∫ sin2(𝜔𝑡 − Φ)𝑑𝑡

𝑇

0
]. (292) 

Note that the bracketed term is simply the signal power of a single harmonic function and is 

equal to 1 2⁄ .  The power estimate is then  

 

 𝑃𝑎𝑣𝑔,𝑒 = {𝑐𝑒}(|𝑧̇|𝑚𝑎𝑥)
2[0.5] = {2(0.1594𝑘𝑔)(2𝜋(17.51𝐻𝑧))(0.05)} (0.1343

𝑚

𝑠
)
2
[0.5] =

15.82𝑚𝑊. 
(293) 

Note that both the maximum uni-directional displacement (Eq. (287)) and power estimate (Eq. 

(293)) agree with the corresponding results from Figure 83.  These calculations are repeated for 

the first and third piezoelectric element at other instances in time; the results are summarized in 

Table 44 and show excellent agreement. 
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Table 44. Script Validation 
Piezoelectric Element 1 1 1 3 3 3 
Time Instance (𝑦𝑟) 1.7 2.2 2.8 1.7 2.2 2.8 

Acceleration Time History 𝑎𝑦,𝐴𝑃1 𝑎𝑦,𝐴𝑃1 𝑎𝑦,𝐴𝑃2 𝑎𝑥,𝐴𝑃1 𝑎𝑥,𝐴𝑃1 𝑎𝑥,𝐴𝑃2 

Acceleration Amplitude (𝑚 𝑠2⁄ ) 2.5 2.5 2.0 1.5 1.5 3.0 
Driving Frequency, 𝑓 (𝐻𝑧) 18 18 20 14 14 16 

Base Motion Displacement (𝑚) 
−1.954𝑒
− 04 

−1.954𝑒
− 04 

−1.267𝑒
− 04 

−1.939𝑒
− 04 

−1.939𝑒
− 04 

−2.968𝑒
− 04 

𝑓𝑛,𝑏𝑎𝑠𝑒 (𝐻𝑧) 18.5 18.5 18.5 17.0 17.0 17.0 

𝑓𝑛,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐻𝑧) 18.50 17.51 17.51 17.00 16.09 16.09 

Frequency Ratio, 𝑟 0.973 1.028 1.142 0.824 0.870 0.994 
Mechanical Damping Ratio, 𝜁𝑚 3% 3% 3% 3% 3% 3% 

Electrical Damping Ratio, 𝜁𝑒 5% 5% 5% 3% 3% 3% 
Equivalent Damping Ratio, 𝜁𝑒𝑞 8% 8% 8% 6% 6% 6% 

Total Displacement Amplitude, 𝑋 (𝑚) 
−1.202𝑒
− 03 

−1.139𝑒
− 03 

−3.626𝑒
− 4 

−5.787𝑒
− 04 

−7.367𝑒
− 4 

−2.494𝑒
− 03 

Phase Shift, 𝜙 (𝑟𝑎𝑑) 1.086 1.739 2.420 0.199 0.302 1.357 
Oscillator Peak Displacement, |𝑧|𝑚𝑎𝑥 

(𝑚𝑚) 
1.12 1.19 0.47 0.39 0.55 2.45 

Script Peak Displacement Estimate 

(𝑚𝑚) 
1.12 1.19 0.47 0.39 0.55 2.45 

Error 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Oscillator Peak velocity, |𝑧̇|𝑚𝑎𝑥 (𝑚/𝑠) 0.1272 0.1343 0.0585 0.0344 0.0488 0.2461 
Average Extracted Power, 𝑃𝑎𝑣𝑔,𝑒 (𝑚𝑊) 14.98 15.82 3.00 0.79 1.51 38.49 

Script Power Estimate (𝑚𝑊) 14.98 15.80 3.00 0.79 1.51 38.51 
Error 0.0% −0.1% 0.0% 0.0% 0.0% 0.1% 

Note that for the realization in the last column, the driving frequency is very near the 

natural frequency (i.e. 𝑟 = 0.994).  In this case, and since 𝜁𝑚 = 𝜁𝑒 was assumed, the single 

term approximation provided by Eq. (263) and Eq. (266) should provide a reasonable estimate 

(there will be some error as 𝑟 ≠ 1 and 𝜁𝑒𝑞 is relatively large).  For the particular realization 

 

 
𝑃𝑎𝑣𝑔,𝑒−𝑚𝑎𝑥 ≈

𝑚𝑒𝑞

8𝜁𝑚
[

𝐴𝑛
2

2𝜔𝑛
] =

0.2094𝑘𝑔

8(0.03)
[

(3
𝑚

𝑠2
)
2

2(2𝜋16.09𝐻𝑧)
] = 38.84𝑚𝑊, (294) 

and 

 

 
𝑧𝑠−𝑚𝑎𝑥|𝑃𝑎𝑣𝑔,𝑒−𝑚𝑎𝑥

≈
|𝐴𝑛|

4𝜁𝑚𝜔𝑛
2 =

|3
𝑚

𝑠2
|

4(0.03)(2𝜋16.09𝐻𝑧)2
= 2.44𝑚𝑚, (295) 

which compare reasonably well with the calculated values shown in Table 44 (errors of 0.9% 

and −0.4%, respectively). 

5.3. SS – Refined Power Estimate 

The underlying model imiplemented in the FS have several shortcomings, previously 

identified in Section 5.2.  To generate an improved power estimate, a single piezoelectric 
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bimorph is modeled utilizing coupled electromechancial equations in a distributed system.  The 

models derivation is shown in Section 5.3.1 and follows the work of Erturk and Inman (2011) 

[36].  The model has been experimentally validated and is discussed in Priya and Inman (2009) 

[28] and Erturk and Inman (2009) [205]. The same modeling approach has been applied to a 

unimorph piezoelectric element as described in Erturk and Inman (2008) [206] and Priya and 

Inman (2009) [28].  Following the models derivation, the practical application of the MATLAB 

script is described and several validation cases are shown.  Lastly, demonstration cases 

illustrate how cyclic damage and temperature changes might effect the power output and 

displacement response of an excited bimorph. 

5.3.1. Derivation of Power Estimate 

5.3.1.1. Base Equation of Motion 

Consider the uniform cantilever beam shown in Figure 84 where a tip mass has been 

included.  The variables shown include the beam mass per unit length (𝑚), beam length (𝐿), tip 

mass (𝑀𝑡), mass moment of inertia of the tip mass about 𝑥 = 𝐿 (𝐼𝑡), the relative displacement of 

the beam (𝑤𝑅), and the base displacement (𝑤𝐵).  The beams total displacement for any spatial 

point (𝑥) is the summation of the relative and base displacement, i.e. 𝑤 = 𝑤𝑅 + 𝑤𝐵. 

 

 
Figure 84. Uniform Cantilever Beam with Tip Mass: Initial (Left) and Displaced (Right) Shapes 
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Assuming Euler-Bernoulli beam theory, the kinetic energy of the system can be written 

as 

 

 𝐾𝐸 = ∫ {
1

2
(𝑚 + 𝑀𝑡𝛿[𝑥 − 𝐿])𝑤̇2}

𝐿

0
+ {

1

2
𝐼𝑡𝛿[𝑥 − 𝐿](𝑤̇𝑅

′ )2} 𝑑𝑥, (296) 

where 𝛿  represents the Dirac delta function;  (    )̇  and (   )′  represent temporal and spatial 

derivatives, respectively.  The bracketed terms represent the translational kinetic energy of the 

system and the rotational kinetic energy of the tip mass, respectively.  The bending strain 

energy can be written as 

 

 𝑆𝐸 = ∫ {
1

2
𝑌𝐼(𝑤𝑅

′′)2}
𝐿

0
𝑑𝑥. (297) 

The Lagrangian is written as 

 

 𝐿̿ = 𝐾𝐸 − 𝑆𝐸 = ∫ {
1

2
[𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]𝑤̇2}

𝐿

0
+ {

1

2
𝐼𝑡𝛿(𝑥 − 𝐿)(𝑤̇𝑅

′ )2} − {
1

2
𝑌𝐼(𝑤𝑅

′′)2} 𝑑𝑥. (298) 

Applying Hamilton’s principle  

 

 ∫ 𝛿𝐿̿𝑑𝑡
𝑡2
𝑡1

= 0, (299) 

where the variation term (𝛿 ) has been underscored to distinguish it from the Dirac delta 

function of Eq. (296), leads to 

 

 ∫ ∫ {[𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]𝑤̇𝛿𝑤̇}
𝐿

0
+ {𝐼𝑡𝛿(𝑥 − 𝐿)𝑤̇𝑅

′ 𝛿𝑤̇𝑅
′ } − {𝑌𝐼𝑤𝑅

′′𝛿𝑤𝑅
′′}𝑑𝑥𝑑𝑡 = 0

𝑡2
𝑡1

. (300) 

Looking at the three bracketed terms individually, the first term can be rearranged as 

 

 ∫ [𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]
𝐿

0
{∫ 𝑤̇𝛿𝑤̇

𝑡2
𝑡1

𝑑𝑡} 𝑑𝑥. (301) 

Applying integration by parts to the bracketed integral leads to 

 

 ∫ 𝑤̇𝛿𝑤̇
𝑡2
𝑡1

𝑑𝑡 = 𝑤̇𝛿𝑤|
𝑡1

𝑡2
− ∫ 𝑤̈

𝑡2
𝑡1

𝛿𝑤𝑑𝑡 = −∫ 𝑤̈
𝑡2
𝑡1

𝛿𝑤𝑑𝑡. (302) 

Eq. (301) can then be written as 

 

 −∫ ∫ [𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]𝑤̈
𝐿

0
𝛿𝑤𝑑𝑥

𝑡2
𝑡1

𝑑𝑡. (303) 

The displacement (𝑤) can be rewritten in terms of the relative and base displacement.  Let 𝑤̈ =

𝑤̈𝑅 + 𝑤̈𝐵 and 𝛿𝑤 = 𝛿𝑤𝑅 + 𝛿𝑤𝐵 such that Eq. (303) can be written as 
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 −∫ ∫ [𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]
𝐿

0
{𝑤̈𝑅𝛿𝑤𝑅 + 𝑤̈𝐵𝛿𝑤𝑅 + 𝑤̈𝑅𝛿𝑤𝐵 + 𝑤̈𝐵𝛿𝑤𝐵}𝑑𝑥

𝑡2
𝑡1

𝑑𝑡. (304) 

A portion of this double integral (that corresponding to 𝑤̈𝑅𝛿𝑤𝑅) can be expanded as  

 

 ∫ [𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]
𝐿

0
𝑤̈𝑅𝛿𝑤𝑅𝑑𝑥 = ∫ 𝑚𝑤̈𝑅𝛿𝑤𝑅𝑑𝑥

𝐿

0
+ ∫ 𝑀𝑡𝛿(𝑥 − 𝐿)𝑤̈𝑅𝛿𝑤𝑅𝑑𝑥

𝐿

0
. (305) 

Evaluating the second integral on the right hand side results in  

 

 ∫ 𝑀𝑡𝛿(𝑥 − 𝐿)𝑤̈𝑅𝛿𝑤𝑅𝑑𝑥
𝐿

0
= 𝑀𝑡𝑤̈𝑅(𝐿)𝛿𝑤𝑅 . (306) 

Thus, the first bracketed term of Eq. (300) can be written as 

 

 −∫ [∫ [[𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]{𝑤̈𝐵𝛿𝑤𝑅 + 𝑤̈𝑅𝛿𝑤𝐵 + 𝑤̈𝐵𝛿𝑤𝐵} + 𝑚𝑤̈𝑅𝛿𝑤𝑅]
𝐿

0
𝑑𝑥 +

𝑡2
𝑡1

𝑀𝑡𝑤̈𝑅(𝐿)𝛿𝑤𝑅] 𝑑𝑡. 
(307) 

The second bracketed term of Eq. (300) can be rearranged as 

 

 ∫ 𝐼𝑡𝛿(𝑥 − 𝐿) [∫ 𝑤̇𝑅
′ 𝛿𝑤̇𝑅

′ 𝑑𝑡
𝑡2
𝑡1

]
𝐿

0
𝑑𝑥. (308) 

Applying integration by parts to the bracketed integral leads to 

 

 ∫ 𝑤̇𝑅
′ 𝛿𝑤̇𝑅

′ 𝑑𝑡
𝑡2
𝑡1

= 𝑤̇𝑅
′ 𝛿𝑤𝑅

′ |
𝑡1

𝑡2
− ∫ 𝑤̈𝑅

′𝑡2
𝑡1

𝛿𝑤𝑅
′ 𝑑𝑡 = −∫ 𝑤̈𝑅

′𝑡2
𝑡1

𝛿𝑤𝑅
′ 𝑑𝑡. (309) 

Combining Eq. (308) and Eq. (309) leads to 

 

 −∫ [∫ 𝐼𝑡𝛿(𝑥 − 𝐿)𝑤̈𝑅
′ 𝛿𝑤𝑅

′𝐿

0
𝑑𝑥]

𝑡2
𝑡1

𝑑𝑡, (310) 

which, after evaluating the spatial integral, can be written as 

 

 −∫ 𝐼𝑡𝑤̈𝑅
′ (𝐿)𝛿𝑤𝑅

′𝑡2
𝑡1

𝑑𝑡. (311) 

Lastly, the third bracketed term of Eq. (300) can be written as  

 

 −∫ ∫ 𝑌𝐼𝑤𝑅
′′𝛿𝑤𝑅

′′𝐿

0
𝑑𝑥

𝑡2
𝑡1

𝑑𝑡 = −∫ ∫ 𝑀𝛿𝑤𝑅
′′𝐿

0
𝑑𝑥

𝑡2
𝑡1

𝑑𝑡. (312) 

where 𝑌𝐼𝑤𝑅
′′ has been replaced with a generalized moment term (𝑀).  Applying integration by 

parts to the spatial integral leads to 

 

 −∫ ∫ 𝑀𝛿𝑤𝑅
′′𝐿

0
𝑑𝑥

𝑡2
𝑡1

𝑑𝑡 = − ∫ [𝑀𝛿𝑤𝑅
′ |

0

𝐿
− ∫ 𝑀′𝛿𝑤𝑅

′ 𝑑𝑥
𝐿

0
]

𝑡2
𝑡1

𝑑𝑡. (313) 

 

Again applying integration by parts to the spatial integral results in  

 

 −∫ [𝑀𝛿𝑤𝑅
′ |

0

𝐿
− ∫ 𝑀′𝛿𝑤𝑅

′ 𝑑𝑥
𝐿

0
]

𝑡2
𝑡1

𝑑𝑡 = −∫ [𝑀𝛿𝑤𝑅
′ |

0

𝐿
− {𝑀′𝛿𝑤𝑅|

0

𝐿
− ∫ 𝑀′′𝛿𝑤𝑅𝑑𝑥

𝐿

0
}] 𝑑𝑡

𝑡2
𝑡1

. (314) 
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Eq. (300) can then be written in terms of Eq. (307), Eq. (311) and Eq. (314) 

 

 −∫ [∫ [[𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]{𝑤̈𝐵𝛿𝑤𝑅 + 𝑤̈𝑅𝛿𝑤𝐵 + 𝑤̈𝐵𝛿𝑤𝐵} + 𝑚𝑤̈𝑅𝛿𝑤𝑅]
𝐿

0
𝑑𝑥 +

𝑡2
𝑡1

𝑀𝑡𝑤̈𝑅(𝐿)𝛿𝑤𝑅] 𝑑𝑡 − ∫ 𝐼𝑡𝑤̈𝑅
′ (𝐿)𝛿𝑤𝑅

′𝑡2
𝑡1

𝑑𝑡 − ∫ [𝑀𝛿𝑤𝑅
′ |

0

𝐿
− {𝑀′𝛿𝑤𝑅|

0

𝐿
−

𝑡2
𝑡1

∫ 𝑀′′𝛿𝑤𝑅𝑑𝑥
𝐿

0
}] 𝑑𝑡 = 0. 

(315) 

Regrouping terms 

 

 

∫

[
 
 
 
 𝑀𝑡𝑤̈𝑅(𝐿)𝛿𝑤𝑅 + 𝐼𝑡𝑤̈𝑅

′ (𝐿)𝛿𝑤𝑅
′ + 𝑀𝛿𝑤𝑅

′ |
0

𝐿
− 𝑀′𝛿𝑤𝑅|

0

𝐿

+∫ [𝑚𝑤̈𝑅 + [𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]𝑤̈𝐵 + 𝑀′′]𝛿𝑤𝑅𝑑𝑥
𝐿

0

+∫ [[𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)](𝑤̈𝑅 + 𝑤̈𝐵)]𝛿𝑤𝐵𝑑𝑥
𝐿

0 ]
 
 
 
 

𝑡2
𝑡1

𝑑𝑡 = 0, (316) 

where 𝛿𝑤𝐵 = 0 since the base acceleration is known.   

The equation of motion can be extracted as 

 

 𝑚𝑤̈𝑅 + [𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]𝑤̈𝐵 + 𝑀′′ = 0, (317) 

or equivalently 

 

 𝑀′′ + 𝑚𝑤̈𝑅 = −[𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]𝑤̈𝐵. (318) 

The boundary conditions can be extracted as 

 

 𝑤𝑅 = 0     &     𝑤𝑅
′ = 0     @𝑥 = 0; 

 

𝑀′ − 𝑀𝑡𝑤̈𝑅 = 0     &     𝑀 + 𝐼𝑡𝑤̈𝑅
′ = 0     @𝑥 = 𝐿. 

(319) 

5.3.1.2. Inclusion of Piezoelectric Effects 

To incorporate piezoelectric effects, the generalized moment (𝑀) is expanded.  The 

following derivations are based on the beam cross section shown in Figure 85 where the x, y, 

and z-axis correspond to the 1, 2, and 3-direction.   
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Figure 85. Beam Cross Section 

5.3.1.2.1. Parallel Connection 

The internal bending moment is defined as [207] 

 

 𝑀 = −∫ 𝑧𝑇1𝑑𝐴
 

𝐴
, (320) 

where 𝑇1 is the axial stress in the cross section.  For the cross section shown in Figure 85, Eq. 

(320) can be expanded as 

 

 𝑀 = −𝑏 [∫ 𝑇1
𝑝−𝐿

𝑧𝑑𝑧
−ℎ𝑠̃ 2⁄

−ℎ𝑝̃−ℎ𝑠̃ 2⁄
+ ∫ 𝑇1

𝑠̃𝑧𝑑𝑧
ℎ𝑠̃ 2⁄

−ℎ𝑠̃ 2⁄
+ ∫ 𝑇1

𝑝−𝑈
𝑧𝑑𝑧

ℎ𝑠̃ 2⁄ +ℎ𝑝̃

ℎ𝑠̃ 2⁄
], (321) 

where 𝑇1
𝑝̃−𝐿

, 𝑇1
𝑠̃, and 𝑇1

𝑝̃−𝑈
 are the x-component stresses in the lower piezoelectric, substrate, 

and upper piezoelectric layers, respectively.  For the substrate (with no piezoelectric 

properties), the x-component stress is  

 

 𝑇1
𝑠̃ = 𝑌𝑠̃𝑆1

𝑠̃, (322) 

where 𝑌𝑠̃ is the Young’s modulus of the substrate and 𝑆1
𝑠̃ is the axial strain in the substrate.  In 

general, the axial strain is related to curvature as  

 

 𝑆1 = −𝑧𝑤𝑅
′′. (323) 

For piezoelectric elements connected in parallel and polarized as shown in Figure 86, 

the x-component stresses can be written for the piezoelectric elements as [32] 

 

 𝑇1
𝑝−𝑈

= 𝑐11
𝐸 𝑆1

𝑝−𝑈
− 𝑒̅31𝐸3

𝑈, (324) 
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and  

 

 𝑇1
𝑝−𝐿

= 𝑐11
𝐸 𝑆1

𝑝̃−𝐿
− 𝑒̅31𝐸3

𝐿. (325) 

Note that 𝑐11
𝐸  is the elastic modulus of the piezoelectric at constant electric field, 𝑒̅31  is the 

effective piezoelectric stress constant, and 𝐸3 is the electric field component in the z-direction. 

 

 
Figure 86. Parallel Connection 

Eq. (321) can be expanded as 

 

 𝑀 = −𝑏 [∫ (𝑐11
𝐸 (−𝑧𝑤𝑅

′′) − 𝑒̅31𝐸3
𝐿)𝑧𝑑𝑧

−ℎ𝑠̃ 2⁄

−ℎ𝑝̃−ℎ𝑠̃ 2⁄
+ ∫ 𝑌𝑠̃(−𝑧𝑤𝑅

′′)𝑧𝑑𝑧
ℎ𝑠̃ 2⁄

−ℎ𝑠̃ 2⁄
+ ∫ (𝑐11

𝐸 (−𝑧𝑤𝑅
′′) −

ℎ𝑠̃ 2⁄ +ℎ𝑝̃

ℎ𝑠̃ 2⁄

𝑒̅31𝐸3
𝑈)𝑧𝑑𝑧]. 

(326) 

The mechanical integrals can be isolated as  

 

 𝑀 = −𝑏 [−𝑐11
𝐸 𝑤𝑅

′′ ∫ 𝑧2𝑑𝑧
−ℎ𝑠̃ 2⁄

−ℎ𝑝̃−ℎ𝑠̃ 2⁄
− 𝑌𝑠̃𝑤𝑅

′′ ∫ 𝑧2𝑑𝑧
ℎ𝑠̃ 2⁄

−ℎ𝑠̃ 2⁄
− 𝑐11

𝐸 𝑤𝑅
′′ ∫ 𝑧2𝑑𝑧

ℎ𝑠̃ 2⁄ +ℎ𝑝̃

ℎ𝑠̃ 2⁄
], (327) 

which reduces to 

 

 
𝑀 = −𝑏 [−

𝑐11
𝐸 𝑤𝑅

′′

3
[(ℎ𝑝 +

ℎ𝑠̃

2
)

3

− (
ℎ𝑠̃

2
)

3

] −
𝑌𝑠̃𝑤𝑅

′′

3
[
ℎ𝑠̃

3

4
] −

𝑐11
𝐸 𝑤𝑅

′′

3
[(ℎ𝑝 +

ℎ𝑠̃

2
)

3

− (
ℎ𝑠̃

2
)

3

]]. (328) 

Eq. (328) can be simplified to  

 

 
𝑀 =

2𝑏

3
[𝑐11

𝐸 [(ℎ𝑝 +
ℎ𝑠̃

2
)

3

−
ℎ𝑠̃

3

8
] + 𝑌𝑠̃ [

ℎ𝑠̃
3

8
]] 𝑤𝑅

′′ = 𝑌𝐼𝑤𝑅
′′. (329) 

where the sections weighted flexural rigidity is given by  

 

 
𝑌𝐼 =

2𝑏

3
[𝑐11

𝐸 [(ℎ𝑝 +
ℎ𝑠̃

2
)

3

−
ℎ𝑠̃

3

8
] + 𝑌𝑠̃ [

ℎ𝑠̃
3

8
]]. (330) 

Note that an analysis of a purely mechanical composite beam would result in the same flexural 

rigidity.  The electric integrals can be isolated as  
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 𝑀 = 𝑏 [𝑒̅31𝐸3
𝐿 ∫ 𝑧𝑑𝑧

−ℎ𝑠̃ 2⁄

−ℎ𝑝̃−ℎ𝑠̃ 2⁄
+ 𝑒̅31𝐸3

𝑈 ∫ 𝑧𝑑𝑧
ℎ𝑠̃ 2⁄ +ℎ𝑝̃

ℎ𝑠̃ 2⁄
], (331) 

which simplifies to  

 

 
𝑀 = 𝑏 [

𝑒̅31𝐸3
𝐿

2
[
ℎ𝑠̃

2

4
− (ℎ𝑝 +

ℎ𝑠̃

2
)

2

] +
𝑒̅31𝐸3

𝑈

2
[(ℎ𝑝 +

ℎ𝑠̃

2
)

2

−
ℎ𝑠̃

2

4
]]. (332) 

For the parallel case, the electric fields can be written as 𝐸3
𝑈 = −𝜐𝑝/ℎ𝑝̃ and 𝐸3

𝐿 = 𝜐𝑝/ℎ𝑝̃. Eq. 

(332) is then written as 

 

 
𝑀 = 𝑏 [−

𝑒̅31

2
(

𝜐𝑝

ℎ𝑝̃
) [(ℎ𝑝 +

ℎ𝑠̃

2
)

2

−
ℎ𝑠̃

2

4
] +

𝑒̅31

2
(−

𝜐𝑝

ℎ𝑝̃
) [(ℎ𝑝 +

ℎ𝑠̃

2
)

2

−
ℎ𝑠̃

2

4
]], (333) 

or 

 

 
𝑀 = −

𝑏𝑒̅31

ℎ𝑝̃
[(ℎ𝑝 +

ℎ𝑠̃

2
)

2

−
ℎ𝑠̃

2

4
] 𝜐𝑝 = −𝜗𝑝𝜐𝑝, (334) 

where  

 

 
𝜗𝑝 =

𝑏𝑒̅31

ℎ𝑝̃
[(ℎ𝑝 +

ℎ𝑠̃

2
)

2

−
ℎ𝑠̃

2

4
] = 2𝑏𝑒̅31 (

ℎ𝑝̃+ℎ𝑠̃

2
). (335) 

The electrical term must be multiplied by [𝐻(𝑥) − 𝐻(𝑥 − 𝐿)] so that it survives the spatial 

differentiation where 𝐻(𝑥) is the Heaviside function [36].  Eq. (321) is then equal to  

 

 𝑀 = 𝑌𝐼𝑤𝑅
′′ − 𝜗𝑝𝜐𝑝[𝐻(𝑥) − 𝐻(𝑥 − 𝐿)], (336) 

where 𝜗𝑝 is given by Eq. (335).  For the case of parallel connection, Eq. (318) is then written as 

 

 𝑌𝐼𝑤𝑅
𝑝′′′′

− 𝜗𝑝𝜐𝑝 [
𝑑𝛿(𝑥)

𝑑𝑥
−

𝑑𝛿(𝑥−𝐿)

𝑑𝑥
] + 𝑚𝑤̈𝑅

𝑝
= −[𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]𝑤̈𝐵. (337) 

5.3.1.2.2. Series Connection 

For piezoelectric elements connected in series and polarized as shown in Figure 87, the 

x-component stresses can be written for the upper piezoelectric element as 

 

 𝑇1
𝑝−𝑈

= 𝑐11
𝐸 𝑆1

𝑝−𝑈
− 𝑒̅31𝐸3

𝑈, (338) 

and  

 

 𝑇1
𝑝−𝐿

= 𝑐11
𝐸 𝑆1

𝑝̃−𝐿
+ 𝑒̅31𝐸3

𝐿, (339) 
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for the lower piezoelectric element.  Note that the only difference between the series and 

parallel system is the sign of the electrical component in Eq. (339) (compare to Eq. (325)).  

This will result in a sign change in Eq. (332), which is written for the series connection as 

 

 
𝑀 = 𝑏 [−

𝑒̅31𝐸3
𝐿

2
[
ℎ𝑠̃

2

4
− (ℎ𝑝 +

ℎ𝑠̃

2
)

2

] +
𝑒̅31𝐸3

𝑈

2
[(ℎ𝑝 +

ℎ𝑠̃

2
)

2

−
ℎ𝑠̃

2

4
]]. (340) 

 

 
Figure 87. Series Connection 

For the series case, the electric fields can be written as 𝐸3
𝑈 = 𝐸3

𝐿 = −𝜐𝑠/(2ℎ𝑝̃).  Eq. 

(340) is rewritten as 

 

 
𝑀 = 𝑏 [+

𝑒̅31

2
(−

𝜐𝑠

2ℎ𝑝̃
) [(ℎ𝑝 +

ℎ𝑠̃

2
)

2

−
ℎ𝑠̃

2

4
] +

𝑒̅31

2
(−

𝜐𝑠

2ℎ𝑝̃
) [(ℎ𝑝 +

ℎ𝑠̃

2
)

2

−
ℎ𝑠̃

2

4
]]. (341) 

or more simply 

 

 
𝑀 = −

𝑏𝑒̅31

2ℎ𝑝̃
[(ℎ𝑝 +

ℎ𝑠̃

2
)

2

−
ℎ𝑠̃

2

4
] 𝜐𝑠 = −𝜗𝑠𝜐𝑠, (342) 

where 

 

 
𝜗𝑠 =

𝑏𝑒̅31

2ℎ𝑝̃
[(ℎ𝑝 +

ℎ𝑠̃

2
)

2

−
ℎ𝑠̃

2

4
] = 𝑏𝑒̅31 (

ℎ𝑝̃+ℎ𝑠̃

2
). (343) 

Again, the electrical term must be multiplied by [𝐻(𝑥) − 𝐻(𝑥 − 𝐿)] so that it survives the 

spatial differentiation where 𝐻(𝑥) is the Heaviside function [36].  Eq. (321) is then equal to  

 

 𝑀 = 𝑌𝐼𝑤𝑅
′′ − 𝜗𝑠𝜐𝑠[𝐻(𝑥) − 𝐻(𝑥 − 𝐿)], (344) 

where 𝜗𝑠 is given by Eq. (343).  For the case of series connection, Eq. (318) is then written as 

 

 𝑌𝐼𝑤𝑅
𝑠′′′′ − 𝜗𝑠𝜐𝑠 [

𝑑𝛿(𝑥)

𝑑𝑥
−

𝑑𝛿(𝑥−𝐿)

𝑑𝑥
] + 𝑚𝑤̈𝑅

𝑠 = −[𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]𝑤̈𝐵. (345) 
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5.3.1.3. Damped Equation of Motion 

Both Kelvin-Voigt and viscous damping can be incorporated into the model.  For 

Kelvin-Voigt (or strain-rate) damping, the effective modulus is replaced by 

 

 𝑌 = 𝑌 + 𝑐𝑠
𝜕

𝜕𝑡
. (346) 

The updated equations of motion for both the parallel and series configurations are then 

 

 𝑌𝐼𝑤𝑅
𝑝′′′′

+ 𝑐𝑠𝐼𝑤̇𝑅
𝑝′′′′

+ 𝑐𝑎𝑤̇𝑅
𝑝

− 𝜗𝑝𝜐𝑝 [
𝑑𝛿(𝑥)

𝑑𝑥
−

𝑑𝛿(𝑥−𝐿)

𝑑𝑥
] + 𝑚𝑤̈𝑅

𝑝
= −[𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]𝑤̈𝐵, (347) 

and  

 

 𝑌𝐼𝑤𝑅
𝑠′′′′ + 𝑐𝑠𝐼𝑤̇𝑅

𝑠′′′′ + 𝑐𝑎𝑤̇𝑅
𝑠 − 𝜗𝑠𝜐𝑠 [

𝑑𝛿(𝑥)

𝑑𝑥
−

𝑑𝛿(𝑥−𝐿)

𝑑𝑥
] + 𝑚𝑤̈𝑅

𝑠 = −[𝑚 + 𝑀𝑡𝛿(𝑥 − 𝐿)]𝑤̈𝐵, (348) 

respectively.  Note that the viscous damping term has been added directly and its contribution 

to the driving force has been neglected [203].  Assuming proportional damping, the 

eigenfunctions can be found from the corresponding undamped system. 

5.3.1.4. Eigenvalue Analysis of Undamped System 

Consider the free vibration of Eq. (318) where 𝑀 = 𝑌𝐼𝑤𝑅
′′ 

 

 𝑌𝐼𝑤𝑅
′′′′ + 𝑚𝑤̈𝑅 = 0. (349) 

The corresponding boundary conditions can be written as  

 

 𝑤𝑅 = 0     &     𝑤𝑅
′ = 0     @𝑥 = 0; 

 

𝑌𝐼𝑤𝑅
′′′ − 𝑀𝑡𝑤̈𝑅 = 0     &     𝑌𝐼𝑤𝑅

′′ + 𝐼𝑡𝑤̈𝑅
′ = 0     @𝑥 = 𝐿. 

(350) 

Using separation of variables take  

 

 𝑤𝑅(𝑥, 𝑡) = 𝜙(𝑥)𝜂(𝑡). (351) 

Eq. (349) becomes 

 

 𝑌𝐼𝜙′′′′𝜂 + 𝑚𝜙𝜂̈ = 0, (352) 

or 

 

 𝑌𝐼

𝑚

𝜙′′′′

𝜙
= −

𝜂̈

𝜂
, (353) 
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Since the left hand side is spatially dependent while the right hand side is solely dependent on 

time, both sides must be equal to the same constant 

 

 𝑌𝐼

𝑚

𝜙′′′′

𝜙
= −

𝜂̈

𝜂
= 𝛾. (354) 

Eq. (354) can then be rewritten as two equations 

 

 𝜙′′′′ −
𝛾𝑚

𝑌𝐼
𝜙 = 0, 

 

𝜂̈ + 𝛾𝜂 = 0. 

(355) 

The form of the temporal equation implies a harmonic solution, requiring that the constant 𝛾 be 

positive and permitting the expression 𝛾 = 𝜔2.  The general solutions to Eq. (355) are known to 

be [130] 

 

 𝜙 = 𝐶1cos (
𝜆

𝐿
𝑥) + 𝐶2cosh (

𝜆

𝐿
𝑥) + 𝐶3sin (

𝜆

𝐿
𝑥) + 𝐶4sinh (

𝜆

𝐿
𝑥), 

 

𝜂 = 𝐶5cos(𝜔𝑡) + 𝐶6sin(𝜔𝑡) 

(356) 

 

where  

 

 𝜆4 =
𝜔2𝑚𝐿4

𝑌𝐼
. (357) 

The temporal solution in Eq. (356) can be combined with Eq. (351) to rewrite the 

boundary conditions of Eq. (350) as 

 

 𝜙 = 0     &     𝜙′ = 0     @𝑥 = 0; 

 

𝑌𝐼𝜙′′′𝜂 − 𝑀𝑡𝜙(−𝜔2𝜂) = 0 → 𝑌𝐼𝜙′′′ + 𝜔2𝑀𝑡𝜙 = 0     @𝑥 = 𝐿; 

 

𝑌𝐼𝜙′′𝜂 + 𝐼𝑡𝜙
′(−𝜔2𝜂) = 0 → 𝑌𝐼𝜙′′ − 𝜔2𝐼𝑡𝜙

′ = 0     @𝑥 = 𝐿. 

(358) 

The unknown spatial coefficients of Eq. (356) (i.e. 𝐶1 to 𝐶4) can be solved from the spatial 

boundary conditions provided in Eq. (358).  The displacement boundary condition at 𝑥 = 0 

results in  

 

 𝜙(0) = 𝐶1cos(0) + 𝐶2cosh(0) + 𝐶3sin(0) + 𝐶4sinh(0) = 𝐶1 + 𝐶2 = 0. (359) 

The slope boundary condition at 𝑥 = 0 results in 

 

 𝜙′(0) = −𝐶1
𝜆

𝐿
sin(0) + 𝐶2

𝜆

𝐿
sinh(0) + 𝐶3

𝜆

𝐿
cos(0) + 𝐶4

𝜆

𝐿
cosh(0) = 𝐶3 + 𝐶4 = 0. (360) 
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Since 𝐶1 = −𝐶2 and 𝐶3 = −𝐶4, the spatial equation in Eq. (356) can be written as  

 

 𝜙 = 𝐶1 [cos (
𝜆

𝐿
𝑥) − cosh (

𝜆

𝐿
𝑥)] + 𝐶3 [sin (

𝜆

𝐿
𝑥) − sinh (

𝜆

𝐿
𝑥)]. (361) 

The third boundary condition of Eq. (358) leads to  

 

 
𝑌𝐼

𝜆3

𝐿3
{𝐶1[sin(𝜆) − sinh(𝜆)] + 𝐶3[−cos(𝜆) − cosh(𝜆)]} 

+𝜔2𝑀𝑡{𝐶1[cos(𝜆) − cosh(𝜆)] + 𝐶3[sin(𝜆) − sinh(𝜆)]} = 0, 

(362) 

or, after dividing through by 𝑌𝐼𝜆3/𝐿3 

 

 {𝐶1[sin(𝜆) − sinh(𝜆)] + 𝐶3[−cos(𝜆) − cosh(𝜆)]} 

+
𝜆𝑀𝑡

𝐿𝑚
{𝐶1[cos(𝜆) − cosh(𝜆)] + 𝐶3[sin(𝜆) − sinh(𝜆)]} = 0, 

(363) 

The fourth boundary condition of Eq. (358) leads to 

 

 
𝑌𝐼

𝜆2

𝐿2
{𝐶1[−cos(𝜆) − cosh(𝜆)] + 𝐶3[−sin(𝜆) − sinh(𝜆)]} 

−𝜔2𝐼𝑡
𝜆

𝐿
{𝐶1[−sin(𝜆) − sinh(𝜆)] + 𝐶3[cos(𝜆) − cosh(𝜆)]} = 0. 

(364) 

or, after dividing through by 𝑌𝐼 𝜆2/𝐿2 

 

 {𝐶1[−cos(𝜆) − cosh(𝜆)] + 𝐶3[−sin(𝜆) − sinh(𝜆)]} 

−
𝜆3𝐼𝑡

𝐿3𝑚
{𝐶1[−sin(𝜆) − sinh(𝜆)] + 𝐶3[cos(𝜆) − cosh(𝜆)]} = 0. 

(365) 

Eq. (363) and Eq. (365) can be put into matrix form as 

 

 
[
𝑎11 𝑎12

𝑎21 𝑎22
] [

𝐶1

𝐶3
] = [

0
0
], (366) 

where 

 

 𝑎11 = [sin(𝜆) − sinh(𝜆)] +
𝜆𝑀𝑡

𝐿𝑚
[cos(𝜆) − cosh(𝜆)], 

𝑎12 = [−cos(𝜆) − cosh(𝜆)] +
𝜆𝑀𝑡

𝐿𝑚
[sin(𝜆) − sinh(𝜆)], 

𝑎21 = [−cos(𝜆) − cosh(𝜆)] −
𝜆3𝐼𝑡

𝐿3𝑚
[−sin(𝜆) − sinh(𝜆)], 

𝑎22 = [−sin(𝜆) − sinh(𝜆)] −
𝜆3𝐼𝑡

𝐿3𝑚
[cos(𝜆) − cosh(𝜆)]. 

(367) 

For a nontrivial solution of 𝐶1 and 𝐶3, the determinant of the coefficient matrix must be equal to 

zero.  This leads to the characteristic equation  

 

 −1 −
𝜆4𝑀𝑡𝐼𝑡

𝐿4𝑚2 + cosh(𝜆) [(
𝜆4𝑀𝑡𝐼𝑡

𝐿4𝑚2 − 1) cos(𝜆) + (
𝜆𝑀𝑡

𝐿𝑚
+

𝜆3𝐼𝑡

𝐿3𝑚
) sin(𝜆)] − (

𝜆𝑀𝑡

𝐿𝑚
−

𝜆3𝐼𝑡

𝐿3𝑚
) cos(𝜆) sinh(𝜆) = 0, 

(368) 
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which can be solved for the eigenvalues of each mode 𝑟 of interest (i.e. 𝜆𝑟).  After noting the 

relationship 𝐶3 = −𝐶1(𝑎11/𝑎12)   from Eq. (366), the eigenfunction of each mode 𝑟  can be 

written as  

 

 𝜙𝑟 = 𝐶1 {[cos (
𝜆𝑟

𝐿
𝑥) − cosh (

𝜆𝑟

𝐿
𝑥)] + 𝜍𝑟 [sin (

𝜆𝑟

𝐿
𝑥) − sinh (

𝜆𝑟

𝐿
𝑥)]}. (369) 

where 

 

 

𝜍𝑟 = −
𝑎11

𝑎12
=

[sin(𝜆𝑟)−sinh(𝜆𝑟)]+
𝜆𝑟𝑀𝑡
𝐿𝑚

[cos(𝜆𝑟)−cosh(𝜆𝑟)]

[cos(𝜆𝑟)+cosh(𝜆𝑟)]−
𝜆𝑟𝑀𝑡
𝐿𝑚

[sin(𝜆𝑟)−sinh(𝜆𝑟)]
. (370) 

The undamped natural frequency for mode 𝑟 can then be determined from Eq. (357) as 

 

 
𝜔𝑟 = 𝜆𝑟

2
√

𝑌𝐼

𝑚𝐿4. (371) 

5.3.1.5. Mass-Normalized Eigenfunctions 

The coefficient 𝐶1 of Eq. (369) can be determined by normalizing the eigenfunctions.  

Consider the governing spatial equation given in Eq. (355) 

 

 𝜙′′′′ −
𝛾𝑚

𝑌𝐼
𝜙 = 0. (372) 

Taking 𝜙𝑟 and 𝜙𝑠 to be the solutions at modes 𝑟 and 𝑠 

 

 𝑌𝐼𝜙𝑟
′′′′ = 𝜔𝑟

2𝑚𝜙𝑟, 

 

𝑌𝐼𝜙𝑠
′′′′ = 𝜔𝑠

2𝑚𝜙𝑠. 

(373) 

Mulitplying the first equation in Eq. (373) by 𝜙𝑠 and integrating over the length of the beam 

leads to 

 

 𝑌𝐼 ∫ 𝜙𝑠𝜙𝑟
′′′′𝐿

0
𝑑𝑥 = 𝜔𝑟

2𝑚 ∫ 𝜙𝑠𝜙𝑟𝑑𝑥
𝐿

0
. (374) 

Use integration by parts to expand the left hand side spatial integral as 

 

 ∫ 𝜙𝑠𝜙𝑟
′′′′𝐿

0
𝑑𝑥 = 𝜙𝑠𝜙𝑟

′′′|0
𝐿 − ∫ 𝜙𝑠

′𝜙𝑟
′′′𝑑𝑥

𝐿

0
. (375) 

Use integration by parts to expand the right hand side spatial integral of Eq. (375) as 

 

 ∫ 𝜙𝑠
′𝜙𝑟

′′′𝑑𝑥
𝐿

0
= 𝜙𝑠

′𝜙𝑟
′′|0

𝐿 − ∫ 𝜙𝑠
′′𝜙𝑟

′′𝑑𝑥
𝐿

0
. (376) 
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Eq. (374) can then be rewritten as  

 

 𝑌𝐼 [𝜙𝑠𝜙𝑟
′′′|0

𝐿 − 𝜙𝑠
′𝜙𝑟

′′|0
𝐿 + ∫ 𝜙𝑠

′′𝜙𝑟
′′𝑑𝑥

𝐿

0
] = 𝜔𝑟

2𝑚 ∫ 𝜙𝑠𝜙𝑟𝑑𝑥
𝐿

0
. (377) 

Incorporating the boundary conditions from Eq. (358) leads to 

 

 𝑌𝐼 [𝜙𝑠(𝐿) {
𝜔𝑟

2𝑀𝑡

𝑌𝐼
(−𝜙𝑟(𝐿))} − 𝜙𝑠

′(𝐿) {
𝜔𝑟

2𝐼𝑡

𝑌𝐼
𝜙𝑟

′(𝐿)} + ∫ 𝜙𝑠
′′𝜙𝑟

′′𝑑𝑥
𝐿

0
] = 𝜔𝑟

2𝑚 ∫ 𝜙𝑠𝜙𝑟𝑑𝑥
𝐿

0
, (378) 

which can be rearranged as 

 

 𝑌𝐼 ∫ 𝜙𝑠
′′𝜙𝑟

′′𝑑𝑥
𝐿

0
= 𝜔𝑟

2 [𝑚 ∫ 𝜙𝑠𝜙𝑟𝑑𝑥
𝐿

0
+ 𝑀𝑡𝜙𝑠(𝐿)𝜙𝑟(𝐿) + 𝐼𝑡𝜙𝑠

′(𝐿)𝜙𝑟
′(𝐿)]. (379) 

Similarly 

 

 𝑌𝐼 ∫ 𝜙𝑟
′′𝜙𝑠

′′𝑑𝑥
𝐿

0
= 𝜔𝑠

2 [𝑚 ∫ 𝜙𝑟𝜙𝑠𝑑𝑥
𝐿

0
+ 𝑀𝑡𝜙𝑟(𝐿)𝜙𝑠(𝐿) + 𝐼𝑡𝜙𝑟

′(𝐿)𝜙𝑠
′(𝐿)]. (380) 

Subtracting Eq. (380) from Eq. (379) leads to 

 

 0 = (𝜔𝑟
2 − 𝜔𝑠

2) [𝑚 ∫ 𝜙𝑠𝜙𝑟𝑑𝑥
𝐿

0
+ 𝑀𝑡𝜙𝑠(𝐿)𝜙𝑟(𝐿) + 𝐼𝑡𝜙𝑠

′(𝐿)𝜙𝑟
′(𝐿)]. (381) 

Since 𝜔𝑟
2 ≠ 𝜔𝑠

2, the orthogonality condition arises 

 

 0 = 𝑚 ∫ 𝜙𝑠𝜙𝑟𝑑𝑥
𝐿

0
+ 𝑀𝑡𝜙𝑠(𝐿)𝜙𝑟(𝐿) + 𝐼𝑡𝜙𝑠

′(𝐿)𝜙𝑟
′(𝐿). (382) 

The eigenfunction amplitude (i.e. 𝐶1) can be found from  

 

 𝑚 ∫ 𝜙𝑠𝜙𝑟𝑑𝑥
𝐿

0
+ 𝑀𝑡𝜙𝑠(𝐿)𝜙𝑟(𝐿) + 𝐼𝑡𝜙𝑠

′(𝐿)𝜙𝑟
′(𝐿) = 𝛿𝑟𝑠, (383) 

where 𝛿𝑟𝑠 is the Kronecker delta.  Substituting Eq. (383) into Eq. (379) leads to the alternative 

form  

 

 𝑌𝐼 ∫ 𝜙𝑠
′′𝜙𝑟

′′𝑑𝑥
𝐿

0
= 𝜔𝑟

2𝛿𝑟𝑠. (384) 

5.3.1.6. Coupled Electrical Equation for a Piezoelectric Element 

A piezoelectric element can be represented as a current source in parallel with its 

internal capacitance [208].  Applying Kirchoff’s law to the circuit shown in Figure 88 leads to 

 

 𝑖𝑝 = 𝐶𝑝𝜐̇ +
𝜐

𝑅
. (385) 
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Figure 88. Piezoelectric Circuit Model 

The electric displacement (𝐷) can be used to relate this circuit equation to the mechanical 

system [32] 

 

 ∫ 𝑛𝑖𝐷̇𝑖
 

𝐴
𝑑𝐴 = 𝑌̅𝜐, (386) 

where the circuit admittance is 𝑌̅ = 1/𝑅  and the integral is over the surface area of the 

piezoelectric.  Expanding Eq. (386) 

 

 ∫ 𝐷̇3
 

𝐴
𝑑𝐴 = ∫

𝑑

𝑑𝑡
[𝑒̅31𝑆1

𝑝̃
+ 𝜀3̅3

𝑆 𝐸3]
 

𝐴
𝑑𝐴 =

𝜐

𝑅
, (387) 

Where 𝜀3̅3
𝑆  is the permittivity component at constant strain.  Taking the average stress in the 

piezoelectric layer to be  

 

 𝑆1
𝑝

= −(
ℎ𝑝̃+ℎ𝑠̃

2
)𝑤𝑅

′′, (388) 

Eq. (388) can be expanded as 

 

 ∫ [−𝑒̅31 (
ℎ𝑝̃+ℎ𝑠̃

2
) 𝑤̇𝑅

′′ + 𝜀3̅3
𝑆 𝐸̇3]

 

𝐴
𝑑𝐴 =

𝜐

𝑅
. (389) 

Utilizing Eq. (351) and taking 𝐸3 = −𝜐/ℎ𝑝̃ 

 

 
∫ [∑ (−𝑒̅31 (

ℎ𝑝̃+ℎ𝑠̃

2
) 𝜂̇𝑟𝜙𝑟

′′)∞
𝑟=1 − 𝜀3̅3

𝑆 𝜐̇

ℎ𝑝̃
]

 

𝐴
𝑑𝐴 =

𝜐

𝑅
. (390) 

Expanding the integral and rearranging terms leads to 

 

 −∑ 𝑒̅31 (
ℎ𝑝̃+ℎ𝑠̃

2
) 𝜂̇𝑟

∞
𝑟=1 ∫ 𝜙𝑟

′′ 

𝐴
𝑑𝐴 = 𝜀3̅3

𝑆 𝜐̇

ℎ𝑝̃
∫ 𝑑𝐴

 

𝐴
+

𝜐

𝑅
. (391) 

Integrating over the surface area of the electrode results in  

 

 −∑ 𝜂̇𝑟 [𝑒̅31 (
ℎ𝑝̃+ℎ𝑠̃

2
) 𝑏𝜙𝑟

′(𝐿)]∞
𝑟=1 = 𝜀3̅3

𝑆 𝜐̇

ℎ𝑝̃
𝑏𝐿 +

𝜐

𝑅
, (392) 
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or equivalently 

 

 
−∑ 𝜅𝑟𝜂̇𝑟

∞
𝑟=1 =

𝜀̅33
𝑆 𝑏𝐿

ℎ𝑝̃
𝜐̇ +

𝜐

𝑅
, (393) 

where the modal coupling coefficient (𝜅𝑟) is defined as 

 

 𝜅𝑟 = 𝑒̅31 (
ℎ𝑝̃+ℎ𝑠̃

2
) 𝑏𝜙𝑟

′(𝐿). (394) 

Comparing Eq. (385) and Eq. (394), the current stemming from the piezoelectric and the 

piezoelectric’s internal capacitance are  

 

 
𝑖𝑝 = −∑ 𝜅𝑟𝜂̇𝑟

∞
𝑟=1      and     𝐶𝑝 =

𝜀̅33
𝑆 𝑏𝐿

ℎ𝑝̃
. (395) 

5.3.1.7. Coupled Electrical Equation for a Piezoelectric Bimorph 

The electrical circuit for a parallel and series connection are shown in Figure 89 [36].  

Applying Kirchoff’s laws leads to 

 

 𝑖𝑝
𝑝

= 𝐶𝑝𝜐̇
𝑝 +

𝜐𝑝

2𝑅
, (396) 

for the parallel connection and  

 

 𝑖𝑝
𝑠 =

𝐶𝑝̃𝜐̇𝑠

2
+

𝜐𝑠

𝑅
, (397) 

for the series connection. 
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Figure 89. Electrical Circuits for Piezoelectric Bimorph [36] 

5.3.1.8. System Response to Harmonic Loading 

After substituting Eq. (351) into Eq. (347) or Eq. (348) and applying the orthogonality 

conditions, the governing modal equation can be written in general terms as [36]  

 

 𝜂̈𝑟 + 2𝜁𝑟𝜔𝑟𝜂̇𝑟 + 𝜔𝑟
2𝜂𝑟 − Θ𝑟𝜐 = 𝑓𝑟, (398) 

where the modal electromechancial coupling term and modal forcing terms are written as  

 

 Θ𝑟 = 𝜗𝜙𝑟
′(𝐿), (399) 

and 

 

 𝑓𝑟 = [−𝑚 ∫ 𝜙𝑟𝑑𝑥
𝐿

0
− 𝑀𝑡𝜙𝑟(𝐿)] 𝑤̈𝐵. (400) 

In the case of a parallel connection, where Eq. (335) is noted, 

 

 Θ𝑟
𝑝

= 𝜗𝑝𝜙𝑟
′(𝐿) = 2𝑏𝑒̅31 (

ℎ𝑝̃+ℎ𝑠̃

2
)𝜙𝑟

′(𝐿). (401) 

The relevant circuit equation, given by Eq. (396) is expanded using Eq. (395) 
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 𝑖𝑝
𝑝

= −∑ 𝜅𝑟𝜂̇𝑟
𝑝∞

𝑟=1 = 𝐶𝑝𝜐̇
𝑝 +

𝜐𝑝

2𝑅
. (402) 

Multiplying through by 2 and introducing the modal coupling coefficient (Eq. (394)) results in 

 

 −∑ {2𝑒̅31 (
ℎ𝑝̃+ℎ𝑠̃

2
) 𝑏𝜙𝑟

′(𝐿)} 𝜂̇𝑟
𝑝∞

𝑟=1 = 2𝐶𝑝𝜐̇
𝑝 +

𝜐𝑝

𝑅
. (403) 

Note that the bracketed term is equivalent to Θ𝑟
𝑝

 given by Eq. (401).  Turning to the series 

connection, the modal electromechanical coupling term is  

 

 Θ𝑟
𝑠 = 𝜗𝑠𝜙𝑟

′(𝐿) = 𝑏𝑒̅31 (
ℎ𝑝̃+ℎ𝑠̃

2
)𝜙𝑟

′(𝐿). (404) 

where Eq. (343) has been utilized.  The relevant circuit equation, given by Eq. (397) is 

expanded using Eq. (395) 

 

 𝑖𝑝
𝑠 = −∑ 𝜅𝑟𝜂̇𝑟

𝑠∞
𝑟=1 =

𝐶𝑝̃𝜐̇𝑠

2
+

𝜐𝑠

𝑅
, (405) 

Introducing the modal coupling coefficient (Eq. (394)) results in  

 

 −∑ {𝑒̅31 (
ℎ𝑝̃+ℎ𝑠̃

2
) 𝑏𝜙𝑟

′(𝐿)} 𝜂̇𝑟
𝑠∞

𝑟=1 =
𝐶𝑝̃𝜐̇𝑠

2
+

𝜐𝑠

𝑅
, (406) 

where the bracketed term is equivalent to Θ𝑟
𝑠 given by Eq. (404).   

The equivalent electromechanical equations, representing both the parallel and series 

configurations, can thus be written as 

 

 𝜂̈𝑟 + 2𝜁𝑟𝜔𝑟𝜂̇𝑟 + 𝜔𝑟
2𝜂𝑟 − Θ𝑟𝜐 = 𝑓𝑟, 

 

−∑ Θ𝑟𝜂̇𝑟
∞
𝑟=1 = 𝐶𝑝

𝑒𝑞
𝜐̇ +

𝜐

𝑅
, 

(407) 

where 

 

 Θ𝑟 = 2𝑒̅31 (
ℎ𝑝̃+ℎ𝑠̃

2
) 𝑏𝜙𝑟

′(𝐿), 

 

𝐶𝑝
𝑒𝑞

= 2𝐶𝑝 = 2
𝜀̅33
𝑆 𝑏𝐿

ℎ𝑝̃
, 

(408) 

for a parallel connection and 

 

 Θ𝑟 = 𝑒̅31 (
ℎ𝑝̃+ℎ𝑠̃

2
) 𝑏𝜙𝑟

′(𝐿), 

 

𝐶𝑝
𝑒𝑞

=
𝐶𝑝̃

2
=

𝜀̅33
𝑆 𝑏𝐿

2ℎ𝑝̃
, 

(409) 
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for a series connection.   

Assuming the driving base motion is harmonic and of the form 

 

 𝑤𝑏 = 𝑊̅𝐵𝑒𝑖𝜔𝑡, (410) 

where 𝑊̅𝐵 is the translation amplitude and 𝜔 is the excitation frequency, the harmonic forcing 

function given by Eq. (400) is written as 

 

 𝑓𝑟 = [−𝑚 ∫ 𝜙𝑟𝑑𝑥
𝐿

0
− 𝑀𝑡𝜙𝑟(𝐿)] (−𝜔2𝑊̅𝐵)𝑒𝑖𝜔𝑡 , (411) 

or 

 

 𝑓𝑟 = 𝐹𝑟𝑒
𝑖𝜔𝑡, (412) 

where  

 

 𝐹𝑟 = [−𝑚 ∫ 𝜙𝑟𝑑𝑥
𝐿

0
− 𝑀𝑡𝜙𝑟(𝐿)] (−𝜔2𝑊̅𝐵) = 𝜎𝑟(−𝜔2𝑊̅𝐵). 

 

𝜎𝑟 = −𝑚 ∫ 𝜙𝑟𝑑𝑥
𝐿

0
− 𝑀𝑡𝜙𝑟(𝐿). 

(413) 

For a harmonic base motion, the steady-state mechanical response and voltage response of the 

beam are assumed to be harmonic and of the form 

 

 𝜂𝑟 = Η𝑟𝑒
𝑖𝜔𝑡     and      𝜐 = 𝑉̅𝑒𝑖𝜔𝑡 (414) 

Rewriting Eq. (407) in terms of Eq. (412) and Eq. (414) 

 

 −𝜔2Η𝑟 + 2𝜁𝑟𝜔𝑟𝑖𝜔Η𝑟 + 𝜔𝑟
2Η𝑟 − Θ𝑟𝑉̅ = 𝐹𝑟, 

 

−∑ Θ𝑟𝑖𝜔Η𝑟
∞
𝑟=1 = 𝐶𝑝

𝑒𝑞
𝑖𝜔𝑉̅ +

𝑉

𝑅
, 

(415) 

Equating the two electromechanical equations through Η𝑟 leads to 

 

 
−∑ Θ𝑟𝑖𝜔 [

𝐹𝑟+Θ𝑟𝑉

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

]∞
𝑟=1 = [𝐶𝑝

𝑒𝑞
𝑖𝜔 +

1

𝑅
] 𝑉̅. (416) 

Expanding Eq. (416) 

 

 −∑
Θ𝑟𝑖𝜔𝐹𝑟

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1 − ∑

𝑖𝜔Θ𝑟
2𝑉

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1 = [𝐶𝑝

𝑒𝑞
𝑖𝜔 +

1

𝑅
] 𝑉̅, (417) 

and reordering leads to  
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𝑉̅ =

−∑
Θ𝑟𝑖𝜔𝐹𝑟

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1

∑
𝑖𝜔Θ𝑟

2

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1 +[𝐶

𝑝̃
𝑒𝑞

𝑖𝜔+
1

𝑅
]
. (418) 

The steady-state time-dependent voltage can be found with Eq. (414) and Eq. (418).  Having 

obtained values for 𝐹𝑟 and 𝑉̅ by means of Eq. (413) and Eq. (418), Η𝑟 can be calculated through 

Eq. (415) 

 

 

Η𝑟 =
𝐹𝑟+Θ𝑟𝑉

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

= {𝐹𝑟 − Θ𝑟

∑
Θ𝑟𝑖𝜔𝐹𝑟

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1

∑
𝑖𝜔Θ𝑟

2

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1 +[𝐶

𝑝̃
𝑒𝑞

𝑖𝜔+
1

𝑅
]
}

1

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

. (419) 

Utilizing Eq. (414), the relative displacement response can then be calculated as  

 

 𝑤𝑅(𝑥, 𝑡) = ∑ 𝜙(𝑥)∞
𝑟=1 𝜂𝑟(𝑡). (420) 

Or in expanded form 

 

 

𝑤𝑅 = ∑ {𝐹𝑟 − Θ𝑟

∑
Θ𝑟𝑖𝜔𝐹𝑟

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1

∑
𝑖𝜔Θ𝑟

2

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1 +[𝐶

𝑝̃
𝑒𝑞

𝑖𝜔+
1

𝑅
]
}

𝜙(𝑥)𝑒𝑖𝜔𝑡

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1 . (421) 

Frequency response functions (FRFs) can be defined to relate the input base 

acceleration (𝑤̈𝐵) to output voltage (𝜐) or relative displacement (𝑤𝑅).  Define a FRF for the 

voltage as 𝛼 

 

 𝜐 = 𝛼𝑤̈𝐵. (422) 

Utilizing Eq. (410) and Eq. (414) 

 

 𝑉̅𝑒𝑖𝜔𝑡 = 𝛼(−𝜔2𝑊̅𝐵)𝑒𝑖𝜔𝑡. (423) 

Rearranging terms and incorporating Eq. (413) and Eq. (418) 

 

 
𝛼(𝜔) =

𝑉

−𝜔2𝑊̅𝐵
=

−∑
Θ𝑟𝑖𝜔𝜎𝑟

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1

∑
𝑖𝜔Θ𝑟

2

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1 +[𝐶

𝑝̃
𝑒𝑞

𝑖𝜔+
1

𝑅
]
. (424) 

Define a FRF for the relative displacement as 𝛽 

 

 𝑤𝑅 = 𝛽𝑤̈𝐵. (425) 

Rearranging terms and incorporating Eq. (413), Eq. (414), Eq. (419), and Eq. (420) 
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𝛽(𝜔, 𝑥) =
∑ 𝜙(𝑥)∞

𝑟=1 Η𝑟

−𝜔2𝑊̅𝐵
= ∑ {𝜎𝑟 − Θ𝑟

∑
Θ𝑟𝑖𝜔𝜎𝑟

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1

∑
𝑖𝜔Θ𝑟

2

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1 +[𝐶

𝑝̃
𝑒𝑞

𝑖𝜔+
1

𝑅
]
}

𝜙(𝑥)

(−𝜔2+2𝜁𝑟𝜔𝑟𝑖𝜔+𝜔𝑟
2)

∞
𝑟=1 . (426) 

5.3.1.9. Extension to Periodic Loading 

A periodic base motion can be approximated by a truncated Fourier series as [204] 

 

 𝑤̈𝐵(𝑡) ≅
𝑎0

2
+ ∑ 𝑎𝑛 cos (𝑛

2𝜋

𝑇
𝑡) + 𝑏𝑛sin (𝑛

2𝜋

𝑇
𝑡)𝑁

𝑛=1 , (427) 

where the series coefficients are defined as 

 

 𝑎0 =
2

𝑇
∫ 𝑤̈𝐵

𝑇

0
(𝑡)𝑑𝑡, 

 

𝑎𝑛 =
2

𝑇
∫ 𝑤̈𝐵

𝑇

0
(𝑡) cos (𝑛

2𝜋

𝑇
𝑡) 𝑑𝑡, 

 

𝑏𝑛 =
2

𝑇
∫ 𝑤̈𝐵

𝑇

0
(𝑡) sin (𝑛

2𝜋

𝑇
𝑡) 𝑑𝑡, 

(428) 

and the length of the signal is given by 𝑇.  For all typical structural systems with near-zero 

mean acceleration over the time interval of interest, 𝑎0 ≈ 0.  Using the FRF given in Eq. (424) 

the voltage output is found as 

 

 
𝜐(𝑡) = ∑ |𝛼 (𝑛

2𝜋

𝑇
)| [𝑎𝑛 cos [(𝑛

2𝜋

𝑇
𝑡) + Φ(𝑛

2𝜋

𝑇
)] + 𝑏𝑛sin [(𝑛

2𝜋

𝑇
𝑡) + Φ (𝑛

2𝜋

𝑇
)]]𝑁

𝑛=1 , (429) 

where |𝛼(2𝜋𝑛/𝑇)| and Φ(2𝜋𝑛/𝑇) are the modulus and phase angle of the FRF.  Similarly, the 

relative displacement response can be found as 

 

 
𝑤𝑅(𝑥, 𝑡) = ∑ |𝛽 (𝑛

2𝜋

𝑇
)| [𝑎𝑛 cos [(𝑛

2𝜋

𝑇
𝑡) + Ψ(𝑛

2𝜋

𝑇
)] + 𝑏𝑛sin [(𝑛

2𝜋

𝑇
𝑡) + Ψ(𝑛

2𝜋

𝑇
)]]𝑁

𝑛=1 . (430) 

The instantaneous power output is found as 

 

 𝑃𝑖𝑛𝑠𝑡(𝑡) =
𝜐(𝑡)2

𝑅
. (431) 

The average power output is found as 

 

 𝑃𝑎𝑣𝑔 =
1

𝑇
∫ 𝑃𝑖𝑛𝑠𝑡(𝑡)𝑑𝑡

𝑇

0
. (432) 

 

 

 

 

 



192 

 

5.3.2. Practical Application 

The user begins by entering acceleration time histories (also termed acceleration 

profiles) of the production tube at the harvester location, which represent the ground motions 

driving the attached piezoelectric energy harvester.  Each acceleration profile is then 

represented by a Fourier series (see Eq. 428) to facilitate future calculation of the voltage and 

relative tip displacement responses (see Eq. 429 and Eq. 430).  The acceleration profiles are 

unidirectional as, unlike the FS analysis, only a single piezoelectric element is analyzed in the 

SS due to the increased computational effort of the coupled equations of motion.  The 

acceleration time histories can be based on actual downhole accelerometer data or can be 

artificially generated as needed.  Since the acceleration time histories are generally non-

stationary over the life of the well (due to changes in production rate, hydrocarbon density, 

etc.), the acceleration profiles must be discretized by the user such that the profiles are locally 

stationary.  The user defines an operating schedule which specifies when each acceleration 

profile is active in the model.    

The user then defines constant inputs such as the beam mass (𝑚), the density of the tip 

mass, the number of modes to be considered, etc.  Next, the range and discretization step of 

each parameter is specified: the tip mass (𝑀𝑡) and resistive load (𝑅) are variables of interest in 

maximizing the power output over the user specified time domain of interest.  Variables that are 

expected to change over time and/or temperature are included in separate sub-functions. 

5.3.2.1. Variable Dependence 

Since the operating environment may change over time, several inputs are made 

dependent on other variables.  For instance, the mass moment of inertia of the tip mass is made 

a function of the tip mass (an optimization variable), an assumed density of the tip mass, and an 

assumed geometry (see Figure 90) [209] 
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 𝐼𝑡 =
5

12
𝑀𝑡𝑎2 =

5

12

𝑀𝑡
2

𝜌𝑡𝑏
. (433) 

Other dependencies include:  

 The thermal expansion coefficient of certain piezoelectric materials has been shown to 

increase with increasing temperature, implying a nonlinear relationship between beam 

length and temperature [210]-[211].   

 The modal damping ratio is known to be sensitive to both temperature and frequency 

[212]-[213]. 

 Several researchers have shown that the piezoelectric elastic modulus (𝑐1̅1
𝐸 = 1 𝑠11

𝐸⁄ ) 

decreases with increasing temperature [211].  Other tests have shown that this trend 

will eventually reverse course: at a certain thermal load the elastic modulus will begin 

to increase with increasing temperature [214]-[215]. 

 The elastic modulus of glass-epoxy laminates (often used as a substrate layer [216]) has 

been shown to steadily decrease with increasing temperature (when below the glass 

transition temperature) [217].  Since the elastic modulus of both the substrate and 

piezoelectric show temperature dependence, the flexural rigidity of the harvester is 

temperature dependent.   

 It is well known that load cycling of structural elements leads to the development of 

microcracks which, when orthogonal to the longitudinal axis of the energy harvester, 

will reduce the sections effective inertia.  The flexural rigidity of the energy harvester is 

then dependent on the number and amplitude of load cycles. 
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 The magnitude of the piezoelectric strain constant (𝑑31 = 𝑒̅31 𝑐1̅1
𝐸⁄ ) has been shown to 

increase with increasing temperature [214]-[215], [218]-[219], decrease 4-10% per 

decade due to aging [220]-[222], and decrease when electrically cycled [218]. 

 The piezoelectric capacitance (Eq. 395) can be written in terms of the permittivity 

component at constant strain (𝜀3̅3
𝑆 ) or constant stress (𝜀3̅3

𝑇 ) as [36] 

 

 
𝐶𝑝 =

𝜀̅33
𝑆 𝑏𝐿

ℎ𝑝̃
=

[𝜀̅33
𝑇 −𝑐1̅1

𝐸 (𝑑31)2]𝑏𝐿

ℎ𝑝̃
. (434) 

Researchers have found that the relative permittivity at constant stress increases with 

increasing temperature[214]-[215], [218]-[519]; several manufacturers have shown that 

capacitance increases with increasing temperature [223]-[225].  Capacitance has also 

been shown to age [225] and slightly degrade when mechanically cycled [226]. 

The included dependencies are summarized in Table 45. 

 

Table 45. Variable Dependencies 

Variable* Temperature** Time Load Cycle 

Beam Length (𝐿) X   

Modal Damping Ratio (𝜁𝑟)*** X   

Piezoelectric Elastic Modulus (𝑐1̅1
𝐸 ) X   

Flexural Rigidity (𝑌𝐼) X  X 

Piezoelectric Strain Constant (𝑑31) X X X 

Piezoelectric Capacitance (𝐶𝑝) X X X 
* The tip mass inertia is dependent on the tip mass. 

**The operating temperature is dependent on time.   
*** The modal damping ratio is dependent on the undamped natural frequency. 

These dependencies are defined by the user in tabular form within MATLAB sub-

functions.  When called upon by the script, the current temperature and time are used as input 

arguments; the current value of the variable of interest is returned.  The variable is then 

modified based on the amount of accumulated damage stemming from load cycling (as 

applicable). 
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Figure 90. Assumed Tip Mass Geometry 

 

5.3.2.2. Damage Accumulation 

5.3.2.2.1. Background 

In Section 5.3.2.1 it was noted that several properties degrade as the cumulative load 

cycles increase.  For example, the accumulation of microcracking in the energy harvester will 

cause a decrease in its flexural rigidity and a subsequent change in the system’s natural 

frequency.  This may result in the system falling into or out of resonance, directly impacting the 

power output.  To account for such changes, a damage metric and a damage model are needed.  

One common damage metric is stress: a test element is cycled at a constant stress level 

until failure with element properties observed throughout the course of testing.  The results are 

often plotted as property (i.e. flexural rigidity) vs. cycles and for multiple tests, stress vs. cycles 

to failure (an illustration is provided in Figure 91).   
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Figure 91. Stress Cycling 

This metric becomes difficult to incorporate in conjunction with the SS model 

previously derived as the relative displacement output from the model (𝑤𝑅 ) is based on a 

spatially uniform (or average) flexural rigidity.  While the beam curvature (and subsequently a 

flexural stress term) can be calculated from this output, the output cannot account for any local 

damage (i.e. amplified curvature) that might be occurring - this is analogous to a linear analysis 

failing to capture localized curvature in the plastic hinge of a column.   

An alternative metric is the relative tip displacement of the beam (𝑤𝑅(𝑥 = 𝐿)): rather 

than cycling a test element to a specified stress level, the element can be cycled to a specified 
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displacement amplitude.  As before, element properties can be observed throughout the course 

of testing and plotted as property vs. cycles and for multiple tests, amplitude vs. cycles to 

failure.   

Consider the testing of 𝑄 identical piezoelectric bimorphs with each bimorph subject to 

a harmonic base acceleration resulting in a relative tip displacement amplitude 𝐴𝑘 (𝑘 = 1: 𝑄).  

After 𝑛 cycles the cyclic loading is stopped and the relevant properties (𝑉𝑎, 𝑉𝑏, etc.) of each 

bimorph tested.  The 𝑄 bimorphs are again cyclically loaded and the process repeated until a 

property of interest degrades to failure at 𝑁𝑘 cycles.  A graphic depicting this process is shown 

in Figure 92. 

 

 
Figure 92. Cyclic Testing of 𝑄 Bimorphs 

For a given property 𝑉 with initial value 𝑉𝑖 a representative output is enlarged in Figure 

93.  The damage from source 𝑘 after 𝑛𝑘  cycles is ∆𝑉𝑘  while the maximum possible damage 
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from source 𝑘 is seen to be  𝑉𝑖 and occurs after 𝑁𝑘 cycles.  Assume the damage from each load 

cycle is linearly additive such that 

 

 ∆𝑉1 + ∆𝑉2 + ∆𝑉𝑄 = ∑ ∆𝑉𝑘
𝑄
𝑘=1 = 𝐶 ∗ 𝑉𝑖, (435) 

where 𝐶 is a damage index representing the percent accumulated damage of variable 𝑉 after 𝑛𝑘 

cycles at amplitude 𝐴𝑘 (𝑘 = 1: 𝑄).  Eq. (435) can be rewritten as  

 

 ∑
∆𝑉𝑘

𝑉𝑖

𝑄
𝑘=1 = 𝐶 ≤ 1, (436) 

which is seen to be a weighted form of Miner’s rule [227].  An equivalent interpretation is  

 

 ∑ 𝐷𝑘
𝑄
𝑘=1 ≤ 𝐷̅, (437) 

where 𝐷̅ is the total damage property 𝑉 can sustain and 𝐷𝑘 is damage to property  𝑉 stemming 

from the 𝑘𝑡ℎ source (i.e. 𝑛𝑘 cycles at amplitude 𝐴𝑘).  Eq. (437) can be rewritten as 

  

 ∑
𝐷𝑘

𝐷̅

𝑄
𝑘=1 = 𝐶 ≤ 1. (438) 

where 𝐶 again represents the percent accumulated damage.  After 𝑛𝑘  cycles at amplitude 𝐴𝑘 

(𝑘 = 1: 𝑄), the value of the damaged property is then 

 

 𝑉𝑑𝑎𝑚𝑎𝑔𝑒𝑑 = (1 − 𝐶)𝑉𝑖. (439) 

 

 
Figure 93. Cyclic Lifespan of Property 𝑉 
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5.3.2.2.2. Application 

Prior to executing the script, the user specifies property degradation as a function of 

load cycles within a sub-function (see Figure 92).  The relative tip displacement is calculated 

per Eq. 430 based on current system properties.  A rainflow analysis is performed using the 

MATLAB toolbox RAINFLOW [228]-[229] to determine the number of cycles and the 

corresponding cycle amplitudes of the relative tip displacement for the current loading.  To 

utilize the test data (Figure 92) the rainflow output is regrouped into the amplitudes specified by 

the user (i.e. the 𝐴𝑘’s) in the sub-function and the corresponding cycles (i.e. the 𝑛𝑘’s) counted.  

The just-calculated cycle counts are scaled to account for the total duration the given 

acceleration time history acts on the system and then added to the cumulative cycle counts from 

all previous loading (see Figure 94).  The cumulative data is used to interpolate the damage (i.e. 

∆𝑉𝑘’s) for each property allowing for the calculation of the damage index per Eq. (436) (Figure 

93).  At the start of the next loading cycle the system properties are modified per Eq. (439) after 

accounting for other variable dependencies. 

 

 
Figure 94. Regrouping Rainflow Output 
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5.3.2.3. Calculation Looping 

The following analysis procedure describes the calculation sequence in the script.  The 

calculations occur within three ‘for’ loops covering the tip masses, resistive loads, and time 

increments specified by the user. 

 For the current time determine the current temperature (sub-function). 

 For the current temperature determine the current beam length (sub-function), 

piezoelectric elastic modulus (sub-function), and undamaged flexural rigidity (sub-

function). 

 For the current time and temperature determine the undamaged piezoelectric strain 

constant (sub-function) and piezoelectric capacitance (sub-function). 

 Modify the undamaged flexural rigidity, piezoelectric strain constant, and piezoelectric 

capacitance by their respective damage accumulation factors (𝐶’s from a sub-function; 

see Eq. (439)). 

 Calculate the effective piezoelectric stress constant (𝑒̅31 = 𝑑31𝑐1̅1
𝐸 ). 

 Determine the eigenvalues (𝜆𝑟’s) per Eq. (368). 

 Calculate the unnormalized eigenfunction per Eq. (369) and Eq. (370). 

 Normalize the eigenfunction per Eq. (383). 

 Calculate the undamped natural frequency per Eq. (371). 

 For the current temperature and undamped natural frequency determine the current 

damping ratio (sub-function). 

 Calculate the forcing coefficients (𝜎𝑟’s) per Eq. (413). 
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 Based on the user specified circuit connection calculate the coupling coefficients (Θ𝑟’s) 

and equivalent capacitance (𝐶𝑝̃
𝑒𝑞

) per Eq. (408) or Eq. (409). 

 Calculate the transfer functions for the voltage (𝛼) and relative tip displacement (𝛽) per 

Eq. (424) and Eq. (426). 

 For the current time determine the current acceleration profile. 

 Calculate the voltage, relative tip displacement, and instantaneous power output per Eq. 

(429), Eq. (430), and Eq. (431). 

 Truncate the relative tip displacement and instantaneous power output time histories to 

eliminate initial transient effects. 

 Calculate the average power output with the truncated instantaneous power output time 

history per Eq. (432). 

 Perform a rainflow analysis (MATLAB toolbox) with the truncated relative tip 

displacement time history to determine load cycles and corresponding amplitudes.  

Scale the cycle counts based on the duration the relative tip displacement time history is 

applicable. 

 Based on the rainflow analysis, calculate the cumulative damage (𝐶’s) to the flexural 

rigidity, piezoelectric strain constant, and piezoelectric capacitance (sub-function). 

 Step forward in time.  Use the new damage accumulation factors in the next time step. 

5.3.3. Script Validation 

The MATLAB script implementing these calculations can be found in Appendix I.  The 

sub-functions performing the cumulative damage calculations and containing the variable 
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dependence for the piezoelectric strain constant are provided in Appendix J for reference.  Four 

cases are used to validate the MATLAB script. 

5.3.3.1. Fourier Series 

Consider a square sine wave defined as  

 

 𝑓(𝑥) = 2 (𝐻 (
𝑥

𝐿
) − 𝐻 (

𝑥

𝐿
− 1)) − 1, (440) 

over [0,2𝐿] where 𝐻 represents the Heaviside function.  Since the function is odd the Fourier 

coefficients can be calculated from 

 

 𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥)𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥

2𝐿

0
, (441) 

which reduces to [230] 

 

 𝑏𝑛 =
4

𝑛𝜋
{
0   𝑛 = 𝑒𝑣𝑒𝑛
1   𝑛 = 𝑜𝑑𝑑

. (442) 

The analytical Fourier series for 𝑓(𝑥) is then 

 

 𝑓(𝑥) =
4

𝜋
∑

1

𝑛

𝑛=∞
𝑛=1,3,5… 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
). (443) 

Taking 𝐿 = 1000, the analytical expansion of Eq. (443) is truncated at 𝑛 = 𝑁 and plotted in 

Figure 95 against the original function and the scripts Fourier expansion.  The analytical and 

script outputs show excellent agreement.  Both models show the expected convergence. 

 

 
Figure 95. Fourier Series Comparison 

Original Function (Blue), Analytical Expansion (Green), and Script Expansion (Red) 
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5.3.3.2.  Modal Analysis 

The modal frequencies and mode shapes calculated by the script are compared to 

results found using ABAQUS finite element analysis.  Three cases are analyzed with the 

relevant inputs listed in Table 46.  The calculated natural frequencies are compared in Table 47 

while the mode shapes (after being normalized to unit magnitude) are compared in Figure 96, 

Figure 97, and Figure 98.  The results show excellent agreement. 

 

Table 46. Modal Analysis Comparison: Inputs 

Case 1 2 3 
Length 𝐿, (𝑚) 0.01 
Width 𝑏, (𝑚) 0.005 

Height (m) 0.0001 
Modes Considered 3 
Tip Mass 𝑀𝑡, (𝑘𝑔) 0 0.01 0.01 

Tip Inertia 𝐼𝑡, (𝑘𝑔𝑚^2 ) 0 0 1.388𝑒 − 6 
Beam Mass 𝑚, (𝑘𝑔 ⁄ 𝑚) 0.0025 
Modulus 𝑌, (𝑁 ⁄ 𝑚^2 ) 4𝑒11 

Flexural Rigidity 𝑌𝐼, (𝑁𝑚^2) 1.667𝑒 − 4 
Number of Elements (ABAQUS) 50 

 

 

Table 47. Natural Frequency Comparison 

 Natural Frequency (𝐻𝑧) 

Case 1 2 3 

Mode Script FEM |Error| Script FEM |Error| Script FEM |Error| 

1 14.45 14.45 0.00% 1.12 1.12 0.00% 1.10 1.10 0.00% 
2 90.55 90.50 0.06% 63.46 63.46 0.00% 11.08 11.08 0.00% 
3 253.53 253.36 0.07% 205.42 205.50 0.04% 92.80 92.82 0.02% 
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Figure 96. Case 1 Mode Shape Comparison 

F=FEM; S=Script; M=Mode 

 

 

 
Figure 97. Case 2 Mode Shape Comparison 

F=FEM; S=Script; M=Mode 
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Figure 98. Case 3 Mode Shape Comparison 

F=FEM; S=Script; M=Mode 

5.3.3.3. Frequency Response Functions 

The coded frequency response functions can be compared to results published by 

Erturk and Inman (2011) [36].  For the inputs listed in Table 48 the frequency response 

functions (FRFs) are calculated using seven different resistance values (see Table 49).  

Following the published format [36], the results are normalized by the gravitational constant 

and are plotted in Figure 99 and Figure 100.  The script results show excellent agreement with 

the publishd figures and the same trends noted by Erturk and Inman (2011) [36] are seen:  

voltage output is seen to increase with increasing resistance and the resonance frequency is seen 

to shift with the external load resistance.  Lastly, Table 50 compares the resonant frequencies 

for the undamped, short-circuit (𝑅 = 0.01Ω~0), and open-circuit (𝑅 = 1𝑒10Ω~∞) cases; 

excellent agreement is seen. 
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Table 48. FRF Comparison: Inputs 

Length 𝐿, (𝑚) 0.030 

Width 𝑏, (𝑚) 0.005 

Distance to Neutral Axis 
ℎ𝑝̃+ℎ𝑠̃

2
, (𝑚) 1𝑒 − 4 

Modes Considered 3 

Damping Ratios, Modes 1 − 3 0.010, 0.012, 0.030 

PZT Material PZT-5A 

Substrate Material Aluminum 

Tip Mass 𝑀𝑡, (𝑘𝑔) 0 

Tip Inertia 𝐼𝑡, (𝑘𝑔𝑚2) 0 

Damage Index 𝐶 0 (no damage) 

Beam Mass 𝑚, (𝑘𝑔 𝑚⁄ ) 0.0123 

Flexural Rigidity 𝑌𝐼, (𝑁𝑚2) 1.090𝑒 − 3 

Piezoelectric Elastic Modulus 𝑐11
𝐸 , (𝑁 𝑚2⁄ ) 61𝑒9 

Piezoelectric Constant 𝑑31, (𝑚 𝑉⁄ ) −171𝑒 − 12 

Piezoelectric Capacitance 𝐶𝑝, (𝐹) 1.33𝑒 − 8 

Piezoelectric Configuration Series 

 

 

Table 49. Resistance Used in Analysis with Color Coding 

Resistance (Ω) Plotting Color 

100 Blue 

1000 Green 

10000 Cyan 

100000 Black 

1000000 Magenta 

10000000 Red 
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Figure 99. Voltage FRFs for Various Resistance 
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Figure 100. Tip Displacement FRFs for Various Resistance 

 

 

Table 50. Resonant Frequency Comparison 

Mode 

Undamped Resonance 

Frequency 𝑓𝑟 (𝐻𝑧) 

Short-Circuit Resonance 

Frequency 𝑓𝑟
𝑠𝑐 (𝐻𝑧) 

Open-Circuit Resonance 

Frequency 𝑓𝑟
𝑜𝑐 (𝐻𝑧) 

Script 
E & I 

[36] 
|Error| Script 

E & I 

[36] 
|Error| Script 

E & I 

[36] 
|Error| 

1 185.1 185.1 0.00% 185.1 185.1 0.00% 191.1 191.1 0.00% 
2 1159.9 1159.8 0.01% 1159.6 1159.7 0.01% 1171.6 1171.6 0.00% 
3 3247.9 3247.6 0.01% 3247.8 3245.3 0.08% 3258.2 3254.1 0.13% 
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5.3.3.4. Damage Accumulation 

The natural frequencies of a given system can be tracked over time to observe the 

effects of accumulated damage.  Consider an uncoupled structural system defined by the inputs 

given in Table 51.  The system is subjected to the operating schedule and harmonic loading 

shown in Table 52.  The damage to the flexural rigidity is based on cyclic fatigue testing per 

Table 53, the contents of which are plotted in Figure 101 (note that these are arbitrary values 

for illustration purposes).   

 

Table 51. Damage Accumulation: Inputs 

Length 𝐿, (𝑚) 0.15 

Width 𝑏, (𝑚) 0.01 

Modes Considered 1 

Damping Ratio 0.06 

Tip Mass 𝑀𝑡, (𝑘𝑔) 0 

Tip Inertia 𝐼𝑡, (𝑘𝑔𝑚2) 0 

Damage Index 𝐶 Varies 

Beam Mass 𝑚, (𝑘𝑔 𝑚⁄ ) 0.05 

Initial Flexural Rigidity 𝑌𝐼, (𝑁𝑚2) 1.090𝑒 − 3 

Piezoelectric Elastic Modulus 𝑐11
𝐸 , (𝑁 𝑚2⁄ ) 0 

Piezoelectric Constant 𝑑31, (𝑚 𝑉⁄ ) 0 

Piezoelectric Capacitance 𝐶𝑝, (𝐹) 0 

Resistance 𝑅, (Ω) ~0 

 

 

Table 52. Loading Schedule 

Start Time 

(year) 

Loading 

Amplitude 

(𝑚 𝑠2⁄ ) 

Loading 

Frequency (𝐻𝑧) 

Loading 

Frequency 

(𝑟𝑎𝑑 𝑠⁄ ) 

End Time 

(year) 

Loading 

Cycles 

0 1.0 5 31.42 0.1 1.58𝑒7 
0.1 1.5 10 62.83 0.2 3.15𝑒7 
0.2 2.0 5 31.42 0.3 1.58𝑒7 
0.3 0.5 20 125.66 0.4 6.31𝑒7 
0.4 1.25 15 94.25 0.5 4.73𝑒7 
0.5 0.5 20 125.66 0.6 6.31𝑒7 
0.6 2.0 5 31.42 0.7 1.58𝑒7 
0.7 0.5 20 125.66 0.8 6.31𝑒7 
0.8 1.25 15 94.25 0.9 4.73𝑒7 
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Table 53. Residual Flexural Rigidity as a Function of Cycle Count and Amplitude 

  Cycle Count 

  1𝑒7 5.5𝑒7 1𝑒8 5.5𝑒8 

Tested 

Amplitude 

(𝑚𝑚) 

1 0.95 0.9 0.85 0.80 
2 0.94 0.89 0.84 0.76 
3 0.94 0.89 0.84 0.76 
4 0.92 0.87 0.82 0.74 
5 0.87 0.82 0.77 0.69 
6 0.77 0.72 0.67 0.59 
7 0.70 0.65 0.60 0.52 

 

 

 
Figure 101. Residual Flexural Rigidity as a Function of Cycle Count and Amplitude 

 

The mass normalized eigenfunction, which can be found analytically [130] or through 

the use of finite element analysis, is shown in Figure 102.  Its integral is found as 

 

 ∫ 𝜙1𝑑𝑥
𝐿

0
= −1.3562. (444) 

Noting Eq. (413)  

 

 𝜎1 = −𝑚 ∫ 𝜙1𝑑𝑥
𝐿

0
= 0.0678. (445) 

Using Eq. (445), and knowing the loading frequency (𝜔, see Table 52), damping ratio (0.06, 

see Table 51), and mode shape (𝜙1(𝐿) = −23.09, see Figure 102), the relative tip displacement 

transfer function can be calculated (for a given system natural frequency 𝜔1) using Eq. (426) as 

 

 𝛽(𝜔, 𝐿) = 𝜎1
𝜙1(𝐿)

(−𝜔2+2𝜁𝑟𝜔1𝑖𝜔+𝜔1
2)

. (446) 
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Using an iterative calculation scheme, the relative tip displacement can be calculated using Eq. 

(446) and Table 52 as 

 

 𝑤𝑅(𝐿, 𝑡) = 𝛽(𝜔, 𝐿)𝑤̈𝐵. (447) 

Using the calculated tip displacement (Eq. (447)) and the cumulative loading cycles 

(see Table 52), the reduction in flexural rigidity can be calculated from Table 53 or Figure 101.  

The damage at the end of each 0.1𝑦𝑟 time increment is used to modify the flexural rigidity at 

the beginning of the next loading cycle (thereby reducing the first natural frequency and 

changing the tip displacement FRF).  Truncated sample calculations are provided in Table 54.  

These results can be compared to the script output (which utilizes a rainflow analysis to count 

the loading cycles and interpolates the damage through a MATLAB sub-routine).  The results 

from the two methodologies are shown in Figure 103 and Figure 104 where the first natural 

frequencies and relative displacement response are compared, respectively.  The results show 

excellent agreement. 

 

 

 
Figure 102. Mass Normalized Eigenfunction of the First Mode 
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Table 54. Damage Accumulation 
 Start Time (𝑦𝑟) 0 0.1 0.2 0.3 0.4 

 
Current YI 

(𝑁𝑚2) 
1.09𝑒 − 3 9.96𝑒 − 4 9.15𝑒 − 4 6.58𝑒 − 4 5.81𝑒 − 4 

 
Current Nat. 

Freq. (𝑟𝑎𝑑/𝑠) 
23.1 22.1 21.1 17.9 16.8 

 
Relative Disp. 

(𝑚𝑚) 
3.4 0.7 5.7 0.1 0.2 

1𝑚𝑚 
Amplitude 

Cycles 0 3.15𝑒 + 7 3.15𝑒 + 7 9.46𝑒 + 7 1.42𝑒 + 8 
Damage 0 0.074 0.074 0.144 0.155 

4𝑚𝑚 
Amplitude 

Cycles 1.58𝑒 + 7 1.58𝑒 + 7 1.58𝑒 + 7 1.58𝑒 + 7 1.58𝑒 + 7 
Damage 0.086 0.086 0.086 0.086 0.086 

5𝑚𝑚 
Amplitude 

Cycles 0 0 0 0 0 
Damage 0 0 0 0 0 

6𝑚𝑚 
Amplitude 

Cycles 0 0 1.58𝑒 + 7 1.58𝑒 + 7 1.58𝑒 + 7 
Damage 0 0 0.236 0.236 0.236 

 
Cumulative 

Damage 
0.086 0.160 0.397 0.467 0.477 

 

 

 
Figure 103. Comparing Natural Frequencies 

 

 

 
Figure 104. Comparing Relative Displacement 
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5.3.4. Demonstration Cases 

Four cases are used to demonstrate the script.  In the first case, a baseline analysis is 

presented in which an optimal tip mass and resistive load are selected for a specified loading 

schedule.  Damage and time/temperature dependence are not included in the baseline case.  In 

the second case, a damage model is incorporated, resulting in a shift in the optimal tip mass and 

resistive load.  In the third case, temperature dependence is included in the baseline model, 

again leading to a shift in the optimal tip mass and resistive load.  Finally, the full script is 

demonstrated by including both the damage model and temperature dependence in the analysis.  

Trends are noted in each case. 

5.3.4.1. Optimal Tip Mass and Resistive Load: Baseline Case 

A piezoelectric element, characterized by the properties in Table 55, is subject to time-

dependent harmonic loading given by Table 56.  No time or temperature dependence is 

included in the model.  Damage is assumed not to accumulate.  For each loading regime the 

maximum relative tip displacement (MRTD) and average power output are calculated over a 

range of tip masses and resistive loads.  The results are presented in Figure 105, Figure 106, 

Figure 107, and Figure 108. 
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Table 55. Inputs 

Length 𝐿, (𝑚) 0.030 

Width 𝑏, (𝑚) 0.005 

Distance to Neutral Axis 
ℎ𝑝̃+ℎ𝑠̃

2
, (𝑚) 1𝑒 − 4 

Modes Considered 1 

Damping Ratio 0.010 

Tip Mass 𝑀𝑡, (𝑘𝑔) Optimized Variable 

Tip Mass Density (𝑘𝑔/𝑚3) 6000 

Tip Inertia 𝐼𝑡, (𝑘𝑔𝑚2) Varies 

Damage Index 𝐶 0 (No Damage) 

Beam Mass 𝑚, (𝑘𝑔 𝑚⁄ ) 0.02 

Operating Temperature (℃) Constant Temp. 

Flexural Rigidity 𝑌𝐼, (𝑁𝑚2) 1.090𝑒 − 3 

Piezoelectric Elastic Modulus 𝑐11
𝐸 , (𝑁 𝑚2⁄ ) 61𝑒9 

Piezoelectric Constant 𝑑31, (𝑚 𝑉⁄ ) −171𝑒 − 12 

Piezoelectric Capacitance 𝐶𝑝, (𝐹) 1.33𝑒 − 8 

Piezoelectric Configuration Series 

Resistive Load 𝑅, (Ω) Optimized Variable 

 

 

Table 56. Loading Schedule 

Start Time 

(year) 

Loading 

Regime 

Loading 

Amplitude 

(𝑚 𝑠2⁄ ) 

Loading 

Frequency (𝐻𝑧) 

Loading 

Frequency 

(𝑟𝑎𝑑 𝑠⁄ ) 

End Time 

(year) 

0 1 
2 

20 125.66 0.3 
0.3 2 30 188.50 0.6 
0.6 3 25 157.08 0.9 

For low resistive loads (𝑅 ≈ 0Ω; short-circuit condition) the MRTD approaches that of 

the electromechanically uncoupled system where a maximum response is seen as the undamped 

natural frequency (𝜔𝑟) and the loading frequency converge.  As the resistive load is increased, 

the system shifts from a short-circuit to open-circuit condition, leading to a shift in the systems 

resonant frequency.  The introduction of a resistive load results in piezoelectric power 

generation and power dissipation in the resistor due to Joule heating [36].  Unlike viscous 

damping, the observed frequency shift, which is due to the changing electrical boundary 

condition (i.e. an increased resistive load), causes an upward frequency shift (as was shown in 

the frequency response function of Figure 100).  For the current scenario (where the loading 

frequency is specified), as the systems resonant frequency increases due to changing resistance 

the tip mass that maximizes the displacement response must increase (thereby lowering the 
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resonant frequency) such that the resonant frequency and loading frequency coincide. This 

upwards shift in optimal tip mass is apparent in each plot of Figure 106.   

 

 
Figure 105. Maximum Relative Tip Displacement (MRTD): Baseline Case 

Loading Regime One (Top), Two (Middle), and Three (Bottom) Shown 
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Figure 106. Maximum Relative Tip Displacement (MRTD) Contours (𝑚𝑚): Baseline Case 

Loading Regime One (Top), Two (Middle), and Three (Bottom) Shown 



217 

 

 
Figure 107. Average Power: Baseline Case 

Loading Regime One (Top), Two (Middle), and Three (Bottom) Shown 
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Figure 108. Average Power Contours (𝑊): Baseline Case 

Loading Regime One (Top), Two (Middle), and Three (Bottom) Shown 

Turning to the average power output of Figure 107, two local maxim are observable.  

As previously described, increasing the resistive load results in an increase in the resonant 

frequency leading to a shift in the optimal tip mass.  The difference in local maxim is attributed 
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to the changing tip mass.  To demonstrate this, several power output FRFs are shown in Figure 

109 for resistive loads near the local maximums under loading regime one.  Note that: (1) for a 

fixed resistive load the magnitude of the power FRF increases with increasing tip mass, (2) as 

the tip mass increases the resonant frequency of the system decreases, and (3) as the resistive 

load increases the resonant frequency of the system increases. 

 

 
Figure 109. Average Power Frequency Response Functions for Various Resistive Loads and Tip Masses 

0.009𝑘𝑔 (Blue), 0.008𝑘𝑔 (Green), 0.007𝑘𝑔 (Red), 0.006𝑘𝑔 (Cyan), 0.005𝑘𝑔 (Black) 

To determine the optimal tip mass and resistive load that maximizes the average power 

output over all three loading regimes (i.e. from year 0 to 0.9), the average power output from 

each realization for each loading regime (given in Figure 107 and Figure 108) is integrated over 

the regimes duration resulting in a scalar value that can be used as an optimization metric.  The 

resulting metric is plotted in Figure 110.  The total average power output is found to be 

maximized when 𝑀𝑡 = 0.0066𝑘𝑔 , 𝑅 = 5𝑒6Ω  and results in an average power output of 

1.14𝑚𝑊, 1.14𝜇𝑊, and 5.56𝜇𝑊 for loading regime one, two, and three, respectively.  Note 

that this realization produces over 99% of its total average power output during the first loading 
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regime due to resonant behavior.  The corresponding MRTDs are 2.64𝑚𝑚, 0.08𝑚𝑚 , and 

0.18𝑚𝑚.  These results are plotted over time in Figure 111. 

 

 
 

Figure 110. Integrated Power Metric (𝑊𝑦𝑟) 
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Figure 111. Average Power Output and Maximum Relative Tip Displacement (MRTD) for Maximum 

Power Case 

5.3.4.2. Optimal Tip Mass and Resistive Load: Incorporating Damage 

The baseline model of the piezoelectric element used in Section 5.3.4.1 is now 

expanded to incorporate the linear cumulative damage model described in Section 5.3.2.2.  The 

inputs and loading schedule are repeated for convenience in Table 57 and Table 58.  No time or 

temperature dependence is included in the model.  As before, the maximum relative tip 

displacement (MRTD) and average power output are calculated over a range of tip masses and 

resistive loads.  Since damage accumulation is dependent on load cycles which accumulate over 

time, the analysis must be discretized in time: the time discretization used in this analysis is 

0.05𝑦𝑟.  The mechanical and electrical terms are first investigated separately to demonstrate 

their individual effects.  Following this, their combined effects are demonstrated as an optimal 

tip mass and resistive load are selected. 
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Table 57. Inputs 

Length 𝐿, (𝑚) 0.030 

Width 𝑏, (𝑚) 0.005 

Distance to Neutral Axis 
ℎ𝑝̃+ℎ𝑠̃

2
, (𝑚) 1𝑒 − 4 

Modes Considered 1 

Damping Ratio 0.010 

Tip Mass 𝑀𝑡, (𝑘𝑔) Optimized Variable 

Tip Mass Density (𝑘𝑔/𝑚3) 6000 

Tip Inertia 𝐼𝑡, (𝑘𝑔𝑚2) Varies 

Damage Index 𝐶 Varies 

Beam Mass 𝑚, (𝑘𝑔 𝑚⁄ ) 0.02 

Operating Temperature (℃) Constant Temp. 

Flexural Rigidity 𝑌𝐼, (𝑁𝑚2) 1.090𝑒 − 3 & Varies 

Piezoelectric Elastic Modulus 𝑐11
𝐸 , (𝑁 𝑚2⁄ ) 61𝑒9 

Piezoelectric Constant 𝑑31, (𝑚 𝑉⁄ ) −171𝑒 − 12 & Varies 

Piezoelectric Capacitance 𝐶𝑝, (𝐹) 1.33𝑒 − 8 & Varies 

Piezoelectric Configuration Series 

Resistive Load 𝑅, (Ω) Optimized Variable 

  

 

Table 58. Loading Schedule 

Start Time 

(year) 

Loading 

Regime 

Loading 

Amplitude 

(𝑚 𝑠2⁄ ) 

Loading 

Frequency (𝐻𝑧) 

Loading 

Frequency 

(𝑟𝑎𝑑 𝑠⁄ ) 

End Time 

(year) 

0 1 
2 

20 125.66 0.3 
0.3 2 30 188.50 0.6 
0.6 3 25 157.08 0.9 

5.3.4.2.1. Degradation of Flexural Rigidity During the First Loading Regime 

The degradation of flexural rigidity is based on load cycling data shown in Figure 112; 

while trends outlined in Section 5.3.2.1 have been followed, arbitrary values have been used.  

The piezoelectric terms are held constant (i.e. 𝑑31 and 𝐶𝑝̃ are assumed not to degrade).  

 

 
Figure 112. Normalized Degradation of Flexural Rigidity From Cycling at Specified Amplitudes 

𝐴1 = 0.5𝑚𝑚 (Blue), 𝐴2 = 1𝑚𝑚 (Orange), 𝐴3 = 1.5𝑚𝑚 (Yellow), 𝐴4 = 2𝑚𝑚 (Purple),  

𝐴5 = 3𝑚𝑚 (Green), 𝐴6 = 5𝑚𝑚 (Cyan), 𝐴7 = 7𝑚𝑚 (Red) 
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The MRTD is plotted in Figure 113 for various tip masses and resistive loads.  The 

cumulative damage to the flexural stiffness is plotted in Figure 114.  As damage is 

accumulated, the flexural stiffness of the system is reduced.  This results in a decrease in the 

systems resonant frequencies.  Since the driving frequency is fixed (20𝐻𝑧 in the first loading 

regime) the tip mass maximizing the MRTD (i.e. the tip mass corresponding to the largest 

MRTD) must be reduced as damage is accumulated, thereby offsetting the reduction in system 

stiffness.  This trend is visible in Figure 113 where the tip mass maximizing the MRTD is seen 

to shift downwards over time (or more accurately, as cyclic damage accumulates).  Since the 

maximum MRTD now occurs for a new (and smaller) tip mass realization, damage will 

accumulate to a greater degree at the new tip mass realization during the next loading cycle.  

This can be seen in Figure 114 where damage is seen to accumulate for smaller tip masses in 

each subsequent time increment. 

A second visible trend in Figure 113 is the reduction in the maximum MRTD as the tip 

mass decreases.  This trend is explained by Figure 115 which plots FRFs for the relative tip 

displacement (assuming constant stiffness).  Note that: (1) for a fixed resistive load the 

magnitude of the displacement FRF decreases with decreasing tip mass, (2) as the tip mass 

decreases the resonant frequency of the system increases, and (3) as the resistive load increases 

the resonant frequency of the system increases. 

The average power output is shown in Figure 116 where the trends seen in the MRTD 

contours of Figure 113 are visible.  The downward shift in tip mass corresponding to the 

maximum average power output can again be attributed to damage accumulation. As damage is 

accumulated, the flexural stiffness of the system is reduced.  This results in a decrease in the 

systems resonant frequencies.  Since the driving frequency is fixed (20𝐻𝑧 in the first loading 

regime) the tip mass maximizing the average power output must be reduced as damage is 
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accumulated, thereby offsetting the reduction in system stiffness.   Lastly, the reduction in 

power output can be explained by the inherent nature of the power FRF; see Figure 109 where a 

decreasing tip mass was shown to lead to a reduced power FRF. 

 

 
Figure 113. Maximum Relative Tip Displacement (MRTD) Contours (𝑚𝑚) Based on Degradation of 

Flexural Rigidity.  Results Applicable for  0.05𝑦𝑟 from the Initial Time Indicated 
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Figure 114. Cumulative Damage Contours (𝐶) Based on Degradation of Flexural Rigidity.  Results 

Applicable for  0.05𝑦𝑟 from the Initial Time Indicated 
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Figure 115. Relative Tip Displacement FRFs for Various Resistive Loads and Tip Masses 

 0.009𝑘𝑔 (Blue), 0.008𝑘𝑔 (Green), 0.007𝑘𝑔 (Red), 0.006𝑘𝑔 (Cyan), 0.005𝑘𝑔 (Black) 
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Figure 116. Average Power Contours (𝑊) Based on Degradation of Flexural Rigidity. Results Applicable 

for  0.05𝑦𝑟 from the Initial Time Indicated 

5.3.4.2.2. Degradation of Piezoelectric Terms During the First Loading Regime 

The degradation of the piezoelectric terms (𝑑31 and 𝐶𝑝̃) are based on load cycling data 

shown in Figure 117; while trends outlined in Section 5.3.2.1 have been followed, arbitrary 

values have been used.  The flexural rigidity is held constant and assumed not to degrade.   
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Figure 117. Normalized Degradation of Piezoelectric Properties From Cycling at Specified Amplitudes  

𝐴1 = 0.5𝑚𝑚 (Blue), 𝐴2 = 1𝑚𝑚 (Orange), 𝐴3 = 1.5𝑚𝑚 (Yellow), 𝐴4 = 2𝑚𝑚 (Purple), 𝐴5 = 3𝑚𝑚 

(Green), 𝐴6 = 5𝑚𝑚 (Cyan), 𝐴7 = 7𝑚𝑚 (Red) 

The MRTD is plotted in Figure 118 for various tip masses and resistive loads.  The 

cumulative damage to each piezoelectric term is plotted in Figure 119 and Figure 120.  As 

noted by the relatively unchanging optimal tip mass in Figure 118, the degradation of the 

piezoelectric terms is seen to have a significantly smaller impact on the shift of resonance 

frequency (relative to the degradation of flexural rigidity)  This leads to damage being 

concentrated in those realizations with high relative MRTD.  In other words, damage to the 

piezoelectric terms is localized where the MRTD is high and the realizations for which the 

MRTD are high are relatively constant.   

As previously noted, for low resistive loads ( 𝑅 ≈ 0Ω ; short-circuit condition) the 

MRTD approaches that of the electromechanically uncoupled system where a maximum 

response is seen as the undamped natural frequency (𝜔𝑟) and the loading frequency converge.  

Under the short-circuit condition, then, degradation of the piezoelectric terms has a small 

impact on the MRTD as the system is dominated by the governing mechanical equations.  For 

high resistive loads (e.g. open-circuit condition), the shift in resonance frequency is due to the 
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inclusion of the governing electrical equations.  When the piezoelectric terms degrade, the 

induced shift in the resonance frequency will once again shift (back towards a mechanically 

governed system) causing a change in the optimal tip mass.  These trends can be seen in Figure 

118: the MRTD is relatively constant for low resistive loads while for high resistive loads, 

damage to the piezoelectric terms results in a slight downward shift in the tip mass maximizing 

the MRTD. 

The average power output is shown in Figure 121.  Note that damage to the 

piezoelectric terms is based on the MRTD and, for the investigated cases, the realizations with 

high MRTD do not overlap with realizations with high average power output.  This means that 

realizations with significant damage do not coincide with realizations with high average power 

output (compare Figure 119/Figure 120 and Figure 121).  This results in the average power 

output appearing relatively constant through each time increment. 
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Figure 118. Maximum Relative Tip Displacement (MRTD) Contours (𝑚𝑚) Based on Degradation of 

Piezoelectric Terms.  Results Applicable for  0.05𝑦𝑟 from the Initial Time Indicated 
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Figure 119. Cumulative Damage Contours (𝐶) of 𝑑31Based on Degradation of Piezoelectric Terms.  

Results Applicable for  0.05𝑦𝑟 from the Initial Time Indicated 
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Figure 120. Cumulative Damage Contours (𝐶) of 𝐶𝑝 Based on Degradation of Piezoelectric Terms.  

Results Applicable for  0.05𝑦𝑟 from the Initial Time Indicated 
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Figure 121. Average Power Contours (𝑊) Based on Degradation of Piezoelectric Terms. Results 

Applicable for  0.05𝑦𝑟 from the Initial Time Indicated 

5.3.4.2.3. Combined Degradation Over all Three Loading Regimes 

All three degradation models (Figure 112 and Figure 117) are included in a final 

analysis covering all three loading regimes (recall Table 58).  The resulting MRTD and average 

power output are shown in Figure 122 and Figure 123.  The trends identified in Section 

5.3.4.2.1 and Section 5.3.4.2.2 are apparent in all three loading regimes.  The downward shift of 
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tip mass (corresponding to maximum response) between each loading regime is due to the 

changing loading frequency between each regime: as the loading frequency changes (20𝐻𝑧, 

30𝐻𝑧, 25𝐻𝑧) the tip mass corresponding to resonant behavior changes. 

Two interesting results are seen in the damage contours shown in Figure 124, Figure 

125, and Figure 126.  First, since the degredation of flexural rigidity causes a noticeable shift in 

the tip mass corresponding to maximum response, degradation of the piezoelectric terms is seen 

to spread to other tip mass realizations to a greater degree (unlike the concentrated damage 

shown in Figure 119 and Figure 120).  Second, damage accumulation is stratified and, for the 

inputs considered, shows little overlap between each loading regime.  As a physical example 

consider two different tip mass realizations: the first corresponds to a resonant frequency 

around 20𝐻𝑧  (e.g. 𝑀𝑡 ≈ 0.0062𝑘𝑔) while the second corresponds to a resonant frequency 

around 30𝐻𝑧 (e.g. 𝑀𝑡 ≈ 0.003𝑘𝑔).  During the first loading regime the first realization is 

excited near resonance, resulting in relatively significant damage accumulation, while the 

second realization is not near resonance, resulting in relatively little damage accumulation.  

During the second loading regime the shift in loading frequency results in the second 

realization being excited near resonance while the first realization is no longer excited near 

resonance.  Thus, during the second loading regime the additive damage to the first realization 

is small while the additive damage to the second realization is large.  This explains the stratified 

nature of the damage and its evolution over time/cyclic loading. 

To determine the tip mass and resistive load that maximizes the average power output 

over all three loading regimes (i.e. from year 0 to 0.9), the average power output from each 

realization is integrated over each time step and summed, resulting in a scalar value that can be 

used as an optimization metric.  The resulting metric is plotted in Figure 127.  The total average 

power output is found to be maximized when 𝑀𝑡 = 0.0062𝑘𝑔, 𝑅 = 1𝑒6Ω.  The average power 
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output and corresponding MRTD are shown in Figure 128.  For comparison purposes, Figure 

128 also includes the average power output and corresponding MRTD for (1) the maximized 

result found in the baseline case (𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω) and (2) the same realization 

(𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω) but when damage is incorporated.  When degradation is included 

in the analysis the power output from the originally optimal realization (𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 =

5𝑒6Ω) drops off rapidly due to a shift in the resonance frequency (i.e. the large initial MRTD 

leads to significant damage during the first time step which leads to a larger frequency shift in 

the next time step).  The new optimal realization (𝑀𝑡 = 0.0062𝑘𝑔, 𝑅 = 1𝑒6Ω) is seen to 

accumulate less damage (note the smaller initial MRTD) resulting in a smaller shift of the 

resonant frequency away from the loading frequency.  This allows for a moderate power output 

over a greater duration compared to the large output over a short duration from the originally 

optimal realization. 
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Figure 122. Maximum Relative Tip Displacement (MRTD) Contours (𝑚𝑚) Based on Full Degradation 

Model.  Results Applicable for  0.05𝑦𝑟 from the Initial Time Indicated 
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Figure 123. Average Power Contours (𝑊) Based on Full Degradation Model.  Results Applicable for  

0.05𝑦𝑟 from the Initial Time Indicated 
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Figure 124. Cumulative Damage Contours (𝐶) of Flexural Rigidity Based on Full Degradation Model.  

Results Applicable for  0.05𝑦𝑟 from the Initial Time Indicated 
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Figure 125. Cumulative Damage Contours (𝐶) of 𝑑31 Based on Full Degradation Model.  Results 

Applicable for  0.05𝑦𝑟 from the Initial Time Indicated 
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Figure 126. Cumulative Damage Contours (𝐶) of 𝐶𝑝 Based on Full Degradation Model.  Results 

Applicable for  0.05𝑦𝑟 from the Initial Time Indicated 
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Figure 127. Integrated Power Metric (𝑊𝑦𝑟) 

 

 

 
Figure 128. Average Power Output and Maximum Relative Tip Displacement (MRTD) 

𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω with No Damage (Baseline; Blue) 

𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω with Damage (Green) 

𝑀𝑡 = 0.0062𝑘𝑔, 𝑅 = 1𝑒6Ω with Damage (New Optimum; Red) 
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5.3.4.3. Optimal Tip Mass and Resistive Load: Incorporating Temperature Dependency 

The baseline model of the piezoelectric element is now expanded to include 

temperature effects.  The inputs and loading schedule are repeated for convenience in Table 59 

and Table 60.  Damage is not included in the model and the piezoelectric terms are assumed not 

to degrade with time (the effect of time on the piezoelectric constant and piezoelectric 

capacitance are small for the given loading schedule and neglected for the entire analysis).  The 

time-dependent operating temperature is shown in Figure 129.  As before, the maximum 

relative tip displacement (MRTD) and average power output are calculated over a range of tip 

masses and resistive loads.  The mechanical and electrical terms are first investigated separately 

to demonstrate their individual effects.  Following this, their combined effects are demonstrated 

as an optimal tip mass and resistive load are selected.   

 

Table 59. Inputs 

Length 𝐿, (𝑚) 0.030 & Varies 

Width 𝑏, (𝑚) 0.005 

Distance to Neutral Axis 
ℎ𝑝̃+ℎ𝑠̃

2
, (𝑚) 1𝑒 − 4 

Modes Considered 1 

Damping Ratio 0.010 

Tip Mass 𝑀𝑡, (𝑘𝑔) Optimized Variable 

Tip Mass Density (𝑘𝑔/𝑚3) 6000 

Tip Inertia 𝐼𝑡, (𝑘𝑔𝑚2) Varies 

Damage Index 𝐶 0 (No Damage) 

Beam Mass 𝑚, (𝑘𝑔 𝑚⁄ ) 0.02 

Operating Temperature (℃) Varies 

Flexural Rigidity 𝑌𝐼, (𝑁𝑚2) 1.090𝑒 − 3 & Varies 

Piezoelectric Elastic Modulus 𝑐11
𝐸 , (𝑁 𝑚2⁄ ) 61𝑒9 & Varies 

Piezoelectric Constant 𝑑31, (𝑚 𝑉⁄ ) −171𝑒 − 12 & Varies 

Piezoelectric Capacitance 𝐶𝑝, (𝐹) 1.33𝑒 − 8 & Varies 

Piezoelectric Configuration Series 

Resistive Load 𝑅, (Ω) Optimized Variable 

*Values shown are at baseline 20℃  
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Table 60. Loading Schedule 

Start Time 

(year) 

Loading 

Regime 

Loading 

Amplitude 

(𝑚 𝑠2⁄ ) 

Loading 

Frequency (𝐻𝑧) 

Loading 

Frequency 

(𝑟𝑎𝑑 𝑠⁄ ) 

End Time 

(year) 

0 1 
2 

20 125.66 0.3 
0.3 2 30 188.50 0.6 
0.6 3 25 157.08 0.9 

 

 

 
Figure 129. Time-Dependent Operating Temperature 

5.3.4.3.1. Temperature Dependent Mechanical Properties During the First Loading 

Regime 

The beam length and flexural rigidity are made to be temperature dependent with the 

assumed dependencies shown in Figure 130; while trends outlined in Section 5.3.2.1 have been 

followed, arbitrary values have been used.  The modal damping ratio, piezoelectric constant, 

piezoelectric capacitance, and piezoelectric elastic modulus are made constant (0.01, −171𝑒 −

12 𝑚 𝑉⁄ , 1.33𝑒 − 8𝐹 , 61𝑒9 𝑁 𝑚2⁄ , respectively). Note that while the piezoelectric elastic 

modulus is a mechanical term, within the current model its sole use is in the definition of the 

effective piezoelectric stress constant (𝑒̅31) which helps define the modal electromechanical 

coupling (Θ𝑟).  As such, it is not included as a dependent variable in the current section and 

instead is incorporated in Section 5.3.4.3.2.  
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Figure 130. Normalized Temperature Dependence of the Beam Length (Blue) and Flexural Rigidity (Red) 

The MRTD for the two temperature loads within the first loading regime are shown in 

Figure 131.  Also included in Figure 131 is the baseline result at room temperature (i.e. the first 

plot in Figure 106).  By increasing the operating temperature (20℃ to 90℃) the beam length 

increases and the flexural rigidity decreases.  Both changes result in a decrease in the natural 

frequency of the system.  Since the loading frequency is constant within the first loading 

regime, resonant behavior occurs at a lower tip mass as the temperature increases.  This can be 

seen in the first two plots of Figure 131.  When the temperature decreases (90℃ to 70℃) the 

reverse occurs and the tip mass corresponding to maximum MRTD is seen to increase.  

Analogous behavior is seen in the power output of Figure 132. 
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Figure 131. Maximum Relative Tip Displacement (MRTD) Contours (𝑚𝑚) Including Mechanical 

Temperature Effects 
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Figure 132. Average Power Contours (𝑊) Including Mechanical Temperature Effects 

5.3.4.3.2. Temperature Dependent Piezoelectric Properties During the First Loading 

Regime 

The piezoelectric constant, piezoelectric capacitance, and piezoelectric elastic modulus 

are made to be temperature dependent with the assumed dependencies shown in Figure 133; 

while trends outlined in Section 5.3.2.1 have been followed, arbitrary values have been used.  
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The modal damping ratio, beam length, and flexural rigidity are made constant ( 0.01 , 

0.03𝑚 and 1.09𝑒 − 3 𝑁𝑚2, respectively). 

 

 
Figure 133. Normalized Temperature Dependence of the Piezoelectric Properties 

Piezoelectric Constant (Red), Piezoelectric Capacitance (Black),  

and Piezoelectric Elastic Modulus (Blue) 

The MRTD for the two temperature loads within the first loading regime are shown in 

Figure 134.  Also included in Figure 134 is the baseline result at room temperature (i.e. the first 

plot in Figure 106).  For low resistive loads the coupled electromechanical system is dominated 

by the mechanical equation of motion.  So, even for large changes in the piezoelectric terms 

(due to changing temperature) the MRTD at low resistance levels is expected to be relatively 

constant.  At higher resistive loads, in general, the governing electrical equations cause a shift 

in the resonance frequency.  Thus, if a temperature increase causes the magnitude of the 

piezoelectric terms to increase (recall 𝑒̅31 = 𝑑31𝑐1̅1
𝐸 ), the shift in the resonance frequency is 

expected to be more severe.  As the resonance frequency shifts, the tip mass corresponding to 

the maximum MRTD must also shift as the loading frequency is constant in the first loading 

regime.  These trends are apparent in Figure 134.  Analogous arguments can be made for the 

power output shown in Figure 135 where the tip mass corresponding to the maximum power 

output is relatively constant for low resistive loads (e.g. 𝑅 < 3𝑒5Ω) but is seen to shift for 

higher resistive loads (e.g. 𝑅 > 4𝑒6Ω). 
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Figure 134. Maximum Relative Tip Displacement (MRTD) Contours (𝑚𝑚) Including Piezoelectric 

Temperature Effects 
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Figure 135. Average Power Contours (𝑊) Including Piezoelectric Temperature Effects 

5.3.4.3.3. Combined Temperature Effects Over all Three Loading Regimes 

The combined temperature effects of all five variables (see Figure 130 and Figure 133) 

are included in an analysis spanning all three loading regimes.  The resulting MRTD and 

average power output are shown in Figure 136 and Figure 137.  The previously identified 

trends are apparent in all three loading regimes.  
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To determine the tip mass and resistive load that maximizes the average power output 

over all three loading regimes (i.e. from year 0 to 0.9), the average power output from each 

realization is integrated over each time step and summed, resulting in a scalar value that can be 

used as an optimization metric.  The resulting metric is plotted in Figure 138.  The total average 

power output is found to be maximized when 𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 7𝑒6Ω.  The average power

output and corresponding MRTD are shown in Figure 139.  For comparison purposes, Figure 

139 also includes the average power output and corresponding MRTD for (1) the maximized 

result found in the baseline case (𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω) and (2) the same realization

(𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω) but when temperature effects are included.  For the assumed

dependencies and thermal loads, temperature is seen to have a significantly smaller effect on 

the systems power output than damage accumulation (compare Figure 128 and Figure 139). 
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Figure 136. Maximum Relative Tip Displacement (MRTD) Contours (𝑚𝑚) Based on Full Temperature 

Effects 
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Figure 137. Average Power Contours (𝑊) Based on Full Temperature Effects 
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Figure 138. Integrated Power Metric (𝑊𝑦𝑟) 

 

 

 
Figure 139. Average Power Output and Maximum Relative Tip Displacement (MRTD)  

𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω with No Temperature Effects (Baseline; Blue) 

𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω with Temperature Effects (Green) 

𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 7𝑒6Ω with Temperature Effects (New Optimum; Red) 
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5.3.4.4. Optimal Tip Mass and Resistive Load: Incorporating Damage and Temperature 

Effects 

Both damage accumulation and temperature effects can be included in a single model 

to determine an optimal configuration (i.e. tip mass and resistive load).  Using the same inputs, 

loading schedule, and expected operating temperature as before (repeated in Table 61, Table 62, 

and Figure 140) the tip mass which maximizes the total average power output can be 

calculated.  The time discretization is taken to be 0.05𝑦𝑟 .  The damage and temperature 

dependencies are repeated in Figure 141 and Figure 142 for convenience.  The resulting 

MRTD, cumulative damage contours, and average power output for select time instances are 

shown in Figure 143, Figure 144, Figure 145, respectively.  The power metric is shown in 

Figure 146 and indicates that the optimal realization is 𝑀𝑡 = 0.0061𝑘𝑔 , 𝑅 = 2𝑒6Ω .  The

average power output and corresponding MRTD are shown in Figure 147.  The previously 

noted trends are apparent. 

Table 61. Inputs 

Length 𝐿, (𝑚) 0.030 & Varies 

Width 𝑏, (𝑚) 0.005 

Distance to Neutral Axis 
ℎ𝑝̃+ℎ𝑠̃

2
, (𝑚) 1𝑒 − 4 

Modes Considered 1 

Damping Ratio 0.010 

Tip Mass 𝑀𝑡, (𝑘𝑔) Optimized Variable 

Tip Mass Density (𝑘𝑔/𝑚3) 6000 

Tip Inertia 𝐼𝑡, (𝑘𝑔𝑚2) Varies 

Damage Index 𝐶 Varies 

Beam Mass 𝑚, (𝑘𝑔 𝑚⁄ ) 0.02 

Operating Temperature (℃) Varies 

Flexural Rigidity 𝑌𝐼, (𝑁𝑚2) 1.090𝑒 − 3 & Varies 

Piezoelectric Elastic Modulus 𝑐11
𝐸 , (𝑁 𝑚2⁄ ) 61𝑒9 & Varies 

Piezoelectric Constant 𝑑31, (𝑚 𝑉⁄ ) −171𝑒 − 12 & Varies 

Piezoelectric Capacitance 𝐶𝑝, (𝐹) 1.33𝑒 − 8 & Varies 

Piezoelectric Configuration Series 

Resistive Load 𝑅, (Ω) Optimized Variable 

*Values shown are at baseline 20℃
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Table 62. Loading Schedule 

Start Time 

(year) 

Loading 

Regime 

Loading 

Amplitude 

(𝑚 𝑠2⁄ )

Loading 

Frequency (𝐻𝑧) 

Loading 

Frequency 

(𝑟𝑎𝑑 𝑠⁄ ) 

End Time 

(year) 

0 1 
2 

20 125.66 0.3 
0.3 2 30 188.50 0.6 
0.6 3 25 157.08 0.9 

Figure 140. Time-Dependent Operating Temperature 
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Figure 141. Normalized Degradation of From Cycling at Specified Amplitudes 

𝐴1 = 0.5𝑚𝑚 (Blue), 𝐴2 = 1𝑚𝑚 (Orange), 𝐴3 = 1.5𝑚𝑚 (Yellow), 𝐴4 = 2𝑚𝑚 (Purple),

𝐴5 = 3𝑚𝑚 (Green), 𝐴6 = 5𝑚𝑚 (Cyan), 𝐴7 = 7𝑚𝑚 (Red)

Figure 142. Normalized Temperature Dependence 

Beam Length (Blue), Flexural Rigidity and Piezoelectric Elastic Modulus (Red), Piezoelectric Constant 

(Green), and the Piezoelectric Capacitance (Black) 
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Figure 143. Maximum Relative Tip Displacement (MRTD) Contours (𝑚𝑚) Including Damage and 

Temperature Effects: Select Instances in Time 
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Figure 144. Cumulative Damage Contours (𝐶) of Flexural Rigidity (𝑌𝐼), Piezoelectric Constant (𝑑31), and

Piezoelectric Capacitance (𝐶𝑝) Including Damage and Temperature Effects: Select Instances in Time
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Figure 145. Average Power Contours (𝑊) Including Damage and Temperature Effects: Select Instances in 

Time 
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Figure 146. Integrated Power Metric (𝑊𝑦𝑟) 

Figure 147. Average Power Output and Maximum Relative Tip Displacement (MRTD) 

𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω with No Effects (Baseline; Blue)

𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω with Full Effects (Green)

𝑀𝑡 = 0.0061𝑘𝑔, 𝑅 = 2𝑒6Ω with Full Effects (New Optimum; Red)

5.3.5. Summary 

Beyond providing a useful tool for practitioners, the SS (specifically the demonstration 

cases) revealed several interesting results.  For the inputs considered, the following trends are 

noted.  From the baseline model with constant loading (i.e. within the first loading regime): 
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 For low resistive loads the MRTD approaches that of the electromechanically

uncoupled system where a maximum response is seen as the undamped natural

frequency (𝜔𝑟) and the loading frequency converge.    As the resistive load is increased

there is an upwards shift in the systems resonant frequency and a corresponding

upwards shift in the tip mass maximizing the MRTD.

 The power generated by the energy harvester is dependent on the tip mass and, for the

resonance case, increases with increasing tip mass.

From the damage accumulation models with constant loading: 

 Damage to the flexural rigidity leads to a reduction in the resonant frequency across all

resistive loads.  The reduced resonant frequency results in a reduced optimal tip mass

and, since the power output is dependent on the tip mass, a reduced power output.

 Damage to the piezoelectric terms does not significantly affect the tip mass

corresponding to the maximum MRTD for low resistive loads but has some impact for

high resistive loads.  Degradation of the piezoelectric terms is concentrated in those tip

mass realizations where the MRTD is high; in this study the realizations where the

MRTD was high did not correspond to the realizations where the power output was

high.  Thus, degradation of the piezoelectric terms was not seen to significantly affect

the maximum power output.

From the temperature dependent models with constant loading: 

 Temperature-based changes to the mechanical terms leads to changes in the resonant

frequency (and thus the optimal tip mass) across all resistive loads.
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 Temperature-based changes to the piezoelectric terms negligibly impacts the optimal

tip mass for low resistive loads (for which the mechanical equations of motion

dominate the systems behavior) but does cause shifts in the optimal tip mass for high

resistive loads.

Across all models: 

 Damage accumulation is seen to have a non-trivial impact on the optimal realization

(i.e. tip mass and resistive load) and maximum average power output.

 A majority of the power generated by an optimized piezoelectric energy harvester will

likely be generated during a single acceleration profile if the user-inputted acceleration

time histories are sufficiently dissimilar.  This likely necessitates the use of a broadband

(or similar) energy harvesting system for practical applications.

A portion of Chapter 5 has been published in SPIE Smart Structures and Materials+ 

Nondestructive Evaluation and Health Monitoring, Eric Kjolsing and Michael Todd, 2016.  The 

title of this paper is “Gauging the Feasibility of a Downhole Energy Harvesting System 

Through a Proof-of-Concept Study”. The dissertation author was the primary investigator and 

author of this paper. 
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Chapter 6  

Summary of Research and Future Work 

The research presented in this dissertation stems from a design project originating at 

Los Alamos National Laboratory.  The original goal of the project was to design and fabricate a 

vibration energy harvesting system that could be used to replace or supplement conventional 

power sources in downhole applications.  The goal of the project changed during the projects 

lifetime, as explained below. 

In Chapter 2, an analytical model was developed to investigate critical assumptions 

made in the initial proof of concept design calculations.  The configuration of interest consisted 

of a bluff body within a fluid conveying pipe which itself was surrounded by a viscous annulus 

fluid.  The analytical model representing this configuration was based on an Euler-Bernoulli 

beam model paired with a hydrodynamic forcing function which represented the inertial and 

viscous effects of the annulus fluid.  The analytical model used Green’s functions to calculate 

the translational displacement of the pipe due to an applied harmonic point force (representing 

the pressure oscillation stemming from the conveyed fluid/bluff body interaction).  The 

investigation found the maximum resonant displacement was orders of magnitude less than that 
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assumed in the preliminary calculations.  With the preliminary design in question, the project 

changed directions: rather than design and fabricate a vibration energy harvesting system, 

investigations that would support the future design of a downhole energy harvesting system 

were pursued. 

Since the power generated by vibration based energy harvesters is sensitive to the 

natural frequency and damping of the supporting structure, Chapter 3 parametrically explored 

the dynamic behavior of a production string using a new equation of motion.  The 

hydrodynamic function utilized in Chapter 2 was paired with the equation of motion of a fluid 

conveying pipe.  The spectral element method was used to solve for the natural frequency and 

damping ratio in the system as parameters of interest were varied.  Parameters included the 

conveyed fluid velocity, axial force, annulus fluid properties, annulus geometry, and rotational 

boundary springs.   

In Chapter 4, a preliminary structural housing was designed so as to determine the 

radial width available to house an energy harvesting system.  Hand calculations and finite 

element models were used in conjunction with American Petroleum Institute loading scenarios 

and tubing geometries to design the housing.  This work was a necessary precursor to the work 

in Chapter 5 as the available radial width dictated which commercially available transduction 

mechanisms might be employed. 

In Chapter 5, two approaches were developed to estimate harvestable power for user-

defined piezoelectric energy harvester configurations.  The first approach utilizes an uncoupled 

electromechanical lumped parameter model to produce a computationally inexpensive order of 

magnitude power estimate.  The second approach utilizes coupled electromechanical equations 

in a distributed system to generate an improved power output estimate.  So as to provide a more 

domain-specific tool, the second program specifically accounts for the accumulation of damage 
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and variable dependencies.  Through four demonstration cases, it was shown how damage 

accumulation and temperature variations might affect the power output of a piezoelectric 

energy harvester.  The investigations results are especially important when designing for the 

downhole environment where replacing an energy harvesting system would be expensive. 

The main contributions found in this dissertation include: 

A parametric study describing how variables of interest affect the natural frequency 

and damping ratio of a braced production string. 

Investigations demonstrating how damage accumulation and temperature variations 

might affect the power output of a piezoelectric energy harvester. 

Design software which facilitates the optimal design of a piezoelectric energy 

harvester so as to maximize power output. 

Additional work may prove beneficial in advancing the design of a downhole 

vibration based energy harvesting system. 

• The preliminary harvester design relied on pressure oscillations (stemming from the

conveyed fluid/bluff body interaction) to harmonically displace the production tube,

thus exciting the energy harvesting system.  However, the magnitude of the tube

displacement found in Chapter 2 was smaller than what was assumed in the proof of

concept calculations.  In order to determine the power output for a vibration energy

harvesting system, the displacement (or acceleration) time history exciting the harvester

is needed.  Representative downhole acceleration time histories should be developed or

acquired from downhole measurements.  The development of mechanical amplifiers

would also prove useful if the ambient vibrations do not result in sufficient power

output.
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 While the preliminary housing design of Chapter 4 provided a radial width (enabling

the development of the MATLAB programs in Chapter 5), the housing design is not

optimized.  Design alternatives which would reduce stress concentrations and/or

improve access to the energy harvesting system, like those shown in Figure 69, should

be developed.

 Relatively little literature is available describing the degradation of the mechanical and

piezoelectric terms when subjected to mechanical cycling.  Commercially available

bimorphs should be mechanically cycled to various displacement amplitudes so as to

determine the degradation of various properties (thus enabling the utilization of the

damage accumulation model described in Chapter 5).

 In Chapter 5, damage accumulation was seen to play a significant role in determining

the tip mass and resistive load corresponding to the maximum average power output.

Damage is dependent on the amplitude and cycle count of the relative tip displacement

(for the damage model utilized in this study), which is dependent on the driving

acceleration time histories which excite the energy harvester.  The SS model should be

expanded to include uncertainty in the loading.   After assigning probabilities as to

when each acceleration profile is active, Monte Carlo analysis can be performed to

determine the damage-dependent power output over time.  Statistical analysis can then

be used to determine the average power output for a user-specified confidence interval.
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Appendix A – LANL Initial Power Estimates 
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Figure A.1 – LANL Proof of Concept Calculations (Part 1 of 2) 
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Figure A.2 – LANL Proof of Concept Calculations (Part 2 of 2) 
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Appendix B – Mathematica Script Supporting Green’s 

Function Analysis 

CFD_Pt_Load 

Problem Description 

(*Using the equivalent point load generated from the CFD results, analyze possible systems*) 

Miscellaneous Mathematica Initialization 

(*MISCELLANEOUS INITIALIZATION----------------------------------------------------*) 

LaunchKernels[];(*Launch Kernels for parallel processing*) 

<<"FourierSeries`"(*load FourierSeries package*) 

SetOptions[FourierTransform,FourierParameters{1,-1}]; (*set options for FT*) 

SetOptions[InverseFourierTransform,FourierParameters{1,-1}]; (*set options for FT*) 

SetOptions[Fourier,FourierParameters{1,-1}]; (*set options for FT*) 

SetOptions[InverseFourier,FourierParameters{1,-1}]; (*set options for FT*) 

Define Material and Geometric Terms 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[nu,rho,eta];(*Annulus Fluid Properties*) 

Clear[YoungsModulus,PipeInnerRadius,PipeWallThickness,PipeOuterRadius,SteelDensity,PipeSteelAre

a,PipeFluidArea,c,d,ShellD,BeamLength,BeamArea,DensityBeam,BeamInertia,mew];(*Structural 

Properties*) 

Clear[i];(*Miscellaneous*) 

(*ANNULUS FLUID PROPERTIES----------------------------------------------------------*) 

nu=1*10^-6;(*Fluid kinematic viscosity, m^2/s*) 

rho=875;(*Fluid Density, kg/m^3*) 

eta=nu*rho;(*Fluid Dynamic Viscosity, N*s/m^2*) 

(*STRUCTURAL PROPERTIES---------------------------------------------------------------*) 

YoungsModulus=2*10^11;(*N/m^2*) 

PipeInnerRadius=0.05;(*m*) 

PipeWallThickness=0.007;(*m*) 

PipeOuterRadius=PipeInnerRadius+PipeWallThickness;(*m*) 

SteelDensity=7800;(*kg/m^3*) 
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PipeSteelArea=Pi*(PipeOuterRadius^2-PipeInnerRadius^2);(*m^2*) 

PipeFluidArea=Pi*PipeInnerRadius^2;(*m^2*) 

c=0; (*Rayleigh Damping Coefficient*) 

d=PipeOuterRadius;(*Beam Outer Radius, m*) 

ShellD=0.108;(*Casing/Screen Inner Radius, m*) 

BeamLength=23.96;(*m*) 

BeamArea=Pi*PipeOuterRadius^2-Pi*PipeInnerRadius^2;(*m^2*) 

DensityBeam=(PipeSteelArea*SteelDensity+PipeFluidArea*rho)/BeamArea;(*kg/m^3*) 

BeamInertia=Pi*(PipeOuterRadius^4-PipeInnerRadius^4)/4;(*Based on pipe alone,m^4*) 

mew=BeamArea*DensityBeam;(*Beam mass per unit length,kg/m*) 

 

(*Miscellaneous-----------------------------------------------------------------------------------*) 

i=(-1)0.5;(*imaginary unit*) 

 

Define the Hydrodynamic Function and the B Term - Used To Determine System Natural 

Frequencies via Green’s Function for Setting Forcing Definition 

 

Calculations 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[ k,,alpha,beta,gamma,hfNum,hfDen,hf];(*Hydrdynamic Function*) 

Clear[B];(*B Term*) 

 

(*DEFINE THE HYDRODYNAMIC FUNCTION (WCJ EQUATION)-----------------*) 

k=(i*/nu)0.5;(*Define term for convenience*) 

alpha=k*d;(*Define term for convenience*) 

beta=k*ShellD;(*Define term for convenience*) 

gamma=d/ShellD;(*Define term for convenience*) 

hfNum=2*alpha2*(BesselI[0,alpha]*BesselK[0,beta]-BesselI[0,beta]*BesselK[0,alpha])-

4*alpha*(BesselI[1,alpha]*BesselK[0,beta]+BesselI[0,beta]*BesselK[1,alpha])+4*alpha*gamma*(Bessel

I[0,alpha]*BesselK[1,beta]+BesselI[1,beta]*BesselK[0,alpha])-

8*gamma*(BesselI[1,alpha]*BesselK[1,beta]-BesselI[1,beta]*BesselK[1,alpha]); 

hfDen=alpha2*(1-gamma2)*(BesselI[0,alpha]*BesselK[0,beta]-

BesselI[0,beta]*BesselK[0,alpha])+2*alpha*gamma*(BesselI[0,alpha]*BesselK[1,beta]-

BesselI[1,beta]*BesselK[0,beta]+BesselI[1,beta]*BesselK[0,alpha]-

BesselI[0,beta]*BesselK[1,beta])+2*alpha*gamma2*(BesselI[0,beta]*BesselK[1,alpha]-

BesselI[0,alpha]*BesselK[1,alpha]+BesselI[1,alpha]*BesselK[0,beta]-

BesselI[1,alpha]*BesselK[0,alpha]); 

hf=hfNum/hfDen-1;(*Hydrodynamic Function*) 

 

(*DEFINE B TERM------------------------------------------------------------------------------*) 

B=((BeamLength^4/(YoungsModulus*BeamInertia))*(mew*^2-i*c*+rho*Pi*d^2*^2*hf))0.25; 

 

Plots 

(*CLEAR VARIABLES------------------------------------------------------------------------*) 

Clear[max,h1,h2];(*Hydrdynamic Function*) 

 

(*PLOT THE HYDRODYNAMIC FUNCTION--------------------------------------------*) 

max=800;(*absolute value of frequency range for plotting*) 

h1=Plot[Re[hf],{,0,max},PlotLabel"Real part of Hydrodynamic Function",AxesLabel{" 

(rad/sec)","Re[hf]"}]; 

h2=Plot[Im[hf],{,0,max},PlotLabel"Imaginary part of Hydrodynamic Function",AxesLabel{" 

(rad/sec)","Im[hf]"}]; 

Table[{h1,h2}] 
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Define the Fixed-Fixed Green’s Function - Used To Determine System Natural Frequencies for 

Forcing Definition 

 

Calculations 

(*CLEAR VARIABLES---------------------------------------------------------------*) 

Clear[C11,C12,C13,C14,s];(*coefficients*) 

Clear[GXLessS,x,GXGreaterS,GreensFunction];(*green's function*) 

 

(*DEFINE THE COEFFICIENTS-------------------------------------------------------*) 

(*Note the equations solved for in the MATLAB file 'Greens_Function_Solver_Fixed_Fixed'*) 

C11=(-((1+i)*(Exp[B*(-2*i+s+3*s*i)]-Exp[B*(-i+s+3*s*i+1)])+(i)*(Exp[2*B*s*(i+1)]-Exp[2*B*(-

i+s+s*i)])+(1-i)*(Exp[B*s*(i+1)]-Exp[B*(-i+s+s*i+1)])+(Exp[2*B*(s*i+1)]-2*Exp[B*(-

i+2*s*i+1)]+Exp[2*B*(-i+s*i+1)])))/(4*B3*(Exp[B*(s+2*s*i+2)]+Exp[B*(-2*i+s+2*s*i)]-4*Exp[B*(-

i+s+2*s*i+1)]+Exp[B*(-2*i+s+2*s*i+2)]+Exp[B*s*(2*i+1)])); 

C12=((1+i)*(Exp[B*(s+s*i+2)]-Exp[B*(-i+s+s*i+1)])+(i)*(Exp[2*B*(-i+s*i+1)]-Exp[2*B*(s*i+1)])+(1-

i)*(Exp[B*(-2*i+s+3*s*i+2)]-Exp[B*(-i+s+3*s*i+1)])+(Exp[2*B*(-i+s+s*i)]-2Exp[B*(-

i+2*s+2*s*i+1)]+Exp[2*B*s*(i+1)]))/(4*B3*(Exp[B*(s+2*s*i+2)]+Exp[B*(-2*i+s+2*s*i)]-4*Exp[B*(-

i+s+2*s*i+1)]+Exp[B*(-2*i+s+2*s*i+2)]+Exp[B*s*(2*i+1)])); 

C13=((1+i)*(Exp[B*(-i+s+3*s*i+1)]-Exp[B*(-2*i+s+3*s*i)])+(i)*(Exp[2*B*(-i+s+s*i)]-

Exp[2*B*s*(i+1)])+(1-i)*(Exp[B*(-i+s+s*i+1)]-Exp[B*s*(i+1)])+(Exp[2*B*i*(s-1)]-2*Exp[B*(-

i+2*s*i+1)]+Exp[2*B*s*i]))/(4*B3*(Exp[B*(s+2*s*i+2)]+Exp[B*(-2*i+s+2*s*i)]-4*Exp[B*(-

i+s+2*s*i+1)]+Exp[B*(-2*i+s+2*s*i+2)]+Exp[B*s*(2*i+1)])); 

C14=(-((1+i)*(Exp[B*(-i+s+s*i+1)]-Exp[B*(s+s*i+2)])+(i)*(Exp[2*B*(s*i+1)]-Exp[2*B*(-

i+s*i+1)])+(1-i)*(Exp[B*(-i+s+3*s*i+1)]-Exp[B*(-2*i+s+3*s*i+2)])+(Exp[2*B*(s+s*i+1)]-2*Exp[B*(-

i+2*s+2*s*i+1)]+Exp[2*B*(-i+s+s*i+1)])))/(4*B3*(Exp[B*(s+2*s*i+2)]+Exp[B*(-2*i+s+2*s*i)]-

4*Exp[B*(-i+s+2*s*i+1)]+Exp[B*(-2*i+s+2*s*i+2)]+Exp[B*s*(2*i+1)])); 

 

(*DEFINE THE GREEN'S FUNCTIONS-----------------------------------------------------*) 

GXLessS=C11*Exp[B*x]+C12*Exp[-B*x]-Exp[-B*x*i]*(C11*(1/2+i/2)+C12*(1/2-i/2))-

Exp[B*x*i]*(C11*(1/2-i/2)+C12*(1/2+i/2)); 

GXGreaterS=C13*Exp[B*x]+C14*Exp[-B*x]-Exp[B*(x*i-i-1)]*(C14*(1/2+i/2)+C13*Exp[2*B]*(1/2-

i/2))-Exp[-B*(x*i-i+1)]*(C14*(1/2-i/2)+C13*Exp[2*B]*(1/2+i/2)); 

 

(*DEFINE THE COMBINED GREEN'S FUNCTION-------------------------------------*) 

GreensFunction=GXLessS*HeavisideTheta[s-x]+GXGreaterS*HeavisideTheta[x-s]; 

 

General Plots 

(*CLEAR VARIABLES------------------------------------------------------------------------*) 

Clear[x,high,low,recursionLimit,g1,g2];(*plotting*) 

 

(*DEFINE PLOTTING PARAMETERS-----------------------------------------------------*) 

x=0.01;(*select spatial point of interest*) 

high=126;(*absolute value of frequency range for plotting*) 

low=122;(*absolute value of frequency range for plotting*) 

recursionLimit=3;(*the maximum number of recursions*) 

 

(*DEFINE GREEN'S FUNCTION PLOTS OF INTEREST-------------------------------*) 

g1=Timing[ContourPlot[Re[GXLessS],{,low,high},{s,0.02,1},PlotLegendsAutomatic,MaxRecurs

ionrecursionLimit]];(*Real part of Green's Function*) 

g2=Timing[ContourPlot[Im[GXLessS],{,low,high},{s,0.02,1},PlotLegendsAutomatic,MaxRecurs

ionrecursionLimit]];(*Imaginary part of Green's Function*) 

Clear[x];(*clear  spatial point of interest*) 
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(*SHOW PLOTS OF INTEREST--------------------------------------------------------------*) 

Table[{g1[[2]],g2[[2]]}](*show plots*) 

Table[{g1[[1]],g2[[1]]}](*show time it took to calculate plots*) 

 

Localized Plots 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[x,gL1,gL2,gL3];(*plotting*) 

 

(*DEFINE PLOTTING PARAMETERS------------------------------------------------------*) 

x=0.01;(*select spatial point of interest*) 

 

(*DEFINE PLOTS OF INTEREST-------------------------------------------------------------*) 

gL1=Timing[Plot3D[Re[GXLessS],{,110,140},{s,0.02,1}]];(*Real Part*) 

gL2=Timing[Plot3D[Im[GXLessS],{,110,140},{s,0.02,1}]];(*Im Part*) 

gL3=Timing[Plot3D[Abs[GXLessS],{,110,140},{s,0.02,1}]];(*Im Part*) 

Clear[x];(*clear  spatial point of interest*) 

 

(*SHOW PLOTS OF INTEREST---------------------------------------------------------------*) 

Table[{gL1[[2]],gL2[[2]],gL3[[2]]}] (*show plots*) 

Table[{gL1[[1]],gL2[[1]],gL3[[1]]}](*show time it took to calculate plots*) 

 

Define Forcing Function 

 

Calculations 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[mag,omd,duration,Slope,sStart,sEnd,fHarmonic,t,s,FHarmonic,,fHarmonicCheck];(*Forcing 

Function*) 

Clear[sHat];(*normalized function*) 

 

(*DEFINE FORCING FUNCTION AND TRANSFORMS--------------------------------*) 

mag=Rationalize[2.09];(*Maximum Magnitude of Distributed Load,N/m*) 

omd=Rationalize[124.005];(*Radial Frequency of the Forcing Function,rad/s*) 

duration=Rationalize[40.0];(*sec, time duration of continuous function*) 

(*Slope=Rationalize[4/3];(*spatial slope of the forcing function*)*) 

sStart=Rationalize[0.499];(*where the forcing begins*) 

sEnd=Rationalize[0.501];(*where the forcing ends*) 

(*Define the harmonic forcing function() 

!!!!!!!!!define space as a function of s to match integral definition of WBar!!!!!!!*) 

fHarmonic[t_,s_]=mag*Sin[omd*t]*UnitStep[t,duration-t]*UnitStep[s-sStart,sEnd-s];(*forcing 

function*) 

FHarmonic=Timing[FourierTransform[fHarmonic[t,s],t,]/.HeavisideThetaUnitStep];(*Continuous FT 

of the forcing function*) 

fHarmonicCheck=Timing[N[InverseFourierTransform[FHarmonic[[2]],,t]]/.HeavisideThetaUnitStep/

.Sign'Sign]; 

(*IFT used for checking proper transforms*) 

 

(*DEFINE THE TRANSFORMED AND NORMALIZED FORCING FUNCTION---*) 

sHat=(BeamLength4/(YoungsModulus*BeamInertia))*FHarmonic[[2]];(*Normalize the Continuous FT*) 

 

(*OUTPUTS OF INTEREST---------------------------------------------------------------*) 

sHat(*scaled forcing function in fourier domain*) 

Table[{FHarmonic[[1]],fHarmonicCheck[[1]]}](*time to calculate transforms*) 
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Plots 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[s,trange,range];(*plotting parameters*) 

Clear[diracDelta,x,f1,f2,f3,f4,f5,f6];(*plots*) 

 

(*DEFINE PLOTTING PARAMETERS------------------------------------------------------*) 

s=0.5;(*select spatial point of interest*) 

trange=1;(*absolute value of EXCESS time range for plotting*) 

range=250;(*absolute value of frequency range for plotting*) 

 

(*DEFINE CONTINUOUS PLOTS OF INTEREST----------------------------------------*) 

diracDelta[x_]=PDF[NormalDistribution[0,1/100],x];(*Define a delta function for plotting purposes*) 

f1=Timing[Plot[fHarmonic[t,s],{t,-trange,trange+duration},PlotLabel"fHarmonic",AxesLabel{"t 

(sec)","Amplitude"}]];(*input function*) 

f2=Timing[Plot[Re[fHarmonicCheck[[2]]],{t,-

trange,trange+duration},PlotLabel"Re[fHarmonicCheck]",AxesLabel{"t 

(sec)","Amplitude"}]];(*transformed input function*) 

f3=Timing[Plot[Im[fHarmonicCheck[[2]]],{t,-

trange,trange+duration},PlotLabel"Im[fHarmonicCheck]",AxesLabel{"t 

(sec)","Amplitude"}]];(*transformed input function*) 

f4=Timing[Plot[Re[sHat]/.DiracDeltadiracDelta,{,-range,range},PlotStyle 

{Thick,Red},PlotLabel"Real part of sHat",AxesLabel{" (rad/sec)","Re[sHat]"}]];(*Real part of 

sHat*) 

f5=Timing[Plot[Im[sHat]/.DiracDeltadiracDelta,{,-range,range},PlotStyle 

{Thick,Red},PlotLabel"Imaginary part of sHat",AxesLabel{" (rad/sec)","Im[sHat]"}]];(*Im part of 

sHat*) 

f6=Timing[Plot[Abs[sHat]/.DiracDeltadiracDelta,{,-range,range},PlotStyle 

{Thick,Red},PlotLabel"|sHat|",AxesLabel{" (rad/sec)","Abs[sHat]"}]];(*Abs[sHat]*) 

Clear[s];(*clear spatial point of interest*) 

 

(*SHOW CONTINUOUS PLOTS OF INTEREST------------------------------------------*) 

Table[{f1[[2]],f2[[2]],f3[[2]]}] (*show plots*) 

Table[{f1[[1]],f2[[1]],f3[[1]]}](*show time it took to calculate plots*) 

Table[{f4[[2]],f5[[2]],f6[[2]]}](*show plots*) 

Table[{f4[[1]],f5[[1]],f6[[1]]}](*show time it took to calculate plots*) 

 

Localized Plots - Set s Based on Side Lob Widths of sHat 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[s,fL1]; 

 

 

(*DEFINE PLOTTING PARAMETERS------------------------------------------------------*) 

s=0.5;(*select spatial point of interest*) 

 

(*DEFINE PLOTS OF INTEREST-------------------------------------------------------------*) 

fL1=Timing[Plot[Abs[sHat]/.DiracDeltadiracDelta,{,120,130},PlotStyle 

{Thick,Red},PlotLabel"|sHat|",AxesLabel{" 

(rad/sec)","Abs[sHat]"},PlotRange{{123,125},{0,5}}]];(*Abs[sHat]*) 

Clear[s];(*clear  spatial point of interest*) 

 

(*SHOW PLOTS OF INTEREST--------------------------------------------------------------*) 
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Table[{fL1[[2]]}] (*show plots*) 

Table[{fL1[[1]]}](*show time it took to calculate plots*) 

 

Clear B and Re-Define Green’s Function Symbolically in B to Reduce Calculation Time for the 

Continuous Fourier Response 

 

Clear the B Term 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[B]; 

 

Redefine Green’s Function as Symbolic in B 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[C11,C12,C13,C14,s];(*coefficients*) 

Clear[GXLessS,x,GXGreaterS,GreensFunction];(*green's function*) 

 

(*DEFINE THE COEFFICIENTS--------------------------------------------------------------*) 

C11=(-((1+i)*(Exp[B*(-2*i+s+3*s*i)]-Exp[B*(-i+s+3*s*i+1)])+(i)*(Exp[2*B*s*(i+1)]-Exp[2*B*(-

i+s+s*i)])+(1-i)*(Exp[B*s*(i+1)]-Exp[B*(-i+s+s*i+1)])+(Exp[2*B*(s*i+1)]-2*Exp[B*(-

i+2*s*i+1)]+Exp[2*B*(-i+s*i+1)])))/(4*B3*(Exp[B*(s+2*s*i+2)]+Exp[B*(-2*i+s+2*s*i)]-4*Exp[B*(-

i+s+2*s*i+1)]+Exp[B*(-2*i+s+2*s*i+2)]+Exp[B*s*(2*i+1)])); 

C12=((1+i)*(Exp[B*(s+s*i+2)]-Exp[B*(-i+s+s*i+1)])+(i)*(Exp[2*B*(-i+s*i+1)]-Exp[2*B*(s*i+1)])+(1-

i)*(Exp[B*(-2*i+s+3*s*i+2)]-Exp[B*(-i+s+3*s*i+1)])+(Exp[2*B*(-i+s+s*i)]-2Exp[B*(-

i+2*s+2*s*i+1)]+Exp[2*B*s*(i+1)]))/(4*B3*(Exp[B*(s+2*s*i+2)]+Exp[B*(-2*i+s+2*s*i)]-4*Exp[B*(-

i+s+2*s*i+1)]+Exp[B*(-2*i+s+2*s*i+2)]+Exp[B*s*(2*i+1)])); 

C13=((1+i)*(Exp[B*(-i+s+3*s*i+1)]-Exp[B*(-2*i+s+3*s*i)])+(i)*(Exp[2*B*(-i+s+s*i)]-

Exp[2*B*s*(i+1)])+(1-i)*(Exp[B*(-i+s+s*i+1)]-Exp[B*s*(i+1)])+(Exp[2*B*i*(s-1)]-2*Exp[B*(-

i+2*s*i+1)]+Exp[2*B*s*i]))/(4*B3*(Exp[B*(s+2*s*i+2)]+Exp[B*(-2*i+s+2*s*i)]-4*Exp[B*(-

i+s+2*s*i+1)]+Exp[B*(-2*i+s+2*s*i+2)]+Exp[B*s*(2*i+1)])); 

C14=(-((1+i)*(Exp[B*(-i+s+s*i+1)]-Exp[B*(s+s*i+2)])+(i)*(Exp[2*B*(s*i+1)]-Exp[2*B*(-

i+s*i+1)])+(1-i)*(Exp[B*(-i+s+3*s*i+1)]-Exp[B*(-2*i+s+3*s*i+2)])+(Exp[2*B*(s+s*i+1)]-2*Exp[B*(-

i+2*s+2*s*i+1)]+Exp[2*B*(-i+s+s*i+1)])))/(4*B3*(Exp[B*(s+2*s*i+2)]+Exp[B*(-2*i+s+2*s*i)]-

4*Exp[B*(-i+s+2*s*i+1)]+Exp[B*(-2*i+s+2*s*i+2)]+Exp[B*s*(2*i+1)])); 

 

(*DEFINE THE GREEN'S FUNCTIONS-----------------------------------------------------*) 

GXLessS=C11*Exp[B*x]+C12*Exp[-B*x]-Exp[-B*x*i]*(C11*(1/2+i/2)+C12*(1/2-i/2))-

Exp[B*x*i]*(C11*(1/2-i/2)+C12*(1/2+i/2)); 

GXGreaterS=C13*Exp[B*x]+C14*Exp[-B*x]-Exp[B*(x*i-i-1)]*(C14*(1/2+i/2)+C13*Exp[2*B]*(1/2-

i/2))-Exp[-B*(x*i-i+1)]*(C14*(1/2-i/2)+C13*Exp[2*B]*(1/2+i/2)); 

 

(*DEFINE THE COMBINED GREEN'S FUNCTION--------------------------------------*) 

GreensFunction=GXLessS*HeavisideTheta[s-x]+GXGreaterS*HeavisideTheta[x-s]; 

 

Calculate the Continuous Fourier Response (symbolic in B) 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[Argument,WBar,s];(*Fourier Response*) 

 

(*DETERMINE FOURIER RESPONSE------------------------------------------------------*) 

Argument=GreensFunction*sHat;(*argument for the integration to follow*) 

WBar[x_,_,B_]=Timing[Chop[N[Integrate[Argument,{s,0,1}]]]];(*Determine Fourier Response*) 

 

(*Show Timing------------------------------------------------------------------------------------*) 

Table[{WBar[x,w,B][[1]] }](*show time it took to calculate*) 

 

Re-Define the B Term (WBar=fn{B}) 
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(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[B]; 

 

(*DEFINE B TERM------------------------------------------------------------------------------*) 

B=((BeamLength^4/(YoungsModulus*BeamInertia))*(mew*^2-i*c*+rho*Pi*d^2*^2*hf))0.25; 

 

Plot/Investigate the Continuous Fourier Response 

 

Plots 

 (*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[x,freqUpper,freqLower,W1,W2];(*plotting*) 

 

(*DEFINE PLOTTING PARAMETERS------------------------------------------------------*) 

x=0.5;(*select spatial point of interest*) 

freqUpper=200;(*upper frequency for plotting purposes*) 

freqLower=0;(*lower frequency for plotting purposes*) 

 

 

(*DEFINE WBAR PLOTS OF INTEREST---------------------------------------------------*) 

W1=Timing[Plot[Abs[WBar[x,,B][[2]]],{,freqLower,freqUpper},PlotStyle 

{Thick,Red},PlotLabel"|WBar|",AxesLabel{" (rad/sec)","Abs[WBar]"}]];(*Abs[WBar]*) 

W2=Timing[LogPlot[Abs[WBar[x,,B][[2]]],{,freqLower,freqUpper},PlotStyle 

{Thick,Red},PlotLabel"LogPlot of |WBar|",AxesLabel{" 

(rad/sec)","Abs[WBar]"}]];(*Abs[WBar]*) 

Clear[x];(*clear  spatial point of interest*) 

 

(*SHOW PLOTS OF INTEREST---------------------------------------------------------------*) 

Table[{W1[[2]],W2[[2]]}](*show plots*) 

Table[{W1[[1]],W2[[1]]}](*show time it took to calculate plots*) 

 

Localized Plots 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[x,WL1]; 

 

(*DEFINE PLOTTING PARAMETERS------------------------------------------------------*) 

x=0.5;(*select spatial point of interest*) 

 

(*DEFINE PLOTS OF INTEREST-------------------------------------------------------------*) 

WL1=Timing[Plot[Abs[WBar[x,,B][[2]]],{,120,130},PlotStyle 

{Thick,Red},PlotLabel"|WBar|",AxesLabel{" 

(rad/sec)","Abs[WBar]"},PlotRange{{120,130},{0,2*10^-5}}]];(*Abs[WBar]*) 

Clear[x]; 

 

(*SHOW PLOTS OF INTEREST---------------------------------------------------------------*) 

Table[{WL1[[2]]}](*show plots*) 

Table[{WL1[[1]]}](*show time it took to calculate plots*) 

 

Determine Local Maximum 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[xPOI,POI]; 

 

(*DEFINE POINTS OF INTEREST-----------------------------------------------------------*) 

xPOI=0.5;(*spatial point of interest*) 
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POI=124;(*starting point for frequency point of interest*) 

 

(*DETERMINE MAXIMUM-------------------------------------------------------------------*) 

FindArgMax[Abs[WBar[xPOI,,B][[2]]],{,POI}](*frequency*) 

FindMaxValue[Abs[WBar[xPOI,,B][[2]]],{,POI}](*value*) 

Clear[xPOI,POI]; 

 

Sample the Continuous Fourier Response at a Specific Spatial Location 

 

Calculations 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[x,s,Os];(*user inputs*) 

Clear[WBarSampled1,,WBarSampled2,WBarSampled3,WBarSampled];(*sampling*) 

 

(*USER INPUTS---------------------------------------------------------------------------------*) 

x=0.5;(*Determine the spatial location where the displacement time history will be determined*) 

(*!!!!!!!!!!!!!!!!!!Set s Based on Side Lob Widths of WBar to avoid Aliasing!!!!!!!!!!!!!!!*) 

(*!!!!!!!!!!!Make sure to not sample on the driving frequency to avoid a singularity!!!!!!!!*) 

s=0.05;(*Define the frequency sampling rate*) 

Os=2000;(*Determine the TOTAL range of frequencies to be included in sampling*) 

 

(*SAMPLE THE CONTINUOUS SIGNAL AND REORDER SO AS TO PERFORM THE DISCRETE 

FT----------------------------------------------------------------------------*) 

WBarSampled1=Timing[Chop[Table[WBar[x,,B][[2]],{,-Os/2+s,-s,s}]]];(*Sampled WBar for 

<0*) 

=s;(*Define offset point to avoid sampling singularity*) 

WBarSampled2=Timing[Chop[WBar[x,,B][[2]]]];(*Sampled WBar at ~0*) 

Clear[];(*Clear offset point*) 

WBarSampled3=Timing[Chop[Table[WBar[x,,B][[2]],{,s,Os/2,s}]]];(*Sampled WBar for >0*) 

(*Combine the three lists in an order appropriate for discrete transforms*) 

WBarSampled=Timing[Flatten[Join[{WBarSampled2[[2]]},{WBarSampled3[[2]]},{WBarSampled1[[2]]

}]]]; 

 

(*SHOW TIME FOR SAMPLING-------------------------------------------------------------*) 

Table[{WBarSampled1[[1]],WBarSampled2[[1]],WBarSampled3[[1]],WBarSampled[[1]]}](*show 

timing*) 

 

Plots 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[WS1,WS2,WS3];(*plotting*) 

 

(*DEFINE PLOTS OF INTEREST-------------------------------------------------------------*) 

WS1=Timing[ListPlot[Re[WBarSampled[[2]]],FillingAxis,JoinedTrue,PlotLabel"Real part of 

WBarSampled",AxesLabel{"Sample,k","Re[WBarSampled]"},PlotStyleRed]];(*Real part of 

WBarSampled*) 

WS2=Timing[ListPlot[Im[WBarSampled[[2]]],FillingAxis,JoinedTrue,PlotLabel"Imag. part of 

WBarSampled",AxesLabel{"Sample,k","Im[WBarSampled]"},PlotStyleRed]];(*Imaginary part of 

WBarSampled*) 

WS3=Timing[ListPlot[Abs[WBarSampled[[2]]],FillingAxis,JoinedTrue,PlotLabel"|WBarSample

d|",AxesLabel{"Sample,k","Abs[WBarSampled]"},PlotStyleRed]];(*Abs[WBarSampled]*) 

 

(*SHOW PLOTS OF INTEREST---------------------------------------------------------------*) 
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Table[{WS1[[2]],WS2[[2]],WS3[[2]]}](*show plots*) 

Table[{WS1[[1]],WS2[[1]],WS3[[1]]}](*show time it took to calculate plots*) 

 

Local Plots 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[WSL1]; 

 

(*DEFINE PLOTS OF INTEREST-------------------------------------------------------------*) 

(*!!!!!!!!!!!!!!!!Note that x was previously defined when we sampled WBar!!!!!!!!!!!!!!!!!!!*) 

WSL1=Timing[ListPlot[Abs[WBarSampled[[2]]],FillingAxis,JoinedTrue,PlotLabel"|WBarSampl

ed|",AxesLabel{"Sample,k","Abs[WBarSampled]"},PlotRange{{0,40000},{0,0.00005}},PlotStyle

Red]];(*Abs[WBar]*) 

 

(*SHOW PLOTS OF INTEREST--------------------------------------------------------------*) 

Table[{WSL1[[2]]}](*show plots*) 

Table[{WSL1[[1]]}](*show time it took to calculate plots*) 

 

Superimposed Plots 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[L,H,AmpMax,WLCont,WLDisc]; 

 

(*DEFINE PLOTTING PARAMETERS------------------------------------------------------*) 

L=120;(*plotting low frequency*) 

H=130;(*plotting high frequency*) 

AmpMax=0.0004;(*plotting amplitude*) 

 

(*DEFINE PLOTS OF INTEREST-------------------------------------------------------------*) 

WLCont=Timing[Plot[Abs[WBar[x,,B][[2]]],{,L,H},PlotStyle 

{Thick,Red},PlotLabel"|WBar|",AxesLabel{" 

(rad/sec)","Abs[WBar]"},PlotRange{{L,H},{0,AmpMax}}]];(*Abs[WBar]*) 

WLDisc=Timing[ListPlot[Abs[WBarSampled[[2]]],FillingAxis,JoinedFalse,PlotLabel"|WBarSam

pled|",AxesLabel{" 

(rad/sec)","Abs[WBarSampled]"},PlotRange{{L,H},{0,AmpMax}},PlotStyleBlue,DataRange

{0,Os-s}]];(*the data is scaled from k for plotting purposes*) 

 

(*SHOW PLOTS OF INTEREST---------------------------------------------------------------*) 

Show[{WLCont[[2]],WLDisc[[2]]},AxesLabel{" (rad/sec)","Magnitude"},PlotLabel"|WBar| & 

|WBarSampled|"](*superimpose the two plots*) 

Table[{WLCont[[1]],WLDisc[[1]]}](*show time it took to calculate plots*) 

 

Calculate the Displacement Response 

 

Calculations 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[wSampled]; 

 

(*TAKE THE IFT OF WBAR TO DETERMINE THE DISPLACEMENT RESPONSE IN DISCRETE 

FORM---------------------------------------------------------------------------*) 

wSampled=Timing[(Os/(2*Pi))*Chop[N[InverseFourier[WBarSampled[[2]]]]]]; 

 

(*SHOW TIME FOR CALCULATION-------------------------------------------------------*) 

Table[{wSampled[[1]]}](*show time it took to calculate*) 
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Plot/Investigate the Displacement Response 

 

Plots 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[dispMag,w1,w2,w3]; 

 

(*DEFINE PLOTTING PARAMETERS------------------------------------------------------*) 

dispMag=10^-5;(*Maximum expected displacement magnitude*) 

 

(*DEFINE DISPLACEMENT PLOTS OF INTEREST-------------------------------------*) 

w1=Timing[ListPlot[Re[wSampled[[2]]],PlotRange{{-trange,trange+duration},{-

dispMag,dispMag}},FillingAxis,PlotLabel"Real part of 

wSampled",AxesLabel{"time,sec","Re[wSampled]"},JoinedTrue,DataRange{0,2*Pi/s}]];(*Real 

part*) 

w2=Timing[ListPlot[Im[wSampled[[2]]],PlotRange{{-trange,trange+duration},{-

dispMag,dispMag}},FillingAxis,PlotLabel"Imag. part of 

wSampled",AxesLabel{"time,sec","Im[wSampled]"},JoinedTrue,DataRange{0,2*Pi/s}]];(*Real 

part*) 

w3=Timing[ListPlot[Abs[wSampled[[2]]],PlotRange{{-trange,trange+duration},{-

dispMag,dispMag}},FillingAxis,PlotLabel"Abs part of 

wSampled",AxesLabel{"time,sec","Abs[wSampled]"},JoinedTrue,DataRange{0,2*Pi/s}]];(*Re

al part*) 

 

(*SHOW PLOTS OF INTEREST--------------------------------------------------------------*) 

Table[{w1[[2]],w2[[2]],w3[[2]]}](*show plots*) 

Table[{w1[[1]],w2[[1]],w3[[1]]}](*show time it took to calculate plots*) 

 

Local Plots 

(*CLEAR VARIABLES-------------------------------------------------------------------------*) 

Clear[wL1]; 

 

(*DEFINE PLOTS OF INTEREST-------------------------------------------------------------*) 

wL1=Timing[ListPlot[Re[wSampled],PlotRange{{0,15},{-10^-8,3*10^-

6}},FillingAxis,PlotLabel"Real part of 

wSampled",AxesLabel{"time,sec","Re[wSampled]"},JoinedTrue,DataRange{0,2*Pi/s}]];(*Real 

part*)(*Abs[WBar]*) 

 

(*SHOW PLOTS OF INTEREST---------------------------------------------------------------*) 

Table[{wL1[[2]]}](*show plots*) 

Table[{wL1[[1]]}](*show time it took to calculate plots*) 

 

 

 

 



280 

Appendix C – Mathematica Script Supporting Spectral 

Element Analysis 

Determine the Response of a System on the Extended EOM Using SEM 

Problem Description 

Use the Spectral Element Method to solve the extended equation of motion of a fixed-fixed beam under 
harmonic forcing. 

Miscellaneous Mathematica Initialization 

 MISCELLANEOUS INITIALIZATION; 
LaunchKernels[];(*Launch Kernels for parallel processing*) 

<<"FourierSeries`"(*load FourierSeries package*) 

SetOptions[FourierTransform,FourierParameters{1,-1}]; (*set options for FT*) 

SetOptions[InverseFourierTransform,FourierParameters{1,-1}]; (*set options 

for FT*) 

SetOptions[Fourier,FourierParameters{1,-1}]; (*set options for FT*) 

SetOptions[InverseFourier,FourierParameters{1,-1}]; (*set options for FT*) 

Define Material and Geometric Terms 

CLEAR VARIABLES; 
Clear[Young,do,wt,di,Inertia1,Inertia2,Inertia3,Ap,Ai,rhop,m,nup,cote,L,ShellD

];(*Structural Properties*) 

Clear[nue,rhoe,eta];(*Annulus Fluid Properties*) 

Clear[rhoi,Mi,U];(*Conveyed Fluid Properties*) 

Clear[elL1,elL2,elL3];(*SEM Properties*) 

Clear[kd1,kd2,kd3];(*SEM Properties*) 

Clear[T,p,T,g,i];(*Miscellaneous Terms*) 

STRUCTURAL PROPERTIES; 
Young=Rationalize[3*10^11];(*N/m^2, Young's Modulus*) 

do=Rationalize[0.08];(*m, Radius to Outer Edge of Pipe*) 

wt=Rationalize[0.08];(*m, Pipe Wall Thickness*) 

di=do-wt;(*m,Radius to Inner Edge of Pipe*) 

Inertia1=Pi*(do^4-di^4)/4;(*m^4, Moment of Inertia*) 

Inertia2=1*Inertia1; 

Inertia3=1*Inertia1; 
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Inertia=Inertia1; (*for rayleigh damping estimate*) 

Ap=Pi*(do^2-di^2);(*m2, Pipe Cross Sectional Area*) 

Ai=Pi*(di^2);(*m2, Flow Area*) 

rhop=Rationalize[6000];(*kg/m3, Pipe Density*) 

m=Rationalize[Ap*rhop];(*kg/m, Mass per Unit Length of Pipe*) 

nup=Rationalize[0.33];(*Poisson Ratio of Pipe*) 

cote=Rationalize[11*10^-6];(*1/K, Coefficient of Thermal Expansion*) 

ShellD=Rationalize[100];(*m, Casing/Screen Inner Radius*) 

 

ANNULUS FLUID PROPERTIES; 
nue=Rationalize[1.0*10^-8];(*m2/s, Annulus Fluid Kinematic Viscosity*) 

rhoe=Rationalize[0.001];(*kg/m3, Density of Annulus Fluid*) 

eta=Rationalize[nue*rhoe];(*Ns/m2, Annulus Fluid Dynamic Viscosity*) 

 

CONVEYED FLUID PROPERTIES; 
rhoi=Rationalize[000];(*kg/m3, Density of Conveyed Fluid*) 

Mi=Rationalize[Ai*rhoi];(*kg/m, Mass per Unit Length of Conveyed Fluid*) 

U=Rationalize[0];(*m/s, Mean Axial Flow Velocity*) 

 

SEM TERMS; 
elL1=6;(*L/2;(*m, Element Length*)*) 

elL2=6; 

L=elL1+elL2;(*m, Beam Length*) 

 

DISTRIBUTED SPRINGS; 
kd1=0; (*N/m2*) 

kd2=0;(*N/m2*) 

 

MISCELLANEOUS TERMS; 
T=Rationalize[0];(*N, Externally Applied Tension, (+)=T, (-)=C*) 

p=Rationalize[0];(*N/m2, Mean Pressure Differential, (+)=interior p>exterior 

p*) 

T=Rationalize[0];(*Kelvin, Temperature Differential*) 
g=Rationalize[9.81];(*m/s2, Gravitational Constant*) 

i=Sqrt[-1];(*Imaginary Unit*) 

 

Define Rayleigh Damping Coefficient Based Solely on Beam (Fixed-Fixed/First Mode) 

 

CLEAR VARIABLES; 

Clear[xi1,1,c];(*Damping Properties*) 
 

DESIRED DAMPING RATIO FOR FIRST TWO MODES; 
xi1=Rationalize[0.15];(*Desired damping ratio for first mode*) 

 

APPROXIMATE FIRST UNDAMPED NATURAL FREQUENCy OF BEAM IN VACUUM; 

1=(4.7300)^2*(Young*Inertia/((m+Mi)*L^4))^0.5;(*first nat freq*) 
 

VISCOUS DAMPING COEFFICIENT; 

c=2*m*1*xi1 
 

Solve EOM for Wavenumbers 1 

 

CLEAR VARIABLES; 

Clear[G1,,k,hf,k11,k12,k13,k14]; 
 

SOLVE FOR WAVENUMBERS AS A FUNCTION OF  AND HYDRODYNAMIC FORCE; 
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G1=Timing[Solve[(Young*Inertia1)*k^4-(Mi*U^2-T+p*Ai*(1-

2*nup)+Young*Ap*cote*T)*k^2+(2*i**Mi*U+(Mi+m)*g)*i*k+(i**c-(Mi+m)*^2-

rhoe*Pi*do^2*^2*hf+kd1)0,k]]; 
 

(*REASSIGN THE CALCUALTED K'S INTO FOUR VARIABLES-------------------*) 

k11=Part[Part[Part[G1[[2]],1],1],2]; 

k12=Part[Part[Part[G1[[2]],2],1],2]; 

k13=Part[Part[Part[G1[[2]],3],1],2]; 

k14=Part[Part[Part[G1[[2]],4],1],2]; 

 

SHOW TIMING; 
G1[[1]] 

 

Create Exponential Vectors 1 

 
CLEAR VARIABLES; 
Clear[x,evector1,devector1,ddevector1,dddevector1] 

 

CREATE VECTORS; 
evector1[x_]={Exp[i*k11*x],Exp[i*k12*x],Exp[i*k13*x],Exp[i*k14*x]}; 

devector1[x_]={i*k11*Exp[i*k11*x],i*k12*Exp[i*k12*x],i*k13*Exp[i*k13*x],i*k14*

Exp[i*k14*x]};(*spatial derivative of evector*) 

ddevector1[x_]={-k11^2*Exp[i*k11*x],-k12^2*Exp[i*k12*x],-k13^2*Exp[i*k13*x],-

k14^2*Exp[i*k14*x]};(*second spatial derivative of evector*) 

dddevector1[x_]={-i*k11^3*Exp[i*k11*x],-i*k12^3*Exp[i*k12*x],-

i*k13^3*Exp[i*k13*x],-i*k14^3*Exp[i*k14*x]};(*third spatial derivative of 

evector*) 

 

Assemble Hinverse Matrix (from Displacements) 1 

 

CLEAR VARIABLES; 
Clear[H1,Hinv1]; 

 

ASSEMBLE Hinv MATRIX; 
H1={evector1[0],devector1[0],evector1[elL1],devector1[elL1]}; 

Hinv1=Timing[Inverse[H1]];(*Take the matrix inverse*) 

 

SHOW TIMING; 
Hinv1[[1]](*Show time required to calculate Hinv*) 

 

Assemble X Matrix (from Forces) 1 

 

CLEAR VARIABLES; 
Clear[Q1,x,M1,X1]; 

 

DEFINE FORCE RELATIONS; 
Q1[x_]=Young*Inertia1*dddevector1[x]-T*devector1[x];(*Shear*) 

M1[x_]=Young*Inertia1*ddevector1[x];(*Moment*) 

 

ASSEMBLE X MATRIX; 
X1=Timing[{Q1[0],-M1[0],-Q1[elL1],M1[elL1]}]; 

 

SHOW TIMING; 
X1[[1]](*Show time required to calculate X*) 

 

Calcualte Spectral Element Matrix 1 

 

CLEAR VARIABLES; 
Clear[Sb1]; 
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CALCULATE SPECTRAL ELEMENT MATRIX; 
Sb1=Timing[X1[[2]].Hinv1[[2]]]; 

 

SHOW TIMING; 
Sb1[[1]](*Show time required to calculate Sb*) 

 

Solve EOM for Wavenumbers 2 

 

CLEAR VARIABLES; 

Clear[G2,,k,hf,k21,k22,k23,k24]; 
 

SOLVE FOR WAVENUMBERS AS A FUNCTION OF  AND HYDRODYNAMIC FORCE; 
G2=Timing[Solve[(Young*Inertia2)*k^4-(Mi*U^2-T+p*Ai*(1-

2*nup)+Young*Ap*cote*T)*k^2+(2*i**Mi*U+(Mi+m)*g)*i*k+(i**c-(Mi+m)*^2-

rhoe*Pi*do^2*^2*hf+kd2)0,k]]; 
 

(*REASSIGN THE CALCUALTED K'S INTO FOUR VARIABLES-------------------*) 

k21=Part[Part[Part[G2[[2]],1],1],2]; 

k22=Part[Part[Part[G2[[2]],2],1],2]; 

k23=Part[Part[Part[G2[[2]],3],1],2]; 

k24=Part[Part[Part[G2[[2]],4],1],2]; 

 

SHOW TIMING; 
G2[[1]] 

 

Create Exponential Vectors 2 

 

CLEAR VARIABLES; 
Clear[x,evector2,devector2,ddevector2,dddevector2] 

 

CREATE VECTORS; 
evector2[x_]={Exp[i*k21*x],Exp[i*k22*x],Exp[i*k23*x],Exp[i*k24*x]}; 

devector2[x_]={i*k21*Exp[i*k21*x],i*k22*Exp[i*k22*x],i*k23*Exp[i*k23*x],i*k24*

Exp[i*k24*x]};(*spatial derivative of evector*) 

ddevector2[x_]={-k21^2*Exp[i*k21*x],-k22^2*Exp[i*k22*x],-k23^2*Exp[i*k23*x],-

k24^2*Exp[i*k24*x]};(*second spatial derivative of evector*) 

dddevector2[x_]={-i*k21^3*Exp[i*k21*x],-i*k22^3*Exp[i*k22*x],-

i*k23^3*Exp[i*k23*x],-i*k24^3*Exp[i*k24*x]};(*third spatial derivative of 

evector*) 

 

Assemble Hinverse Matrix (from Displacements) 2 

 

CLEAR VARIABLES; 
Clear[H2,Hinv2]; 

 

ASSEMBLE Hinv MATRIX; 
H2={evector2[0],devector2[0],evector2[elL2],devector2[elL2]}; 

Hinv2=Timing[Inverse[H2]];(*Take the matrix inverse*) 

 

SHOW TIMING; 
Hinv2[[1]](*Show time required to calculate Hinv*) 

 

Assemble X Matrix (from Forces) 2 

 

CLEAR VARIABLES; 
Clear[Q2,x,M2,X2]; 

 

DEFINE FORCE RELATIONS; 
Q2[x_]=Young*Inertia2*dddevector2[x]-T*devector2[x];(*Shear*) 
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M2[x_]=Young*Inertia2*ddevector2[x];(*Moment*) 

 

ASSEMBLE X MATRIX; 
X2=Timing[{Q2[0],-M2[0],-Q2[elL2],M2[elL2]}]; 

 

SHOW TIMING; 
X2[[1]](*Show time required to calculate X*) 

 

Calcualte Spectral Element Matrix 2 

 

CLEAR VARIABLES; 
Clear[Sb2]; 

 

CALCULATE SPECTRAL ELEMENT MATRIX; 
Sb2=Timing[X2[[2]].Hinv2[[2]]]; 

 

SHOW TIMING; 
Sb2[[1]](*Show time required to calculate Sb*) 

 

Assemble 2-Element Global Matrix  

 

CLEAR VARIABLES; 
Clear[A1,A2,K1,K2,Sg]; 

 

DEFINE ASSEMBLY MATRICIES; 
A1={{0,0},{0,0},{1,0},{0,1}}; 

A2={{1,0},{0,1},{0,0},{0,0}}; 

 

ELEMENT CONTRIBUTION TO GLOBAL MATRIX; 
K1=Timing[Transpose[A1].Sb1[[2]].A1]; 

K2=Timing[Transpose[A2].Sb2[[2]].A2]; 

 

DEFINE GLOBAL MATRIX; 

Sg[_,hf_]=K1[[2]]+K2[[2]]; 
 

SHOW TIMING; 
Table[{K1[[1]],K2[[1]]}](*Show time required to calculate terms*) 

 

Determine Natural Frequencies 

 

Define the General Hydrodynamic Function 

 

CLEAR VARIABLES; 

Clear[ kb,,alpha,beta,gamma,hfNum,hfDen,hf]; 
 

DEFINE THE HYDRODYNAMIC FUNCTION; 

kb=(i*/nue)0.5;(*Define term for convenience*) 
alpha=kb*do;(*Define term for convenience*) 

beta=kb*ShellD;(*Define term for convenience*) 

gamma=do/ShellD;(*Define term for convenience*) 

hfNum=2*alpha2*(BesselI[0,alpha]*BesselK[0,beta]-

BesselI[0,beta]*BesselK[0,alpha])-

4*alpha*(BesselI[1,alpha]*BesselK[0,beta]+BesselI[0,beta]*BesselK[1,alpha])+4*

alpha*gamma*(BesselI[0,alpha]*BesselK[1,beta]+BesselI[1,beta]*BesselK[0,alpha]

)-8*gamma*(BesselI[1,alpha]*BesselK[1,beta]-BesselI[1,beta]*BesselK[1,alpha]); 

hfDen=alpha2*(1-gamma2)*(BesselI[0,alpha]*BesselK[0,beta]-

BesselI[0,beta]*BesselK[0,alpha])+2*alpha*gamma*(BesselI[0,alpha]*BesselK[1,be

ta]-BesselI[1,beta]*BesselK[0,beta]+BesselI[1,beta]*BesselK[0,alpha]-

BesselI[0,beta]*BesselK[1,beta])+2*alpha*gamma2*(BesselI[0,beta]*BesselK[1,alp
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ha]-BesselI[0,alpha]*BesselK[1,alpha]+BesselI[1,alpha]*BesselK[0,beta]-

BesselI[1,alpha]*BesselK[0,alpha]); 

hf[_]=hfNum/hfDen-1;(*Hydrodynamic Function*) 

Plot the General Hydrodynamic Function 

CLEAR VARIABLES; 

Clear[max,h1,h2]; 

PLOT THE HYDRODYNAMIC FUNCTION; 

max=34;(*Maximum frequency for plotting*) 

h1=Plot[Re[hf[]],{,0,max},PlotLabel"Real part of Hydrodynamic 

Function",AxesLabel{" (rad/sec)","Re[hf]"}]; 

h2=Plot[Im[hf[]],{,0,max},PlotLabel"Imaginary part of Hydrodynamic 

Function",AxesLabel{" (rad/sec)","Im[hf]"}]; 
Table[{h1,h2}] 

Calculations - Plot to Refine Range of REAL Frequency 

CLEAR VARIABLES; 

Clear[L,H,desc,detSg1,s1,s2,s3]; 

DEFINE PARAMETERS FOR PLOTTING INVESTIGATION; 

L=5;(*First frequency where Det[Sg] is investigated*) 

H=55;(*Last frequency where Det[Sg] is investigated*) 

desc=5;(*Descretization size*) 
magExpected=1*10^50;(*Y-axis magnitude of plot*) 

CREATE A LIST OF DET[SG]; 

detSg1=Timing[Table[Det[Sg[,hf[]]],{,L,H,desc}]]; 

PLOT THE ABSOLUTE VALUE OF DET[SG]; 

s1=ListPlot[Re[detSg1[[2]]],FillingAxis,JoinedTrue,PlotRange{{L,H},{-

magExpected,magExpected}},DataRange{L,H},PlotLabel"Re[Det[Sg]]",AxesLabel

{" (rad/sec)","Re[Det[Sg]]"}] 

s2=ListPlot[Im[detSg1[[2]]],FillingAxis,JoinedTrue,PlotRange{{L,H},{-

magExpected,magExpected}},DataRange{L,H},PlotLabel"Im[Det[Sg]]",AxesLabel

{" (rad/sec)","Im[Det[Sg]]"}]; 

s3=ListPlot[Abs[detSg1[[2]]],FillingAxis,JoinedTrue,PlotRange{{L,H},{0,

magExpected}},DataRange{L,H},PlotLabel"Abs[Det[Sg]]",AxesLabel{" 
(rad/sec)","Abs[Det[Sg]]"}] 

Table[{s1,s2}](*show plots*) 

SHOW TIMING; 
detSg1[[1]] 

Calculations - Plot to Refine Range of Imaginary Frequency 

CLEAR VARIABLES; 

Clear[Lreal,Hreal,descreal,Limag,Himag,descimag,detSg2,s1,s2,s3]; 

DEFINE PARAMETERS FOR PLOTTING INVESTIGATION; 

Lreal=16;(*First frequency where Det[Sg] is investigated*) 

Hreal=22;(*Last frequency where Det[Sg] is investigated*) 

descreal=1;(*Descretization size*) 

Limag=0.5;(*First frequency where Det[Sg] is investigated*) 
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Himag=3.5;(*Last frequency where Det[Sg] is investigated*) 

descimag=1;(*Descretization size*) 
 

CREATE A LIST OF DET[SG]; 

detSg2=Timing[Table[Det[Sg[r+i*i,hf[r+i*i]]],{i,Limag,Himag,descimag}

,{r,Lreal,Hreal,descreal}]]; 
 

PLOT THE ABSOLUTE VALUE OF DET[SG]; 

ListPlot3D[Abs[detSg2[[2]]]/magExpected,DataRange{{Lreal,Hreal},{Limag,H

imag}},PlotLabel"Abs[detSg2]",AxesLabel{"Real","Imag"}] 

 

SHOW TIMING; 
detSg2[[1]] 

 

Iterate Natural Frequency 

 

CLEAR VARIABLES; 

Clear[]; 
 

CALCULATE THE DETERMINATE OF SG AT SPECIFIED FREQUENCY - DRIVE IT TO ZERO; 

=43.448+6.59168*i;(*Frequency of interest*) 

-0.5*((rhoe*Pi*do^2)/(Re[hf[]]*rhoe*Pi*do^2+m+Mi))*Im[hf[]] 

Det[Sg[,hf[]]](*Calcualte Det[Sg] at FOI*) 

hf[] 

hf[Sqrt[Re[]^2+Im[]^2]] 

Clear[];(*Clear FOI*) 
 

Root Solver to Find Natural Frequency 

 

CLEAR VARIABLES; 
Clear[R1]; 

 

FIND ROOT; 

R1=Timing[Chop[SetPrecision[FindRoot[Det[Sg[,hf[]]],{,40}],10]]]; 
R1[[2]](*Find root*) 

 

Define Nodal Forcing 

 

CLEAR VARIABLES; 

Clear[mag,d,duration,fHarmonic,t,FHarmonic,,range,f1,f2,f3,f4] 
mag=Rationalize[2000];(*N, magnitude of load*) 

d=Rationalize[1.015];(*rad/sec, frequency of forcing*) 
duration=Rationalize[13.928];(*s, duration of load*) 

fHarmonic[t_]=(mag*UnitStep[t,duration-t])*Sin[d*t];(*N*) 

FHarmonic=Timing[FourierTransform[fHarmonic[t],t,]/.HeavisideThetaUnitStep]

;(*Continuous FT of the forcing function*) 

 

PLOT THE FORCING FUNCTION; 
range=600;(*rad/sec, frequency range for plotting*) 

f1=Timing[Plot[fHarmonic[t],{t,-

1,1+duration},PlotLabel"fHarmonic",AxesLabel{"t 

(sec)","Amplitude"}]];(*input function*) 

f2=Timing[Plot[Re[FHarmonic[[2]]]/.DiracDeltadiracDelta,{,-

range,range},PlotStyle {Thick,Red},PlotLabel"Real part of 

FHarmonic",AxesLabel{" (rad/sec)","Re[FHarmonic]"}]];(*Real part of 
FHarmonic*) 
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f3=Timing[Plot[Im[FHarmonic[[2]]]/.DiracDeltadiracDelta,{,-

range,range},PlotStyle {Thick,Red},PlotLabel"Imaginary part of 

FHarmonic",AxesLabel{" (rad/sec)","Im[FHarmonic]"}]];(*Im part of 
FHarmonic*) 

f4=Timing[Plot[Abs[FHarmonic[[2]]]/.DiracDeltadiracDelta,{,-

range,range},PlotStyle {Thick,Red},PlotLabel"|FHarmonic|",AxesLabel{" 
(rad/sec)","Abs[FHarmonic]"}]];(*Abs[FHarmonic]*) 

 

SHOW CONTINUOUS PLOTS; 
Table[f1[[2]]] (*show plots*) 

Table[f1[[1]]](*show time it took to calculate plots*) 

Table[{f2[[2]],f3[[2]],f4[[2]]}](*show plots*) 

Table[{f2[[1]],f3[[1]],f4[[1]]}](*show time it took to calculate plots*) 

(*show time it took to calculate plots*) 

 

Plot Forcing 

Plot[Abs[FHarmonic[[2]]]/.DiracDeltadiracDelta,{,-range,range},PlotStyle 

{Thick,Red},PlotLabel"|FHarmonic|",AxesLabel{" 

(rad/sec)","Abs[FHarmonic]"},PlotRange{{-

100,100},{0,2000}}](*Abs[FHarmonic]*) 

 

Assemble the Global Spectral Nodal Forcing Vector (Fixed-Fixed) 

 

CLEAR VARIABLES; 
Clear[fg]; 

 

ASSEMBLE THE GLOBAL FORCE VECTOR; 
fg={FHarmonic[[2]],0}; 

 

Calculate the Global Spectral Nodal DOF Vector 

 

CLEAR VARIABLES; 

Clear[Sg,,Sginv,dg]; 
 

REDEFINE THE GLOBAL MATRIX (IE PULL THE HYDRODYNAMIC FUNCTION OUT); 

Sg[_,hf_]=K1[[2]]+K2[[2]]; 
 

CALCULATE THE GLOBAL SPECTRAL MATRIX; 

Sginv[_,hf_]=Inverse[Sg[,hf]]; 
 

CALCULATE THE GLOBAL SPECTRAL NODAL DOF VECTOR; 

dg[_,hf_]=Sginv[,hf].fg; 
 

Determine Displacement Response Based on First Element 

 

Calculate the Continuous Frequency Response for the First Element 

 

CLEAR VARIABLES; 

Clear[d,,Cvector,Wvector]; 
 

DISTRIBUTE DG TO THE ELEMENT LEVEL; 

d[_,hf_]={0,0,Part[dg[,hf][[1]]],Part[dg[,hf][[1,2]]]}; 
 

CALCULATE THE C VECTOR NEEDED TO ASSEMBLE THE FOURIER COEFFICIENT EQUATION; 

Cvector[_,hf_]=Hinv1[[2]].d[,hf]; 
 

ASSEMBLE THE FOURIER COEFFIECIENT EQUATION; 
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Wvector[_,hf_]=evector1[x].Cvector[,hf]; 

Calculate the Continuous Frequency Response for the Second Element 

CLEAR VARIABLES; 
Clear[dR,CvectorR,WvectorR]; 

DISTRIBUTE DG TO THE ELEMENT LEVEL; 

dR[_,hf_]={Part[dg[,hf][[1]]],Part[dg[,hf][[1,2]]],0,0}; 

CALCULATE THE C VECTOR NEEDED TO ASSEMBLE THE FOURIER COEFFICIENT EQUATION; 

CvectorR[_,hf_]=Hinv2[[2]].dR[,hf]; 

ASSEMBLE THE FOURIER COEFFIECIENT EQUATION; 

WvectorR[_,hf_]=evector2[x].CvectorR[,hf]; 

Plot the Continuous Frequency Responses Around The Forcing Frequency 

CLEAR VARIABLES; 

Clear[x,L,H, W1,W1R]; 

PLOT THE FREQUENCY RESPONSE FOR THE FIRST ELEMENT; 

L=1; 

H=3; 
x=elL1; 

W1=Timing[LogPlot[Abs[Wvector[,hf[]]],{,L,H},PlotStyle{Thick,Red},PlotL

abel"|Wvector|",AxesLabel{" (rad/sec)","Abs[Wvector]"}]]; 
Clear[x]; 

PLOT THE FREQUENCY RESPONSE FOR THE SECOND ELEMENT; 
x=0; 

W1R=Timing[LogPlot[Abs[WvectorR[,hf[]]],{,L,H},PlotStyle{Thick,Blue},Pl

otLabel"|Wvector|",AxesLabel{" (rad/sec)","Abs[Wvector]"}]]; 
Clear[x]; 

SUPERIMPOSE PLOTS; 

Show[{W1[[2]],W1R[[2]]},AxesLabel{" 

(rad/sec)","Magnitude"},PlotLabel"|Wvector|:1st Element=Red, 2nd 

Element=Blue"] 

Table[{W1[[2]],W1R[[2]]}] 

Table[{W1[[1]],W1R[[1]]}] 

Sample the Continuous Frequency Response (Use First Element Moving Forward) 

CLEAR VARIABLES; 

Clear[x,s,s,WBarSampled1,,WvectorRR,WvectorLL,WBarSampled2,WBarSampled3,WBa
rSampled]; 

SAMPLING PARAMETERS; 
x=elL1;(*spatial point of interest*) 

s=0.025;(*Define the frequency s 
ampling rate*) 

(*!!!!!!!!!!!!!!!!!!Set s Based on Side Lob Widths to avoid 
Aliasing!!!!!!!!!!!!!!!*) 

(*!!!!!!Make sure to not sample on the driving frequency to avoid a 

singularity!!!!!*) 

s=400;(*Determine the TOTAL range of frequencies to be included in sampling*) 
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SAMPLE THE CONTINUOUS SIGNAL AND REORDER SO AS TO PERFORM THE DISCRETE FT; 

WBarSampled1=Timing[Table[Wvector[,hf[]],{,-s/2+s,-s,s}]];(*Sampled 

Wvector for <0*) 

=s;(*Define offset point to avoid sampling at zero frequency*) 

WvectorRR=Wvector[,hf[]];(*Sample at zero+*) 

Clear[];(*Clear offset point*) 

=-s;(*Define offset point to avoid sampling at zero frequency*) 

WvectorLL=Wvector[,hf[]];(*Sample at zero-*) 

Clear[];(*Clear offset point*) 

WBarSampled2=Timing[(WvectorRR+WvectorLL)/2];(*Sampled Wvector at ~0*) 

WBarSampled3=Timing[Table[Wvector[,hf[]],{,s,s/2,s}]];(*Sampled Wvector 

for >0*) 
(*Combine the three lists in an order appropriate for discrete transforms*) 

WBarSampled=Timing[Flatten[Join[{WBarSampled2[[2]]},{WBarSampled3[[2]]},{WBarS

ampled1[[2]]}]]]; 

 

SHOW TIME FOR SAMPLING; 
Table[{WBarSampled1[[1]],WBarSampled2[[1]],WBarSampled3[[1]],WBarSampled[[1]]}

] 

 

Plot the Sampled Frequency Response 

 

CLEAR VARIABLES; 

Clear[Ls,Hs,AmpMax,WLDisc]; 
 

DEFINE PLOTTING PARAMETERS; 

Ls=2(*plotting low frequency*) 

Hs=3;(*plotting high frequency*) 
AmpMax=0.1;(*plotting amplitude*) 

 

DEFINE PLOTS OF INTEREST; 

WLDisc=Timing[ListPlot[Abs[WBarSampled[[2]]],FillingAxis,JoinedFalse,PlotLa

bel"|WBarSampled|",AxesLabel{" 

(rad/sec)","Abs[WBarSampled]"},PlotRange{{Ls,Hs},{0,AmpMax}},PlotStyleBlu

e,DataRange{0,s-s}]];(*the data is scaled from k for plotting 
purposes*) 

 

(*SHOW PLOTS OF INTEREST--------------------------------------------*) 

Show[WLDisc[[2]],AxesLabel{" (rad/sec)","Magnitude"},PlotLabel"|Wvector| & 

|WBarSampled|"] 

Table[WLDisc[[1]]](*show time it took to calculate plots*) 

 

Plot the Continuous and Sampled Frequency Response (Superimposed) 

 

CLEAR VARIABLES; 
Clear[AmpMax,WLCont,WLDisc2]; 

 

DEFINE PLOTTING PARAMETERS; 
AmpMax=0.01;(*plotting amplitude*) 

L=2; 

H=3; 
 

DEFINE PLOTS OF INTEREST; 

WLCont=Timing[Plot[Abs[Wvector[,hf[]]],{,L,H},PlotStyle 

{Thick,Red},PlotLabel"|Wvector|",AxesLabel{" 

(rad/sec)","Abs[Wvector]"},PlotRange{{L,H},{0,AmpMax}}]];(*Abs[Wvector]*) 
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WLDisc2=Timing[ListPlot[Abs[WBarSampled[[2]]],FillingAxis,JoinedFalse,PlotL

abel"|WBarSampled|",AxesLabel{" 

(rad/sec)","Abs[WBarSampled]"},PlotRange{{L,H},{0,AmpMax}},PlotStyleBlue,

DataRange{0,s-s}]];(*the data is scaled from k for plotting purposes*) 
 

SHOW PLOTS OF INTEREST; 

Show[{WLCont[[2]],WLDisc2[[2]]},AxesLabel{" 

(rad/sec)","Magnitude"},PlotLabel"|Wvector| & |WBarSampled|"](*superimpose 

the two plots*) 

Table[{WLCont[[1]],WLDisc2[[1]]}](*show time it took to calculate plots*) 

 

Calculate the Displacement Response as the iFFT of Wvector 

 

CLEAR VARIABLES; 
Clear[wSampled]; 

 

TAKE THE IFFT OF Wvector TO DETERMINE THE DISPLACEMENT RESPONSE IN DISCRETE 
FORM; 

wSampled=Timing[(s/(2*Pi))*N[InverseFourier[WBarSampled[[2]]]]]; 
 

SHOW TIME FOR CALCULATION; 
Table[{wSampled[[1]]}](*show time it took to calculate*) 

 

Plot the Displacement Response 

 

CLEAR VARIABLES; 
Clear[ti,tf,dispMag,w1,w2,w3]; 

 

DEFINE PLOTTING PARAMETERS; 
ti=0;(*starting time*) 

tf=20;(*final time*) 

dispMag=0.002;(*Maximum expected displacement magnitude*) 

 

DEFINE DISPLACEMENT PLOTS OF INTEREST; 

w1=Timing[ListPlot[Re[wSampled[[2]]],PlotRange{{ti,tf},{-

dispMag,dispMag}},FillingAxis,PlotLabel"Real part of 

wSampled",AxesLabel{"time,sec","Re[wSampled]"},JoinedTrue,DataRange{0,2*P

i/s}]];(*Real part*) 

w2=Timing[ListPlot[Im[wSampled[[2]]],PlotRange{{ti,tf},{-

dispMag,dispMag}},FillingAxis,PlotLabel"Imag. part of 

wSampled",AxesLabel{"time,sec","Im[wSampled]"},JoinedTrue,DataRange{0,2*P

i/s}]];(*Imaginary part*) 

w3=Timing[ListPlot[Abs[wSampled[[2]]],PlotRange{{ti,tf},{-

dispMag,dispMag}},FillingAxis,PlotLabel"Abs part of 

wSampled",AxesLabel{"time,sec","Abs[wSampled]"},JoinedTrue,DataRange{0,2*

Pi/s}]];(*Absolute*) 
 

SHOW PLOTS OF INTEREST; 
Table[w1[[2]]] 

Table[{w2[[2]],w3[[2]]}](*show plots*) 

Table[{w1[[1]],w2[[1]],w3[[1]]}](*show time it took to calculate plots*) 
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Appendix D – Parametric Study Inputs 

Table D.1. Parametric Study: Inputs [178] 

Conveyed Fluid 

Velocity 

Case 

Variable Units 1 2 

Young’s Modulus, 𝐸 𝑁 𝑚2⁄ 2𝑒11 

Pipe Outer Radius, 𝑑 𝑚 0.065 

Pipe Wall Thickness, 𝑤𝑡 𝑚 0.015 

Pipe Inertia, 𝐼 𝑚4 9.11𝑒 − 6 

Pipe Area, 𝐴𝑝 𝑚2 5.42𝑒 − 3 

Conveyed Fluid Flow-Area, 𝐴𝑖 𝑚2 7.85𝑒 − 3 

Poisson’s Ratio, 𝜈 - 0 

Pipe Density, 𝜌𝑝 𝑘𝑔 𝑚3⁄ 7800 

Pipe Mass, 𝑚 𝑘𝑔 𝑚⁄  42.27 

Coefficient of Gravity, 𝑔 𝑚 𝑠2⁄ 9.81 

Pipe Length, 𝐿 𝑚 8 

Conveyed Fluid Density, 𝜌𝑖 𝑘𝑔 𝑚3⁄ 900 

Annulus Fluid Density, 𝜌𝑒 𝑘𝑔 𝑚3⁄ 0 

Casing Inner Radius, 𝐷 𝑚 ∞ 

Annulus Fluid Kinematic Viscosity, 𝜐 𝑚2 𝑠⁄ 0 

Conveyed Fluid Mass, 𝑀𝑖 𝑘𝑔 𝑚⁄  7.07 

Conveyed Fluid Velocity, 𝑈 𝑚 𝑠⁄  Varies* 

Externally Applied Tension, 𝑇̅ 𝑁 0 

Mean Pressure Differential, 𝑝̅ 𝑁 𝑚2⁄ 0 

Viscous Damping, 𝑐 𝑘𝑔 𝑠⁄  0 

Translational Spring Stiffness, 𝐾𝑡1 = 𝐾𝑡2 𝑁 𝑚⁄  ∞ 

Rotational Spring Stiffness, 𝐾𝑟1 𝑁𝑚 𝑟𝑎𝑑⁄  ∞ 0 

Rotational Spring Stiffness, 𝐾𝑟2 𝑁𝑚 𝑟𝑎𝑑⁄  ∞ 0 

*The flow velocity is taken to be negative, indicating flow in the direction opposite gravity
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Table D.1. Parametric Study: Inputs (Continued) [178] 

Axial Force 

Case 

Variable Units 3 4 5 6 

Young’s Modulus, 𝐸 𝑁 𝑚2⁄ 2𝑒11 

Pipe Outer Radius, 𝑑 𝑚 0.065 

Pipe Wall Thickness, 𝑤𝑡 𝑚 0.015 

Pipe Inertia, 𝐼 𝑚4 9.11𝑒 − 6 

Pipe Area, 𝐴𝑝 𝑚2 5.42𝑒 − 3 

Conveyed Fluid Flow-Area, 𝐴𝑖 𝑚2 7.85𝑒 − 3 

Poisson’s Ratio, 𝜈 - 0 

Pipe Density, 𝜌𝑝 𝑘𝑔 𝑚3⁄ 7800 

Pipe Mass, 𝑚 𝑘𝑔 𝑚⁄  42.27 

Coefficient of Gravity, 𝑔 𝑚 𝑠2⁄ 9.81 

Pipe Length, 𝐿 𝑚 8 

Conveyed Fluid Density, 𝜌𝑖 𝑘𝑔 𝑚3⁄ 900 

Annulus Fluid Density, 𝜌𝑒 𝑘𝑔 𝑚3⁄ 0 

Casing Inner Radius, 𝐷 𝑚 ∞ 

Annulus Fluid Kinematic Viscosity, 𝜐 𝑚2 𝑠⁄ 0 

Conveyed Fluid Mass, 𝑀𝑖 𝑘𝑔 𝑚⁄  7.07 

Conveyed Fluid Velocity, 𝑈 𝑚 𝑠⁄  Varies* 

Externally Applied Tension, 𝑇̅ 𝑁 1.5𝑒5 −2.5𝑒5 1.5𝑒5 −2.5𝑒5 

Mean Pressure Differential, 𝑝̅ 𝑁 𝑚2⁄ 0 

Viscous Damping, 𝑐 𝑘𝑔 𝑠⁄  0 

Translational Spring Stiffness, 𝐾𝑡1 = 𝐾𝑡2 𝑁 𝑚⁄  ∞ 

Rotational Spring Stiffness, 𝐾𝑟1 𝑁𝑚 𝑟𝑎𝑑⁄  ∞ 0 

Rotational Spring Stiffness, 𝐾𝑟2 𝑁𝑚 𝑟𝑎𝑑⁄  ∞ 0 

*The flow velocity is taken to be negative, indicating flow in the direction opposite gravity
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Table D.1. Parametric Study: Inputs (Continued) [178] 

Annulus Fluid Density 

Case 

Variable Units 7 8 9 10 

Young’s Modulus, 𝐸 𝑁 𝑚2⁄ 2𝑒11 

Pipe Outer Radius, 𝑑 𝑚 0.065 

Pipe Wall Thickness, 𝑤𝑡 𝑚 0.015 

Pipe Inertia, 𝐼 𝑚4 9.11𝑒 − 6 

Pipe Area, 𝐴𝑝 𝑚2 5.42𝑒 − 3 

Conveyed Fluid Flow-Area, 𝐴𝑖 𝑚2 7.85𝑒 − 3 

Poisson’s Ratio, 𝜈 - 0 

Pipe Density, 𝜌𝑝 𝑘𝑔 𝑚3⁄ 7800 

Pipe Mass, 𝑚 𝑘𝑔 𝑚⁄  42.27 

Coefficient of Gravity, 𝑔 𝑚 𝑠2⁄ 9.81 

Pipe Length, 𝐿 𝑚 8 

Conveyed Fluid Density, 𝜌𝑖 𝑘𝑔 𝑚3⁄ 900 

Annulus Fluid Density, 𝜌𝑒 𝑘𝑔 𝑚3⁄ 2000 600 1200 600 

Casing Inner Radius, 𝐷 𝑚 ∞ 0.113 0.092 0.113 

Annulus Fluid Kinematic Viscosity, 𝜐 𝑚2 𝑠⁄ 0 

Conveyed Fluid Mass, 𝑀𝑖 𝑘𝑔 𝑚⁄  7.07 

Conveyed Fluid Velocity, 𝑈 𝑚 𝑠⁄  0 

Externally Applied Tension, 𝑇̅ 𝑁 0 

Mean Pressure Differential, 𝑝̅ 𝑁 𝑚2⁄ 0 

Viscous Damping, 𝑐 𝑘𝑔 𝑠⁄  0 

Translational Spring Stiffness, 𝐾𝑡1 = 𝐾𝑡2 𝑁 𝑚⁄  ∞ 

Rotational Spring Stiffness, 𝐾𝑟1 𝑁𝑚 𝑟𝑎𝑑⁄  ∞ 0 

Rotational Spring Stiffness, 𝐾𝑟2 𝑁𝑚 𝑟𝑎𝑑⁄  ∞ 0 
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Table D.1. Parametric Study: Inputs (Continued) [178] 

Inviscid Systems 

Case 

Variable Units 11 12 13 14 

Young’s Modulus, 𝐸 𝑁 𝑚2⁄ 2𝑒11 

Pipe Outer Radius, 𝑑 𝑚 0.065 

Pipe Wall Thickness, 𝑤𝑡 𝑚 0.015 

Pipe Inertia, 𝐼 𝑚4 9.11𝑒 − 6 

Pipe Area, 𝐴𝑝 𝑚2 5.42𝑒 − 3 

Conveyed Fluid Flow-Area, 𝐴𝑖 𝑚2 7.85𝑒 − 3 

Poisson’s Ratio, 𝜈 - 0 

Pipe Density, 𝜌𝑝 𝑘𝑔 𝑚3⁄ 7800 

Pipe Mass, 𝑚 𝑘𝑔 𝑚⁄  42.27 

Coefficient of Gravity, 𝑔 𝑚 𝑠2⁄ 9.81 

Pipe Length, 𝐿 𝑚 8 

Conveyed Fluid Density, 𝜌𝑖 𝑘𝑔 𝑚3⁄ 900 

Annulus Fluid Density, 𝜌𝑒 𝑘𝑔 𝑚3⁄ 1050 

Casing Inner Radius, 𝐷 𝑚 1.30𝑑 1.11𝑑 1.30𝑑 1.11𝑑 

Annulus Fluid Kinematic Viscosity, 𝜐 𝑚2 𝑠⁄ 0 

Conveyed Fluid Mass, 𝑀𝑖 𝑘𝑔 𝑚⁄  7.07 

Conveyed Fluid Velocity, 𝑈 𝑚 𝑠⁄  Varies* 

Externally Applied Tension, 𝑇̅ 𝑁 0 

Mean Pressure Differential, 𝑝̅ 𝑁 𝑚2⁄ 0 

Viscous Damping, 𝑐 𝑘𝑔 𝑠⁄  0 

Translational Spring Stiffness, 𝐾𝑡1 = 𝐾𝑡2 𝑁 𝑚⁄  ∞ 

Rotational Spring Stiffness, 𝐾𝑟1 𝑁𝑚 𝑟𝑎𝑑⁄  ∞ 0 

Rotational Spring Stiffness, 𝐾𝑟2 𝑁𝑚 𝑟𝑎𝑑⁄  ∞ 0 

*The flow velocity is taken to be negative, indicating flow in the direction opposite gravity
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Table D.1. Parametric Study: Inputs (Continued) [178] 
Viscous Systems 

Case 

Variable Units 15 16 17 18 19 20 

Young’s Modulus, 𝐸 𝑁 𝑚2⁄ 2𝑒11 

Pipe Outer Radius, 𝑑 𝑚 0.065 

Pipe Wall Thickness, 𝑤𝑡 𝑚 0.015 

Pipe Inertia, 𝐼 𝑚4 9.11𝑒 − 6 

Pipe Area, 𝐴𝑝 𝑚2 5.42𝑒 − 3 

Conveyed Fluid Flow-Area, 𝐴𝑖 𝑚2 7.85𝑒 − 3 

Poisson’s Ratio, 𝜈 - 0 

Pipe Density, 𝜌𝑝 𝑘𝑔 𝑚3⁄ 7800 

Pipe Mass, 𝑚 𝑘𝑔 𝑚⁄  42.27 

Coefficient of Gravity, 𝑔 𝑚 𝑠2⁄ 9.81 

Pipe Length, 𝐿 𝑚 8 

Conveyed Fluid Density, 𝜌𝑖 𝑘𝑔 𝑚3⁄ 900 

Annulus Fluid Density, 𝜌𝑒 𝑘𝑔 𝑚3⁄ 1050 

Casing Inner Radius, 𝐷 𝑚 1.10𝑑 1.11𝑑 1.10𝑑 1.10𝑑 1.11𝑑 1.10𝑑 

Annulus Fluid Kinematic Viscosity, 𝜐 𝑚2 𝑠⁄ 1.2𝑒 − 5 1.2𝑒 − 4 1.2𝑒 − 5 3.6𝑒 − 5 

Conveyed Fluid Mass, 𝑀𝑖 𝑘𝑔 𝑚⁄  7.07 

Conveyed Fluid Velocity, 𝑈 𝑚 𝑠⁄  Varies* 

Externally Applied Tension, 𝑇̅ 𝑁 0 

Mean Pressure Differential, 𝑝̅ 𝑁 𝑚2⁄ 0 

Viscous Damping, 𝑐 𝑘𝑔 𝑠⁄  0 

Translational Spring Stiffness, 𝐾𝑡1 =
𝐾𝑡2

𝑁 𝑚⁄  ∞ 

Rotational Spring Stiffness, 𝐾𝑟1 𝑁𝑚 𝑟𝑎𝑑⁄  ∞ 0 

Rotational Spring Stiffness, 𝐾𝑟2 𝑁𝑚 𝑟𝑎𝑑⁄  ∞ 0 

*The flow velocity is taken to be negative, indicating flow in the direction opposite gravity
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Table D.1. Parametric Study: Inputs (Continued) [178] 

  Frequency Dependent Damping 

  Case 

Variable Units 21 22 23 24 

Young’s Modulus, 𝐸 𝑁 𝑚2⁄  2𝑒11 

Pipe Outer Radius, 𝑑 𝑚 0.05 

Pipe Wall Thickness, 𝑤𝑡  𝑚 0.007 

Pipe Inertia, 𝐼 𝑚4 2.22𝑒 − 6 

Pipe Area, 𝐴𝑝 𝑚2 2.05𝑒 − 3 

Conveyed Fluid Flow-Area, 𝐴𝑖 𝑚2 5.81𝑒 − 3 

Poisson’s Ratio, 𝜈 - 0 

Pipe Density, 𝜌𝑝 𝑘𝑔 𝑚3⁄  7800 

Pipe Mass, 𝑚 𝑘𝑔 𝑚⁄  15.95 

Coefficient of Gravity, 𝑔 𝑚 𝑠2⁄  9.81 

Pipe Length, 𝐿 𝑚 8 

Conveyed Fluid Density, 𝜌𝑖 𝑘𝑔 𝑚3⁄  850 

Annulus Fluid Density, 𝜌𝑒 𝑘𝑔 𝑚3⁄  900 

Casing Inner Radius, 𝐷 𝑚 1.2𝑑 

Annulus Fluid Kinematic Viscosity, 𝜐 𝑚2 𝑠⁄  1𝑒 − 05 3𝑒 − 05 7𝑒 − 05 4𝑒 − 05 

Conveyed Fluid Mass, 𝑀𝑖 𝑘𝑔 𝑚⁄  4.94 

Conveyed Fluid Velocity, 𝑈 𝑚 𝑠⁄  Varies* 

Externally Applied Tension, 𝑇̅ 𝑁 0 

Mean Pressure Differential, 𝑝̅ 𝑁 𝑚2⁄  0 

Viscous Damping, 𝑐 𝑘𝑔 𝑠⁄  0 

Translational Spring Stiffness, 𝐾𝑡1 = 𝐾𝑡2 𝑁 𝑚⁄  ∞ 

Rotational Spring Stiffness, 𝐾𝑟1 𝑁𝑚 𝑟𝑎𝑑⁄  Varies 

Rotational Spring Stiffness, 𝐾𝑟2 𝑁𝑚 𝑟𝑎𝑑⁄  Varies 

*The flow velocity is taken to be negative, indicating flow in the direction opposite gravity 
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Appendix E – Damping Ratio Comparison 

Table E.1 Inputs 
Case 

Variable Units i ii iii 

Viscous Damping, 𝑐 𝑘𝑔 𝑠⁄  0 

Pipe Outer Radius, 𝑑 𝑚 0.040 0.050 0.055 

Coefficient of Gravity, 𝑔 𝑚 𝑠2⁄ 9.81 

Pipe Mass, 𝑚 𝑘𝑔 𝑚⁄  10.60 16.36 9.32 

Mean Pressure Differential, 𝑝̅ 𝑁 𝑚2⁄ 0 

Conveyed Fluid Flow-Area, 𝐴𝑖 𝑚2 3.85𝑒 − 3 5.81𝑒 − 3 8.17𝑒 − 3 

Casing Inner Radius, 𝐷 𝑚 0.05 0.06 0.07 

Young’s Modulus, 𝐸 𝑁 𝑚2⁄ 1.80𝑒11 2.10𝑒11 2.00𝑒11 

Pipe Inertia, 𝐼 𝑚4 8.32𝑒 − 7 2.22𝑒 − 6 1.87𝑒 − 6 

Rotational Spring Stiffness, 𝐾𝑟1 𝑁𝑚 𝑟𝑎𝑑⁄  ∞ 0 ∞ 

Rotational Spring Stiffness, 𝐾𝑟2 𝑁𝑚 𝑟𝑎𝑑⁄  0 0 ∞ 

Translational Spring Stiffness, 𝐾𝑡1 = 𝐾𝑡2 𝑁 𝑚⁄  ∞ ∞ ∞ 

Pipe Length, 𝐿 𝑚 10 13 9 

Conveyed Fluid Mass, 𝑀𝑖 𝑘𝑔 𝑚⁄  2.31 4.07 6.53 

Externally Applied Tension, 𝑇̅ 𝑁 0 

Conveyed Fluid Velocity, 𝑈 𝑚 𝑠⁄  Varies* 

Annulus Fluid Density, 𝜌𝑒 𝑘𝑔 𝑚3⁄ 900 950 800 

Annulus Fluid Kinematic Viscosity, 𝜐 𝑚2 𝑠⁄ 3.00𝑒 − 5 4.50𝑒 − 5 2.00𝑒 − 5 

Poisson’s Ratio, 𝜈 - 0 

*The flow velocity is taken to be negative, indicating flow in the direction opposite gravity
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Appendix F – Structural Housing Design Calculations 

Table F.1. Production Tube Summary – Bursting 

Outer Diameter, 2𝑑 (𝑖𝑛) 3.50 

Wall Thickness, 𝑤𝑡  (𝑖𝑛) 0.375 

Yield Strength, 𝑌𝑝 (𝑝𝑠𝑖) 80000 

Unfactored Burst Pressure, 𝑃𝐵 (𝑝𝑠𝑖) 15000 

Internal Pressure, 𝑝𝑖  (𝑝𝑠𝑖) 10000 

External Pressure, 𝑝𝑜 (𝑝𝑠𝑖) 0 

Required Design Factor, 𝐷𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 1.25 

Actual Design Factor, 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 1.50 

Burst Design Sufficient? Yes 
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Table F.2. Production Tube Summary – Collapse 

Outer Diameter, 2𝑑 (𝑖𝑛) 3.50 

Wall Thickness, 𝑤𝑡  (𝑖𝑛) 0.375 

Yield Strength, 𝑌𝑝 (𝑝𝑠𝑖) 80000 

(2𝑑 𝑤𝑡⁄ )𝑎𝑐𝑡𝑢𝑎𝑙  9.33 

Yield Strength Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑌𝑝
 13.38 

Yield Strength Collapse Possible? Yes 

Yield Strength Collapse Pressure, 𝑃𝑌𝑝 (𝑝𝑠𝑖) 15306 

Plastic Collapse Variable, 𝐴 3.071 

Plastic Collapse Variable, 𝐵 0.0667 

Plastic Collapse Variable, 𝐶 1955 

Plastic Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑌𝑝,𝑝 13.38 

Plastic Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑝,𝑇 22.47 

Plastic Collapse Possible? No 

Plastic Collapse Pressure, 𝑃𝑝 (𝑝𝑠𝑖) N/A 

Transition Collapse Variable, 𝐹 1.998 

Transition Collapse Variable, 𝐺 0.0434 

Transition Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑝,𝑇 22.47 

Transition Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑇,𝐸 31.02 

Transition Collapse Possible? No 

Transition Collapse Pressure, 𝑃𝑇  (𝑝𝑠𝑖) N/A 

Elastic Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑇,𝐸 31.02 

Elastic Collapse Possible? No 

Elastic Collapse Pressure, 𝑃𝐸  (𝑝𝑠𝑖) N/A 

Min Collapse Pressure Differential (𝑝𝑠𝑖) 15306 

Internal Pressure, 𝑝𝑖  (𝑝𝑠𝑖) 0 

External Pressure, 𝑝𝑜 (𝑝𝑠𝑖) 10000 

Required Design Factor, 𝐷𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  1.1 

Actual Design Factor, 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 1.53 

Collapse Design Sufficient? Yes 
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Table F.3. Production Tube Summary – Collapse + Tension 

Outer Diameter, 2𝑑 (𝑖𝑛) 3.50 

Wall Thickness, 𝑤𝑡  (𝑖𝑛) 0.375 

Yield Strength, 𝑌𝑝 (𝑝𝑠𝑖) 80000 

(2𝑑 𝑤𝑡⁄ )𝑎𝑐𝑡𝑢𝑎𝑙  9.33 

Applied Tension (𝑙𝑏) 124000 

Actual Tension (𝑙𝑏) 124000 

Nominal Cross Sectional Area, 𝐴𝑝 (𝑖𝑛2) 3.68 

Axial Stress, 𝜎𝑧 (𝑝𝑠𝑖) 33681 

Yield Strength of ASEG, 𝑌𝑝𝑎 (𝑝𝑠𝑖) 57652 

Yield Strength Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑌𝑝
 14.61 

Yield Strength Collapse Possible? Yes 

Yield Strength Collapse Pressure, 𝑃𝑌𝑝 (𝑝𝑠𝑖) 11030 

Plastic Collapse Variable, 𝐴 2.998 

Plastic Collapse Variable, 𝐵 0.0554 

Plastic Collapse Variable, 𝐶 1286 

Plastic Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑌𝑝,𝑝 14.61 

Plastic Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑝,𝑇 24.69 

Plastic Collapse Possible? No 

Plastic Collapse Pressure, 𝑃𝑝 (𝑝𝑠𝑖) N/A 

Transition Collapse Variable, 𝐹 1.985 

Transition Collapse Variable, 𝐺 0.0367 

Transition Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑝,𝑇 24.69 

Transition Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑇,𝐸 36.41 

Transition Collapse Possible? No 

Transition Collapse Pressure, 𝑃𝑇  (𝑝𝑠𝑖) N/A 

Elastic Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑇,𝐸 36.41 

Elastic Collapse Possible? No 

Elastic Collapse Pressure, 𝑃𝐸  (𝑝𝑠𝑖) N/A 

Min Collapse Pressure Differential (𝑝𝑠𝑖) 11030 

Internal Pressure, 𝑝𝑖  (𝑝𝑠𝑖) 0 

External Pressure, 𝑝𝑜 (𝑝𝑠𝑖) 10000 

Required Design Factor, 𝐷𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  1.1 

Actual Design Factor, 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 1.10 

Collapse + Tension Design Sufficient? Yes 
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Table F.4. Production Tube Summary – Burst + Tension 

Outer Diameter, 2𝑑 (𝑖𝑛) 3.50 

Wall Thickness, 𝑤𝑡  (𝑖𝑛) 0.375 

Yield Strength, 𝑌𝑝 (𝑝𝑠𝑖) 80000 

Applied Tension (𝑙𝑏) 225000 

Actual Tension (𝑙𝑏) 225000 

Nominal Cross Sectional Area, 𝐴𝑝 (𝑖𝑛2) 3.68 

Axial Stress, 𝜎𝑧 (𝑝𝑠𝑖) 61115 

Outer Wall Radius, 𝑑 (𝑖𝑛) 1.75 

Inner Wall Radius, 𝑑 − 𝑤𝑡  (𝑖𝑛) 1.375 

Internal Pressure, 𝑝𝑖  (𝑝𝑠𝑖) 10000 

External Pressure, 𝑝𝑜 (𝑝𝑠𝑖) 0 

Tangential Stress at Inner Wall, 𝜎𝑡 (𝑝𝑠𝑖) 42267 
Radial Stress at Inner Wall, 𝜎𝑟 (𝑝𝑠𝑖) −10000 

Von Mises Stress at Inner Wall, 𝜎𝑉𝑀 (𝑝𝑠𝑖) 63814 

Tangential Stress at Outer Wall, 𝜎𝑡 (𝑝𝑠𝑖) 32267 
Radial Stress at Outer Wall, 𝜎𝑟 (𝑝𝑠𝑖) 0 

Von Mises Stress at Outer Wall, 𝜎𝑉𝑀 (𝑝𝑠𝑖) 52955 

Governing Von Mises Stress (𝑝𝑠𝑖) 63814 

Required Design Factor, 𝐷𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  1.25 

Actual Design Factor, 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 1.25 

Burst + Tension Design Sufficient? Yes 

 

 

Table F.5. Production Tube Summary – Collapse + Compression 

Outer Diameter, 2𝑑 (𝑖𝑛) 3.50 

Wall Thickness, 𝑤𝑡  (𝑖𝑛) 0.375 

Yield Strength, 𝑌𝑝 (𝑝𝑠𝑖) 80000 

Applied Compression (𝑙𝑏) −305000 

Actual Compression (𝑙𝑏) −305000 

Nominal Cross Sectional Area, 𝐴𝑝 (𝑖𝑛2) 3.68 

Axial Stress, 𝜎𝑧 (𝑝𝑠𝑖) −82845 

Outer Wall Radius, 𝑑 (𝑖𝑛) 1.75 

Inner Wall Radius, 𝑑 − 𝑤𝑡  (𝑖𝑛) 1.375 

Internal Pressure, 𝑝𝑖  (𝑝𝑠𝑖) 0 

External Pressure, 𝑝𝑜 (𝑝𝑠𝑖) 10000 

Tangential Stress at Inner Wall, 𝜎𝑡 (𝑝𝑠𝑖) −52267 
Radial Stress at Inner Wall, 𝜎𝑟 (𝑝𝑠𝑖) 0 

Von Mises Stress at Inner Wall, 𝜎𝑉𝑀 (𝑝𝑠𝑖) 72561 

Tangential Stress at Outer Wall, 𝜎𝑡 (𝑝𝑠𝑖) −42267 
Radial Stress at Outer Wall, 𝜎𝑟 (𝑝𝑠𝑖) −10000 

Von Mises Stress at Outer Wall, 𝜎𝑉𝑀 (𝑝𝑠𝑖) 63223 

Governing Von Mises Stress (𝑝𝑠𝑖) 72561 

Required Design Factor, 𝐷𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  1.1 

Actual Design Factor, 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 1.10 

Collapse + Compression Design Sufficient? Yes 
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Table F.6. Production Tube Summary – Burst + Compression 

Outer Diameter, 2𝑑 (𝑖𝑛) 3.50 

Wall Thickness, 𝑤𝑡  (𝑖𝑛) 0.375 

Yield Strength, 𝑌𝑝 (𝑝𝑠𝑖) 80000 

Applied Compression (𝑙𝑏) −107000 

Actual Compression (𝑙𝑏) −107000 

Nominal Cross Sectional Area, 𝐴𝑝 (𝑖𝑛2) 3.68 

Axial Stress, 𝜎𝑧 (𝑝𝑠𝑖) −29064 

Outer Wall Radius, 𝑑 (𝑖𝑛) 1.75 

Inner Wall Radius, 𝑑 − 𝑤𝑡  (𝑖𝑛) 1.375 

Internal Pressure, 𝑝𝑖  (𝑝𝑠𝑖) 10000 

External Pressure, 𝑝𝑜 (𝑝𝑠𝑖) 0 

Tangential Stress at Inner Wall, 𝜎𝑡 (𝑝𝑠𝑖) 42267 
Radial Stress at Inner Wall, 𝜎𝑟 (𝑝𝑠𝑖) −10000 

Von Mises Stress at Inner Wall, 𝜎𝑉𝑀 (𝑝𝑠𝑖) 63966 

Tangential Stress at Outer Wall, 𝜎𝑡 (𝑝𝑠𝑖) 32267 
Radial Stress at Outer Wall, 𝜎𝑟 (𝑝𝑠𝑖) 0 

Von Mises Stress at Outer Wall, 𝜎𝑉𝑀 (𝑝𝑠𝑖) 53138 

Governing Von Mises Stress (𝑝𝑠𝑖) 63966 

Required Design Factor, 𝐷𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  1.25 

Actual Design Factor, 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 1.25 

Burst + Compression Design Sufficient? Yes 
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Table F.7. Outer Coaxial Pipe Summary – Collapse 

Outer Diameter, 2𝑑 (𝑖𝑛) 5.50 

Wall Thickness, 𝑤𝑡  (𝑖𝑛) 0.415 

Yield Strength, 𝑌𝑝 (𝑝𝑠𝑖) 80000 

(2𝑑 𝑤𝑡⁄ )𝑎𝑐𝑡𝑢𝑎𝑙  13.25 

Yield Strength Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑌𝑝
 13.38 

Yield Strength Collapse Possible? Yes 

Yield Strength Collapse Pressure, 𝑃𝑌𝑝 (𝑝𝑠𝑖) 11161 

Plastic Collapse Variable, 𝐴 3.071 

Plastic Collapse Variable, 𝐵 0.0667 

Plastic Collapse Variable, 𝐶 1955 

Plastic Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑌𝑝,𝑝 13.38 

Plastic Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑝,𝑇 22.47 

Plastic Collapse Possible? No 

Plastic Collapse Pressure, 𝑃𝑝 (𝑝𝑠𝑖) N/A 

Transition Collapse Variable, 𝐹 1.998 

Transition Collapse Variable, 𝐺 0.0434 

Transition Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑝,𝑇 22.47 

Transition Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑇,𝐸 31.02 

Transition Collapse Possible? No 

Transition Collapse Pressure, 𝑃𝑇  (𝑝𝑠𝑖) N/A 

Elastic Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑇,𝐸 31.02 

Elastic Collapse Possible? No 

Elastic Collapse Pressure, 𝑃𝐸  (𝑝𝑠𝑖) N/A 

Min Collapse Pressure Differential (𝑝𝑠𝑖) 11161 

Internal Pressure, 𝑝𝑖  (𝑝𝑠𝑖) 0 

External Pressure, 𝑝𝑜 (𝑝𝑠𝑖) 10000 

Required Design Factor, 𝐷𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  1.1 

Actual Design Factor, 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 1.12 

Collapse Design Sufficient? Yes 
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Table F.8. Outer Coaxial Pipe Summary – Collapse + Tension 

Outer Diameter, 2𝑑 (𝑖𝑛) 5.50 

Wall Thickness, 𝑤𝑡  (𝑖𝑛) 0.415 

Yield Strength, 𝑌𝑝 (𝑝𝑠𝑖) 80000 

(2𝑑 𝑤𝑡⁄ )𝑎𝑐𝑡𝑢𝑎𝑙  13.25 

Projected Housing Area (𝑖𝑛2) 14.14 

Annulus Induced Compression (𝑙𝑏) −141372 

Applied Tension (𝑙𝑏) 124000 

Actual Tension (𝑙𝑏) −17372 

Combined Nominal Cross Sectional Area (𝑖𝑛2) 10.31 

Axial Stress, 𝜎𝑧 (𝑝𝑠𝑖) −1685 

Yield Strength of ASEG, 𝑌𝑝𝑎 (𝑝𝑠𝑖) 80829 

Yield Strength Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑌𝑝
 13.35 

Yield Strength Collapse Possible? Yes 

Yield Strength Collapse Pressure, 𝑃𝑌𝑝 (𝑝𝑠𝑖) 11276 

Plastic Collapse Variable, 𝐴 3.074 

Plastic Collapse Variable, 𝐵 0.0671 

Plastic Collapse Variable, 𝐶 1980 

Plastic Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑌𝑝,𝑝 13.35 

Plastic Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑝,𝑇 22.40 

Plastic Collapse Possible? No 

Plastic Collapse Pressure, 𝑃𝑝 (𝑝𝑠𝑖) N/A 

Transition Collapse Variable, 𝐹 1.999 

Transition Collapse Variable, 𝐺 0.0437 

Transition Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑝,𝑇 22.40 

Transition Collapse Upperbound, (2𝑑 𝑤𝑡⁄ )𝑇,𝐸 30.85 

Transition Collapse Possible? No 

Transition Collapse Pressure, 𝑃𝑇  (𝑝𝑠𝑖) N/A 

Elastic Collapse Lowerbound, (2𝑑 𝑤𝑡⁄ )𝑇,𝐸 30.85 

Elastic Collapse Possible? No 

Elastic Collapse Pressure, 𝑃𝐸  (𝑝𝑠𝑖) N/A 

Min Collapse Pressure Differential (𝑝𝑠𝑖) 11276 

Internal Pressure, 𝑝𝑖  (𝑝𝑠𝑖) 0 

External Pressure, 𝑝𝑜 (𝑝𝑠𝑖) 10000 

Required Design Factor, 𝐷𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  1.1 

Actual Design Factor, 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 1.13 

Collapse + Tension Design Sufficient? Yes 
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Table F.9. Outer Coaxial Pipe Summary – Collapse + Compression 

Outer Diameter, 2𝑑 (𝑖𝑛) 5.50 

Wall Thickness, 𝑤𝑡  (𝑖𝑛) 0.415 

Yield Strength, 𝑌𝑝 (𝑝𝑠𝑖) 80000 

Projected Housing Area (𝑖𝑛2) 14.14 

Annulus Induced Compression (𝑙𝑏) −141372 

Applied Compression (𝑙𝑏) −305000 

Actual Compression (𝑙𝑏) −446372 

Nominal Cross Sectional Area, 𝐴𝑝 (𝑖𝑛2) 10.31 

Axial Stress, 𝜎𝑧 (𝑝𝑠𝑖) −43292 

Outer Wall Radius, 𝑑 (𝑖𝑛) 2.75 

Inner Wall Radius, 𝑑 − 𝑤𝑡  (𝑖𝑛) 2.335 

Internal Pressure, 𝑝𝑖  (𝑝𝑠𝑖) 0 

External Pressure, 𝑝𝑜 (𝑝𝑠𝑖) 10000 

Tangential Stress at Inner Wall, 𝜎𝑡 (𝑝𝑠𝑖) −71679 
Radial Stress at Inner Wall, 𝜎𝑟 (𝑝𝑠𝑖) 0 

Von Mises Stress at Inner Wall, 𝜎𝑉𝑀 (𝑝𝑠𝑖) 62522 

Tangential Stress at Outer Wall, 𝜎𝑡 (𝑝𝑠𝑖) −61679 
Radial Stress at Outer Wall, 𝜎𝑟 (𝑝𝑠𝑖) −10000 

Von Mises Stress at Outer Wall, 𝜎𝑉𝑀 (𝑝𝑠𝑖) 45372 

Governing Von Mises Stress (𝑝𝑠𝑖) 62522 

Required Design Factor, 𝐷𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  1.1 

Actual Design Factor, 𝐷𝐹𝑎𝑐𝑡𝑢𝑎𝑙 1.28 

Collapse + Compression Design Sufficient? Yes 
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Appendix G – Linear Sensitivity Analysis 

The natural frequency of a SDOF oscillator can be written as 

𝜔𝑛 = √
𝑘

𝑚
, (G.1) 

where for a cantilever configuration 

𝜔𝑛 = √
3𝐸𝐼

𝑚𝐿3. (G.2) 

Assuming that the mass does not erode over time or change with changing temperature, the 

natural frequencies time/temperature dependence is a function of the Young’s modulus, inertia, 

and beam length.  Taking the derivative of the natural frequency with respect to each variable 

𝜕𝜔𝑛
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√3𝐼
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=
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√
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=

−3𝜔𝑛

2𝐿
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(G.3) 

A perturbation of the natural frequency leads to 
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(G.4) 

While all three variables are seen to affect the natural frequency, the change in beam length 

appears to have the largest impact.  To calculate the percentage change in natural frequency for 

given perturbations of Young’s modulus, inertia, and beam length, consider the following.  

Assume the initial state is  

 

 
𝜔𝑛,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = √

𝑘𝑖

𝑚
= √

3𝐸𝑖𝐼𝑖

𝑚𝐿𝑖
3 . (G.6) 

At the final stage (i.e. after accounting for changes in material properties/geometry) 

 

 
𝜔𝑛,𝑓𝑖𝑛𝑎𝑙 = √

𝑘𝑓

𝑚
= √

3𝐸𝑓𝐼𝑓

𝑚𝐿𝑓
3 , (G.7) 

where 

 

 𝐸𝑓 = (%𝐸𝑖)𝐸𝑖;     𝐼𝑓 = (%𝐼𝑖)𝐼𝑖;     𝐿𝑓 = (%𝐿𝑖)𝐿𝑖. (G.8) 

Eq. (G.7) can then be written as 
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(%𝐸𝑖)(%𝐼𝑖)

(%𝐿𝑖)3 . (G.9) 

The change in natural frequency is then 

 

 
Δ𝜔𝑛 = 𝜔𝑛,𝑓𝑖𝑛𝑎𝑙 − 𝜔𝑛,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = [√

(%𝐸𝑖)(%𝐼𝑖)

(%𝐿𝑖)3 − 1] 𝜔𝑛,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . (G.10) 

The percentage change in natural frequency is then 

 

 
%Δ𝜔𝑛 =

Δ𝜔𝑛

𝜔𝑛,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
= [√

(%𝐸𝑖)(%𝐼𝑖)

(%𝐿𝑖)3 − 1]. (G.11) 

As an numeric example, consider the situation where  

 

 𝐸𝑖 = 2𝑒8
𝑁

𝑚2
;     𝐼𝑖 = 3𝑒 − 10𝑚4;     𝐿𝑖 = 0.03𝑚;     𝑚 = 0.1𝑘𝑔; 

 

%𝐸𝑖 = 95%;     %𝐼𝑖 = 104%;     %𝐿𝑖 = 106%; 

(G.12) 

leading to 
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 𝐸𝑓 = 1.9𝑒8
𝑁

𝑚2
;     𝐼𝑓 = 3.12𝑒 − 10𝑚4;     𝐿𝑓 = 0.0318𝑚. (G.13) 

The natural frequencies provided by Eq. (G.6) and Eq. (G.7) can be calculated as 
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(G.14) 

The percentage change in natural frequency is then 

 

 %Δ𝜔𝑛 =
Δ𝜔𝑛

𝜔𝑛,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
=

𝜔𝑛,𝑓𝑖𝑛𝑎𝑙−𝜔𝑛,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝜔𝑛,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
= −8.92%. (G.15) 

Using Eq. (G.11) 

 

 
%Δ𝜔𝑛 =

Δ𝜔𝑛

𝜔𝑛,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
= [√

(0.95)(1.04)

(1.06)3 − 1] = −8.92%, (G.16) 

the same result is found. 
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Appendix H – MATLAB Script Supporting FS Analysis 

%Using a SDOF model and the full vibrational input, determine a power 

%estimate. 

clear;clc; 

i=sqrt(-1); %imaginary unit 

%% 

%Reference in the representative user defined acceleration time history  

%profiles.  For this work, three acceleration profiles will be used. 

 %The time histories should be even length  

%The user must input the acceleration_input.txt 

%The first line of the input file should contain the time step 

%Numeric entries should start on the fourth line 

%Column 1 - Time 

%Column 2 - Acceleration in x-direction (in m/s2) 

%Column 3 - Acceleration in y-direction (in m/s2) 

%Column 4 - Acceleration in z-direction (in m/s2) 

%The +x direction corresponds to theta=0 (transverse to the pipe axis) 

%The +y direction corresponds to theta=90 (transverse to the pipe axis) 

%The +z direction points upwards along the length of the pipe 

%------Acceleration Time History #1--------- 

%Reference the file 

filename1='Acceleration_Input_1.txt'; %define the file name 

delimiterIn='\t'; %define the spacing in the file 

%Import the time step (dt) 

headerlinesIn=0; %define the number of header lines 

s1=importdata(filename1,delimiterIn,headerlinesIn); %import data 

dt_1=s1.data; %Pull the data into a matrix form 

fs_1=1/dt_1; %Hz, the sampling rate obtained from the input file 

%Import acceleration data 

headerlinesIn=3; %define the number of header lines 

s1=importdata(filename1,delimiterIn,headerlinesIn); %import data 

S1=s1.data; %Pull the data into a matrix form 

T_1=S1(:,1); %time 

Ax_1=S1(:,2); %m/s2, acceleration in the x-direction 

Ay_1=S1(:,3); %m/s2, acceleration in the y-direction 

Az_1=S1(:,4); %m/s2, acceleration in the z-direction 
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%------Acceleration Time History #2--------- 

%Reference the file 

filename2='Acceleration_Input_2.txt'; %define the file name 

delimiterIn='\t'; %define the spacing in the file 

%Import the time step (dt) 

headerlinesIn=0; %define the number of header lines 

s2=importdata(filename2,delimiterIn,headerlinesIn); %import data 

dt_2=s2.data; %Pull the data into a matrix form 

fs_2=1/dt_2; %Hz, the sampling rate obtained from the input file 

%Import acceleration data 

headerlinesIn=3; %define the number of header lines 

s2=importdata(filename2,delimiterIn,headerlinesIn); %import data 

S2=s2.data; %Pull the data into a matrix form 

T_2=S2(:,1); %time 

Ax_2=S2(:,2); %m/s2, acceleration in the x-direction 

Ay_2=S2(:,3); %m/s2, acceleration in the y-direction 

Az_2=S2(:,4); %m/s2, acceleration in the z-direction 

  

%------Acceleration Time History #3--------- 

%Reference the file 

filename3='Acceleration_Input_3.txt'; %define the file name 

delimiterIn='\t'; %define the spacing in the file 

%Import the time step (dt) 

headerlinesIn=0; %define the number of header lines 

s3=importdata(filename3,delimiterIn,headerlinesIn); %import data 

dt_3=s3.data; %Pull the data into a matrix form 

fs_3=1/dt_3; %Hz, the sampling rate obtained from the input file 

%Import acceleration data 

headerlinesIn=3; %define the number of header lines 

s3=importdata(filename3,delimiterIn,headerlinesIn); %import data 

S3=s3.data; %Pull the data into a matrix form 

T_3=S3(:,1); %time 

Ax_3=S3(:,2); %m/s2, acceleration in the x-direction 

Ay_3=S3(:,3); %m/s2, acceleration in the y-direction 

Az_3=S3(:,4); %m/s2, acceleration in the z-direction 

  

  

% %--------Plot the raw time histories------------ 

% figure(100) 

% subplot(2,2,1);plot(T_1(1:200),Ax_1(1:200));grid on;axis([0 0.4 -1.5 1.5]) 

% title('AP 1; X-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(2,2,2);plot(T_1(1:200),Ay_1(1:200));grid on;axis([0 0.4 -2.5 2.5]) 

% title('AP 1; Y-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(2,2,3);plot(T_2(1:101),Ax_2(1:101));grid on;axis([0 0.4 -3 3]) 

% title('AP 2; X-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(2,2,4);plot(T_2(1:101),Ay_2(1:101));grid on;axis([0 0.4 -2 2]) 

% title('AP 2; Y-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

%  

% %Plot the raw time histories 

% figure(1) %Acceleration Profile #1 

% subplot(3,2,1);plot(T_1,Ax_1);grid on; 

% title('Time History 1; X-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,2);plot(T_1(1:200),Ax_1(1:200));grid on; 

% title('Time History 1; X-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,3);plot(T_1,Ay_1);grid on; 

% title('Time History 1; Y-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,4);plot(T_1(1:200),Ay_1(1:200));grid on; 

% title('Time History 1; Y-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,5);plot(T_1,Az_1);grid on; 

% title('Time History 1; Z-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 
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% subplot(3,2,6);plot(T_1(1:200),Az_1(1:200));grid on; 

% title('Time History 1; Z-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

%  

% figure(2) %Acceleration Profile #2 

% subplot(3,2,1);plot(T_2,Ax_2);grid on; 

% title('Time History 2; X-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,2);plot(T_2(1:200),Ax_2(1:200));grid on; 

% title('Time History 2; X-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,3);plot(T_2,Ay_2);grid on; 

% title('Time History 2; Y-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,4);plot(T_2(1:200),Ay_2(1:200));grid on; 

% title('Time History 2; Y-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,5);plot(T_2,Az_2);grid on; 

% title('Time History 2; Z-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,6);plot(T_2(1:200),Az_2(1:200));grid on; 

% title('Time History 2; Z-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

%  

% figure(3) %Acceleration Profile #3 

% subplot(3,2,1);plot(T_3,Ax_3);grid on; 

% title('Time History 3; X-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,2);plot(T_3(1:200),Ax_3(1:200));grid on; 

% title('Time History 3; X-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,3);plot(T_3,Ay_3);grid on; 

% title('Time History 3; Y-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,4);plot(T_3(1:200),Ay_3(1:200));grid on; 

% title('Time History 2; Y-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,5);plot(T_3,Az_3);grid on; 

% title('Time History 3; Z-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(3,2,6);plot(T_3(1:200),Az_3(1:200));grid on; 

% title('Time History 3; Z-Direction');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

  

%% 

  

%Upload the acceleration-temp operating schedule.  

 %The user must input the schedule.txt file  

%The first entry of the input file contains the time step (yr) 

%The second entry contains the base/room temperature(*C) 

%Column numeric entries should start on the fifth line 

%Column 1 - Time (yr) 

%Column 2 - Expected operating temperature (*C) 

%Column 3 - Acceleration profile (this is the number corresponding to the 

%acceleration profiles above (i.e. 1 = acceleration profile 1) 

  

%Reference the file 

filenameS='Schedule.txt'; %define the file name 

delimiterIn='\t'; %define the spacing in the file 

%Import the time step (dt) 

headerlinesIn=1; %define the number of header lines 

sS=importdata(filenameS,delimiterIn,headerlinesIn); %import data 

dt_S=sS.data(1); %year, time step 

T0=sS.data(2); %*C, base/room temperature 

%Import analysis data 

headerlinesIn=4; %define the number of header lines 

sS=importdata(filenameS,delimiterIn,headerlinesIn); %import data 

SS=sS.data; %Pull the data into a matrix form 

T_S=SS(:,1); %year 

Op_Temp=SS(:,2); %*C, operating temperature 

Accel_Profile=SS(:,3); %acceleration profile to be used for the given time 

  

% %--------Plot the analysis data------------ 
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% figure(4) 

% subplot(2,1,1);stem(T_S,Op_Temp);hold on;stem(T_S,Op_Temp-T0,'r');grid on; 

% title('Expected Operating Temperature (Blue); Delta-Temp (Red); (*C)') 

% xlabel('Time (yr)'); ylabel('Temperature (*C)'); 

% subplot(2,1,2);stem(T_S,Accel_Profile,'black');grid on; 

% title('Representative Acceleration Profile (#)') 

% xlabel('Time (yr)'); ylabel('Acceleration Profile (#)'); 

  

%% 

  

%Calculate the normal and tangential acceleration components in 10 degree 

%increments for each of the acceleration profiles   

  

%------------------Acceleration Time History #1--------------- 

An_1(length(Ax_1),35)=0; %initialize the array, set all cells to zero 

At_1(length(Ax_1),35)=0; %initialize the array, set all cells to zero 

for ii=1:1:36 

An_1(:,ii)=Ax_1*cos((ii-1)*10*(pi/180))+Ay_1*sin((ii-1)*10*(pi/180)); 

At_1(:,ii)=-Ax_1*sin((ii-1)*10*(pi/180))+Ay_1*cos((ii-1)*10*(pi/180)); 

end 

%------------------Acceleration Time History #2--------------- 

An_2(length(Ax_2),35)=0; %initialize the array, set all cells to zero 

At_2(length(Ax_2),35)=0; %initialize the array, set all cells to zero 

for ii=1:1:36 

An_2(:,ii)=Ax_2*cos((ii-1)*10*(pi/180))+Ay_2*sin((ii-1)*10*(pi/180)); 

At_2(:,ii)=-Ax_2*sin((ii-1)*10*(pi/180))+Ay_2*cos((ii-1)*10*(pi/180)); 

end 

%------------------Acceleration Time History #3--------------- 

An_3(length(Ax_3),35)=0; %initialize the array, set all cells to zero 

At_3(length(Ax_3),35)=0; %initialize the array, set all cells to zero 

for ii=1:1:36 

An_3(:,ii)=Ax_3*cos((ii-1)*10*(pi/180))+Ay_3*sin((ii-1)*10*(pi/180)); 

At_3(:,ii)=-Ax_3*sin((ii-1)*10*(pi/180))+Ay_3*cos((ii-1)*10*(pi/180)); 

end 

  

% %Plot for output comparison 

% L=length(An_2(:,5)); 

% An40=hamming(L).*An_2(:,5); 

% An40_w=fftshift(fft(An40)); 

% df=fs_2/L;%Hz, the frequency bin width 

% f_2=df*((-L/2):1:(L/2)-1);%frequencies corresponding to shifted fft 

%  

% figure(99) 

% subplot(2,1,1);plot(T_2,An_2(:,5));grid on;axis([0 1 -4 4]) 

% title('AP2; Normal Accel; Theta=40deg');xlabel('Time (sec)');ylabel('Acceleration (m/s2)'); 

% subplot(2,1,2);plot(f_2,abs(An40_w));grid on;axis([0 40 0 2000]) 

% title('AP2; Normal Accel; Theta=40deg');xlabel('Freq (Hz)');ylabel('|FFT|');  

  

  

%% 

  

%Convert the acceleration time histories into displacement Fourier 

%transforms 

 %The user must input f_truncate  

%Amplitudes under f_trancate (Hz) will be set to zero during  

%the transformation to avoid the scaling that occurs when dividing the  

%acceleration spectrum by -omega^2 

f_truncate_1=9; 

f_truncate_2=9; 

f_truncate_3=9; 
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%------------------Acceleration Time History #1--------------- 

L=length(An_1);%number of time steps  

An_1(length(An_1),:)=0;%set the last data point to zero  

an_1=fft(An_1);%take fft of time history 

an_1_shift=fftshift(an_1);%shift the fft for plotting purposes 

df=fs_1/L;%Hz, the frequency bin width 

f_1=df*((-L/2):1:(L/2)-1);%frequencies corresponding to shifted fft 

  

%calculate the displacement FFT 

d_1_shift=zeros(size(an_1_shift)); 

for ii=1:1:36 %cycle over all angles 0:10:350 

d_1_shift(:,ii)=an_1_shift(:,ii)./((1i*(2*pi*f_1')).^2); %convert the acceleration FFT into a displacement FFT 

end 

  

%zero out amplitudes between the +/-frequencies defined by f_truncate 

n=round(f_truncate_1/df); 

d_1_shift_t=d_1_shift;%define a new variable for truncation 

d_1_shift_t(L/2-n:L/2+n,:)=0;%zero out terms that fall within f_truncate 

  

%Calculate displacement response 

D1=ifft(fftshift(d_1_shift_t)); 

  

% %Plot the FFT's 

% figure(5) 

% subplot(4,2,1);plot(f_1,abs(an_1_shift(:,1)));grid on;axis([0 max(f_1) 0 max(abs(an_1(:,1)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Acceleration FFT of AP#1,X-Axis'); 

% subplot(4,2,3);plot(f_1,abs(d_1_shift(:,1)));grid on;axis([0 max(f_1) 0 max(abs(d_1_shift_t(:,1)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Unwindowed Displacement FFT of AP#1,X-Axis'); 

% subplot(4,2,5);plot(f_1,abs(d_1_shift_t(:,1)));grid on;axis([0 max(f_1) 0 max(abs(d_1_shift_t(:,1)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Windowed Displacement FFT of AP#1,X-Axis'); 

% subplot(4,2,7);plot(T_1,real(D1(:,1)));grid on; 

% xlabel('Time (sec)');ylabel('Displacement (m)');title('Displacement AP#1,X-Axis'); 

% subplot(4,2,2);plot(f_1,abs(an_1_shift(:,10)));grid on;axis([0 max(f_1) 0 max(abs(an_1(:,10)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Acceleration FFT of AP#1,Y-Axis'); 

% subplot(4,2,4);plot(f_1,abs(d_1_shift(:,10)));grid on;axis([0 max(f_1) 0 max(abs(d_1_shift_t(:,10)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Unwindowed Displacement FFT of AP#1,Y-Axis'); 

% subplot(4,2,6);plot(f_1,abs(d_1_shift_t(:,10)));grid on;axis([0 max(f_1) 0 max(abs(d_1_shift_t(:,10)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Windowed Displacement FFT of AP#1,Y-Axis'); 

% subplot(4,2,8);plot(T_1,real(D1(:,10)));grid on; 

% xlabel('Time (sec)');ylabel('Displacement (m)');title('Displacement AP#1,Y-Axis'); 

  

  

%------------------Acceleration Time History #2--------------- 

L=length(An_2);%number of time steps  

An_2(length(An_2),:)=0;%set the last data point to zero  

an_2=fft(An_2);%take fft of time history 

an_2_shift=fftshift(an_2);%shift the fft for plotting purposes 

df=fs_2/L;%Hz, the frequency bin width 

f_2=df*((-L/2):1:(L/2)-1);%frequencies corresponding to shifted fft 

  

%calculate the displacement FFT 

d_2_shift=zeros(size(an_2_shift)); 

for ii=1:1:36 %cycle over all angles 0:10:350 

d_2_shift(:,ii)=an_2_shift(:,ii)./((1i*(2*pi*f_2')).^2); %convert the acceleration FFT into a displacement FFT 

end 

  

%zero out amplitudes between the +/-frequencies defined by f_truncate 

n=round(f_truncate_2/df); 

d_2_shift_t=d_2_shift;%define a new variable for truncation 
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d_2_shift_t(L/2-n:L/2+n,:)=0;%zero out terms that fall within f_truncate 

  

%Calculate displacement response 

D2=ifft(fftshift(d_2_shift_t)); 

%  

% %Plot the FFT's 

% figure(6) 

% subplot(4,2,1);plot(f_2,abs(an_2_shift(:,1)));grid on;axis([0 max(f_2) 0 max(abs(an_2(:,1)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Acceleration FFT of AP#2,X-Axis'); 

% subplot(4,2,3);plot(f_2,abs(d_2_shift(:,1)));grid on;axis([0 max(f_2) 0 max(abs(d_2_shift_t(:,1)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Unwindowed Displacement FFT of AP#2,X-Axis'); 

% subplot(4,2,5);plot(f_2,abs(d_2_shift_t(:,1)));grid on;axis([0 max(f_2) 0 max(abs(d_2_shift_t(:,1)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Windowed Displacement FFT of AP#2,X-Axis'); 

% subplot(4,2,7);plot(T_2,real(D2(:,1)));grid on; 

% xlabel('Time (sec)');ylabel('Displacement (m)');title('Displacement AP#2,X-Axis'); 

% subplot(4,2,2);plot(f_2,abs(an_2_shift(:,10)));grid on;axis([0 max(f_2) 0 max(abs(an_2(:,10)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Acceleration FFT of AP#2,Y-Axis'); 

% subplot(4,2,4);plot(f_2,abs(d_2_shift(:,10)));grid on;axis([0 max(f_2) 0 max(abs(d_2_shift_t(:,10)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Unwindowed Displacement FFT of AP#2,Y-Axis'); 

% subplot(4,2,6);plot(f_2,abs(d_2_shift_t(:,10)));grid on;axis([0 max(f_2) 0 max(abs(d_2_shift_t(:,10)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Windowed Displacement FFT of AP#2,Y-Axis'); 

% subplot(4,2,8);plot(T_2,real(D2(:,10)));grid on; 

% xlabel('Time (sec)');ylabel('Displacement (m)');title('Displacement AP#2,Y-Axis'); 

  

%------------------Acceleration Time History #3--------------- 

L=length(An_3);%number of time steps  

An_3(length(An_3),:)=0;%set the last data point to zero  

an_3=fft(An_3);%take fft of time history 

an_3_shift=fftshift(an_3);%shift the fft for plotting purposes 

df=fs_3/L;%Hz, the frequency bin width 

f_3=df*((-L/2):1:(L/2)-1);%frequencies corresponding to shifted fft 

  

%calculate the displacement FFT 

d_3_shift=zeros(size(an_3_shift)); 

for ii=1:1:36 %cycle over all angles 0:10:350 

d_3_shift(:,ii)=an_3_shift(:,ii)./((1i*(2*pi*f_3')).^2); %convert the acceleration FFT into a displacement FFT 

end 

  

%zero out amplitudes between the +/-frequencies defined by f_truncate 

n=round(f_truncate_3/df); 

d_3_shift_t=d_3_shift;%define a new variable for truncation 

d_3_shift_t(L/2-n:L/2+n,:)=0;%zero out terms that fall within f_truncate 

  

%Calculate displacement response 

D3=ifft(fftshift(d_3_shift_t)); 

  

% %Plot the FFT's 

% figure(7) 

% subplot(4,2,1);plot(f_3,abs(an_3_shift(:,1)));grid on;axis([0 max(f_3) 0 max(abs(an_3(:,1)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Acceleration FFT of AP#3,X-Axis'); 

% subplot(4,2,3);plot(f_3,abs(d_3_shift(:,1)));grid on;axis([0 max(f_3) 0 max(abs(d_3_shift_t(:,1)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Unwindowed Displacement FFT of AP#3,X-Axis'); 

% subplot(4,2,5);plot(f_3,abs(d_3_shift_t(:,1)));grid on;axis([0 max(f_3) 0 max(abs(d_3_shift_t(:,1)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Windowed Displacement FFT of AP#3,X-Axis'); 

% subplot(4,2,7);plot(T_3,real(D3(:,1)));grid on; 

% xlabel('Time (sec)');ylabel('Displacement (m)');title('Displacement AP#3,X-Axis'); 

% subplot(4,2,2);plot(f_3,abs(an_3_shift(:,10)));grid on;axis([0 max(f_3) 0 max(abs(an_3(:,10)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Acceleration FFT of AP#3,Y-Axis'); 

% subplot(4,2,4);plot(f_3,abs(d_3_shift(:,10)));grid on;axis([0 max(f_3) 0 max(abs(d_3_shift_t(:,10)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Unwindowed Displacement FFT of AP#3,Y-Axis'); 
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% subplot(4,2,6);plot(f_3,abs(d_3_shift_t(:,10)));grid on;axis([0 max(f_3) 0 max(abs(d_3_shift_t(:,10)))]) 

% xlabel('Frequency (Hz)');ylabel('|FFT|');title('Windowed Displacement FFT of AP#3,Y-Axis'); 

% subplot(4,2,8);plot(T_3,real(D3(:,10)));grid on; 

% xlabel('Time (sec)');ylabel('Displacement (m)');title('Displacement AP#3,Y-Axis'); 

%% 

%Define the window of time the user wants to maximize the possible energy 

%production.  This could be the entire life-cycle or some smaller window 

%(e.g. from 3.4yr - 4.6yr).  For example T_opt=[2.1;3.3] means that the 

%user wants to optimize the energy output starting at year 2.1 and ending 

%at the start of year 3.3. 

 %The user must update T_opt  

 

T_opt=[1.5;3.0];%years, window of time the user wants to optimize energy output 

  

%extract the times of interest 

T_initial=T_opt(1); %year, isolate the initial time increment to analyze 

T_final=T_opt(2); %year, isolate the final time increment to analyze.   

%Note that we'll end up integrating over the final dt_S which gives us the 

%user desired 'final' operating time 

  

%% 

%User defines the number of harvesters and the relative locations (of their 

%base) for(1)normal, (2)tangential, and (3) vertical piezoelectric  

%orientations.  Angle the piezoelectric in 10 degree increments.  Use only 

%positive angles. 

  

P_o_n=[1 0; 2 40; 3 90]; %a matrix representing the number (first column)  

%and orientation angle alpha (second column) for normally configured  

%piezoelectrics: P_o_n=[1 40; 2 120; 3 350] means piezoelectric #2 is  

%120degrees from the global X-axis 

  

%based on the user specified EH locations, determine relative location of 

%EH when the pipe is rotated through 360deg 

E1_loc_index=zeros(1,36); 

E2_loc_index=zeros(1,36); 

E3_loc_index=zeros(1,36); 

for alpha_index=1:1:36 

alpha=(alpha_index)*10; %deg, pipe rotation angle 

E1_loc=P_o_n(1,2)+alpha; %deg, location of EH1 including pipe rotation 

if E1_loc>365 

E1_loc=E1_loc-360; %adjust angle to 0:360 

end 

E1_loc_index(alpha_index)=E1_loc/10;% index location of EH1 including pipe rotation 

  

E2_loc=P_o_n(2,2)+alpha; %deg, location of EH1 including pipe rotation 

if E2_loc>365 

E2_loc=E2_loc-360; %adjust angle to 0:360 

end 

E2_loc_index(alpha_index)=E2_loc/10;% index location of EH1 including pipe rotation 

  

E3_loc=P_o_n(3,2)+alpha; %deg, location of EH1 including pipe rotation 

if E3_loc>365 

E3_loc=E3_loc-360; %adjust angle to 0:360 

end 

E3_loc_index(alpha_index)=E3_loc/10;% index location of EH1 including pipe rotation   

end 

  

%% 

%specify the harvester base frequencies of interest 

%The user must update f_n_lower, f_n_limit, d_f_n 
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%---------------Harvesters Oriented in Normal Direction---------------- 

f_n_lower=13;%Hz, this is the minimum EH frequency at room temp. considered 

f_n_limit=22;%Hz, this is the maximum EH frequency at room temp. considered 

d_f_n=0.5;%Hz, this is the increment the EH base frequencies are cycled through 

  

%% 

  

%specify the damping ratios to be considered 

  

zeta_m=0.03;%mechanical damping ratio (single scalar) 

zeta_e_lower=0.01;%lower limit of electric damping 

zeta_e_upper=0.09;%upper limit of electric damping 

zeta_e_diff=0.02;%descritization of electric damping  

zeta_e=zeta_e_lower:zeta_e_diff:zeta_e_upper; %electric damping ratio 

  

zeta_eq=zeta_m*ones(length(zeta_e),1)+zeta_e'; %equivalent damping ratio 

  

%% 

  

%Loop over all relevant frequencies, accounting for time/temperature 

%effects based on the given temperature profile to determine terms needed 

%to calculate power 

  

%initialize matricies 

EH_wn_adj=zeros(round((T_final-T_initial)/dt_S+1),round((f_n_limit-f_n_lower)/d_f_n+1)); 

z_max=zeros(round((T_final-T_initial)/dt_S+1),round((f_n_limit-f_n_lower)/d_f_n+1),length(zeta_eq),36); 

P_int=zeros(round((T_final-T_initial)/dt_S+1),round((f_n_limit-f_n_lower)/d_f_n+1),length(zeta_eq),36); 

P_avg_nome=zeros(round((T_final-T_initial)/dt_S+1),round((f_n_limit-f_n_lower)/d_f_n+1),length(zeta_eq),36); 

  

  

for time_index=1:1:round((T_final-T_initial)/dt_S+1) %time in terms of the array index number 

time=T_initial+(time_index-1)*dt_S; %years, represents current time 

C_Temp=Op_Temp(round(time/dt_S+1)); %*C, the current operating temperature 

AP=Accel_Profile(round(time/dt_S+1));%Identify the current accel profile 

  

%Young's Modulus adjustment factor for time/temperature effects 

d_M=MODULUS_TimeTempDependence(time,C_Temp)/100;%Percent of inital 

%Inertia adjustment factor for time/temperature effects 

d_I=INERTIA_TimeTempDependence(time,C_Temp)/100;%Percent of inital 

%Length accounting for time/temperature effects 

d_L=LENGTH_TimeTempDependence(time,C_Temp)/100;%Percent of inital 

  

%Loop over the basic/room temperature natural frequencies 

for EH_fn_index=1:1:round((f_n_limit-f_n_lower)/d_f_n+1) %loop over all base/unaltered nat freq. 

%convert the index number to the actual base frequency investigated 

EH_fn=(EH_fn_index-1)*d_f_n+f_n_lower; %Hz 

  

%adjust current natural frequency for time/temp dependence      

EH_fn_adj=EH_fn*(sqrt(d_M*d_I/d_L^3)); %Hz;  

EH_wn_adj(time_index,EH_fn_index)=2*pi*EH_fn_adj; %rad/sec... 

%this is stored as it will be needed for c_eq calc 

  

%determine the frequency spacing and Fourier coefficients of Y(w)  

%corresponding to the current acceleration profile (AP) 

if AP==1 

fnn=f_1; %Hz, frequencies corresponding to Fourier coefficients 

Y_w=d_1_shift_t; %Fourier coefficients (truncated at lower freqs) 

dt=dt_1; %sec, time step for displacement and velocity 

end 
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if AP==2 

fnn=f_2; %Hz, frequencies corresponding to Fourier coefficients 

Y_w=d_2_shift_t; %Fourier coefficients (truncated at lower freqs) 

dt=dt_2; %sec, time step for displacement and velocity 

end 

if AP==3 

fnn=f_3; %Hz, frequencies corresponding to Fourier coefficients 

Y_w=d_3_shift_t; %Fourier coefficients (truncated at lower freqs) 

dt=dt_3; %sec, time step for displacement and velocity 

end 

%convert the frequency spacing to radial frequency 

wnn=2*pi*fnn; %rad/s 

t_range=(0:1:length(wnn)-1)*dt; 

  

%Loop over the considered damping ratios (zeta_eq) 

for zeta_indexEQ=1:1:length(zeta_eq) 

zetaEQ=zeta_eq(zeta_indexEQ);%the current equivalent damping ratio in % 

  

%calculate the transfer functions at a frequency spacing 

%corresponding to the Fourier coefficients 

H_w=wnn.^2./((EH_wn_adj(time_index,EH_fn_index)^2-

wnn.^2)+2*zetaEQ*EH_wn_adj(time_index,EH_fn_index)*1i.*wnn); 

  

%loop over all global angle axis (i.e. global pipe rotation).  The angles 

%considered are 0:10:350 degrees which, for 10 degree increments corresponds 

%to 1:1:36 

for theta_index=1:1:36 %global angle index 

theta=(theta_index-1)*10; %degrees, global angle 

  

%Calculate the displacement response in frequency domain Z(w) 

Z_w=H_w'.*Y_w(:,theta_index); 

  

%Calculate the displacement response in the time domain 

%z(t) 

z=ifft(fftshift(Z_w));%m 

  

%truncate the displacement response so that anomalies near 

%the start/end are not included; this is a consequence of 

%calculating Y(w) in the frequency domain 

z_t=z(round(0.05*length(z)):round(0.95*length(z)));%m 

%store the maximum amplitude displacement 

z_max(time_index,EH_fn_index,zeta_indexEQ,theta_index)=max(max(real(z_t)),abs(min(real(z_t))));%m 

  

%calculate the velocity of z in the frequency domain 

Z_w_velo=i*wnn'.*Z_w;            

  

%calculate the velocity of z in the time domain 

z_velo=ifft(fftshift(Z_w_velo));%m/s 

  

%truncate the displacement response so that anomalies near 

%the start/end are not included; this is a consequence of 

%calculating Y(w) in the frequency domain 

z_velo_t=z_velo(round(0.05*length(z_velo)):round(0.95*length(z_velo)));%m/s 

%calculate the point-wise square of the velocity 

z_velo_t_s=real(z_velo_t).^2;%m/s 

%summerize the times of interest 

t_t=(0:1:length(z_velo_t_s)-1)*dt;%s, the time window corresponding to z_velo_t_s 

t_f=(length(z_velo_t_s)-1)*dt;%s, the final time corresponding to z_velo_t_s 

  

%calc the average power integral over the truncated range 
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%(i.e., P_avg,e = c_eq * P_int 

P_int(time_index,EH_fn_index,zeta_indexEQ,theta_index)=trapz(t_t,z_velo_t_s)/t_f; 

  

%Determine the mass and electric damping ratio -normalized electric power for all global angles (theta) 

%this is the integral of velocity squared, divided by T, 

%multiplied by 2 * current natural frequency 

P_avg_nome(time_index,EH_fn_index,zeta_indexEQ,theta_index)=2*EH_wn_adj(time_index,EH_fn_index)*P_int(

time_index,EH_fn_index,zeta_indexEQ,theta_index); 

end 

end 

end 

end 

  

  

%% 

  

%Define the equivalent mass for each EH.  For initial estimates (when 

%determining the ideal natural frequency) you can use m_e1=1.  Once you 

%know the base frequency and have looked at commercially available 

%products (and know the actuall stiffness), re-run with the actual mass to 

%improve power estimates. 

  

m_tip1=0.15;%kg 

m_beam1=0.04;%kg 

m_eq1=(33/140)*m_beam1+m_tip1;%kg 

  

m_tip2=0.2;%kg 

m_beam2=0.04;%kg 

m_eq2=(33/140)*m_beam2+m_tip2;%kg 

  

m_tip3=0.2;%kg 

m_beam3=0.04;%kg 

m_eq3=(33/140)*m_beam3+m_tip3;%kg 

  

  

%% 

%Determine the power estimate for each EH as a function of alpha - include 

%the equivalent mass and electric damping ratio for each EH. 

  

P_avg_me_1=zeros(round((T_final-T_initial)/dt_S+1),round((f_n_limit-f_n_lower)/d_f_n+1),length(zeta_eq),36); 

P_avg_me_2=zeros(round((T_final-T_initial)/dt_S+1),round((f_n_limit-f_n_lower)/d_f_n+1),length(zeta_eq),36); 

P_avg_me_3=zeros(round((T_final-T_initial)/dt_S+1),round((f_n_limit-f_n_lower)/d_f_n+1),length(zeta_eq),36); 

  

for zeta_index=1:1:length(zeta_eq) %loop over all damping ratios.  Since the equivalent damping and 

for EH_fn_index=1:1:round((f_n_limit-f_n_lower)/d_f_n+1) %loop over all base/unaltered nat freq. 

for time_index=1:1:round((T_final-T_initial)/dt_S+1) %time in terms of the array index number 

for alpha_index=1:1:36 %global angle index 

P_avg_me_1(time_index,EH_fn_index,zeta_index,alpha_index)=m_eq1*zeta_e(zeta_index)*P_avg_nome(time_inde

x,EH_fn_index,zeta_index,E1_loc_index(alpha_index)); 

P_avg_me_2(time_index,EH_fn_index,zeta_index,alpha_index)=m_eq2*zeta_e(zeta_index)*P_avg_nome(time_inde

x,EH_fn_index,zeta_index,E2_loc_index(alpha_index)); 

P_avg_me_3(time_index,EH_fn_index,zeta_index,alpha_index)=m_eq3*zeta_e(zeta_index)*P_avg_nome(time_inde

x,EH_fn_index,zeta_index,E3_loc_index(alpha_index)); 

end 

end 

end 

end 

  

%% 
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%determine the total power estimate for each alpha realization 

%time,fn1,fn2,fn3,zeta_e1,zeta_e2,zeta_e3,alpha 

P_avg_me_tot=zeros(round((T_final-T_initial)/dt_S+1),round((f_n_limit-f_n_lower)/d_f_n+1),round((f_n_limit-

f_n_lower)/d_f_n+1),round((f_n_limit-f_n_lower)/d_f_n+1),length(zeta_e),length(zeta_e),length(zeta_e),36); 

  

for zeta_index1=1:1:length(zeta_e) %loop over all damping ratios for EH1 

for zeta_index2=1:1:length(zeta_e) %loop over all damping ratios for EH2 

for zeta_index3=1:1:length(zeta_e) %loop over all damping ratios for EH3 

for time_index=1:1:round((T_final-T_initial)/dt_S+1) %time in terms of the array index number 

for alpha_index=1:1:36 %global angle index 

for EH_fn1_index=1:1:round((f_n_limit-f_n_lower)/d_f_n+1) %loop over all base/unaltered nat freq. 

for EH_fn2_index=1:1:round((f_n_limit-f_n_lower)/d_f_n+1) %loop over all base/unaltered nat freq. 

for EH_fn3_index=1:1:round((f_n_limit-f_n_lower)/d_f_n+1) %loop over all base/unaltered nat freq. 

P_avg_me_tot(time_index,EH_fn1_index,EH_fn2_index,EH_fn3_index,zeta_index1,zeta_index2,zeta_index3,alpha_

index)=P_avg_me_1(time_index,EH_fn1_index,zeta_index1,alpha_index)+P_avg_me_2(time_index,EH_fn2_index,

zeta_index2,alpha_index)+P_avg_me_3(time_index,EH_fn3_index,zeta_index3,alpha_index); 

end 

end 

end 

end 

end 

end 

end 

end 

  

%% 

  

%integrate the total power over time 

%fn1,fn2,fn3,zeta_e1,zeta_e2,zeta_e3,alpha 

P_avg_me_tot_int=zeros(round((f_n_limit-f_n_lower)/d_f_n+1),round((f_n_limit-

f_n_lower)/d_f_n+1),round((f_n_limit-f_n_lower)/d_f_n+1),length(zeta_e),length(zeta_e),length(zeta_e),36); 

  

for zeta_index1=1:1:length(zeta_e) %loop over all damping ratios for EH1 

for zeta_index2=1:1:length(zeta_e) %loop over all damping ratios for EH2 

for zeta_index3=1:1:length(zeta_e) %loop over all damping ratios for EH3 

for alpha_index=1:1:36 %global angle index 

for EH_fn1_index=1:1:round((f_n_limit-f_n_lower)/d_f_n+1) %loop over all base/unaltered nat freq. 

for EH_fn2_index=1:1:round((f_n_limit-f_n_lower)/d_f_n+1) %loop over all base/unaltered nat freq. 

for EH_fn3_index=1:1:round((f_n_limit-f_n_lower)/d_f_n+1) %loop over all base/unaltered nat freq. 

P_avg_me_tot_int(EH_fn1_index,EH_fn2_index,EH_fn3_index,zeta_index1,zeta_index2,zeta_index3,alpha_index)=

trapz(P_avg_me_tot(:,EH_fn1_index,EH_fn2_index,EH_fn3_index,zeta_index1,zeta_index2,zeta_index3,alpha_inde

x))*dt_S; 

end 

end 

end 

end 

end 

end 

end 

  

%% 

  

%determine optimal base natural frequencies for global angles alpha 

  

%initialize vectors 

Optimal_Base_Freq1=zeros(36,1); 

Optimal_Base_Freq2=zeros(36,1); 

Optimal_Base_Freq3=zeros(36,1); 

Optimal_zeta_e1=zeros(36,1); 

Optimal_zeta_e2=zeros(36,1); 
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Optimal_zeta_e3=zeros(36,1); 

P_avg_me_tot_opt=zeros(36,1); 

  

  

for alpha_index=1:1:36 %global angle index 

%determine the frequency index and zeta_e for EH1, 2, 3 

  

%corresponds to zeta_e for EH3 

[Pn6,In6]=max(max(max(max(max(max(P_avg_me_tot_int(:,:,:,:,:,:,alpha_index))))))); 

%corresponds to zeta_e for EH2 

[Pn5,In5]=max(max(max(max(max(P_avg_me_tot_int(:,:,:,:,:,In6,alpha_index)))))); 

%corresponds to zeta_e for EH3 

[Pn4,In4]=max(max(max(max(P_avg_me_tot_int(:,:,:,:,In5,In6,alpha_index))))); 

%corresponds to fnbase for EH3 

[Pn3,In3]=max(max(max(P_avg_me_tot_int(:,:,:,In4,In5,In6,alpha_index)))); 

%corresponds to fnbase for EH2 

[Pn2,In2]=max(max(P_avg_me_tot_int(:,:,In3,In4,In5,In6,alpha_index))); 

%corresponds to fnbase for EH1 

[Pn1,In1]=max(P_avg_me_tot_int(:,In2,In3,In4,In5,In6,alpha_index)); 

  

  

%convert frequency index to actual frequencies (Hz) 

Optimal_Base_Freq1(alpha_index)=((In1-1)*d_f_n+f_n_lower); %Hz 

Optimal_Base_Freq2(alpha_index)=((In2-1)*d_f_n+f_n_lower); %Hz 

Optimal_Base_Freq3(alpha_index)=((In3-1)*d_f_n+f_n_lower); %Hz 

Optimal_zeta_e1(alpha_index)=zeta_e(In4); 

Optimal_zeta_e2(alpha_index)=zeta_e(In5); 

Optimal_zeta_e3(alpha_index)=zeta_e(In6); 

%Power output at optimal base frequencies 

P_avg_me_tot_opt(alpha_index)=P_avg_me_tot_int(In1,In2,In3,In4,In5,In6,alpha_index); 

  

end 

  

  

%% 

%plot table of results 

Alpha_deg=[0:10:350]'; %degrees, global rotation angle 

fn_1_Hz=Optimal_Base_Freq1(:); %Hz, optimal base frequencies 

fn_2_Hz=Optimal_Base_Freq2(:); %Hz, optimal base frequencies 

fn_3_Hz=Optimal_Base_Freq3(:); %Hz, optimal base frequencies 

Zeta_e1=Optimal_zeta_e1(:);%optimal electric damping ratio 

Zeta_e2=Optimal_zeta_e2(:);%optimal electric damping ratio 

Zeta_e3=Optimal_zeta_e3(:);%optimal electric damping ratio 

Tot_Avg_E_Power_mWattYr=(1000)*P_avg_me_tot_opt(:); %Watt, power output 

  

%determine maximum displacements 

EH_fn_index1=(fn_1_Hz-f_n_lower)/d_f_n+1;%determine index number for frequencies 

EH_fn_index2=(fn_2_Hz-f_n_lower)/d_f_n+1;%determine index number for frequencies 

EH_fn_index3=(fn_3_Hz-f_n_lower)/d_f_n+1;%determine index number for frequencies 

zeta_e_index1=round((Zeta_e1-zeta_e_lower)/zeta_e_diff+1);%determine index number for damping 

zeta_e_index2=round((Zeta_e2-zeta_e_lower)/zeta_e_diff+1);%determine index number for damping 

zeta_e_index3=round((Zeta_e3-zeta_e_lower)/zeta_e_diff+1);%determine index number for damping 

%initialize vectors 

Max_Disp1=zeros(36,1); 

Max_Disp2=zeros(36,1); 

Max_Disp3=zeros(36,1); 

for ii=1:1:36 

Max_Disp1(ii)=max(z_max(:,EH_fn_index1(ii),zeta_e_index1(ii),E1_loc_index(ii))); 

Max_Disp2(ii)=max(z_max(:,EH_fn_index2(ii),zeta_e_index2(ii),E2_loc_index(ii))); 

Max_Disp3(ii)=max(z_max(:,EH_fn_index3(ii),zeta_e_index3(ii),E3_loc_index(ii))); 
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end 

%reorient for table/plotting purposes 

 Max_Disp1_mm=(1000)*Max_Disp1; 

 Max_Disp2_mm=(1000)*Max_Disp2; 

 Max_Disp3_mm=(1000)*Max_Disp3; 

  

T=table(Alpha_deg,fn_1_Hz,Max_Disp1_mm,Zeta_e1,fn_2_Hz,Max_Disp2_mm,Zeta_e2,fn_3_Hz,Max_Disp3_mm

,Zeta_e3,Tot_Avg_E_Power_mWattYr) 

  

%% 

%plot power as a function of time for a given realization 

  

alpha_index=10;%determine index number for rotation angle alpha 

  

EH_fn1_index=12;%determine index number for frequency 

EH_fn2_index=10;%determine index number for frequency 

EH_fn3_index=9;%determine index number for frequency 

  

zeta_e_index1=3;%determine index number for damping 

zeta_e_index2=4;%determine index number for damping 

zeta_e_index3=2;%determine index number for damping 

  

figure(100) 

%total power (mWatt) 

subplot(1,3,1);plot(T_initial:dt_S:T_final,1000*P_avg_me_tot(:,EH_fn1_index,EH_fn2_index,EH_fn3_index,zeta_e

_index1,zeta_e_index2,zeta_e_index3,alpha_index),'black');grid on; 

xlabel('Time (yr)');ylabel('Power (mWatt)');axis([T_initial T_final 0 60]) 

%individual harvester power 

subplot(1,3,2);plot(T_initial:dt_S:T_final,1000*P_avg_me_1(:,EH_fn1_index,zeta_e_index1,alpha_index),'b'); hold 

on; grid on; 

xlabel('Time (yr)');ylabel('Power (mWatt)');axis([T_initial T_final 0 60]); 

plot(T_initial:dt_S:T_final,1000*P_avg_me_2(:,EH_fn2_index,zeta_e_index2,alpha_index),'g');hold on; 

plot(T_initial:dt_S:T_final,1000*P_avg_me_3(:,EH_fn3_index,zeta_e_index3,alpha_index),'r'); hold on; 

%individual harvester max uni-directional displacement 

subplot(1,3,3);plot(T_initial:dt_S:T_final,1000*z_max(:,EH_fn1_index,zeta_e_index1, 

E1_loc_index(alpha_index)),'b'); hold on; grid on; 

xlabel('Time (yr)');ylabel('Max Displacement (mm)');axis([T_initial T_final 0 3]); 

plot(T_initial:dt_S:T_final,1000*z_max(:,EH_fn2_index,zeta_e_index2,E2_loc_index(alpha_index)),'g');hold on; 

plot(T_initial:dt_S:T_final,1000*z_max(:,EH_fn3_index,zeta_e_index3,E3_loc_index(alpha_index)),'r'); hold on; 
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Appendix I – MATLAB Script Supporting SS Analysis 

clear;clc; 

tic%start timer to determine duration of script 

i=sqrt(-1); %imaginary unit 

%% 

%Reference in the representative user defined periodic acceleration time  

%history profiles.  For this work, three acceleration profiles will be used. 

%THE TIME HISTORIES SHOULD BE EVEN LENGTH (I.E. NOT ODD) 

%The first line of the input file should contain the time step 

%Numeric entries should start on the fourth line 

%Column 1 - Time 

%Column 2 - Acceleration (in m/s2) 

%------Acceleration Time History #1--------- 

%Reference the file 

filename1='Acceleration_Input_1_p2.txt'; %define the file name 

delimiterIn='\t'; %define the spacing in the file 

%Import the time step (dt) 

headerlinesIn=0; %define the number of header lines 

s1=importdata(filename1,delimiterIn,headerlinesIn); %import data 

dt_1=s1.data(1); %Pull the data into a matrix form 

fs_1=1/dt_1; %Hz, the sampling rate obtained from the input file 

%Import acceleration data 

headerlinesIn=3; %define the number of header lines 

s1=importdata(filename1,delimiterIn,headerlinesIn); %import data 

S1=s1.data; %Pull the data into a matrix form 

T_1=S1(:,1); %time 

A_1=S1(:,2); %m/s2, acceleration 

%------Acceleration Time History #2--------- 

%Reference the file 

filename2='Acceleration_Input_2_p2.txt'; %define the file name 

delimiterIn='\t'; %define the spacing in the file 

%Import the time step (dt) 

headerlinesIn=0; %define the number of header lines 

s2=importdata(filename2,delimiterIn,headerlinesIn); %import data 

dt_2=s2.data(1); %Pull the data into a matrix form 
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fs_2=1/dt_2; %Hz, the sampling rate obtained from the input file 

%Import acceleration data 

headerlinesIn=3; %define the number of header lines 

s2=importdata(filename2,delimiterIn,headerlinesIn); %import data 

S2=s2.data; %Pull the data into a matrix form 

T_2=S2(:,1); %time 

A_2=S2(:,2); %m/s2, acceleration 

  

%------Acceleration Time History #3--------- 

%Reference the file 

filename3='Acceleration_Input_3_p2.txt'; %define the file name 

delimiterIn='\t'; %define the spacing in the file 

%Import the time step (dt) 

headerlinesIn=0; %define the number of header lines 

s3=importdata(filename3,delimiterIn,headerlinesIn); %import data 

dt_3=s3.data(1); %Pull the data into a matrix form 

fs_3=1/dt_3; %Hz, the sampling rate obtained from the input file 

%Import acceleration data 

headerlinesIn=3; %define the number of header lines 

s3=importdata(filename3,delimiterIn,headerlinesIn); %import data 

S3=s3.data; %Pull the data into a matrix form 

T_3=S3(:,1); %time 

A_3=S3(:,2); %m/s2, acceleration 

  

%------Acceleration Time History #4--------- 

%Reference the file 

filename4='Acceleration_Input_4_p2.txt'; %define the file name 

delimiterIn='\t'; %define the spacing in the file 

%Import the time step (dt) 

headerlinesIn=0; %define the number of header lines 

s4=importdata(filename4,delimiterIn,headerlinesIn); %import data 

dt_4=s4.data(1); %Pull the data into a matrix form 

fs_4=1/dt_4; %Hz, the sampling rate obtained from the input file 

%Import acceleration data 

headerlinesIn=3; %define the number of header lines 

s4=importdata(filename4,delimiterIn,headerlinesIn); %import data 

S4=s4.data; %Pull the data into a matrix form 

T_4=S4(:,1); %time 

A_4=S4(:,2); %m/s2, acceleration 

  

%------Acceleration Time History #5--------- 

%Reference the file 

filename5='Acceleration_Input_5_p2.txt'; %define the file name 

delimiterIn='\t'; %define the spacing in the file 

%Import the time step (dt) 

headerlinesIn=0; %define the number of header lines 

s5=importdata(filename5,delimiterIn,headerlinesIn); %import data 

dt_5=s5.data(1); %Pull the data into a matrix form 

fs_5=1/dt_5; %Hz, the sampling rate obtained from the input file 

%Import acceleration data 

headerlinesIn=3; %define the number of header lines 

s5=importdata(filename5,delimiterIn,headerlinesIn); %import data 

S5=s5.data; %Pull the data into a matrix form 

T_5=S5(:,1); %time 

A_5=S5(:,2); %m/s2, acceleration 

  

% %--------Plot the raw time histories------------ 

% figure(1) %Acceleration Profiles 

% subplot(5,2,1);plot(T_1,A_1);grid on; 

% axis([0 T_1(length(T_1)) min(A_1) max(A_1)]); 
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% title('Time History 1');xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,2,2);plot(T_1(1:500),A_1(1:500));grid on; 

% axis([0 1 min(A_1) max(A_1)]); 

% title('Time History 1');xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,2,3);plot(T_2,A_2);grid on; 

% axis([0 T_2(length(T_2)) min(A_2) max(A_2)]); 

% title('Time History 2');xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,2,4);plot(T_2(1:500),A_2(1:500));grid on; 

% axis([0 1 min(A_2) max(A_2)]); 

% title('Time History 2');xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,2,5);plot(T_3,A_3);grid on; 

% axis([0 T_3(length(T_3)) min(A_3) max(A_3)]); 

% title('Time History 3');xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,2,6);plot(T_3(1:500),A_3(1:500));grid on; 

% axis([0 1 min(A_3) max(A_3)]); 

% title('Time History 3');xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,2,7);plot(T_4,A_4);grid on; 

% axis([0 T_4(length(T_4)) min(A_4) max(A_4)]); 

% title('Time History 4');xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,2,8);plot(T_4(1:500),A_4(1:500));grid on; 

% axis([0 1 min(A_4) max(A_4)]); 

% title('Time History 4');xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,2,9);plot(T_5,A_5);grid on; 

% axis([0 T_5(length(T_5)) min(A_5) max(A_5)]); 

% title('Time History 5');xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,2,10);plot(T_5(1:500),A_5(1:500));grid on; 

% axis([0 1 min(A_5) max(A_5)]); 

% title('Time History 5');xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

  

%--------Clear Variables------------ 

clearvars filename1 delimiterIn headerlinesIn s1 S1 

clearvars filename2 delimiterIn headerlinesIn s2 S2 

clearvars filename3 delimiterIn headerlinesIn s3 S3 

clearvars filename4 delimiterIn headerlinesIn s4 S4 

clearvars filename5 delimiterIn headerlinesIn s5 S5 

%% 

clearvars N1 nmax1 T1 a1 b1 A_1est nn kk 

clearvars N2 nmax2 T2 a2 b2 A_2est nn kk 

clearvars N3 nmax3 T3 a3 b3 A_3est nn kk 

clearvars N4 nmax4 T4 a4 b4 A_4est nn kk 

clearvars N5 nmax5 T5 a5 b5 A_5est nn kk 

  

%Calculate Fourier Series coefficients for periodic signal. a_0 is assumed 

%to be zero. 

  

%------Acceleration Time History #1--------- 

N1=500;%The number of coefficient pairs (exact for N=nmax) 

nmax1=length(T_1);%number of samples in the signal 

T1=T_1(length(T_1));%s, the maximum time included in the signal 

%initialize matricies 

a1(:)=zeros(1,N1);%a Fourier Series coefficients 

b1(:)=zeros(1,N1);%b Fourier Series coefficients 

A_1est=zeros(1,nmax1);%Fourier Series estimate of signal 

%calculatute Fourier Series coefficients 

for nn=1:1:nmax1 

for kk=1:1:N1 

a1(kk)=a1(kk)+(2/nmax1)*(A_1(nn)*cos(2*(kk)*pi*nn/nmax1)); 

b1(kk)=b1(kk)+(2/nmax1)*(A_1(nn)*sin(2*(kk)*pi*nn/nmax1)); 

end 

end 
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%calculateFourier Series estimate of signal 

for nn=1:1:nmax1 

for kk=1:1:N1 

A_1est(nn)=A_1est(nn)+a1(kk)*cos(2*(kk)*pi*nn/nmax1)+b1(kk)*sin(2*(kk)*pi*nn/nmax1); 

end 

end 

  

%------Acceleration Time History #2--------- 

N2=600;%The number of coefficient pairs (exact for N=nmax) 

nmax2=length(T_2);%number of samples in the signal 

T2=T_2(length(T_2));%s, the maximum time included in the signal 

%initialize matricies 

a2(:)=zeros(1,N2);%a Fourier Series coefficients 

b2(:)=zeros(1,N2);%b Fourier Series coefficients 

A_2est=zeros(1,nmax2);%Fourier Series estimate of signal 

%calculatute Fourier Series coefficients 

for nn=1:1:nmax2 

for kk=1:1:N2 

a2(kk)=a2(kk)+(2/nmax2)*(A_2(nn)*cos(2*(kk)*pi*nn/nmax2)); 

b2(kk)=b2(kk)+(2/nmax2)*(A_2(nn)*sin(2*(kk)*pi*nn/nmax2)); 

end 

end 

%calculateFourier Series estimate of signal 

for nn=1:1:nmax2 

for kk=1:1:N2 

A_2est(nn)=A_2est(nn)+a2(kk)*cos(2*(kk)*pi*nn/nmax2)+b2(kk)*sin(2*(kk)*pi*nn/nmax2); 

end 

end 

  

%------Acceleration Time History #3--------- 

N3=600;%The number of coefficient pairs (exact for N=nmax) 

nmax3=length(T_3);%number of samples in the signal 

T3=T_3(length(T_3));%s, the maximum time included in the signal 

%initialize matricies 

a3(:)=zeros(1,N3);%a Fourier Series coefficients 

b3(:)=zeros(1,N3);%b Fourier Series coefficients 

A_3est=zeros(1,nmax3);%Fourier Series estimate of signal 

%calculatute Fourier Series coefficients 

for nn=1:1:nmax3 

for kk=1:1:N3 

a3(kk)=a3(kk)+(2/nmax3)*(A_3(nn)*cos(2*(kk)*pi*nn/nmax3)); 

b3(kk)=b3(kk)+(2/nmax3)*(A_3(nn)*sin(2*(kk)*pi*nn/nmax3)); 

end 

end 

%calculateFourier Series estimate of signal 

for nn=1:1:nmax3 

for kk=1:1:N3 

A_3est(nn)=A_3est(nn)+a3(kk)*cos(2*(kk)*pi*nn/nmax3)+b3(kk)*sin(2*(kk)*pi*nn/nmax3); 

end 

end 

  

%------Acceleration Time History #4--------- 

N4=500;%The number of coefficient pairs (exact for N=nmax) 

nmax4=length(T_4);%number of samples in the signal 

T4=T_4(length(T_4));%s, the maximum time included in the signal 

%initialize matricies 

a4(:)=zeros(1,N4);%a Fourier Series coefficients 

b4(:)=zeros(1,N4);%b Fourier Series coefficients 

A_4est=zeros(1,nmax4);%Fourier Series estimate of signal 

%calculatute Fourier Series coefficients 
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for nn=1:1:nmax4 

for kk=1:1:N4 

a4(kk)=a4(kk)+(2/nmax4)*(A_4(nn)*cos(2*(kk)*pi*nn/nmax4)); 

b4(kk)=b4(kk)+(2/nmax4)*(A_4(nn)*sin(2*(kk)*pi*nn/nmax4)); 

end 

end 

%calculateFourier Series estimate of signal 

for nn=1:1:nmax4 

for kk=1:1:N4 

A_4est(nn)=A_4est(nn)+a4(kk)*cos(2*(kk)*pi*nn/nmax4)+b4(kk)*sin(2*(kk)*pi*nn/nmax4); 

end 

end 

  

%------Acceleration Time History #5--------- 

N5=500;%The number of coefficient pairs (exact for N=nmax) 

nmax5=length(T_5);%number of samples in the signal 

T5=T_5(length(T_5));%s, the maximum time included in the signal 

%initialize matricies 

a5(:)=zeros(1,N5);%a Fourier Series coefficients 

b5(:)=zeros(1,N5);%b Fourier Series coefficients 

A_5est=zeros(1,nmax5);%Fourier Series estimate of signal 

%calculatute Fourier Series coefficients 

for nn=1:1:nmax5 

for kk=1:1:N5 

a5(kk)=a5(kk)+(2/nmax5)*(A_5(nn)*cos(2*(kk)*pi*nn/nmax5)); 

b5(kk)=b5(kk)+(2/nmax5)*(A_5(nn)*sin(2*(kk)*pi*nn/nmax5)); 

end 

end 

%calculateFourier Series estimate of signal 

for nn=1:1:nmax5 

for kk=1:1:N5 

A_5est(nn)=A_5est(nn)+a5(kk)*cos(2*(kk)*pi*nn/nmax5)+b5(kk)*sin(2*(kk)*pi*nn/nmax5); 

end 

end 

  

% %--------Plot the Estimated Time Histories------------ 

% %plot the time histories to ensure sufficient coefficient pairs used.  IF 

% %there is a poor match, increase the size N. 

% figure(2) 

% subplot(5,1,1);plot(T_1,A_1);hold on;grid on; 

% plot(T_1,A_1est,'r-.'); 

% title('Time History 1; B=Actual; R=Estimate'); 

% xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,1,2);plot(T_2,A_2);hold on;grid on; 

% plot(T_2,A_2est,'r-.'); 

% title('Time History 2; B=Actual; R=Estimate'); 

% xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,1,3);plot(T_3,A_3);hold on;grid on; 

% plot(T_3,A_3est,'r-.'); 

% title('Time History 3; B=Actual; R=Estimate'); 

% xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,1,4);plot(T_4,A_4);hold on;grid on; 

% plot(T_4,A_4est,'r-.'); 

% title('Time History 4; B=Actual; R=Estimate'); 

% xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 

% subplot(5,1,5);plot(T_5,A_5);hold on;grid on; 

% plot(T_5,A_5est,'r-.'); 

% title('Time History 5; B=Actual; R=Estimate'); 

% xlabel('Time (sec)');ylabel('Acceleration (m/s^2)'); 
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%--------Clear Variables------------ 

clearvars A_1est nn kk nmax1 

clearvars A_2est nn kk nmax2 

clearvars A_3est nn kk nmax3 

clearvars A_4est nn kk nmax4 

clearvars A_5est nn kk nmax5 

  

  

%% 

  

%Upload the acceleration operating schedule.   

  

%The first entry of the input file contains the time step (yr) 

%The second entry contains the base/room temperature(*C) 

%Column numeric entries should start on the fifth line 

%Column 1 - Time (yr) 

%Column 2 - Expected operating temperature (*C) 

%Column 3 - Acceleration profile (this is the number corresponding to the 

%acceleration profiles above (i.e. 1 = acceleration profile 1) 

  

%Reference the file 

filenameS='Schedule_p2.txt'; %define the file name 

delimiterIn='\t'; %define the spacing in the file 

%Import the time step (dt) 

headerlinesIn=1; %define the number of header lines 

sS=importdata(filenameS,delimiterIn,headerlinesIn); %import data 

dt_S=sS.data(1); %year, time step 

%Import analysis data 

headerlinesIn=4; %define the number of header lines 

sS=importdata(filenameS,delimiterIn,headerlinesIn); %import data 

SS=sS.data; %Pull the data into a matrix form 

T_S=SS(:,1); %year 

Accel_Profile=SS(:,3); %acceleration profile to be used for the given time 

  

% %--------Plot the analysis data------------ 

% figure(3) 

% plot(T_S,Accel_Profile,'oblack');grid on; 

% axis([0 6 0 5]); 

% title('Representative Acceleration Profile (#)') 

% xlabel('Time (yr)'); ylabel('Acceleration Profile (#)'); 

  

%--------Clear Variables------------ 

clearvars filenameS delimiterIn headerlinesIn sS SS 

  

%% 

%Define the window of time the user wants to maximize the possible energy 

%production.  This could be the entire life-cycle or some smaller window 

%(e.g. from 3.4yr - 4.6yr).  For example T_opt=[2.1;3.3] means that the 

%user wants to optimize the energy output starting at year 2.1 and ending 

%at the start of year 3.3. 

  

T_opt=[0;0.9];%years, window of time the user wants to optimize energy output 

  

%extract the times of interest 

T_initial=T_opt(1); %year, isolate the initial time increment to analyze 

T_final=T_opt(2); %year, isolate the final time increment to analyze.   

  

%% 

%Define Constant Inputs 

m=0.02;%kg/m, beam mass per unit length 
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rho_tip=6000;%kg/m^3, density of material used for tip mass 

b=0.005;%m, width of piezoelectric 

n_modes=1;%number of eigenmodes considered (not to exceed 3) 

Connection='Series'; %how the piezoelectric is connected. 'Series' or 'Parallel' 

hps=0.0001;%m, distance between neutral axis and mid-height of piezo layer 

k=7;%number of piezoelectric bimorphs tested for fatigue (see CUM_DAMAGE) 

  

%% 

%Define range of tip masses considered 

dMt=0.00005;%kg, the differential mass investigated 

MtCases=12;%the number of differential masses investigated  

%(i.e. Mtip=0:dMtip:(MtipCases-1)*dMtip) 

  

%% 

%Define range of load resistances considered 

dR=521052;%ohm, the differential resistance investigated 

RCases=13;%the number of differential resistances investigated  

%(i.e. R=dR:dR:(RCases)*dR) 

  

%% 

%Monte Carlo inputs 

  

%number of realizations in the monte carlo analysis 

MC_Temp=1;%temp 

  

%Type of uncertainty in analysis 

% 'N' for normal ; 'U' for uniform dist.; 'None' for no uncertainty 

Type='None'; 

  

%% 

%List of subroutines that define other necessary inputs 

  

%----------RETURNS NUMERIC VALUES--------NO UNCERTAINTY------------- 

%Damping ratios for modes 1-3  

%   MODAL_1_DAMP=fn(mode 1 natural frequency, Temp) 

%   MODAL_2_DAMP=fn(mode 2 natural frequency, Temp) 

%   MODAL_3_DAMP=fn(mode 3 natural frequency, Temp) 

%Beam Properties  

%   BEAM_LENGTH=fn(Temp) 

%   UNDAMAGED_FLEXURAL_STIFFNESS=fn(Temp) 

%Circuits 

%   UNDAMAGED_PIEZO_CAPACITANCE=fn(Temp,Time) 

%   UNDAMAGED_PIEZO_CONSTANT_D=fn(Temp,Time) 

%   PIEZO_ELASTIC_MOD=fn(Temp) 

%Damage 

%   CUM_DAMAGE=fn(cumulative cycle count, new rainflow amplitude, new rainflow cycles) 

  

%----------MATLAB TOOLBOX FUNCTIONS------NO UNCERTAINTY----------- 

%Rainflow analysis for cumulative damage calculations 

% http://www.mathworks.com/matlabcentral/fileexchange/... 

%                                   3026-rainflow-counting-algorithm 

%   sig2ext 

%   rainflow 

%   rfmatrix 

  

%----------RETURNS NUMERIC VALUES---------UNCERTAINTY------------- 

%Schedule 

%   TEMP=fn(Time,Distribution Type) 

  

%% 
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%define constant variables--------- 

desc=200;%number of descretizations in eigenmode calculations 

%define a range of lambdas to consider 

delta=0.001; dl=(0:delta:50)'; 

RFBin=100;%number of histogram bins in rainflow analysis 

test_cases=7;%number of experimental cases used in CUM_DAMAGE 

  

%Initialize Matricies----------------- 

Mt=zeros(1,length(MtCases));%kg, tip mass 

It=zeros(1,length(MtCases));%kg*m2, tip inertia about x=L 

R=zeros(1,length(RCases));%ohm, resistance 

MCT=zeros(1,length(MC_Temp));%number of monte carlo simulations 

Pavg=zeros(MtCases,MC_Temp,round(T_final/dt_S),RCases);%W,average power 

%maximum relative tip displacement 

wR_tip_max=zeros(MtCases,MC_Temp,round(T_final/dt_S),RCases);%m 

%damage terms 

%arguments(ii,MCT,jj,kk)=(Mtip,MonteCarlo,time(yr),resistance) 

C_YIm=zeros(MtCases,MC_Temp,round(T_final/dt_S)+1,RCases); 

C_d31m=zeros(MtCases,MC_Temp,round(T_final/dt_S)+1,RCases); 

C_Cpm=zeros(MtCases,MC_Temp,round(T_final/dt_S)+1,RCases); 

nk_count=zeros(MtCases,MC_Temp,round(T_final/dt_S)+1,RCases,test_cases); 

  

  

TESTcnt=zeros(15,150); 

TESTamp=zeros(15,150); 

TESTwr=zeros(15,5500); 

  

%------------------------------------------------------- 

%Loop over the tip masses (Mtip) 

for ii=1:1:MtCases 

Mt(ii)=(ii-1)*dMt+0.0055;%kg,tip mass 

It(ii)=(5/12)*Mt(ii)^2/(rho_tip*b);%kg*m2, tip inertia about x=L 

  

%------------------------------------------------------- 

%Loop over trial resistances 

for kk=1:1:RCases 

R(kk)=3.3*(10^(kk+1));%ohm, resistance value 

  

%------------------------------------------------------- 

%Loop over temperatures in a monte carlo analysis 

for MCT=1:1:MC_Temp 

  

%zero out variables for next calculation cycle 

clearvars sum_nk_previous 

sum_nk_previous=zeros(1,test_cases);%cumulative cycles 

clearvars C_YI C_d31 C_Cp 

  

%------------------------------------------------------- 

%Loop over time 

%need to start with day zero since we need to calculate accumulated 

%damge (i.e. the C's) 

for jj=1:1:round(T_final/dt_S) 

  

%------------------------------------------------------- 

%zero out variables for next calculation cycle 

clearvars time C_Temp L c11E 

clearvars d31_U Cp_U YI_U d31 Cp YI 

clearvars e31 

clearvars fun scinter ninter aa Lambda_r 
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Lambda_r=zeros(1,n_modes);%eigenvalues for mode r 

clearvars Sr_num Sr_den Sr Phi_rU aa dx 

clearvars PHI_RU Phi_r_U_L Phi_r_prime_U_L 

PHI_RU=zeros(desc+1,n_modes);%unnormalized eigenmodes 

Phi_r_U_L=zeros(1,n_modes);%unnormalized eigenmode at L 

Phi_r_prime_U_L=zeros(1,n_modes);%unnormalized eigenmode slope at L 

clearvars dx x aa 

clearvars C1 PHI_R Phi_r_L Phi_r_prime_L wr 

C1=zeros(1,n_modes);%eigenmode normalizing coefficient 

PHI_R=zeros(desc+1,n_modes);%normalized eigenmodes 

Phi_r_L=zeros(1,n_modes);%normalized eigenmode at L 

Phi_r_prime_L=zeros(1,n_modes);%normalized eigenmode slope at L 

wr=zeros(1,n_modes);%rad/s, nat frequency 

clearvars zeta1 zeta2 zeta3 zeta 

clearvars sigma_r Theta_r_equiv 

sigma_r=zeros(1,n_modes);%frequency-domain force coefficient 

Theta_r_equiv=zeros(1,n_modes);%equivalent modal electromechancial coupling 

clearvars Cp_equiv  

clearvars alpha beta xx NN ee g w_test 

clearvars AP 

clearvars tInc t n 

clearvars cnt amp 

  

%------------------------------------------------------- 

time=(jj-1)*dt_S; %years, represents current time 

C_Temp=TEMP(time,Type);%Celsius, current temperature 

L=BEAM_LENGTH(C_Temp);%m, beam length 

c11E=PIEZO_ELASTIC_MOD(C_Temp);%N/m2, elastic modulus of piezoceramic 

  

%------------------------------------------------------- 

%incorporate damage 

  

%Cp_U and Cp do not yet account for 'Parallel' or Series' 

%connection type 

  

%undamaged values 

d31_U=UNDAMAGED_PIEZO_CONSTANT_D(C_Temp,time);%m/V or C/N 

Cp_U=UNDAMAGED_PIEZO_CAPACITANCE(C_Temp,time);%Farad(F) or sec/Ohm 

YI_U=UNDAMAGED_FLEXURAL_STIFFNESS(C_Temp);%N/m2 

  

%damaged values 

d31=d31_U*(1-C_d31m(ii,MCT,jj,kk));%m/V or C/N 

Cp=Cp_U*(1-C_Cpm(ii,MCT,jj,kk));%Farad(F) or sec/Ohm 

YI=YI_U*(1-C_YIm(ii,MCT,jj,kk));%N/m2 

  

%------------------------------------------------------- 

%other piezoelectric properties 

%effective piezoelectric stress constant 

e31=d31*c11E; %C/m2, this is based on damaged terms 

  

%------------------------------------------------------- 

%Calculate the eigenvalues 

  

%define the Eigenvalue equation 

fun=@(lam)-1-lam.^4*Mt(ii)*It(ii)/(L^4*m^2)+cosh(lam).*... 

((lam.^4*Mt(ii)*It(ii)/(L^4*m^2)-1).*cos(lam)+(lam.*Mt(ii)/(L*m)... 

+lam.^3*It(ii)/(L^3*m)).*sin(lam))-(lam.*Mt(ii)/(L*m)-lam.^3*It(ii)/(L^3*m)).*... 

cos(lam).*sinh(lam); 

  

%                 %plot when the Eigenvalue equation changes sign 
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%                 figure(1) 

%                 plot(dl,sign(fun(dl)));xlabel('Lambda');grid on; 

  

%find the approximate locations where the eigenvalue eqn crosses the 0-axis 

scinter=(find(diff(sign(fun(dl))))-1)*delta; 

ninter=length(scinter);%number of times EigEqn crosses the 0-axis 

  

%if there are fewer than 'n_modes' roots have MATLAB come back with an error - the 

%user will need to update dl above to encompass a broader range so as to 

%capture multiple eigenvalues 

if ninter<n_modes 

display('Error in Eigenvalue Calculation: Less than "n_modes" roots found; adjust search range "dl" or number of 

modes considered.'); 

end 

  

%calculate the Eigenvalues (Lambda's) 

for aa = 1:n_modes 

Lambda_r(aa) = fzero(fun,dl(round((scinter(aa)/delta+1)))); 

end 

  

%ensure that the Lambdas are sufficiently seperated that the delta used is 

%appropriate (so that we've identified where the EigEqn crosses the 0-axis 

if n_modes>1 

if Lambda_r(2)-Lambda_r(1)<10*delta 

display('Error in Eigenvalue Calculation: The lambdas may be too closely spaced; adjust spacing "delta".'); 

end 

end 

  

%------------------------------------------------------- 

%Calculate the UNNORMALIZED eigenfunctions 

  

%calculate SIGMA_r 

Sr_num=sin(Lambda_r)-sinh(Lambda_r)+Mt(ii)/(m*L)*Lambda_r.*(cos(Lambda_r)-cosh(Lambda_r));%numerator 

Sr_den=cos(Lambda_r)+cosh(Lambda_r)-Mt(ii)/(m*L)*Lambda_r.*(sin(Lambda_r)-sinh(Lambda_r));%denominator 

Sr=Sr_num./Sr_den;%SIGMA_r 

  

%UNNORMALIZED eigenfunction (i.e. doesn't include coefficient) 

Phi_rU=@(x)cos(Lambda_r./L*x)-cosh(Lambda_r./L*x)+Sr.*(sin(Lambda_r./L*x)-sinh(Lambda_r./L*x)); 

  

%put the UNNORMALIZED eigenfunctions in matrix form (position,mode) 

for aa=1:1:desc+1 

    dx=L*(aa-1)/desc;%m, spatial descretization 

    PHI_RU(aa,:)=Phi_rU(dx); 

end 

  

%------------------------------------------------------- 

%Calculate the UNNORMALIZED eigenfunctions at L 

Phi_r_U_L=Phi_rU(L); 

  

%------------------------------------------------------- 

%Calculate the slope of the UNNORMALIZED eigenfunctions at L 

Phi_r_prime_U_L=(Lambda_r./L).*(-sin(Lambda_r)-sinh(Lambda_r)+... 

    Sr.*(cos(Lambda_r)-cosh(Lambda_r))); 

  

% ------------------------------------------------------- 

%Calculate the COEFFICIENTS TO NORMALIZE the mode shapes 

  

dx=L/desc;%m, spatial descretization (note the calc of PHI_RU). 

x=0:dx:L;%m, descretized length 
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%calculate normalization coefficients C1 

for aa=1:1:n_modes 

C1(aa)=sqrt(1./(m*trapz(x,PHI_RU(:,aa).^2)+... 

Mt(ii)*Phi_r_U_L(aa).^2+It(ii)*Phi_r_prime_U_L(aa).^2)); 

end 

  

%------------------------------------------------------- 

%NORMALIZE the eigenfunction outputs 

for aa=1:1:n_modes 

PHI_R(:,aa)=C1(aa).*PHI_RU(:,aa);%eigenfunctions 

Phi_r_L(aa)=C1(aa)*Phi_r_U_L(aa);%at x=L 

Phi_r_prime_L(aa)=C1(aa)*Phi_r_prime_U_L(aa);%slope at x=L 

end 

  

%------------------------------------------------------- 

%for each eigenvalue Lambda (i.e. for each mode) calc the 

%current undamped natural frequency of the rth mode in 

%short-circuit conditions (R_l=0) 

wr=Lambda_r.^2.*sqrt(YI/(m*L^4)); 

  

%------------------------------------------------------- 

%Calc the damping ratios for the current nat freq./temp 

zeta1=MODAL_1_DAMP(wr(1),C_Temp);%mode 1 

zeta=zeta1;%group into single damping array 

if n_modes==2 

zeta2=MODAL_2_DAMP(wr(2),C_Temp);%mode 2 

zeta=[zeta1;zeta2];%group into single damping array 

end 

if n_modes==3 

zeta2=MODAL_2_DAMP(wr(2),C_Temp);%mode 2 

zeta3=MODAL_3_DAMP(wr(3),C_Temp);%mode 3 

zeta=[zeta1;zeta2;zeta3];%group into single damping array 

end 

  

%------------------------------------------------------- 

%Calculate sigma_r (the frequency-domain force coefficient) 

sigma_r=-m*trapz(x,PHI_R)-Mt(ii)*Phi_r_L; 

  

%------------------------------------------------------- 

%account for bimorph connection 

if strcmp(Connection,'Parallel')==1 

Theta_r_equiv=2*e31*hps*b*Phi_r_prime_L; 

Cp_equiv=2*Cp;%Farad(F) or sec/Ohm 

%Cp is damaged at this point 

else 

if strcmp(Connection,'Series')==1 

Theta_r_equiv=e31*hps*b*Phi_r_prime_L; 

Cp_equiv=Cp/2;%Farad(F) or sec/Ohm 

%Cp is damaged at this point 

end 

end 

  

%------------------------------------------------------- 

%Calculate transfer functions alpha=fn(frequency, resistance) 

%and beta=fn(frequency,resistance); beta will also be spatially 

%descretized. 

  

if n_modes==1 

alpha=@(w)(... 

((-i*w*Theta_r_equiv(1)*sigma_r(1))/(wr(1)^2-w^2+i*2*zeta(1)*wr(1)*w))/... 
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((i*w*Theta_r_equiv(1)^2)/(wr(1)^2-w^2+i*2*zeta(1)*wr(1)*w)+... 

i*w*Cp_equiv+1/R(kk))); 

beta=@(w)(... 

(sigma_r(1)+Theta_r_equiv(1)*alpha(w))*... 

(PHI_R(:,1)/(wr(1)^2-w^2+i*2*zeta(1)*wr(1)*w))); 

end 

if n_modes==2 

alpha=@(w)(... 

((-i*w*Theta_r_equiv(1)*sigma_r(1))/(wr(1)^2-w^2+i*2*zeta(1)*wr(1)*w)+... 

(-i*w*Theta_r_equiv(2)*sigma_r(2))/(wr(2)^2-w^2+i*2*zeta(2)*wr(2)*w))/... 

((i*w*Theta_r_equiv(1)^2)/(wr(1)^2-w^2+i*2*zeta(1)*wr(1)*w)+... 

(i*w*Theta_r_equiv(2)^2)/(wr(2)^2-w^2+i*2*zeta(2)*wr(2)*w)+... 

i*w*Cp_equiv+1/R(kk))); 

beta=@(w)(... 

(sigma_r(1)+Theta_r_equiv(1)*alpha(w))*... 

(PHI_R(:,1)/(wr(1)^2-w^2+i*2*zeta(1)*wr(1)*w))+... 

(sigma_r(2)+Theta_r_equiv(2)*alpha(w))*... 

(PHI_R(:,2)/(wr(2)^2-w^2+i*2*zeta(2)*wr(2)*w))); 

end 

if n_modes==3 

alpha=@(w)(... 

((-i*w*Theta_r_equiv(1)*sigma_r(1))/(wr(1)^2-w^2+i*2*zeta(1)*wr(1)*w)+... 

(-i*w*Theta_r_equiv(2)*sigma_r(2))/(wr(2)^2-w^2+i*2*zeta(2)*wr(2)*w)+... 

(-i*w*Theta_r_equiv(3)*sigma_r(3))/(wr(3)^2-w^2+i*2*zeta(3)*wr(3)*w))/... 

((i*w*Theta_r_equiv(1)^2)/(wr(1)^2-w^2+i*2*zeta(1)*wr(1)*w)+... 

(i*w*Theta_r_equiv(2)^2)/(wr(2)^2-w^2+i*2*zeta(2)*wr(2)*w)+... 

(i*w*Theta_r_equiv(3)^2)/(wr(3)^2-w^2+i*2*zeta(3)*wr(3)*w)+... 

i*w*Cp_equiv+1/R(kk))); 

  

beta=@(w)(... 

(sigma_r(1)+Theta_r_equiv(1)*alpha(w))*... 

(PHI_R(:,1)/(wr(1)^2-w^2+i*2*zeta(1)*wr(1)*w))+... 

(sigma_r(2)+Theta_r_equiv(2)*alpha(w))*... 

(PHI_R(:,2)/(wr(2)^2-w^2+i*2*zeta(2)*wr(2)*w))+... 

(sigma_r(3)+Theta_r_equiv(3)*alpha(w))*... 

(PHI_R(:,3)/(wr(3)^2-w^2+i*2*zeta(3)*wr(3)*w))); 

  

end 

  

%                 %plot transfer functions to observe behavior 

%                 for dx=0:1:1000 

%                     xx(dx+1)=dx;%rad/s, frequency range 

%                     NN(dx+1)=alpha(dx);%combined 

%                 end 

%                 %plot the transfer function at (1) the beam tip and (2) at the 

%                 %beam midspan for an array of frequencies.  The first plot 

%                 %indicates that the first mode governs the tip displacement. 

%                 %The second plot indicates that the second and third modes are 

%                 %slightly contributing. 

%                 for ee=0:5:1000 

%                     g=beta(ee);%beta for an array of frequencies 

%                     subplot(2,1,1);semilogy(ee,abs(g(length(beta(ee)))),'bo');hold on;grid on; 

%                     xlabel('Frequency(rad/s)');ylabel('|Beta|');title('x=L'); 

%                     subplot(2,1,2);semilogy(ee,abs(g(round(0.5*length(beta(ee))))),'bo');hold on;grid on; 

%                     xlabel('Frequency(rad/s)');ylabel('|Beta|');title('x=0.5*L'); 

%                 end 

%                 w_test=50;%test frequency for plotting beta 

%                 figure(6); 

%                 subplot(4,1,1);semilogy(xx,abs(NN));grid on; 

%                 xlabel('Frequency (rad/s)');ylabel('|Alpha|'); 



334 

 

%                 subplot(4,1,2);plot(xx,angle(NN));grid on; 

%                 xlabel('Frequency (rad/s)');ylabel('Phase Angle of Alpha'); 

%                 subplot(4,1,3);plot(0:L/desc:L,abs(beta(w_test)));grid on; 

%                 xlabel('Spatial Location (m)');ylabel('|Beta|'); 

%                 subplot(4,1,4);plot(0:L/desc:L,angle(beta(w_test)));grid on; 

%                 xlabel('Spatial Location (m)');ylabel('Phase Angle of Beta'); 

  

%------------------------------------------------------- 

%Determine which Fourier Coefficients to use in the voltage, 

%relative displacement, and power calculations 

  

AP=Accel_Profile(jj);%the current acceleration profile 

%specify the Fourier Coefficients 

if AP==1 

an=a1;bn=b1;N=N1;tt=T_1;T=T1;dt=dt_1; 

%an,bn=Fourier coefficients 

%N=number of Fourier coefficients 

%tt=time array of base acceleration 

%T=maximum(t) 

%dt=differential time step in time array 

end 

if AP==2 

an=a2;bn=b2;N=N2;tt=T_2;T=T2;dt=dt_2; 

end 

if AP==3 

an=a3;bn=b3;N=N3;tt=T_3;T=T3;dt=dt_3; 

end 

if AP==4 

an=a4;bn=b4;N=N4;tt=T_4;T=T4;dt=dt_4; 

end 

if AP==5 

an=a5;bn=b5;N=N5;tt=T_5;T=T5;dt=dt_5; 

end 

if AP>5 

display('Error: Acceleration profiles exceed 5; expand code'); 

end 

  

  

%------------------------------------------------------- 

%Compare the maximum frequency used in the Fourier Series 

%with the natural frequency of the system. If the Fourier 

%series doesn't capture the natural frequency of interest, 

%notify the user. 

  

if n_modes==1 

if wr(1)>((2*pi)/(2*dt)) 

display('Warning, the first natural frequency exceeds the Nyquist freqency of the acceleration profile (AP)');disp(AP) 

end 

end 

%if two modes specified 

if n_modes==2 

if wr(1)>(N*2*pi/T) 

display('Warning, the first natural frequency exceeds the Nyquist freqency of the acceleration profile (AP)');disp(AP) 

end 

if wr(2)>(N*2*pi/T) 

display('Warning, the second natural frequency exceeds the Nyquist freqency of the acceleration profile 

(AP)');disp(AP) 

end 

end 

%if three modes specified 
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if n_modes==3 

if wr(1)>(N*2*pi/T) 

display('Warning, the first natural frequency exceeds the Nyquist freqency of the acceleration profile (AP)');disp(AP) 

end 

if wr(2)>(N*2*pi/T) 

display('Warning, the second natural frequency exceeds the Nyquist freqency of the acceleration profile 

(AP)');disp(AP) 

end 

if wr(3)>(N*2*pi/T) 

display('Warning, the third natural frequency exceeds the Nyquist freqency of the acceleration profile 

(AP)');disp(AP) 

end 

end 

  

%------------------------------------------------------- 

%Calculate voltage, relative displacement, and power 

  

%initialize vectors 

clearvars FVar alpha_AMP alpha_PH beta_AMP beta_AMP_L 

clearvars beta_PH beta_PH_L v wr_L Pinst 

clearvars wR_L_trunc v_trunc Pinst_trunc tt_trunc T_trunc 

FVar=zeros(1,N);%frequency variable 

alpha_AMP=zeros(1,N);%alpha-amplitude coefficient 

alpha_PH=zeros(1,N);%alpha-phase 

beta_AMP=zeros(1,length(PHI_R));%beta-amplitude coefficient 

beta_AMP_L=zeros(1,N);%beta-amplitude coefficient at x=L 

beta_PH=zeros(1,length(PHI_R));%beta-phase 

beta_PH_L=zeros(1,N);%beta-phase at x=L 

v=zeros(1,round((T/dt)+1));%V, voltage 

wR_L=zeros(1,round((T/dt)+1));%m, relative displacement 

Pinst=zeros(1,round((T/dt)+1));%W,power 

  

%loop over base acceleration time array 

for tInc=1:1:round((T/dt)+1) 

t=(tInc-1)*dt;%sec, time 

%loop over Fourier Coefficients 

for n=1:1:N 

FVar(n)=n*(2*pi/T);%frequency variable 

  

%voltage calculations----- 

alpha_AMP(n)=abs(alpha(FVar(n)));%amplitude coefficient 

alpha_PH(n)=angle(alpha(FVar(n)));%phase 

v(tInc)= v(tInc)+alpha_AMP(n)*(an(n)*cos(FVar(n)*t+alpha_PH(n))+... 

bn(n)*sin(FVar(n)*t+alpha_PH(n)));%voltage 

  

%relative tip displacement calculations----- 

%spatially dependent amplitude coefficient 

beta_AMP=abs(beta(FVar(n))); 

%amplitude coefficient at x=L 

beta_AMP_L(n)=beta_AMP(length(beta_AMP)); 

%spatially dependent phase 

beta_PH=angle(beta(FVar(n))); 

%amplitude coefficient at x=L 

beta_PH_L(n)=beta_PH(length(beta_AMP)); 

%Relative displacement at x=L 

wR_L(tInc)=wR_L(tInc)+beta_AMP_L(n)*(an(n)*cos(FVar(n)*t+beta_PH_L(n))+... 

bn(n)*sin(FVar(n)*t+beta_PH_L(n)));%m 

end %n - fourier coefficients 

Pinst(tInc)=v(tInc)^2/R(kk);%instantaneous Power 

end %tInc- time (sec) 
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%                 %plot full results 

%                 figure(7) 

%                 subplot(3,1,1);plot(tt,wR_L);grid on; 

%                 xlabel('Time(s)'); 

%                 ylabel('Relative Tip Displacement(m)'); 

%                 subplot(3,1,2);plot(tt,v);grid on; 

%                 xlabel('Time(s)'); 

%                 ylabel('Voltage(V)'); 

%                 subplot(3,1,3);plot(tt,Pinst);grid on; 

%                 xlabel('Time(s)'); 

%                 ylabel('Instantaneous Power(W)'); 

  

%------------------------------------------------------- 

%Truncate/shift the voltage, relative displacement, and 

%power to account for initial transients 

  

%Since the base acceleration starts with zero initial 

%conditions there will be some transient response for the 

%voltage and relative displacement output.  Truncate the 

%sequences by removing the the initial data points that 

%correspond to a 95% reduction in transient response based 

%on the first mode 

percent_reduction=0.95; 

TOI=-log(1-percent_reduction)/(zeta(1)*wr(1));%sec,time at  

%which the first mode transient response will have decayed  

%by percent_reduction 

trunc=round(TOI/dt);%corresponding sample number 

  

%if the truncation is too large we may be eliminating most 

%of the system response.  In such cases, notify the user 

if TOI>0.5*T 

display('Warning, the transient response truncation is eliminating more than 50% of the system response (see 

"trunc")');               

end 

if TOI>0.8*T 

display('Warning, the transient response truncation is eliminating more than 80% of the system response (see 

"trunc")'); 

end 

if TOI>0.99*T 

display('Warning, the transient response truncation eliminated more than 99% of the system response (see "trunc")'); 

end 

  

%truncate the sequences to remove transient responses 

wR_L_trunc=wR_L(trunc:length(wR_L));%m,truncated relative tip disp 

v_trunc=v(trunc:length(v));%V,truncated voltage 

Pinst_trunc=Pinst(trunc:length(Pinst));%W,truncated inst power 

tt_trunc=0:dt:(length(tt)-trunc)*dt;%sec,shifted time array 

T_trunc=max(tt_trunc);%s,maximum truncated time 

  

%                 %plot truncated results 

%                 figure(8) 

%                 subplot(3,1,1);plot(tt_trunc,wR_L_trunc);grid on; 

%                 xlabel('Truncated/Shifted Time(s)'); 

%                 ylabel('Truncated Relative Tip Displacement(m)'); 

%                 subplot(3,1,2);plot(tt_trunc,v_trunc);grid on; 

%                 xlabel('Truncated/Shifted Time(s)'); 

%                 ylabel('Voltage(V)'); 

%                 subplot(3,1,3);plot(tt_trunc,Pinst_trunc);grid on; 

%                 xlabel('Truncated/Shifted Time(s)'); 
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%                 ylabel('Truncated Instantaneous Power(W)'); 

  

%------------------------------------------------------- 

%store outputs that will be displayed post-analysis 

  

%maximum tip displacement 

%arguments(ii,MCT,jj,kk)=(Mtip,MonteCarlo,time(yr),resistance) 

wR_tip_max(ii,MCT,jj,kk)=max(abs(wR_L_trunc));%m 

  

%average power for an AP  

%arguments(ii,MCT,jj,kk)=(Mtip,MonteCarlo,time(yr),resistance) 

Pavg(ii,MCT,jj,kk)=(1/T_trunc)*trapz(tt_trunc,Pinst_trunc);%W 

  

%------------------------------------------------------- 

%Perform a rainflow analysis on the relative tip 

%displacement for damage accumulation purposes 

  

[cnt,ampB]=rfmatrix(rainflow(sig2ext(wR_L_trunc)),RFBin,1,'ampl'); 

%cnt=number of cycles for truncated time history 

%amp= amplitude of cycles corresponding to cnt 

  

%                 %plot the rainflow output 

%                 figure(9) 

%                 stem(amp,cnt)%plot the histogram of amplitudes 

%                 xlabel('Amplitude (m)');ylabel('Count'); 

  

%scale the cycle count (sec) as it acts over the time scale 

%dt_S (yr) 

cnt_S=(dt_S*365*24*60*60/T_trunc)*cnt; 

  

  

%------------------------------------------------------- 

%calculate the cumulative damage to YI,d31,Cp 

  

[C_YI,C_d31,C_Cp,nk_addl]=CUM_DAMAGE(sum_nk_previous,ampB,cnt_S); 

%increment the number of cycles at each amplitude in test_cases                 

sum_nk_previous=sum_nk_previous+nk_addl; 

  

%track damage for ploting at the end 

C_YIm(ii,MCT,jj+1,kk)=C_YI; 

C_d31m(ii,MCT,jj+1,kk)=C_d31; 

C_Cpm(ii,MCT,jj+1,kk)=C_Cp; 

nk_count(ii,MCT,jj+1,kk,:)=sum_nk_previous; 

%arguments(ii,MCT,jj,kk)=(Mtip,MonteCarlo,time(yr),resistance) 

  

PPP(ii,kk)=Pavg(ii,MCT,jj,kk); 

WWW(ii,kk)=wR_tip_max(ii,MCT,jj,kk); 

  

end   %jj - time (yr) 

end   %MCT - monte carlo simulation 

end   %kk - resistance 

end   %ii - Mtip 

  

 toc %stop timer to determine duration of script 
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Appendix J – Sample MATLAB Sub-Functions Supporting 

SS Analysis 

Cumulative Damage 
function[C_YI,C_d31,C_Cp,nk_new]=CUM_DAMAGE(nk_old,amp,cnt) 

%Calculate the amount of damage that has accumulated for the flexural 

%stiffness (YI), piezoelectric constant (d31), and piezoelectric 

%capacitence (Cp). 

%Outputs 

%   C_YI,C_d31,C_Cp = percent damage of YI, d31, Cp for the next cycle 

%   nk_updated = updated cycle counts for each of the Ak amplitudes 

%Inputs 

%   nk_old=cumulative cycle counts from the previous load cycles 

%   amp=amplitudes from rainflow analysis of current time history 

%   cnt=bin counts from rainflow analysis of current time history 

%% 

%Define user tables FROM PHYSICAL TESTING for each Ak case---------------- 

%Tested amplitudes {from lowest (1) to highest (k)} 

Ak=[     

0.0005  ; 

0.0010  ; 

0.0015  ; 

0.0020  ; 

0.0030  ; 

0.0050  ; 

0.0070  ];%m 

%number of cycles each data point was collected at 

cyc=[     

0   ,   1.00E+07    ,   1.00E+08    ,   1.00E+09    ,   1.00E+10    ,   1.00E+11    ;   %Ak(1) 

0   ,   1.00E+07    ,   1.00E+08    ,   1.00E+09    ,   1.00E+10    ,   1.00E+11    ;   %Ak(2) 

0   ,   1.00E+07    ,   1.00E+08    ,   1.00E+09    ,   1.00E+10    ,   1.00E+11    ;   %Ak(3) 

0   ,   1.00E+07    ,   1.00E+08    ,   1.00E+09    ,   1.00E+10    ,   1.00E+11    ;   %Ak(4) 

0   ,   1.00E+07    ,   1.00E+08    ,   1.00E+09    ,   1.00E+10    ,   1.00E+11    ;   %Ak(5) 
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0   ,   1.00E+07    ,   1.00E+08    ,   1.00E+09    ,   1.00E+10    ,   1.00E+11    ;   %Ak(6) 

0   ,   1.00E+07    ,   1.00E+08    ,   1.00E+09    ,   1.00E+10    ,   1.00E+11    ];  %Ak(7) 

  

%Tested fatigue life corresponding to Aks 

Nk=cyc(:,6);%count 

  

%normalized flexural stiffness measured at the number of cycles in cyc 

YInorm=[     

1.00    ,   0.99    ,   0.98    ,   0.96    ,   0.92    ,   0.89    ;   %Ak(1) 

1.00    ,   0.97    ,   0.94    ,   0.90    ,   0.83    ,   0.77    ;   %Ak(2) 

1.00    ,   0.96    ,   0.92    ,   0.88    ,   0.72    ,   0.68    ;   %Ak(3) 

1.00    ,   0.94    ,   0.87    ,   0.78    ,   0.66    ,   0.58    ;   %Ak(4) 

1.00    ,   0.93    ,   0.82    ,   0.73    ,   0.60    ,   0.52    ;   %Ak(5) 

1.00    ,   0.90    ,   0.77    ,   0.62    ,   0.40    ,   0.10    ;   %Ak(6) 

1.00    ,   0.89    ,   0.74    ,   0.55    ,   0.10    ,   0.10    ];  %Ak(7) 

  

%normalized piezoelectric coeff. measured at the number of cycles in cyc 

d31norm=[      

1.00    ,   0.99    ,   0.98    ,   0.96    ,   0.94    ,   0.91    ;   %Ak(1) 

1.00    ,   0.98    ,   0.96    ,   0.92    ,   0.88    ,   0.85    ;   %Ak(2) 

1.00    ,   0.97    ,   0.96    ,   0.90    ,   0.83    ,   0.70    ;   %Ak(3) 

1.00    ,   0.97    ,   0.95    ,   0.88    ,   0.78    ,   0.60    ;   %Ak(4) 

1.00    ,   0.96    ,   0.95    ,   0.87    ,   0.77    ,   0.55    ;   %Ak(5) 

1.00    ,   0.90    ,   0.88    ,   0.82    ,   0.70    ,   0.10    ;   %Ak(6) 

1.00    ,   0.80    ,   0.76    ,   0.70    ,   0.55    ,   0.10    ];  %Ak(7) 

  

%normalized capacitence measured at the number of cycles in cyc 

Cpnorm=[                         

1.00    ,   0.99    ,   0.98    ,   0.97    ,   0.93    ,   0.10    ;   %Ak(1) 

1.00    ,   0.98    ,   0.97    ,   0.96    ,   0.92    ,   0.10    ;   %Ak(2) 

1.00    ,   0.97    ,   0.96    ,   0.95    ,   0.91    ,   0.10    ;   %Ak(3) 

1.00    ,   0.96    ,   0.95    ,   0.94    ,   0.90    ,   0.10    ;   %Ak(4) 

1.00    ,   0.95    ,   0.94    ,   0.93    ,   0.89    ,   0.10    ;   %Ak(5) 

1.00    ,   0.94    ,   0.93    ,   0.92    ,   0.88    ,   0.10    ;   %Ak(6) 

1.00    ,   0.93    ,   0.92    ,   0.91    ,   0.87    ,   0.10    ];  %Ak(7) 

  

% %plot the data sets 

% figure(2) 

% for k=1:1:length(Ak) 

%     subplot(3,1,1);semilogx(cyc(k,:),YInorm(k,:),'x-');hold on;grid on; 

%     xlabel('Cycles');ylabel('Normalized YI');axis([10^4 10^10 0.5 1]); 

%         subplot(3,1,2);semilogx(cyc(k,:),d31norm(k,:),'x-');hold on;grid on; 

%     xlabel('Cycles');ylabel('Normalized d31');axis([10^4 10^10 0.5 1]); 

%             subplot(3,1,3);semilogx(cyc(k,:),Cpnorm(k,:),'x-');hold on;grid on; 

%     xlabel('Cycles');ylabel('Normalized Cp');axis([10^4 10^10 0.5 1]); 

% end 

  

%ensure that the test data encompasses the rainflow data 

if max(amp)>max(Ak) 

display('Error,the maximum amplitude from the rainflow analysis exceeds the maximum amplitude (Ak) used in 

testing'); 

end 

for ii=1:1:length(nk_old) 

if nk_old(ii)>Nk(ii) 

display('Error,the cumulative loading cycles (nk) exceeds the failure cycles (Nk) found from testing'); 

end 

end 

%% 

  

%Regroup the rainflow histogram output into the bins defined by the  



340 

 

%testing data (Ak and nk) 

  

%initialze a counting matrix 

g=zeros(length(Ak),length(amp)); 

for ii=1:1:length(Ak)%loop over all tested amplitudes 

for jj=1:1:length(amp)%loop over all amplitudes from rainflow 

%if the tested amplitude is less than the rainflow histogram  

%amplitude, populate the counting matrix 

if Ak(ii)>amp(jj) 

g(ii,jj)=1; 

end 

end 

end 

  

%initialze an index matrix 

index=zeros(1,length(Ak)); 

for ii=1:1:length(Ak)%loop over all tested amplitudes 

for jj=1:1:length(amp)%loop over all amplitudes from rainflow 

%sum the rows of the counting matrix to determine at what  

%index A>amp remains valid 

index(ii)=index(ii)+g(ii,jj); 

end 

end 

  

%cummulatively count all of the cycles from the rainflow analysis 

%initialize the matrix 

cum_count=zeros(1,length(cnt)); 

cum_count(1)=cnt(1);  %set the first entry 

for jj=2:1:length(cnt)%loop over all cycle counts from rainflow 

cum_count(jj)=cum_count(jj-1)+cnt(jj); 

end 

  

%determine the cycle count (nk_new) in terms of the testing amplitudes (Aks) 

nk_new=zeros(1,length(Ak)); 

  

%if there are no new cycles less then Ak(1), set the nk_new(1) to zero, 

%else, add the cumulative cycles at the index 

if index(1)==0 

nk_new(1)=0; 

else nk_new(1)=cum_count(index(1));%set the first entry 

end 

  

%take the difference between cum_count to find new cycles 

for ii=2:1:length(Ak) 

if index(ii)==0 

nk_new(ii)=0; 

else if index(ii-1)==0 

nk_new(ii)=cum_count(index(ii)); 

else nk_new(ii)=cum_count(index(ii))-cum_count(index(ii-1)); 

end 

end 

end 

  

% %plot the rainflow output with the regrouped Ak/nk's 

% %figure(3) 

% subplot(2,1,1);stem(amp,cnt);grid on; 

% axis([0 Ak(length(Ak)) 0 max(cnt)]); 

% xlabel('Amplitude,(m)');ylabel('Cycles');title('Rainflow Output'); 

% subplot(2,1,2);stem(Ak,nk_new);grid on; 

% axis([0 Ak(length(Ak)) 0 max(nk_new)]); 
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% xlabel('Amplitude,(m)');ylabel('Cycles'); 

% title('Rainflow Output Regrouped into Tested Aks'); 

  

%% 

  

%Calculate the normalized damage to each variable YI, d31, Cp 

  

%combine the cumulative cycles up to this point with the new cycles just 

%calculated 

nk_updated=nk_old'+nk_new'; 

  

%Find the max and min cycles that bound the current nk 

for jj=1:1:length(nk_updated) %loop over all tests 

for ii=1:1:length(cyc(1,:)) 

%Determine lower bound with which to interpolate 

if nk_updated(jj)<cyc(jj,ii) 

cycle_lower(jj,ii)=0; 

else cycle_lower(jj,ii)=1; 

end 

%Determine upper bound with which to interpolate 

if nk_updated(jj)>=cyc(jj,ii) 

cycle_upper(jj,ii)=0; 

else cycle_upper(jj,ii)=1; 

end 

end 

end 

  

%Left & Right bound of cycles with which to interpolate 

for ii=1:1:length(cyc) 

cycle_L(ii)=cyc(ii,sum(cycle_lower(ii,:))); 

cycle_R(ii)=cyc(ii,length(cyc(1,:))+1-sum(cycle_upper(ii,:))); 

end 

  

%--------------YI------------------------------------------------------- 

%Left & Right bound of YInorm with which to interpolate 

for ii=1:1:length(cyc) 

YI_L(ii)=YInorm(ii,sum(cycle_lower(ii,:))); 

YI_R(ii)=YInorm(ii,length(cyc(1,:))+1-sum(cycle_upper(ii,:))); 

end 

  

%interpolate the current YInorm based on the number of cycles 

YInorm_updated=(YI_R-YI_L)./(cycle_R-cycle_L).*(nk_updated'-cycle_L)+YI_L; 

%calculate the reduction in YInorm based on the number of cycles 

delta_YInorm_damage=YInorm(:,1)-YInorm_updated'; 

%Calculate the accumulated percent damage 

C_YI=sum(delta_YInorm_damage); 

  

%--------------d31------------------------------------------------------- 

%Left & Right bound of d31norm with which to interpolate 

for ii=1:1:length(cyc) 

d31_L(ii)=d31norm(ii,sum(cycle_lower(ii,:))); 

d31_R(ii)=d31norm(ii,length(cyc(1,:))+1-sum(cycle_upper(ii,:))); 

end 

  

%interpolate the current d31norm based on the number of cycles 

d31norm_updated=(d31_R-d31_L)./(cycle_R-cycle_L).*(nk_updated'-cycle_L)+d31_L; 

%calculate the reduction in d31norm based on the number of cycles 

delta_d31norm_damage=d31norm(:,1)-d31norm_updated'; 

%Calculate the accumulated percent damage 

C_d31=sum(delta_d31norm_damage); 
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%--------------Cp------------------------------------------------------- 

%Left & Right bound of d31norm with which to interpolate 

for ii=1:1:length(cyc) 

Cp_L(ii)=Cpnorm(ii,sum(cycle_lower(ii,:))); 

Cp_R(ii)=Cpnorm(ii,length(cyc(1,:))+1-sum(cycle_upper(ii,:))); 

end 

  

%interpolate the current Cpnorm based on the number of cycles 

Cpnorm_updated=(Cp_R-Cp_L)./(cycle_R-cycle_L).*(nk_updated'-cycle_L)+Cp_L; 

%calculate the reduction in Cpnorm based on the number of cycles 

delta_Cpnorm_damage=Cpnorm(:,1)-Cpnorm_updated'; 

%Calculate the accumulated percent damage 

C_Cp=sum(delta_Cpnorm_damage); 

  

%% 

%give a warning if the accumulated percent damage exceeds 0.9 

if C_YI>0.9 

display('Warning, the accumulated damage to the flexural stiffness (C_YI) exceeds 90%'); 

end 

if C_d31>0.9 

display('Warning, the accumulated damage to the piezo constant (C_d31) exceeds 90%'); 

end 

if C_Cp>0.9 

display('Warning, the accumulated damage to the piezo capacitence (C_Cp) exceeds 90%'); 

end 

 

 

Piezoelectric Strain Constant 
function[D31]=UNDAMAGED_PIEZO_CONSTANT_D(Temp_Current,Time_Current) 

  

%Develop a script that takes user time-temperature data for a given 

%property and can interpolate the property for a given 

%time & temperature 

  

%M_0 represents the magnitude of the property on day 0 at room temperature 

%Temp_Current represents the temp (celsius) at which to determine the property 

%Time_Current represents the time (yr) at which to determine the property 

  

%% 

%Populate the property table as a function of time and temperature 

  

Temp_Increments=[20;120;130;140;150];%degrees celsius 

Time_Increments=[0;10]; %years 

%User input. Each column corresponds  

%to the time increments. Each row corresponds to the temperature 

%increments. 

M_Table=(-1e-10)*[ 

1.71    ,   1.71    ; 

2.57    ,   2.57    ; 

2.57    ,   2.57    ; 

2.57    ,   2.57    ; 

2.57    ,   2.57    ];%m/V or C/N    

  

% figure(4) 

% plot(Temp_Increments,M_Table(:,1)/(-1.71e-10)); 

% title('Undamaged Piezo Constant=fn(Time,Temperature)'); 

% xlabel('Temperature(Celsius)');grid on; 

% ylabel('Piezo Constant d_3_1 (m/V or C/N)'); 

% axis([20 100 0 2]) 



343 

 

  

%% 

%Interpolate the expected property at the specified temperature and time 

  

%Find the max and min Temperatures that bound the current temp of interest 

for ii=1:1:length(Temp_Increments) 

%Determine lower bound of temperature range with which to interpolate 

if Temp_Current<Temp_Increments(ii) 

Temp_Lower(ii)=0; 

else Temp_Lower(ii)=1; 

end 

%Determine upper bound of temperature range with which to interpolate 

if Temp_Current>=Temp_Increments(ii) 

Temp_Upper(ii)=0; 

else Temp_Upper(ii)=1; 

end 

end 

%Check that Temperature of interest is within range of data 

if Temp_Current>=Temp_Increments(length(Temp_Increments)) 

display('Error [PIEZO_CONSTANT_D], Temperature of interest equals or exceeds the range of values inputted by 

the user.'); 

end 

if Temp_Current<Temp_Increments(1) 

display('Error [PIEZO_CONSTANT_D], Temperature of interest is less than the range of values inputted by the 

user.'); 

end 

%Lower & Upper bound of temperature range with which to interpolate 

Temp_Min=Temp_Increments(sum(Temp_Lower)); 

Temp_Max=Temp_Increments(length(Temp_Increments)+1-sum(Temp_Upper)); 

  

%Find the max and min Times that bound the current temp of interest 

for ii=1:1:length(Time_Increments) 

%Determine lower bound of time range with which to interpolate 

if Time_Current<Time_Increments(ii) 

Time_Lower(ii)=0; 

else Time_Lower(ii)=1; 

end 

%Determine upper bound of time range with which to interpolate 

if Time_Current>=Time_Increments(ii) 

Time_Upper(ii)=0; 

else Time_Upper(ii)=1; 

end 

end 

%Check that Time of interest is within range of data 

if Time_Current>=Time_Increments(length(Time_Increments)) 

display('Error [PIEZO_CONSTANT_D], Time of interest equals or exceeds the range of values inputted by the 

user.'); 

end 

if Time_Current<Time_Increments(1) 

display('Error [PIEZO_CONSTANT_D], Time of interest is less than the range of values inputted by the user.'); 

end 

%Lower & Upper bound of time range with which to interpolate 

Time_Min=Time_Increments(sum(Time_Lower)); 

Time_Max=Time_Increments(length(Time_Increments)+1-sum(Time_Upper)); 

  

%Find the values of the property at the four points that bound the current 

%temperature and time of interest 

M_11=M_Table(sum(Temp_Lower),sum(Time_Lower)); 

M_21=M_Table(sum(length(Temp_Increments)+1-sum(Temp_Upper)),sum(Time_Lower)); 

M_12=M_Table(sum(Temp_Lower),length(Time_Increments)+1-sum(Time_Upper)); 
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M_22=M_Table(sum(length(Temp_Increments)+1-sum(Temp_Upper)),length(Time_Increments)+1-

sum(Time_Upper)); 

%Calculate the coefficients with which to determine the interpolated 

%current value of interest 

Q=[1, Time_Min, Temp_Min, Time_Min*Temp_Min; 

1, Time_Min, Temp_Max, Time_Min*Temp_Max; 

1, Time_Max, Temp_Min, Time_Max*Temp_Min; 

1, Time_Max, Temp_Max, Time_Max*Temp_Max]; 

A=[1;Time_Current;Temp_Current;Time_Current*Temp_Current]; 

B=(Q^-1)'*A; 

%Calculate the current value of interest 

D31=(B(1,1)*M_11+B(2,1)*M_21+B(3,1)*M_12+B(4,1)*M_22); 
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