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Distributed Strategy Selection: A Submodular Set
Function Maximization Approach

Navid Rezazadeh a, Solmaz S. Kia a

aUniversity of California, Irvine

Abstract

Joint utility-maximization problems for multi-agent systems often should be addressed by distributed strategy-selection for-
mulation. Constrained by discrete feasible strategy sets, these problems are broadly formulated as NP-hard combinatorial
optimization problems. However, in many cases, it is possible to reformulate this class of problems as constrained submodu-
lar set function maximization problems which also belong to the NP-hard domain of problems. A prominent example is the
problem of multi-agent mobile sensor dispatching over a discrete domain. This paper considers a class of submodular opti-
mization problems that consist of maximization of a monotone and submodular set function subject to a partition matroid
constraint over a group of networked agents that communicate over a connected undirected graph. We work with the value
oracle model. Consequently, the only access of the agents to the utility function is through a black box that returns the utility
function value given a specific strategy set. We propose a distributed suboptimal polynomial-time algorithm that enables each
agent to obtain its respective strategy via local interactions with its neighboring agents. Our solution is a fully distributed
gradient-based algorithm using the submodular set functions’ multilinear extension followed by a distributed stochastic Pi-
page rounding procedure. This algorithm results in a strategy set that when the team utility function is evaluated at the worst
case, the utility function value is in 1

c
(1− e−c−O(1/T )) of the optimal solution with c to be the curvature of the submodular

function. An example demonstrates our results.

Key words: Submodular optimization; sensor placement, multilinear extension; distributed optimization;

1 Introduction
Modern industries such as transportation, supply chain,
energy, and finance are moving fast towards modular and
distributed operations where communicating smart sub-
systems are expected to coordinate their actions for the
optimal operation of the entire system. Optimal strategy
selection problems for these networked systems often ap-
pear as combinatorial optimization problems where the
objective function is a submodular set function. Some
example cases include sensor and actuator placement
problems [1,2], energy storage placement [3,4], measure-
ment scheduling [5], voltage control in smart grid [6],
persistent monitoring via mobile robots [7]. For reasons
such as robustness, scalability, privacy preservation, and
avoiding a single failure point, these optimal decision-
making problems are highly desired to be solved in a
distributed manner.
While there has been a plethora of work in developing
central solutions for submodular maximization, satis-
factory distributed algorithmic solutions for in-network

? This work is supported by NSF award IIS-SAS-1724331.
Emails:{nrezazad,solmaz}@uci.edu

submodular maximization problems where agents com-
municate over a graph have remained elusive. In this
paper, we consider a distributed strategy selection prob-
lem that is modeled as submodular maximization sub-
ject to partition matriod. We seek a distributed solution
in which the agents communicate over a connected undi-
rected graph.
Submodular function maximization: A set function f :
2P → R≥0 defined on the ground set P is submodular if
∀S ⊂ T ⊂ P, and p ∈ P \ T we have

f(S ∪ {p})− f(S) ≥ f(T ∪ {p})− f(T ). (1)

Submodular set functions naturally possess the dimin-
ishing returns property, i.e., the gain of adding a new
element p to a set decreases or stays the same as the
size of the set increases. Submodularity is an inherent
property in many practical utility/objective functions
such as weighted coverage functions, facility location
service function, entropy, and mutual information func-
tions, which appear in strategy selection problems such
as sensor placement, measurement scheduling, workforce
hiring, and database sampling [8].
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Unlike minimization of submodular functions that can
be done in polynomial time [9,10], submodular function
maximization problems are NP-hard [11]. Luckily, sub-
modularity is a property of set functions with deep the-
oretical consequences that enables establishing constant
factor approximate (suboptimal solutions) for submod-
ular maximization problems. Research on problems in-
volving the maximization of monotone submodular func-
tions dates back to the work of Nemhauser, Wolsey, and
Fisher in the 1970’s [11–13]. A fundamental result by
Nemhauser et al. [11] establishes that the simple sequen-
tial greedy algorithm is guaranteed to provide a constant
1/2-approximation factor solution for submodular max-
imization subject to matroid constraints. The sequential
greedy algorithm reaches the final solution by sequen-
tially finding the best current decision based on the deci-
sions made previously and without considering the con-
sequences or interactions with future decisions. These
bounds can be made tighter with additional knowledge
on the diminishing return property of the submodular
objective function quantified by total curvature c ∈ [0, 1].
For example [14] shows that the constant factor approx-
imation for submodular maximization subject to a ma-
troid constraint is 1

1+c .
More recently, another suboptimal solution for submod-
ular maximization subject to matroid constraints with
an improved optimality gap is proposed in the litera-
ture using the multilinear continuous relaxation of a
submodular set function [15–19]. The relaxation trans-
forms the discrete problem into a continuous optimiza-
tion problem with linear constraints. Then, a continu-
ous gradient-based optimization algorithm referred to as
continuous greedy algorithm, is used to solve the con-
tinuous optimization problem. A suboptimal solution
for submodular maximization subject to matroid con-
straint with the improved constant-factor approxima-
tion of (1− 1/e) then is obtained by proper rounding of
the continuous-domain solution [15, 16]. This approach
however requires a central authority to solve the prob-
lem. It is worth noting that the literature has shown that
for monotone submodular functions, it is computation-
ally hard to approximate this problem within a factor
better than 1− 1/e ≈ 0.63% [20].
Distributed submodular function maximization: In
multi-agents setting, for example, multi-agent sensor
placement problems where the agents are self-organizing
autonomous mobile agents with communication and
computation capabilities, it is desired to solve the strat-
egy selection problems modeled as constrained sub-
modular maximization problems in a distributed way
without involving a central authority. The problems in
distributed settings can be divided into two categories:
distributed constraint problems and distributed utility
problems. In a distributed constraint problem there is a
shared utility but each agent has to choose its strategy
from a local constraint set that is disjoint from other
agents’ and is only known to the agent. An example is
the heterogeneous coverage problem where each agent

has a set of heterogeneous sensors while the area to cover
is shared among them. The agents should decide what
sensor(s) each to deploy to maximize the area coverage
as a team. In distributed utility problems, however,
the team’s utility function is the sum of the separable
local utilities and agents choose their strategies from
a shared strategy set. An example case is the optimal
Welfare problem [15] where each agent should make
strategy choices from a joint set such that the sum of
local utilities is maximized. Our focus in this paper is on
distributed solution design for a fragmented-constraint
submodular maximization problem.
For distributed constraint problems, the sequential
greedy algorithm can be implemented in a decentralized
way through sequential message-passing or via sequen-
tial message-sharing through a cloud [7]. However, a
decentralized sequential greedy algorithm comes with
communication routing overhead. For agents communi-
cating over a connected graph, implementing sequential
message-passing requires finding the Hamiltonian path
(a connected path that visits every agent on the graph
only once) which is an NP-hard problem to solve. If
Hamiltonian path does not exist in a graph, a path that
visits the agents in least frequent times should be iden-
tified for communication efficient sequential message-
passing. Moreover, it is shown that the order of sequence
changes the actual approximation factor of the solution
obtained by the sequential greedy algorithm [21]. The
complexity of finding the sequence that delivers the
best solution increases exponentially as the size and the
connectivity of the communication network increases.
Several attempts have been also undertaken to adapt
the sequential greedy algorithm for large-scale submod-
ular maximization problems by reducing the size of the
problem through approximations [22] or using several
processing units to achieve a faster sequential greedy
algorithm, but with some sacrifices on the optimality
bound [23–26]. However, these decentralized imple-
mentations are mainly intended for parallel processing
purposes and are not extendable to decentralized opera-
tions when agents communicate over connected graphs.
Some attempts have also been made in devising dis-
tributed solutions for submodular maximization using
multi-linear extension approaches. For the class of dis-
tributed utility functions semi-distributed and fully dis-
tributed solutions with an optimality gap close to (1 −
1/e) is studied in [27–29]. However, for the class of dis-
tributed constraint problems, the results in the literature
are rather limited. For the special class of submodular
set functions with curvature c = 1 , and when each agent
is limited to choose only a single strategy from its own
strategy set, [30] has proposed an average consensus-
based distributed algorithm to the maximization prob-
lem over connected graphs. The solution of [30] requires
a closed-form expression of the multi-linear extension
function. However, the computational complexity of con-
structing the closed-form of multi-linear extension of a
submodular function and its derivatives increases expo-
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nentially with the size of the strategy set. Moreover, the
result also depends on a centralized rounding scheme.
Statement of contributions: In this paper, motivated
by the improved optimality gap of the multilinear con-
tinuous relaxation-based algorithms, we develop a dis-
tributed implementation of the algorithm of [16] over a
connected undirected graph. Particularly, we consider a
distributed submodular set function maximization prob-
lem formulated by a shared utility function and disjoint
strategy sets (fragmented-constraint class). Moreover,
in our setup, the agents are allowed to choose multiple
strategies from their strategy sets.
We propose a gradient-based algorithm, constructed on
multi-linear extension function of a submodular func-
tion, which uses a maximum consensus scheme over the
communication graph and results in a distributed im-
plementation of the continuous greedy algorithm. The
multi-linear extension function of a submodular func-
tion is equivalently the expected value of the submodu-
lar function evaluated at random sets obtained by pick-
ing strategies from the strategy set independently with
a probability. This stochastic interpretation allows ap-
proximating the multi-linear extension function and its
derivatives empirically with a reasonable computational
cost via sampling from the strategy set [16]. Further-
more, we carefully analyze the effect of stochastic inter-
pretation of the multilinear extended function and sam-
pling on our algorithm’s optimality gap.
We complete our solution by designing a lossless dis-
tributed rounding procedure that computes the final
suboptimal strategy of each agent. The purpose of a
rounding procedures is to convert an optimal solution
of a relaxed problem into an approximately optimal so-
lution to the original problem. In a distributed setting,
generally an attempt to implement a centralized round-
ing procedure [16, 31] requires extra coordinating com-
munication between the agents. However, our choice of
maximum consensus algorithm as the agreements pro-
tocol between the agents removes the need for further
communication. We show that after the coordination of
the agents through maximum consensus for a given pe-
riod of time, each agent can use a local randomized Pi-
page procedure to reach a deterministic set of strate-
gies as its local solution without the necessity to interact
with other agents. Furthermore, our algorithm guaran-
tees the resulting global suboptimal strategy lies in the
feasible constraint set.
Through rigorous analysis which takes into account the
total curvature of the utility function, we show that our
proposed distributed algorithm in finite time T achieves,
with a known probability, a 1

c (1 − e−c) − O(1/T ) op-
timality bound, where 1/T is the step size of the algo-
rithm and the frequency at which agents communicate
over the network. A numerical example demonstrates
our results. Using various scenarios, this numerical study
highlights the higher computational cost of a solution
based on a continuous-relaxation in comparison to the

sequential greedy algorithm. But, this high cost is paid
off by an improved optimality gap, no overhead to de-
termine message passing sequence and independence of
the result from the massage passing sequence.
Notation and definitions: We denote the vectors with
bold small font. The pth element of vector x is denoted by
[x]p. We denote the inner product of two vectors x and y
with appropriate dimensions by x.y. We use 0 and 1 as
a vector of zeros and ones respectively, whose dimension
is understood from the context. We denote sets with the
capital curly font. Given a ground set P = {1, · · · , n},
we define the membership probability vector x ∈ [0, 1]n

to obtain Rx ⊂ P as a random set where p ∈ P is in
Rx with the probability [x]p. For R ⊂ P, 1R ∈ {0, 1}n
is the vector whose pth element is 1 if p ∈ R and 0
otherwise; we call 1R the membership indicator vector
of set R. Given a finite countable set R ⊂ R and integer
κ, 1 ≤ κ < |R|, max(R, κ) returns the κ largest elements
of R. For x ∈ R, |x| is ite absolute value. By overloading
the notation, we also use |R| as the cardinality of set R.
For a set function f : 2P → R, we define ∆f (p|R) =
f(R∪{p})−f(R), R ⊂ P. A set function is normalized
if f(∅) = 0. A set function f : 2P → R≥0 is monotone
increasing if f(P1) ≤ f(P2) for any P1 ⊂ P2 ⊂ P.

2 Problem definition and preliminaries
Consider a group of A={1, ..., N} agents with commu-
nication and computation capabilities, interacting over
a connected undirected graph G(A, E) where E ⊂ A×A
is the edge set. Recall that G is undirected if and only
if (i, j) ∈ E means that agents i and j can mutually ex-
change information. An undirected graph is connected
if there is a path from each node to every other node in
the graph.
Each agent i ∈ A has a distinct discrete strategy set
Pi, known only to agent i, and wants to choose at most
κi ∈ Z>0 strategies from Pi such that a monotone in-
creasing and submodular utility function f : 2P → R≥0,
P =

⋃
i∈A Pi, evaluated at all the agents’ strategy se-

lection is maximized. In other words, the agents aim to
solve in a distributed manner the discrete domain opti-
mization problem

max
R∈I

f(R) (2a)

I =
{
R ⊂ P

∣∣ |R ∩ Pi| ≤ κi, ∀i ∈ A
}
. (2b)

The agents’ access to the utility function is through a
black box that returns f(R) for any given set R ⊂ P
(value oracle model). The constraint set (2b) is a par-
tition matroid, which restricts the number of strategy
choices of each agent i ∈ A to κi. In a distributed solu-
tion, each agent i ∈ A should obtain its respective com-
ponent R?

i ⊂ Pi of R? = ∪N
j=1R?

j , the optimal solution
of (2), by interacting only with the agents that are in its
communication range.
In the remainder of this paper, without loss of general-
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ity, we assume that global strategy set is given by P =⋃
i∈A Pi = {1, · · · , n}. Also, we assume that the agents’

local strategies each are non-empty consecutive integers
and ordered such that if Pi = {p, p+1, · · · , q} ⊂ P, then
p− 1 ∈ Pi−1 and q + 1 ∈ Pi+1.
The distributed solution we propose for solving (2) relies
on a multilinear extension relaxation approach and a
rounding procedure. In what follows, we introduce the
notation and definitions needed for this approach.
2.1 Multilinear relaxation

The utility function f assigns values to all the subsets
of P=

⋃
i∈A Pi = {1, · · · , n}. Thus, equivalently, we can

regard the set value utility function as a function on the
Boolean hypercube {0, 1}n, i.e., f : {0, 1}n → R. For
a submodular function f : 2P → R≥0, its multilinear
extension F : [0, 1]n → R≥0 in the continuous space
is [15]

F (x) =
∑
R⊂P

f(R)
∏
p∈R

[x]p
∏
p 6∈R

(1− [x]p), x ∈ [0, 1]n. (3)

Given x ∈ [0, 1]n we can define Rx to be the random
subset of P in which each element p ∈ P is included
independently with probability [x]p and not included
with probability 1− [x]p. Then the multilinear extension
F in (3) is simply [15]

F (x) = E[f(Rx)], (4)

where E[.] indicates the expected value. Taking the
derivatives of F (x) yields [15]

∂F

∂[x]p
(x) = E[f(Rx ∪ {p})− f(Rx \ {p})], (5)

and

∂2F

∂[x]p∂[x]q
(x) = E[f(Rx ∪ {p, q})− f(Rx ∪ {q} \ {p})

− f(Rx ∪ {p} \ {q}) + f(Rx \ {p, q})]. (6)

Multilinear-extension function F (x), expands the func-
tion evaluation of the utility function over the space be-
tween the vertices of the Boolean hypercube {0, 1}n. For
a solution via a continuous relaxation method, the ef-
fect of partition matroid constraint should also be con-
sidered. To do so, the matroid polytope for partition ma-
troid is defined as

M = {x ∈ [0, 1]n
∣∣ ∑

p∈Pi

[x]p ≤ κi,∀i ∈ A}. (7)

The matroid polytope M is the convex hull of the ver-
tices of the hypercube {0, 1}n that satisfy the partition
matroid constraint (2b). Additionally, note that accord-
ing to (3), F (x) for any x ∈ M is a weighted average of

values of F at the vertices of the matriod polytope M.
Then, equivalently, F (x) at any x ∈ M is a normalized-
weighted average of f on the strategies satisfying con-
straint (2b). As such,

f(R?) ≥ F (x), x ∈ M,

which is equivalent to f(R?) = max
x∈M

F (x), where R? is
the optimizer of problem (2) [15]. Therefore, solving the
continuous domain optimization problem

max
x∈M

F (x), (8)

can lead to finding the R?.
A practical implementation of a gradient-based method
to solve (8) is achieved by using an Euler discretized
implementation with stepsize of 1

T in T ∈ Z>0 steps. A
significant challenge in implementing a gradient-based
method is the exponential cost of computing the gra-
dient ∇F (x) whose calculation requires the knowledge
of f at each R ⊂ 2P . The stochastic interpretation (4)
of the multilinear extension and its derivatives however
offer a mechanism to estimate them with a reasonable
computational cost via sampling.

3 Distributed submodular maximization sub-
ject to partition matroid

In this section we propose a distributed algorithm for
the submodular maximization problem defined in Sec-
tion 2. Our solution relies on the continuous relaxation
of the discrete optimization (2). We first find a subopti-
mal solution to the relaxed problem and then propose a
rounding method to map this solution to a feasible sub-
optimal solution for (2).

3.1 Distributed Discrete Gradient Ascent Solution

In the distributed setting described in our problem def-
inition, every agent initially has access only to its own
strategy set. Let every agent i ∈ A maintain and evolve
a local copy of the membership probability vector as
xi(t) ∈ Rn. Since P = {1, · · · , n} is sorted agent-wise,
we denote xi(t) = [x̂>

i1(t), · · · ,x>
ii(t), · · · , x̂

>
iN (t)]> ∈ Rn

where xii(t) ∈ R|Pi|
≥0 is the membership probability vec-

tor of agent i’s own strategy with entries of [xi(t)]p, p ∈
Pi at iteration t ∈ {0, 1, · · · , T}, T ∈ Z>0, while x̂ij(t) ∈
R|Pj |

≥0 is the local estimate of the membership probability
vector of agent j by agent i with entries of [xi(t)]p, p ∈
Pj , j ∈ A\{i}. Every agent i ∈ A initializes atxi(0) = 0
and implements the propagation and update steps

x−
i (t+ 1) = xi(t) +

1

T
ṽi(t), (9a)

xi(t+ 1) = max
j∈Ni∪{i}

x−
j (t+ 1), (9b)
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where

ṽi(t) = argmax
w∈Mi

w.∇̃F (xi(t)) (10)

with

Mi=
{
w∈ [0, 1]n

∣∣∣1>.w ≤ κi , [w]p = 0, ∀p ∈ P\Pi

}
.

(11)

The vector ∇̃F (xi(t)) is the empirical estimate of
∇F (xi(t)). At time step t, each agent i ∈ A gener-
ates Ki independent samples {Rk

i (t)}
Ki

k=1 of random
set Rxi(t) drawn according to membership probability
vector xi(t) from P and empirically computes gradi-
ent vector ∇F (xi(t)) ∈ Rn

≥0, which according to (5) is
defined element-wise as

[
∇̃F (xi(t))

]
p
=

(
Ki∑
k=1

f(Rk
i (t)∪{p})−f(Rk

i (t)\{p})

)/
Ki,

(12)

p ∈ P = {1, · · · , n}.
In the propagation step (9a) agent i takes a step along a
feasible gradient ascent direction in its own local poly-
tope (11). Because the propagation is only based on the
local information of agent i, in the update step (9b), the
propagated x−

i (t + 1) of each agent i ∈ A is updated
by element-wise maximum seeking among its neighbors.
Lemma 1 below, whose proof is given in the Appendix D,
shows that, as expected,

xii(t) = x−
ii(t), i ∈ A,

i.e., the corrected component of xi corresponding to
agent i itself is the propagated value maintained at agent
i, and not the estimated value of any of its neighbors.
Lemma 1 Let the agents propagate and update their
local membership probability vector according to (9a)
and (9b). Let

x̄(t) = max
i∈A

xi(t). (13)

Then, at any t ∈ {0, 1, · · · , T}, we have

x̄(t) = [x>
11(t), · · · ,x>

NN (t)]>. (14)

We interpret x̄(t) as the global probability membership
vector of the network. Next lemma, whose proof is given
in Appendix D, states that both xi(t) and x̄(t) belong
to M for any t ∈ {0, · · · , T}, i.e., the trajectories of the
local and global membership probability vectors never
leave the matroid polytope.

Lemma 2 Let the agents propagate and update
their local membership probability vector according
to (9a) and (9b). Then, (a) xi(t), x̄(t) ∈ M at any
t ∈ {0, 1, · · · , T}; (b) 1.xii(T ) = κi, 1.x̂ij(T ) ≤ κj,
j ∈ A \ {i}, and xi(T ) ∈ [0, 1]n.
The following result, whose proof is given in Appendix D,
establishes the difference between each agent i’s local
copy of the membership probability vector xi(t) and
the global probability membership vector of the network
x̄(t). It also shows how the global probability member-
ship vector evolves when agents implement (9). This re-
sult is instrumental in establishing proof of Theorem 4.
Proposition 3 Let the agents propagate and update
their local membership probability vector according
to (9a) and (9b). Then, the membership probability
xi(t), t ∈ {0, · · · , T}, for each agent i ∈ A satisfies

0 ≤ 1

κ
1.(x̄(t)− xi(t)) ≤

1

T
d(G), (15a)

x̄(t+ 1)− x̄(t) =
1

T

∑
i∈A

ṽi(t), (15b)
1

κi
1.(x̄(t+ 1)− x̄(t)) =

1

T
, (15c)

where κ =
∑

i∈A κi and d(G) is the diameter of graph
G and x̄(t) is given by equation (14).
The following theorem, whose proof is given in Ap-
pendix E, quantifies the optimality gap of F (x̄(T )) with
respect to the solution of the main problem (2). To
characterize this optimality gap we take into account
the total curvature of the utility function, defined as

c = 1− min
S⊂P, p 6∈S

∆f (p|S)
∆f (p|∅)

. (16)

The total curvature c ∈ [0, 1] of a submodular set func-
tion f : 2P → R≥0 shows the worst-case increase in the
value of the function when member p is added.
Theorem 4 (Optimality gap ) Let the agents prop-
agate and update their local membership probability vec-
tor according to (9). Let κ =

∑
i∈A κi, Ki be number

of samples agent i used to compute ∇̃F (xi(t)), and R?

be the optimizer of problem (2). Then, with the proba-

bility of at least
(∏

i∈A(1− 2e−
1

8T2 Ki)|Pi|
)T

, the global
probability membership vector x̄(T ) satisfies

F (x̄(T )) ≥ βf(R?), (17)

where

β =
1

c
(1−e−c)(1−(2 c κ d(G)+ c κ

2
+ 1)

κ

T
). (18)

and d(G) is the diameter of graph G.
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Fig. 1. The first two steps of the stochas-
tic Pipage rounding (19) for an agent i with
xii(T ) = [0.15, 0.25, 0.1, 0.2, 0.1, 0.8, 0.05, 0.35]> that should
choose two strategies from Pi.

Notice that since

1− 2T n e−
1

8T2 K ≤
(∏

i∈A
(1− 2e−

1
8T2 Ki)|Pi|

)T
,

where K = min{K1, · · · ,KN}, the probability of the
bound (17) improves as T , and the number of the samples
collected by the agents K increase.

3.1.1 Distributed Pipage rounding procedure
The final output of a distributed solver for problem (2)
must be a set R̄ that belongs to I defined in (2b). Recall
that strategies corresponding to the vertices of the ma-
troid polytope M correspond to admissible strategy set
I. However, x̄(T ) is a fractional point in M. Moreover,
only part of x̄(T ) is available at each agent i ∈ A. In
what follows, we propose a distributed rounding proce-
dure that without any communication among the agents,
enables each agent i ∈ A to round its xii(T ), and use
this rounded probability membership vector to make its
local strategy choice R̄i such that ∪i∈AR̄i = R̄ ∈ I.
Let each agent i ∈ A initialize its local rounded mem-
bership vector yii ∈ R|Pi| at yii(0) = xii(T ). Then, by
virtue of Lemma 2, we have yii(0) ∈ [0, 1]|Pi|, i ∈ A.
Following a stochastic Pipage rounding procedure, each
agent i ∈ A at each rounding iteration τ uniformly ran-
dom selects two fractional elements [yii(τ)]p, [yii(τ)]q of
yii(τ), i.e., [yii(τ)]p, [yii(τ)]q ∈ (0, 1), and performs the
randomized swapping/update{
[yii(τ + 1)]p = [yii(τ)]p−δp(τ),

[yii(τ + 1)]q = [yii(τ)]q + δp(τ),
w.p. δq(τ)

δp(τ)+δq(τ)
,{

[yii(τ + 1)]q = [yii(τ)]q−δq(τ),

[yii(τ + 1)]p = [yii(τ)]p + δq(τ),
w.p. δp(τ)

δp(τ)+δq(τ)
,

(19)

where δp(τ) = min([yii(τ)]p, 1 − [yii(τ)]q) and δq(τ) =
min(1− [yii(τ)]p, [yii(τ)]q); see Fig. 1 for an illustration.
Here, ‘w.p.’ stands for ‘with probability of’. The follow-
ing proposition whose proof is in Appendix D gives the
convergence result of distributed Pipage rounding (19).
Proposition 5 Starting from yii(0) = xii(T ), let each
agent i ∈ A implement the rounding procedure (19).
Then, yii(|Pi|) ∈ {0, 1}|Pi|, and 1.yii(|Pi|) = κi. More-
over, ȳ = [y11(|P1|),y22(|P2|), · · · ,yNN (|PN |)] is a
vertex of M.

It is worth noting that 1.xii(T ) = κi, guaranteed by
Lemma 2 for our proposed algorithm (9), has a signifi-
cant importance in enabling a rounding procedure with-
out the necessity for coordination among the agents.
As we discuss in the numerical example of Section 4,
1.xii(T ) = κi is not the case for the distributed con-
tinuous greedy algorithm of [30], which uses an average
consensus algorithm to coordinate the local probability
membership choices of the agents.
Our distributed stochastic Pipage rounding procedure
concludes by each agent i ∈ A choosing its suboptimal
strategy set according to

R̄i = Rȳi
, where (20)

ȳi = [0>
|P1|×1, · · · ,yii(|Pi|)>, · · · ,0>

|PN |×1]
>,

with yii(|Pi|) obtained from (19), initialized at yii(0) =
xii(T ). The following result, whose proof is given in Ap-
pendix E, shows that our proposed distributed rounding
procedure (19) results in a strategy selection (20) that is
loss-less in the expected value sense. That is, it results in
not only a feasible selected strategy set but also strate-
gies that are selected in a distributed way with no loss in
the utility function compared to the fractional solution.
Theorem 6 (Utility evaluation after distributed
Pipage rounding) Let each agents i ∈ A choose
its strategy set R̄i ⊂ Pi according to (20). Let
R̄ =

⋃
i∈A R̄i. Then,

F (x̄(T )) ≤ E[f(R̄)]. (21)

3.2 Distributed implementation

Our proposed suboptimal solution to solve problem (2)
consists of iterative propagation step (9a), and update
step (9b), which requires local interaction between
neighbors to exchange information. After T steps, once
xi(T ) is obtained, each agent i ∈ A computes its sub-
optimal solution from (20) after running Pipage pro-
cedure (19) locally for at most |Pi| steps to compute
yii(|Pi|). In the propagation step agents should draw
Ki samples of Rxi

⊂ P to compute ∇̃F (xi(t)), requir-
ing access to the elements of P corresponding to the
none-zero elements of xi(t).
In what follows, by relying on the properties of the up-
dated local copies of the probability membership vec-
tor, we outline the information exchange that is needed
for implementation of our distributed solution. The re-
sulted implementation is summarized as the distributed
multilinear-extension-based iterative greedy algorithm
presented as Algorithm 1.
Observe that since in (10) we have w ∈ Mi, to carry out
the propagation step (9a), each agent should only com-
pute [∇̃F (xi(t))]p, p ∈ Pi from (12) using Ki samples of
{Rk

i (t)}
Ki

k=1, where each sample satisfies q ∈ Rk
i (t) with

the probability of [xi]q for all q ∈ P for which [xi]q 6= 0.
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Algorithm 1 Discrete distributed implementation of
the continuous greedy algorithm.
1: Init: F1 ← ∅, · · · ,FN ← ∅, t← 1,
2: while t ≤ T do
3: for i ∈ A do
4: Draw Ki sample strategy sets, {Rk

i }Ki
k=1 such that

q ∈ Rk
i w.p. α for all (q, α) ∈ Fi.

5: for p ∈ Pi do
6: Compute

[∇̃F (xi(t))]p≈E[f(R∪ {p})− f(R \ {p})]
using the sample strategy sets of step 4 via (12).

7: end for
8: compute {p?1, · · · , p?κi

} ⊂ Pi via (22)
9: F−

i ← Fi ⊕
{
(p?1,

1
T
)
}
⊕ · · · ⊕

{
(p?κi

, 1
T
)
}

10: Broadcast F−
i to the neighbors Ni.

11: Fi ← MAX
j∈Ni∪{i}

F−
j

12: end for
13: t← t+ 1.
14: end while
15: for i ∈ A do
16: R̄i = {p̄1, · · · , p̄κi} ← DistStochPipage(Fi)
17: end for
18: Return R̄1, · · · , R̄N

Algorithm 2 DistStochPipage( )

1: Input: Fi

2: Init: R̄i = ∅
3: while |R̄i| < κi do
4: pick any (αp, p), (αp, p) ∈ Fi such that p, q ∈ Pi

5: Set:

{
δp = min{αp, 1− αq}
δq = min{αq, 1− αp}

6: Update



{
αp ← αp − δp
αq ← αq + δp

w.p. δq
δp+δq

or{
αq ← αq − δq
αp ← αp + δq

w.p. δp
δp+δq

7: if αp = 1 then R̄i ← R̄i ∪ {p}, Fi ← Fi\{(αp, p)}
8: if αq = 1 then R̄i ← R̄i ∪ {q}, Fi ← Fi\{(αq, q)}
9: end while

10: Return R̄i

It follows from submodularity of f that f(Rk
i (t)∪{p})−

f(Rk
i (t)) \ {p}) ≥ 0. Thus, for any p ∈ Pi we have

[∇̃F (xi(t))]p ≥ 0. Consequently, one realization of ṽi(t)
of optimization problem (10) is 1{p?

1 ,··· ,p?
κi

}, where the
set {p?1, · · · , p?κi

} ⊂ Pi is obtained from

{p?1, · · · , p?κi
} = argmax({∇̃F (xi(t))}p∈Pi , κi), (22)

i.e., {p?1, · · · , p?κi
} ⊂ Pi corresponds to the ki largest

elements of {∇̃F (xi(t))}p∈Pi
.

Using ṽi(t) = 1{p?
1 ,··· ,p?

κi
}, it follows from (9a) that

at each propagation step only the value of κi elements
of xi(t) corresponding to {p?1, · · · , p?κi

} changes and in-
creases by 1

T .

Now let us define the local information set of each agent
i at time step t as

Fi(t)=
{
(p, α)∈P×[0, 1]

∣∣∣[xi(t)]p 6= 0 and α = [xi(t)]p
}
.

(23)

Fi(t) is a set of couples representing which element p ∈ P
has an associated non-zero probability membership vec-
tor element in xi(t). Since xi(0) = 0, then Fi(0) = ∅. In-
troduction of the information set Fi(t) provides a frame-
work through which the agents only store and communi-
cate the necessary information. Furthermore, it enables
the agents to carry out their local computations using
the available information in Fi(t).
As we discussed earlier, since we use ṽi(t) = 1{p?

1 ,··· ,p?
κi

}

the corresponding realization of propagation rule (9a)
over the information set Fi(t) is

F−
i (t+ 1) = Fi(t)⊕ {(p?1,

1

T
)} ⊕ · · · ⊕ {(p?κi

,
1

T
)}, (24)

where the addition operator ⊕ is defined as follows.
Definition 7 Given a set F ⊂ P × R and a member
(p, α) ∈ P × R, we define the addition operator ⊕ as
F ′ = F⊕{(p, α)} such that

F ′ =

{
F ∪ {(p, α)} (p, γ) 6∈ F ,

(F \ {(p, γ)}) ∪ {(p, γ + α)} (p, γ) ∈ F .

Per definition operator ⊕ inserts (p?j , 1
T ), j ∈ {1, · · · , κi}

in agent i’s information set if there exists no element
(p?j , α), α 6= 0 in Fi(t); otherwise, operator ⊕ pops out
(p?j , α) and replaces it with (p?j , α+

1
T ). Therefore,F−

i (t+

1) is consistent with the realization of x−
i (t+1) through

the membership probability vector to information set
conversion relation (23).
Instead of the agents sharing x−

i (t), i ∈ A with their
neighbors, they can share their local information set with
their neighboring agents and execute a max operation
over their local and received information sets as

Fi(t+ 1) = MAX
j∈Ni∪{i}

F−
j (t+ 1), (25)

where the MAX operator is defined as follows.
Definition 8 Given a collection of sets Fi ∈ P × R,
i ∈ A, we define the max-operation over these collec-
tion as MAX

i∈A
Fi = {(u, γ) ∈ P × R|(u, γ) ∈ F̄ s.t. γ =

max
(u,α)∈F̄

α}, where F̄ =
⋃

i∈A Fi.

Consequently, through the membership probability vec-
tor to information set conversion relation (23), Fi(t+1)
is consistent with a realization of xi(t+ 1). Notice that
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sharing Fi(t) not only enables sharing non-zero compo-
nents of x−

i (t+1) but also the corresponding strategies,
which are what is needed to preform the next step of the
algorithm. Moreover, because at each propagation step
of the algorithm only, at most, κi zero elements of xi(t)
will become non-zero when x−

i (t + 1) is computed, the
size of Fi at worst case grows linearly with

∑N
j=1 κj after

each update.
Finally, given the definition of Fi(t) in (23) and in light
of Proposition 5, the stochastic rounding procedure (19)
and (20) can be implemented according to Algorithm 2.
In light of the discussion above, Algorithm 1 gives our
distributed multilinear extension based suboptimal so-
lution for problem (2). The following theorem, whose
proof is given in Appendix E establishes the optimal-
ity bound of f(R̄) where R̄ =

⋃
i∈A{R̄i} is generated

through the decentralized Algorithm 1.
Theorem 9 (Convergence guarantee and subop-
timality gap of Algorithm 1) Let f : 2P → R≥0

be normalized, monotone increasing and submodular
set function. Let R? to be the optimizer of prob-
lem (2). Following the distributed Algorithm 1, the
admissible strategy set R̄ with probability of at least
1− 2T n e−

1
8T2 K , K = min

i∈A
Ki satisfies

E[f(R̄)] ≥ β f(R?),

where β is given in (18).
The constant approximation factor β is characterized
in terms of the total curvature c of the utility function
f . Curvature c represents a measure of the diminish-
ing return of a set function. The curvature of c = 0
means that the function is modular, i.e., f({p1, p2}) =
f({p1}) + f({p2}), p1, p2 ∈ P. We can see from (18)
that when c = 0, β = 1, meaning that for modular func-
tions our algorithm can find the optimal solution in fi-
nite time. On the other hand, c = 1 means that there is
at least a member that adds no value to function f in
a special circumstance. Whenever the total curvature is
not known, it is rational to assume the worst case sce-
nario and set c = 1.
Remark 10 (Extra communication for improved
optimality gap) Replacing the update step (9b) with
xi(t+ 1) = yi(d(G)) where yi(0) = x−

i (t+ 1) and

yi(m) = max
j∈Ni∪{i}

yj(m− 1), m ∈ {1, · · · , d(G)},

i.e., starting with x−
i (t + 1) and recursively repeating

the update step (9b) using the output of the previous
recursion for d(G) times, each agent i ∈ A arrives
at xi(t + 1) = x̄(t + 1) (recall Lemma 1). Hence,
for this revised implementation, following the proof
of Theorem 4, we observe that (48) is replaced by∣∣∣ ∂F
∂[x]p

(x̄(t))− ∂F
∂[x]p

(xi(t))
∣∣∣ = 0, which consequently,

Fig. 2. Set of information sources D and set of sensor place-
ment point B.

leads to

1

c
(1−e−c)(1−(

c κ

2
+ 1)

κ

T
)f(R?)≤F (x̄ii(T )), (26)

with the probability of at least
(∏

i∈A(1− 2e−
1

8T2 Kj )|Pi|
)T

.
This improved optimality gap is achieved by (d(G)−1)T
extra communication per agent. The optimality
bound (26) is the same bound that is achieved by the
centralized algorithm of [16]. To implement this revi-
sion, Algorithm 1’s step 11 (equivalent to (24)) should
be replaced by Fi = Hi(d(G)), where Hi(0) = F−

i , and

Hi(m) = MAX
j∈Ni∪{i}

H−
j (m− 1), m ∈ {1, · · · , d(G)}.

(27)

4 Numerical Example
We demonstrate our algorithm’s performance using a
multi-agent information harvesting problem. Consider a
countable set of information sources D ⊂ R2 that are
spread in a two-dimensional area without any prior in-
formation on their spread density function. In the same
area, a countable set of prespecified information retrieval
points B ⊂ R2 are available for placing information har-
vester devices. We assume that the information is best
transferred from an information point d ∈ D to a har-
vester device dispatched at b ∈ B if the distance between
b and d is minimized. Hence, for each information point
d ∈ D the closest information retrieval point b ∈ B with
a deployed device is assigned to harvest information.
Each agent i ∈ A is only able to deploy at most κi

devices to its admissible deployment locations Bi ⊂ B,
where B1, · · · ,BN are not necessarily disjoint sets. To
make the strategy set of the agents disjoint, we define
the deployment strategy of each agent i ∈ A as Pi =
{(i, b)|b ∈ Bi}. Note that if b ∈ Bi and b ∈ Bj then the
strategies (i, b) ∈ Pi and (j, b) ∈ Pj will be placing one
sensors from agent i ∈ A and one sensor from agent j ∈
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A at the placement location b ∈ B. The goal of the agents
A is to each choose a strategy set Ri ⊂ Pi, |Ri| ≤ κi

such that cumulative strategy of the team R =
⋃

i∈A Ri

results in smallest total distance of information sources
to the deployed devices, i.e. minimizing

L(R) =
∑
d∈D

min
(i,b)∈R

‖d− b‖ . (28)

Taking a phantom placement location b0 to be a random
point in R2, the problem can be reformulated as prob-
lem (2) where the utility function to maximize is

f(R) = L({b0})− L(R∪ {b0}). (29)

This utility function (29) measures the decrease in the
loss associated with the active set versus the loss asso-
ciated with just the phantom placement location and
maximizing this function is equivalent to minimizing the
loss (28). It is known that the utility function (29) is
submodular and monotone increasing [32].
For our numerical study, we consider 4500 information
sources spread in a two-dimensional field where there are
15 deployment locations B = {b1, · · · , b15}, see Fig. 2.
We consider a set of ten agents A = {1, · · · , 10} whose
goal is to deploy κ1 = 2, κ2 = 2, κ3 = 2, κ4 = 2, κ5 =
2, κ6 = 1, κ7 = 1, κ6 = 1, κ9 = 1, κ10 = 1 de-
vices at B1 = {b1, b2, b3, b5, b6}, B2 = {b4, b5, b6, b8, b9},
B3 = {b7, b8, b9, b11, b12}, B4 = {b10, b11, b12, b14, b15},
B5 = {b2, b3, b13, b14, b15}, B6 = {b2, b3}, B7 =
{b5, b6}, B8 = {b8, b9}, B9 = {b11, b12}, and B10 =
{b14, b15}. Hence the disjoint strategy sets are de-
fined as P1 = {(1, b1), (1, b2), (1, b3), (1, b5), (1, b6)},
P2 = {(2, b4), (2, b5), (2, b6), (2, b8), (2, b9)}, P3 =
{(3, b7), (3, b8), (3, b9), (3, b11), (3, b12)}, P4 = {(4, b10),
(4, b11), (4, b12), (4, b14), (4, b15)}, P5 = {(5, b2), (5, b3),
(5, b13), (5, b14), (5, b15)}, P6 = {(6, b2), (6, b3)}, P7 =
{(7, b5), (7, b6)}, P8 = {(8, b8), (8, b9)}, P9 = {(9, b11),
(9, b12)}, and P10 = {(10, b14), (10, b15)}. Although,
the general form of the problem is NP-hard, we have
designed our numerical example such the optimal
solution is trivial. Recall that to maximize the util-
ity (29) of the group the deployed sensors must be
placed such that the distance between the information
sources and deployed sensors is minimized. Since there
are |B| = 15 deployment locations and

∑5
j=1 κj = 15

sensors to deploy, the optimal solution is to place the
deployed sensors to occupy all the sensor-placement
locations. This deployment scenario is only feasible
if agent 1 deploys its κ1 = 2 devices at locations
{b1, b2} ⊂ B1, i.e. R1 = {(1, b1), (1, b2)}, agent 2 de-
ploys its κ2 = 2 devices at locations {b4, b5} ⊂ B2, i.e.
R2 = {(2, b4), (2, b5)}, agent 3 deploys its κ3 = 2 devices
at locations {b7, b8} ⊂ B3, i.e. R3 = {(3, b7), (3, b8)},
agent 4 deploys its κ4 = 2 devices at locations
{b10, b11} ⊂ B4, i.e. R4 = {(4, b10), (4, b11)}, agent 5
deploys its κ5 = 2 devices at locations {b13, b14} ⊂ B5,
i.e. R5 = {(5, b13), (5, b141)}, agent 6 deploys its κ6 = 1

Fig. 3. The communication graph of the agents is a ring
graph. Six possible communication sequences to implement
a sequential greedy algorithm are shown.

devices at locations {b3} ⊂ B6, i.e. R6 = {(6, b3)}, agent
7 deploys its κ7 = 1 devices at locations {b6} ⊂ B7,
i.e. R7 = {(7, b6)}, agent 8 deploys its κ8 = 1 devices
at locations {b9} ⊂ B8, i.e. R8 = {(8, b9)}, agent 9
deploys its κ9 = 1 devices at locations {b12} ⊂ B9, i.e.
R9 = {(9, b12)}, and agent 10 deploys its κ10 = 1 de-
vices at locations {b15} ⊂ B10, i.e. R10 = {(10, b15)}.
This setting allows us to compare the outcome of the
suboptimal solutions against the optimal one. It is inter-
esting to notice that the total curvature of utility func-
tion (29) is c = 1. This is because if we take the strategy
set S = {(1, b1), (2, b2)} and the strategy p = (6, b2),
since, the strategies (1, b2) and (6, b2) place a sensor at
the same location then the utility equation (29) results
in ∆f (p|S) = 0. Thus, given the definition of the total
curvature (16), we obtain c = 1.
Let the communication topology of the agents be an
undirected ring graph, see Fig. 3. First, we solve the
problem using Algorithm 1. We generate 50 deployment
scenarios, each corresponding to a set of 4500 randomly
generated information sources and 15 sensor locations.
The results of implementing Algorithm 1 for the differ-
ent number of samples Ki (all agents use the same num-
ber of samples) and iteration number T = 50 is shown in
Fig. 4. Observe that using a modest number of iterations
T = 50 and a modest number of samples Ki = 1000
Algorithm 1 finds almost the optimal solution in terms
of occupying the placement locations; the average num-
ber of locations occupied is 14.3. For this setting, the
expected outcome of Algorithm 1 over the 50 place-
ment scenarios considered, measured by utility func-
tion (29), is at 0.96 of the optimal solution. The run-time
of the algorithm, implemented using NumPy library, for
each agent is approximately 40 seconds on a comput-
ing device with Intel(R) Xeon(R) CPU @ 2.30GHz and
13GB RAM.
Comparison with sequential greedy algorithm: Next, we
solve the problem using a decentralized massage-passing
sequential greedy algorithm following [7,33]. That is, we
choose a route SEQ that visits all the agents on the com-
munication graph. We then make the agents perform
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Fig. 4. The average number of sensor placement points cov-
ered by deployed sensors when Algorithm 1 is implemented
by different sample numbers and T = 50.

Fig. 5. The average number of covered placement points
over 50 different randomly generated information sources
and sensor placement locations. The x-axis corresponds to
the six SEQ in Fig. 3(a)-(f) and Algorithm 1 denoted by
Alg1. The y-axis corresponds to the average number of sen-
sor placement points covered by the deployed sensors.

the sequential greedy algorithm by sequential message-
passing according to SEQ. Fig. 3(a)-(f) gives 6 of the pos-
sible SEQ depicted by the semi-circular arrow inside the
networks. As Fig. 5 shows the performance (measured
by the number of occupied placement locations) of the
sequential greedy algorithm depends on what SEQ agents
follow, with SEQ of Fig. 3(a) delivering the worst perfor-
mance. Moreover, the performance measured by utility
function (29) for SEQ (a),(b),(c),(d),(e), and (f) are re-
spectively 0.78, 0.80, 0.82, 0.83, 0.92, 0.99 of the opti-
mal utility value. We can attribute this inconsistency to
the heterogeneity of the agents’ sensor numbers. When
agents with a larger number of choices pick first, this lim-
its the options of the agents with a lower number of sen-
sors available. However, the performance of Algorithm 1
is regardless of any particular path on the graph since,
through its iterative process, the agents get the chance
to readjust their choices, see Fig. 6 for a deployment
outcome via Algorithm 1 and the sequential greedy al-
gorithm. Intuitively, this explains the better optimality
gap of the continuous greedy algorithm over the sequen-
tial greedy algorithm. The sequential greedy algorithm
has a run-time of less than 1 second for each agent on
a device with Intel(R) Xeon(R) CPU @ 2.30GHz and
13GB RAM, which is significantly less than 40 seconds
that we reported for our proposed Algorithm 1 using
Ki = 1000 and T = 50. Even though computationally
efficient, as we discussed in the introduction, the down-
sides of the sequential greedy algorithm are in its worse

optimality gap, the overhead associated with identify-
ing the message-passing sequence, and the dependence
of the results on the message-passing sequence [21].
Comparison with the average consensus based algorithm
of [30] : we compare our proposed Algorithm 1, which is
based on a maximum consensus communication to the
algorithm proposed in [30], which is based on an average
consensus communication. Since the algorithm of [30] is
designed for when agents choose only one strategy each,
we carry out this study for κi = 1 for i ∈ {1, 2, · · · , 10}.
Moreover, since no distributed rounding procedures are
proposed in [30], we implemented a central rounding al-
gorithm based on the contention resolution schemes [34]
to achieve a rounded solution from the relaxed solu-
tion. Our analysis shows that the two algorithms do not
have any significant performance or running time ad-
vantage over one another in finding the relaxed solution.
Specifically, the given number of iteration T = 50 and
the given number of samples Ki = 1000 (same for all
agents) Algorithm 1 and the algorithm in [30] yield the
final strategy set R̄ such that E[f(R̄)] ≥ 0.93f(R?) and
E[f(R̄)] ≥ 0.91f(R?) respectively. Here, the optimal so-
lution was computed by the brute force search. Moreover
the running time for both of the algorithms was approx-
imately 40 seconds per agent.
However, we focus our discussion on the trajectory of
xi(t) on both of Algorithm 1 and the algorithm in [30]
to further discuss an inherent characteristic of xi(T ) re-
sulted from Algorithm 1 which greatly facilitates a dis-
tributed rounding procedure. The main difference be-
tween the two algorithms however is in how xi(T ) of each
agent i ∈ {1, 2, · · · , 10} is placed with respect to the
edges of the matroid polytope M. Recall that 1.xii(T ) =
κi = 1 is of great importance for the rounding proce-
dure. Let

D(t) =
∑

i∈A
(1.xii(t)− 1)1((1.xii(t)− 1) ≥ 0), (30)

where 1 : R → {0, 1} is the indicator function. The
value of D(T ) shows the deviation of the local compo-
nent of the membership probability vector xii(T ) from
the edges of matroid polytope M. Figure 7 shows this
value for the different numbers of iterations for the two
algorithms; Algorithm 1, as ensured by Lemma 2, re-
sults in D(T ) = 0 for any choice of iteration number T .
However, this is not the case for Algorithm of [30]. As
the results in Figure 7 shows this algorithm seems to sat-
isfy D(T ) = 0 as the number of the iteration increases.
Figure 8 compares the value of D(t) of Algorithm 1 and
the algorithm of [30] for t ∈ [0, T ] over 10 different in-
stances of the utility maximization problem (29). The
former algorithm is based on maximum consensus and
D(t) for this algorithm converges to 0, as predicted by
Lemma 2. The latter algorithm is based on average con-
sensus and D(t) converges to a number greater than 0,
meaning that xi(T ) of some of the agents are outside M.
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Fig. 6. The left figure shows an instance of the placement result for Algorithm 1 and the right figure shows the placement
results for the Sequential Greedy of SEQ (a). Algorithm 1 is able to place the sensors such that all of the placement locations
are occupied while the Sequential Greedy of SEQ (a) leaves out three unoccupied placement locations.

Fig. 7. The deviation of probability vectors xi(T ), i ∈ A
from the convex hullM for average consensus and maximum
consensus communication protocols.

Fig. 8. The value of D(t) calculated using xi(t), i ∈ A for
average consensus and maximum consensus communication
protocols. The value of D(t) was calculated by running Algo-
rithm 1 and the algorithm in [30] with κi = 1, i ∈ A over 10
different instances of the utility maximization problem (29).

5 Conclusion
We proposed a distributed suboptimal algorithm to
solve the problem of maximizing a monotone increasing
submodular set function subject to a partition matroid
constraint when agents communicate over a connected
graph. Our problem of interest was motivated by opti-
mal multi-agent sensor placement problems in discrete
space. Our algorithm was a practical decentralization of
a multilinear extension-based algorithm that achieves
1
c (1 − e−c − O(1/T )) optimally gap, which is an im-

provement over 1
1+c optimality gap that the well-known

sequential greedy algorithm achieves. Our algorithm
included a distributed continuous greedy algorithm
followed by a local rounding procedure that required
no inter-agent communication. Through a numerical
study, we compared the outcome obtained by our pro-
posed algorithm with a decentralized sequential greedy
algorithm that is constructed from assigning a priority
sequence to the agents. We showed that the outcome
of the sequential greedy algorithm is inconsistent and
depends on the sequence. However, our algorithm’s out-
come, due to its iterative nature intrinsically tended
to be consistent, which also explains its better opti-
mally gap over the sequential greedy algorithm. We
also compared our algorithm to an existing distributed
average consensus-based continuous greedy algorithm.
We showed that the main advantage of our proposed
algorithm is its strong guarantee of reaching the edges
of the constraint set’s matroid polytope by all agents in
finite time, which is of significance in the Pipage type
rounding procedures. Our future work is to study the ro-
bustness of our proposed algorithm to message dropout.
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In the following sections, we outline the necessary pre-
liminary results and also the proofs of our technical re-
sults.
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A Central continuous greedy algorithm
As [16] shows, the constrained gradient ascent

dx
dt

= v(x) where v(x) = argmax
w∈M

(w.∇F (x)), (31)

initialized at x(0)=0 to solve the relaxed problem (8),
can lead to a suboptimal solution for problem (2). Since
M is convex and x(0) = 0 ∈ M, the trajectory t 7→
x of (31) belongs to M for t ∈ [0, 1]. The following
Lemma provides an essential property of the multilinear
extended function F which can be used in quantifying
the optimality gap of gradient ascent solver (31).
Lemma 11 (See [16]) Consider the set value opti-
mization problem (2). Suppose f : P → R≥0 is an in-
creasing and submodular set function with curvature c
whose multilinear extension is F : [0, 1]n → R≥0. Let
R? be the maximizer of (2). Then,

1R? .∇F (x) ≥ f(R?)− c F (x), ∀x ∈ M.

Due to Lemma 11, ascent direction in (31) satisfies

dF
dt

= v(x).∇F (x) ≥ f(R?)− c F (x). (32)

From (32), Vondrak [16] shows that (31) results in
F (x(1)) ≥ 1

c (1− e−c) f(R?).

B Stochastic estimation of the relaxed func-
tions’ gradient

The stochastic interpretation (4) of the multilinear-
extension and its derivatives leads to empirical estima-
tion of ∇F (x(t)) as the equation given by (12). The
Chernoff-Hoeffding’s inequality can be used to quan-
tify the quality of these estimates given the number of
samples.
Theorem 12 (Chernoff-Hoeffding’s inequal-
ity [35]) Consider a set of K independent random vari-
ables X1, ..., XK where a < Xi < b. Let SK =

∑K
i=1 Xi,

then

P[|SK − E[SK ]| > δ] < 2 e−
2δ2

K(b−a)2 ,

for any δ ∈ R≥0.
The following lemma, whose proof relies on the Chernoff-
Hoeffding’s inequality, can quantify the quality of esti-
mating the gradient of a multilinear extension function
by sampling from the ground set.
Lemma 13 Consider the set value optimization prob-
lem (2). Suppose f : P → R≥0 is an increasing and
submodular set function and consider its multilinear ex-
tension F : [0, 1]n → R≥0. Let ∇̃F (x) be the estimate
of ∇F (x) that is calculated by taking K ∈ Z>0 samples

of set Rx according to membership probability vector x.
Then,∣∣∣∣[∇̃F (x)

]
p
− ∂F

∂[x]p
(x)

∣∣∣∣≥ 1

2T
f(R?), p ∈ {1, · · · , n},

(33)

with the probability of at least 2e−
1

8T2 K , for any T ∈
Z>0.
Proof Define the random variable

X=

(
(f(Rx∪ {p})−f(Rx\{p}))−

∂F

∂xp
(x)

)/
f(R?),

and assume that we take K samples from Rx to con-
struct {Xk}Kk=1 realization of X. Since f is a submodu-
lar function, then we have (f(Rx∪ {p})−f(Rx\{p})) ≤
f(R?). Consequently using equation (5), we con-
clude that 0 ≤ X ≤ 1. Hence, using Theorem 12,
we have

∣∣∣∑K
k=1 Xk − E[X]

∣∣∣ ≥ 1
2T K with the probabil-

ity of at least 2e−
1

8T2 K . Hence, the estimation accu-

racy of ∇F (x), is given by
∣∣∣∣[∇̃F (x)

]
p
− ∂F

∂[x]p
(x)

∣∣∣∣ ≥
1
2T f(R

?), p ∈ {1, · · · , n} with the probability of at
least 2e−

1
8T2 K . 2

C Properties of the first and the second order
derivatives of the multilinear extension

In this section we derive some auxiliary results on the
first and the second order derivatives of the multilinear
extension F which are going to be used directly in the
proof of the main theorems.
Lemma 14 (First and second derivatives of the
multilinear extension) Let f : 2P → R≥0, P =
{1, · · · , n}, be increasing and submodular set function
with curvature c, and the multinear extension function
F (x) defined in (3). Then, ∂F

∂[x]p
≥ (1 − c)f(p) for all

p ∈ P and x ∈ [0, 1]n. Moreover, −cf(R?) ≤ ∂2F
∂[x]p[x]q

≤
0 for all p, q ∈ P and x ∈ [0, 1]n.
Proof The derivative of F (x) can be written as

∂F

∂[x]p
(x) = ∆f (p |Rx \ {p}). (34)

Furthermore, by the definition of the total curvature (16)
we can write c ≥ 1 − ∆f (p|Rx\p)

f(p) , and by conjunction
with equation (34), we have ∂F

∂[x]p
≥ (1 − c)f(p) which

proves the first part of Lemma. Since p 6∈ Rx ∪{q}\{p},
therefore by the definition of the total curvature (16) we
can write

(1− c)f({p})≤∆f (p|Rx ∪ {q} \ {pi})≤f({p}). (35)
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Moreover, Since p 6∈ Rx \ {p, q}, therefore by the defini-
tion of the total curvature (16) we can write

(1− c)f({p}) ≤ ∆f (p|Rx \ {p, q}) ≤ f({p}). (36)

Knowing that ∆f (p|Rx ∪ {q} \ {p})=f(Rx ∪ {p, q})−
f(Rx ∪ {q} \ {p}) and ∆f (p|Rx \ {p, q}) = f(Rx ∪
{p})\{q})−f(Rx\{p, q}), the definition of second order
derivative of F (6), we can be written as

∂F

∂[x]p∂[x]q
=E[∆f (p|Rx ∪ {q}\{p})−∆f (p|Rx\{p, q})].

(37)

Putting (35) and (36) and (37) together in conjunction
with submodular property of f results in −cf({p}) ≤

∂2F
∂[x]q∂[x]q

≤ 0. Knowing that f({p}) ≤ f(R?) results in
proving the second part of Lemma. 2

Lemma 15 (Directional Convexity) Let f : 2P →
R≥0, P = {1, · · · , n}, be monotone increasing and sub-
modular set function with a multinear extension func-
tion F (x) defined in (3). Then, for any given x ∈ [0, 1]n

and w ∈ {−1, 0, 1}n where wp = 1, wq = −1 and wl =
0, l ∈ {1, · · · , n}\{p, q} for some p, q ∈ {1, · · · , n},
F (x+ λw) : R → R≥0 is a convex function of λ.
Proof Defining the vector w ∈ Rn and wp = 1, wq =
−1 and wl = 0, l 6= p, q, then the multilinear extension
of set function f in the direction of w is defined as

F (x+ λw) =∑
R⊂P\{p,q}

f({p} ∪ R)([x]p + λ)(1− ([x]q − λ))P(R)+

f({q} ∪ R)(1− ([x]p + λ))([x]q − λ)P(R)+

f(R)(1− ([x]p + λ))(1− ([x]q − λ))P(R)+

f(R)−f({p, q} ∪ R))([x]p + λ)([x]q−λ)P(R).

with P(R) =
∏

r∈Rxr

∏
r 6∈R(1− xr). Taking the second

derivative of F (x+ λw) with respect to λ yields

∂2F (x+ λw)

∂λ2
=

∑
R⊂P\{p,q}

2P(R)(f({p} ∪ R) + f({q} ∪ R)

− f(R)− f({p, q} ∪ R)).

The submodularity of f asserts that ∂2F (x+λw)
∂λ2 ≥ 0 and

consequently, F (x+ λw) is a convex function of λ. 2

Lemma 16 (Interval Bound of Twice differen-
tiable function) Consider a twice differentiable func-
tion F (x) : [0, 1]n → R which satisfies

∣∣∣ ∂2F
∂[x]p∂[x]q

∣∣∣ ≤ α

for any p, q ∈ {1, · · · , n}. Then for any x1,x2 ∈ Rn

satisfying x2 ≥ x1 and 1.(x2 − x1) ≤ β we have

∣∣∣∣ ∂F

∂[x]p
(x1 + ε(x2 − x1))−

∂F

∂[x]p
(x1)

∣∣∣∣ ≤ εαβ, (38a)

F (x2)− F (x1) ≥ ∇F (x1).(x2 − x1)−
1

2
αβ2, (38b)

for ε ∈ [0 1].

Proof Let hp = [ ∂2F
∂[x]p∂x1

, · · · , ∂2F
∂[x]p∂xn

]>. Then, we can
write ∣∣∣∣ ∂F

∂[x]p
(x1 + ε(x2 − x1))−

∂F

∂[x]p
(x1)

∣∣∣∣
=

∣∣∣∣∫ ε

0

hp(x1 + τ(x2 − x1)).(x2 − x1)dτ
∣∣∣∣

≤
∫ ε

0

α1.(x2 − x1)dτ = εαβ, (39)

Furthermore, F (x2) − F (x1) =
∫ 1

0
∇F (x1 + ε(x2 −

x1)).(x̄(t + 1) − x̄(t))dε ≥
∫ 1

0
(∇F (x1) − εαβ).(x2 −

x1)dε = ∇F (x1).(x2−x1) − 1
2αβ

2, with the third line
follow from equation (39), which concludes the proof. 2

D Convergence Analysis
Proof of Lemma 1 Since f is monotone increasing
and submodular, we have f(Rxi(t) ∪ {p}) − f(Rxi(t) \
{p}) ≥ 0 and hence ∇̃F (xi(t)) has positive entries
∀i ∈ A. Thus, ṽi(t) ∈ Mi, the optimizer of the opti-
mization (10) has nonnegative entries. Hence, according
to the propagation and update rule (9a) and (9b), we
can conclude that xii(t) has increasing elements and
only agent i can update it and other agents only copy
this value as x̂ji(t). Therefore, we can conclude that
[x̂ji]p(t) ≤ [xii]p(t) for all p ∈ Pi which concludes
the proof. 2

Proof of Lemma 2 The proof follows from a mathe-
matical induction argument. The base case xi(0) = 0 ∈
M and x̄(0) = 0 ∈ M is trivially true. We take it to be
true that at time t and for each agent i ∈ A it hold that
xi(t) ∈ M with

1.xii(t) =
t

T
κi, and 1.x̂ij(t) ≤

t

T
κj , j ∈ A \ {i}.

for t < T and ṽi(t) ∈ Mi satisfying

∑
p∈Pi

[ṽi(t)]p=κi, and
∑

p∈Pj

[ṽi(t)]p=0, j∈A\{i}.

Since [∇̃F (xi(t))]p ≥ 0 p ∈ P, then by propagation
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rule (9a), we establish that

1.x−
ii(t+ 1) =

t+ 1

T
κi,

1.x̂−
ij(t+ 1) ≤ t

T
κj , j ∈ A \ {i}.

A a result of Mi, i ∈ A being disjoint convex subspaces
of M, the update rule (9b) leads to

1.xii(t+ 1) =
t+ 1

T
κi,

1.x̂ij(t+ 1) ≤ t+ 1

T
κj , j ∈ A \ {i}.

Therefore, we conclude that xi(t + 1) ∈ M. Moreover,
by the definition of x̄(t) in (14) and Mi, i ∈ A being
disjoint convex subspaces of M, we deduct that

1.x̄(t) =
∑

i∈A
1.xii(t+ 1) =

t+ 1

T
κi i ∈ A,

for t < T and therefore, x̄(t+1) ∈ M. We conclude the
proof of (a) by induction and trivially (b) follows. 2

Proof of Proposition 3 f is a monotone increasing
and submodular set function therefore f(Rxi(t)∪{p})−
f(Rxi(t) \ {p}) ≥ 0 and hence ∇̃F (xi(t)) has positive
entries ∀i ∈ A. Then, because ṽi(t) ∈ Mi, it follows
from (10) that ṽi(t) has non-negative entries, [ṽi(t)]p ≥
0 which satisfy

∑
p∈Pi

[ṽi(t)]p = κi. Therefore, it follows
from (9a) and Lemma 1 that

1.xii(t+ 1) = 1.xii(t) +
κi

T
, i ∈ A. (40)

Using (40) recursively for d(G) steps, we can also write

1.xii(t) = 1.xii(t− d(G)) + κi

T
d(G), i ∈ A. (41)

Furthermore, it follows from Lemma (1) that for all ∀p ∈
Pi and any j ∈ A\{i}, we can write

[xi(t)]p ≥ [xj(t)]p. (42)

Also, since every agent j ∈ A\{i} can be reached from
agent i ∈ A at most in d(G) hops, it follows from the
propagation and update laws (9a) and (9b), for all ∀p ∈
Pi, for any j ∈ A\{i} that

[xj(t)]p ≥ [xi(t− d(G))]p(t− d(G)). (43)

Thus, for i ∈ A and j ∈ A\{i}, (42) and (43) result in

1.xii(t) ≥ 1.x̂ji(t) ≥ 1.xii(t− d(G)). (44)

Next, we can use (41) and (44) to write

1.xii(t) ≥ 1.x̂ji(t) ≥ 1.xii(t)−
κi

T
d(G), (45)

for i ∈ A and j ∈ A\{i}. Using (45) for any i ∈ A we
can write∑

l∈A
1.xll(t) ≥ 1.xii(t) +

∑
j∈A\{i}

1.x̂ij(t) ≥∑
l∈A

1.xll(t)−
κl

T
d(G). (46)

Then, using Lemma 1, from (46) we can write

1.x̄(t) ≥ 1.xi(t) ≥ 1.x̄(t)− κ

T
d(G),

with κ =
∑

i∈A κi, which ascertains (15a). Next, note
that from Lemma 1, we have xjj(t) = x−

ii(t) for any
i ∈ A. Then, using (9a) and invoking Lemma 1, we
obtain (15b), which, given (40), also ascertains (15c). 2
Proof of Proposition 5 Given the definition of δp(τ)
and δq(τ), at each iteration of (19), either [yii(τ+1)]p ∈
{0, 1} or [yii(τ + 1)]q ∈ {0, 1}. Moreover, yii(τ + 1) ∈
[0, 1]|Pi|. Consequently, yii(|Pi|) ∈ {0, 1}|Pi|. Next, note
that since yii(0) = xii(T ), i ∈ A, by virtue of Lemma 2,
we have 1.yii(0) = κi. Therefore, because (19) is a zero-
sum iteration, we have 1.yii(τ) = κi, i ∈ A for any τ ∈
Z≥0, which confirms 1.yii(|Pi|) = κi and ȳ ∈ M. Lastly,
because [yii(|Pi|)]r ∈ {0, 1}, r ∈ Pi for any i ∈ A, ȳ is
a vertex of M. 2

E Proof of the main results

Proof of Theorem 4 Knowing that
∣∣∣ ∂2F
∂[x]p∂[x]q

∣∣∣ ≤
cf(R?) from Lemma 14, and (15c), it follows from
Lemma 16 that F (x̄(t+1))−F (x̄(t)) ≥ ∇F (x̄(t)).(x̄(t+

1)− x̄(t))− κ2

2T 2 cf(R?), which, given (15b), leads to

F (x̄(t+ 1))− F (x̄(t)) ≥
1

T

∑
i∈A

ṽi(t).∇F (x̄(t))− κ2

2T 2
cf(R?). (47)

By definition, x̄(t) ≥ xi(t) for any ∀i ∈ A. Therefore,
given (15a), by invoking Lemma 16, for any i ∈ A we
can write∣∣∣∣ ∂F

∂[x]p
(x̄(t))− ∂F

∂[x]p
(xi(t))

∣∣∣∣ ≤ κ

T
d(G)cf(R?), (48)

for p ∈ {1, · · · , n}. Recall that at each time step t, the
realization of ṽi(t) in (10) that Algorithm 1 uses for
{p?1, · · · , p?κi

} ∈ Pi is

ṽi(t) = 1{p?
1 ,··· ,p?

κi
}, (49)
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for every i ∈ A. Thus, 1.ṽi(t) = κi, i ∈ A. Consequently,
using (48) we can write∑

i∈A
ṽi(t).∇F (x̄(t)) ≥∑
i∈A

ṽi(t).∇F (xi(t))−
κ2

T
d(G))cf(R?). (50)

Next, we let v̄i(t) = argmax
v∈Mi

v.∇F (x̄(t)) and v̂i(t) =

argmax
v∈Mi

v.∇F (xi(t)). Then, using v̂i(t).∇F (xi(t)) ≥

v̄i(t).∇F (xi(t)) and v̂i(t).∇F (xi(t)) ≥ ṽi(t).∇F (xi(t)),
i ∈ A, and (48) we can also write∑

i∈A
v̂i(t).∇F (xi(t)) ≥

∑
i∈A

v̄i(t).∇F (xi(t)) ≥∑
i∈A

v̄i(t).∇F (x̄(t))− κ2

T
d(G)cf(R?), (51a)∑

i∈A
v̂i(t).∇F (xi(t))≥

∑
i∈A

ṽi(t).∇F (xi(t)). (51b)

On the other hand, by virtue of Lemma 13,
[
∇̃F (xi(t))

]
p
,

p ∈ Pi that each agent i ∈ A uses to solve optimization
problem (22) (equivalently (10)) satisfies∣∣∣∣[∇̃F (xi(t))

]
p
− ∂F

∂[x]p
(xi(t))

∣∣∣∣ ≤ 1

2T
f(R?) (52)

with the probability of at least 1−2e−
1

8T2 Ki . Using (51b)
and (52), and because the samples are drawn indepen-
dently, we obtain

∑
i∈A

ṽi(t).∇F (xi(t)) ≥
∑
i∈A

ṽi(t).∇̃F (xi(t))−
κ

2T
f(R?),

(53a)∑
i∈A

ṽi(t).∇̃F (xi(t)) ≥
∑

i∈A
v̂i(t).∇̃F (xi(t)) ≥∑

i∈A
v̂i(t).∇F (xi(t))−

κ

2T
f(R?), (53b)

with the probability of at least
∏

i∈A(1− 2e−
1

8T2 Ki)|Pi|.
From (50), (51a),(53a), and (53b) now we can write∑

i∈A
ṽi(t).∇F (x̄(t)) ≥∑

i∈A
v̄i(t).∇F (x̄(t))−(2κd(G)) + 1)

κ

T
f(R?), (54)

with the probability of at least 1− 2
∑

i∈A e−
1

8T2 Ki .
Next, let v?

i be the projection of 1R? into Mi. Know-
ing that Mi’s are disjoint sub-spaces of M covering the
whole space then we can write

1R? =
∑

i∈A
v?
i . (55)

Then, using (54), (55), and invoking Lemma 11 and the
fact that v̄i(t).∇F (x̄(t)) ≥ v?

i (t).∇F (x̄(t)) we obtain∑
i∈A

ṽi(t).∇F (x̄(t)) ≥∑
i∈A

v?
i (t).∇F (x̄(t))− (2cκd(G) + 1)

κ

T
f(R?) =

1R? .∇F (x̄(t))− (2cκd(G) + 1)
κ

T
f(R?) ≥

f(R?)− cF (x̄(t))− (2cκd(G) + 1)
κ

T
f(R?), (56)

with the probability of at least
∏

i∈A(1− 2e−
1

8T2 Ki)|Pi|.
Hence, using (47) and (56), we conclude that

F (x̄(t+ 1))− F (x̄(t)) ≥ 1

T
(f(R?)− cF (x̄(t))−

(2cκd(G)) + cκ

2
+ 1)

κ

T 2
f(R?), (57)

with the probability of at least
∏

i∈A(1− 2e−
1

8T2 Ki)|Pi|.
Next, let g(t) = f(R?)− cF (x̄(t)) and β = (2cκd(G)) +
cκ
2 + 1) κ

T 2 f(R?), to rewrite (57) as

(f(R?)− cF (x̄(t)))− (f(R?)− cF (x̄(t+ 1))) =

g(t)− g(t+ 1) ≥ c

T
(f(R?)− cF (x̄(t)))− cβ =

c

T
g(t)− cβ. (58)

Then from inequality (58) we get

g(t+ 1) ≤ (1− c

T
)g(t) + cβ (59)

with the probability of at least
∏

i∈A(1− 2e−
1

8T2 Ki)|Pi|.
Solving for inequality (59) at time T yields

g(T ) ≤ (1− c

T
)T g(0) + β

∑T−1

k=0
(1− c

T
)k

=(1− c

T
)T g(0) + Tβ(1− (1− c

T
)T ) (60)

with the probability of at least
(∏

i∈A(1− 2e−
1

8T2 Ki)|Pi|
)T

.
Substituting back g(T ) = f(R?) − cF (x̄(T )) and
g(0) = f(R?) − cF (x(0)) = f(R?), in (60) we then
obtain

1

c
(1− (1− 1

T
)T )(f(R?)− Tβ) =

1

c
(1− (1− 1

T
)T )(1− (2cκd(G) + cκ

2
+ 1)

κ

T
)f(R?)

≤ F (x̄(T )), (61)

with the probability of at least
(∏

i∈A(1− 2e−
1

8T2 Ki)|Pi|
)T

.
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By applying e−c ≥ (1− (1− c
T )

T ), we get

1

c
(1−e−c)(1−(2cκd(G)+ cκ

2
+ 1)

κ

T
)f(R?)≤ F (x̄(T )),

(62)

with the probability of at least
(∏

i∈A(1− 2e−
1

8T2 Ki)|Pi|
)T

.
which concludes the proof. 2

Proof of Theorem 6 Consider the distributed Pipage
rounding (19). Let τi be any arbitrary iteration stage
of (19) for agent i ∈ A. Recall that we partitioned yi,
i ∈ A as yi(τi) = [ŷi1(τi), · · · ,yii(τi), · · · , ŷiN (τi)]. Let

y(τ) = [y11(τ1), · · · ,yii(τi + τ), · · · ,yNN (τN )]

for any τj ∈ Z≥0, j ∈ A, and arbitrary i ∈ A.
Distributed Pipage rounding (19) results in

y(τ + 1) =

{
y(τ) + δp(τi) z, w.p. δq(τi)

δp(τi)+δq(τi)
∈ [0, 1],

y(τ)− δq(τi) z, w.p. δp(τi)
δp(τi)+δq(τi)

∈ [0, 1],

for a z ∈ {−1, 0, 1}n that satisfies [z]p = 1, [z]q = −1
and [z]r = 0, r 6= p, q. Next, note that the directional
convexity of the multilinear function in Lemma 15 yields

F (y(τ)) ≤ δq(τi)

δp(τi) + δq(τi)
F (y(τ) + δp(τi)z)+

δp(τi)

δp(τi) + δq(τi)
F (y(τ)− δq(τi)z).

Hence, we can write

F (y(τ)) ≤ E[F (y(τ + 1))
∣∣y(τ)]. (63)

Next, taking expectation with respect to y(τ), we get

E[F (y(τ))] ≤ E[F (y(τ + 1))]. (64)

Note that because y(0)|{τj}N
j=1

={0}N = x̄(T ), we have
E[F (y(0)|{τj}N

j=1
={0}N )] = F (x̄(T )). Consequently,

since y(τ) is defined for any arbitrary {τj}Nj=1, we can
conclude that

F (x̄(T )) ≤ E[F (ȳ)], (65)

where ȳ = [y11(|P1|),y22(|P2|), · · · ,yNN (|PN |)].
Proposition 5 states that ȳ is a vertex of M, there-
fore F (ȳ) = f(Rȳ). On the other hand, it follows
from (20) that Rȳ =

⋃
i∈A R̄i. Consequently, (21) fol-

lows from (65). 2

Proof of Theorem 9 Given that the information set
propagation rules (22), (24), and (25) are a realization of
the vector space propagation rules (10), (9a), and (9b),

we can conclude that the vector y = [y>
1 , · · · ,y>

N ]> de-
fined as {

[y]p = α, (p, α) ∈ Fi(T ), p ∈ Pi

[y]p = 0, Otherwise

is a realization of x̄(T ) and satisfies F (x̄(T )) = F (y).

Moreover, sampling a single strategy p̄i according to yi
out of Pi is equivalent to sampling rule (19). Noting that
y is a realization of x̄(T ), Lemma 4 and Theorem 6 leads
us to concluding the proof. 2
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