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Abstract Kornev’s (Subsurface irrigation, Selhozgiz, Moscow-Leningrad, 1935) subsur-
face irrigation with a periodic array of emitting porous pipes is analytically modeled as a
steady potential Darcian flow from a line source generating a phreatic surface. The hodo-
graph method is used. The complex potential strip is mapped onto the triangle of the
inverted hodograph. An analogy with the Deemter (Theoretische en numerieke behandeling
van ontwaterings-en infiltratie stromings problemen (in Dutch). Theoretical and numerical
treatment of flow problems connected to drainage and irrigation. Ph.D. dissertation, Delft
University of Technology, 1950) drainage problem and Kidder (J Appl Phys 27(8):867–869,
1956) free-surface flow toward an array of oil wells underlain by a “wavy” oil–water interface
is drawn. For a half-period of Kornev’s flow, the “wavy” phreatic surface has an inflection
point. The “waviness” of the phreatic surface is controlled by the spacing between emitters,
the strength of line sources, and the pipe pressure and radius. Numerical modeling with
HYDRUS involved two factors which constrained the saturated–unsaturated flow: the posi-
tive pressure head at the outlet of the modeled domain and lateral no-flow boundaries, with
a qualitative corroboration of analytical solutions for potential (fully saturated) and purely
unsaturated flows. HYDRUS is also applied to a generalized Philip’s regime of an unsaturated
flow past a subterranean hole, which is impermeable at its top and leaks at the bottom.
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jsimunek@ucr.edu

1 Department of Soils, Water and Agricultural Engineering, Sultan Qaboos University, Al-Khod 123,
PO Box 34, Muscat, Sultanate of Oman

2 Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia

3 Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11242-017-0978-x&domain=pdf
http://orcid.org/0000-0003-2543-3219
http://orcid.org/0000-0001-9220-7989


644 A. R. Kacimov et al.

Keywords An array of subsurface irrigation emitters · Line sources versus oil production
wells · “Wavy” phreatic surface · Conformal mappings of hodograph-complex potential
domains · HYDRUS-2D simulations of “backwater” bottom conditions

“Singularity is almost invariably a clue.”
Sherlock Holmes

Abbreviations

BVP Boundary value problem
K-35 Reference to the book Kornev, V.G., 1935. Subsurface irrigation. Selhozgiz,

Moscow-Leningrad (in Russian)
PP Porous pipe
SI Subsurface irrigation

1 Introduction

Kornev (1935) (hereafter abbreviated K-35) proposed and tested a new technology of sub-
surface irrigation (SI) that uses an array of porous pipes (PP) that are buried at the same
depth dp (practically ranging from 0.2 to 1 m), with a period of 2L (0.5–2 m), and a constant
discharge 2Q (up to several tens of l/h/m) per a unit length in the direction of the pipe axis.
Fig. 1 (see also the original Fig. 38 in K-35) shows a vertical cross section of one period of
this SI system. A homogenous soil has the saturated hydraulic conductivity K1. The emitting
PP of a radius rC (2–5 cm) is modeled as a line source at point A. In this paper, we study
steady flows at a constant, positive, and relatively high pressure in PP (the pressure heads in
standard SI range between a few tens of centimeters to a few meters).

Several decades after the publication of K-35, numerous SI projects used PP in France,
Iran, Israel, Japan, Oman, Russia, Spain, Saudi Arabia, the USA and other countries with
arid/semi-arid agriculture (see, e.g., Al-Rawahy et al. 2004; Ashrafi et al. 2002; Communar
and Friedman 2015; El-Nesr et al. 2014; Honari et al. 2017; Iwama et al. 1991; Kato and
Tejima 1982; Lazarovitch et al. 2005; Moniruzzaman et al. 2011; Shani et al. 1996; Siyal
and Skaggs 2009; Tanigawa et al. 1988; Warrick and Shani 1996; Yabe and Tanigawa 1992).

Kacimov and Obnosov (2016, 2017) and Obnosov and Kacimov (2017) revisited K-35
and modeled an isolated subsurface emitter in homogeneous and two-layered soils, at both
positive and negative pipe pressures. If the pressure in PP is positive and permeability of walls
is not too small, in particular, for mole emitters which have no walls (Bobchenko 1957), then
seepage from an array of these emitters into the soil forms a “wavy” water table F2FF1 with
a capillary fringe, which is a “subdued replica” of F2FF1 (see Kacimov 2006). Similarly,
undulating phreatic surfaces emerge above periodic tile drains, although the troughs and
crests appear above and between the drains (Deemter 1950; Ilyinsky and Kacimov 1992).

The soil surface S2S1 and curve F2FF1 in Fig. 1 sandwich a tension-saturated and unsatu-
rated zone. The plant roots uptakemoisture from this zone. Evaporation from the soil surface,
although relatively small (as compared with surface irrigation), is undesirable because it
reduces water use efficiency and causes secondary salinization, among other negative conse-
quences (see K-35 for details). The effective thickness D of the unsaturated zone (20–25cm
in Kornev’s SI projects) in Fig. 1 is high enough to serve as an anti-evaporation sheath. This
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Steady Flow from an Array of Subsurface Emitters: Kornev’s… 645

Fig. 1 One period of subsurface irrigation from an array of porous pipes maintained at a positive pressure
and Kidder’s (1956) free boundary oil flow. The mathematical source is placed at a depth, d, under the summit
F of a “wavy” phreatic surface F2FF1; m/2 is an amplitude of the “wave” as compared with an average
horizon W2W1; the flow rate from a constant total head emitter is 2Q; the emitter’s radius is rC . The soil
above W2W1 is of a thickness D, the top soil layer of thickness B contrasts with the main soil in texture,
hydraulic conductivity, and capillarity

partially saturated layer also serves as a thermal insulator for the plant roots, provided they
penetrate deeply from the superheated soil surface. This dual “smart” wetting and heat-stress
mitigation of the unsaturated layer has been confirmed by numerous data on improved har-
vest/biomass/plant morphologies for a variety of crops cultivated by Kornev in the USSR
and France (K-35).

In Sect. 2 of this paper, we consider a saturated 2-D steady flow from a source A capped
by a free boundary F1FF2. Correspondingly, we solve a free boundary value problem (BVP)
for a potential flow that is laterally confined by the rays F2D2 and F1D1 in Fig. 1. For this
purpose, we use complex variables (the hodograph method), which gives the positions of
points F and F1 and therefore the value of D (the locus of horizon W1W2) for a given dp
and emitter characteristics. This free BVP is mathematically equivalent to Deemter’s (1950)
tile drainage problem with a phreatic surface and Kidder’s (1956) coning problem of oil flow
to an array of producing wells (sinks) in an inclined formation with a subjacent stationary
“wavy” oil–water contact (a free boundary as a sharp interface between a moving oil and
static groundwater in the oil formation). Our Fig. 1 also sketches Kidder’s formation, for
which the angle of a dip is a scaling constant. Kidder only studied a limiting case of a critical
production rate, for which the sink strengths assume the largest value for which a stable front
free boundary can exist without water being drawn into the well, other factors remain the
same. Within one period, Kidder’s free surface has a cusp–crest at point F beneath the well
and zero-slope troughs at points F1 and F2. Kornev’s flow from the sources in Fig. 1 is a
mathematical inversion of Deemter’s and Kidder’s flow to sinks.
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646 A. R. Kacimov et al.

For a general (subcritical) flow to sinks and SI flow from Kornev’s sources, the free
boundary within one flow period (Fig. 1) has two inflection points, N1 and N2, where the
slope of the free boundary is maximal.

In Sect. 3, we use the HYDRUS-2D finite element (FE) code (Šimůnek et al. 2016) and
simulate a saturated–unsaturated system shown in Fig. 1. We illustrate that numerical solu-
tions of Richards’ equation are in agreement with the analytical results in Sect. 2. We also
simulate unsaturated flows past subterranean holes with a small water level at the hole bot-
tom, combining unsaturated and saturated regimes from Philip et al. (1989) and Warrick and
Zhang (1987). These HYDRUS applications are motivated by the design and operation of
mole drains-emitters and tunnels for which the boundaries of contact between the ambient
soil (rock) and porous-fractured medium can be either impermeable to the descending infil-
tration due to the capillary barrier phenomenon or permeable (e.g., Wang and Bodvarsson
2003).

We assume that all flows are Darcian, one-phase (vapor/gas and solute motions, depo-
sitions/dissolutions on/of the soil matrix are neglected), and isothermal and that the bare
(rootless) stratified soils are isotropic.

We answer the following questions:

(a) How do values of L , K1, the pressure in PP, and the flow rate, 2Q, in the saturated
fragment of the free boundary flow affect the position of F2FF1 in Fig. 1? In particular,
how large is the trough-crest difference, m, in the ordinates of points F and F1?

(b) What are the results of HYDRUS simulations for flow in a positive-pressure zone con-
sisting of a “mound” created by seepage from a cascade of positive-pressure PP on the
top of an already existing unconfined aquifer, which is hydraulically drainable to a thick
highly permeable substratum?

(c) Is there agreement between the numerical results for these “nonstandard” drainage
conditions of the irrigated topsoil and the results obtainedby simplified analyticalmodels
and solutions, which ignore capillarity and consider flow domains not confined from
below?

2 Steady 2-D Saturated Flow from Array of Sources

Strack (1989) modeled an arbitrary number of interfering emitters and drains (line sources
and sinks), which generate a positive pore pressure zone around the emitters (line sources),
with the flow domain bounded by a phreatic surface. Kacimov and Obnosov (2016) revisited
the Riesenkampf solution for a single emitter (see Polubarinova-Kochina 1962), used the
Vedernikov (1939) model of a capillary fringe and tension-saturated flow, and modeled a
single PP. This model just rescales the pressure head at F2FF1 in Fig. 1 by a summand −pc,
in comparison with the water table pressure p = 0. Mathematical models in the Strack
(1989) and Riesenkamf solutions are the same. Therefore, without any loss of mathematical
generality, we ignore the fringe in Fig. 1.

To connect our analytical solution with Kidder’s (1956), we assume that F2FF1 is a
streamline, i.e., evapotranspiration losses from the water table are neglected. The “saturated
bulbs” around the line sources of the whole array (laterals) of SI in Fig. 1 coalesce, and—
sufficiently deep under the sources—adescending, 1-D, positive-pressure flowwith aDarcian
velocity vD = Q/L occurs, where 2Q is the strength of the line source in Fig. 1. Similar
flows are shown in Fig. 7.38 of Strack (1989).
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Steady Flow from an Array of Subsurface Emitters: Kornev’s… 647

Fig. 2 A vertical cross section for a half-period of the flow domain in Fig. 1. A “wavy” phreatic surface has
an inflection point N1 (a), the complex potential plane (b), and the hodograph plane (c), corresponding to the
physical flow domain in a

2.1 Conformal Mappings

Due to symmetry, we follow Deemter (1950) and Kidder (1956) and consider only the right
half of the period, a physical domain Gz , as shown in Fig. 2a. The origin of the Cartesian
coordinates (x, y) coincideswith the apex F of the free surface. At this point, theDarcian total
hydraulic head h(x, y) = 0, h = p + y, where p is the pressure head. The total (hydraulic)
head in the pipe is Hp = const > 0. The source is located at z = − id , where d = const > 0
is to be found. Obviously, a posteriori, we must check that d < dp (Fig. 1). Otherwise, the
assumed flow scheme is not valid and, practically, the water table seeps out as a “wet spot”
on S1S2 in Fig. 1 (the situation to be avoided in SI, see K-35).

We introduce the complex potential w = φ + iψ , where φ = − K1h is the velocity
potential and ψ is the stream function. At point F , the potential φ = 0, and ψ = 0 along
AD1. Therefore, ψ = Q along AFN1F1D1. We also introduce a complex Darcian velocity
V = u + iv. The complex potential domain Gw, which corresponds to Gz , is then the strip
of a width Q (Fig. 2b), and the hodograph domain GV is the right half-plane with a circular
cut FN1F1 (Fig. 2c). At the inflection point N1 (the tip of the cut in Fig. 2c), the magnitude
of the Darcian velocity vector attains its maximum along FN1F1. At this point, the angle
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648 A. R. Kacimov et al.

πγ of this vector with the x-axis is also maximal. The complex velocity at point D (infinity)
is given and is VD = − ivD = − i Q/L . At a certain depth, dh , flow becomes almost 1-D
vertical, i.e., a horizontal line Dl Dr in Fig. 2a (a dashed line) is almost an equipotential line,
which is imaged by the corresponding almost vertical segment in Fig. 2b (dashed line). Along
Dl Dr in Fig. 2a, the pressure head is also almost constant. We note that in Kidder’s (1956)
solution, the incident Darcian velocity (far upstream of his production wells) is also constant
(actually, a scaled parametera inKidder’s parametrization).McCarthy (1994) studiedflows to
a solitary line sink with free boundaries, but with an alternative to Deemter (1950) andKidder
(1956) condition at infinity, viz. McCarthy’s flow domains are laterally unbounded, whereas
Deemter–Kidder’s and ours are vertically unbounded. First, the circular quadrilateral GV is
mirror-imagedwith respect to the real axis. The correspondingdomainGω (Fig. 3a) is inverted
with respect to the coordinate origin to obtain the domain Gω1 (Fig. 3b), which has a straight
cut FN1F1. The function ω1(z) = 1/(u− iv) = dz/dw is holomorphic. Polubarinova-
Kochina (1962) gives full details about the hodograph method, which irrigation engineers
(e.g., Swamee and Chahar 2015) use for designing of irrigation channels. Hodographs similar
to one in Fig. 2c and their inversions are used for analytical studies of flow from rectangular
irrigation-MAR channels (e.g., Choudhary and Chahar 2007).

We map Gw onto an auxiliary half-plane Gζ (Fig. 3c) by the function

w(ς) = i Q − Q

π
log

ς + μ

1 + μ
. (1)

Similarly, as for Strack’s and Riesenkampf’s emitters-drains, flow determined by Eq. (1) is
radial 1-D in the vicinity of point A in Fig. 2a. The affixes −μ, ν of points D1, N1 (Fig. 3c)
will be found later. At point C , i.e., the apex (the contact of the exterior of the PP wall
with the ambient soil), the hydraulic head HC is easily calculated from Hp , the given wall
thickness (approximately 1 cm in K-35) and the permeability (see Kacimov and Obnosov
2016, 2017). In the simplest situation of a mole drain (an emitter with no seepage-impeding
wall, Bobchenko 1957), HC = Hp . Then, at point C, w(c) = −K1HC + i Q, and affix c is

c = (1 + μ) exp(πK1HC/Q) − μ. (2)

We map Gω1 onto Gζ using the function

ω1(ς) = i

2K1

2ς + cosecπγ − 1√
ς(ς − 1)

− i

K1
. (3)

The angle πγ (Fig. 3a) will be found later. The mapping function (3) is the inversion of the
elementary function:

ς1(ω1) =
√

(K1ω1 + i)2 − cot2 πγ

K1ω1 + i
, ς(ω1) = 1 − sinπγ

2

1 + ς1(ω1)

1 − sinπγς1(ω1)
. (4)

In Eq. (4), ς1(ω1) maps Gω1 onto the upper half of the ς1-plane, with the correspondence
of points (F1, F, A) → (− 1,1,1/ sin πγ ), and ς(ς1) is the automorphism of the upper
half-plane, which gives the correspondence of points (F1, F, A) → (0, 1,∞).

Note that ω1 = (cotanπγ − i)/K1 at point N1 in the ω1-plane. From Eq. (4), it then
follows that the affix ν = (1 − sin πγ )/2.

Using Eqs. (1) and (3), we get

z(ς) =
ς∫

1

ω1(u)
dw

du
du = − i Q

2K1π

⎛

⎝
ς∫

1

2u + cosecπγ − 1

(u + μ)
√
u(u − 1)

du − 2 log
ς + μ

1 + μ

⎞

⎠ . (5)
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Fig. 3 Mirrored hodograph domain (a) and its inversion with respect to the origin (b); an auxiliary half-
plane (c); Deemter–Kornev’s flow with evaporation from the phreatic surface (d); the hodograph plane for an
evaporating free surface (e)

The last integral is evaluated in elementary functions:

ς∫

1

du√
u(u − 1)

= 2 log
(√

ς + √
ς − 1

)
= log(ς + μ) + 2 log

(√
ς

ς + μ
+

√
ς − 1

ς + μ

)

,

and
ς∫

1

du

(u + μ)
√
u(u − 1)

= 2√
μ(μ + 1)

log

(√
(μ + 1)ς + √

μ(ς − 1)√
ς + μ

)
.

That transforms (5) into

z(ς) = − i Q

K1π

(
(cosecπγ − 1 − 2μ)√

μ(μ + 1)
log

√
ς(μ + 1) + √

μ(ς − 1)√
μ + ς

+ 2 log

√
(μ + 1)ς + √

(μ + 1)(ς − 1)√
ς + μ

)
. (6)

To find γ and μ, we use the coordinates of points A and C :

z(∞) = − id, and z(c) = − i(d − rC ). (7)

123
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In accordance with Eqs. (6) and (7), we obtain

d = Q

K1π

(
(cosecπγ − 1 − 2μ)√

μ(1 + μ)
log

(√
μ + √

1 + μ
)

+ log[4(1 + μ)]
)

. (8)

From the second condition (7) and (2), (6), we get

d = rC + Q

K1π

(
(cosecπγ − 1 − 2μ)√

μ(μ + 1)
log

√
c(μ + 1) + √

μ(c − 1)√
μ + c

+ 2 log
(√

c − 1 + √
c
))

− HC , (9)

where μ = −ς(−i/vD) = −ς(−i L/Q).
We introduce dimensionless quantities z∗ = z/L , d∗ = d/L ,m∗ = m/L , H∗

C =
HC/L , r∗

C = rC/L ,w∗ = w/(K1L), v∗
D = vD/K1 and Q∗ = Q/(K1L) and drop the

“*” for the sake of brevity.
From (3), we derive

μ = 1 − sin πγ

2

Q − 1 + √
(Q − 1)2 + Q2 cot2 πγ

1 − Q + sin πγ
√

(Q − 1)2 + Q2 cot2 πγ
. (10)

Eliminating d from Eqs. (8) and (9) and taking into account (2) and (10), we obtain the
following nonlinear equation to determine γ :

HC − rC + Q

π

(
(cosecπγ − 1 − 2μ)√

μ(μ + 1)
log

(√
μ + 1 + √

μ
)
exp(πHC/2Q)√

c + √
μ(exp(πHC/Q) − 1)

+ 2 log

(
2
√

μ + 1√
c − 1 + √

c

))
= 0. (11)

We used the FindRoot Mathematica (Wolfram 1991) routine to solve this and subsequent
nonlinear equations.

The separation of the real and imaginary parts in Eq. (6) gives a parametric equation of
the free boundary:

x(ξ) = Q

π

(

2 arccos
√

ξ + cosecπγ − 1 − 2μ√
μ(1 + μ)

arccos

√
(1 + μ)ξ

μ + ξ

)

,

y(ξ) = Q

π
log

ξ + μ

1 + μ
, 0 < ξ < 1. (12)

The depth of point F1 is m = −Imz(0) = −y(0), and the second Eq. (12) gives

m = Q

π
log

1 + μ

μ
. (13)

We note that along with the hodograph method, one can use the complex potential and
Zhukovsky function and the Zhukovsky-Chaplygin method (see e.g. Anderson 2013; Strack
1989).

We used the ParametricPlot Mathematica routine to plot the free surfaces FF1. For the
sake of further comparisons with HYDRUS, in Fig. 4a, we show dimensionless free surfaces
and loci of sources for the following dimensional input parameters: rC = 0.025 m, HC =
0.85 m, K1 = 0.25 m/day, fixed L = 1.0 m with varying Q = 0.265, 0.275, 0.285, 0.295,
0.305 0.315 m2/day (curves 1–6) with the corresponding position of the source indicated by
a solid dot. In Fig. 4b we fixed Q = 0.3 m2/day and plotted three free surfaces for varying L:
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Fig. 4 Phreatic surfaces and loci of sources in dimensionless coordinates for Kornev’s subsurface irrigation.
Dimensional input parameters for a are rC = 0.025m, HC = 0.85 m, K1 = 0.25 m/day, L = 1.0 m, and
Q = 0.265, 0.275, 0.285, 0.295, 0.305, and 0.315. For b rC = 0.025m, HC = 0.85 m, K1 = 0.3 m/day,
Q = 0.3 m2/day, and 1 L = 0.8 m, 2 L = 1.2 m, and 3 L = 2.4 m

(1) L = 0.8m, (2) L = 1.2m, (3) L = 2.4m (curves 1–3). The corresponding dimensionless
d and m are: (1) d = 0.87,m = 0.16, (2) d = 0.50,m = 0.58, (3) d = 0.25,m = 0.81.

As is evident from Fig. 4a, an increase in Q makes the phreatic surface steeper. Also, the
range of variation of Q is quite narrow (we recall that HC and L are fixed for the examples
computed in Fig. 4a). Curve 1 in Fig. 4a illustrates the case of an “almost confined” flow, for
which FF1 is an almost horizontal straight line. A mathematically equivalent problem for a
confined flow to horizontal sinks placed above a horizontal bedrock and fed from a ponded
soil surface has been analyzed by Vedernikov (1939) (see also Polubarinova-Kochina 1962).
Curve 6 in Fig. 4a corresponds to an “almost critical” flow regime. In case of L > Q/K1,
the neighboring emitters do not interfere with each other and one arrives at Riesenkampf’s
critical regime for a solitary emitter (Polubarinova-Kochina 1962).

For comparisons, we used Kidder’s Eqs. (18) and (19) as the degree of waviness of his free
boundary.We also computed a dimensionless areaAr betweenFF1 and a horizontal oil–water
contact (a dashed line in Kidder’s flow, our Fig. 1). For Q → ∞ in Kidder’s solution, when
his free surface degenerates into a cycloid, the maximum waviness parameters are m →
2/π, Ar → 0.15 (obviously, limQ→0(m,Ar) = (0,0), which corresponds to a horizontal
oil–water interface). Therefore, even in the limit of the “most perturbed equilibrium”, the
Kidder cycloid is only moderately wavy. Kidder’s “critical” flow regime gives the most
undulating free boundary because this regime is a precursor to water breakthrough into the
oil wells i.e. at subcritical oil flows the free boundary (with inflection points) differs even
less from a straight oil–water interface.

In Fig. 5 we use the ParametricPlot, Re, and Im routines of Mathematica applied to
Eq. (6) and show the flow net for rC = 0.025 m, HC = 0.85 m, K1 = 0.25 m/day, L =
1 m, and Q = 0.295 m2/day, for which m = 0.32 m, γ = 0.155, μ = 0.74. In Fig. 5,
the streamlines are plotted by solid lines for ψ = 0.11 j Q, where j = 1,2,…9; as the
phreatic surface is shown by a dashed-dotted line; the equipotential lines are plotted for
φ = 0.05 j, j = − 2,−1, 0, 1, . . .8 by dashed lines. The lowermost equipotential almost
coincides with a horizon Dl Dr depicted in Fig. 2a, b.
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652 A. R. Kacimov et al.

Fig. 5 A flow net for
rC = 0.025 m, HC = 0.85 m,
K1 = 0.25 m/day, L = 1.0 m,
and Q = 0.295 m2/day. The
streamlines are for ψ = 0.11 j Q
where j = 1, 2, . . . , 9 (solid
lines) and the equipotential lines
(dashed lines) are for φ = 0.1 j ,
j = − 2, − 1, 0, 1, . . ., 5

For the situation of a fixed L and varying Q in Fig. 4a, the mathematical problem is solv-
able in the range Qmin < Q < Qmax (curves 1 and 6 illustrate the regimes close to the
lower and upper bounds of Q). Physically, for a given circular PP operated at a given pipe
pressure in a given soil, i.e., for a given triad K1, rC , and HC , the value of Q is a part of
the solution (Kacimov and Obnosov 2016, 2017). Modeling of a real PP by a mathematical
source bypasses the involvement of the real geometry of the emitter contour into the analysis.
Namely, the equipotential lines close to the source are believed to be “almost circular” and
one of these small-radius (rC ) “circles” is considered as a PP-soil contact boundary (see PK-
77, Fujii and Kacimov 1998). If the “deep drainage” conditions at infinity (point D1–D2) in
Fig. 1 are known by specification of the pore pressure for saturated flows (as for example, in
Kidder 1956; Kacimov and Obnosov 2016) or moisture content for unsaturated flows (as for
example, in Kacimov andObnosov 2017), then Q for a “circular” (or any other shape) emitter
is determined by the above-mentioned triad. Vedernikov (1939) analyzed the shape of real
equipotential lines aroundmathematical sinks-sources and foundwhen they deviate frompre-
scribed circles, although this affects flow in the very vicinity of themathematical singularities.

In the conceptual model of Fig. 2a, the pore pressure at infinity (point D1) is not known,
which is often common in practical SI when farmers do not have details about the subsurface
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deeper than a couple of meters. Therefore, in our model with the “infinity” of z in Fig. 2a, Q
is “conditioned” by the triad. This “conditioning” will be rectified in Section C, where we
consider finite modeling domains with prescribed pressure boundary conditions along the
inlet and outlet of a “stream tube” (flow domain) of the Richards’ equation.

With the emphasizedmathematical commonality betweenour andDeemter–Kidder’s solu-
tions, there are some physical differences. Namely, the solvability ofKidder’s (1956) problem
is determined by his Eq. (16); for a given difference in the ordinates of the sink and points
F1 and F2 (Kidder’s parameter b), the oil production rate Q cannot exceed a critical value.
The Darcian velocity in the oil far upstream of Kidder’s wells (Kidder’s parameter a) can
be arbitrarily high at a given distance between neighboring wells. The infinite increase in
Kidder’s a requires an infinite increase in his b.

InKornev’s flow (Fig. 2a), Q can bemathematically arbitrarily high if HC is allowed to rise
to infinity for a given emitter radius (of course, in this case, the source in Fig. 1 should be deep
enough such that the free surface does not “bounce” the soil surface from below). Kornev’s
Q and vD can be, however, bounded from below. As in Strack’s (1989) “free drainage” flows
from a cluster of sinks and sources, the Darcian velocity in the saturated plume at infinity
(our vD) is K1. If the pore pressure at infinity (point D1 in Fig. 2a) is atmospheric (we recall
that capillarity in this Section is neglected), then the criticality of Kornev’s flow commences
at Q = Qm such that at Q < Qm the saturated plumes of neighboring emitters in Fig. 1
are disconnected (the dotted line in Fig. 1 shows one isolated plume for this case). In other
words, at this pressure, for any Q < Qm , Kornev’s flow degenerates into Riesenkapmf’s
flow (Kacimov and Obnosov 2016).

3 HYDRUS-2D Simulations

In this Section, we use HYDRUS (2D/3D) (Šimůnek et al. 2016) and compare numerical
(FE) and analytical solutions. In all transient flow simulations, time, t , is in days. We use
several default HYDRUS options: iteration criteria, time step controls, an initial (at t = 0)
pressure head of− 100 cm throughout the modeled 2D domains, the VGM capillary pressure
and phase permeability functions, and the soil catalog.

3.1 Flow From Emitters

Ashrafi et al. (2002), El-Nesr et al. (2014), Siyal andSkaggs (2009),Wang et al. (2017), among
many others (see also Šimůnek et al. 2016), used HYDRUS for modeling SI from a PP either
as a solitary emitter, i.e., without overlapping of flows generated by laterally neighboring
emitters, or as a system of parallel emitters. In their conceptual HYDRUS models, they
assumed a “free drainage” or specified negative pressure head boundary condition at the
bottom of the flow domain. Hanson et al. (2008) modeled in HYDRUS SI with a shallow
water table, the case analytically investigated by Philip (1989). Both Hanson et al. (2008)
and Philip (1989) assumed a zero-pressure (water table) boundary condition at the outlet of
their flow domain that takes place if drainage water flows out of the domain without raising
the water table, assuming that sufficient natural groundwater drainage occurs. Hanson et al.
(2008) solved Richards’ equation for an infinite number of emitters 2L apart as in Fig. 1
with no-flow boundary conditions on both the left and right sides (at a distance of L) of the
HYDRUS domains. Here, we also consider a half-period of an array of emitters, but our
flow domain is bounded by a horizontal positive-pressure interface I1 I2 between a soil layer
where the emitter is placed and a highly permeable “water-bearing” substratum, into which
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the emitted water drains. Vedernikov (1939) (see also PK-77, Bouwer 1978) distinguished
pre-irrigation hydrogeological conditionswith this “groundwater bearing” hydrostratigraphic
unit, which is also called the “main”, confined aquifer. The aquifer creates a “backwater”
condition above I1XH (Fig. 6), such that in the soil layer with the emitter or another irrigation
source (Ilyinsky and Kacimov 1991) the water table “bulges” even if the flow rate from the
emitters is small. In other words, even forKornev’s “negative pressure” emitters the originally
flat water table “waves” due to the accretion from the superjacent soil.

We start with a homogeneous rectangle 100cm×200cm, shown in Fig. 6a and use the
“2D - Simple” (rectangular) type of geometry of HYDRUS. Finite element discretization is
as follows: 40×40 nodes in both horizontal and vertical directions, with 160 1-D and 3200
2-D finite elements. The soil is loam with K1 = 24.96 cm/day. We model the right half of
the subsurface emitter by a rectangle ACC1C2C3A of a height and width of 5 and 2.5 cm,
respectively, point A having XH = 0, ZH = Lv = 112.5 cm in the HYDRUS Cartesian
coordinate system. The interior of this rectangle consists of sand of the hydraulic conductivity
Ks = 713 cm/day. This large conductivity ensures that the total head in the emitter rectangle
is not lost from lineCAC3 to the sand–loam interface, i.e., the “sand” filling of the rectangle is
almost equivalent to no-filling in an irrigation pipe with a zero Darcian resistance of the pipe
walls (mole hole emitters, Bobchenko 1957). The boundary conditions are shown in Fig. 6a:
the upper and left faces of the rectangle are no-flow boundaries; at point C3 the pressure
head p = 90 cm; along CAC3 the pressure head is hydrostatic, i.e., decreases from 90 cm to
po = 85 cm at point C (i.e., the total head, h, is constant along C3C2).

Along the bottom I1 I2 of the flow domain (Fig. 6a), the choice of the boundary condition
depends on the knowledge of the “deep subsurface” into which water is drained. In common
applications of HYDRUS (see, e.g., El-Nesr et al. 2014; Siyal and Skaggs 2009), the “free
drainage” boundary condition (in a steady-state flow this implies a unit gradient), i.e., free
gravitational flow at the bottom, I1 I2, of the modeled flow domain. In other words, the water
table is postulated to be “somewhere deep”.

We assume that prior to irrigation from emitters, groundwater is static, the water table
is horizontal and positioned at an elevation pi > 0 above I1 I2 in the “minor” aquifer, as
indicated in Fig. 6b. We repeat that the boundary condition p = pi along I1 I2 holds also at
any t > 0 during recharge from the emitters. Vedernikov (1939) explained that this unaltered
isobaricity of the line I1 I2 is realized if the substratum is “mighty” enough.Then, the irrigation
water seeping from a furrow, channel, emitter, or other sources is well drained either laterally
(this is indicated by the horizontal arrow in the substratum, Fig. 6c) or vertically into an even
deeper aquifer. A steady saturated–unsaturated flow (at t > 0) in the soil layer (above I1 I2)
makes a 2-D groundwater mound (“unconfined aquifer”) as compared with an undisturbed
situation of Fig. 6b. We repeat that this 2-D flow is occluded by pi and L , viz. a decrease of
L or an increase of pi (provided all other parameters are fixed) reduces Q and increases the
locus of the phreatic surface. This follows from both our HYDRUS simulations and from the
variational principles (Gol’dsheteı̆n and Entov 1994). Moreover, if one increases pi above
a certain threshold value, the constant total head line CAC3 works as a drain (mathematical
sink), i.e., groundwater seeps from the minor aquifer into this line (the situation modeled
by Deemter 1950). This draining action of the subsurface pipes and mole drains after heavy
rains was detected and described in K-35 and Bobchenko (1957).

What if a hypothetical emitter is not a small square (as in Fig. 6a) but a “stretched” thin strip
of a length L shown in Fig. 6c? In this case, if we ignore capillarity—recalling the prescribed
no head loss along the sand strip from C3C to C2C1—we arrive at another 1-D flow regime.
Above CC1, groundwater stands still at an elevation pi . From C3C2 to I1 I2, a fully saturated
1-D vertical flow takes place, with a Darcian velocity of vZH = K1(po + Lv − pi )/Lv .
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Fig. 6 HYDRUS modeling results: a the finite element mesh and a rectangular “sand lens” as a model of
a constant total head subsurface emitter. b Undisturbed hydrogeological conditions with a static horizontal
water table in an unconfined aquifer and a subjacent highly permeable confined aquifer. c A “degenerate”
case of the constant total head sand lens stretched into a strip. d Isobars close to the phreatic surface for the
“free drainage” boundary condition along the bottom I1 I2 of the modeled rectangle, the maximum pressure
head at the “lens” apex is po = 85 cm (t = 10 days). e A colored map of isobars in the whole flow domain
(po = 85 cm; t = 30 days). f Isobars close to the phreatic surface for the “backwater” boundary condition
pi = 110 cm along I1 I2 and po = 85 cm in the rectangular “lens” (t = 50 days). g Isobars close to
the phreatic surface for the “backwater” boundary condition pi = 45 cm along I1 I2 and po = 85 cm in
the rectangular “lens” (t = 50 days). h Isobars close to the phreatic surface for the “backwater” boundary
condition pi = 0 cm along I1 I2 and po = 85 cm in the rectangular “lens” (t = 50 days). i Isobars close to
the phreatic surface for the “backwater” boundary condition pi = 45 cm along I1 I2 and po = 85 cm along
the semi-circular emitter (t = 50 days). j Isobars around a semi-circular emitter: rC = 2.5 cm, po = 85 cm,
pi = 138 cm, dp = 85 cm, an emitter axis is 188 cm above a horizon Dl Dr . k Isobars for flow past an empty
hole: rC = 15 cm, pi = 10 cm, dp = 75 cm, a hole axis is 147.5 cm above a “backwater” horizon (the outlet
side of the rectangle), the inlet of the rectangle receives infiltration at a rate of qi = 3 cm/day. l Isobars for
flow past a hole with a small quantity of water at its bottom: rC = 15 cm, pi = 10 cm, dp = 75 cm, the hole
axis is 147.5 cm above a “backwater” horizon, qi =6 cm/day

Flow in Fig. 6c reflects a standard conceptualization and a hydraulic connection between
two highly permeable units, the strip CC1C2C3 (an upper “aquifer”) and the “main aquifer”.
The rectangle C3 I1 I2C2 (Fig. 6c) acts as a “thick aquitard“. We recall that in agreement
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Fig. 6 continued
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Fig. 6 continued

with common assumptions of groundwater hydraulics (PK-77), in aquifers the water flow is
prevalently horizontal while in aquitards it is mostly vertical.

We used HYDRUS to simulate the two 1-D regimes sketched in Fig. 6b, c as asymp-
totic limits. HYDRUS confirmed these hydrogeologically “degenerate” scenarios. Next, we
simulated 2-D flows for realistic rC (Fig. 6a). A steady-state regime is established in about
10days.

In the scenario shown in Fig. 6d, e, we assumed po = 85 cm and a HYDRUS “free
drainage” condition along I1 I2. The colored images of the pressure heads in the vicinity of
the phreatic surface p = 0 and in thewhole rectangle are shown in Fig. 5d, e, respectively. The
computed values of d and m are 53.5 and 40 cm, respectively. The distribution of velocity
along I1 I2 showed a variation from 25.1 cm/day at point I1 (XH = 0, ZH = 0) to 24.8
cm/day at point I2 (XH = 100 cm, ZH = 0).

In scenarios shown in Fig. 6f–h, we assumed po = 85 cm and pi = 110, 45, and 0 cm,
respectively, along I1 I2. The obtained pairs of (d,m) and the range of variations of the vertical
component of the Darcian velocity vector along I1 I2 are: (60, 10cm), (13–14.6 cm/day);
(50, 30 cm), (22.2–25.2 cm/day); and (43, 90 cm), (27.3–32.2 cm/day), respectively. If pi is
decreased to negative values (as in Ashrafi et al. 2002), then the water table drops further,
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Q increases and the saturated zone around the emitter shrinks (and may even convolute into
Philip’s “saturated bulb”).

Next, we used a “2D - General” type of geometry of HYDRUS and modeled a semi-
circular arc C3C1C of a diameter of 5 cm (Fig. 6i) as the emitter boundary. This constant
total head contour was placed at the same Lv as the rectangular “sand lens” (in Fig. 6d–h).
The emitter boundary condition corresponds to po = 85 cm at the semicircle’s apex C . The
colored map of the moisture content (Fig. 6i) illustrates the water table position, in particular,
d = 46 cm, m = 40 cm. Similarly to Ashrafi et al. (2002) Siyal and Skaggs (2009), and
Wang et al. (2017), we can include a thin pipe wall made of a low permeable clay.

The results of HYDRUS simulations qualitatively agree with the analytical solutions in
Fig. 4. To illustrate this, we compared the case shown in Fig. 5 with numerical results for a
loamy soil, a circular emitter of a radius of 2.5 cm subject to a total head of 85 cm, and placed
188 cm above a horizon Dl Dr (Fig. 2a) where a positive pressure head (“backwater”) is 138
cm. The upper no-flow boundary of a rectangular flow domain is placed 85 cm (dp in Fig. 1)
above the emitter axis (this “cap” segment can be selected at any sufficiently high elevation
above the emitter). Fig. 6j shows the computed isobars in the range of −10 cm< p <10 cm.
The middle isobar is a phreatic surface. Its point F (see Fig. 2a) is about 48 cm above the
drain axis as compared to 64 cm in the analytical solution (Fig. 5). Point F1 is about 34 cm
above the drain axis (32 cm in the analytical solution, Fig. 5). The presence of the inflexion
point on all isobars in Fig. 6j (including the phreatic line) is also apparent, similarly to Khan
and Rushton (1996a, Figs. 1a, 2, 4, 8a) and Rushton (2003, Figs. 4.23, 4.25a).

We note that even at pi = 0 (Fig. 6f), i.e., in the case of no “backwater” in the substratum
(Fig. 6b), the pore pressure is positive along I2F1. If we keep pi = 0 and increase L above
100 cm, then at a certain value L = Lcr, a purely unsaturated flow will take place close to
XH = Lcr. In the analytical solution, this corresponds to the regime discussed in Sect. 2:
the free surfaces of the neighboring sources do not intersect (Kacimov and Obnosov 2016),
the corresponding water tables are “ lighthouse-shaped” (dotted line in Fig. 1a). If, however,
pi > 0 (“backwater” regime), then the phreatic surfaces in both analytical and numerical
solutions always intersect and within one half-period (Fig. 2a) an inflection point exists.

3.2 Infiltration Over Subterranean Holes in the Philip Regime

HYDRUS has been successfully used in studies of 2D and 3D flows toward horizontal drains,
including mole drains (e.g., Boivin et al. 2006; Brunetti et al. 2017; Filipović et al. 2014;
Karandish et al. 2017). In these studies, drains were represented with a standard seepage
face boundary condition along the drain contour (i.e., the drain was assumed to be empty).
Therefore, the drains acted as water sinks, as in Khan and Rushton (1996a, b) and Rush-
ton (2003) who used saturated flow models in their analysis. However, Philip et al. (1989)
showed that an empty cavity (hole) may act as an obstruction to an unsaturated descending
flow if its intensity is small enough (see also Stormont and Zhou 2005). In other words,
the hole hydrodynamically behaves as neither a sink or a source but as a dipole (Kacimov
2007). Therefore, if one models an empty hole in this regime, then the HYDRUS seepage
face boundary condition along the contour can be expected to be equivalent to the no-flow
condition. This capillary barrier effect has been used in design and hydrological analysis
of the Yucca Mountain tunnels as elements of subsurface nuclear waste repositories (e.g.,
Wang and Bodvarsson 2003). Birkholzer et al. (1999) investigated a descending unsatu-
rated flow in the regime of Philip et al. (1989), without considering an opportunity of water
dripping from the roof of the tunnel and accumulation at the bottom of the drift. In this
subsection, we consider a flow regime past a hole with a shallow water level accumulated
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at the hole bottom that is a common situation in mole drains and emitters (Bobchenko
1957).

In Fig. 6k, we selected the same soil and the rectangular domain as in Fig. 6j, except
the hole size (rC = 15 cm) much larger than that of the emitter in Fig. 6j. We set dp =
75 cm and the bottom draining boundary Dl Dr at the depth of 147.5 cm under the axis. The
boundary condition along the outlet is pi = 10 cm (“mild “backwater”). The infiltration rate
qi = 3 cm/day was assumed along the top of the rectangle. Fig. 6k shows for a steady-state
flow the pressure head contours in the range of −20 cm< p < 10 cm. They, as well as
the moisture and velocity fields computed by HYDRUS, are qualitatively similar to what is
depicted in Fig. 1 of Philip et al. (1989). The pressure head profile shows a roof-drip lobe, a
retarded zone on the upflow side of the hole, and a dry shadow on the downflow side. Along
the vertical axis x = 0 (Fig. 6k), the minimum of the pressure head (the driest point) of
p ≈ − 25 cm is attained at the bottom of the hole, while the maximum of p ≈ − 5.8cm is
attained at the hole’s apex, i.e., the upper stagnation point (Philip et al. 1989), similarly to
what Wang and Bodvarsson (2003) and Birkholzer et al. (1999) reported for large tunnels.
Due to the encumbrance of our hole, groundwater mounds in the right bottom corner of the
flow domain (Fig. 6k). An increase of the infiltration rate qi to approximately 5 cm/daywould
result in a breakthrough of moisture into the hole through its apex. For higher values of qi ,
water would drip through the hole’s upper segment (see Kacimov 2000).

Figure7 shows the case of a hole partially filled with a static water and placed into
an ambient unsaturated flow of a small qi . The segment Ch2Ch1 is a constant total head
boundary, the segments Ch1Sf and SfAp are impermeable. If the water level in the hole is
small and the draining horizon Dl Dr (Fig. 2a) is deep enough with a small “backwater”,
then a “perched” water table (as in Warrick and Zhang 1987), rather than a “dry shadow”
of Philip et al. (1989) is formed just under the hole. The hole in Fig. 7 again does not drain
the incident infiltration but replenishes the “regional” water table by seepage from Ch2Ch1.
Obviously, the regional water table (not shown in Fig. 7) mounds in response to this seepage
just close to the hole axis, unlikemounding at the corner in Fig. 6k. Figure 6l showsHYDRUS
simulations for a steady-stated flow and the same soil and geometry as in Fig. 6k, with the
following difference in boundary conditions along the hole contour: the topsoil is subject to
an infiltration flux qi = 6 cm/day, the water level in the hole is 2.9 cm. A constant total head
boundary condition was specified alongCh2Ch1, and a seepage face boundary condition was
imposed along Ch1Ap. The computations in Fig. 6l are qualitatively in congruency with the
flow topology and the soil wetness field from Philip et al. (1989) and Warrick and Zhang
(1987).

4 Conclusions and Perspectives

We decoupled a saturated–unsaturated steady-state Darcian flow from an infinite line of
equally spaced PPs that emit water under a positive pressure, each at the same rate. For
the first flow fragment of a potential flow, we followed Holmes (see the epigraph) and used
Deemter’s (1950) and Kidder’s (1956) “singularity clues” when applying the hodograph
method for line sources. From an explicit analytical solution to a free BVP in a homogenous
and isotropic soil stratum, the computed phreatic surface is wavy with inflection points. This
surface bulges above the emitters and is depressed between two neighboring linear sources.
In the limiting case, the circular cut in the hodograph domain (Deemter 1950) degenerates
into a full half-circle (see Kidders’ Fig. 2) that corresponds to cusps of the phreatic surface.
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Fig. 7 Descending infiltration flow past a hole with an impermeable roof and constant-head bottom section
seeping into the soil

In our Kidder-type phreatic flow, we ignored evaporation from F1F (Fig. 2a), i.e., we
assumed that unsaturated flow does not affect potential flow. The Deemter (1950) and
Polubarinova-Kochina (1962) evaporation model takes into account coupling between two
flows by assuming that along the phreatic surface ψ = ex + Q, where e = const > 0 is
a given intensity of evaporation. Flow from the source (Fig. 3d) then splits into ascending
and descending parts, with a separatrix AE and a stagnation point E (see Fig. 3 of Deemter
1950). Along this curve, as well as along EF1 and ED1, the stream function ψ = QE , where
QE < Q is the part of the source-emitted water that descends as deep percolation. The
hodograph domain (Fig. 3e) remains the same as in Fig. 2a, modulo translated upward to a
distance μ.

Our HYDRUS simulations substantiate the analytical findings. For saturated–unsaturated
flows, we followed Hanson et al. (2008), i.e., we considered a HYDRUS rectangular domain
with an emitter modeled as a constant total head contour (a semicircle or rectangle). However,
in order to compare the numerical and analytical solutions, we bounded the bottom of the
rectangle from below by a positive-pressure horizon (“backwater”) similarly to Choudhary
and Chahar (2007), which represents a common hydrogeological “outlet drainage” (see,
also Vedernikov 1939, PK-77). This “backwater” is routinely encountered in regular surface
irrigation projects with seepage from earth channels and furrows (Bouwer 1978; Ilyinsky
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and Kacimov 1991; Kacimov and Youngs 2005), but was not previously modeled in SI. We
also modeled unsaturated–saturated zonation more general than in Philip et al. (1989) for
a subterranean hole placed in a descending infiltration-induced ambient flow, with a mixed
boundary condition along the hole contour, which is impermeable near hole’s roof and leaks
through a constant total head segment at hole’s bottom. The future HYDRUS analysis might
bewarranted to show howflowfields from emitters and past holes are affected by soil layering
and fluxes.
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